Ordering Constraints over Feature Trees

Martin Milllert, Joachim Niehrehand Andreas Podelski

1 Universitat des Saarlande$nmuel | er, ni ehren}@s. uni - sh. de
2 Max-Planck-Institut filr Informatikpodel ski @i - sb. npg. de
Saarbrucken, Germany

Abstract. Feature trees have been used to accommodate records inaganst
programming and record like structures in computatiomgjuistics. Feature trees
model records, and feature constraints yield extensibieraodular record de-
scriptions. We introduce the constraint systBffi of ordering constraints in-
terpreted over feature trees. Under the view that feateestrepresent symbolic
information, the relatior< corresponds to the information ordering (“carries less
information than”). We present a polynomial algorithm tdatides the satisfi-
ability of conjunctions of positive and negative infornmatiordering constraints
over feature trees. Our results include algorithms for #itésBability problem
and the entailment problem &fT< in time O(n®). We also show tha T< has
the independence property and are thus able to handle vegatnjuncts via
entailment. Furthermore, we reduce the satisfiability {enmbof Dorre’s weak-
subsumption constraints to the satisfiability problentr@% . This improves the
complexity bound for solving weak subsumption constrdim O(n°) to O(n®).

Keywords: feature constraints, tree orderings, weak subsumptidisfiadility,
entailment, complexity.

1 Introduction

Feature constraints have been used for describing records in constagrdmpming
[2, 24, 23] and record like structures in computational linguisti& 22, 20, 18, 19].
Following [3, 5, 4] we consider feature constraints as predicate logmulae that are
interpreted in the structure of feature trees.

A feature tree is a possibly infinite tree with unordered labeled edges d@hdos-
sibly labeled nodes. Edge labels are functional; i.e., the labels of tresaliparting
from the same node must be pairwise different. Under the view thatrietates repre-
sent symbolic information, the feature tregrepresents less information than the fea-
ture treet; if 11 has fewer edges and node ine wine

labels thart,. The relation< that we de- color year
fine corresponds to the information order-<olor <
ing in precisely this sense. Algebraically, red red 1997

11 < 12 if there is ahomomorphic embed-
dingfrom 11 to 12 (i.e., a mapping from nodes 13 to nodes iro under which the node
labeling is invariant). An example is given in the picture.

We introduce the constraint systdfii< of information ordering constraints over fea-
ture trees. The systeRil< is obtained by adding ordering constraints to the constraint

systemFT [3]. The syntax of T< constraints is defined by

¢ = x<X | x@x | ax) | pA¢’

wherex andx are variables and is a label. The semantics &fT< is given by the
interpretation over feature trees where the symbas interpreted as information or-
dering on feature trees. The semanticxfafy anda(x) are defined as ik T. For in-
stance, both trees depicted above are possible valugsrf@olutions of the constraint
wine(X) A X[color]X Ared(X').

It is clear thatFT< is more expressive thadfT since the information ordering is an-
tisymmetric (e, (x<X AX'<X) <> x=X is valid). As we show in the papeFT< is
strictly more expressive thanT . For instance, no constraintifil can be equivalent to
x<X. Also, we do not know of any formula ov&fT (even with existential quantifiers)
equivalent tadx (x1 <XA X2 < x) A IX (X1 <XAX3<X); thisFT< formula expresses that

is unifiable with bothx, andxs (but does not imply unifiability ok, andxs).

We show that the satisfiability problem of conjunctions of positinel negativd-T<
constraintsh A -1 A ... A —dp is decidable inO(n®). This result includes a decision
procedure for the entailment problem of the faphi= ¢ since a formul@’ — ¢ is valid

if and only if the formulap’ A =¢ is unsatisfiable. To establish our result, we prove that
FT< hasthe fundamental independence property (similar to its rel&ivgs], F T [3],
andCFT [24]).

We reduce the satisfiability problem of Dorre’'s weak-subsumptiostcaimts [7] over
feature algebras linearly to the oneFifi< . Thereby, our algorithm improves on the best
known satisfiability test for weak subsumption constraints which fisge automata
techniques and has &(n®)-complexity bound [7].

Plan of the Paper. Section 2 surveys related work. Section 3 defiRgs. Section 4
presents the satisfiability test fBiT< constraints. Section 8 contains the completeness
proof. Section 5 presents the entailment testH®e constraints, and proves the inde-
pendence property 6fT< . Section 6 defines weak subsumption constraints and reduces
their satisfiability problem to the one &fT< constraints. Section 7 shows tHai< is
strictly more expressive thdaT.

2 Related Work

Ines Constraints. In previous work [17], we have introduced the constraint system
INes of inclusion constraints over non-empty sets of trees and a cubic salitfitdst.
The satisfiability test foF T< is inspired by and subsumes the one fasl However, the
entailment problems fd¥ T< and Nesconstraints are different. The entailment problem
of INesconstraints is coNP-hard [16]. Intuitively, the entailment probléfi < is less
expressive than the one ofgsbecause akR T< constrainth cannot uniquely describe a
single feature tree (in absence of arity constraints); in contma&stcbnstraints (which
are inclusions between first-order terms with an implicit arity restnijtcan uniquely
describe a constructor tree as a singleton set. For instanceyehednstraintxCa
describes the singletdm}. As a consequence, the entailment propositcanacCy =
XCy holds in Nes. No similar entailment phenomenon exists Fol< .

Feature Constraints. The constraint syste@F T [24] extend$=T by arity constraints
of the formx{ f1,..., fn}, saying that the denotation rhas subtrees exactly at the fea-
turesf; throughf,,. CFT subsumes Colmerauer’s rational tree constraint SsyRen6]

but provides finer-grained constraints. The system[25] extendsCFT by feature
constraintsx[y]z, providing for first-class features. Complete axiomatizations=or
andCFT have been given in [5] and [4], respectively. The satisfiabilityedf con-
straints is shown NP-hard in [25]. The systé&i< (sort) extendsFT< by allowing a
partial order on labels [15].

Subsumption Constraints. Subsumption is an ordering on the domain of feature alge-
bras. Subsumption constraints have been considered in the contexficdtion-based
grammars to model coordination phenomena in natural language [9, 7,1&tE, one
wants to express that two feature structures representing differenbpapsech share
common properties. For example, the analysis of “programming” anduitigs” in
the phrase

Feature constraints foxp programming] andyp linguistics]

should share (but might refine differently) the information comtwoall noun phrases.
Since the satisfiability of subsumption constraints is undecid&bleédorre proposed
weak subsumption as an decidable approximation of subsumption. Abave the
information ordering over feature trees (as investigated in this pap&ides with the
weak subsumption ordering interpreted over (the algebra of) feature trees
Independent Constraint Systems. A constraint system has the fundameimdepen-
dence propertyf negated conjuncts are independent from each other, or: its constraints
cannot express disjunctions (we will give a formal definition lat&part from the men-
tioned tree constraint syster®S, FT, CFT [6, 1, 24, 3], constraint systems with the
independence property include linear equations over the real numbersi1dfinite
boolean algebras with positive constraints [10].

3 Syntax and Semantics of FE

The constraint systefaT< is defined by a set of constraints together with an interpre-
tation over feature trees. We assume an infinite setadghblesranged over by, y, z,
and an infinite setr of labelsranged over by, b.

Feature Trees. A path pis a finite sequence of labels. Tampty paths denoted bye
and the free-monoid concatenation of paghand p’ aspp’; we haveep = pe = p.
Given pathsp andq, p' is called aprefix of pif p= p'p” for some pathp”. A tree
domainis a non-empty prefix closed set of pathsfeature treet is a pair(D, L)
consisting of a tree domald and partial labeling functioh : D — L. Given a feature
treet, we write D for its tree domain andl; for its labeling function. The set of all
feature trees is denoted l§y. A feature tree is callefinite if its tree domain is finite,
andinfinite otherwise.

Syntax. An FT< constraintd is defined by the following abstract syntax.

¢ = x<y | ax | x@y | x~y | ¢p1Ad2

An FT< constraint is a conjunction dfasic constraintavhich are eitherinclusion
constraints Xy, labeling constraints &), selection constraints[a]y, or compatibil-
ity constraints x-y. Compatibility constraints are needed in our algorithm and can be
expressed by first-order formulae over inclusion constraints (sgeoitmn 1). We
identify FT< constraintsp up to associativity and commutativity of conjunctiore,,
we view¢ as a multiset of inclusion, labeling, selection, and compatibility cairgs.
We write ¢ in ¢’ if all conjuncts in$ are contained ip’. Thesize of a constraing is
defined as the number of label and variable occurrencés in

Semantics. We next define the structurg over feature trees in which we interpret
FT< constraints. The signature @f contains the binary relation symbetsand~ and
for every labela a unary relation symba() and a binary relation symb@#]. In &
these relation symbols are interpreted such:

1:<1, iff Dy, CDy,andLy, Cly,

ufat; iff Dy, ={p|ape Dy} andly, = {(p,b)|(ap b) € Ly}
at) iff (g,a) €l

T1~Tp iff Ly ULy, is a partial function (oM, U Dy,)

Let @ denote first-order formulae built frofT< constraints with the usual first order
connectives. We calb satisfiable(valid) if ® is satisfiable (valid) in the structurg.
We say thatb entails®’, written® |= @', if ® — @’ is valid, and thatb is equivalent
to @' if d1 «» D, is valid. We denote with (®) the set of variables occurring freedn
and withL(®) the set of labels occurring it.

Proposition 1. The formulae xy and3z(x<zAy<z) are equivalent inf .

Proof. Let o be a variable assignment infb which also is a solution of the formula
Jz(x<zAy<2). Sincel gy ULg(y) € Loz andLgy is a partial functionl g,y ULy is
also a partial function. Hengeis a solution ofk~y. Conversely, ity is a solution ok~y
thenLg () ULy is a partial function. Thus, the pait=get (Dg(x) U Dg(y): Lo(x) U Laty))
is a feature tree and the variable assignn@ritefined byo’(z) = T andd’(x) = o(x)
for x # zis a solution ok<zAy<z O

4 Satisfiability Test

We present a set of axioms valid 8if< and then interpret these axioms as an algorithm
that solves the satisfiability problemBfl< . The axioms and the algorithm are inspired
by the ones forNes constraints presented in [17].

Table 1 contains five axiom schemgs - F5 that we regard as sets of axioms. The
union of these sets of axioms is denotedfyy.e, F = F1 U...UF5. For instance, an
axiom schema<x represents the infinite set of axioms obtained by instantiation of the
meta variablex. An axiom is either a constraigt, an implication between constraints

¢ — ¢', or an implicationp — false

Proposition 2. The structuref is a model of the axioms if.

F1 x<x and x<yAy<z—x<z
F2 xax Ax<yAyay — X<y
F3 x<y—x~y and x<yAy~z— X~z and X~y — y~X
F4 xa)X Ax~yAylay — X~y

F5 a(x)Ax~yAb(y) —false fora#b

Table 1. Satisfiability ofF T< Constraints.

Proof. By a routine check. For illustration, we prove the statement for éeersd rule
in F3, namelyx<yAy~y — x~Yy'. The following implications hold:

XSYAY~Y & x<yATzZ(y<zAY<LZ) Proposition 1
— Jz(x<zAY<L2) Transitivity
“ X~y Proposition 1 |

The Algorithm F. The set of axiom§ induces a fixed point algorithinthat, given an
input constraint, iteratively adds logical consequencesaf {¢} to ¢. (Observe that
actually only constraints of the forrRKy andx~y are derived). More precisely, in every
stepF inputs a constraind and terminates witlialse or outputs a constrairgt A ¢’.
Termination withfalse takes place if there exist’ in ¢ such thatp” — falsee F.
Output ofp A ¢’ is possible iy’ € F or there exist®” in ¢ with " — ¢’ € F.

Example 1.Inconsistency can be due to incompatible upper bounds. Consider:
a(x) Ax<zAy<zAb(y) —false fora#b

We may addk~zby F3.1, thenz~x via F3.3, theny~x with F3.2, and finally terminate
with falsevia F5.

Example 2.We needr4 for deriving the unsatisfiability of the constraint:
a(x) AX[A]x A x<zAy<zAy[d]y Ab(y) — false fora#b

Algorithm F may addx~y after several steps as shown in Example 1. Then it may
proceed withk~y' via F4 and terminate wittialsevia F5.

Termination. The fixed point algorithnF terminates when reflexivity of inclusion
x<x (F1.1) is restricted to variablese V(¢). Given a subsef of F, a constraing is
calledF-closedif algorithm F under this restriction and w.r.t. the axiomsHncannot
proceed orb. Note thatfalseis notF-closed since it is not a constraint by definition.

Example 3.0ur control takes care of termination in presence of cyclesxilex. For
instance, the following constraintksclosed.

X[@X A XSYAY[Aly AXSXAYSY A X~XA Y~y A Xeoy A Y~X

In particular,F2 andF4 do not loop through the cycha]x infinitely often. This exam-
ple also illustrates why the fixed point algorithm would not be teating if based in
the axiomx[a]x Ax<y — Jy (y[a]y AX' <Y).

Proposition 3. If ¢ is a constraint with m variables then algorithfn with input ¢
terminates under the above control in at mastr? steps. m|

Proof. SinceF does notintroduce new variables, it may add at m@ston-disjointness
constraintsx~y andn? inclusionsx<y. 0

Proposition4. EveryF-closed constraing is satisfiable over FJ.
Proof. See Section 8. o

Theorem 5. The satisfiability of F¥ constraints can be decided in timei©) (offline
and onlinesee[11]) where n is the constraint size.

Proof. Proposition 2 shows that is unsatisfiable i started with¢ terminates with

false Proposition 4 proves thdt is satisfiable ifF started with¢ terminates with a
constraint. Sincé terminates for all input constraints under the above control (Prop. 3)
this yields a effective decision procedure. The main idea of the complpraiof is

that one needs at mo&i(n?) steps (Prop. 3) each of which can be implemented in
time O(n). The implementation can be organized incrementally by exploiting that algo
rithm F leaves the order unspecified in which the axioms are applied. Hence, we obtain
that off-line and on-line complexity are the same. The implementat&ails and the
complexity proof are omitted here, since they are similar to thosepted in [17]. O

5 Entailment, Independence, Negation

In this section, we give a cubic algorithm testing entailmigri= ¢ betweerFT< con-
straintsp’ and¢. We then prove the independence propertly ®f . Hence we can solve
conjunctions of positive and negatiFd < -constraintsh A =d1 A ... =¢n in time O(n®).
A basic constraint Lis a conjunction free constraidt, i.e., given by the following
abstract syntax:

o= x<y | x~y | ax) | xay

The entailmenty’ = ¢ is equivalent to the fact that the entailmdrit 1 holds for all
basic constraintg in ¢.

Next we characterize entailment problegis= p syntactically. We say that a con-
straintd syntactically contains pwritten¢ + , if one of the following holds:

dFa(x) if existsx suchtha’'<xAa(xX) e d
PpFx<y if x<yinporx=y
PFx~y if X~yindgorx=y
¢ Fx[aly if existx,y such thai'[a]y in ¢,
and ¢ F x<x,¢ - X <xandg - y<y, o y<y

We say that a first-order formuf syntactically containg, ® + y, if ® = ¢ AP’ for
somep and®d’ such thatp - L.

Lemma6. Given aF-closed constraint, we can compute a representationdofn
linear time that allows to test syntactic containmént p for all pin time Q1).

Proof. Simple. m|

It is easy to see that syntactic containment is semantically correct) - pimplies
¢ = p. For deciding entailment, we have to show that our notion of syntaotitain-
ment is semantically completeg., if ¢ I/ pthend = p (Proposition 13). The idea is to
construct a satisfiable extensiondofits saturation) which syntactically and simultane-
ously contradicts allt not syntactically contained by (Lemma 12).

Saturation is defined in terms of two operatior@ndr ; on constraints. The operatbp

is such thaf >(¢) contradicts allu of the formx~y, x<y, anda(x) (i.e,, no selection
constraints) which are not syntactically containedifLemma 10). The operatdr;
serves for contradicting selection constraints. For instance, corisigexaly where
¢ = x<xAy<y. In this case[1(¢) enforces the existence of the featarim the deno-
tation ofx by adding top the constraink[a]vxa for a fresh variabley,. Now M 2(F1(¢))

is such that it contradicts eithgK vy Or Vxa<y. (see Example 4). In this sendq,is a
“preprocessor” fof 5.

Definition 7. Let ¢ be a constrainty; and v, distinct fresh variables, and andl,
distinct labels. Furthermore, for every pair of variableg € V(¢), and label every
labela e L(¢) let Iy andlyy be fresh labels and, a fresh variable. We definey (¢)
andl2(¢) in dependence ofy, vz, Iy, lyy, Vx as follows:

Fid) = oA A{X@awa | XeV(9), acL(d)}
F2(0) = & A A{XIxvx A =3V (VIIKY) | § ¥ X<y, X,y €V ()} (1)

A A{Xllxyve A Yllxylvz | § 77 x~y, Xy € V(9)} (2)
A A{x~v1 A x~v | forall labelsa: ¢ t/a(x), xeV(d)} (3)

Example 4.Consider the constrairiy = X[a]x A y<x which is F-closed up to trivial
constraints and which does not entg@]y. In order to contradick[aly we compute
the F-closure ofl"1(¢o) which isT% (o) = X[@]XA y<XA X[@]Vxa A Y[@]Vya A Vya<Vxa A
Vxa< XAX< VxaAY< Vxa @and observe that it does ngh<y. By definition ofl2, M2((9))
contradictsia<y. Hence['»(I"}(¢)) also contradicts(aly.

Lemma8. Let$ be anF-closed (and hence satisfiable) constraint. The() is sat-
isfiable and itsF closurel™; () satisfies the following two properties for all basic con-
straints p:

1. 1t/ pand M CV (), thenly(¢) i p.
2. If¢ i/ x[aly thenly (¢) I y<wvya Or I} (¢) I Vya<y.

Proof. The F-closurel}(¢) of I'1(¢) has the following form up-to trivial constraints
and symmetry of compatibility constraints.

F1(9) =T1($) A A{va<Wa| PFx<y.a€ L($)} (
A N{z<a | existsy: D+ z<y Ay[aly Ay<x, P/ X[a]} (
A N{wa<z|existy,y : D+ x<yAyaly AYy<z d ¥/ x[a]} (
A Musaz] existy,y : @ - x<yAylaly AY~z b/ xlal} (
A Mvxa~z| existy,y : ® - x~yAylaly Ay <z ®¥xal}

P N R S
a b~ W N P

)
)
)
)
)

(For instance note thaga<xX AX <wain () if x{a)X' in ¢ by clauses (4.2, 4.3) and
reflexivity). All constraints inl}(¢) either belong td™1(¢) or a derived from it by
axioms inF. The F-closedness of | (¢) can be proved by a somewhat tedious case
distinction. The same holds for the two additional propertiels;¢$) claimed. O

Lemma9. If ¢ is F-closed theri 2(¢) is satisfiable.

Proof. It is not difficult to show that the constraint part bj(¢) is F-closed up to
trivial constraints X<x andx~x) and symmetric compatibility constraints. The critical
bit is to check that the negated selection constraints added in diausél»(d) are
consistent. Let:3y (y[Ix]y') in T'2(¢). We must show thdi> () [~ 3y (V[Ix]Y). Assume
the conversd; 2(¢) = 3y (y[lx]y'). Then, by Corollary 27 in Section 8, there exisind

Z such thal'5(¢) - z<yAZ]l4]Z. By definition of2(¢) we know thatz= x. However,

if '5(¢) Fx<yand hence (by definition df,) ¢ - x<y holds, clausél) does not apply.
Thus—-3y (y[lx]y') cannot be contained ifx(¢), in contradiction to our assumption.

Lemma10. Let¢ be an F L -constraint and let p be a basic constraint of the forvyx
x<y, or &Xx) (i.e., not a selection constraint). Th€a(¢) |= —u if and only if$ 17 p.

Proof. By inspection of the definition of (¢). Clause(1) contradicts entailment of
x<y by ¢ by forcingx to have a featurk which y must not have. Claug@) contradicts
x~yYy by forcingx andy to have a common featutg, such that the subtrees fandy
atlyy are incompatible. Clausg) contradictsa(x) for any label by forcingk to be
unlabeledi(e., compatible with at least two trees with distinct label). a

Definition 11 Saturation. Let ¢ be anF-closed constraint anid, (¢) the F-closure of
I1(¢) which exists according to Lemma 8. Thaturation of¢ is the formula Sdt)

given by Satd) = I'2(T"} ().

Lemma1l2. Let ¢ be anF-closed constraint For all p such that(\M) C V(¢), ¢ I/ p
impliesSa(¢) = .

Proof. Let '} (¢) the F-closure ofl 1(¢) such that Sat) = M2(Iy(9)). If ¢ I/ pthen
r(¢) ¥ u by Lemma 8.1. Ifp is not a selection constraint, thén(}(¢)) = —u
by Lemma 10. Otherwise, lgt= x[aly. Hence,['}(§) I/ wa<y or I'}(§) I/ y<vya by
Lemma8.2. By Lemma 10, eithEb(I" ($)) = vxa<yor2(M(¢)) = ~y<wxa holds.
In both cased; (I (¢)) = —~p follows. O

Proposition 13. The notions of entailment and of syntactic containment coincide for
basic constraints: I is F-closed and p a basic constraint thén=piff ¢ - .

Proof. We assumeé = pand show F . (The converse is correctness of syntactic con-
tainment.) IV (W) € V(¢) thenpis of the formx<x or x~x such thaty - . Otherwise,
V(W CV(9). If ¢ |= 1, then Satd) |= p since Safp) containsh. Moreover, Sdip) is
satisfiable (Lemmas 8 and 9) such that(§at~ -u. Hence$ - pby Lemma 12. O

Theorem 14 Entailment. Entailment problems of the forf = ¢ can be tested in
cubic time.

Proof. Letn be the size o’ A ¢. To decided’ |= ¢, first test whethed’ is satisfiable.
By Theorem 5 this can be done by computing Faelosured’ of ¢/ in time O(n®). If
this test fails then the entailment test is trivial. Otherwise, from Lendra we obtain
¢’ £ nif o I/ 1, and hence tha’' = ¢ iff ¢’ - pfor all ping. There ared(n) suchy
and@’ is of sizeO(n?), hence, by Lemma 6, this is decidable in ti@). The overall
complexity sums up t@®(n3). |

Theorem 15 Independence.The constraint system kEThas the independence prop-
erty; i.e., for every > 1 and constraint®, ¢1,...,on:

if ¢ = ViL10i thend = ¢; for some ie {1,...,n}.

Proof. Assume¢ = Vil ;0;. If ¢ is unsatisfiable we are done. Also §ifA ¢; is non-
satisfiable for som¢, thend |= VL, ¢; iff ¢ = \/{‘zlbéjq)i is. Now letd andd A ¢ be
satisfiable for all and let¢p beF-closed (wlog. by Prop. 2). If there existsvith ¢ -
for all psyntactically contained b, thend = ¢; and we are done. Otherwise, for all
there existgy such that t# ;. Lemma 12 yields S&p) = Al ;—~¢i. Since Sath) is
satisfiable (Lemma 8) and entadisthis contradicts our assumption tifat= Vil ;$;.0

Corollary 16 Negation. The satisfiability of conjunctions of positive and negative FT
constraintsh A —d1 A ... A =y can be tested in time @°) where n is the size of the
given conjunction.

Proof. If ¢ is non-satisfiable thefiA (Al —¢;) is trivially non-satisfiable. By Proposi-
tion 5, satisfiability of is decidable in tim@(n%). Now assumée to be satisfiable. By
the Independence Theorem #5) (A[L;—~6;) is nonsatisfiable if and only i = ¢; for
somei. By Lemma 12 this is equivalent to the existencé sdich that for alltif ¢; -
thend I . Overall, there ar®(n?) candidatesi to be tested for syntactic containment
andO(n) possibled;. By Lemma 6$ I pcan be tested in tim@(1) such that the total
complexity sums up to tim@(n3). 0

6 Weak Subsumption Constraints

We next introduce weak subsumption constraints that are used in catiopal lin-
guistics [7]. We show that their satisfiability problem is subsumethk one forFT<.
Syntax. We assume given a s€tof constants @nd a setD of featuresd. We consider
the set of label = CU D. A weak subsumption constraintis aF T< constraint of
the following form.

n = cx) | Xdly | x<y | x~y | nAn'

Note that compatibility constraints do not occur in [7]. We add them hesmplify

our comparison.

Semantics. We interpret weak subsumption constraints over the whole class ofdeatur
algebras with the induced weak subsumption ordering, which we will el&fitow.

A feature algebrad over and®D consists of a setom” that is called thelomainof 4,

a unary relatiorc()? ondom™ for every constant € ¢, and a binary relatiofd}? on
dom™ for every featur@ € D, which satisfy the following properties for afl a’,a” €
dom?, constants, c1, ¢, € C, and featured € D:

1. if a[d]?a’ anda[d]?a” thena’ = a”
2. if ci(a)? andcy(a)? thency = ¢

In the literature [22, 7] a slightly different notion &ature algebras with constaritgs
been considered. We will give a formal comparison between the two natidhe end
of the present section.

Proposition17. The structuref over L is a feature algebra ovef and D.

Proof. The above properties follow from the axiomsHrand the antisymmetry of the
information ordering irF T< (X<yAy<x— x=Y). |

Given a feature algebrd, we define the weak subsumption ordering as follows. A
simulation forA4 is a binary relatiomd on the domain of4 that satisfies the following
properties for all elementsy, a», a’, a5 of 2’s domain:

1. if azAay, ci(ag)?, andcy(az)? thency = ¢,
2. if a100z, a1[d]?a), anday[d]?a) thena)Aa)

Theweak subsumption ordering™ of 4 is the greatest simulation relation far. The
weak subsumption relation o induces a compatibility relation?:

a1~2a, iff existsa such that;<?a anda,<?a

A feature algebraZ induces a structure with the same signaturgasn which < is
interpreted as weak subsumption orderifi, ~ as~7, ¢() asc()?, and[d] as[d]?.

Proposition 18 Dorre [8]. The structuref coincides with the structure induced by the
feature algebra defined by .

Proof. Itis sufficient to prove that the weak subsumption relation of the featlgebra
defined by7 coincides with the information ordering gh. The proof in the case for
feature algebras with constants can be found in [8] on page 24 (Satz 6 and)Satz
There the algebra of feature trees has been called algebra of path functiomectA di
proof (additional 5 lines) is omitted for lack of space. a

Theorem 19. A weak subsumption constraints satisfiable/over) if and only ifn
is satisfiable over the structure induced by some feature alg@bra

Proof. If n is satisfiable then it is satisfiable over the structure induced by theréat
algebra defined byr. Conversely, every structure induced by a feature algebra is a
model of the axioms irF. Thus, ifn is satisfiable over one such structure then it is
equivalent to arr-closed constraint (and nalsg and hence satisfiable ovér. O

Alternative Notions of Feature Algebras. In the literature [22, 7] a restricted notion
of feature algebra has been considered that wdezatlire algebra with constanits the
sequel. The focus on feature algebras with constants leads to a restrics&etsbty
problem. This shows that the presented results properly extend thtsrieq7].

A feature algebra with constants a feature algebra with the additional property that
if c(a)? then nota[d] %o’ (1)

In order to handle the new property we consider the following mappfrweak sub-
sumption constraints ovef and D to weak subsumption constraints ov@d {label}
andD wherelabel is a new constant not containeddn

[c(x)]=3y(xlabellyrc(y)) [x[dly]=x{dly
[x<y[=x<y [x~y[=x~y [nAn'T=[n]An']

Proposition 20. A constraintn is satisfiable in some feature algebra if and onlji]
is satisfiable in some feature algebra with constants.

Proof. If [n]is satisfiable over a feature algebiawith constanty” and feature® U
{label} thenn is satisfiable over the feature algelffawith labels C U D. Given a
solutionc’ of [n] over4 a solutiono of n over ¥ can be defined as follows:

Dg(x) = {p | existsa in domain of4: o’(x)[p]a andp € D*}
Lo = {(p.c) | existsa in domain of4 : ¢’ (x)[plabel]?a andc(a)?}

Conversely, let) be satisfiable in a feature algebfa Thenn is satisfiable in¥ by
Theorem 19. We consider the following feature algebra with constahtand show
that[n]is satisfiable oveff *. The constants and features®f areC andDU {label},
respectively. The domain af * contains all feature treeswithout labeled internal
nodes where adabeled internal nod®f T is a pathp such thatp € Dy, existsc with
(p, ¢) € Ly, but not existd with pd € D;. The selection and labeling relations #f
are those of T< restricted to trees without internal labels. Obviougty, satisfies all
three axioms of a feature algebra with constants. Now le¢ an4-solution ofn. Then
the variable assignmet mappingx ona’(x) as given below is arf *-solution of[n .

Dc’(x) = DO(X) U {plabel | existsae L:(p,a) € Lo(x)}
Lo = {(plabel,a) | (p,a) € Lc(x)} 0

7 Expressiveness

We show thafT< is strictly more expressive thdfiT but thatF T< cannot express an
arity constraint. ArFT constraint is of the formx=y, a(x), x[a]y, ornAn’, and an
arity constraint of the fornx{ay,...,a,}. An arity constraini{ay,...,an} holds if x
denotes a tree with subtrees at exaaflyhroughay,.

Proposition21. There is no FT constraint which expresses that a variable x denotes
the empty feature tree, i.e., ifz&b then there is no constraint equivalent to

x{} AJyFz(x<yAx<zAa(y) Ab(2))

Proof. If ¢ were such & T< constraint, therp as well as its finiteF-closure would
entailx<y for all variablesy. This contradicts Proposition 13 for all thogasuch that
y ¢ V() andx # y (because ifh - x<y thenx=yor x,y € ¥(¢)). Such a variablg
exists since/ () is finite. |

Lemma22. Letn be an FT constraint. Them = x<y if and only ifn | y<x.

Proof. The FT constrainty is equivalent to théT< constraintp obtained frorm by
replacing all equalitieg=y by inequalitiex<yAy<x. Hencex<y in ¢ iff y<xin ¢,
and since algorithnit preserves this invariant it also holds for theclosure ofd. The
claim follows from Proposition 13. m|

Proposition 23. If x # y then there is no FT constraintequivalentto xXy.

Proof. This follows immediately from Lemma 22 and Proposition 13. |

8 Completeness of the Satisfiability Test
Proposition 4. EveryF-closed constrainp is satisfiable oveF T<.

The proof is based on the notion of path reachability and covers the réls¢ cec-
tion. We proceed as follows. We first define path reachability, then gigd_smmas,
and finally compose the proof of Proposition 4 from these Lemmas.

For all pathgp and constraing, we define a binary relatiorg»p, Wherex&p yreads as
“yis reachable from over pathpin ¢”:
xgs y if y<xin¢

xgay if x[alyind,
X~5pqY if X~>pzandz~>qy.

Define relationshipsj’»p ameaning thatd can be reached fromover pathp in ¢”:

x«ﬂpa if lepyanda(y) ind,

For example, if$ is the constraink<y A a(y) A x[aJu A x[b]zA Z[a]x A b(z) then the
following reachability propositions holg~s¢ X, X~ Z, X~>pa Y, X~>pa X, €1C, as well
asx«ﬂs a, X~p b, Xx~pa a, ete.

Definition 24 Path Consistency.We call a constrainp path consisterif the following
two conditions hold for alk, y, p, a, andb.

1 0f xj’»p a, X<x, andx«tp bthena=b.
2. If xgp a, X~y, andy&p bthena="h.

Lemma 25. EveryF1-F2-closed and path consistent constraint is satisfiable.

Proof. Let ¢ beF1-F2-closed and path consistent. We define the variable assignment
ming into feature trees as follows:

Dminq,(x) :{p‘xgpy} and Lmin¢(X) :{(p7 a) ‘Xgpa}

The path consistency df condition 1 implies thaLmin¢(X) is a partial function. Thus
ming (X) is a feature tree. We now verify thating is a solution of.

— Letx<yin¢. ForallX, if y#‘lp X thenx«q';p X by the definition of path reachability.
Thus,Dmi%(y) C Dmin¢(x). For allaif ygp athenx#gp a by the definition of path
reachability. ThusLmin¢(y) C Lining (%) i.€, ming (Y)<ming(X).

— Considerx[aly in ¢. We have to prove for al, z, andb the equivalences

x Yz iff yEoz and xdab iff yEob

The first equivalence is equivalentmi%(y) ={p|ape Dmi%(x)} and the second

one toLmi%(y) ={(p,b)|(ap,b) € Lmin¢(x)}. We start proving the first equivalence.
If y#"»p z thenx&ap z sincex[aly in ¢. Supposex «%p z By definition of path

reachability there exists andy’ such that
xtex, X@y, y-pz

The F1-closedness o andx&s X imply x<x in ¢. The F2-closedness ensures
y<y'in ¢ such thaty#"»p z holds. We now prove the second equivalence above. If
x&ap b then there existgsuch thak&ap zandb(z). The first equivalence implies
y!‘lp zand thusyﬂip b. The converse is simple.

— Leta(x) in ¢. Reflexivity (F1.1-closedness) implies<x in ¢. Thusx 4"»8 a such
that (e, a) € Ly.

— Letx~yin ¢. We have to show that the sie,;i%(x) U Lmin¢(y) is partial function. If
(p,a) e Lmin¢(x) and(p, b) € Lmin¢(y) thenx«q';p aandyjlp b. The path consistency
of ¢ condition 2 implieaa = b. m|

Lemma 26. EveryF3,F4,F5-closed constraint is path consistent.

Proof. Let ¢ be F3,F4,F5-closed. Condition 1 of Definition 24 follows from condi-
tion 2 of Definition 24 and-3.1-closedness. The proof of condition 2 is by induction

on pathsp. We assume, Yy, a, andb such thak«gp a, Xx~yind, andx«tp b. If p=g¢,
then there exish,m> 0, X1, ...,Xn, Y1,- .- Ym Such that:

X<X1 A AXpm1<XpAa(Xn) i O,

Y<SYLIA o A Ym-1<Ym A D(Ym) in §.
F3-closedness implies thag~ymin ¢ (F3.2 yieldsx~yjin ¢, ..., x~ymin ¢. There-
fore yn~x in¢ by F3.3-closedness, and hengg~x; in , ..., ym~X,in ¢ by F3.2-
closedness.) HencE5-closedness implies = b.
In the casg = a'q, then there exists there exigty, X, y with:

xgsx’, X[@xing, X
yLey, yilging. §

Sincex~X in ¢ we havexX'~y' in ¢ by F3-closedness (as above). Thigclosedness
impliesX~¥ in ¢ such thab=b holds by induction hypothesis. a

b

4 a
4ob.

Proof of Proposition 4. If ¢ is F-closed therb is path consistent by Lemma 26 and
thus satisfiable by Lemma 25. |

Corollary 27. Let¢ be anF-closed constraint. Thef = Jy(X[a]y) if and only if there
are variables kand y such thaip - X [a]y’ and$ - X' <x.

Proof. Assumeg I/ X'[aly’ A X' <x. Then it holds for the minimal solutioming of an
F-closed constraint th@t ¢ Ly, (y). Henced [~ Jy(x[aly). O.

Acknowledgments. We would like to thank Jochen Dorre, Gert Smolka, and Ralf
Treinen for discussions on the topic of this paper. We would alsotbkacknowledge

many helpful remarks of the referees. The research reported in this paper has been
supported by the the Esprit Working Group CCL Il (EP 22457) &3 378 at the
Universitat des Saarlandes.

References

1. H. Ait-Kaci and A. Podelski. Entailment and Disentaitthef Order-Sorted Feature Con-
straints. In A. Voronkov, edito”t" International Conference on Logic Programming and
Automated ReasoningNAI 698, pp. 1-18. Springer, 1993.

2. H. Ait-Kaci and A. Podelski. Towards a Meaning of Lif€he Journal of Logic Program-
ming 16(3 and 4):195-234, July, Aug. 1993.

3. H. Ait-Kaci, A. Podelski, and G. Smolka. A feature-basedstraint system for logic pro-
gramming with entailmentTheoretical Computer Scienc&22(1-2):263-283, Jan. 1994.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

R. Backofen. A Complete Axiomatization of a Theory witheEege and Arity Constraints.
The Journal of Logic Programmind 995. Special Issue on Computational Linguistics and
Logic Programming.

. R. Backofen and G. Smolka. A complete and recursive feah&ory. Theoretical Com-

puter Sciencegl46(1-2):243-268, July 1995.

. A. Colmerauer. Equations and Inequations on Finite afidite Trees. Ir2"d Future Gen-

eration Computer Systenzages 85—-99, 1984.

. J. Dorre. Feature-Logic with Weak Subsumption Constsai In Constraints, Languages,

and Computationchapter 7, pages 187—203. Academic Press, 1994.

. J. Dorre. Feature-Logik und Semiunifikation. Disséotegn zur Kiinstlichen Intelligenz,

Band 128. Infix-Verlag, St. Augustin, 1996.

. J. Dorre and W. C. Rounds. On Subsumption and Semiundficin Feature Algebras.

In 5t IEEE Symposium on Logic in Computer Scienuages 300-310. IEEE Computer
Science Press, 1990.

R. Helm, K. Marriott, and M. Odersky. Constraint-basegefy Optimization for Spatial
Databases. 160" Annual IEEE Symposium on the Principles of Database Sysfeagses
181-191, May 1991.

J. Jaffar and M. J. Maher. Constraint logic programm#gurvey. Journal of Logic Pro-
gramming 19/20:503-582, May-July 1994.

R. M. Kaplan and J. Bresnan. Lexical-Functional Gramrmaformal System for Gram-
matical Representation. pages 173—-381. MIT Press, CagehMA, 1982.

M. Kay. Functional Grammar. In C. Chiarello et al., ediiroc. of the ' Annual Meeting
of the Berkeley Linguistics Sociepages 142—-158, 1979.

J. Lassez and K. McAloon. Applications of a Canonicahféor Generalized Linear Con-
straints. In5!" Future Generation Computer Systerpages 703—710, Dec. 1988.

M. Muller. Ordering Constraints over Feature Treeshwiirdered Sorts. In P. Lopez,
S. Manandhar, and W. Nutt, ed€pmputational Logic and Natural Language Understand-
ing, Lecture Notes in Artificial Intelligence, to appear, 1997.

M. Muller and J. Niehren. Entailment for Set Constraiig not Feasible. Techni-
cal report, Programming Systems Lab, Universitat des |&zdes, 1997. Available at
http://ww. ps. uni - sh. de/ ~nmmuel | er/ paper s/ conp97. htm .

M. Muller, J. Niehren, and A. Podelski. Inclusion Caasits over Non-Empty Sets of
Trees. In International Joint Conference on Theory andtReaof Software Development
(TAPSOFT), LNCS, Springer, 1997.

C. Pollard and |. Sag-Head-Driven Phrase Structure Grammastudies in Contemporary
Linguistics. Cambridge University Press, Cambridge, Bnd| 1994.

W. C. Rounds. Feature Logics. In J. v. Benthem and A. tarldfe editorsHandbook of
Logic and LanguageElsevier Science Publishers B.V. (North Holland), 1997.

S. ShieberAn Introduction to Unification-based Approaches to Gramm@sSLI Lecture
Notes No. 4. Center for the Study of Language and Informafi®86.

S. ShieberParsing and Type Inference for Natural and Computer Langsa§RI Interna-
tionax[l Technical Note 460, Stanford University, Mar. $98

G. Smolka. Feature constraint logics for unificatiomgraars. Journal of Logic Program-
ming 12:51-87, 1992.

G. Smolka. The Oz Programming Model. In J. van LeeuweitorecComputer Science
Today LNCS, vol. 1000, pages 324—-343. Springer-Verlag, Be@iermany, 1995.

G. Smolka and R. Treinen. Records for Logic Programmifige Journal of Logic Pro-
gramming 18(3):229-258, Apr. 1994.

R. Treinen. Feature constraints with first-class festilathematical Foundations of Com-
puter ScienceLNCS, vol. 711, pages 734—743, Springer-Verlag, 1993.

