
Constructive Formalization
of Classical Modal Logic

Christian Doczkal and Gert Smolka
Saarland University

May 16, 2011

This papers reports about the formalization of classical modal logic in the construc-
tive type theory of the proof assistant Coq. We represent formulas and models and
define satisfiability, validity, and equivalence of formulas. Our main results are a
small model theorem and the computational decidability of satisfiability, validity,
and equivalence. We consider a logic with modalities for one-step and reflexive
transitive reachability.

1 Introduction

We are interested in the formalization of decidable logics in constructive type theory. Of par-
ticular interest are logics for reasoning about programs, as exemplified by PDL [4] and CTL [2].
Given that these logics enjoy the small model property, one would hope that they can be formal-
ized in constructive type theory without using classical assumptions. In this paper, we report
about the constructive formalization of K∗ [10], a sublogic of PDL and CTL that has modalities
for one-step and reflexive transitive reachability. We employ the proof assistant Coq [12] with
the Ssreflect extension [7].

Our formalization1 represents formulas and models and defines an evaluation function and
predicates that express satisfiability, validity, and equivalence of formulas. Our main results
are a small model theorem and the computational decidability of satisfiability, validity, and
equivalence.

We define computational decidability as follows:2

Definition decidable (X : Type) (P : X −> Prop) : Type := forall x : X, {P x} + {∼ P x}.

Given that we work in a constructive type theory without assumptions, a proof of decidable P
certainly ensures that P is computationally decidable. A proof of decidable P is a function
that for each argument x yields a labeled proof of either Px or ¬Px. Note that every boolean
predicate is decidable, and that every decidable predicate can be reflected into a boolean pred-
icate (i.e., a function into bool). When we say decidable in the following, we mean decidability
according to the above definition.

The logics we want to formalize come with a classical two-valued semantics. In particular, the
evaluation function for formulas is two-valued. To account for this, we employ models whose

1The source code can be found at http://www.ps.uni-saarland.de/~doczkal/coq-3/
2Note that Coq’s library Coq.Logic.Decidable comes with a weaker, proof-oriented notion of decidability.

1

http://www.ps.uni-saarland.de/~doczkal/coq-3/

relations are boolean predicates and define evaluation as a boolean predicate. Hence, viewed
constructively, models are computational structures that come with a computable evaluation
function. Viewed classically, our models assert the existence of certain functions that facilitate
classical mathematical constructions. In particular, working with this kind of decidable models
allows for the standard mathematical practice of defining functions from models to syntactic
objects. We claim that our models give us a faithful representation of classical modal logic in
constructive type theory.

Given that we work with computational structures and are interested in decidability results,
Coq’s Ssreflect extension turned out to be a good platform for our formalization. We make use
of Ssreflect’s support for boolean propositions, finite types, and finite sets [6, 5].

We could not find a formalization of classical modal logic in constructive type theory in the
literature. However, there is work on the verification of decision procedures in constructive
logic, often with an emphasis on code extraction. An early example is a decision procedure for
classical propositional logic verified by Caldwell [1] in the Nuprl system. Another example is
Buchberger’s algorithm for polynomial rings verified by Théry [13] in Coq.

The paper explains our work in three steps. First we consider propositional logic, then basic
modal logic, and finally K∗. For each logic, we first formulate the mathematical theory we
have formalized and then comment on its realization in Coq. The mathematical theory is
formulated such that is fits formalization. The decidability proofs employ syntactic models
based on Hintikka sets [8]. We always give a function that for a formula yields a finite collection
of syntactic models such that the formula is satisfiable if and only if it is satisfied by one of
the syntactic models. For modal logic we rely on the development in [9]. The ideas of the
decidability proof originated with the work of Fischer and Ladner [4], Pratt [11], and Emerson
and Halpern [3]. The formalizations of the three logics appear in separate files accompanying
the paper.

2 Propositional Logic

We start with the mathematical theory of classical propositional logic we have formalized. We
call this theory P. Theory P is arranged such that it fits constructive formalization and scales
to modal logic. The key result is the decidability of satisfiability, validity, and equivalence of
formulas.

We assume an alphabet of names called variables and declare the letters p and q as ranging
over variables. Formulas are defined by the grammar

s, t ::= p | ¬s | s ∧ t | s ∨ t

A modelM is a set of variables. The satisfaction relationMî s between models and formulas
is defined by induction on formulas.

Mî p ⇐⇒ p ∈M Mî s ∧ t ⇐⇒ Mî s andMî t
Mî ¬s ⇐⇒ notMî s Mî s ∨ t ⇐⇒ Mî s orMî t

Satisfiability, validity, and equivalence of formulas are defined as follows.

• s is satisfiable ifMî s for some modelM.

• s is valid ifMî s for all modelsM.

• s and t are equivalent (s ≡ t) ifMî s iffMî t for all modelsM.

2

Proposition 2.1 Let s and t be formulas.

1. s is valid iff ¬s is unsatisfiable.

2. s ≡ t iff (s ∧ t)∨ (¬s ∧¬t) is valid.

3. If s ≡ t, then s is satisfiable iff t is satisfiable, and s is valid iff t is valid.

We define two functions η and ∼ from formulas to formulas by induction on formulas.

ηp = p ∼p = ¬p
η(¬s) = ∼s ∼(¬s) = ηs

η(s ∧ t) = ηs ∧ ηt ∼(s ∧ t) = ∼s ∨∼t
η(s ∨ t) = ηs ∨ ηt ∼(s ∨ t) = ∼s ∧∼t

A formula s is negation normal if ηs = s. The following propositions can be shown by induction
on formulas.

Proposition 2.2 ηs ≡ s and ∼s ≡ ¬s.

Proposition 2.3 η(ηs) = ηs and η(∼s) = ∼s and ∼(∼s) = ηs and ∼(ηs) = ∼s.

The syntactic closure Cs of a formula s is the set of all subformulas of s. We define Cs
inductively.

Cp = {p} C(¬s) = {¬s} ∪ Cs
C(s ∧ t) = {s ∧ t} ∪ Cs ∪Ct C(s ∨ t) = {s ∨ t} ∪ Cs ∪Ct

A Hintikka set is a set H of negation normal formulas satisfying the following conditions:

1. If ¬p ∈ H, then p ∉ H.

2. If s ∧ t ∈ H, then s ∈ H and t ∈ H.

3. If s ∨ t ∈ H, then s ∈ H or t ∈ H.

Proposition 2.4 Let H be a Hintikka set. Then {p | p ∈ H } is a model that satisfies every
formula s ∈ H.

We now have a decision procedure for statisfiability. Given a formula s, the procedure checks
whether the finite set C(ηs) has a subset that contains ηs and is a Hintikka set.

Theorem 2.5 A formula s is satisfiable if and only if there exists a Hintikka set H ⊆ C(ηs) such
that ηs ∈ H.

Proof By Propositions 2.1 and 2.2 we know that s is satisfiable iff ηs is satisfiable. LetMî ηs.
Then { t ∈ C(ηs) | M î t } is a Hintikka set containing ηs. The other direction follows with
Proposition 2.4.

Corollary 2.6 Satisfiability, validity, and equivalence of formulas are decidable.

Proof Follows with Theorem 2.5 and Proposition 2.1.

3

3 Formalization of Propositional Logic

We now outline the formalization of P in Coq with Ssreflect. We start with the definition of
types for variables, formulas, and models.

Definition var := nat.
Inductive form := Var : var −> form | ...
Definition model := var −> bool.

The satisfaction relation is obtained with a recursive evaluation function:

Fixpoint eval (M : model) (s : form) : bool := ...

The definitions of satisfiability, validity, and equivalence are straightforward.

Definition sat s : Prop := exists M, eval M s.
Definition valid s : Prop := forall M, eval M s.
Definition equiv s t : Prop := forall M, eval M s = eval M t.

The proof of Proposition 2.1 can be carried out constructively since formulas evaluate to
booleans. For (1) the de Morgan law for the existential quantifier is needed, which is intu-
itionistically provable. An analogous proof of the statement

s satisfiable iff ¬s is not valid

is not possible at this point since it would require the de Morgan law for the universal quanti-
fier, which is not provable intuitionistically. However, there is a straightforward proof of the
above statement once we have proven that satisfiability is decidable. As is, we can prove that
decidability of satisfiability implies decidability of validity and equivalence.

Definition decidable (X : Type) (p : X −> Prop) : Type := forall x : X, {p x} + {∼ p x}.
Lemma dec_sat2valid : decidable sat −> decidable valid.
Lemma dec_valid2equiv : decidable valid −> forall s, decidable (equiv s).

The definition of the functions η and ∼ and the proof of the corresponding propositions is
straightforward.

We define the syntactic closure operator C as a recursive function from formulas to lists of
formulas.

Fixpoint synclos (s : form) : seq form := ...

Given a formula s, we obtain C(ηs) as a finite type F and identify the Hintikka sets over F by a
boolean predicate:

Variable s : form.
Definition F : finType := seq_sub (synclos (eta s)).
Definition Hcond (t : F) (H : {set F}) :=

match val t with
| Neg (Var v) => ∼∼ (Var v \in’ H)
| And u u’ => u \in’ H && u’ \in’ H
| Or u u’ => u \in’ H || u’ \in’ H
| _ => true

end.
Definition hintikka (H : {set F}) : bool := forallb t, (t \in H) ==> Hcond t H.

Here, \in’ extends membership in {set F} from F to form, separating the definition of Hintikka
sets and the membership proofs for synclos (eta s) associated with F.

To use seq_sub, we have to show that form is a countable type. We do this by embedding form

into the type of finitely branching trees with labels from a countable type. This type is easily

4

shown countable and provides a generic construction that can be easily adapted to changes in
the syntax.

We then prove Proposition 2.4 for Hintikka sets in {set F} and Theorem 2.5 for formulas in F.

Theorem decidability t : sat (val t) <−> existsb H, hintikka H && (t \in H).

From this, we obtain Corollary 2.6. For additional detail, we refer the interested reader to the
theory files.

4 Modal Logic

We now present the mathematical theory of modal logic we have formalized. We call this theory
K. We assume that the reader has seen modal logic before. We see the models of modal logic
as transition systems where the states are labeled with variables. Formulas are evaluated at a
state of a transition system. A primitive formula p holds at a state w if w is labeled with p, a
formula �s holds at w if s holds at all successors of w, and a formula ♦s holds at w if s holds
at some successor of w.

We assume an alphabet V of names called variables and declare the letters p and q as
ranging over variables. Formulas are defined by the grammar

s, t ::= p | ¬p | s ∧ t | s ∨ t | �s | ♦s

For simplicity we consider only negation normal formulas. A modelM is a triple consisting of
the following components:

• A carrier set |M| whose elements are called states.

• A relation →M ⊆ |M| × |M| called transition relation.

• A function ΛM : |M| → 2V called labeling function.

We deviate from the standard definition by admitting models with an empty set of states.
This does not make a difference as it comes to satisfiability and validity of formulas. The
satisfaction relation M,w î s between models, states, and formulas is defined by induction
on formulas.

M,w î p ⇐⇒ p ∈ ΛMw M,w î s ∧ t ⇐⇒ M,w î s andM,w î t
M,w î ¬p ⇐⇒ p ∉ ΛMw M,w î s ∨ t ⇐⇒ M,w î s orM,w î t
M,w î �s ⇐⇒ M, v î s for all v such that w →M v
M,w î ♦s ⇐⇒ M, v î s for some v such that w →M v

Satisfiability, validity, and equivalence of formulas are defined as follows.

• s is satisfiable ifM,w î s for some modelM and some state w ∈ |M|.

• s is valid ifM,w î s for all modelsM and all states w ∈ |M|.

• s and t are equivalent (s ≡ t) if M,w î s iff M,w î t for all models M and all states
w ∈ |M|.

5

We define a negation operator by induction on formulas.

∼p = ¬p ∼(¬p) = p
∼(s ∧ t) = ∼s ∨∼t ∼(s ∨ t) = ∼s ∧∼t
∼(�s) = ♦(∼s) ∼(♦s) = �(∼s)

Proposition 4.1 Let s and t be formulas.

1. ∼(∼s) = s

2. M,w î ∼s iff notM,w î s

3. s is valid iff ∼s is unsatisfiable.

4. s and t are equivalent iff (s ∧ t)∨ (∼s ∧∼t) is valid.

We define the syntactic closure Cs of a formula s by induction on s:

Cp = {p} C(¬p) = {¬p}
C(s ∧ t) = {s ∧ t} ∪ Cs ∪Ct C(s ∨ t) = {s ∨ t} ∪ Cs ∪Ct
C(�s) = {�s} ∪ Cs C(♦s) = {♦s} ∪ Cs

Note that Cs is a finite set consisting of subformulas of s.

A Hintikka set is a set H of formulas satisfying the following conditions:

1. If ¬p ∈ H, then p ∉ H.

2. If s ∧ t ∈ H, then s ∈ H and t ∈ H.

3. If s ∨ t ∈ H, then s ∈ H or t ∈ H.

A Hintikka system is a set of Hintikka sets. The transition relation →S of a Hintikka system
S is defined as follows: H →S H′ iff H ∈ S, H′ ∈ S, and t ∈ H′ whenever �t ∈ H. We
define the model MS described by a Hintikka system S as follows: |MS| = S, →MS =→S, and
ΛMSH = {p | p ∈ H }. A demo is a Hintikka system D such that the following condition is
satisfied: If ♦s ∈ H ∈ D, then H →D H′ and s ∈ H′ for some H′ ∈ D.

Proposition 4.2 Let D be a demo and s ∈ H ∈ D. ThenMD,H î s.
We now obtain a small model theorem.

Proposition 4.3 LetM be a model, s be a formula, andHw := { t ∈ Cs | M,w î t } forw ∈ |M|.
Then {Hw | w ∈ |M|} is a demo.

Proof Let D := {Hw | w ∈ |M|}. By induction on formulas it follows that the sets Hw are
Hintikka sets. Moreover, w →M v always implies Hw →D Hv . Now it is easy to see that D is a
demo.

We now have a decision procedure for statisfiability.

Theorem 4.4 A formula s is satisfiable if and only if there exists a demo D ⊆ 2Cs such that
s ∈ H for some H ∈ D.

Proof Follows with Propositions 4.2 and 4.3.

Corollary 4.5 Satisfiability, validity, and equivalence of formulas are decidable.

Proof Follows with Theorem 4.4 and Proposition 4.1.

6

5 Formalization of Modal Logic

The most important design decision in the formalization of K is the representation of models.
Since we are considering classical modal logic, formulas should evaluate to bool. From this it
is clear that the transition relation and the labeling function should be formalized as boolean
functions. Given the quantifications in the semantics of the modalities � and ♦, we also require
decidable quantification over the carrier. This leads to the following representation of models.

Record model : Type := Model {
state : Type;
trans : state −> state −> bool;
label : state −> var −> bool;
ex_dec : forall p : state −> bool, {ex p} + {∼ ex p}

}.

Using ex_dec we define a boolean existential quantifier exs x, p x. We also obtain a boolean
universal quantifier using the de Morgan law for existential quantification.

On the syntactic side we proceed similarly as we did for P. Given a formula s, we again rep-
resent the syntactic closure Cs as a finite type F. The definition of Hintikka sets is unchanged.
The elements of {set {set F}} take the role of Hintikka systems. We define the transition relation
TR and demos as follows.

Definition TR (S : {set {set F }}) (H H’ : {set F}) : bool :=
[&& H \in S, H’ \in S & [set t | Box (val t) \in’ H] \subset H’].

Definition Hdc (S : {set {set F}}) : bool :=
forallb H, (H \in S) ==> forallb t, (t \in H) ==>
if val t is Dia u then existsb H’, TR S H H’ && u \in’ H’ else true.

Definition demo (D : {set {set F}}) : bool := [&& Hdc D & D \subset [set H | hintikka H]].

Given these definitions, the results can be shown as one would expect from the mathematical
proofs. Proposition 4.2 requires the construction of a finite model from a demo. Since Ssreflect
provides boolean quantifiers for finite types, ex_dec is easily definable. Note that the definition
of the finite set {Hw | w ∈ |M|} in Proposition 4.3

Definition H_at M (w : M) := [set t : F | w |= (val t)].
Definition D M := [set H | exs w : M, H == H_at w].

reveals that our construction of a demo from a model crucially depends on boolean quantifica-
tion over states. Finally, we obtain Theorem 4.4.

Theorem decidability (t : F) :
sat (val t) <−> existsb D, demo D && existsb H : {set F}, (t \in H) && (H \in D).

6 Modal Logic with Star Modalities

We now extend our theory K to modal logic with the star modalities �∗ and ♦∗. We call the
extended theory K∗. For K∗ we consider the formulas

s, t ::= p | ¬p | s ∧ t | s ∨ t | �s | ♦s | �∗s | ♦∗s

7

and leave the definition of models unchanged. The definition of the satisfaction relation is
extended by

M,w î �∗s ⇐⇒ M, v î s for all v such that w →∗M v
M,w î ♦∗s ⇐⇒ M, v î s for some v such that w →∗M v

where →∗M is the reflexive and transitive closure of →M. Thus a formula �∗s holds at a state w
if all states reachable from w in n ≥ 0 steps satisfy s, and a formula ♦∗s holds at w if some
state reachable from w in n ≥ 0 steps satisfy s. The definitions of satisfiability, validity, and
equivalence remain unchanged.

For the negation operator we need two additional equations:

∼(♦∗s) = �∗(∼s) ∼(�∗s) = ♦∗(∼s)

Now Proposition 4.1 can be shown for K∗. Moreover, we have two important equivalences.

Proposition 6.1 �∗s ≡ s ∧��∗s and ♦∗s ≡ s ∨♦♦∗s.

The equivalences motivate two additional conditions for Hintikka sets:

4. If �∗s ∈ H, then s ∈ H and ��∗s ∈ H.

5. If ♦∗s ∈ H, then s ∈ H or ♦♦∗s ∈ H.

The syntactic closure operator is extended accordingly:

C(�∗s) = {�∗s,��∗s} ∪ Cs C(♦∗s) = {♦∗s,♦♦∗s} ∪ Cs

Finally, the definition of demos is extended with the following condition:

• If ♦∗s ∈ H ∈ D, then H →∗D H′ and s ∈ H′ for some H′ ∈ D.

We need a property of the transition relation of Hintikka systems:

Proposition 6.2 Let S be a Hintikka system. If H →S H′ and �∗s ∈ H, then �∗s ∈ H′.

With this proposition we can show Proposition 4.2 for K∗. It is not difficult to verify that
Proposition 4.3, Theorem 4.4, and Corollary 4.5 carry over to K∗.

Given the mathematical development of K∗ and the formalization of K, the formalization of
K∗ is a matter of routine. To allow boolean evaluation of the star modalities, the models of K∗

must come with functions deciding the reflexive transitive closure of the transition relation.

Record model : Type := Model {
...
trans_star_dec : forall w : state, decidable (clos_refl_trans trans w)

}.

The additional demo condition is easily expressed with Ssreflect’s transitive closure operation
connect for relations over finite types:

Definition Hrc (S : {set {set F }}) : bool :=
forallb H, (H \in S) ==> forallb t, (t \in H) ==>
if val t is (Dstar u) then existsb H’, [&& connect (TR S) H H’ , H’ \in S & u \in’ H’]
else true.

The decidability results then follow as for K.

8

6.1 Non-Compactness

Note that the star modalities yield a non-compact logic. Let �ns be defined by

�0s = s �n+1s = ��ns

and consider the set A = {♦∗¬p} ∪ {�np | n ∈ N}. While A does not have a model, there
exists a model for every finite subset ofA. Writing Box^n p for �np, we state this as follows:

Lemma unsat : ∼ exists M : model, exists w : M,
w |= Dstar (Neg p) /\ forall n, w |= Box^n p.

Lemma sat_bound (n:nat) : exists M : model, exists w : M,
w |= Dstar (Neg p) /\ forall m, m <= n −> w |= Box^m p.

The first lemma is simple. We sketch the formal argument for the second lemma: For arbitrary
n, we construct the modelM where |M| = {m |m < n+ 2}, →M is the successor relation and
all states except n+ 1 are labeled with p. Clearly, 0 î ♦∗¬p. To obtain ∀m ≤ n. 0 î �mp, we
show

∀w ≤ n. ∀m ≤ n−w. w î �mp

by induction on m. Hence, M is a model as required. In Coq, |M| is represented using Ssre-
flect’s finite ordinal types, so the definitions of ex_dec and trans_star_dec remain unchanged.

7 Conclusions

We have formalized an expressive modal logic in constructive type theory and proven a small
model theorem and computational decidability. For this, we work without axioms and localize
the required classical assumptions to the models. This gives us a straightforward definition of
computational decidability.

Representing Models As noted in Section 5, the most important design decision in our for-
malization is the representation of models. A naive representation of models might look as
follows:

Record model : Type := Model {
state : Type ;
trans : state −> state −> Prop ;
label : state −> var −> Prop

}.

In the constructive logic of Coq, these models are not faithful to classical modal logic, since
they do not allow the definition of a two-valued evaluation function. The problem disappears
if we assume informative excluded middle

Axiom IXM : forall P:Prop, { P } + { ∼ P }

but then our definition of decidability no longer implies computational decidability. For this
reason, we have localized specific instances of IXM to the models or, equivalently, required
some relations to be boolean. Regarding the exact form of these instances, there is room for
variation, provided that the following conditions are met:

1. The asserted decision functions must provide for a two-valued evaluation function satis-
fying the classical dualities.

9

2. The asserted functions need to be definable for finite carrier types.

Both conditions are essential for the results presented in this paper. Our formalization of
models satisfies the above conditions. Below, we give an alternative formulation of models
where we assume just enough functions to evaluate formulas to bool. For K, this amounts to

Record model := Model {
state :> Type;
trans : state −> state −> Prop;
label : var −> (state −> bool);
BOX : (state −> bool) −> (state −> bool);
boxE : forall p w, BOX p w <−> forall v, trans w v −> p v
DIA : (state −> bool) −> (state −> bool);
diaE : forall p w, DIA p w <−> exists v, trans w v /\ p v;

}.

For this class of models, evaluation can be directly defined using the functions provided by the
model.

Fixpoint eval M s :=
match s with ... | Box s => BOX (eval M s) | Dia s => DIA (eval M s) end.

Notation "w |= s" := (eval s w).

Note that these models do not provide decidable quantification over their carrier. Our proof
of the small model theorem relies crucially on decidable quantification. However, there is an
alternative proof based on Pratt-style pruning [11, 9] that does not rely on decidable quantifi-
cation.

Decidability and Choice If one assumes that in Coq’s logic extended with excluded middle
and choice our definition of decidability implies computational decidability, the naive represen-
tation of models is faithful to classical modal logic and can be used for proving decidability.
The two axioms imply:

Lemma IXM_in_Prop : forall C:Prop, ((forall P:Prop, { P } + { ∼ P }) −> C) −> C

While this does not allow the definition of a boolean evaluation function at the top level, it
provides a proof of existence of such a function, which can be used for proving statements in
Prop.

The above assumption is inspired by the elimination restriction Coq imposes on the sort Prop.
This restriction ensures that functions into data types do not depend on proofs. However, we
are not aware of any results, that would validate this assumption.

Constructive Metatheory We note that the constructive proofs of decidability we give here
differ little from the mathematical arguments they are based on. This is mostly due to the fact
that we chose to put rather strong assumptions into our models.

It appears that our constructive metatheory for classical logics does not extend to results like
compactness. While it is possible to constructively prove decidability and non-compactness of
K∗, we are not aware of any constructive compactness argument for propositional logic.

K∗ is a sublogic of PDL and CTL. We are confident that our constructions carry over to these
logics. More generally, a constructive formalization in the style of this paper should be possible
for every logic with the small model property.

10

Acknowledgements

We thank Chad Brown for many valuable discussions about constructive type theory. We also
thank the people from the Coq and Ssreflect mailing lists (in particular Georges Gonthier) for
their helpful answers.

References

[1] James L. Caldwell. Classical propositional decidability via nuprl proof extraction. In Jim
Grundy and Malcolm C. Newey, editors, TPHOLs, volume 1479 of LNCS, pages 105–122.
Springer, 1998.

[2] E. Allen Emerson and Edmund M. Clarke. Using branching time temporal logic to synthe-
size synchronization skeletons. Sci. Comput. Programming, 2(3):241–266, 1982.

[3] E. Allen Emerson and Joseph Y. Halpern. Decision procedures and expressiveness in the
temporal logic of branching time. J. Comput. System Sci., 30(1):1–24, 1985.

[4] Michael J. Fischer and Richard E. Ladner. Propositional dynamic logic of regular programs.
J. Comput. System Sci., pages 194–211, 1979.

[5] François Garillot, Georges Gonthier, Assia Mahboubi, and Laurence Rideau. Packaging
mathematical structures. In Stefan Berghofer, Tobias Nipkow, Christian Urban, and Makar-
ius Wenzel, editors, TPHOLs, volume 5674 of LNCS, pages 327–342. Springer, 2009.

[6] Georges Gonthier, Assia Mahboubi, Laurence Rideau, Enrico Tassi, and Laurent Théry. A
modular formalisation of finite group theory. In Klaus Schneider and Jens Brandt, editors,
TPHOLs, volume 4732 of LNCS, pages 86–101. Springer, 2007.

[7] Georges Gonthier, Assia Mahboubi, and Enrico Tassi. A Small Scale Reflection Extension
for the Coq system. Research Report RR-6455, INRIA, 2008.

[8] K. Jaakko J. Hintikka. Form and content in quantification theory. Two papers on symbolic
logic. Acta Philosophica Fennica, 8:7–55, 1955.

[9] Mark Kaminski, Thomas Schneider, and Gert Smolka. Correctness and worst-case optimal-
ity of pratt-style decision procedures for modal and hybrid logics. In Kai Brünnler and
George Metcalfe, editors, TABLEAUX 2011, volume 6793 of LNCS (LNAI), pages 196–210.
Springer, Jul 2011. To appear.

[10] Mark Kaminski and Gert Smolka. Correctness of an incremental and worst-case optimal
decision procedure for modal logic with eventualities. Technical report, Saarland Univer-
sity, Feb 2011.

[11] Vaughan R. Pratt. Models of program logics. In Proc. 20th Annual Symp. on Foundations
of Computer Science (FOCS’79), pages 115–122. IEEE Computer Society Press, 1979.

[12] The Coq Development Team. The Coq Proof Assistant Reference Manual, 8.3 edition, 2010.
http://coq.inria.fr/.

[13] Laurent Théry. A machine-checked implementation of Buchberger’s algorithm. J. Autom.
Reasoning, 26(2):107–137, 2001.

11

http://coq.inria.fr/

	Introduction
	Propositional Logic
	Formalization of Propositional Logic
	Modal Logic
	Formalization of Modal Logic
	Modal Logic with Star Modalities
	Non-Compactness

	Conclusions

