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1 IntroductionIn the last decade a new type of grammar formalism, now commonly referred to as uni-�cation grammars, has evolved from research in linguistics, computational linguistics andarti�cial intelligence. In contrast to augmented transition networks, one of their precursors,uni�cation grammar formalisms provide for the declarative or logical speci�cation of lin-guistic knowledge. Nevertheless, uni�cation grammars are aimed towards operational usein parsing and generating natural language.Conceptually, a uni�cation grammar formalism can be divided into a phrase structurecomponent and a constraint logic. The phrase structure components of some formalismsare given by context-free rules. In these formalisms the context-free phrase structure rulesare augmented with constraints taken from the constraint logic. These constraints furthercon�ne the derivations licensed by the phrase structure rules. Thus grammatical knowledgecan be formulated at two levels, the phrase structure and the constraint level. In practicemost of the grammatical knowledge is expressed at the constraint level. Since the phrasestructure component provides for inductive de�nition (or, from the computational point ofview, recursion), the constraint logic can be kept decidable.Two types of constraint logics have been used in uni�cation grammar formalisms. Theconstraint logic of De�nite Clause Grammars [36] is identical with the constraint logic ofProlog and consists of �rst-order equations interpreted in the free term algebra. The othertype of constraint logic, which evolved with the now predominant feature-based uni�cationgrammars, is based on the notion of features and has only recently become subject oftheoretical investigation and formalization. It is this family of constraint logics that wefurther establish and investigate in this paper.In the context of uni�cation grammars, a feature is a functional property or attribute ofabstract (linguistic) objects. For instance, the abstract object associated with the sentenceJohn sings a songmay have the features subject, predicate, object and tense. Mathematically, features canbe modeled as partial functions that can be applied to abstract objects. If, for instance, thefeature object is applied to the abstract object representing the above sentence, one obtainsa further abstract object representing the object phrase \a song". Primitive abstract objectsare atoms like singular, plural or present that don't have features de�ned on them. Sincethe relevant properties of abstract objects are determined by the values of the featuresde�ned on them, abstract objects can be represented as rooted graphs. The nodes of sucha \feature graph" stand for abstract objects and the edges represent the de�ned features.Figure 1 shows a feature graph that may represent the abstract object associated with thesentence \John sings a song".1 This graph states that the sentence consists of a subject(John), a predicate (sings) and an object (a song). It also states that the agent of the1How the abstract object associated with a sentence looks is determined by the grammar. Uni�cationgrammar formalisms are comparable to programming languages in that the same set of sentences can bespeci�ed by many di�erent grammars relying on di�erent linguistic theories.3



?� -tense present?pred���������	 subj @@@@@@@@@Robj�?verbsing -what� agent sing ��������spec -num@@@@@@Rpred a sgsong�@@@@@@I pred� num ������	 personjohnsg 3rd Figure 1: A feature graph.266666666666664 xpersonmother:26664 employee�rstchild: xsecondchild: yage: 54 37775oldestsister: yage: 27 377777777777775Figure 2: A feature term.singing is given by the subject of the sentence and what is sung is given by the object ofthe sentence. Moreover, the graph states that the tense of the sentence is present.Two kinds of feature descriptions have been developed. Bresnan and Kaplan's Lexical-Functional Grammar [17], Shieber's patr-ii formalism [46], and Johnson's Attribute-ValueLogic [16] employ boolean combinations of equations built from features (used as unaryfunctions), atoms (used as constants) and variables. Kay's Functional Uni�cation Grammar[24, 25, 26], A��t-Kaci's  -Term Calculus [2, 3, 4], and Kasper and Rounds' logic [23, 39]employ set-denoting expressions, called feature terms in this paper, that come in di�erentsyntactic guises (Figure 2 gives an example). Feature terms have much in common with theconcept descriptions of terminological logics [5, 33, 34] used in knowledge representation.In fact, A��t-Kaci's  -term calculus was developed independently from the linguisticallyoriented approaches for application in Logic Programming and knowledge representation.This paper shows that both kinds of feature descriptions can be captured as sublanguages of�rst-order predicate logic with equality. This reduction to a very well-understood framework4



is surprisingly natural and brings much simplicity and clarity. This approach is alreadysuggested by Bresnan and Kaplan's pioneering paper on Lexical-Functional Grammar [17]and has been worked out further in Johnson's dissertation [16]. However, the present paper,which is an elaboration of [47], shows for the �rst time that the feature term descriptionsof Kay, A��t-Kaci, and Kasper and Rounds can be embedded as well into predicate logic. Itturns out that feature terms are merely a syntactic extension, which can be eliminated inlinear time.In Lexical-Functional Grammar, feature equations are interpreted in a domain of featuregraphs (see Figure 1 for an example). In this paper we will admit much more generalinterpretations called feature algebras. The set of all feature graphs can be arranged toone particular feature algebra, the so-called feature graph algebra. We will show that thefeature graph algebra is canonical in that a quanti�er-free constraint is satis�able in somefeature algebra if and only if it is satis�able in the feature graph algebra.To employ uni�cation grammars for parsing, one needs a solution method for the employedfeature constraints. In the case of equational descriptions the solution method can be aconstraint solving method, which simpli�es a constraint to a certain normal form and there-by determines whether the constraint is satis�able. For feature terms so-called uni�cationmethods have been developed, which compute for two feature terms in normal form a newfeature term in normal form combining their information. We show that feature term uni�-cation can be reduced to the more general but, nevertheless, technically simpler constraintsolving.It was the uni�cation operation for feature terms conceived by Kay that led to the nameuni�cation grammars. Unfortunately, this name is rather misleading since it is derivedfrom an operation that may or may not be employed in an implementation of a uni�cationgrammar formalism.This paper is organized as follows. In Section 2, we outline a simple uni�cation grammarformalism based on context-free phrase structure rules to illustrate the basic ideas andthe interaction between phrase structure rules and feature constraints. In Section 3, weintroduce the possible interpretations of feature descriptions, which we call feature algebras.Furthermore, we formalize feature graphs and show that they constitute one possible featurealgebra, which, as it will turn out in Section 5, enjoys important prototypical properties.In Section 4, we de�ne constraints and start with the development of a constraint solvingalgorithm. In Section 5, we develop the remaining phase of the constraint solving algorithmand prove several of our main theorems. In Section 6, we extend our formalism to featureterms. In Section 7, we further extend our formalism to sorts. In Section 8, we provetwo undecidability results, one concerning quanti�ed constraints and one concerning cyclicsort equations. The �nal 9th Section relates our approach to previous work and discussespossible extensions.2 Constraint GrammarsIn this section we outline a simple uni�cation grammar formalism based on context-freephrase structure rules and feature equations. Grammars in this formalism will be called5



constraint grammars.To have an example, we will model simple sentences consisting of a subject, a predicate andan object (like \John sings a song"). For this we use the familiar phrase structure rulesS �! NP VPNP �! D NVP �! V NP:One phrase structure tree licensed by the rules is shown in Figure 3. Every node of thisphrase structure tree comes with a distinct variable. Hence we have the two variables NPand NP1 for the two noun phrase nodes. It are the variables associated with the nodes ofa phrase structure tree what is constrained by the constraints of the rules. For our phrasestructure rules we may have constraints as follows:S �! NP VPsubj S := NP ^ S := VPNP �! D NNP := D := NVP �! V NPVP := V ^ obj VP := NP:The constraints of the rules de�ne a constraint for every phrase structure tree licensed bythe rules. For the phrase structure tree in Figure 3 we obtain the constraint9NP 9VP 9V 9NP1 9D 9N (subj S := NP ^ S := VP ^VP := V ^ obj VP := NP1 ^NP1 := D := N):The constraints are formulas as in predicate logic. All variables but the root variable areexistentially quanti�ed. The feature equation subj S := NP, for instance, says that NP is thevalue of the feature subj applied to S. Features are unary partial functions. The variablesin the constraints range over abstract objects representing the concrete phrases.The constraints of the phrase structure rules yield the skeleton in which the constraintscoming with the lexical rules are put. Note that the constraint of the phrase structure treein Figure 3 identi�es the variables D and N representing the determiner and noun of thenoun phrase NP1. Hence the constraints for the determiner and noun apply to the sameabstract object. With that it is easy to enforce that the determiner and noun are eitherboth in plural or both in singular. For instance, we may have the lexical rulesD �! aspec D := a ^num D := sgN �! songpred N := song ^num N := sg6
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Figure 3: A phrase structure tree.N �! songspred N := songs ^num N := pl:Now the noun phrase \a song" yields the satis�able constraintNP1 := D := N ^spec D := a ^ num D := sg ^pred N := song ^ num N := sgwhile the ungrammatical noun phrase \a songs" yields the unsatis�able constraintNP1 := D := N ^spec D := a ^ num D := sg ^pred N := songs ^ num N := pl:The unsatis�ability of the constraint stems from the fact that we assume that the atomssg and pl are di�erent.Now consider the lexical entry for the verb sings:V �! singstense V := present ^verb pred V := sing ^agent pred V := subj V ^what pred V := obj V ^num subj V := sg ^person subj V := 3rd:Since the constraints of the phrase structure rules equate the variables S, VP and V of thephrase structure tree in Figure 3, the constraints of the verb directly constrain the entiresentence. This makes good sense since the predicate of a sentence dominates the sentencesyntactically and semantically. The tense of the predicate, for instance, is also the tense of7



the entire sentence. This arrangement also makes it easy to enforce agreement in numerusand person between the subject and the predicate of the sentence. The last two constraintsof the lexical rule for sings prescribe the numerus and the person of the subject of thesentence since we have subj S := NP ^ S := VP ^ VP := V ^num subj V := sg ^ person subj V := 3rd;which implies num NP := sg ^ person NP := 3rd:If we add the lexical rule NP �! Johnpred NP := john ^num NP := sg ^person NP := 3rd;we can account for the sentence \John sings a song". Figure 4 shows the phrase structuretree of this sentence whose constraint in its full glory looks as follows:9NP 9VP 9V 9NP1 9D 9N ((subj S := NP ^ S := VP) ^ S �! NP VP(pred NP := john ^ num NP := sg ^ person NP := 3rd) ^ NP �! John(VP := V ^ obj VP := NP1) ^ VP �! V NP(tense V := present ^ V �! singsverb pred V := sing ^agent pred V := subj V ^what pred V := obj V ^num subj V := sg ^person subj V := 3rd) ^(NP1 := D := N) ^ NP �! D N(spec D := a ^ num D := sg) ^ D �! a(pred N := song ^ num N := sg) ) N �! song:This monster is logically equivalent to the more digestible constraint9S9P9O( subj x := S ^ pred x := P ^ obj x := O ^ tense x := present ^pred S := john ^ num S := sg ^ person S := 3rd ^verb P := sing ^ agent P := S ^ what P := O ^spec O := a ^ num O := sg ^ pred O := song )8
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Figure 4: A complete phrase structure tree.whose graphical representation is the feature graph in Figure 1. This shows another niceproperty of our grammar formalism: The satis�able constraint of a phrase structure treecan serve as a logical representation of the corresponding reading of the sentence.A sequence of words is licensed by a constraint grammar if it has at least one phrasestructure tree whose constraint is satis�able. Given a constraint grammar, we call a phrasestructure tree admissible if its constraint is satis�able, and we call a sequence of words asentence if it has at least one admissible phrase structure tree. Typically, a sentence willhave several admissible phrase structure trees corresponding to di�erent possible readingsof the sentence.The constraint of a phrase structure tree is de�ned inductively with respect to the structureof the tree. Hence the constraint of a phrase structure tree can be computed incrementallyduring the construction of the tree. Since one is interested in the logical meaning of theconstraint and not its internal syntactic structure, it su�ces to compute the constraint upto logical equivalence. Thus one is free to simplify partial constraints to logically equivalentones during the construction of a phrase structure tree.Constraints in our grammar formalism are built from feature equations using conjunc-tion and existential quanti�cation. Such constraints are unsatis�able if a subconstraint isunsatis�able. Hence, if the constraint of a partial phrase structure tree turns out to beunsatis�able, one knows that the partial phrase structure tree cannot be completed to anadmissible phrase structure tree. Thus an e�cient parser for our constraint grammars willemploy an incremental constraint solving method that, given a constraint, simpli�es it to alogically equivalent normal form exhibiting unsatis�ability. Since the nonlexical rules com-bine the constraints of the constituents by conjunction, the constraint solving method canbe specialized in that it computes the normal form of the conjunction of two constraintsin normal form. In the literature on uni�cation grammars such constraint solving methodsare often called uni�cation methods.The grammar can be written such that the constraint of an admissible phrase structure treeof a sentence is a convenient representation of the corresponding reading of the sentence.9



In the simple constraint logic employed so far, every satis�able constraint can be repre-sented without loss of information as a feature graph, which can serve as a convenient datastructure for subsequent, more semantically oriented processing steps of a natural languageunderstanding system.Obviously, there are some strong analogies between constraint grammar formalisms and(logic) programming languages in that grammar formalisms allow for very di�erent gram-mars describing the same set of sentences. How a grammar is written depends mainly onthe linguistic theory being adhered to, but also on operational properties like e�ciency forparsing.The word problem of a grammar is to decide for a given sequence of words whether it isa sentence of the grammar. One can show that even the simple formalism outlined aboveallows for grammars having an undecidable word problem by adapting proofs given byJohnson [16] or Rounds and Manaster-Ramer [40] for slightly di�erent formalisms. Forgrammars employing a decidable constraint logic (that is, it is decidable whether a con-straint is satis�able), the o�-line parsability constraint [17] is a su�cient condition for thedecidability of the word problem. A grammar satis�es the o�-line parsability constraint ifthe number of di�erent phrase structure trees (not necessarily admissible) of a sequence ofwords is bounded by a computable function of the length of that sequence. The o�-lineparsability constraint is satis�ed, for instance, if the right-hand side of every context-freerule contains either at least one terminal or at least two nonterminals.If a word has more than one meaning,2 one can either have several lexical rules for the sameword or have only one rule whose constraint is obtained as the disjunction of the constraintsdescribing the di�erent meanings. Sometimes it is also convenient to use logical implicationin the constraints of lexical rules. For instance, the constraint for the word \sing" maycontain the implication person subj V := 3rd ! num subj V := pl;which can be read as: If the subject of the sentence is in third person, then it must be inplural.The simple uni�cation grammar formalism sketched here bears much resemblance with thepatr formalism developed at SRI International by Shieber and his colleagues [46, 43]. It isalso closely related to Bresnan and Kaplan's Lexical-Functional Grammar formalism (lfg)[17]. Other uni�cation grammar formalisms such as Kay's Functional Uni�cation Grammar(fug) [24, 25, 26, 40], Uszkoreit's Categorial Uni�cation Grammar [49], or Pollard and Sag'shpsg [37] employ di�erent phrase structure rules and di�erent feature constraints.Shieber's [44] introduction to uni�cation-based approaches to grammar is an excellent sur-vey of existing formalisms and provides the linguistic motivations our presentation is lack-ing. Other state of the art guides into this fascinating area of research are [37] and [35].Johnson's thesis [16] gives a formal account of an lfg-like formalism and investigates afeature constraint language with disjunctions and negations. Shieber's thesis [45] gives arigorous formalization of the patr formalism.2For instance, the word \drink" can be used as transitive verb or as noun.10



3 Feature Algebras and Feature GraphsIn this section we de�ne the possible interpretations of the feature descriptions to be dis-cussed. These interpretations are called feature algebras and are like the usual interpre-tations of predicate logic. However, we admit only constants and features as nonlogicalsymbols, where features are binary predicates that must be interpreted as functional rela-tions.We assume three pairwise disjoint sets of symbols: variables (denoted by x, y, z), features(denoted by f , g, h), and constants (denoted by a, b, c). Constants are also called atoms.We assume that there are in�nitely many variables. The letters s and t will always denotevariables or atoms.A feature algebra is a pair (DI; �I) consisting of a nonempty set DI (the domain of I)and an interpretation function �I assigning to every atom a an element aI 2 DI and toevery feature f a set of ordered pairs fI � DI �DI such that the following conditions aresatis�ed:1. if (d; e) and (d; e0) are in fI , then e = e0 (features are functional)2. if a 6= b, then aI 6= bI (unique name assumption)3. if f is a feature and a is an atom, then there exists no d 2 DI such that (aI; d) 2 fI(atoms are primitive).The �rst condition says that features are interpreted as unary partial functions, and thethird condition says that features must not be de�ned on atoms. We write fI(d) = e if andonly if (d; e) 2 fI . Furthermore, the domain of a feature f in a feature algebra I isD(fI) := fd 2 DI j 9e 2 DI : (d; e) 2 fIg:Next we de�ne feature graphs (Figure 1 shows an example of a feature graph). The setof all feature graphs will yield a special feature algebra that enjoys prototypical propertiescomparable to the properties of term algebras in equational logic.A feature graph is a �nite, rooted, connected and directed graph whose edges are labeledwith features. For every node, the labels of the edges departing from it must be pairwisedistinct. Moreover, every inner node of a feature graph must be a variable, and everyterminal node must be either an atom or a variable. Feature graphs can be seen as �nitedeterministic automata, which is the formalization given by Kasper and Rounds [23, 39].In contrast to Kasper and Rounds, however, we admit cyclic feature graphs.Formally, an f-edge from x to s is a triple xfs such that x is a variable, f is a feature,and s is either a variable or an atom. A feature graph is either a pair (a; ;), where a isan atom and ; is the empty set, or a pair (x0; E), where x0 is a variable (the root) and Eis a �nite, possibly empty set of edges such that1. the graph is determinate, that is, if xfs and xft are in E, then s = t11



2. the graph is connected, that is, if xfs 2 E, then E contains edges leading from theroot x0 to the node x.A feature graph G is called a subgraph of a feature graph G0 if the root of G is a variableor atom occurring in G0 and every edge of G is an edge of G0. The subgraphs of a featuregraph G are partially ordered byG0 � G00 () G0 is a subgraph of G00.If G is a feature graph and s is an atom or variable occurring in G, we use Gs to denotethe unique maximal subgraph of G whose root is s.The feature graph algebra F is de�ned as follows:1. DF is the set of all feature graphs2. aF is the feature graph (a; ;)3. (G;G0) 2 fF if and only if G has an edge xfs such that x is the root of G andG0 = Gs.One veri�es easily that F is a feature algebra.Feature graphs can be understood as data structures representing information. There existsa natural preorder on feature graphs, usually called subsumption preorder, that ordersfeature graphs according to their information content. The subsumption preorder is suchthat two feature graphs are equivalent if and only if they are equal up to consistent variablerenaming.3 It turns out that the subsumption preorder on feature graphs generalizes togeneral feature algebras.4 To this purpose we de�ne the notion of a partial homomorphismbetween feature algebras.Let I and J be feature algebras. A partial homomorphism from I to J is a partialfunction 
 from DI to DJ such that1. if a is an atom and 
 is de�ned on aI, then 
(aI) = aJ2. if f is feature and fI and 
 are de�ned on d 2 DI , then 
 is de�ned on fI (d), fJ isde�ned on 
(d), and fJ (
(d)) = 
(fI(d)).A partial endomorphism of a feature algebra I is a partial homomorphism from I to I.Let I be a feature algebra. The subsumption preorder �I of I is a preorder on DIde�ned as follows: d �I e () 9 partial endomorphism 
 of Isuch that 
(d) = e.3However, the feature graph algebra F does not identify feature graphs that are equivalent. In thepresence of negative constraints F would fail to be canonical if equivalent feature graphs were identi�ed(see Section 5).4This was discovered �rst by Bill Rounds who presented the idea in a seminar he gave in the summerof 1989 at the University of Stuttgart. 12



If d �I e, we say that d is more general than e (in I) or, conversely, that e is morespeci�c than d (in I). Furthermore, we say that d and e are equivalent (in I) if d �I eand e �I d.Next we show that the subsumption preorder �F of the feature graph algebra F coincideswith the subsumption order on feature graphs given by Kasper and Rounds [23, 39]. Tothis purpose we introduce paths.A path is a �nite, possibly empty sequence of features. The letters p and q will alwaysdenote paths. Let I be a feature algebra and p = fn � � � f1 be a path. Then p is interpretedas a unary partial function pI from DI to DI de�ned as follows: If p is empty (that is,n = 0), then pI is the identity function of DI ; otherwise pI is the composition of the partialfunctions fIn ; : : : ; fI1 , where fI1 is applied �rst. As with features, we write pI(d) = e if andonly if (d; e) 2 pI .Let I be a feature algebra and d 2 DI . Then e 2 DI is called a component of d if thereexists a path p such that e = pI(d).Proposition 3.1 Let 
 be a partial homomorphism from a feature algebra I to a featurealgebra J and let p be a path. If 
 and pI are de�ned on d 2 DI , then 
 is de�ned onpI(d), pJ is de�ned on 
(d), and 
(pI(d)) = pJ (
(d)). Hence, if 
 is de�ned on d 2 DI,then 
 is de�ned on every component of d and maps every component of d to a componentof 
(d).Proposition 3.2 Let G be a feature graph. Then the components of G in F are exactly themaximal subgraphs of G. Furthermore, for every atom or variable s occurring in G thereexists a unique component of G whose root is s, and all components of G can be obtainedthis way.Theorem 3.3 The subsumption preorder of the feature graph algebra F is characterizedas follows: G �F G0 if and only if there exists a mapping � from the variables and atomsoccurring in G to the variables and atoms occurring in G0 such that1. � maps the root of G to the root of G02. if a is an atom occurring in G, then �a = a3. if xfs is an edge of G, then (�x)f(�s) is an edge of G0.Proof. 1. Let 
 be a partial endomorphism of F such that 
(G) = G0. For every atom orvariable s occurring in G we de�ne �s to be the root of 
(Gs). Since 
 maps the componentsof G to components of G0, we have 
(Gs) = G0�s for every variable or atom s occurring inG. If s is the root of G, then �s is the root of G0 since 
(G) = G0. If a is an atom occurringin G, then G0�a = 
(Ga) = 
(aF) = aF , and hence �a = a. If xfs is an edge of G, thenG0�s = 
(Gs) = 
(fF (Gx)) = fF (
(Gx)) = fF (G0�x);and hence (�x)f(�s) is an edge of G0. 13



2. Let G and G0 be feature graphs and � be a mapping as required. Then we de�ne
(Gs) = G0�s for every variable or atom s occurring in G.Then we have 
(G) = 
(Gs) = G0�s = G0, where s is the root of G.If 
 is de�ned on aF , then 
(aF) = 
(Ga) = G0�a = G0a = aF .Let Gx be a component of G such that fF is de�ned on Gx. We have to show that
(fF (Gx)) = fF (
(Gx)). Since fF is de�ned on Gx, we know that G contains an edge xfssuch that fF (Gx) = Gs. Consequently, G0 contains the edge (�x)f(�s). Hence 
(fF (Gx)) =
(Gs) = G0�s = fF (G0�x) = fF (
(Gx)). 2Corollary 3.4 The subsumption preorder �F of the feature graph algebra F linear-timedecidable.4 Feature ConstraintsThe basic strategy of this paper is to accommodate feature descriptions as sublanguagesof Predicate Logic with equality. In the previous section we have seen that the availablenonlogical symbols are restricted to atoms and features and that the admissible interpreta-tions, called feature algebras, must satisfy certain restrictions. In this section we will studythe admissible formulas.Since we don't have proper function symbols, a term in the sense of Predicate Logic iseither a variable or an atom. (Recall that features are accommodated as binary predicatesymbols.) As stated before, the letters s and t will always denote terms. As atomic formulaswe have f(s; t) and s := t, where f is a feature. Atomic formulas of the form f(s; t) willbe written fs := t to suggest the functionality of features. From this two forms of atomicformulas we can build complex formulas using the usual connectives and quanti�ers ofPredicate Logic. For convenience, we will introduce additional syntactic forms, which,however, will not add any further expressivity.The notion of a variable assignment is crucial for assigning meaning to formulas containingvariables. Most presentations of Predicate Logic de�ne a three-place relation I; � j= �(called satisfaction) holding if the formula � is satis�ed by the interpretation I assumingthe variable assignment �. For our purposes it is more convenient to introduce a function�I = f� 2 ASS[I] j I; � j= �gthat maps a formula � and an interpretation I to the set of all variable assignments � intoI such that I satis�es � under �. The assignments in �I are called the solutions of � in I.From this perspective it is natural to see a formula as a constraint that restricts the valuesthe variables occurring in it can take. For instance, the formula age x := y admits exactlythose assignments that assign to x a value on which the feature age is de�ned and yieldsthe value assigned to y.55The notion of constraint used here is worked out in a more general form in [13].14



Let I be a feature algebra. An I-assignment is a mapping from the set of all variablesto the domain of I. We use ASS[I] to denote the set of all I-assignments. Furthermore, if� is an I-assignment and d 2 DI, we use �[x  d] to denote the I-assignment obtainedfrom � by mapping x to d rather than to �(x).Here are the constraints we are going to use:�; �! ps := qt feature equationps" divergence (\p unde�ned on s")� ^  conjunction:� negation� _  disjunction�!  implication9x(�) existential quanti�cation8x(�) universal quanti�cation:Recall that p and q always stand for paths, and that s and t always stand for variablesor atoms. Since paths can be empty, feature equations subsume the atomic constraintsfs := t and s := t. We will write ps6 :=qt and s6 :=t as abbreviations for :ps := qt and :s := t,respectively. The free variables of a constraint are de�ned as in Predicate Logic. Aconstraint is called closed if it has no free variables. In the following � and  always standfor constraints as de�ned above.Let I be a feature algebra. For every I-assignment � we de�ne sI� as follows: sI� = �(x) ifs is the variable x, and sI� = aI if s is the atom a. With that we de�ne the solutions ofconstraints in I as follows:(ps := qt)I := f� 2 ASS[I] j 9d 2 DI : (sI�; d) 2 pI ^ (tI�; d) 2 qIg(ps")I := f� 2 ASS[I] j 8d 2 DI : (sI�; d) =2 pIg(� ^  )I := �I \  I(:�)I := ASS[I]� �I(� _  )I := �I [  I(�!  )I := (ASS[I]� �I) [  I(9x(�))I := f� 2 ASS[I] j 9d 2 DI : �[x d] 2 �Ig(8x(�))I := f� 2 ASS[I] j 8d 2 DI : �[x d] 2 �Ig:We call a constraint satis�able if there exists a feature algebra in which it has a solution,and we call two constraints � and  equivalent (written � �  ) if �I =  I for everyfeature algebra I. Furthermore, we say that a feature algebra I satis�es a constraint � if�I = ASS[I]. Note that I satis�es � if and only if :� has no solution in I.We will call the logic given by the class of feature algebras and the constraints introducedabove Feature Logic. Feature Logic is parameterized with respect to the atoms, featuresand variables we employ.Several of the introduced constraint forms are redundant. In particular, one can eliminatein linear time divergences, implications, disjunctions and universal quanti�cations using the15



following equivalences: ps" � :9x(ps := x) if x 6= s�!  � :� _  � _  � :(:� ^ : )8x(�) � :9y(:�):The class of all feature algebras can be axiomatized. Let FA be a minimal set of constraintssatisfying the following conditions:1. if a and b are distinct atoms, then FA contains the constrainta6 :=b2. if f is a feature, then FA contains a constraintfx := y ^ fx := z ! y := z3. if f is a feature and a is an atom, then FA contains a constraint:9x(fa := x):Note that FA is �nite if there are only �nitely many atoms and features.Proposition 4.1 The class of feature algebras is exactly the subclass of interpretations ofPredicate Logic that satisfy every constraint of FA.As a consequence of this proposition we inherit from Predicate Logic sound and completededuction calculi for Feature Logic.Proposition 4.2 The set of unsatis�able feature constraints is recursively enumerable.Proof. A constraint � is unsatis�able if and only if :� is valid, that is, is satis�ed by everyfeature algebra. Since the valid formulas of Predicate Logic are recursively enumerableand the class of feature algebras is axiomatizable in Predicate Logic, we know that theunsatis�able feature constraints are recursively enumerable. 2Our interest in the following is to determine the computational complexity of deciding thesatis�ability of constraints. It will turn out that in general the satis�ability of constraintsis undecidable. However, for quanti�er-free constraints deciding satis�ability will be shownto be an NP-complete problem. Moreover, for constraints built from feature equations, di-vergences of the form fx", negated equations of the form s6 :=t, conjunctions, and existentialquanti�cations we will exhibit a quadratic-time algorithm for deciding satis�ability.16



We will give a number of simpli�cation rules that reduce constraints to equivalent ones hav-ing a simpler syntactic structure. To this purpose, we de�ne four subclasses of constraints.A constraint is in existential prenix form (EPF) if it has the form9x1 � � � 9xn(�);where n � 0 and � (the matrix) is a quanti�er-free constraint.A constraint is primitive if it has one of the following four forms: fs := t, fs", s := t, s6 :=t.A constraint is basic if it can be built from primitive constraints by conjunctions anddisjunctions.A constraint is quasi-basic if it is in EPF and its matrix is a basic constraint.Proposition 4.3 For every constraint in EPF one can compute in linear time an equivalentquasi-basic constraint.The transformation algorithm verifying this proposition consists of three phases. The �rstphase eliminates implications and pushes down negations using the following equivalences:�!  � :� _  :(� ^  ) � :� _ : :(� _  ) � :� ^ : ::� � �:ps := qt � ps" _ qt" _ 9x9y(ps := x ^ qt := y ^ x6 :=y)if x 6= y and x and y are di�erent from s and t:(ps") � 9x(ps := x) if x is di�erent from s:The second phase eliminates all nonbasic paths:ps := qt � 9x(ps := x ^ qt := x) if x is di�erent from s and tfps := t � 9x(ps := x ^ fx := t) if x is di�erent from s and tpfs" � fs" _ 9x(fs := x ^ px") if x is di�erent from s.The third and last phase pushes existential quanti�ers upwards (the constraint [x=y]� isobtained from � by replacing all free occurrences of the variable x with y):9x(�) � 9y([x=y]�) if y doesn't occur in �9x(�) ^  � 9x(� ^  ) if x doesn't occur in  9x(�) _  � 9x(� _  ) if x doesn't occur in  .This leads to EPF since the preceding transformations don't introduce universal quanti�-cations and don't introduce existential quanti�cations that are in the scope of a negation.The transformation of constraints in EPF to quasi-basic form is the �rst step of a solutionalgorithm for constraints in EPF. For the further steps of the algorithm it is convenient to17



get rid of the wrapping existential quanti�cations. This is possible by employing a �nernotion of equivalence.Let V be a set of variables. Two constraints � and  are V -equivalent if the followingtwo conditions are satis�ed for every feature algebra I:1. if � is a solution of � in I, then there exists a solution � of  in I such that � and� agree on V2. if � is a solution of  in I, then there exists a solution � of � in I such that � and� agree on V .If � and  are V -equivalent, then � is satis�able if and only if  is satis�able.Proposition 4.4 Let � = 9x1 � � � 9xn( ) be a constraint and V be a set of variables suchthat xi =2 V for i 2 1::n. Then � and  are V -equivalent.Proposition 4.5 For every �nite set of variables V and ever constraint in EPF one cancompute in linear time a V -equivalent basic constraint.The �rst step in solving basic constraints is the elimination of disjunctions by transformingto a disjunctive normal form. To this purpose, we de�ne a feature clause to be a �nite,possibly empty set of primitive constraints representing their conjunction. Consequently,the solutions of a feature clause C in a feature algebra I are de�ned as:CI := \�2C �I :A feature clause is satis�able if there is at least one feature algebra in which it has asolution. Two feature clauses C and D are equivalent if CI = DI for every featurealgebra I. The letters C and D will always denote feature clauses.The disjuncts of a basic constraint � are the feature clauses de�ned as follows:D[�] := ff�gg if � is a primitive constraintD[� ^  ] := fC [D j C 2 D[�] ^ D 2 D[ ]gD[� _  ] := D[�] [D[ ]:Clearly, a basic constraint has at least one disjunct and only �nitely many. Note that thenumber of disjuncts of a basic constraint can be exponential with respect to its size.Proposition 4.6 Let I be a feature algebra. Then an I-assignment is a solution of a basicconstraint if and only if it is a solution of one of its disjuncts. Hence a basic constraint issatis�able if and only if one of its disjuncts is satis�able.In the next section we will give a quadratic-time solution algorithm for feature clauses.Since every disjunct of a basic constraint can be obtained in nondeterministic polynomialtime, the transformations of this section will yield that the satis�ability of constraints inEPF is decidable in nondeterministic polynomial time.18



Proposition 4.7 Deciding the satis�ability of basic constraints in NP-hard, even if theconstraint don't contain atoms or features.Proof. It is well-know that deciding the satis�ability of propositional formulas in con-junctive normal form (CNF) is an NP-complete problem. We show the claim by giving alinear-time translation from propositional formulas in CNF to basic constraints such thata propositional formula is satis�able if and only if its translation is a satis�able constraint.For this translation we assume without loss of generality that propositional variables arevariables in the sense of feature logic (syntactically, of course). Furthermore, we �x a vari-able x0 that is di�erent from all propositional variables. Now we translate a propositionalformula in CNF by replacing every positive literal x with x := x0 and every negative literal:x with x6 :=x0. 25 Solving Feature ClausesA feature clause C is solved if it satis�es the following conditions:1. every constraint in C has one of the following forms: fx := s, fx", x := s, x6 :=s2. if x := s is in C, then x occurs exactly once in C3. if fx := s and fx := t are in C, then s = t4. if fx" is in C, then C contains no constraint fx := s5. if x6 :=s is in C, then x 6= s.Let I be a feature algebra and � be a constraint. An I-assignment � is called a principalsolution of � in I if � 2 �I and �(x) �I �(x) for every � 2 �I and every variable x.We will show that every solved feature clause has a principal solution in the feature graphalgebra F .Let C be a solved feature clause. Then x !C y () 9 fx := y 2 C de�nes abinary relation !C on the variables occurring in C. We use !�C to denote the re
exiveand transitive closure of !C on the set of all variables. If s is a variable or an atom, thenFG[s;C] := 8><>: (s; ;) if s is an atomFG[t; C] if s := t 2 C(s; fxft j fx := t 2 C ^ s!�C xg) otherwisede�nes a feature graph.Lemma 5.1 If C is a solved feature clause, then �(x) := FG[x;C] is a principal solutionof C in F . 19



Proof. 1. First we show that � is a solution of C in F .1.1. Let fx := s 2 C. Then x is the root of �(x) and xfs is an edge of �(x). Furthermore, itis easy to verify that FG[x;C]s = FG[s;C]. Hence fF (�(x)) = fF (FG[x;C]) = FG[x;C]s =FG[s;C] = sF� .1.2. Let fx "2 C. Then C contains no constraint fx := s or x := s. Hence �(x) =FG[x;C] = (x; ;) and consequently fF is not de�ned on �(x).1.3. Let x := s 2 C. Then �(x) = FG[x;C] = FG[s;C] = sF� .1.4. Let x6 :=s 2 C. Then C contains no constraint x := t or s := t. Hence x is the root of�(x) and s is the root of sF� . Since C is solved, we know that x 6= s. Hence �(x) 6= sF� .2. It remains to show that � is principal. Let � 2 CF and let x be a variable. We have toshow that �(x) �F �(x). To this purpose, let � be the function that maps every atom toitself and every variable x to the root of �(x). Because of Theorem 3.3 it su�ces to showthat � maps the root of �(x) to the root of �(x), and that (�y)f(�s) is an edge of �(x) ifyfs is an edge of �(x).2.1.1. Suppose the root of �(x) = FG[x;C] is the atom a. Then C contains the constraintx := a. Hence �a = a must be the root of �(x).2.1.2. Suppose the root of �(x) is x. Then �x is the root of �(x) by the de�nition of �.2.1.3. Suppose the root of �(x) = FG[x;C] is some variable y 6= x. Then C contains theconstraint x := y and hence �(x) = �(y). Since �y is the root of �y by de�nition of �, weknow that �y is the root of �(x).2.2. Suppose yfs is an edge of �(x) = FG[x;C]. Then fy := s 2 C and hence fF (�(y)) =sF� . Since �y is the root of �(y) and �s is the root of sF� , we know that (�y)f(�s) is an edgeof �(y).Since yfs is an edge of �(x), we know either that x !�C y or that there exists x := z 2 Csuch that z !�C y. Hence there exists a path p such that pF (�(x)) = �(y) since � 2 CF .Thus �(y) is a subgraph of �(x) and hence (�y)f(�s) is an edge of �(x). 2Let C be a feature clause. Then we use1. [x=s]C to denote the clause that is obtained from C by replacing every occurrence ofthe variable x with s2. s := t&C to denote the feature clause fs := tg [ C provided s := t =2 C.Our solution algorithm for feature clauses attempts to transform feature clauses to solvedform using the following simpli�cation rules:1. x := s & C ! x := s & [x=s]C if x occurs in C and x 6= s2. a := x & C ! x := a & C3. fx := s & fx := t & C ! fx := s & s := t & C20



4. s := s & C ! C5. fa" & C ! C6. a6 :=x & C ! x6 :=a & C7. a6 :=b & C ! C if a 6= b.Proposition 5.2 Let C be a feature clause. Then:1. if D is obtained from C by a simpli�cation rule, then D is a feature clause that isequivalent to C2. there is no in�nite chain of simpli�cation steps issuing from C.Proof. The veri�cation of the �rst claim is straightforward. To show the second claim,suppose there is an in�nite sequence C1; C2; � � � of feature clauses such that, for every i � 1,Ci+1 is obtained from Ci by a simpli�cation rule. First note that every variable occurring insome Ci must also occur in C1, that is, simpli�cation steps don't introduce new variables.A variable x is called isolated in a clause C if C contains an equation x := s and x occursexactly once in C. Now observe that no simpli�cation rule decreases the number of isolatedvariables, and that the �rst simpli�cation rule increases this number. Hence we can assumewithout loss of generality that the in�nite sequence doesn't employ the �rst simpli�cationrule. However, it is easy to see that the remaining simpli�cation rules cannot support anin�nite sequence. 2A feature clause is called normal if no simpli�cation rule applies to it.Proposition 5.3 For every feature clause one can compute in quadratic time an equivalentnormal feature clause.Proof. Let C be a clause. By the previous proposition we know that we can computea normal feature clause D that is equivalent to C using the simpli�cation rules. Thesimpli�cation of C to D can be done in quadratic time by employing the simpli�cationrules together with an e�cient union-�nd method [1] for maintaining equivalence classes ofvariables and atoms. 2A feature clause is called clash-free if it satis�es the following conditions:1. C contains no constraint of the form fa := s or s6 :=s2. C contains no constraint of the form a := b such that a 6= b3. if C contains a constraint fx", then C contains no constraint fx := s.21



Proposition 5.4 If a feature clause has a solution in some feature algebra, then it is clash-free. Furthermore, a feature clause is solved if and only if it is normal and clash-free.Let � be a constraint, x be a variable, and I be a feature algebra. Then d 2 DI is called asolution of x in � and I if there exists a solution � 2 �I such that �(x) = d. Furthermore,d 2 DI is called a principal solution of x in � and I if d is a solution of x in � and I andd �I e for every solution e of x in � and I.Theorem 5.5 Let C be a feature clause and F be the feature graph algebra. Then thefollowing conditions are equivalent:1. C has a solution in some feature algebra2. C has a solution in F3. C has a principal solution in F .Furthermore, there is a quadratic-time algorithm that, given a clause C and a variable x,either returns fail if C has no solution or returns a principal feature graph solution of x inC.Proof. Follows from Propositions 5.3and 5.4 and Lemma 5.1. 2Theorem 5.6 A constraint � in EPF is satis�able if and only if it has a solution in thefeature graph algebra F . Furthermore, deciding the satis�ability of constraints in EPF isan NP-complete problem. Finally, there is an exponential-time algorithm that, given aconstraint � in EPF and a variable x, returns �nitely many solutions G1; : : : ; Gn (n � 0)of x in � and F such that for every solution G of x in � and F there exists an i 2 1::nsuch that Gi �F G.Proof. Follows from Propositions 4.5 and 4.6, Theorem 5.5, and Proposition 4.7. 2Besides other things, the theorem says that for the satis�ability of constraints in EPF thefeature graph algebra is canonical, that is, as far as satis�ability is concerned it su�ces toconsider the feature graph algebra. However, this does not hold for general constraints:Proposition 5.7 Let f and g be two distinct features. Then the constraint8x(fx := x! gx := x)is satis�able but has no solution in the feature graph algebra F .22



Proof. It is clear that the given constraint has no solution in F (assign the feature graph(x; fxfxg) to x). To show that the constraint is satis�able, we construct a feature algebraI satisfying the given constraint as follows:DI := fxg [ fa j a is an atomgaI := a for every atom afI := f(x; x)g for every feature f : 2A feature algebra is called �nite if its domain is a �nite set.Corollary 5.8 A constraint in EPF is satis�able if and only if it has a solution in some�nite feature algebra, provided there are only �nitely many atoms.Proof. Let  be a satis�able constraint in EPF whose matrix is �. Then � is satis�able.By the preceding theorem we know that � has a solution � in F . Without loss of generalitywe can assume that � contains at least one variable. Now we construct a �nite featurealgebra I as follows:DI := faF j a is an atomg[ fG j x occurs in � and G is a component of �(x)gaI := aF for every atom afI := fF \ (DI �DI) for every feature f:From � we obtain a solution of � in I by mapping all variables that don't occur in � toarbitrary elements of DI . Hence  has a solution in I. 26 Feature TermsWe now introduce a new form of expressions, called feature terms, that denote sets infeature algebras. Feature terms generalize Kasper and Rounds' feature descriptions [23, 39]and A��t-Kaci's  -terms [2, 3, 4].Here is the abstract syntax of feature terms:S; T �! a atomx variablep:S selectionp" divergencep#q agreementp"q disagreement? bottom> topS u T intersectionS t T union:S complement9x(S) existential quanti�cation:23



The free variables of a feature term are de�ned as one would expect. A feature term iscalled closed if it has no free variables. In the following S and T will always stand forfeature terms.Given a feature algebra I and an I-assignment �, the denotation SI� of a feature term Sin I under � is a subset of DI de�ned inductively as follows:aI� = faIgxI� = f�(x)g(p:S)I� = fd 2 DI j 9e 2 SI�: (d; e) 2 pIg(p")I� = fd 2 DI j 8e 2 DI : (d; e) =2 pIg(p#q)I� = fd 2 DI j 9e 2 DI : (d; e) 2 pI \ qIg(p"q)I� = fd 2 DI j 9e; e0 2 DI : (d; e) 2 pI ^ (d; e0) 2 qI ^ e 6= e0g?I� = ;>I� = DI(S u T )I� = SI� \ T I�(S t T )I� = SI� [ T I�(:S)I� = DI � SI�(9x(S))I� = [d2DI SI�[x d]:To use feature terms in constraints, we introduce a new constraint form called membership.A membership takes the form x:S, where x is a variable and S is a feature term. Thesolutions of a membership in a feature algebra I are de�ned as follows:(x:S)I = f� 2 ASS[I] j �(x) 2 SI�g:Feature terms and memberships provide for an attractive syntax for the lexical rules ofuni�cation grammars. For instance, the constraint of the lexical rule V �! sings of thegrammar in Section 2 can be written equivalently as the membershipV:2666666664 tense: presentpred: verb: singsubj: " num: sgperson: 3rd #agent pred# subjwhat pred#obj 3777777775or, using variables to express agreement,V:9x9y266666666666664 tense: presentpred:264 verb: singagent: xwhat: y 375subj:264 xnum: sgperson: 3rd 375obj: y 377777777777775:24



The feature terms above are written in matrix notation, which can be traced back to Kay'sfunctional uni�cation grammar [24]. The feature terms given as the rows of a matrix areconnected by intersections.We call two feature terms S and T equivalent (written S � T ) if SI� = T I� for every featurealgebra I and every I-assignment �.Most of the introduced feature term forms are redundant. Every feature term can berewritten in linear time to an equivalent feature term containing only the formsa; x; f :S; S u T; :S; 9x(S)by using the following equivalences (� is the empty path):�:S � Spf :S � f : (p:S)p" � :(p:>)p#q � 9x(p:x u q:x)p"q � 9x(p:x u q::x)? � x u :x> � :?S t T � :(:S u :T ):Proposition 6.1 For every feature term one can compute in linear time an equivalentfeature term containing only the forms a, x, f :S, S u T , :S, and 9x(S).Furthermore, every constraint containing memberships can be rewritten in linear time intoa membership-free constraint by using the following equivalences in addition to the previousones: x: a � x := ax: y � x := yx: (f :S) � 9y(fx := y ^ y:S) if y 6= x and y does not occur in Sx:S u T � x:S ^ x:Tx::S � :(x:S)x: (9y(S)) � 9y(x:S) if y 6= x9x(S) � 9y([x=y]S) if y does not occur in S:Proposition 6.2 For every constraint one can compute in linear time an equivalent con-straint not containing memberships.A feature term is quanti�er-free if it contains no quanti�cations 9x(S). A feature termis basic if it is quanti�er-free and contains only complements of the form :a or :x. Every25



quanti�er-free feature term can be rewritten in linear time to an equivalent basic featureterm by using the following equivalences:: p:S � p" t p::S: p" � p:>: p#q � p" t q" t p"q: p"q � p" t q" t p#q:? � >:> � ?:(S u T ) � :S t :T:(S t T ) � :S u :T::S � S:Proposition 6.3 For every quanti�er-free feature term one can compute in linear time anequivalent basic feature term.A constraint is in EPFM (existential prenix form with memberships) if it has the form9x1 � � � 9xn(�), where n � 0 and � is a quanti�er-free constraint possibly containingquanti�er-free memberships.Proposition 6.4 For every constraint in EPFM one can compute in linear time an equiv-alent quasi-basic constraint (not containing memberships).We show the claim by extending the algorithm verifying Proposition 4.3. The �rst phase ofthis algorithm eliminates implications and pushes down negations. We extend this phaseby the equivalence :(x:S) � x::Sand the equivalences given above for transforming quanti�er-free feature terms to basicfeature terms.After all negations and complements have been pushed down, all memberships are elimi-nated by rewriting with the following equivalences:x: a � x := ax: y � x := yx: (p:S) � 9y(px := y ^ y:S) if y 6= x and y does not occur in Sx: p" � px"x: (p#q) � px := qxx: (p"q) � 9y9z(px := y ^ qx := z ^ y 6 :=z)if x, y and z are pairwise distinctx:? � x6 :=xx:> � x := x 26



x:S u T � x:S ^ x:Tx:S t T � x:S _ x:Tx::y � x6 :=yx::a � x6 :=a:Now the remaining two phases of the algorithm verifying Proposition 4.3 lead to quasi-basicform.A feature term S is called coherent if there exists a feature algebra I and an I-assignment� such that SI� 6= ;. A feature term is called incoherent if it is not coherent.A feature term S is included in a feature term T (written S � T ) if SI� � T I� for everyinterpretation I and every I-assignment �.Coherence, inclusion and equivalence of feature terms are linear-time reducible to eachother: S incoherent () S � ? () S � ?S � T () S u :T incoherentS � T () S � T ^ T � S:Furthermore, coherence of feature terms is linear-time reducible to satis�ability of mem-berships: If x is a variable not occurring in a feature term S, thenS coherent () x:S satis�able:Proposition 6.5 Deciding incoherence, inclusion and equivalence of quanti�er-free featureterms are Co-NP-complete problems.Proof. It su�ces to show that deciding coherence of quanti�er-free feature terms is an NP-complete problem. Because of Proposition 6.4 and Theorem 5.6 we know that the problemis in NP. The NP-hardness follows since propositional formulas in CNF can be regardedas feature terms such that satis�ability becomes coherence (conjunction is regarded asintersection, disjunction as union, negation as complement, and propositional variables areregarded as variables of Feature Logic). 2A feature algebra is in�nite if its domain is an in�nite set. The feature graph algebra Fis in�nite since there are in�nitely many variables and (x; ;) and (y; ;) are distinct featuregraphs if x and y are distinct variables. We will now show that one can compute for everyfeature term S a quanti�er-free feature term T such that S and T are equivalent in everyin�nite feature algebra.A feature term is simple if it is basic and contains no unions. A feature term is indisjunctive normal form (DNF) if it has the form S1 t : : : t Sn, where S1; : : : ; Sn aresimple feature terms. A basic feature term can be rewritten into DNF by pushing up theoccurring unions with the following equivalences:S u (T t U) � (S u T ) t (S u U)(S t T ) u U � (S u U) t (T u U)p: (S t T ) � p:S t p:T:27



Together with Proposition 6.3 we have:Proposition 6.6 For every quanti�er-free feature term one can compute an equivalentfeature term in DNF.We use V(S) to denote the set of all variables occurring in the feature term S.Lemma 6.7 Let S be a simple feature term and x be a variable. Then one can compute inpolynomial time a simple feature term T such that V(T ) = V(S)� fxg and (9x(S))I� = T I�for every in�nite feature algebra I and every I-assignment �.Proof. We start by de�ning the sets �+x (S) and ��x (S) of positive and negative paths toa variable x in a simple feature term S:�+x (S) := ; if x =2 V(S) ��x (S) := ; if x =2 V(S)�+x (p:S) := fqp j q 2 �+x (S)g ��x (p:S) := fqp j q 2 ��x (S)g�+x (S u T ) := �+x (S) [�+x (T ) ��x (S u T ) := ��x (S) [��x (T )�+x (x) := f�g ��x (x) := ;�+x (:x) := ; ��x (:x) := f�g:Now let S be a simple feature term, x be a variable, I be an in�nite interpretation, and� be an I-assignment. Obtain U from S by �rst replacing every subterm :x with > andthen replacing every remaining x with >. Now we distinguish two cases:1. �+x (S) = ;. Then (9x(S))I� = UI� since I is in�nite. To see this note that[a2M(M � fag)n =Mnfor every set M having at least n+ 1 elements (Mn is the n-fold cartesian product of M).2. �+x (S) = fpigmi=1, where m � 1. Let ��x (S) = fqigni=1 and de�neT := (U u p1 #p2 u � � � u p1 #pm u p1 "q1 u � � � u p1 "qn):Then (9x(S))I� = T I� . 2Theorem 6.8 For every feature term S one can compute a quanti�er-free feature term Tsuch that SI� = T I� for every in�nite feature algebra I and every I-assignment �.Proof. It su�ces to show that we can eliminate an innermost quanti�cation. Hence we canassume without loss of generality that S = 9x(U), where U is quanti�er-free. By rewritingU to DNF (Proposition 6.6) we obtain simple feature terms U1; : : : ; Un such thatS = 9x(U) � 9x(U1 t : : : t Un) � 9x(U1) t : : : t 9x(Un):By using the transformation of the preceding lemma for every disjunct we obtain simplefeature terms V1; : : : ; Vn such that SI� = (V1 t : : : t Vn)I�for every in�nite feature algebra I and every I-assignment �. 228



Corollary 6.9 For every closed feature term S one can compute a variable-free featureterm T such that SI� = T I� for every in�nite feature algebra I and every I-assignment �.Corollary 6.10 It is decidable whether for a feature term S there exists an F-assignment� such that SF� 6= ;.Proof. Let S be a feature term. By the preceding theorem we know that we can computea quanti�er-free feature term T such that SF� = TF� for every F -assignment �. Now letx be a variable that doesn't occur in T . Then there exists an F -assignment � such thatSF� 6= ; if and only if x:T has a solution in F . By Proposition 6.4 and Theorem 5.6 weknow that is decidable whether x:T has a solution in F . 27 SortsIn this section we extend our logic to include sorts. For our purposes, a sort is simply asymbol denoting a subset of the domain of a feature algebra. Equivalently, one can regard asort as a unary predicate. Our sorts correspond to the concepts of terminological languages[28, 33, 34] and to the templates of the PATR-II system [46]. They are di�erent fromsorts in sorted logics in that we don't exploit sorts to impose a well-sortedness disciplineon formulas.From now on we assume an additional alphabet whose symbols are called sorts. Further-more, we assume that the primitive feature terms > and ? are sorts. A proper sort is asort di�erent from ? and >. The letters A and B will always denote sorts.To accommodate sorts semantically, we assume that every feature algebra I interpretsevery sort A as a set AI � DI , where >I = DI and ?I = ;. On a partial homomorphism
:I ! J we impose the additional requirement that 
(d) 2 AJ if 
 is de�ned on d andd 2 AI .If there are proper sorts, the feature graph algebra F is no longer an admissible featurealgebra since it lacks their interpretations.We extent the set of constraints by allowing for sort atoms of the form As having thesolutions (As)I = f� 2 ASS[I] j sI� 2 AIg:Furthermore, we extend the set of feature terms by stipulating that every sort is a featureterm, where AI� = AI:It is straightforward to extend our solution algorithm for constraints to sorts. All we haveto do is to strengthen the de�nition of clash-freeness by excluding clashes of the formAs ^ :As. To see that normal, clash-free feature clauses possibly containing sort literalsare satis�able, suppose that C is such a clause. Let D be obtained from C by deleting29



all sort literals. Then D has a solution � in some feature algebra I that doesn't interpretsorts. We extend I to a feature algebra J interpreting sorts byAJ = fsI� j As 2 Cg:Now � is a solution of C in J and hence C is satis�able.From this argumentation it becomes clear that there are in�nitely many extensions of thefeature graph algebra F to sorts and that none of this extensions is canonical in the senseF is canonical for constraints not containing proper sorts. However, we still have that everysatis�able constraint has a solution in some extension of F .Sorts become interesting if we add the possibility to de�ne them. For instance, we maywrite the equations (here and in the following sorts are written slanted to distinguish themfrom atoms) present3rdsg := 264 tense: presentsubj: " num: sgperson: 3rd # 375transitive := " agent pred# subjwhat pred#obj #and admit only those feature algebras that satisfy these equations (that is, interpret thesort at the left-hand side with the same set they interpret the closed feature term at theright-hand side). With these two sort equations the constraint of the lexical rule V �! singsof the grammar in Section 2 can be written as the membershipV:264 pred: verb: singtransitivepresent3rdsg 375:Such sort equations are in fact supported by the uni�cation grammar formalism patr-ii [46], where de�ned sorts are called templates. Sort de�nitions are a handy device forexpressing lexical generalizations, which is important for large lexica.Sort equations are an essential ingredient of so-called terminological logics used for knowl-edge representations. Besides sorts and features these logic also support so-called roles,which are binary relations not required to be functional. For instance, one might have arole \child" relating persons to their children. Nebel and Smolka [34] survey terminologicallogics and discuss their relations to feature-based uni�cation grammars.Sort equations can also be expressed without feature terms since A := S is logically equiv-alent to 8x(Ax $ x:S);where the membership at the right-hand side of the equivalence can be rewritten as aconstraint not containing feature terms.As long as a set D of sort equations is noncyclic, (that is, no sort is de�ned with referenceto itself), it is decidable whether a constraint � in EPF has a solution in at least one model30



of D. To do this, we iteratively replace every de�ned sort in � by the feature term de�ningit. Let �D be the feature term eventually obtained from � this way. Then �D contains node�ned sort. Now we decide whether �D is satis�able ignoring D. If there exists no featurealgebra in which �D has a solution, then there is certainly no feature algebra satisfying Din which �D has a solution. Otherwise, �D has a solution � in some feature algebra I.By updating the interpretations of the de�ned sorts according to D, we obtain a featurealgebra J such that � is still a solution of �D since �D contains no de�ned sorts. Since Jsatis�es by construction every equation of D, � is also a solution of � in D.In the next section we will prove that in the presence of cyclic sort equations it is in generalundecidable whether quanti�er-free constraints have a solution in at least one model of theequations.A sort system is a partial function from proper sorts to closed feature terms. A featurealgebra I is a model of a sort system � if AI = �(A)I for every sort on which � is de�ned.There are sort systems that don't have a model, for instance, A := :A.A feature term is de�nite if it is equivalent to a feature term9x1 � � � 9xn(S);where S is quanti�er-free and no sort in S occurs in the scope of a complement. A sortsystem � is de�nite if �(A) is a de�nite sort term for every sort A on which � is de�ned.We will show that for every de�nite sort system � every feature algebra not interpretingsorts can be extended to a model of �, and that there is a unique minimal such model. Theproof consists just of a straightforward application of the fundamental result of the theoryof de�nite relations [13].The base of a feature algebra is the feature algebra obtained by forgetting all sort inter-pretations. The following de�nes a partial order on feature algebras:I � J :() I and J have the same base andAI � AJ for every sort A.Theorem 7.1 Let � be a de�nite sort system. Then, for every feature algebra I withoutsort interpretations, there exists a unique least model of � whose base is I.Proof. Follows from a theorem in [13] since � can be expressed equivalently as a de�niteset of equivalences Ax$ � over feature logic without sorts. 2One consequence of this theorem is that a de�nite sort system uniquely de�nes least sortinterpretations for every feature algebra without sorts. In particular, this is the case forthe feature graph algebra F . A��t-Kaci's knowledge bases [3] are de�nite sort systems whosemodels are restricted to extensions of the feature graph algebra F .Rounds and Manaster-Ramer [40] show that there is a de�nite sort systems � not involvingvariables, complements or disagreements such that it is undecidable whether a sort denotes31



the empty set in the least model of � extending F . Their result depends on the availabilityof feature terms with unions.As A��t-Kaci does in his  -term calculus [3], one can assume that a lattice ordering of thesorts is given, where ? is the least and > is the greatest sort. In this case one admits onlythose feature algebra that interpret the in�mum of two sorts A and B (their greatest lowerbound in the lattice) as the intersection of the interpretations of A and B. The algorithmsgiven in this paper for constraints without sorts can be easily extended to accommodate thesort lattice and the complexity results shown here remain unchanged. For an elaborationof Feature Logic with sort lattices see [47].8 Two Undecidability ResultsIn this section we show that the set of satis�able constraints of Feature Logic is not re-cursively enumerable. Moreover, we show that there are recursive sort equations such thatit is undecidable whether a feature term denotes a nonempty set in at least one model ofthe equations. Both results are shown by coding the word problem of Thue systems whoseundecidability is well-known.We start by de�ning a class of Thue systems that is convenient for our purposes.Let S be the set of all atoms and features, S� be the set of all words over S, and � be theempty word. Note that the words containing only features are exactly the paths we use infeature constraints. A Thue equation is a set fp; qg consisting of two distinct, nonemptypaths. A Thue system is a �nite set T of Thue equations. Every Thue system T de�nesa binary relationu$T w :() 9 w1; w2 2 S� 9 fp; qg 2 T : u = w1pw2 ^ w = w1qw2on S�. We use �T to denote the re
exive and transitive closure of $T on S�. It is easy tosee that �T is an equivalence relation on S� satisfyingu �T u0 ^ w �T w0 ) uw �T u0w0:If T is clear from the context, we use w to denote the equivalence class of a word w 2 S�with respect to �T . Since the paths in Thue equations are nonempty, we have � = f�g anda = fag for every atom a.Proposition 8.1 Suppose there are at least two features. Then there exists a Thue systemT such that it is undecidable whether p �T q for two paths p and q (the so-called wordproblem of T ).Proof. It is well-known that there exists a Thue system whose word problem is undecidable(see, for instance, [12] for a proof). Such an undecidable Thue system can be transformedinto an undecidable Thue system meeting our specialized format. 232



Lemma 8.2 Let f1 and f2 be two features, p; q 2 ff1; f2g�, and let T be a Thue systemsuch that T contains no features other than f1 and f2. Furthermore, let �T and �p;q be thefeature constraints�T = 8x(f1x# ! (f1f1x# ^ f1f2x# ^ ^fu;wg2Tux := wx))�p;q = 8x(f1x# ! px := qx);where fx# abbreviates :fx" (read: f de�ned on x). Thenp �T q () every feature algebra satis�es �T ! �p;q.Proof. Since �T and �p;q are closed constraints, they are satis�ed by a feature algebra I ifand only if they have a solution in I.\)" Let p �T q and let I be a feature algebra that satis�es �T . We have to show thatI satis�es �p;q. Let M := D(fI1 ). Since I satis�es �T , we know that fI1 and fI2 aretotal functions from M to M , and that every equation fu;wg 2 T holds on M , that is,the functions uI and wI agree on M and are total on M (since u;w 2 ff1; f2g�). Sincep; q 2 ff1; f2g� and p can be obtained from q by �nitely many applications of the equationsin T , we hence know that the functions pI and qI agree on M . Hence I satis�es �p;q.\(" Suppose every feature algebra satis�es �T ! �p;q. We have to show that p �T q. Tothis purpose we construct a feature algebra I as follows:DI := S�=�T (the quotient of S� with respect to �T )aI := a = fag for every atom aC := fa j a is an atomg(u;w) 2 fI :() u =2 C ^ w = fu for every feature f :It is easy to see that I satis�es �T . Since I satis�es the implication �T ! �p;q by assump-tion, we know that I satis�es �p;q. Thus pI and qI agree on � (the equivalence class of theempty word) and hence p = pI(�) = qI(�) = q, which yields p �T q. 2Theorem 8.3 If there are at least two features, then the set of satis�able feature constraintsis not recursively enumerable.Proof. Let T be a Thue system as required by the preceding lemma whose word problemis undecidable (exists by Proposition 8.1). Since the pairs (p; q) such that p �T q arerecursively enumerable, we know that the pairs (p; q) such that p 6�T q are not recursivelyenumerable. Since we know by the preceding lemma thatp 6�T q () :(�T ! �p;q) is satis�ableprovided p; q 2 ff1; f2g�, the satis�able feature constraints cannot be recursively enumer-able. 2A related problem is the satis�ability problem for the feature graph algebra F : Is it de-cidable whether a constraint has a solution in F? We conjecture that the satis�ability33



problem for F is decidable. Evidence for this conjecture comes from recent results [7, 29,30] showing that related problems for the ground term algebra and the algebra of rationaltrees are decidable.Next we show that coherence of feature terms with respect to models of recursive sortequations is undecidable.Lemma 8.4 Let B be a sort, b and c be two distinct atoms, and f1, f2 and h be threepairwise distinct features. Furthermore, let p; q 2 ff1; f2g�, and let T = ffpi; qiggni=1 be aThue system such that T contains no features other than f1 and f2. Then p �T q if andonly if the feature term B u hp: b u hq: cdenotes the empty set in every feature algebra satisfying the sort equationB := f1:B u f2:B u p1 #q1 u : : : u pn #qn:Proof. \)" Let p �T q and let I be a feature algebra that satis�es the given sort equation.Furthermore, let d 2 BI. Since bI 6= cI, it su�ces to show that pI (d) = qI(d). This followswith a similar argumentation as in the proof of Lemma 8.2.\(" Suppose the given feature term denotes the empty set in every feature algebra satis-fying the given sort equation. We have to show that p �T q. To this purpose we constructa feature algebra I as follows:DI := S�=�T (the quotient of S� with respect to �T )aI := a = fag for every atom aAI := DI � fa j a is a atomg for every proper sort A(u;w) 2 fI :() u 2 BI ^ w = fu for every feature f 6= hhI(u) := 8<: b if u = pc if u 2 BI � fpgunde�ned otherwise.It is easy to verify that I satis�es the given sort equation. Hence we know by our as-sumptions that the given feature term denotes the empty set in I. Since � 2 BI, we thusknow that hI(pI(�)) 6= b or hI(qI(�)) 6= c. Since hI(pI (�)) = hI(p�) = hI(p) = b, we knowhI(qI(�)) = hI(q) 6= c. Hence q = p, which yields p �T q. 2Theorem 8.5 Suppose there are at least three features, two atoms, and one sort. Thenthere exists a sort equation E of the formA := f :A u g:A u p1#q1 u : : : u pn #qnsuch that the feature terms of the formA u p: a u q: bthat denote a nonempty set in at least one model of E are not recursively enumerable.34



Proof. Follows from the preceding lemma using a similar argument as in the proof ofTheorem 8.3. 2Note that this undecidability results applies to variable-free feature terms without unionsand complements. The undecidability is caused by the presence of agreements. By adaptingtechniques used in [33] one can show that for variable-free feature terms not containingagreements or disagreements coherence with respect to recursive sort equations is decidable.9 History and Related WorkThe �rst two feature-based uni�cation grammar formalisms were Kay's Functional Uni�ca-tion Grammar (fug) [24, 25, 26] and Bresnan and Kaplan's Lexical-Functional Grammar(lfg) [17]. lfg uses context-free phrase structure rules augmented with feature constraintsinterpreted in the feature graph algebra. fug, which to my knowledge resisted full formal-ization so far, is based on recursive equations between feature terms. fug doesn't havephrase structure rules but instead has special constraints for establishing word order. Partof fug has been formalized by Manaster-Ramer and Rounds [40].lfg and fug are rather di�erent in that lfg employs feature equations interpreted inthe feature graph algebra while fug relies solely of feature terms whose interpretation isleft open. Correspondingly, the operational semantics of lfg was presented as constraintsolving while the major operation of fug was outlined as feature term uni�cation. Theexact relationship between feature equations and feature terms was �rst worked out in [47].A��t-Kaci's  -term calculus [2, 3, 4] is the �rst published formalization of feature terms.A��t-Kaci's  -terms are feature terms without complements, agreements and explicit quan-ti�cation and are required to obey a rigid normal form. He de�nes by syntactical means aso-called subsumption ordering, which corresponds exactly to our inclusion ordering appliedafter closing the terms under existential quanti�cation. A��t-Kaci shows that his subsump-tion ordering yields a lattice on the quotient of the set of all  -terms under equivalence.Furthermore, he gives an algorithm, called  -term uni�cation, for computing the in�mumof two  -terms in this lattice. Uni�cation of two  -terms S and T corresponds to solvingthe constraint x:9S ^ x:9T;where 9S is obtained from S by quantifying all free variables existentially. A��t-Kaci alsooutlines the model-theoretic semantics for feature terms given in this paper, but he makesno attempt to show that his syntactic subsumption ordering and the semantic inclusionordering coincide (which, in fact, they do). A��t-Kaci's early work has been inspired by workon semantic networks and, in particular, kl-one [6]. An important di�erence, however,between feature terms and the descriptions employed in kl-one is that kl-one mainlyrelies on many-valued (that is, nonfunctional) attributes called roles.Incidentally, when A��t-Kaci published his thesis [2] in 1984, Brachman and Levesque [5]published the by now standard semantics of kl-one, which models kl-one descriptions asset-denoting expressions and de�nes subsumption as set inclusion in all interpretations.35



In 1986, Kasper and Rounds [23, 39] presented the �rst logical account of feature terms.They consider variable-free feature terms without complements and disagreements andde�ne a satisfaction relation between feature graphs and feature terms. A feature graphsatis�es a feature term in Kasper and Rounds' logic if and only if in our logic the graph is anelement of the term's denotation in the feature graph algebra F . Their work was inspiredby fug, which contributed the notion of a feature term, and Shieber's work on patr-ii[46, 44], which contributed the notions of feature graph and agreement (often called pathequations).In 1987, A��t-Kaci and Smolka [48] showed how feature-based inheritance hierarchies can becaptured as algebraic speci�cations using order-sorted equational logic. They realized thatmemberships can be equivalently expressed without feature terms by equational constraintsand that uni�cation of feature terms corresponds to constraint solving.In his thesis [16] published in 1987, Johnson develops a so-called Attribute-Value Logicthat has much in common with the feature logic presented here. Johnson considers onlyquanti�er-free constraints and does not study feature terms. His logic is somewhat moregeneral than ours since he doesn't model features as partial functions but instead has anexplicit application function. Hence the variables of his logic also range over features.Johnson proves that deciding satis�ability in his logic is an NP-complete problem. Johnsonalso formalizes a grammar formalism based on his logic that bears much resemblance withlfg.The present paper is an elaboration of previous work of the author [47], which resultedfrom an e�ort to bring together the work of A��t-Kaci, Kasper/Rounds, and Johnson.The constraint solving algorithm given here requires transformation into disjunctive normalform, which will usually cause an exponential blow-up in size. Kasper [21, 20] and D�orreand Eisele [11] have proposed better uni�cation algorithms for feature terms that try toavoid pushing up unions as much as possible. A new constraint solving method of D�orreand Eisele [9] introduces so-called distributed disjunctions and works on feature constraintsrather than feature terms.Kasper [22] investigates the use of feature terms with implications (an implication S ! T isequivalent to :S tT ) for modeling systems in systemic grammar. He outlines a uni�cationmethod for these terms.Moshier and Rounds [31] study a feature term logic that interprets negations intuitionisti-cally. They prove that the satis�ability problem of this logic is PSPACE-complete. Dawarand Vijay-Shanker [8] investigate several possible interpretations of negation in featureterms using three-valued logic.The linguistic problem of so-called long-distance dependencies doesn't have a satisfacto-ry solution in uni�cation grammars relying on the constraints discussed here. However,with so-called functional uncertainty constraints an elegant solution is possible [19]. Afunctional uncertainty constraint takes the form f�x := y and has the solutions(f�x := y)I = f� 2 ASS[I] j 9n � 0: (fn)I(�(x)) = �(y)g;where fn is the path consisting of exactly n occurrences of the feature f . In general,it is open whether the satis�ability of conjunctions of feature equations and functional36



uncertainty constraints is decidable. Kaplan and Maxwell [18] given a decision algorithmfor conjunctions satisfying a certain acyclicity condition.Another interesting extension are subsumption constraints making the subsumption pre-order of feature algebras syntactically available. A subsumption constraint takes theform x �v y and has the solutions(x �v y)I = f� 2 ASS[I] j �(x) �I �(y)g:Shieber [45] discusses the usefulness of subsumption constraints for dealing with coordina-tion problems. D�orre and Rounds [10] show that the satis�ability of conjunctions of featureequations and subsumption constraints is undecidable. This problem is closely related tothe semi-uni�cation problem for �rst-order terms, whose undecidability has been shownrecently [27].Yet another useful extension are roles or set-valued features. Roles are symbols that areinterpreted as set-valued functions rI :DI ! 2DI :Features can be seen as special roles that map every element of the domain either to theempty set or to a singleton. Syntactically, roles can be accommodated as follows:(srt)I = f� 2 ASS[I] j tI� 2 rI(sI�)g:Furthermore, the following two constructs provide for the use of roles in feature terms:(8r(S))I� = fd 2 DI j rI(d) � SI�g(9r(S))I� = fd 2 DI j rI(d) \ SI� 6= ;g:As in predicate logic, these role quanti�ers are complementary, that is, 8r(S) is equivalentto :9(:S). We call generalized feature terms with role quanti�ers concept descrip-tions. Variable-free concept descriptions are employed in so-called terminological logicsthat developed from the knowledge representation language kl-one [6]. Nebel and Smol-ka [34] give a survey of terminological logics and discuss their relation to feature logics.Nebel's monograph [33] is a thorough exposition of terminological logics. Deciding coher-ence of variable-free concept descriptions built from sorts, intersections, complements androle quanti�cations is a PSPACE-complete problem [42]. Hollunder [14] has shown thatthe coherence of variable-free concept descriptions (built with the constructs introduced sofar) is decidable. Schmidt-Schau� [41] has shown that the generalization of the agreementconstruct to roles results in undecidability of the inclusion relation.Rounds [38] investigates a generalization of feature graphs that accommodates set-valuededges.The integration of Prolog-like logic programming with feature constraint languages seemsto be a promising line of research. Language proposals based on this idea are login [4]and cil [32]. The theoretical foundations for this kind of languages are given by FeatureLogic and the constraint logic programming model [15, 13].37
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