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Abstract

This paper studies feature description languages that have been developed for use in
unification grammars, logic programming and knowledge representation. The distine-
tive notational primitive of these languages are features that can be understood as
unary partial functions on a domain of abstract objects. We show that feature de-
scription languages can be captured naturally as sublanguages of first-order predicate
logic with equality and show the equivalence of a loose Tarski semantics with a fixed
feature graph semantics for quantifier-free constraints. For quantifier-free constraints
we give a constraint solving method and show the NP-completeness of satisfiability
checking. For general feature constraints with quantifiers satisfiability is shown to be
undecidable. Moreover, we investigate an extension of the logic with sort predicates
and set-denoting expressions called feature terms.
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1 Introduction

In the last decade a new type of grammar formalism, now commonly referred to as uni-
fication grammars, has evolved from research in linguistics, computational linguistics and
artificial intelligence. In contrast to augmented transition networks, one of their precursors,
unification grammar formalisms provide for the declarative or logical specification of lin-
guistic knowledge. Nevertheless, unification grammars are aimed towards operational use
in parsing and generating natural language.

Conceptually, a unification grammar formalism can be divided into a phrase structure
component and a constraint logic. The phrase structure components of some formalisms
are given by context-free rules. In these formalisms the context-free phrase structure rules
are augmented with constraints taken from the constraint logic. These constraints further
confine the derivations licensed by the phrase structure rules. Thus grammatical knowledge
can be formulated at two levels, the phrase structure and the constraint level. In practice
most of the grammatical knowledge is expressed at the constraint level. Since the phrase
structure component provides for inductive definition (or, from the computational point of
view, recursion), the constraint logic can be kept decidable.

Two types of constraint logics have been used in unification grammar formalisms. The
constraint logic of Definite Clause Grammars [36] is identical with the constraint logic of
Prolog and consists of first-order equations interpreted in the free term algebra. The other
type of constraint logic, which evolved with the now predominant feature-based unification
grammars, is based on the notion of features and has only recently become subject of
theoretical investigation and formalization. It is this family of constraint logics that we
further establish and investigate in this paper.

In the context of unification grammars, a feature is a functional property or attribute of
abstract (linguistic) objects. For instance, the abstract object associated with the sentence

John sings a song

may have the features subject, predicate, object and tense. Mathematically, features can
be modeled as partial functions that can be applied to abstract objects. If, for instance, the
feature object is applied to the abstract object representing the above sentence, one obtains
a further abstract object representing the object phrase “a song”. Primitive abstract objects
are atoms like singular, plural or present that don’t have features defined on them. Since
the relevant properties of abstract objects are determined by the values of the features
defined on them, abstract objects can be represented as rooted graphs. The nodes of such
a “feature graph” stand for abstract objects and the edges represent the defined features.

Figure 1 shows a feature graph that may represent the abstract object associated with the

sentence “John sings a song”.! This graph states that the sentence consists of a subject

(John), a predicate (sings) and an object (a song). It also states that the agent of the

!'How the abstract object associated with a sentence looks is determined by the grammar. Unification
grammar formalisms are comparable to programming languages in that the same set of sentences can be
specified by many different grammars relying on different linguistic theories.
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Figure 1: A feature graph.
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Figure 2: A feature term.

singing is given by the subject of the sentence and what is sung is given by the object of
the sentence. Moreover, the graph states that the tense of the sentence is present.

Two kinds of feature descriptions have been developed. Bresnan and Kaplan’s Lexical-
Functional Grammar [17], Shieber’s PATR-IT formalism [46], and Johnson’s Attribute-Value
Logic [16] employ boolean combinations of equations built from features (used as unary
functions), atoms (used as constants) and variables. Kay’s Functional Unification Grammar
[24, 25, 26], ATt-Kaci’s >-Term Calculus [2, 3, 4], and Kasper and Rounds’ logic [23, 39]
employ set-denoting expressions, called feature terms in this paper, that come in different
syntactic guises (Figure 2 gives an example). Feature terms have much in common with the
concept descriptions of terminological logics [5, 33, 34] used in knowledge representation.
In fact, Ait-Kaci’s ¥-term calculus was developed independently from the linguistically
oriented approaches for application in Logic Programming and knowledge representation.

This paper shows that both kinds of feature descriptions can be captured as sublanguages of
first-order predicate logic with equality. This reduction to a very well-understood framework



is surprisingly natural and brings much simplicity and clarity. This approach is already
suggested by Bresnan and Kaplan’s pioneering paper on Lexical-Functional Grammar [17]
and has been worked out further in Johnson’s dissertation [16]. However, the present paper,
which is an elaboration of [47], shows for the first time that the feature term descriptions
of Kay, Ait-Kaci, and Kasper and Rounds can be embedded as well into predicate logic. It
turns out that feature terms are merely a syntactic extension, which can be eliminated in
linear time.

In Lexical-Functional Grammar, feature equations are interpreted in a domain of feature
graphs (see Figure 1 for an example). In this paper we will admit much more general
interpretations called feature algebras. The set of all feature graphs can be arranged to
one particular feature algebra, the so-called feature graph algebra. We will show that the
feature graph algebra is canonical in that a quantifier-free constraint is satisfiable in some
feature algebra if and only if it is satisfiable in the feature graph algebra.

To employ unification grammars for parsing, one needs a solution method for the employed
feature constraints. In the case of equational descriptions the solution method can be a
constraint solving method, which simplifies a constraint to a certain normal form and there-
by determines whether the constraint is satisfiable. For feature terms so-called unification
methods have been developed, which compute for two feature terms in normal form a new
feature term in normal form combining their information. We show that feature term unifi-
cation can be reduced to the more general but, nevertheless, technically simpler constraint
solving.

It was the unification operation for feature terms conceived by Kay that led to the name
unification grammars. Unfortunately, this name is rather misleading since it is derived
from an operation that may or may not be employed in an implementation of a unification
grammar formalism.

This paper is organized as follows. In Section 2, we outline a simple unification grammar
formalism based on context-free phrase structure rules to illustrate the basic ideas and
the interaction between phrase structure rules and feature constraints. In Section 3, we
introduce the possible interpretations of feature descriptions, which we call feature algebras.
Furthermore, we formalize feature graphs and show that they constitute one possible feature
algebra, which, as it will turn out in Section 5, enjoys important prototypical properties.
In Section 4, we define constraints and start with the development of a constraint solving
algorithm. In Section 5, we develop the remaining phase of the constraint solving algorithm
and prove several of our main theorems. In Section 6, we extend our formalism to feature
terms. In Section 7, we further extend our formalism to sorts. In Section 8, we prove
two undecidability results, one concerning quantified constraints and one concerning cyclic
sort equations. The final 9th Section relates our approach to previous work and discusses
possible extensions.

2 Constraint Grammars

In this section we outline a simple unification grammar formalism based on context-free
phrase structure rules and feature equations. Grammars in this formalism will be called



constraint grammars.

To have an example, we will model simple sentences consisting of a subject, a predicate and
an object (like “John sings a song”). For this we use the familiar phrase structure rules

S — NP VP
NP — D N
VP — V NP.

One phrase structure tree licensed by the rules is shown in Figure 3. Every node of this
phrase structure tree comes with a distinct variable. Hence we have the two variables NP
and NP7 for the two noun phrase nodes. It are the variables associated with the nodes of
a phrase structure tree what is constrained by the constraints of the rules. For our phrase
structure rules we may have constraints as follows:

S — NPVP

subj S = NP AS = VP
NP — DN

NP =D = N
VP — VNP

VP =V Aobj VP = NP.

The constraints of the rules define a constraint for every phrase structure tree licensed by
the rules. For the phrase structure tree in Figure 3 we obtain the constraint

INP IVP 3V INP; 3D IN  (subjS=NP AS = VP A
VP = V A obj VP = NP; A
NP; =D = N).

The constraints are formulas as in predicate logic. All variables but the root variable are
existentially quantified. The feature equation subj S = NP, for instance, says that NP is the
value of the feature subj applied to S. Features are unary partial functions. The variables
in the constraints range over abstract objects representing the concrete phrases.

The constraints of the phrase structure rules yield the skeleton in which the constraints
coming with the lexical rules are put. Note that the constraint of the phrase structure tree
in Figure 3 identifies the variables D and N representing the determiner and noun of the
noun phrase NP{. Hence the constraints for the determiner and noun apply to the same
abstract object. With that it is easy to enforce that the determiner and noun are either
both in plural or both in singular. For instance, we may have the lexical rules

D — a
spec D =a A
num D = sg

N — song
pred N = song A

num N = sg
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Figure 3: A phrase structure tree.

N — songs
pred N = songs A
num N = pl.

Now the noun phrase “a song” yields the satisfiable constraint

NPy =D=N A
spec D =aAnum D =sg A
pred N = song A num N = sg

while the ungrammatical noun phrase “a songs” yields the unsatisfiable constraint

NPy =D=N A
spec D =aAnum D =sg A
pred N = songs A num N = pl.

The unsatisfiability of the constraint stems from the fact that we assume that the atoms
sg and pl are different.

Now consider the lexical entry for the verb sings:

V. — sings
tense V = present A
verb pred V = sing A
agent pred V = subj V A
what pred V =obj V A
num subj V =sg A
person subj V = 3rd.

Since the constraints of the phrase structure rules equate the variables S, VP and V of the
phrase structure tree in Figure 3, the constraints of the verb directly constrain the entire
sentence. This makes good sense since the predicate of a sentence dominates the sentence
syntactically and semantically. The tense of the predicate, for instance, is also the tense of



the entire sentence. This arrangement also makes it easy to enforce agreement in numerus
and person between the subject and the predicate of the sentence. The last two constraints
of the lexical rule for sings prescribe the numerus and the person of the subject of the
sentence since we have

subjS=NPAS=VP A VP =V A

num subj V = sg A person subj V = 3rd,

which implies

num NP = sg A person NP = 3rd.

If we add the lexical rule

NP — John
pred NP = john A
num NP =sg A
person NP = 3rd,

we can account for the sentence “John sings a song”. Figure 4 shows the phrase structure
tree of this sentence whose constraint in its full glory looks as follows:

INP 3VP 3V 3INP; 3D 3N (

(subj S =NPAS =VP) A S — NP VP
(pred NP = john A num NP = sg A person NP = 3rd) A NP — John

(VP =V Aobj VP = NPy) A VP — V NP

(tense V = present A V — sings
verb pred V = sing A
agent pred V = subj V A
what pred V = obj V A
num subj V = sg A
person subj V = 3rd) A

(NP =D=N) A NP — DN
(spec D =a Anum D =sg) A D—a
(pred N = song A num N = sg) ) N — song.

This monster is logically equivalent to the more digestible constraint

IS3P3O( subjx =S A predx =P A objx=0 Atensex = present A
pred S = john A num S =sg A person S = 3rd A
verb P =sing A agent P=S A what P=0 A
spec O =a A num O =sg A pred O = song )

8
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Figure 4: A complete phrase structure tree.

whose graphical representation is the feature graph in Figure 1. This shows another nice
property of our grammar formalism: The satisfiable constraint of a phrase structure tree
can serve as a logical representation of the corresponding reading of the sentence.

A sequence of words is licensed by a constraint grammar if it has at least one phrase
structure tree whose constraint is satisfiable. Given a constraint grammar, we call a phrase
structure tree admissible if its constraint is satisfiable, and we call a sequence of words a
sentence if it has at least one admissible phrase structure tree. Typically, a sentence will
have several admissible phrase structure trees corresponding to different possible readings
of the sentence.

The constraint of a phrase structure tree is defined inductively with respect to the structure
of the tree. Hence the constraint of a phrase structure tree can be computed incrementally
during the construction of the tree. Since one is interested in the logical meaning of the
constraint and not its internal syntactic structure, it suffices to compute the constraint up
to logical equivalence. Thus one is free to simplify partial constraints to logically equivalent
ones during the construction of a phrase structure tree.

Constraints in our grammar formalism are built from feature equations using conjunc-
tion and existential quantification. Such constraints are unsatisfiable if a subconstraint is
unsatisfiable. Hence, if the constraint of a partial phrase structure tree turns out to be
unsatisfiable, one knows that the partial phrase structure tree cannot be completed to an
admissible phrase structure tree. Thus an efficient parser for our constraint grammars will
employ an incremental constraint solving method that, given a constraint, simplifies it to a
logically equivalent normal form exhibiting unsatisfiability. Since the nonlexical rules com-
bine the constraints of the constituents by conjunction, the constraint solving method can
be specialized in that it computes the normal form of the conjunction of two constraints
in normal form. In the literature on unification grammars such constraint solving methods
are often called unification methods.

The grammar can be written such that the constraint of an admissible phrase structure tree
of a sentence is a convenient representation of the corresponding reading of the sentence.



In the simple constraint logic employed so far, every satisfiable constraint can be repre-
sented without loss of information as a feature graph, which can serve as a convenient data
structure for subsequent, more semantically oriented processing steps of a natural language
understanding system.

Obviously, there are some strong analogies between constraint grammar formalisms and
(logic) programming languages in that grammar formalisms allow for very different gram-
mars describing the same set of sentences. How a grammar is written depends mainly on
the linguistic theory being adhered to, but also on operational properties like efficiency for
parsing.

The word problem of a grammar is to decide for a given sequence of words whether it is
a sentence of the grammar. One can show that even the simple formalism outlined above
allows for grammars having an undecidable word problem by adapting proofs given by
Johnson [16] or Rounds and Manaster-Ramer [40] for slightly different formalisms. For
grammars employing a decidable constraint logic (that is, it is decidable whether a con-
straint is satisfiable), the off-line parsability constraint [17] is a sufficient condition for the
decidability of the word problem. A grammar satisfies the off-line parsability constraint if
the number of different phrase structure trees (not necessarily admissible) of a sequence of
words is bounded by a computable function of the length of that sequence. The off-line
parsability constraint is satisfied, for instance, if the right-hand side of every context-free
rule contains either at least one terminal or at least two nonterminals.

If a word has more than one meaning,? one can either have several lexical rules for the same
word or have only one rule whose constraint is obtained as the disjunction of the constraints
describing the different meanings. Sometimes it is also convenient to use logical implication
in the constraints of lexical rules. For instance, the constraint for the word “sing” may
contain the implication

person subj V =3rd — num subj V = pl,

which can be read as: If the subject of the sentence is in third person, then it must be in
plural.

The simple unification grammar formalism sketched here bears much resemblance with the
PATR formalism developed at SRI International by Shieber and his colleagues [46, 43]. It is
also closely related to Bresnan and Kaplan’s Lexical-Functional Grammar formalism (LFG)
[17]. Other unification grammar formalisms such as Kay’s Functional Unification Grammar
(FUG) [24, 25, 26, 40], Uszkoreit’s Categorial Unification Grammar [49], or Pollard and Sag’s
HPSG [37] employ different phrase structure rules and different feature constraints.

Shieber’s [44] introduction to unification-based approaches to grammar is an excellent sur-
vey of existing formalisms and provides the linguistic motivations our presentation is lack-
ing. Other state of the art guides into this fascinating area of research are [37] and [35].
Johnson’s thesis [16] gives a formal account of an LFG-like formalism and investigates a
feature constraint language with disjunctions and negations. Shieber’s thesis [45] gives a
rigorous formalization of the PATR formalism.

2For instance, the word “drink” can be used as transitive verb or as noun.
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3 Feature Algebras and Feature Graphs

In this section we define the possible interpretations of the feature descriptions to be dis-
cussed. These interpretations are called feature algebras and are like the usual interpre-
tations of predicate logic. However, we admit only constants and features as nonlogical
symbols, where features are binary predicates that must be interpreted as functional rela-
tions.

We assume three pairwise disjoint sets of symbols: variables (denoted by z, y, z), features
(denoted by f, g, h), and constants (denoted by a, b, ¢). Constants are also called atoms.
We assume that there are infinitely many variables. The letters s and ¢ will always denote
variables or atoms.

A feature algebra is a pair (DZ,-T) consisting of a nonempty set D? (the domain of 7)
and an interpretation function -7 assigning to every atom a an element ¢ € D? and to
every feature f a set of ordered pairs fZ C D? x DT such that the following conditions are
satisfied:

1. if (d,e) and (d,¢') are in fZ, then e = €' (features are functional)
2. if a # b, then a # b’ (unique name assumption)

3. if f is a feature and « is an atom, then there exists no d € D? such that (a?,d) € f*
(atoms are primitive).

The first condition says that features are interpreted as unary partial functions, and the
third condition says that features must not be defined on atoms. We write fZ(d) = e if and
only if (d,e) € fI. Furthermore, the domain of a feature f in a feature algebra Z is

D(ff) = {deD?|JeeD?: (de) e f1}.

Next we define feature graphs (Figure 1 shows an example of a feature graph). The set
of all feature graphs will yield a special feature algebra that enjoys prototypical properties
comparable to the properties of term algebras in equational logic.

A feature graph is a finite, rooted, connected and directed graph whose edges are labeled
with features. For every node, the labels of the edges departing from it must be pairwise
distinct. Moreover, every inner node of a feature graph must be a variable, and every
terminal node must be either an atom or a variable. Feature graphs can be seen as finite
deterministic automata, which is the formalization given by Kasper and Rounds [23, 39].
In contrast to Kasper and Rounds, however, we admit cyclic feature graphs.

Formally, an f-edge from = to s is a triple x fs such that x is a variable, f is a feature,
and s is either a variable or an atom. A feature graph is either a pair (a, ), where « is
an atom and () is the empty set, or a pair (xg, /), where z¢ is a variable (the root) and £
is a finite, possibly empty set of edges such that

1. the graph is determinate, that is, if  fs and = ft are in F, then s = ¢

11



2. the graph is connected, that is, if xfs € FE, then E contains edges leading from the
root zg to the node z.

A feature graph (i is called a subgraph of a feature graph G’ if the root of (i is a variable
or atom occurring in ' and every edge of (¢ is an edge of G'. The subgraphs of a feature
graph G are partially ordered by

G'<G" <= (' is asubgraph of G".

If G is a feature graph and s is an atom or variable occurring in G, we use G5 to denote
the unique maximal subgraph of G whose root is s.

The feature graph algebra F is defined as follows:

1. D7 is the set of all feature graphs
2. a” is the feature graph (a, ()

3. (G,G") € f7 if and only if G has an edge xfs such that z is the root of G and
G' =G

One verifies easily that F is a feature algebra.

Feature graphs can be understood as data structures representing information. There exists
a natural preorder on feature graphs, usually called subsumption preorder, that orders
feature graphs according to their information content. The subsumption preorder is such
that two feature graphs are equivalent if and only if they are equal up to consistent variable
renaming.® It turns out that the subsumption preorder on feature graphs generalizes to
general feature algebras.* To this purpose we define the notion of a partial homomorphism
between feature algebras.

Let Z and J be feature algebras. A partial homomorphism from Z to J is a partial
function v from D? to DY such that

1. if a is an atom and v is defined on aZ, then v(a?) = a”

2. if f is feature and fZ and v are defined on d € DZ, then 7 is defined on fZ(d), f7 is
defined on A(d), and 7 ((d)) = A(f7(d).
A partial endomorphism of a feature algebra 7 is a partial homomorphism from 7 to Z.

Let Z be a feature algebra. The subsumption preorder =<’ of 7 is a preorder on DY
defined as follows:

d=<%Te <= 3 partial endomorphism v of T
such that v(d) = e.

3However, the feature graph algebra F does not identify feature graphs that are equivalent. In the
presence of negative constraints F would fail to be canonical if equivalent feature graphs were identified
(see Section 5).

4This was discovered first by Bill Rounds who presented the idea in a seminar he gave in the summer
of 1989 at the University of Stuttgart.
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If d =T ¢, we say that d is more general than e (in Z) or, conversely, that e is more
specific than d (in 7). Furthermore, we say that d and e are equivalent (in Z) if d <% ¢
and e <7 d.

Next we show that the subsumption preorder <7 of the feature graph algebra F coincides
with the subsumption order on feature graphs given by Kasper and Rounds [23, 39]. To
this purpose we introduce paths.

A path is a finite, possibly empty sequence of features. The letters p and ¢ will always
denote paths. Let 7 be a feature algebra and p = f,, - -- f; be a path. Then p is interpreted
as a unary partial function p? from D? to D? defined as follows: If p is empty (that is,
n = 0), then p? is the identity function of DZ; otherwise p? is the composition of the partial
functions fZ,..., fI, where fI is applied first. As with features, we write p?(d) = ¢ if and
only if (d,e) € p’.

Let Z be a feature algebra and d € DZ. Then e € D? is called a component of d if there
exists a path p such that e = p?(d).

Proposition 3.1 Let v be a partial homomorphism from a feature algebra I to a feature
algebra J and let p be a path. If v and p* are defined on d € DT, then v is defined on
pr(d), p7 is defined on y(d), and v(p*(d)) = p” (v(d)). Hence, if v is defined on d € D,
then v is defined on every component of d and maps every component of d to a component

of ¥(d).

Proposition 3.2 Let G be a feature graph. Then the components of G in F are exactly the
mazximal subgraphs of G. Furthermore, for every atom or variable s occurring in G there
exists a unique component of G whose root is s, and all components of G' can be obtained
this way.

Theorem 3.3 The subsumption preorder of the feature graph algebra F is characterized
as follows: G =7 G' if and only if there exists a mapping 0 from the variables and atoms
occurring in G to the variables and atoms occurring in G' such that

1. 0 maps the root of G to the root of G’
2. if a is an atom occurring in G, then fa = a

3. if xfs is an edge of G, then (0x)f(0s) is an edge of G'.

Proof. 1. Let 4 be a partial endomorphism of F such that v(G) = G’ For every atom or
variable s occurring in (G we define s to be the root of v((G). Since v maps the components
of (¢ to components of G, we have y(Gs) = G, for every variable or atom s occurring in
G. If s is the root of (G, then s is the root of G’ since v(G) = G’ If a is an atom occurring
in G, then G, = v(G,) = v(a”) = a”, and hence 0a = a. If zfs is an edge of &, then

b = Y(Gs) = (F7(G2)) = 7 (1(Gr)) = F7(Gy,),
and hence (0x)f(6s) is an edge of (.

13



2. Let G and G’ be feature graphs and 6 be a mapping as required. Then we define
v(Gs) = G, for every variable or atom s occurring in G.

Then we have v(G) = v(Gy) = G, = ', where s is the root of G.
If v is defined on a”, then y(a”) = v(G,) = G}, = G" = a”.

Let G, be a component of i such that f7 is defined on G,. We have to show that
(7 (GL) = f7(7(GL)). Since f7 is defined on G, we know that G contains an edge z fs
such that f7((,) = G,. Consequently, G’ contains the edge (0z) f(0s). Hence v(f7(G,.)) =

YGa) = Gy, = [7(Gh,) = F7 (4(G)). =

Corollary 3.4 The subsumption preorder <7 of the feature graph algebra F linear-time
decidable.

4 Feature Constraints

The basic strategy of this paper is to accommodate feature descriptions as sublanguages
of Predicate Logic with equality. In the previous section we have seen that the available
nonlogical symbols are restricted to atoms and features and that the admissible interpreta-
tions, called feature algebras, must satisfy certain restrictions. In this section we will study
the admissible formulas.

Since we don’t have proper function symbols, a term in the sense of Predicate Logic is
either a variable or an atom. (Recall that features are accommodated as binary predicate
symbols.) As stated before, the letters s and ¢ will always denote terms. As atomic formulas
we have f(s,t) and s = t, where f is a feature. Atomic formulas of the form f(s,t) will
be written fs = ¢ to suggest the functionality of features. From this two forms of atomic
formulas we can build complex formulas using the usual connectives and quantifiers of
Predicate Logic. For convenience, we will introduce additional syntactic forms, which,
however, will not add any further expressivity.

The notion of a variable assignment is crucial for assigning meaning to formulas containing
variables. Most presentations of Predicate Logic define a three-place relation Z, a0 = ¢
(called satisfaction) holding if the formula ¢ is satisfied by the interpretation Z assuming
the variable assignment «. For our purposes it is more convenient to introduce a function

¢' = {a € ASS[I]|T,a [ ¢}

that maps a formula ¢ and an interpretation Z to the set of all variable assignments « into
T such that T satisfies ¢ under a. The assignments in ¢ are called the solutions of ¢ in Z.
From this perspective it is natural to see a formula as a constraint that restricts the values
the variables occurring in it can take. For instance, the formula age x =y admits exactly
those assignments that assign to z a value on which the feature age is defined and yields
the value assigned to y.°

>The notion of constraint used here is worked out in a more general form in [13].
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Let 7 be a feature algebra. An Z-assignment is a mapping from the set of all variables
to the domain of Z. We use ASS[Z] to denote the set of all Z-assignments. Furthermore, if
a is an Z-assignment and d € D?, we use a[z < d] to denote the Z-assignment obtained
from a by mapping « to d rather than to a(x).

Here are the constraints we are going to use:

0,0 — ps = qt feature equation

psT divergence (“p undefined on s”)
¢ A conjunction
- negation

oV disjunction
¢ — ¢ 1implication
Jdx(¢)  existential quantification
Va(¢)  universal quantification.

Recall that p and ¢ always stand for paths, and that s and t always stand for variables
or atoms. Since paths can be empty, feature equations subsume the atomic constraints
fs =tand s =t. We will write ps#qt and s#t as abbreviations for —=ps = ¢t and —s = t,
respectively. The free variables of a constraint are defined as in Predicate Logic. A
constraint is called closed if it has no free variables. In the following ¢ and ¢ always stand
for constraints as defined above.

Let 7 be a feature algebra. For every Z-assignment a we define s as follows: s = a(z) if
s is the variable z, and sI = a? if s is the atom a. With that we define the solutions of
constraints in 7 as follows:

©

7T o= {a € ASS[Z]|3d € DT: (s, d) € pT A (12, d) € ¢*}
¥ o= {a € ASS[T]|Vd e DY (s%,d) ¢ p'}
o= gyt

F o= ASS[Z] - "
)

)

)

)

(ps=qt
(pst
(A
(-

©

©

©

T . qu U ¢I

= (ASS[Z] - ¢T) U 4T

T = {a € ASS[Z]|3d € D%
T .= {a € ASS[Z]|Vd € D

©

Y
¢
(Ve
(0=
(3z(¢)
(Ve (¢)

We call a constraint satisfiable if there exists a feature algebra in which it has a solution,
and we call two constraints ¢ and 1 equivalent (written ¢ ~ ) if ¢ = T for every
feature algebra Z. Furthermore, we say that a feature algebra Z satisfies a constraint ¢ if

&' = ASS[Z]. Note that T satisfies ¢ if and only if ~¢ has no solution in Z.

We will call the logic given by the class of feature algebras and the constraints introduced
above Feature Logic. Feature Logic is parameterized with respect to the atoms, features
and variables we employ.

Several of the introduced constraint forms are redundant. In particular, one can eliminate
in linear time divergences, implications, disjunctions and universal quantifications using the
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following equivalences:

pst ~ —Jx(ps=ax) ifa#s
P—=Y ~ —oVip
A )
Va(o) ~ —Jy(—9).

The class of all feature algebras can be axiomatized. Let FA be a minimal set of constraints
satisfying the following conditions:

1. if @ and b are distinct atoms, then FA contains the constraint
az£b
2. if f is a feature, then FA contains a constraint

fr=yANfr=2z — y==z

3. if f is a feature and «a is an atom, then FA contains a constraint

—Jx(fa = x).
Note that FA is finite if there are only finitely many atoms and features.

Proposition 4.1 The class of feature algebras is exactly the subclass of interpretations of
Predicate Logic that satisfy every constraint of FA.

As a consequence of this proposition we inherit from Predicate Logic sound and complete
deduction calculi for Feature Logic.

Proposition 4.2 The set of unsatisfiable feature constraints is recursively enumerable.

Proof. A constraint ¢ is unsatisfiable if and only if =¢ is valid, that is, is satisfied by every
feature algebra. Since the valid formulas of Predicate Logic are recursively enumerable
and the class of feature algebras is axiomatizable in Predicate Logic, we know that the
unsatisfiable feature constraints are recursively enumerable. a

Our interest in the following is to determine the computational complexity of deciding the
satisfiability of constraints. It will turn out that in general the satisfiability of constraints
is undecidable. However, for quantifier-free constraints deciding satisfiability will be shown
to be an NP-complete problem. Moreover, for constraints built from feature equations, di-
vergences of the form faf, negated equations of the form s#t, conjunctions, and existential
quantifications we will exhibit a quadratic-time algorithm for deciding satisfiability.
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We will give a number of simplification rules that reduce constraints to equivalent ones hav-
ing a simpler syntactic structure. To this purpose, we define four subclasses of constraints.

A constraint is in existential prenix form (EPF) if it has the form

Jday -+ - Ja, (o),

where n > 0 and ¢ (the matrix) is a quantifier-free constraint.
A constraint is primitive if it has one of the following four forms: fs =1, fst, s =, s#t.

A constraint is basic if it can be built from primitive constraints by conjunctions and
disjunctions.

A constraint is quasi-basic if it is in EPF and its matrix is a basic constraint.

Proposition 4.3 For every constraint in EPI one can compute in linear time an equivalent
quasi-basic constraint.

The transformation algorithm verifying this proposition consists of three phases. The first
phase eliminates implications and pushes down negations using the following equivalences:

= ~ 2oV
“(@AY) ~ oV Y
“(@VY) ~ SN
g o~ @
aps =gt~ pstV gtV Jady(ps = x A gt =y A x#y)
if # # y and x and y are different from s and ¢
—(pst) ~ da(ps =) if xis different from s.

The second phase eliminates all nonbasic paths:

ps =qt ~ Jx(ps=aAqt=uz) ifxis different from s and ¢
fps=t ~ Ja(ps=ax A fa=t) ifxis different from s and ¢
pfst ~ fstVv da(fs=a Apat) if xis different from s.

The third and last phase pushes existential quantifiers upwards (the constraint [z/y]¢ is
obtained from ¢ by replacing all free occurrences of the variable @ with y):

Jdx(¢) ~ FJy([x/y]e) if y doesn’t occur in ¢
Jx(p) ANy~ Fax(p Av) if & doesn’t occur in ¢
Jx(p)Vp ~ FJax(p V) if x doesn’t occur in ).

This leads to EPF since the preceding transformations don’t introduce universal quantifi-
cations and don’t introduce existential quantifications that are in the scope of a negation.

The transformation of constraints in EPF to quasi-basic form is the first step of a solution
algorithm for constraints in EPF. For the further steps of the algorithm it is convenient to
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get rid of the wrapping existential quantifications. This is possible by employing a finer
notion of equivalence.

Let V be a set of variables. Two constraints ¢ and @ are V-equivalent if the following
two conditions are satisfied for every feature algebra 7Z:

1. if « is a solution of ¢ in Z, then there exists a solution (3 of ¥ in Z such that o and

B agree on V

2. if « is a solution of ¢ in Z, then there exists a solution  of ¢ in Z such that a and

(3 agree on V.

If ¢ and ¥ are V-equivalent, then ¢ is satisfiable if and only if ¢ is satisfiable.

Proposition 4.4 Let ¢ = Jay---Ja, () be a constraint and V' be a set of variables such
that x; ¢ V for i € 1.n. Then ¢ and ¢ are V-equivalent.

Proposition 4.5 For cvery finite set of variables V' and ever constraint in EPF one can
compute in linear time a V -equivalent basic constraint.

The first step in solving basic constraints is the elimination of disjunctions by transforming
to a disjunctive normal form. To this purpose, we define a feature clause to be a finite,
possibly empty set of primitive constraints representing their conjunction. Consequently,
the solutions of a feature clause (' in a feature algebra 7 are defined as:

ct = ﬂqu
e

A feature clause is satisfiable if there is at least one feature algebra in which it has a
solution. Two feature clauses ' and D are equivalent if CT = D’ for every feature
algebra Z. The letters C' and D will always denote feature clauses.

The disjuncts of a basic constraint ¢ are the feature clauses defined as follows:

D[¢] := {{o}} if ¢ is a primitive constraint
Do Any] == {CUD|CeD[¢p] N De D[]}
DlpVvy] = Dlg]uD[].

Clearly, a basic constraint has at least one disjunct and only finitely many. Note that the
number of disjuncts of a basic constraint can be exponential with respect to its size.

Proposition 4.6 Let T be a feature algebra. Then an Z-assignment is a solution of a basic
constraint if and only if it is a solution of one of its disjuncts. Hence a basic constraint is
satisfiable if and only if one of its disjuncts is satisfiable.

In the next section we will give a quadratic-time solution algorithm for feature clauses.
Since every disjunct of a basic constraint can be obtained in nondeterministic polynomial
time, the transformations of this section will yield that the satisfiability of constraints in
EPF is decidable in nondeterministic polynomial time.
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Proposition 4.7 Deciding the satisfiability of basic constraints in NP-hard, even if the
constraint don’t contain atoms or features.

Proof. It is well-know that deciding the satisfiability of propositional formulas in con-
junctive normal form (CNF) is an NP-complete problem. We show the claim by giving a
linear-time translation from propositional formulas in CNF to basic constraints such that
a propositional formula is satisfiable if and only if its translation is a satisfiable constraint.
For this translation we assume without loss of generality that propositional variables are
variables in the sense of feature logic (syntactically, of course). Furthermore, we fix a vari-
able xg that is different from all propositional variables. Now we translate a propositional
formula in CNF by replacing every positive literal  with = 2¢ and every negative literal
-z with x#x. O

5 Solving Feature Clauses

A feature clause C' is solved if it satisfies the following conditions:

1. every constraint in C' has one of the following forms: fx = s, fat, @ = s, s
2. if # = sisin C, then = occurs exactly once in C

3. if fr =sand fr =t arein C, then s =1t

4. 1f fatis in C, then ' contains no constraint fo = s

5. if z#s is in C, then © # s.

Let Z be a feature algebra and ¢ be a constraint. An Z-assignment « is called a principal
solution of ¢ in Z if a € ¢* and a(z) =T B(z) for every 3 € ¢* and every variable z.
We will show that every solved feature clause has a principal solution in the feature graph

algebra F.

Let C' be a solved feature clause. Then = —¢ vy <= d fz =y € C defines a
binary relation —¢ on the variables occurring in . We use —7, to denote the reflexive
and transitive closure of —¢ on the set of all variables. If s is a variable or an atom, then

(s,0) if s is an atom
FG[s, C]:= ¢ FG[t, C] ifts=tedC
(s, {aft| fe=teC A s—Ex}) otherwise

defines a feature graph.

Lemma 5.1 [f C is a solved feature clause, then o(x) := FG[x,C] is a principal solution

of C"in F.

19



Proof. 1. First we show that « is a solution of C in F.

1.1. Let fr = s € C. Then x is the root of a(x) and x fs is an edge of a(x). Furthermore, it
is easy to verify that FG[z, C], = FG[s, C]. Hence f7(a(z)) = f5(FG[z,C]) = FG[z,C], =
FG[s,C] = sZ.

1.2. Let faft€ C. Then C contains no constraint fo@ = s or # = s. Hence a(x) =
FG[z,C] = (2,0) and consequently f7 is not defined on a(z).

1.3. Let * =s € C. Then a(r) = FG[z,C] = FG[s,C] = sZ.

1.4. Let x#s € C. Then C contains no constraint @ = ¢ or s = t. Hence x is the root of
a(z) and s is the root of s”. Since C is solved, we know that x # s. Hence a(z) # s7.

2. It remains to show that « is principal. Let 3 € C7 and let x be a variable. We have to
show that a(z) =<7 B(x). To this purpose, let # be the function that maps every atom to
itself and every variable x to the root of 3(x). Because of Theorem 3.3 it suffices to show
that # maps the root of a(x) to the root of B(x), and that (6y)f(fs) is an edge of F(x) if
yfsis an edge of a(x).

2.1.1. Suppose the root of a(x) = FG[xz, (] is the atom a. Then C contains the constraint
x = a. Hence fa = a must be the root of 3(x).

2.1.2. Suppose the root of a(x) is . Then fz is the root of F(x) by the definition of 4.

2.1.3. Suppose the root of a(x) = FGlz, C] is some variable y # x. Then C contains the
constraint @ = y and hence 3(x) = B(y). Since Oy is the root of Sy by definition of 6, we
know that 0y is the root of 3(x).

2.2. Suppose yfs is an edge of a(z) = FG[z,C]. Then fy = s € C and hence f*(3(y)) =
Sg. Since fy is the root of #(y) and s is the root of Sg, we know that (fy)f(0s) is an edge

of B(y).

Since yfs is an edge of a(x), we know either that @ —F y or that there exists © = z € C
such that z —% y. Hence there exists a path p such that p* (3(x)) = B(y) since 3 € C7.
Thus ((y) is a subgraph of #(x) and hence (8y)f(0s) is an edge of ((x). O

Let C be a feature clause. Then we use

1. [2/s]C to denote the clause that is obtained from C by replacing every occurrence of
the variable x with s

2. s =t& C to denote the feature clause {s = ¢} U C provided s =1t ¢ C.

Our solution algorithm for feature clauses attempts to transform feature clauses to solved
form using the following simplification rules:

LLa=s & C — a2=s & [¢/s]C if 2 occurs in C and x # s
2Z2a=2 & 0 - 2=a & C
3. fea=s & fe=t & C = fr=s & s=t & C
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4. s=s& C = C
5. fat & C = C
6. atz & C — a#a & C
T.a#b & C = O ifa#b.

Proposition 5.2 Let C be a feature clause. Then:

1. if D is obtained from C by a simplification rule, then D s a feature clause that is
equivalent to C

2. there s no infinite chain of simplification steps issuing from C'.

Proof. The verification of the first claim is straightforward. To show the second claim,
suppose there is an infinite sequence (1, Cy, - - - of feature clauses such that, for every ¢ > 1,
C'i11 1s obtained from C; by a simplification rule. First note that every variable occurring in
some (; must also occur in (1, that is, simplification steps don’t introduce new variables.
A variable z is called isolated in a clause C' if C' contains an equation x = s and = occurs
exactly once in C'. Now observe that no simplification rule decreases the number of isolated
variables, and that the first simplification rule increases this number. Hence we can assume
without loss of generality that the infinite sequence doesn’t employ the first simplification
rule. However, it is easy to see that the remaining simplification rules cannot support an
infinite sequence. a

A feature clause is called normal if no simplification rule applies to it.

Proposition 5.3 For every feature clause one can compute in quadratic time an equivalent
normal feature clause.

Proof. Let C be a clause. By the previous proposition we know that we can compute
a normal feature clause D that is equivalent to C using the simplification rules. The
simplification of €' to D can be done in quadratic time by employing the simplification
rules together with an efficient union-find method [1] for maintaining equivalence classes of
variables and atoms. O

A feature clause is called clash-free if it satisfies the following conditions:

1. C contains no constraint of the form fa = s or s#s
2. (' contains no constraint of the form a = b such that a # b

3. if C contains a constraint fzf, then C contains no constraint fz = s.
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Proposition 5.4 If a feature clause has a solution in some feature algebra, then it is clash-
free. Furthermore, a feature clause is solved if and only if it is normal and clash-free.

Let ¢ be a constraint, = be a variable, and Z be a feature algebra. Then d € D? is called a
solution of z in ¢ and Z if there exists a solution o € ¢* such that a(z) = d. Furthermore,
d € D7 is called a principal solution of z in ¢ and T if d is a solution of z in ¢ and I and
d <% ¢ for every solution e of « in ¢ and Z.

Theorem 5.5 Let C' be a feature clause and F be the feature graph algebra. Then the
following conditions are equivalent:

1. C has a solution in some feature algebra
2. C has a solution in F

3. C has a principal solution in F.

Furthermore, there is a quadratic-time algorithm that, given a clause C' and a variable x,
either returns fail if C' has no solution or returns a principal feature graph solution of x in

C.
Proof. Follows from Propositions 5.3and 5.4 and Lemma 5.1. O

Theorem 5.6 A constraint ¢ in EPF is satisfiable if and only if it has a solution in the
feature graph algebra F. Furthermore, deciding the satisfiability of constraints in FPF is
an NP-complete problem. Finally, there is an exponential-time algorithm that, given a
constraint ¢ in EPF and a variable x, returns finitely many solutions Gy,...,G, (n > 0)
of  in ¢ and F such that for every solution G of v in ¢ and F there exists an 1 € 1..n
such that G; <7 G.

Proof. Follows from Propositions 4.5 and 4.6, Theorem 5.5, and Proposition 4.7. O

Besides other things, the theorem says that for the satisfiability of constraints in EPF the
feature graph algebra is canonical, that is, as far as satisfiability is concerned it suffices to
consider the feature graph algebra. However, this does not hold for general constraints:

Proposition 5.7 Let [ and g be two distinct features. Then the constraint
Vae(fer=ax — gr = x)

is satisfiable but has no solution in the feature graph algebra F.
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Proof. It is clear that the given constraint has no solution in F (assign the feature graph
(x,{xfx}) to x). To show that the constraint is satisfiable, we construct a feature algebra
7 satisfying the given constraint as follows:

D? = {z}U{a|aisan atom}
af = a for every atom «
ff = {(x,2)} for every feature f.

A feature algebra is called finite if its domain is a finite set.

Corollary 5.8 A constraint in EPF is satisfiable if and only if it has a solution in some
finite feature algebra, provided there are only finitely many atoms.

Proof. Let ¢ be a satisfiable constraint in EPF whose matrix is ¢. Then ¢ is satisfiable.
By the preceding theorem we know that ¢ has a solution a in F. Without loss of generality
we can assume that ¢ contains at least one variable. Now we construct a finite feature
algebra 7 as follows:

D’ := {d" |aisan atom}
U {G | « occurs in ¢ and G is a component of a(x)}

af = a” for every atom a

fF o= fFn(Df x DY) for every feature f.

From o we obtain a solution of ¢ in Z by mapping all variables that don’t occur in ¢ to
arbitrary elements of D?. Hence v has a solution in Z. a

6 Feature Terms

We now introduce a new form of expressions, called feature terms, that denote sets in

feature algebras. Feature terms generalize Kasper and Rounds’ feature descriptions [23, 39]
and ATt-Kaci’s ¢-terms [2, 3, 4].

Here is the abstract syntax of feature terms:

S, T — «a atom
x variable
p: S selection
pT divergence
plq agreement
pTq disagreement
— bottom
T top
ST intersection
SuT union
-5 complement
Jx(.9) existential quantification.
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The free variables of a feature term are defined as one would expect. A feature term is
called closed if it has no free variables. In the following S and 7" will always stand for
feature terms.

Given a feature algebra Z and an Z-assignment o, the denotation SZ of a feature term S
in Z under « is a subset of D? defined inductively as follows:

= {a’}

aI
vl = {a(x)}
(p:S)E = {deDf|Fec 5L (de) € p*}
(). = {deD’|Vee D" (de)¢p}
(plq)t = {deD’|3eeD’: (de)ep nd}
(ptq)l = {deD?|3e,e e D% (de) ep Ad,¢) € ¢F Ne# €}
T
~I =9
T = Df
SnTi = sintt
(Sum)yl = sfturt
(-5); = DI -5
(Hf(s))g = U Sg[xed]'
deD?

To use feature terms in constraints, we introduce a new constraint form called membership.
A membership takes the form x: S, where x is a variable and S is a feature term. The
solutions of a membership in a feature algebra 7 are defined as follows:

(z:9)F = {a € ASS[T]| a(z) € ST

Feature terms and memberships provide for an attractive syntax for the lexical rules of
unification grammars. For instance, the constraint of the lexical rule V.— sings of the
grammar in Section 2 can be written equivalently as the membership

tense: present
pred: verb: sing

' . | num:sg
Vi subj: person: 3rd ]
agent pred | subj
what pred | obj

or, using variables to express agreement,

[ tense: present 1
verb: sing
pred: | agent:x
hat:
V: 3Ty :V a-y
subj: | num:sg
person: 3rd
| obj:y |
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The feature terms above are written in matrix notation, which can be traced back to Kay’s
functional unification grammar [24]. The feature terms given as the rows of a matrix are
connected by intersections.

We call two feature terms S and T equivalent (written S ~ T') if SZ = T7 for every feature
algebra Z and every Z-assignment «.

Most of the introduced feature term forms are redundant. Every feature term can be
rewritten in linear time to an equivalent feature term containing only the forms

a, x, f:5, 50T, =5, Fz(9)

by using the following equivalences (¢ is the empty path):

eSS ~ S
pf:S ~ fi(p:S)
pto~ ~(p:T)

plqg ~ Fa(pzNga)
ptq ~ Ja(przNg-z)
— ~ xll—x
T ~ ——
SUT ~ —(=S1-=T).

Proposition 6.1 For every fealure term one can compute in linear ltime an equivalent
feature term containing only the forms a, x, f: S, STT, =S, and Fx(9).

Furthermore, every constraint containing memberships can be rewritten in linear time into
a membership-free constraint by using the following equivalences in addition to the previous
ones:

ria ~ T=4a
Yy ~ =y

z:(f:S) ~ Jy(fr=yAny:S) ify+#xand y does not occur in
e SOT ~ = SANz:T

xS o~ = S)
z:(Jy(S)) ~ Fy(a:9) ify#a

Jx(S) ~ Fy([z/y]S) if y does not occur in S.

Proposition 6.2 For every constraint one can compute in linear time an equivalent con-
straint not containing memberships.

A feature term is quantifier-free if it contains no quantifications 3x(5). A feature term
is basic if it is quantifier-free and contains only complements of the form —a or —z. Every
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quantifier-free feature term can be rewritten in linear time to an equivalent basic feature
term by using the following equivalences:

—p:S o~ phUp:oS
-pt o~ pr T
—plg ~ ptUqlUpty
—ptg ~ ptUqlUplg
- ~ T
-T ~ —
~(SNT) ~ =~SU-T
~(SUT) ~ =SN=T
=5 ~ 8.

Proposition 6.3 For every quantifier-free feature term one can compute in linear time an
equivalent basic feature term.

A constraint is in EPFM (existential prenix form with memberships) if it has the form
Jday -+, (@), where n > 0 and ¢ is a quantifier-free constraint possibly containing
quantifier-free memberships.

Proposition 6.4 For every constraint in EPEFM one can compute in linear time an equiv-
alent quasi-basic constraint (not containing memberships).

We show the claim by extending the algorithm verifying Proposition 4.3. The first phase of
this algorithm eliminates implications and pushes down negations. We extend this phase
by the equivalence

—(x:S) ~ =S

and the equivalences given above for transforming quantifier-free feature terms to basic
feature terms.

After all negations and complements have been pushed down, all memberships are elimi-
nated by rewriting with the following equivalences:

ria ~ r=4a
Yy ~ T=y
z:(p:S) ~ Jylpr =y Ay:S) ify+#a and y does not occur in
v:pt ~ pat
H(plg) ~ pr=gqu
H(pTq) ~ FyIz(pr =y Aqe =z Ny#2)
if , y and z are pairwise distinct
ri— ~ xFx

T ~ =2z
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ST ~ z:5SNz:T

z:SuUT ~ z:5S5vaz:T
vimy ~ oy
rioa ~ x#a.

Now the remaining two phases of the algorithm verifying Proposition 4.3 lead to quasi-basic
form.

A feature term S is called coherent if there exists a feature algebra 7 and an Z-assignment
a such that S # (). A feature term is called incoherent if it is not coherent.

A feature term S is included in a feature term 7' (written S < T) if SZ C TZ for every
interpretation Z and every Z-assignment «.

Coherence, inclusion and equivalence of feature terms are linear-time reducible to each
other:

S incoherent <— S<- <+— S~ —
ST <+ ST =T incoherent
S~T «— ST NT=XS.

Furthermore, coherence of feature terms is linear-time reducible to satisfiability of mem-
berships: If z is a variable not occurring in a feature term S, then

S coherent <= z:S satisfiable.

Proposition 6.5 Deciding incoherence, inclusion and equivalence of quantifier-free feature
terms are Co-NP-complete problems.

Proof. It suffices to show that deciding coherence of quantifier-free feature terms is an NP-
complete problem. Because of Proposition 6.4 and Theorem 5.6 we know that the problem
is in NP. The NP-hardness follows since propositional formulas in CNF can be regarded
as feature terms such that satisfiability becomes coherence (conjunction is regarded as
intersection, disjunction as union, negation as complement, and propositional variables are
regarded as variables of Feature Logic). O

A feature algebra is infinite if its domain is an infinite set. The feature graph algebra F
is infinite since there are infinitely many variables and (z,0) and (y,®) are distinct feature
graphs if x and y are distinct variables. We will now show that one can compute for every
feature term S a quantifier-free feature term T such that S and T' are equivalent in every
infinite feature algebra.

A feature term is simple if it is basic and contains no unions. A feature term is in
disjunctive normal form (DNF) if it has the form S; U ... U S, where Sy,...,S5, are
simple feature terms. A basic feature term can be rewritten into DNF by pushing up the
occurring unions with the following equivalences:
STTuUlU) ~ (SnTyu(snu)
(Surnnu ~ (Snuyu(rnu)
p(SuUT) ~ p:SuUp:T.
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Together with Proposition 6.3 we have:

Proposition 6.6 For every quantifier-free feature term one can compute an equivalent
feature term in DNF.

We use V(5) to denote the set of all variables occurring in the feature term 5.
Lemma 6.7 Let S be a simple feature term and x be a vartable. Then one can compute in
polynomial time a simple feature term T such that V(T) = V(S) — {z} and (F=(9))L = TZ

for every infinite feature algebra I and every I-assignment o.

Proof. We start by defining the sets 11 (S) and 11 (.S) of positive and negative paths to
a variable x in a simple feature term S

H(S) == 0 if = ¢ V(S) -(S) =0 if « ¢ V(S)

I (p:S) i={qp | ¢ € ILF(S)}  Hi(p:S) :={qp|qell;(5)}
TH(S A T) = I (S)ULIHT)  I(SNT):= I (S) UL (T)
IIF () := {e} I (z) := 1)

I (—z) := 1) I (=) == {e}.

Now let S be a simple feature term, = be a variable, 7 be an infinite interpretation, and
a be an Z-assignment. Obtain U from S by first replacing every subterm -z with T and
then replacing every remaining = with T. Now we distinguish two cases:

1. TH(S) = 0. Then (Fz(S5))E = UZ since 7 is infinite. To see this note that
U (M —{a})" = M"

a€eM

n

for every set M having at least n + 1 elements (M
2. 1IH(S) = {p;}1,, where m > 1. Let 1I7(S) = {¢;}%, and define

T:=U N pidpT--Mpidpm M it M- MpiTqn).
Then (EL%’(S))% = Tf. 0

is the n-fold cartesian product of M).

Theorem 6.8 For every feature term S one can compute a quantifier-free feature term T
such that ST = T? for every infinite feature algebra T and every T-assignment a.

Proof. It suffices to show that we can eliminate an innermost quantification. Hence we can
assume without loss of generality that S = Jx(U), where U is quantifier-free. By rewriting
U to DNF (Proposition 6.6) we obtain simple feature terms Uy, ..., U, such that

S = F2(U) ~ Fx(UyU...UU,) ~ Fae(Uy)U...U3Jx(U,).

By using the transformation of the preceding lemma for every disjunct we obtain simple
feature terms Vi, ..., V, such that

SE=iu...uvy)t

for every infinite feature algebra 7 and every Z-assignment a. O

28



Corollary 6.9 For every closed feature term S one can compute a variable-free feature
term T such that ST =TT for every infinite feature algebra T and every T-assignment .

Corollary 6.10 [t is decidable whether for a feature term S there exists an F-assignment
a such that S7 # ).

Proof. Let S be a feature term. By the preceding theorem we know that we can compute
a quantifier-free feature term T such that S7 = T7 for every F-assignment a. Now let
x be a variable that doesn’t occur in T'. Then there exists an F-assignment « such that
ST £ () if and only if z: T has a solution in F. By Proposition 6.4 and Theorem 5.6 we
know that is decidable whether x: 7" has a solution in F. O

7 Sorts

In this section we extend our logic to include sorts. For our purposes, a sort is simply a
symbol denoting a subset of the domain of a feature algebra. Equivalently, one can regard a
sort as a unary predicate. Our sorts correspond to the concepts of terminological languages
[28, 33, 34] and to the templates of the PATR-II system [46]. They are different from
sorts in sorted logics in that we don’t exploit sorts to impose a well-sortedness discipline
on formulas.

From now on we assume an additional alphabet whose symbols are called sorts. Further-
more, we assume that the primitive feature terms T and — are sorts. A proper sort is a
sort different from — and T. The letters A and B will always denote sorts.

To accommodate sorts semantically, we assume that every feature algebra 7 interprets
every sort A as a set A7 C D?, where TZ = D? and —7 = (). On a partial homomorphism
v:T — J we impose the additional requirement that y(d) € A7 if v is defined on d and
de AL,

If there are proper sorts, the feature graph algebra F is no longer an admissible feature
algebra since it lacks their interpretations.

We extent the set of constraints by allowing for sort atoms of the form As having the
solutions

(As)T = {a € ASS[T] | sL € ATY.

Furthermore, we extend the set of feature terms by stipulating that every sort is a feature
term, where

AL = AT

It is straightforward to extend our solution algorithm for constraints to sorts. All we have
to do is to strengthen the definition of clash-freeness by excluding clashes of the form
As A mAs. To see that normal, clash-free feature clauses possibly containing sort literals
are satisfiable, suppose that C' is such a clause. Let D be obtained from C by deleting
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all sort literals. Then D has a solution « in some feature algebra 7 that doesn’t interpret
sorts. We extend 7 to a feature algebra J interpreting sorts by

AT = {sg | As € C'}.
Now « is a solution of €' in J and hence C is satisfiable.

From this argumentation it becomes clear that there are infinitely many extensions of the
feature graph algebra F to sorts and that none of this extensions is canonical in the sense
JF is canonical for constraints not containing proper sorts. However, we still have that every
satisfiable constraint has a solution in some extension of F.

Sorts become interesting if we add the possibility to define them. For instance, we may
write the equations (here and in the following sorts are written slanted to distinguish them
from atoms)

[ tense: present
present3rdsg = .| num:sg

i subj: person: 3rd
[ agent pred | subj

transitive = _ what pred | obj ]

and admit only those feature algebras that satisfy these equations (that is, interpret the
sort at the left-hand side with the same set they interpret the closed feature term at the
right-hand side). With these two sort equations the constraint of the lexical rule V. — sings
of the grammar in Section 2 can be written as the membership

pred: verb: sing
V: | transitive
present3rdsg

Such sort equations are in fact supported by the unification grammar formalism PATR-
11 [46], where defined sorts are called templates. Sort definitions are a handy device for
expressing lexical generalizations, which is important for large lexica.

Sort equations are an essential ingredient of so-called terminological logics used for knowl-
edge representations. Besides sorts and features these logic also support so-called roles,
which are binary relations not required to be functional. For instance, one might have a
role “child” relating persons to their children. Nebel and Smolka [34] survey terminological
logics and discuss their relations to feature-based unification grammars.

Sort equations can also be expressed without feature terms since A = S is logically equiv-
alent to

Ve(Ax < x:5),

where the membership at the right-hand side of the equivalence can be rewritten as a
constraint not containing feature terms.

As long as a set D of sort equations is noncyclic, (that is, no sort is defined with reference
to itself), it is decidable whether a constraint ¢ in EPF has a solution in at least one model
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of D. To do this, we iteratively replace every defined sort in ¢ by the feature term defining
it. Let ¢p be the feature term eventually obtained from ¢ this way. Then ¢p contains no
defined sort. Now we decide whether ¢p is satisfiable ignoring D. If there exists no feature
algebra in which ¢p has a solution, then there is certainly no feature algebra satisfying D
in which ¢p has a solution. Otherwise, ¢p has a solution « in some feature algebra Z.
By updating the interpretations of the defined sorts according to D, we obtain a feature
algebra J such that « is still a solution of ¢p since ¢p contains no defined sorts. Since J
satisfies by construction every equation of D, « is also a solution of ¢ in D.

In the next section we will prove that in the presence of cyclic sort equations it is in general
undecidable whether quantifier-free constraints have a solution in at least one model of the
equations.

A sort system is a partial function from proper sorts to closed feature terms. A feature
algebra 7 is a model of a sort system o if AT = o(A)? for every sort on which o is defined.
There are sort systems that don’t have a model, for instance, A = —A.

A feature term is definite if it is equivalent to a feature term
Jday -+ Ja,(9),

where S is quantifier-free and no sort in S occurs in the scope of a complement. A sort
system o is definite if o(A) is a definite sort term for every sort A on which o is defined.

We will show that for every definite sort system o every feature algebra not interpreting
sorts can be extended to a model of o, and that there is a unique minimal such model. The
proof consists just of a straightforward application of the fundamental result of the theory
of definite relations [13].

The base of a feature algebra is the feature algebra obtained by forgetting all sort inter-
pretations. The following defines a partial order on feature algebras:

I<7J :4+<= 7T and J have the same base and
AT C A7 for every sort A.

Theorem 7.1 Let o be a definite sort system. Then, for every feature algebra I without
sort interpretations, there exists a unique least model of o whose base is I.

Proof. Follows from a theorem in [13] since o can be expressed equivalently as a definite
set of equivalences Az <> ¢ over feature logic without sorts. O

One consequence of this theorem is that a definite sort system uniquely defines least sort
interpretations for every feature algebra without sorts. In particular, this is the case for
the feature graph algebra F. Ait-Kaci’s knowledge bases [3] are definite sort systems whose
models are restricted to extensions of the feature graph algebra F.

Rounds and Manaster-Ramer [40] show that there is a definite sort systems o not involving
variables, complements or disagreements such that it is undecidable whether a sort denotes
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the empty set in the least model of o extending F. Their result depends on the availability
of feature terms with unions.

As Ait-Kaci does in his i-term calculus [3], one can assume that a lattice ordering of the
sorts is given, where — is the least and T is the greatest sort. In this case one admits only
those feature algebra that interpret the infimum of two sorts A and B (their greatest lower
bound in the lattice) as the intersection of the interpretations of A and B. The algorithms
given in this paper for constraints without sorts can be easily extended to accommodate the
sort lattice and the complexity results shown here remain unchanged. For an elaboration
of Feature Logic with sort lattices see [47].

8 Two Undecidability Results

In this section we show that the set of satisfiable constraints of Feature Logic is not re-
cursively enumerable. Moreover, we show that there are recursive sort equations such that
it is undecidable whether a feature term denotes a nonempty set in at least one model of
the equations. Both results are shown by coding the word problem of Thue systems whose
undecidability is well-known.

We start by defining a class of Thue systems that is convenient for our purposes.

Let S be the set of all atoms and features, S* be the set of all words over S, and ¢ be the
empty word. Note that the words containing only features are exactly the paths we use in
feature constraints. A Thue equation is a set {p, ¢} consisting of two distinct, nonempty
paths. A Thue system is a finite set 17" of Thue equations. Every Thue system T' defines
a binary relation

uerw <= Jw,wy €SI {p,g} €T: u=wipwy AN w=wiquw,

on S*. We use ~1 to denote the reflexive and transitive closure of <+ on S*. It is easy to
see that ~7 is an equivalence relation on S* satisfying

! ! 1!
U~T U NANW~T W = UW~TUW.

If T' is clear from the context, we use w to denote the equivalence class of a word w € S*
with respect to ~7. Since the paths in Thue equations are nonempty, we have € = {¢} and
@ = {a} for every atom a.

Proposition 8.1 Suppose there are at least two features. Then there exists a Thue system
T such that it is undecidable whether p ~g q for two paths p and ¢ (the so-called word
problem of T ).

Proof. It is well-known that there exists a Thue system whose word problem is undecidable
(see, for instance, [12] for a proof). Such an undecidable Thue system can be transformed
into an undecidable Thue system meeting our specialized format. a
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Lemma 8.2 Let f1 and fy be two features, p,q € {fi1, f2}*, and let T be a Thue system
such that T contains no features other than fi and fy. Furthermore, let ¢r and ¢, , be the
feature constraints

or = Ve(fiel = (fifizd A fifoxl A /\ ur = we))

{u,w}eT
bpg = Va(fizl = pr = qx),
where fxl abbreviates —fat (read: f defined on x). Then

pr~rq = every fealure algebra satisfies o1 — ¢, .

Proof. Since ¢r and ¢, , are closed constraints, they are satisfied by a feature algebra 7 if
and only if they have a solution in Z.

“=7 Let p ~7 ¢ and let Z be a feature algebra that satisfies ¢7. We have to show that
T satisfies ¢,,. Let M := D(fI). Since T satisfies ¢y, we know that fI and fI are
total functions from M to M, and that every equation {u,w} € T holds on M, that is,
the functions u? and w? agree on M and are total on M (since u,w € {fi, f2}*). Since
p,q € {f1, f2}* and p can be obtained from ¢ by finitely many applications of the equations
in T', we hence know that the functions p? and ¢ agree on M. Hence T satisfies ¢, ,.

“<” Suppose every feature algebra satisfies ¢7 — ¢, ,. We have to show that p ~7 ¢. To
this purpose we construct a feature algebra 7 as follows:

DY = S"/~g (the quotient of S* with respect to ~7)
at@ = a@={a} for every atom a
C = {a@]aisan atom}

(w,w) € ff <= uw¢C AN W= fu for every feature f.

It is easy to see that 7 satisfies ¢r. Since 7 satisfies the implication ¢7 — ¢, , by assump-
tion, we know that Z satisfies ¢, ,. Thus p? and ¢’ agree on € (the equivalence class of the
empty word) and hence p = p?(€) = ¢*(€) = g, which yields p ~7 q. O

Theorem 8.3 [fthere are at least two features, then the set of satisfiable feature constraints
is not recursively enumerable.

Proof. Let T' be a Thue system as required by the preceding lemma whose word problem
is undecidable (exists by Proposition 8.1). Since the pairs (p,q) such that p ~p ¢ are
recursively enumerable, we know that the pairs (p, ¢) such that p %7 ¢ are not recursively
enumerable. Since we know by the preceding lemma that

pirqg <= —(pr — ¢p,) is satisfiable
provided p,q € {f1, f2}*, the satisfiable feature constraints cannot be recursively enumer-

able. O

A related problem is the satisfiability problem for the feature graph algebra F: Is it de-
cidable whether a constraint has a solution in 7 We conjecture that the satisfiability
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problem for F is decidable. Evidence for this conjecture comes from recent results [7, 29,
30] showing that related problems for the ground term algebra and the algebra of rational
trees are decidable.

Next we show that coherence of feature terms with respect to models of recursive sort
equations is undecidable.

Lemma 8.4 Let B be a sort, b and ¢ be two distinct atoms, and fi, fy and h be three
pairwise distinct features. Furthermore, let p,q € {f1, [2}*, and let T = {{p;, ¢;}}7_, be a
Thue system such that T contains no features other than f; and fy. Then p ~7p q if and
only if the feature term

B T hp:b 1 hqg:c

denotes the empty set in every feature algebra satisfying the sort equation

B = fuuB 0 fo:B 1 pilg M. polga.

Proof. “=7” Let p ~7 ¢ and let 7 be a feature algebra that satisfies the given sort equation.
Furthermore, let d € BZ. Since b7 # ¢?, it suffices to show that p(d) = ¢*(d). This follows
with a similar argumentation as in the proof of Lemma 8.2.

“£” Suppose the given feature term denotes the empty set in every feature algebra satis-
fying the given sort equation. We have to show that p ~7 g. To this purpose we construct
a feature algebra 7 as follows:

DY  :=  S"/~g (the quotient of S* with respect to ~7)
af = a@={a} for every atom a
AT = Df—{G@|aisaatom} for every proper sort A

(w,w) € ff <= weBY A w=fu forevery feature f # h

b ifu=7p
W@ = Qe ifwe BT - {p}
undefined otherwise.

It is easy to verify that Z satisfies the given sort equation. Hence we know by our as-
sumptions that the given feature term denotes the empty set in Z. Since € € B%, we thus
know that AZ(pf(€)) # b or hT(¢*(€)) # &. Since K1 (p?(e)) = hI(pe) = h%(p) = b, we know
hE(q*(€)) = h1(q) # €. Hence g = p, which yields p ~7 q. O

Theorem 8.5 Suppose there are at least three features, two atoms, and one sort. Then
there exists a sort equation E of the form

A= AN ¢gAT pidg M T palgn
such that the feature terms of the form
ATl pa T qb

that denote a nonempty set in at least one model of E are not recursively enumerable.
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Proof. Follows from the preceding lemma using a similar argument as in the proof of
Theorem 8.3. O

Note that this undecidability results applies to variable-free feature terms without unions
and complements. The undecidability is caused by the presence of agreements. By adapting
techniques used in [33] one can show that for variable-free feature terms not containing
agreements or disagreements coherence with respect to recursive sort equations is decidable.

9 History and Related Work

The first two feature-based unification grammar formalisms were Kay’s Functional Unifica-
tion Grammar (FUG) [24, 25, 26] and Bresnan and Kaplan’s Lexical-Functional Grammar
(LFG) [17]. LFG uses context-free phrase structure rules augmented with feature constraints
interpreted in the feature graph algebra. FUG, which to my knowledge resisted full formal-
ization so far, is based on recursive equations between feature terms. FUG doesn’t have
phrase structure rules but instead has special constraints for establishing word order. Part
of FUG has been formalized by Manaster-Ramer and Rounds [40].

LFG and FUG are rather different in that LFG employs feature equations interpreted in
the feature graph algebra while FUG relies solely of feature terms whose interpretation is
left open. Correspondingly, the operational semantics of LFG was presented as constraint
solving while the major operation of FUG was outlined as feature term unification. The
exact relationship between feature equations and feature terms was first worked out in [47].

Aft-Kaci’s ¢-term calculus [2, 3, 4] is the first published formalization of feature terms.
Ait-Kaci’s 1-terms are feature terms without complements, agreements and explicit quan-
tification and are required to obey a rigid normal form. He defines by syntactical means a
so-called subsumption ordering, which corresponds exactly to our inclusion ordering applied
after closing the terms under existential quantification. Ait-Kaci shows that his subsump-
tion ordering yields a lattice on the quotient of the set of all i-terms under equivalence.
Furthermore, he gives an algorithm, called -term unification, for computing the infimum
of two t-terms in this lattice. Unification of two i-terms S and T' corresponds to solving
the constraint

x:AS A x: IT,

where 35 is obtained from S by quantifying all free variables existentially. Ait-Kaci also
outlines the model-theoretic semantics for feature terms given in this paper, but he makes
no attempt to show that his syntactic subsumption ordering and the semantic inclusion
ordering coincide (which, in fact, they do). Ait-Kaci’s early work has been inspired by work
on semantic networks and, in particular, KL-ONE [6]. An important difference, however,
between feature terms and the descriptions employed in KL-ONE is that KL-ONE mainly
relies on many-valued (that is, nonfunctional) attributes called roles.

Incidentally, when Ait-Kaci published his thesis [2] in 1984, Brachman and Levesque [5]
published the by now standard semantics of KL-ONE, which models KL-ONE descriptions as
set-denoting expressions and defines subsumption as set inclusion in all interpretations.
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In 1986, Kasper and Rounds [23, 39] presented the first logical account of feature terms.
They consider variable-free feature terms without complements and disagreements and
define a satisfaction relation between feature graphs and feature terms. A feature graph
satisfies a feature term in Kasper and Rounds’ logic if and only if in our logic the graph is an
element of the term’s denotation in the feature graph algebra F. Their work was inspired
by FuaG, which contributed the notion of a feature term, and Shieber’s work on PATR-II
[46, 44], which contributed the notions of feature graph and agreement (often called path
equations).

In 1987, ATt-Kaci and Smolka [48] showed how feature-based inheritance hierarchies can be
captured as algebraic specifications using order-sorted equational logic. They realized that
memberships can be equivalently expressed without feature terms by equational constraints
and that unification of feature terms corresponds to constraint solving.

In his thesis [16] published in 1987, Johnson develops a so-called Attribute-Value Logic
that has much in common with the feature logic presented here. Johnson considers only
quantifier-free constraints and does not study feature terms. His logic is somewhat more
general than ours since he doesn’t model features as partial functions but instead has an
explicit application function. Hence the variables of his logic also range over features.
Johnson proves that deciding satisfiability in his logic is an NP-complete problem. Johnson
also formalizes a grammar formalism based on his logic that bears much resemblance with
LFG.

The present paper is an elaboration of previous work of the author [47], which resulted
from an effort to bring together the work of Ait-Kaci, Kasper/Rounds, and Johnson.

The constraint solving algorithm given here requires transformation into disjunctive normal
form, which will usually cause an exponential blow-up in size. Kasper [21, 20] and Dérre
and Fisele [11] have proposed better unification algorithms for feature terms that try to
avoid pushing up unions as much as possible. A new constraint solving method of Dorre
and Eisele [9] introduces so-called distributed disjunctions and works on feature constraints
rather than feature terms.

Kasper [22] investigates the use of feature terms with implications (an implication S — T'is
equivalent to =S UT') for modeling systems in systemic grammar. He outlines a unification
method for these terms.

Moshier and Rounds [31] study a feature term logic that interprets negations intuitionisti-
cally. They prove that the satisfiability problem of this logic is PSPACE-complete. Dawar
and Vijay-Shanker [8] investigate several possible interpretations of negation in feature
terms using three-valued logic.

The linguistic problem of so-called long-distance dependencies doesn’t have a satisfacto-
ry solution in unification grammars relying on the constraints discussed here. However,
with so-called functional uncertainty constraints an elegant solution is possible [19]. A
functional uncertainty constraint takes the form f*ax =y and has the solutions

(ffz=y)" = {a€ASS[T]]|In>0: (/) (a(2)) = a(y)},

where f" is the path consisting of exactly n occurrences of the feature f. In general,
it is open whether the satisfiability of conjunctions of feature equations and functional
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uncertainty constraints is decidable. Kaplan and Maxwell [18] given a decision algorithm
for conjunctions satisfying a certain acyclicity condition.

Another interesting extension are subsumption constraints making the subsumption pre-
order of feature algebras syntactically available. A subsumption constraint takes the
form x C y and has the solutions

(e Gy = faeASST]]ale) <7 aly)}

Shieber [45] discusses the usefulness of subsumption constraints for dealing with coordina-
tion problems. Dorre and Rounds [10] show that the satisfiability of conjunctions of feature
equations and subsumption constraints is undecidable. This problem is closely related to
the semi-unification problem for first-order terms, whose undecidability has been shown
recently [27].

Yet another useful extension are roles or set-valued features. Roles are symbols that are
interpreted as set-valued functions

T
1. DT 5 2D,

Features can be seen as special roles that map every element of the domain either to the
empty set or to a singleton. Syntactically, roles can be accommodated as follows:

(srt)f = {a € ASS[T] | L €+ (s1)).
Furthermore, the following two constructs provide for the use of roles in feature terms:

= {deD?|rF(d) C 5%}
= {deD? |+ (d)n ST £0).

As in predicate logic, these role quantifiers are complementary, that is, Vr(.9) is equivalent
to ~3(=5). We call generalized feature terms with role quantifiers concept descrip-
tions. Variable-free concept descriptions are employed in so-called terminological logics
that developed from the knowledge representation language KL-ONE [6]. Nebel and Smol-
ka [34] give a survey of terminological logics and discuss their relation to feature logics.
Nebel’s monograph [33] is a thorough exposition of terminological logics. Deciding coher-
ence of variable-free concept descriptions built from sorts, intersections, complements and
role quantifications is a PSPACE-complete problem [42]. Hollunder [14] has shown that
the coherence of variable-free concept descriptions (built with the constructs introduced so
far) is decidable. Schmidt-Schauf [41] has shown that the generalization of the agreement
construct to roles results in undecidability of the inclusion relation.

Rounds [38] investigates a generalization of feature graphs that accommodates set-valued
edges.

The integration of Prolog-like logic programming with feature constraint languages seems
to be a promising line of research. Language proposals based on this idea are LOGIN [4]
and CIL [32]. The theoretical foundations for this kind of languages are given by Feature
Logic and the constraint logic programming model [15, 13].
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