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A Complete and Recursive Feature TheoryRolf Backofen and Gert SmolkaGerman Research Center for Arti�cial Intelligence (DFKI)Stuhlsatzenhausweg 3, D-6600 Saarbr�ucken, Germanyfbackofen, smolkag@dfki.uni-sb.deAbstractVarious feature descriptions are being employed in logic program-ming languages and constrained-based grammar formalisms. The com-mon notational primitive of these descriptions are functional attributescalled features. The descriptions considered in this paper are the possi-bly quanti�ed �rst-order formulae obtained from a signature of binaryand unary predicates called features and sorts, respectively. We estab-lish a �rst-order theory FT by means of three axiom schemes, show itscompleteness, and construct three elementarily equivalent models.One of the models consists of so-called feature graphs, a data struc-ture common in computational linguistics. The other two models con-sist of so-called feature trees, a record-like data structure generalizingthe trees corresponding to �rst-order terms.Our completeness proof exhibits a terminating simpli�cation sys-tem deciding validity and satis�ability of possibly quanti�ed featuredescriptions.
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1 IntroductionFeature descriptions provide for the typically partial description of abstractobjects by means of functional attributes called features. They originatedin the late seventies with so-called uni�cation grammars [15, 13], a by nowpopular family of declarative grammar formalisms for the description andprocessing of natural language. More recently, the use of feature descrip-tions in logic programming has been advocated and studied [3, 4, 5, 6, 21].Essentially, feature descriptions provide a logical version of records, a datastructure found in many programming languages.Feature descriptions have been proposed in various forms with various for-malizations [1, 2, 14, 18, 11, 20, 7, 12]. We will follow the logical approachpioneered by [20], which accommodates feature descriptions as standard�rst-order formulae interpreted in �rst-order structures. In this approach, asemantics for feature descriptions can be given by means of a feature theory(i.e., a set of closed feature descriptions having at least one model). Thereare two complementary ways of specifying a feature theory: either by ex-plicitly constructing a standard model and taking all sentences valid in it, orby stating axioms and proving their consistency. Both possibilities are ex-empli�ed in [20]: the feature graph algebra F is given as a standard model,and the class of feature algebras is obtained by means of an axiomatization.Both approaches to �xing a feature theory have their advantages. The con-struction of a standard model provides for a clear intuition and yields acomplete feature theory (i.e., if � is a closed feature description, then either� or :� is valid). The presentation of a recursively enumerable axiomati-zation has the advantage that we inherit from predicate logic a sound andcomplete deduction system for valid feature descriptions.The ideal case then is to specify a feature theory by both a standard modeland a corresponding recursively enumerable axiomatization. The existenceof such a double characterization, however, is by no means obvious since itimplies that the feature theory is decidable. In fact, so far no decidable,consistent and complete feature theory has been known.In this paper we will establish a complete and decidable feature theoryFT by means of three axiom schemes. We will also construct three modelsof FT, two consisting of so-called feature trees, and one consisting of so-calledfeature graphs. Since FT is complete, all three models are elementarilyequivalent (i.e., satisfy exactly the same �rst-order formulae). While thefeature graph model captures intuitions common in linguistically motivatedinvestigations, the feature tree model provides the connection to the treeconstraint systems [9, 10, 16, 17] employed in logic programming.Our proof of FT's completeness will exhibit a simpli�cation algorithm that3



computes for every feature description an equivalent solved form from whichthe solutions of the description can be read of easily. For a closed featuredescription the solved form is either > (which means that the description isvalid) or ? (which means that the description is invalid). For a feature de-scription with free variables the solved form is ? if and only if the descriptionis unsatis�able.1.1 Feature DescriptionsFeature descriptions are �rst-order formulae built over an alphabet of bina-ry predicate symbols, called features, and an alphabet of unary predicatesymbols, called sorts. There are no function symbols. In admissible inter-pretations features must be functional relations, and distinct sorts must bedisjoint sets. This is stated by the �rst and second axiom scheme of FT:(Ax1) 8x8y8z(f(x; y)^ f(x; z)! y := z) (for every feature f)(Ax2) 8x(A(x)^B(x)! ?) (for every two distinct sorts A and B).A typical feature description written in matrix notation isx : 9y 266666664 womanfather : " engineerage : y #husband : " painterage : y # 377777775 :It may be read as saying that x is a woman whose father is an engineer,whose husband is a painter, and whose father and husband are both of thesame age. Written in plain �rst-order syntax we obtain the less suggestiveformula 9y ;F;H ( woman(X) ^father(x;F)^ engineer(F) ^ age(F; y) ^husband(x;H) ^ painter(H) ^ age(H ; y) ):The axiom schemes (Ax1) and (Ax2) still admit trivial models where allfeatures and sorts are empty. The third and �nal axiom scheme of FTstates that certain \consistent" descriptions have solutions. Three Examplesof instances of FT's third axiom scheme are9x; y; z (f(x; y)^ A(y)^ g(x; z)^B(z))8u; z 9x; y (f(x; y)^ g(y; u)^ h(y; z)^ yf")8z 9x; y (f(x; y)^ g(y; x)^ h(y; z)^ yf");4



where yf" abbreviates :9z(f(y; z)). Note that the third descriptionf(x; y)^ g(y; x)^ h(y; z)^ fy"is \cyclic" with respect to the variables x and y.1.2 Feature TreesA feature tree (examples are shown in Figure 1) is a tree whose edges arelabeled with features, and whose nodes are labeled with sorts. As one wouldexpect, the labeling with features must be deterministic, that is, the directsubtrees of a feature tree must be uniquely identi�ed by the features of theedges leading to them. Feature trees can be seen as a mathematical modelof records in programming languages. Feature trees without subtrees modelatomic values (e.g., numbers). Feature trees may be �nite or in�nite, wherein�nite feature trees provide for the convenient representation of cyclic datastructures. The last example in Figure 1 gives a �nite graph representationof an in�nite feature tree, which may arise as the representation of therecursive type equation nat = 0 + s(nat).A ground term, say f (g(a; b); h(c)), can be seen as a feature tree whosenodes are labeled with function symbols and whose arcs are labeled withnumbers: b cg 2 ha1 1 12fThus the trees corresponding to �rst-order terms are in fact feature treesobserving certain restrictions (e.g., the features departing from a node mustbe consecutive positive integers).Feature descriptions are interpreted over feature trees as one would expect:� Every sort symbol A is taken as a unary predicate, where a sort con-straint A(x) holds if and only if the root of the tree x is labeled with A.� Every feature symbol f is taken as a binary predicate, where a featureconstraint f(x; y) holds if and only if the tree x has the direct subtreey at feature f . 5
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Figure 1: Examples of Feature Trees.The theory of the corresponding �rst-order structure (i.e., the set of allclosed formulae valid in this structure) is called FT. We will show that FTis in fact exactly the theory speci�ed by the three axiom schemes outlinedabove, provided the alphabets of sorts and features are both taken to bein�nite. Hence FT is complete (since it is the theory of the feature treestructure) and decidable (since it is complete and speci�ed by a recursiveset of axioms).Another, elementarily equivalent, model of FT is the substructure of thefeature tree structure obtained by admitting only rational feature trees (i.e.,�nitely branching trees having only �nitely many subtrees). Yet anothermodel of FT can be obtained from so-called feature graphs, which are �nite,directed, possibly cyclic graphs labelled with sorts and features similar tofeature trees. In contrast to feature trees, nodes of feature graphs may ormay not be labelled with sorts. Feature graphs correspond to the so-calledfeature structures commonly found in linguistically motivated investigations[19, 8].1.3 Organization of the PaperSection 2 recalls the necessary notions and notations from Predicate Logic.Section 3 de�nes the theory FT by means of three axiom schemes. Section 4establishes the overall structure of the completeness proof by means of alemma. Section 5 studies quanti�er-free conjunctive formulae, gives a solvedform, and introduces path constraints. Section 6 de�nes feature trees and6



graphs and establishes the respective models of FT. Section 7 studies theproperties of so-called prime formulae, which are the basic building stonesof the solved form for general feature constraints. Section 8 presents thequanti�er elimination lemmas and completes the completeness proof.2 PreliminariesThroughout this paper we assume a signature SOR ] FEA consisting of anin�nite set SOR of unary predicate symbols called sorts and an in�nite setFEA of binary predicate symbols called features. For the completeness ofour axiomatization it is essential that there are both in�nitely many sortsand in�nitely many features.1 The letters A, B, C will always denote sorts,and the letters f , g, h will always denote features.A path is a word (i.e., a �nite, possibly empty sequence) over the set of allfeatures. The symbol " denotes the empty path, which satis�es "p = p = p"for every path p. A path p is called a pre�x of a path q, if there exists apath p0 such that pp0 = q.We also assume an in�nite alphabet of variables and adopt the conventionthat x, y, z always denote variables, and X , Y always denote �nite, possiblyempty sets of variables. Under our signature SOR ] FEA, every term is avariable, and an atomic formula is either a feature constraint xfy (f(x; y)in standard notation), a sort constraint Ax (A(x) in standard notation),an equation x := y, ? (\false"), or > (\true"). Compound formulae areobtained as usual with the connectives ^, _, !, $, : and the quanti�ers9 and 8. We use ~9� [~8�] to denote the existential [universal] closure of aformula �. Moreover, V(�) is taken to denote the set of all variables thatoccur free in a formula �. The letters � and  will always denote formulae.We assume that the conjunction of formulae is an associative and commu-tative operation that has > as neutral element. This means that we identify�^( ^�) with �^( ^�), and �^> with � (but not, for example, xfy^xfywith xfy). A conjunction of atomic formulae can thus be seen as the �nitemultiset of these formulae, where conjunction is multiset union, and > (the\empty conjunction") is the empty multiset. We will write  � � (or  2 �,if  is an atomic formula) if there exists a formula  0 such that  ^ 0 = �.Moreover, we identify 9x9y� with 9y9x�. If X = fx1; : : : ; xng, we write9X� for 9x1 : : :9xn�. If X = ;, then 9X� stands for �.1The assumption that the alphabets of sorts and features are in�nite is used in Propo-sition 7.9 and Lemma 8.4. 7



Structures and satisfaction of formulae are de�ned as usual. A valuationinto a structure A is a total function from the set of all variables into theuniverse jAj of A. A valuation �0 into A is called an x-update [X-update]of a valuation � into A if �0 and � agree everywhere but possibly on x [X ].We use �A to denote the set of all valuations � such that A; � j= �. Wewrite � j=  (\� entails  ") if �A �  A for all structures A, and � j=j  (\� is equivalent to  ") if �A =  A for all structures A.A theory is a set of closed formulae. A model of a theory is a structurethat satis�es every formulae of the theory. A formula � is a consequenceof a theory T (T j= �) if ~8� is valid in every model of T . A formula �entails a formula  in a theory T (� j=T  ) if �A �  A for every model Aof T . Two formulae �,  are equivalent in a theory T (� j=jT  ) if �A =  Afor every model A of T .A theory T is complete if for every closed formula � either � or :� is aconsequence of T . A theory is decidable if the set of its consequences isdecidable. Since the consequences of a recursively enumerable theory arerecursively enumerable (completeness of �rst-order deduction), a completetheory is decidable if and only if it is recursively enumerable.Two �rst-order structures A, B are elementarily equivalent if, for every�rst-order formula �, � is valid in A if and only if � is valid in B. Note thatall models of a complete theory are elementarily equivalent.3 The AxiomsThe �rst axiom scheme says that features are functional:(Ax1) 8x8y8z(xfy ^ xfz ! y := z) (for every feature f).The second scheme says that sorts are mutually disjoint:(Ax2) 8x(Ax ^Bx! ?) (for every two distinct sorts A and B).The third and �nal axiom scheme will say that certain \consistent featuredescriptions" are satis�able. For its formulation we need the importantnotion of a solved clause.An exclusion constraint is an additional atomic formula of the form xf"(\f unde�ned on x") taken to be equivalent to :9y (xfy) (for some variabley 6= x).A solved clause is a possibly empty conjunction � of atomic formulae ofthe form xfy, Ax and xf" such that the following conditions are satis�ed:8



gg hh B w f" g"C uy z gf x h"A v f"f
Figure 2: A graph representation of a solved clause.1. no atomic formula occurs twice in �2. if Ax 2 � and Bx 2 �, then A = B3. if xfy 2 � and xfz 2 �, then y = z4. if xfy 2 �, then xf" =2 �.Figure 2 gives a graph representation of the solved clausexfu ^ xgv ^ xh" ^Cu ^ uhx ^ ugy ^ ufz ^Av ^ vgz ^ vhw ^ vf" ^Bw ^ wf" ^ wg" :A more readable textual representation of this solved clause isx : [f : u g: v h"]u : [C h: x g: y f : z]v : [A g: z h:w f"]w : [B f" g"]:As in the example, a solved clause can always be seen as the graph whosenodes are the variables appearing in the clause and whose arcs are given bythe feature constraints xfy. The constraints Ax, xf " appear as labels ofthe node x. The graphical representation of solved clauses should be veryhelpful in understanding the proofs to come.A variable x is constrained in a solved clause � if � contains a constraintof the form Ax, xfy or xf". We use CV(�) to denote the set of all variablesthat are constrained in �. The variables in V(�) � CV(�) are called the9



parameters of a solved clause �. In the graph representation of a solvedclause the parameters appear as leaves that are not not labeled with a sortor a feature exclusion. The parameters of the solved clause in Figure 2 arey and z.We can now state the third axiom scheme. It says that the constrainedvariables of a solved clause have solutions for all values of the parameters:(Ax3) ~89X� (for every solved clause � and X = CV(�)).The theory FT is the set of all sentences that can be obtained as instancesof the axiom schemes (Ax1), (Ax2) and (Ax3). The theory FT0 is theset of all sentences that can be obtained as instances of the �rst two axiomschemes.As the main result of this paper we will show that FT is a complete anddecidable theory.By using an adaption of the proof of Theorem 8.3 in [20] one can show thatFT0 is undecidable.4 Outline of the Completeness ProofThe completeness of FT will be shown by exhibiting a simpli�cation algo-rithm for FT. The following lemma gives the overall structure of the algo-rithm, which is the same as in Maher's [17] completeness proof for the theoryof constructor trees.Lemma 4.1 Suppose there exists a set of so-called prime formulae suchthat:1. every sort constraint Ax, every feature constraint xfy, and every equa-tion x := y such that x 6= y is a prime formula2. > is a prime formula, and there is no other closed prime formula3. for every two prime formulae � and �0 one can compute a formula �that is either prime or ? and satis�es� ^ �0 j=jFT � and V(�) � V(� ^ �0)4. for every prime formula � and every variable x one can compute aprime formula �0 such that9x� j=jFT �0 and V(�0) � V(9x�)10



5. if �, �1; : : : ; �n are prime formulae, then9x(� ^ n̂i=1:�i) j=jFT n̂i=19x(� ^ :�i)6. for every two prime formulae �, �0 and every variable x one can com-pute a Boolean combination � of prime formulae such that9x(� ^ :�0) j=jFT � and V(�) � V(9x(� ^ :�0)):Then one can compute for every formula � a Boolean combination � of primeformulae such that � j=jFT � and V(�) � V(�).Proof. Suppose a set of prime formulae as required exists. Let � be aformula. We show by induction on the structure of � how to compute aBoolean combination � of prime formulae such that � j=jFT � and V(�) �V(�).If � is an atomic formula Ax, xfy or x := y, then � is either a prime formula,or � is a trivial equation x := x, in which case it is equivalent to the primeformula >.If � is : ,  ^  0 or  _  0, then the claim follows immediately with theinduction hypothesis.It remains to show the claim for � = 9x . By the induction hypothesis weknow that we can compute a Boolean combination � of prime formulae suchthat � j=jFT  and V(�) � V( ). Now � can be transformed to a disjunctivenormal form where prime formulae play the role of atomic formulae; that is,� is equivalent to �1 _ : : :_ �n, where every \clause" �i is a conjunction ofprime and negated prime formulae. Hence9x� j=j 9x(�1 _ : : :_ �n) j=j 9x�1 _ : : :_ 9x�n;where all three formulae have exactly the same free variables. It remains toshow that one can compute for every clause � a Boolean combination � ofprime formulae such that 9x� j=jFT � and V(�) � V(9x�). We distinguishthe following cases.(i) � = � for some basic formula �. Then the claim follows by assump-tion (4).(ii) � = � ^ Vni=1 :�i, n > 0. Then the claim follows with assumptions (5)and (6).(iii) � = Vni=1 :�i, n > 0. Then � j=jFT > ^ Vni=1 :�i and the claim followswith case (ii) since > is a prime formula by assumption (2).(iv) � = �1 ^ : : : ^ �k ^ :�01 ^ : : : ^ �0n, k > 1, n � 0. Then we know by11



assumption (3) that either �1 ^ : : :^ �k j=jFT ? or �1 ^ : : :^ �k j=jFT � forsome prime formula �. In the former case we choose � = :>, and in thelatter case the claim follows with case (i) or (ii). 2Note that, provided a set of prime formulae with the required propertiesexists, the preceding lemma yields the completeness of FT since every closedformula can be simpli�ed to > or :> (since > is the only closed primeformula).In the following we will establish a set of prime formula as required.5 Solved FormulaeIn this section we introduce a solved form for conjunctions of atomic formu-lae.A basic formula is either ? or a possibly empty conjunction of atomicformulae of the form Ax, xfy, and x := y. Note that > is a basic formulasince > is the empty conjunction.Every basic formula � 6= ? has a unique decomposition � = �N ^ �G into apossibly empty conjunction �N of equations \x := y" and a possibly emptyconjunction �G of sort constraints \Ax" and feature constraints \xfy". Wecall �N the normalizer and and �G the graph of �.We say that a basic formula � binds x to y if x := y 2 � and x occursonly once in �. Here it is important to note that we consider equations asdirected, that is, assume that x := y is di�erent from y := x if x 6= y. We saythat � eliminates x if � binds x to some variable y.A solved formula is a basic formula 
 6= ? such that the following condi-tions are satis�ed:1. an equation x := y appears in 
 if and only if 
 eliminates x2. the graph of 
 is a solved clause.Note that a solved clause not containing exclusion constraints is a solvedformula, and that a solved formula not containing equations is a solvedclause. The letter 
 will always denote a solved formula.We will see that every basic formula is equivalent in FT0 to either ? or asolved formula. 12



1. xfy ^ xfz ^ �xfz ^ y := z ^ �2. Ax ^ Bx ^ �? A 6= B3. Ax ^ Ax ^ �Ax ^ �4. x := y ^ �x := y ^ �[x y] x 2 V(�) and x 6= y5. x := x ^ �� Figure 3: The basic simpli�cation rules.Figure 3 shows the so-called basic simpli�cation rules. With �[x y] wedenote the formula that is obtained from � by replacing every occurrenceof x with y. We say that a formula � simpli�es to a formula  by asimpli�cation rule � if � is an instance of �. We say that a basic formula �simpli�es to a basic formula  if either � =  or � simpli�es to  in �nitelymany steps each licensed by one of basic simpli�cation rules in Figure 3.Note that the basic simpli�cation rules (1) and (2) correspond to the �rstand second axiom scheme, respectively. Thus they are equivalence transfor-mation with respect to FT0. The remaining three simpli�cation rules areequivalence transformations in general.Proposition 5.1 The basic simpli�cation rules are terminating and per-form equivalence transformations with respect to FT0. Moreover, a basicformula � 6= ? is solved if and only if no basic simpli�cation rule applies toit.Proof. To see that the basic simpli�cation rules are terminating, observethat no rule adds a new variable and that every rule preserves eliminatedvariables. Since rule (4) increases the number of eliminated variables, andthe remaining rules obviously terminate, the entire system must terminate.The other claims are easy to verify. 2Proposition 5.2 Let � be a formula built from atomic formulae with con-junction. Then one can compute a formula � that is either solved or ? such13



that � j=jFT0 � and V(�) � V(�).Proof. Follows from the preceding proposition and the fact that the basicsimpli�cation rules do not introduce new variables. 2In the quanti�er elimination proofs to come it will be convenient to use so-called path constraints, which provide a 
exible syntax for atomic formulaeclosed under conjunction and existential quanti�cation. We start by de�ningthe denotation of a path.The interpretations fA, gA of two features f , g in a structure A are binaryrelations on the universe jAj of A; hence their composition fA � gA is againa binary relation on jAj satisfyinga(fA � gA)b () 9c 2 jAj: afAc ^ cfAbfor all a; b 2 jAj. Consequently we de�ne the denotation pA of a pathp = f1 � � �fn in a structure A as the composition(f1 � � �fn)A := fA1 � � � � � fAn ;where the empty path " is taken to denote the identity relation. If A is amodel of the theory FT0, then every paths denotes a unary partial functionon the universe of A. Given an element a 2 jAj, pA is thus either unde�nedon a or leads from a to exactly one b 2 jAj.Let p, q be paths, x, y be variables, andA be a sort. Then path constraintsare de�ned as follows:A; � j= xpy :() �(x) pA �(y)A; � j= xp#yq :() 9a 2 jAj: �(x) pA a ^ �(y) qA aA; � j= Axp :() 9a 2 jAj: �(x) pA a ^ a 2 AA:Note that path constraints xpy generalize feature constraints xfy.A proper path constraint is a path constraint of the form \Axp" or\xp#yq".Every path constraint can be expressed with the already existing formulae,as can be seen from the following equivalences:x"y j=j x := yxfpy j=j 9z(xfz ^ zpy) (z 6= x; y)xp#yq j=j 9z(xpz ^ yqz) (z 6= x; y)Axp j=j 9y(xpy ^ Ay) (y 6= x):14



The closure [
] of a solved formula 
 is the closure of the atomic formulaeoccurring in 
 with respect to the following deduction rules:x"x x := yx"y xpy yfzxpfz xpz yqzxp#yq Ay xpyAxp :Recall that we assume that equations x := y are directed, that is, are orderedpairs of variables. Hence, x�y 2 [
] and y�x =2 [
] if x := y 2 
.The closure of a solved clause � is de�ned analogously.Proposition 5.3 Let 
 be a solved formula. Then:1. if � 2 [
], then 
 j= �2. x"y 2 [
] i� x = y or x := y 2 
3. xfy 2 [
] i� xfy 2 
 or 9z: x := z 2 
 and zfy 2 
4. xpfy 2 [
] i� 9z: xpz 2 [
] and zfy 2 
5. if p 6= " and xpy; xpz 2 [
], then y = z6. it is decidable whether a path constraint is in [
].Proof. For the �rst claim one veri�es the soundness of the deduction rulesfor path constraints. The veri�cation of the other claims is straightforward.26 Feature Trees and Feature GraphsIn this section we establish three models of FT consisting of either featuretrees or feature graphs. Since we will show that FT is a complete theory, allthree models are in fact elementarily equivalent.A tree domain is a nonempty setD � FEA? of paths that is pre�x-closed,that is, if pq 2 D, then p 2 D. Note that every tree domain contains theempty path.A feature tree is a partial function �: FEA? ! SOR whose domain is atree domain. The paths in the domain of a feature tree represent the nodesof the tree; the empty path represents its root. We use D� to denote thedomain of a feature tree �. A feature tree is called �nite [in�nite] if itsdomain is �nite [in�nite]. The letters � and � will always denote featuretrees. 15



The subtree p� of a feature tree � at a path p 2 D� is the feature treede�ned by (in relational notation)p� := f(q; A) j (pq; A) 2 �g:A feature tree � is called a subtree of a feature tree � if � is a subtree of �at some path p 2 D� , and a direct subtree if p = f for some feature f .A feature tree � is called rational if (1) � has only �nitely many subtreesand (2) � is �nitely branching (i.e., for every p 2 D�, the set fpf 2 D� jf 2 FEAg is �nite). Note that for every rational feature tree � there exist�nitely many features f1; : : : ; fn such that D� � ff1; : : : ; fng?.The feature tree structure T is the SOR ] FEA-structure de�ned asfollows:� the universe of T is the set of all feature trees� � 2 AT i� �(") = A (i.e., �'s root is labeled with A)� (�; �) 2 fT i� f 2 D� and � = f� (i.e., � is the subtree of � at f).The rational feature tree structureR is the substructure of T consistingonly of the rational feature trees.Theorem 6.1 The feature tree structures T and R are models of the theo-ry FT.Proof. We will �rst show that T is a model of FT.The �rst and second axiom scheme are obviously satis�ed by T . To seethat T satis�es the third axiom scheme, let � be a solved clause, X be thevariables constrained in �, and � be a valuation into T . It su�ces to showthat there exists an X-update �0 of � such that T ; �0 j= �.Without loss of generality we can assume that � contains a sort constraintAx for every x 2 X . Now one can verify that8x 2 X :(p; A) 2 �0(x) () Axp 2 [�] _9xp0y 2 [�] 9(p00; A) 2 �(y): p = p0p00 ^ y =2 Xde�nes an X-update �0 of � such that T ; �0 j= �.The same construction shows that R is a model of FT. 216



A feature pregraph is a pair (x; 
) consisting of a variable x (called theroot) and a solved clause 
 not containing exclusion constraints such that,for every variable y occurring in 
, there exists a path p satisfying xpy 2 [
].If one deletes the exclusion constraints in Figure 2, one obtains the graphicalrepresentation of a feature pregraph whose root is x.A feature pregraph (x; 
) is called a subpregraph of a feature pregraph(y; �) if 
 � � and x = y or x 2 V(�). Note that a feature pregraph has only�nitely many subpregraphs.We say that two feature pregraphs are equivalent if they are equalup to consistent variable renaming. For instance, (x; xfy ^ ygx) and(u; ufx ^ xgu) are equivalent feature pregraphs.A feature graph is an element of the quotient of the set of all featurepregraphs with respect to equivalence as de�ned above. We use (x; 
) todenote the feature graph obtained as the equivalence class of the featurepregraph (x; 
).In contrast to feature trees, not every node of a feature graph must carry asort.The feature graph structure G is the SOR ] FEA-structure de�ned asfollows:� the universe of G is the set of all feature graphs� (x; 
) 2 AG i� Ax 2 
� ((x; 
); �) 2 fG i� there exists a maximal feature subpregraph (y; �)of (x; 
) such that xfy 2 
 and � = (y; �).Theorem 6.2 The feature graph structure G is a model of the theory FT.Proof. The �rst and second axiom scheme are obviously satis�ed by G. Tosee that G satis�es the third axiom scheme, let � be a solved clause and �a valuation into T . It su�ces to show that there exists an CV(�)-update �0of � such that G; �0 j= �.First we choose for the parameters y 2 V(�)�CV(�) variable disjoint featurepregraphs (y; 
y) such that �(y) = (y; 
y). Moreover, we can assume withoutloss of generality that every pregraph (y; 
y) has with � exactly its rootvariable y in common. Hence�0 := � ^ ^y2V(�)�CV(�)
y17



is a solved clause. Now, for every constrained variable x 2 CV(�), let �x bethe maximal solved clause such that �x � �0 and (x; �x) is a feature pregraph.Then the CV(�)-update �0 of � such that �0(x) = (x; �x) for every x 2 CV(�)satis�es G; �0 j= �. 2Let F be the structure whose domain consists of all feature pregraphs andthat is otherwise de�ned analogous to G. Note that G is in fact the quotientof F with respect to equivalence of feature pregraphs.Proposition 6.3 The feature pregraph structure F is a model of FT0 butnot of FT.Proof. It is easy to see that F satis�es the �rst and second axiom scheme.To see that F does not satisfy the third axiom scheme, consider the solvedclause � = xfy ^ xgzand a valuation � into F such that �(y) = (x;Ax), �(z) = (x;Bx), andA 6= B. Then there exists no x-update �0 of � satisfying F ; �0 j= � since afeature pregraph cannot contain both Ax and Bx. 27 Prime FormulaeWe now de�ne a class of prime formulae having the properties required byLemma 4.1. The prime formulae will turn out to be solved forms for formulaebuilt from atomic formulae with conjunction and existential quanti�cation.A prime formula is a formula 9X
 such that1. 
 is a solved formula2. X has no variable in common with the normalizer of 
3. every x 2 X can be reached from a free variable, that is, there existsa path constraint ypx 2 [
] such that y =2 X .The letter � will always denote a prime formula.Note that > is the only closed prime formula, and that 9X
 is a primeformula if 9x9X
 is a prime formula. Moreover, every solved formula is aprime formula, and every quanti�er-free prime formula is a solved formula.18



The de�nition of prime formulae certainly ful�lls the requirements (1) and(2) of Lemma 4.1. The ful�llment of the requirements (3) and (4) will beshown in this section, and the ful�llment of the requirements (5) and (6)will be shown in the next section.Proposition 7.1 Let 9X
 be a prime formula, A be a model of FT, andA; � j= 9X
. Then there exists one and only one X-update �0 of � suchthat A; �0 j= 
.Proof. The existence of anX-update �0 of � such that A; �0 j= 
 is obvious.The uniqueness of �0 follows from the fact that features are functional, andthat, for every x 2 X , there exists a \global" variable x0 =2 X and a path psuch that A; �0 j= x0px (since x0px 2 [
]). 2The next proposition establishes that prime formulae are closed under exis-tential quanti�cation (property (4) of Lemma 4.1). Its proof makes for the�rst time use of the third axiom scheme.Proposition 7.2 For every prime formula � and every variable x one cancompute a prime formula �0 such that9x� j=jFT �0 and V(�0) � V(9x�):Proof. Let � = 9X
 be a prime formula and x be a variable. We con-struct a prime formula �0 such that 9x� j=jFT �0 and V(�0) � V(9x�). Wedistinguish the following cases.1. x =2 V(�). Then �0 := � does the job.2. 
 = (x := y ^ 
 0). Then �0 := 9X
 0 does the job.3. 
 = (y := x ^ 
 0). Then �0 := 9X(
 0[x  y]) does the job since 
 j=jx := y ^ 
 0[x y].4. x =2 X and x occurs in the graph but not in the normalizer of 
. Thenwe obtain �0 by a \garbage collection" deleting all parts of 9x� that cannotbe reached from \global" variables. To do this we de�ne the following:Y := X [ fxg \quanti�ed variables"Y1 := fx 2 Y j 9ypx 2 [
]: y =2 Y g \reachable variables"Y2 := Y � Y1 \unreachable variables":Furthermore, let 
 = 
N ^ 
G19



be the decomposition of 
 into normalizer and graph, and let
G = 
 0G ^ 
 00Gbe the decomposition of 
G obtained by putting into 
 00G all atomic formulaethat contain a variable in Y2. To stay with the garbage collection metaphor,think of 
 0G as the reachable and of 
 00G as the unreachable part of 
G (underthe quanti�cation 9x9X).Since Y � V(
G) � V(
N), we have Y1 � V(
 0G), V(
 0G) \ Y2 = ;, andY2 � V(
 00G). We will show that�0 := 9Y1(
N ^ 
 0G)does the job.It is straightforward to verify that �0 is a prime formula, and that V(�0) �V(9x�).Next we show 9Y2
 00G j=jFT >. Since 
 00G is a solved clause and Y2 containsall variables that are constrained in 
 00G, we know by the third axiom schemethat FT j= ~89Y2
00G.Finally we show 9x� j=jFT �0. To see this, recall V(
N) \ Y = ; andV(
 0G)\ Y2 = ;, and consider:9x� = 9x9X(
N ^ 
G)j=j 9Y (
N ^ 
G)j=j 
N ^ 9Y 
Gj=j 
N ^ 9Y19Y2(
 0G ^ 
 00G)j=j 
N ^ 9Y1(
 0G ^ 9Y2
 00G)j=jFT 
N ^ 9Y1
 0Gj=j 9Y1(
N ^ 
 0G) = �0: 2Proposition 7.3 If � is a prime formula, then FT j= ~9�.Proof. Follows from the preceding proposition since > is the only closedprime formula. 2The next proposition establishes that prime formulae are closed under con-sistent conjunction (property (3) of Lemma 4.1).20



Proposition 7.4 For every two prime formulae � and �0 one can computea formula � that is either prime or ? and satis�es� ^ �0 j=jFT � and V(�) � V(� ^ �0):Proof. Let � = 9X
 and �0 = 9X 0
 0 be prime formulae. Without loss ofgenerality we can assume that X and X 0 are disjoint. Hence� ^ �0 j=j 9X9X 0(
 ^ 
 0):Since 
^ 
 0 is a basic formula, Proposition 5.2 tells us that we can computea formula � that is either solved or ? and satis�es 
 ^ 
 0 j=jFT � andV(�) � V(
 ^ 
 0). If � = ?, then � := ? does the job. Otherwise, � issolved. Since � ^ �0 j=jFT 9X9X 0�;we know by Proposition 7.2 how to compute a prime formula �00 such that�^�0 j=jFT �00. From the construction of �00 one veri�es easily that V(�00) �V(� ^ �0). 2Proposition 7.5 Let � be a formula that is built from atomic formulae withconjunction and existential quanti�cation. Then one can compute a formula� that is either prime or ? such that � j=jFT � and V(�) � V(�).Proof. Follows with Propositions 7.2 and 7.4. 2The closure of a prime formula 9X
 is de�ned as follows:[9X
] := f� 2 [
] j V(�)\X = ; or � = x"x or � = x"#x"g:The proper closure of a prime formula � is de�ned as follows:[�]? := f� 2 [�] j � is a proper path constraintg:Proposition 7.6 If � is a prime formula and � 2 [�], then � j= � (andhence :� j= :�).Proof. Let � = 9X
 be a prime formula, A; � j= �, and � 2 [�]. Thenthere exists a X-update �0 of � such that A; �0 j= 
. Since [�] � [
], wehave � 2 [
] and thus A; �0 j= �. If � has no variable in common with X ,then A; � j= �. Otherwise, � has the form \x"x" or \x" # x"" and henceA; � j= � holds trivially. 221



We now know that the closure [�], taken as an in�nite conjunction, is en-tailed by �. We are going to show that, conversely, � is entailed by certain�nite subsets of its closure [�].An access function for a prime formula � = 9X
 is a function that mapsevery x 2 V(
)�X to the rooted path x", and every x 2 X to a rooted pathx0p such that x0px 2 [
] and x0 =2 X . Note that every prime formula has atleast one access function, and that the access function of a prime formula isinjective on V(
) (follows from Proposition 5.3 (5)).The projection of a prime formula � = 9X
 with respect to an accessfunction @ for � is the conjunction of the following proper path constraints:fx"#y" j x := y 2 
g [fAx0p j Ax 2 
; x0p = @xg [fx0pf #y0q j xfy 2 
; x0p = @x; y0q = @yg:Obviously, one can compute for every prime formula an access function andhence a projection. Furthermore, if � is a projection of a prime formula �,then � taken as a set is a �nite subset of the closure [�].Proposition 7.7 Let � be a projection of a prime formula �. Then � � [�]?and � j=jFT �.Proof. Let � be the projection of a prime formula � = 9X
 with respectto an access function @.Since every path constraint � 2 � is in [�] and thus satis�es � j= �, we have� j= �.To show the other direction, suppose A; � j= �, where A is a model ofFT. Then A; �0 j= x0px for every x 2 X with @x = x0p de�nes a unique X-update �0 of �. From the de�nition of a projection it is clear that A; �0 j= 
.Hence A; � j= �. 2As a consequence of this proposition one can compute for every prime for-mula an equivalent quanti�er-free conjunction of proper path constraints.We close this section with a few propositions stating interesting propertiesof closures of prime formulae. These propositions will not be used in theproofs to come. The reader is nevertheless advised to study the proof ofProposition 7.9 since it employs a construction that will be reused in a morecomplicated form in the proof of Lemma 8.4.Proposition 7.8 If � is a prime formula, then � j=jFT [�]?.22



Proof. By Proposition 7.6 we have � j=FT [�]?, and by Proposition 7.7 wehave [�]? j=FT � since � has a projection � � [�]?. 2Proposition 7.9 If � is a prime formula, and � is a proper path constraint,then � 2 [�]? () � j=FT �:Proof. Let � = 9X
 be a prime formula, 
 = 
N ^
G be the decompositionof 
 into graph and normalizer, and � be a proper path constraint. Sincethe direction \)" is stated by Proposition 7.6, it su�ces to show the otherdirection.Suppose � =2 [�]. We show that FT j= ~9(� ^ :�), which yields � 6j=FT �since FT is consistent.Without loss of generality we can assume that V(�) and X are disjoint. LetY be the variables eliminated by 
. Since (� ^ :�) j=j (� ^ :�[x  y]) ifx := y 2 
N , we can assume without loss of generality that � contains novariable in Y .Since ~9(� ^ :�) j=j ~9 9Y (
N ^ 9X
G ^ :�)j=j ~9(9Y 
N ^ 9X
G ^ :�)j=j ~9(9X
G ^ :�)j=j ~9(
G ^ :�);it is su�cient to construct a solved clause � with 
G � � and � j=FT :�(recall that FT j= ~9� by the third axiom scheme). For the construction of� we distinguish three cases:1. � = Axp, � = xp # yq or � = yq # xp, where xp # xp 62 [
G]. Thenthere exists a pre�x p0f of p and a variable z such that xp0z 2 [
G] andzfz0 2 
G for no variable z0. Now adding zf" yields a solved clause � suchthat � j=FT :�.2. � = Axp, xpz 2 [
G]. If Bz 2 
G, then A 6= B (since � 62 [
G]) and� := 
G does the job. Otherwise, we choose a sort B 6= A and add Bz (recallthat we have assumed in�nitely many sorts).3. � = xp # yq, xpz 2 [
G] and yqz0 2 [
G]. Since � 62 [�], we know thatz 6= z0. We choose a new feature f and a new variable u and add zf" andz0fu (recall that we have assumed in�nitely many features). 223



Proposition 7.10 Let �, �0 be prime formulae. Then� j=FT �0 () [�]? � [�0]?:Proof. \)" Let � j=FT �0 and � 2 [�0]?. Then �0 j=FT � by Proposition 7.6and hence � j=FT � by the assumption. Hence � 2 [�]? by Proposition 7.9.\(" Let [�]? � [�0]?. Then [�]? j= [�0]? and hence � j=FT �0 by Proposi-tion 7.8. 2Proposition 7.11 Let �, �0 be prime formulae, and let �0 be a projectionof �0. Then � j=FT �0 () [�]? � �0.Proof. \)" Suppose � j=FT �0. Then [�]? � [�0]? by Proposition 7.10 and[�]? � �0 by Proposition 7.7.\(" Suppose [�]? � �0. Then [�]? j= �0 and hence � j=FT �0 by Proposi-tion 7.8 and 7.7. 2Proposition 7.11 gives us a decision procedure for \� j=FT �0" since mem-bership in [�]? is decidable, �0 is �nite, and �0 can be computed from �0.8 Quanti�er EliminationIn this section we show that our prime formulae satisfy the requirements (5)and (6) of Lemma 4.1 and thus obtain the completeness of FT. We startwith the de�nition of the central notion of a joker.A rooted path xp consists of a variable x and a path p. A rooted path xpis called unfree in a prime formula � if9 pre�x p0 of p 9 yq: x 6= y and xp0#yq 2 [�]:A rooted path is called free in a prime formula � if it is not unfree in �.Proposition 8.1 Let � = 9X
 be a prime formula. Then:1. if xp is free in �, then x does not occur in the normalizer of 
2. if x =2 V(�), then xp is free in � for every path p.A proper path constraint � is called an x-joker for a prime formula � if� =2 [�] and one of the following conditions is satis�ed:24



1. � = Axp and xp is free in �2. � = xp#yq and xp is free in �3. � = yp#xq and xq is free in �.Proposition 8.2 It is decidable whether a rooted path is free in a primeformula, and whether a path constraint is an x-joker for a prime formula.Proof. Follows with Proposition 5.3. 2Lemma 8.3 Let � be a prime formula, x be a variable, � be a proper pathconstraint that is not an x-joker for �, A be a model of FT, A; � j= �,A; �0 j= �, and �0 be an x-update of �. Then A; � j= � if and only ifA; �0 j= �.Proof. We distinguish the following cases:1. x 62 V(�). Then the claim is trivial.2. � 2 [�]. Then � j=FT � and hence �; �0 2 �A.3. � = Axp and xp unfree in �. Then p = p0p00 and xp0 # yq 2 [�] for somevariable y 6= x and some path q. Hence � j=FT � $ Ayqp00, which yieldsthe claim.4. � = xp#yq, x 6= y, xp unfree in �. Analogous to case (3).5. � = xp#xq and both xp, xq unfree in �. Analogous to case (3). 2Lemma 8.4 Let � be a prime formula and �1; : : : ; �n be x-jokers for �.Then 9x� j=FT 9x(� ^ n̂i=1:�i):Proof. Let � = 9X
 be a prime formula, �1; : : : ; �n (n > 0) be x-jokers for�, A be a model of FT, and � be a valuation into A such that A; � j= 9x�.We have to show that A; � j= 9x(� ^ Vni=1 :�i). Without loss of generalitywe assume that x 62 X , and that no �i has a variable in common with X .Let 
 = 
N ^
G be the decomposition of 
 into normalizer and graph. Sincethere are x-jokers for �, we know that x 62 V(
N).25



The proof now comes in two parts. Part II gives the construction of a solvedclause � such that, if Y and Y1 are de�ned asY := fxg [X [ (V(�)� V(
G)) \quanti�ed variables"Y1 := fy 2 Y j 8y0py 2 [�] : y0 2 Y g \unreachable variables";the following conditions are satis�ed:1. 
G � �2. additional variables in � are new variables, that is, (V(�)� V(
G)) \V(
N) = ; and (V(�)� V(
G)) \ V(�i) = ; for i = 1; : : : ; n3. if �0 is an Y -update of � such that A; �0 j= �, then A; �0 j= :�i fori = 1; : : : ; n4. every atomic formula that occurs in � but not in 
G contains onlyvariables in Y1.In Part I of the proof we will show that from the existence of a solvedclause � as speci�ed above we can derive A; � j= 9x(� ^ Vni=1 :�i). Part Iuses a garbage collection technique similar to the one used in the proof ofProposition 7.2. The construction of � in Part II is a re�nement of theconstruction in the proof of Proposition 7.9. We strongly recommend thatthe reader �rst gets a good intuitive understanding of the proofs of Propo-sition 7.2 and 7.9 before studying the rest of this proof.Part I. Suppose �, Y and Y1 are given as speci�ed above. We de�ne Y2, �1and �2 such that� Y = Y1 ] Y2� � = �1 ^ �2� V(�2) \ Y1 = ;� every atomic formula in �1 contains a variable in Y1.To stay with the garbage collection metaphor, think of Y2 as the reachablevariables, of �1 as the unreachable part of �, and �2 as the reachable partof �. By assumption (4) we know that �2 � 
G. By the third axiomscheme we know that 9Y1�1 j=jFT >, since �1 is a solved clause and Y1contains all variables that are constrained in �1.Note that fxg, X and V(�)� V(
G) are pairwise disjoint. Hence9x� j=FT 
N ^ 9Y �26



since 9x� j=j 9x9X(
N ^ 
G) j=j 
N ^ 9x9X
G j=j 
N ^ 9Y 
Gand 9Y 
G j= 9Y �2 j=jFT 9Y (�2 ^ 9Y1�1) j=jFT 9Y (�2 ^ �1) j=jFT 9Y �:Thus A; � j= 
N ^9Y �. Since V(
N)\Y = ;, there exists an Y -update of�0 such that A; �0 j= 
N^�. By assumption (3) we know that A; �0 j= :�ifor i = 1; : : : ; n, and by assumption (1) we know that A; �0 j= 
G. ThusA; �0 j= 9Y (
^Vni=1 :�i). Since V(�)�V(
G) has no variable in commonwith 
 ^ Vni=1 :�i and X has no variable in common with Vni=1 :�i, wehave A; �0 j= 9x(� ^ Vni=1 :�i).Part II. We will now construct a solved form � as required. To do this wewill look at every x-joker �i and possibly add constraints to 
G such thatrequirement (3) in particular is satis�ed. It su�ces to distinguish thefollowing cases (recall that x 62 V(
N)):1. �i = Axp, xpz 2 [
G]. If Bz 2 
G, then A 6= B (since �i 62 [
G]) andrequirement (3) is met without adding anything. Otherwise, we choosea new sort B and add Bz (recall that we have assumed in�nitely manysorts).2. �i = Axp, xp#xp 62 [
G]. Then there exists a pre�x p0f of p and avariable z such that xp0z 2 [
G] and zfz0 62 
G for every z0. Addingzf" will yield a solved form and satisfy the requirements (1){(3). Itwill also satisfy requirement (4) since xp is free in �.3. �i = xp#yq, xp free in �, xp#xp 62 [
G]. Analogous to case (2).4. �i = xp#yq, xp free in �, xpz 2 [
G]. We once more distinguish threecases:4.1 x 6= y. Let �0 be a Y -update of � such that A; �0 j= 
. Then qA isde�ned on �0(y) if and only if qA is de�ned on �(y). If qA is unde-�ned on �(y), requirement (3) is satis�ed without adding anything.Otherwise, let �(y)qAa. Then �0(y)qAa. Now choose a new feature f(recall that we have in�nitely many features). If fA is de�ned on a,we add zf"; otherwise we add zfz0, were z0 is a new variable. Require-ments (1){(3) are obviously satis�ed, and requirement (4) is satis�edsince xp is free in �.4.2 x = y and xq unfree in �. Then we have q = q0q00, xq0 #y0r 2 [�] andy0 =2 Y for some q0, q00 y0 and r. Let �0 be a Y -update of � such thatA; �0 j= 
. Then qA = q0Aq00A is de�ned on �0(x) if and only if rAq00Ais de�ned on �(y0). If rAq00A is unde�ned on �(y0), requirement (3) issatis�ed without adding anything. Otherwise, let �(y0)rAq00Aa. Then27



�0(x)qAa. Now choose a new feature f . If fA is de�ned on a, add zf";otherwise, add zfz0, where z0 is a new variable. Requirements (1){(3)are obviously satis�ed, and requirement (4) is satis�ed since xp is freein �.4.3 x = y and xq free in �. If xq # xq 62 [
G], we proceed analogous tocase (2). Otherwise, let xqz0 2 [
G]. Since �i 62 [�], we know thatz 6= z0. We choose a new feature f and a new variable u and add zf"and z0fu. This will certainly satisfy the requirements (1){(3). It willalso satisfy requirement (4) since both xp and xq are free in �. 2Note that the proof uses the third axiom scheme, the existence of in�nitelymany features, and the existence of in�nitely many sorts.Lemma 8.5 Let �, �0 be prime formulae and � be a valuation into a modelA of FT such thatA; � j= 9x(� ^ �0) and A; � j= 9x(� ^ :�0):Then every projection of �0 contains an x-joker for �.Proof. Without loss of generality we can assume that A; � j= � ^ �0.Furthermore, there exists an x-update �0 of � such that A; �0 j= � ^ :�0.Let � be a projection of �0. Since A; �0 6j= �0; we know by Proposition 7.7that A; �0 6j= �. Hence there exists a proper path constraint � 2 � such thatA; �0 6j= �. Since A; � j= �0, we know by Proposition 7.6 that A; � j= �.Hence we know by Lemma 8.3 that � must be an x-joker for �. 2Lemma 8.6 If �, �1; : : : ; �n are prime formulae, then9x(� ^ n̂i=1:�i) j=jFT n̂i=1 9x(� ^ :�i):Proof. Let �; �1; : : : ; �n be prime formulae. Then 9x(� ^ Vni=1 :�i) j=Vni=1 9x(� ^ :�i) is trivial. To see the other direction, suppose that A isa model of FT and A; � j= Vni=1 9x(� ^ :�i). We have to exhibit somex-update �0 of � such that A; �0 j= � and A; �0 j= :�i for i = 1; : : : ; n.Without loss of generality we can assume that A; �0 j= 9x(� ^ �i) for i =1; : : : ; m and A; �0 j= :9x(� ^ �i) for i = m+ 1; : : : ; n.28



By Lemma 8.5 there exists, for every i = 1; : : : ; m, an x-joker �i 2 [�i] for�. By Lemma 8.4 we have9x� j= 9x(� ^ m̂i=1:�i):Since :� j= :�i by Proposition 7.6, we have9x� j= 9x(� ^ m̂i=1:�i):Hence we know that there exists an x-update �0 of � such that A; �0 j= �and A; �0 j= :�i for i = 1; : : : ; m. Since we know that A; � j= :9x(� ^ �i)for i = m+ 1; : : : ; n, we have A; �0 j= :�i for i = m+ 1; : : : ; n. 2Lemma 8.7 For every two prime formulae �, �0 and every variable x onecan compute a Boolean combination � of prime formulae such that9x(� ^ :�0) j=jFT � and V(�) � V(9x(� ^ :�0)):Proof. Let �; �0 be prime formulae, � be a projection of �0, x be a variableand A be a model of FT. We distinguish two cases:1. � contains an x-joker � for �. Then we know that 9x� j= 9x(� ^ :�)by Lemma 8.4. Since �0 j=FT � j= �, we know that :� j= :�0 and hence9x� j=FT 9x(� ^ :�0). Thus9x(� ^ :�0) j=jFT 9x�:Now the claim follows with Proposition 7.2.2. � contains no x-joker � for �. Then we know by Lemma 8.5 that thereexists no valuation � into A such thatA; � j= 9x(� ^ �0) and A; � j= 9x(� ^ :�0):Hence 9x(� ^ :�0) j=jFT 9x� ^ :9x(� ^ �0):Now the claim follows with Propositions 7.2, 7.4 and 8.2.The above shows the existence of �. Moreover, � can be computed sincewe can compute a projection � of �0, and since we can decide whether �contains an x-joker for � by Proposition 8.2 (� is �nite). 2Theorem 8.8 For every formula � one can compute a Boolean combination� of prime formulae such that � j=jFT � and V(�) � V(�).29
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