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Abstract
We present a framework for the verified programming of
multi-tape Turing machines in Coq. Improving on prior work
by Asperti and Ricciotti in Matita, we implement multiple
layers of abstraction. The highest layer allows a user to im-
plement nontrivial algorithms as Turing machines and verify
their correctness, as well as time and space complexity com-
positionally. The user can do so without ever mentioning
states, symbols on tapes or transition functions: They write
programs in an imperative language with registers contain-
ing values of encodable data types, and our framework con-
structs corresponding Turing machines.

As case studies, we verify a translation from multi-tape to
single-tape machines as well as a universal Turing machine,
both with polynomial time overhead and constant factor
space overhead.

CCSConcepts •Theory of computation→Turingma-
chines; Type theory.

Keywords Turingmachines, verification, universalmachine,
Coq
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1 Introduction
Turing machines are, at least on paper, the foundation of
modern computability and complexity theory, in part due
to the conceptual simplicity of their definition. However,
this simplicity leads to a lack of structure, which is also one
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of their biggest disadvantages: When it comes to detailed
or formal reasoning, Turing machines soon become very
hard to treat. This is maybe best reflected by the fact that
while many basic areas of computer science, like logic, gram-
mars, automata, or programming languages theory have
been formalised in proof assistants, formalisations of even
basic complexity-theoretic results1 are not available. While
constructing Turing machines on paper might be possible,
verifying a non-trivial machine defined in terms of states
and transition functions in a proof assistant seems entirely
infeasible.
There were several attempts of formalising Turing ma-

chines in proof assistants. Asperti and Ricciotti [2015] and
Xu, Zhang, and Urban [2013] verify universal Turing ma-
chines inMatita and Isabelle/HOL, respectively, and Ciaffagli-
one [2016] formalises the undecidability of Turing machine
halting in Coq. However, none of these results analyse time
or space complexity of their machines.
The main difficulty for detailed reasoning about Turing

machines is their lack of compositionality. For example, it is
not clear at all how to compose a two-tape Turing machine
with a three-tape Turing machine that works on a different
alphabet. Therefore, it is common to rely on pseudo code or
prose describing the intended behaviour. The exact imple-
mentation as well as its correctness or resource analysis is
left as an exercise to the reader. In a mechanised proof, those
details cannot be left out. Luckily, it is possible to hide those
details behind suitable abstractions.
We present a framework that aims to have the cake and

eat it too when it comes to mechanising computation in
terms of Turing machines: Algorithms are stated in the style
of a register based while-language; a corresponding Turing
machine is automatically constructed behind the scene. Our
framework furthermore characterises the semantics by de-
riving two relations for each machine, one witnessing partial
correctness, which can subsume a space-consumption analy-
sis, and one witnessing termination, which can subsume a
running time analysis. These relations are similar to relations
a Hoare-like logic would derive for the algorithm, especially
in that they follow the internal structure of the program. The
only task left for the user is to simplify those synthesised
relations into a more high-level, hand-written description of
the semantics.

1For example the Cook–Levin theorem (SAT is NP-complete), the inclusions
𝑃 ⊆ NP ⊆ PSPACE ⊆ EXP, or the time and space hierarchy theorems.
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Our imperative abstractions for Turing machines are shal-
lowly embedded into Coq’s type theory: Primitive operations
are predefined Turing machines performing primitive tasks.
Control-flow operators like If or While are Coq-functions
constructing new Turing machines from existing ones.

To make reasoning and programming of Turing machines
feasible, we introduce three layers of abstractions, L1 - L3.
The lower layers are heavily inspired by the definitions As-
perti and Ricciotti [2015] use to formalise multi-tape Turing
machines in the proof assistant Matita.
On the lowest layer L0 (which is actually not an abstrac-

tion), we define 𝑛-tape Turing machines𝑀 : TM𝑛
Σ over finite

alphabets Σ and their semantics in Coq, based on the defini-
tions by Asperti and Ricciotti.

Layer L1 introduces labelled machines𝑀 : TM𝑛
Σ (𝐿), which

additionally contain an arbitrary finite type 𝐿 together with a
function labelling every state of the machine with an element
of this type. Labels can be seen as a partitioning of states,
abstracting away from implementation details. Based on
this notion we define two verification primitives: realisation
(partial correctness) and termination. A labelled machine
𝑀 : TM𝑛

Σ (𝐿) realises a relation 𝑅 ⊆ Tape𝑛Σ × (𝐿 × Tape𝑛Σ),
written 𝑀 ⊨ 𝑅, if for every terminating computation, the
input tapes are in relation with the label of the terminating
state and the output tapes. Dually, a machine terminates in
a running time relation 𝑇 ⊆ Tape𝑛Σ × N, written 𝑀 ↓ 𝑇 , if
for every related pair of input tapes 𝑡 and step counts 𝑘 , the
machine actually terminates in 𝑘 steps on input 𝑡 . Realisation
and termination can be used to express the correctness of a
machine.

Programming machines on layer L1 is quite hard because
we have to define concrete transition functions. We thus
introduce layer L2 with primitive machines that can read,
write and move the head as well as lifting operators and
control-flow operators.
Lifting operators and control-flow operators can be used

to compose machines. For example, given machines 𝑀1 :
TM𝑛

Σ (𝐿) and𝑀2 : TM𝑚
Γ (𝐿′), we can use tape-lifting operators

to obtainmachines𝑀 ′1 : TM
𝑛+𝑚
Σ (𝐿) and𝑀 ′2 : TM𝑛+𝑚

Γ (𝐿′), and
alphabet-liftings to obtain machines 𝑀 ′′1 : TM𝑛+𝑚

Σ+Γ (𝐿) and
𝑀 ′′2 : TM𝑛+𝑚

Σ+Γ (𝐿′). We can then use control-flow operators to
compose them into a machine 𝑀 ′′1 ;𝑀

′′
2 : TM𝑛+𝑚

Σ+Γ (𝐿′). From
layer L2 onward, we never need to consider machine states
or transition functions again; we just compose machines and
use the labelling function as an abstraction in the verification
process.
On layer L2, programming Turing machines is still very

low-level, because we have to consider bare tapes. On layer
L3 — which can still access tools from the lower layers —
we introduce the notion that a tape contains a value of an
arbitrary encodable type, like natural numbers or lists over
other encodable types. A tapemay also be void, i.e. contain no
value. We have primitive operators, for example to increase

the value of a tape that contains a number, or to copy the
value from one tape to another tape.

As case studies, we give a mechanisation of a translation
from multi-tape to single-tape machines as well as a mechan-
isation of a universal Turing machine in Coq. Both machines
have a polynomial time and constant factor space overhead.
To the best of our knowledge, this is the first formalised
universal machine verified w.r.t. time and space complexity
for any model of computation in any proof assistant.

Definitions, lemmas, and theorems in the PDF-version of
this document are hyperlinked with the accompanying Coq
development2; those links are marked by a -symbol.

Structure Section 2 introduces notation and type-theoretic
preliminaries. Sections 3 to 6 give an overview over the layers
L0 - L3. We report on the implementation of a translation
from multi-tape to single-tape machines and a universal
machine in Sections 7 and 8. We conclude by commenting
on the mechanised proofs (Section 9), an overview of related
work (Section 10), and a discussion of our results and future
work (Section 11). The appendix [Forster et al. 2019] contains
a full definition of Turing machines with all details.

2 Preliminaries
We work in constructive type theory with inductive types
and an impredicative universe of propositions.
The basic inductive types we use are the Booleans B ::=

true | false, the unit type 1 ::= (), the natural numbers
N ::= 0 | S𝑛 for 𝑛 : N, product types 𝑋 × 𝑌 , sum types
𝑋 + 𝑌 , and the type with exactly 𝑛 elements F𝑛 . Given a
type 𝑋 , we further define options O(𝑋 ) ::= ∅ | ⌊𝑥⌋ and lists
L(𝑋 ) ::= [] | 𝑥 :: 𝐴 for 𝑥 : 𝑋 and 𝐴 : L(𝑋 ). These notations
are shared with vectors ®𝑥 : 𝑋𝑛 of fixed length 𝑛 : N. We
index elements of vectors ®𝑥 : 𝑋𝑛 by indices 𝑖 : F𝑛 writing
®𝑥 [𝑖]. We write 𝑓 @𝐴 to map a function over a list, vector or
tape. To inline case distinctions over inductive values inside
formulas, we write match 𝑠 with 𝑝1 ⇒ 𝑟1 | . . . with patterns
𝑝1 and results 𝑟𝑖 for pattern matching.

We encode relations as functions returning a proposition.
Thus 𝜆(𝑛𝑚 : N). 𝑛 = 𝑚 defines the identity relation on
natural numbers. We write 𝑅 ⊆ 𝐴 × 𝐵 as an abbreviation
for 𝑅 : 𝐴→ 𝐵 → P. 𝑅1 ◦ 𝑅2 denotes relational composition,
i.e. the relation 𝜆𝑎𝑐.∃𝑏. 𝑅1 𝑎 𝑏∧𝑅2 𝑏 𝑐 . We oftentimes identify
1×𝐵 with 𝐵 and will thus identify relations 𝑅 ⊆ 𝐴× (1×𝐵)
with relations 𝑅 ⊆ 𝐴 × 𝐵.

We use a constructive notion of injections, namely retrac-
tions: A function 𝑓 : 𝑋 → 𝑌 is called a retraction, writ-
ten 𝑓 : 𝑋 ↩→ 𝑌 , if there is a function 𝑓 −1 : 𝑌 → O(𝑋 )
s.t. 𝑓 −1 (𝑓 𝑥) = ⌊𝑥⌋.
We say that a type 𝑋 is discrete if there is a function

𝑋 → 𝑋 → B deciding equality. We say that a type𝑋 is finite
if it is discrete and there is an exhaustive list of elements
2https://github.com/uds-psl/tm-verification-framework/tree/master/
theories/TM
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[𝑥0, . . . , 𝑥𝑛]. Note that for finite types there is a canonical
numbering of elements of 𝑥 .

3 Multi-tape Turing Machines (L0)
Our approach to make reasoning about Turing machines
feasible is to focus on what can be computed instead of
how exactly it is computed in terms of states and transition
functions: We give a few basic relations that are computable
and ways to derive new computable relations by combining
existing ones. We formalise this by a computability predicate
𝑀 ⊨ 𝑅, stating that the machine 𝑀 computes the relation
𝑅. Our framework contains combinators like the sequential
composition𝑀1;𝑀2, and a proof that the relation computed
by the sequential composition is the composition of the two
relations computed by each𝑀𝑖 . This frees the user from the
burden to verify Turing machines that are constructed in
terms of state sets and transition functions.

The relations themselves relate the input to the result after
executing a machine, i.e. a vector of tapes to a vector of tapes.

We represent tapes following Asperti and Ricciotti [2012]:

Definition 3.1. Let Σ be a type. We define

TapeΣ ::= niltape | leftof 𝑟 𝑟𝑠 | midtape 𝑙𝑠 𝑚 𝑟𝑠 | rightof 𝑙 𝑙𝑠

with 𝑙,𝑚, 𝑟 : Σ and 𝑟𝑠, 𝑙𝑠 : L(Σ).

We leave out Σ if the alphabet is clear from the context.
We write Tape𝑛Σ for a vector of 𝑛 tapes. The representation
does not specify an explicit blank-symbol. The constructors
incorporate the position of the head and lead to a unique
representation for any tape, not relying on blank symbols:
midtape represents that the head currently is on some sym-
bol𝑚 with remaining content further left and right in 𝑙𝑠 and
𝑟𝑠 , leftof (rightof) denotes that the head is on the left (right)
end of the tape with remaining, nonempty content 𝑟 :: 𝑟𝑠 , and
niltape denotes an empty tape. The lists 𝑟𝑠, 𝑙𝑠 are ordered
such that symbols closer to the head come first. If blank
symbols are needed, they have to be specified explicitly.

The definition of tapes and multi-tape Turing machines is
taken from Asperti and Ricciotti [2015]:

Definition 3.2. An 𝑛-tape Turing machine𝑀 : TM𝑛
Σ over

a finite alphabet Σ is a tuple𝑀 = (𝑄, 𝛿, 𝑠𝑡𝑎𝑟𝑡, ℎ𝑎𝑙𝑡), where 𝑄
is the finite type of states, 𝛿 : 𝑄 × (O(Σ))𝑛 → 𝑄 × (ActΣ)𝑛
(with actions ActΣ := O(Σ) ×Move and Move ::= L | R | N)
is the transition function, 𝑠𝑡𝑎𝑟𝑡 : 𝑄 is the initial state and
ℎ𝑎𝑙𝑡 : 𝑄 → B represents the halting states.

If the machine is not clear from the context, we may write
e.g. 𝑄𝑀 for disambiguation.

4 Labelled Turing Machines, Correctness,
and Termination (L1)

In order to abstract away from the state space of Turing
machines, we introduce labelled machines:

Definition 4.1. A labelled machine over a type 𝐿, written
𝑀 : TM𝑛

Σ (𝐿), is a dependent pair (𝑀 ′, lab𝑀 ) of a machine
𝑀 ′ : TM𝑛

Σ and a labelling function lab𝑀 : 𝑄𝑀′ → 𝐿.

We identify unlabelled machines 𝑀 : TM𝑛
Σ with unit-

labelled machines 𝑀 : TM𝑛
Σ (1) and use the symbol 𝑀 for

both, relying on the context for disambiguation.
To reason about the semantics of Turing machines, we

have two predicates, one for correctness and one for termina-
tion. Those notions use a predicate𝑀 (𝑞, 𝑡) ⊲𝑘 (𝑞′, 𝑡 ′), denot-
ing that𝑀 with the tapes 𝑡 as input starting in state 𝑞 will
terminate in no more than 𝑘 steps in the final configuration
(𝑞′, 𝑡 ′). When we omit 𝑞, we mean the initial state start𝑀 .
We postpone the definition of ⊲ to the Appendix [Forster
et al. 2019] as our framework enables reasoning to start on
the level of correctness and termination.
For correctness, the realisation predicate uses a relation

𝑅 ⊆ Tape𝑛 × (𝐿 × Tape𝑛) to connect the input tape 𝑡 to the
label of the final state 𝑞 and tape content 𝑡 ′ reached after the
execution of a machine:

Definition 4.2. Let𝑀 : TM𝑛
Σ (𝐿), 𝑅 ⊆ Tape𝑛Σ×(𝐿×Tape𝑛Σ).

𝑀 ⊨ 𝑅 := ∀𝑡 𝑘 𝑞 𝑡 ′. 𝑀 (𝑡) ⊲𝑘 (𝑞, 𝑡 ′) → 𝑅 𝑡 (𝑙𝑎𝑏𝑀 𝑞, 𝑡 ′)

For clarity, we often write𝑀 : TM𝑛
Σ (𝐿) ⊨ 𝑅 to specify the

alphabet, number of tapes and label type simultaneously.
Since realisation states that if the machine halts, its res-

ult has certain properties, we need a second predicate for
termination, incorporating the running time:

Definition 4.3. Let 𝑇 ⊆ Tape𝑛Σ × N.

𝑀 ↓ 𝑇 := ∀𝑡 𝑘. 𝑇 𝑡 𝑘 → ∃𝑐. 𝑀 (𝑡) ⊲𝑘 𝑐.

The introduced predicates are (anti-)monotone:

Fact 4.4. The following hold:
1. If𝑀 ⊨ 𝑅′ and 𝑅′ ⊆ 𝑅, then𝑀 ⊨ 𝑅.
2. If𝑀 ↓ 𝑇 ′ and 𝑇 ⊆ 𝑇 ′, then𝑀 ↓ 𝑇 .

For simple machines, a realisation predicate that entails
termination in a constant number 𝑘 of steps is useful:

Definition 4.5.

𝑀 ⊨𝑘 𝑅 := ∀𝑡 . ∃𝑞 𝑡 ′. 𝑀 (𝑡) ⊲𝑘 (𝑞, 𝑡 ′) ∧ 𝑅 𝑡 (lab𝑀 𝑞, 𝑡 ′)

Fact 4.6. 𝑀 ⊨𝑘 𝑅 ↔ 𝑀 ⊨ 𝑅 ∧ 𝑀 ↓ (𝜆 𝑡 𝑘 ′. 𝑘 ≤ 𝑘 ′)

We will just write ⊨c instead of giving the numerical value
of the constant.

Note that space complexity is a correctness property and
can be included in relations 𝑅 for realisation. Since we do not
have explicit blank symbols in our representation of tapes,
the number of used cells never decreases, which means that
the size of the result of a computation bounds the space
usage during the computation, i.e. we can bound the space
usage by a function 𝑓 proving 𝑀 ⊨ (𝜆 𝑡 𝑡 ′. |𝑡 ′ | ≤ 𝑓 ( |𝑡 |)),
where |𝑡 | denotes the number of symbols on a tape. Our
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Read : TM1
Σ (O(Σ)) ⊨c 𝜆 𝑡 (ℓ, 𝑡 ′). ℓ = current (𝑡 [0]) ∧ 𝑡 = 𝑡 ′

Write 𝑠 : TM1
Σ ⊨

c 𝜆 𝑡 𝑡 ′. 𝑡 ′[0] = tape_write 𝑠 𝑡 [0]

Move 𝑑 : TM1
Σ ⊨

c 𝜆 𝑡 𝑡 ′. 𝑡 ′[0] = tape_move 𝑑 𝑡 [0]

Nop : TM𝑛
Σ ⊨

c 𝜆 𝑡 𝑡 ′. 𝑡 ′ = 𝑡

Figure 1. Primitive Machines

framework does not commit to whether the maximal size
of tapes or the sum of the sizes shall be considered as space
measure; in our verified machines, we choose to bound each
tape individually. In Section 6 we will introduce more explicit
support for compositional space analysis.

5 Combining Machines (L2)
In this section we define primitive machines, combinators
to compose machines and lifting operations to change the
number of tapes or the alphabet of a machine.

The idea is that every machine𝑀 defined using composi-
tion and lifting of primitive machines is equipped with ca-
nonical relations 𝑅𝑀 and𝑇𝑀 and proofs𝑀 ⊨ 𝑅𝑀 and𝑀 ↓ 𝑇𝑀 .
To prove that 𝑀 ⊨ 𝑅 for a different relation 𝑅, a user only
has to prove 𝑅𝑀 ⊆ 𝑅, and for𝑀 ↓ 𝑇 , 𝑇 ⊆ 𝑇𝑀 by fact 4.4.
In the end, we obtain a shallowly embedded, compos-

able, imperative programming language operating on tapes,
where a user does not have to mention states or transition
functions at all.
To keep this section short, we omit the precise construc-

tions of machines𝑀 and only give their correctness relation
𝑅𝑀 and running time relation 𝑇𝑀 .

5.1 Primitive Machines
The machines that perform the most basic operations a Tur-
ing machine can do are given in Figure 1, together with the
most general relation they realise. Those relations use func-
tions operating on tapes defined in the Appendix [Forster
et al. 2019]. The fact that all those machines can run in a
single step allows us to show termination and realisation in
one step, by using ⊨c.

Read is a 1-tape machine which returns in a final state
that is labelled with the symbol under the head, if there is
one, and does not change the tape.Write 𝑠 , for any 𝑠 : Σ, is
a 1-tape machine that writes the constant symbol 𝑠 at head
position and does not return any result.Move 𝑑 is a 1-tape
machine that moves the head in the direction denoted by 𝑑 .
Finally, Nop is a no-op machine which is useful as a neutral
element in our compositional framework.

5.2 Machine Combinators
We define machine combinators like sequential composition
𝑀1;𝑀2, a case distinction operator Switch, and a ‘do-while’
operator While.

𝑀 : TM𝑛
Σ (𝐿) ⊨ 𝑅 ∀(ℓ : 𝐿). 𝑓 (ℓ) : TM𝑛

Σ (𝐿′) ⊨ 𝑅′ℓ
Switch𝑀 𝑓 : TM𝑛

Σ (𝐿′) ⊨ 𝜆𝑡0 (ℓ ′, 𝑡 ′). ∃𝑡 (ℓ : 𝐿). 𝑅 𝑡0 (ℓ, 𝑡)
∧ 𝑅′ℓ 𝑡 (ℓ ′, 𝑡 ′)

𝑀 ′ ↓ 𝑇 ′ 𝑀 ′ ⊨ 𝑅′ ∀(ℓ : 𝐿).𝑓 (ℓ) : TM𝑛
Σ (𝐿′) ↓ 𝑇ℓ

Switch𝑀 ′ 𝑓 ↓ 𝜆 𝑡 𝑘. ∃ 𝑘1 𝑘2. 𝑇 ′ 𝑡 𝑘1 ∧ 1 + 𝑘1 + 𝑘2 ≤ 𝑘

∧ ∀ ℓ 𝑡 ′. 𝑅 𝑡 (ℓ, 𝑡 ′) → 𝑇𝑙 𝑡
′ 𝑘2

𝑀 : TM𝑛
Σ (O(𝐿)) ⊨ 𝑅

While𝑀 : TM𝑛
Σ (𝐿) ⊨WhileRel 𝑅

𝑀 ↓ 𝑇 𝑀 ⊨ 𝑅

While𝑀 ↓WhileT 𝑅 𝑇

𝑀 : TM𝑛
Σ (𝐿) ⊨ 𝑅 ℓ ′ : 𝐿′

Returnℓ′ 𝑀 : TM𝑛
Σ (𝐿′) ⊨ 𝜆 𝑡 .(ℓ, 𝑡 ′). ℓ = ℓ ′ ∧ ∃ℓ0 .𝑅 𝑡 (ℓ0, 𝑡 ′)

𝑀 ↓ 𝑇
Returnℓ 𝑀 ↓ 𝑇

𝑀1;𝑀2 := Switch𝑀1 (𝜆 _. 𝑀2)
If 𝑀1 Then𝑀2 Else𝑀3 := Switch𝑀1 (𝜆 𝑏.if 𝑏 then𝑀2 else𝑀3)

Figure 2. Combinators with Corresponding Relations

The semantics of e.g. sequential composition 𝑀1;𝑀2 is
easy to give informally: run 𝑀1 and, on the resulting tape,
run𝑀2. The correctness relation is then the composition of
the correctness relations of the composed machines, e.g. if
𝑀1 : TM𝑛

Σ (1) ⊨ 𝑅1 and 𝑀2 : TM𝑛
Σ (L2) ⊨ 𝑅2, then 𝑀1;𝑀2 :

TM𝑛
Σ (L2) ⊨ 𝑅1 ◦ 𝑅2.
The running time relations can be composed by splitting

the allowed running time between the two machines: If𝑀1 ⊨
𝑅1,𝑀1 ↓ 𝑇1, and𝑀2 ↓ 𝑇2, then

𝑀1;𝑀2 ↓ (𝜆𝑡 𝑘. ∃𝑘1 𝑘2. 𝑇1 𝑡 𝑘1 ∧ 1 + 𝑘1 + 𝑘2 ≤ 𝑘

∧ ∀𝑡 ′ ℓ . 𝑅1 𝑡 (ℓ, 𝑡 ′) → 𝑇2 𝑡
′ 𝑘2).

Here, as the second machine only runs on results of the first
machine, the correctness of the first machine can be used to
weaken the requirement on the running time relation of the
second machine.
The case distinction operator Switch takes as arguments

a machine𝑀 : TM𝑛
Σ (𝐿) labelled over 𝐿 and, for each possible

label, another machine labelled over 𝐿′, which is represented
by a function 𝑓 : 𝐿 → TM𝑛

Σ (𝐿′). It runs𝑀 first, and depend-
ing on the label ℓ returned by 𝑀 , runs 𝑓 ℓ on the resulting
tape. We specify Switch in Figure 2. The finiteness of 𝐹 (the
domain of 𝑓 ) is crucial here to encode 𝑓 into the finite state
space of the resulting Turing machine.
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In fact, sequential composition is a special case of Switch
that does ignore the label of the first machine. The If com-
binator is also a special case of Switch (over Boolean labels),
we thus leave it out here.

Loops can be implemented with the While𝑀 combinator.
It takes a machine 𝑀 labelled over O(𝐿) and runs 𝑀 re-
peatedly as long as the resulting label is ∅. Once the label is
⌊ℓ⌋,While𝑀 returns ℓ . The correctness relation ofWhile in
Figure 2 uses the following inductively defined relation:

Definition 5.1 (Correctness of While). Assuming 𝑅 ⊆
Tape𝑛Σ×O(𝐿) ×Tape𝑛Σ, thenWhileRel 𝑅 ⊆ Tape𝑛Σ×𝐿×Tape𝑛Σ
is inductively defined by the following two rules:

𝑅 𝑡 (⌊ℓ⌋ , 𝑡 ′)
WhileRel 𝑅 𝑡 (ℓ, 𝑡 ′)

𝑅 𝑡 (∅, 𝑡 ′) WhileRel 𝑅 𝑡 ′ (ℓ, 𝑡 ′′)
WhileRel 𝑅 𝑡 (ℓ, 𝑡 ′′)

The first rule corresponds to returning when some label
other than ∅ was produced, and the second rule corresponds
to looping once more in the other case. To verify that some
machine𝑀 using While realises some relation 𝑅′, we would
usually first find a relation 𝑅 realised by 𝑀 . In a second
step, one proves 𝑅′ ⊂ WhileRel 𝑅, usually by some sort of
inductive reasoning, and uses fact 4.4 to deduce thatWhile𝑀
realises 𝑅′.
Termination without running time could be obtained by

requiring some sort of well-foundedness of the relation real-
ised by M. For termination with time complexity, we use a
co-inductively defined relation:

Definition 5.2 (Running Time for While). Assuming𝑀 :
TM𝑛

Σ (O(𝐿)) and realisation relations 𝑅 and running time re-
lation 𝑇 (whose types fit for 𝑀), we define the co-inductive
running time relation WhileT 𝑅 𝑇 by

𝑇 𝑡 𝑘1 ∀𝑡 ′ 𝑙 . 𝑅 𝑡 (⌊𝑙⌋ , 𝑡 ′) → 𝑘1 ≤ 𝑘

∀𝑡 ′. 𝑅 𝑡 (∅, 𝑡 ′) → ∃𝑘2 . WhileT 𝑅 𝑇 𝑡 ′ 𝑘2 ∧ 1 + 𝑘1 + 𝑘2 ≤ 𝑘

WhileT 𝑅 𝑇 𝑡 𝑘

To now show that While𝑀 ↓ 𝑇 ′, it suffices (by fact 4.4) to
show 𝑇 ′ ⊆ WhileT 𝑅 𝑇 , which follows from

∀𝑡 𝑘. 𝑇 𝑡 𝑘 →
∃𝑘1. 𝑇 ′ 𝑡 𝑘1 ∧
(∀𝑙 𝑡 ′. 𝑅 𝑡 (⌊𝑙⌋ , 𝑡 ′) → 𝑘1 ≤ 𝑘) ∧
(∀𝑡 ′. 𝑅 𝑡 (∅, 𝑡 ′) → ∃𝑘2 . 𝑇 𝑡 ′ 𝑘2 ∧ 1 + 𝑘1 + 𝑘2 ≤ 𝑘) .

due to the co-inductive definition of WhileT.
Finally, altering a machine𝑀 : TM𝑛

Σ (𝐿) to always return
some constant label can be useful, for example to use it
inside a Switch or While combinator. It can be defined by
only adjusting the labels: Returnℓ 𝑀 := (𝑀, 𝜆_. ℓ). This also
means that termination is not altered at all, as termination
is actually defined on the bare, unlabelled machine.

𝑀 : TM𝑚
Σ (𝐿) ⊨ 𝑅 𝐼 : (F𝑛)𝑚 duplicate free

⇑𝐼 𝑀 : TM𝑛
Σ ⊨ ⇑𝐼 𝑅

𝑀 ↓ 𝑇 𝐼 : (F𝑛)𝑚 duplicate free
⇑𝐼 𝑀 ↓ ⇑𝐼 𝑇

𝑀 : TM𝑛
Σ (𝐿) ⊨ 𝑅 𝑓 : Σ ↩→ Γ retraction 𝑑 ∈ Γ

⇑(𝑓 ,𝑑) 𝑀 : TM𝑛
Γ ⊨ ⇑(𝑓 ,𝑑) 𝑅

𝑀 ↓ 𝑅 𝑓 : Σ ↩→ Γ retraction 𝑑 ∈ Γ
⇑(𝑓 ,𝑑) 𝑀 ↓ ⇑(𝑓 ,𝑑) 𝑇

Figure 3. Machine Liftings

5.3 Lifting Machines
The combinators we have seen can only compose machines
with the same alphabet and number of tapes. To allow the
combination of other machines, we introduce lifting func-
tions. The general idea is to extend the number of tapes (or
the alphabet) of a machine or relation by renaming them
consistently: The ‘new’ tapes/symbols are just ignored and
never actively used in the lifted machines.

The tape-lift ⇑𝐼 (·) is concerned with changing the number
and/or order of tapes. Assuming that we have an 𝑚-tape
machine𝑀 , we can lift this into an 𝑛-tape machine as long
as𝑚 ≤ 𝑛. The information how to reorder the tapes can be
encoded as a duplicate free vector 𝐼 containing𝑚 elements
of the finite type F𝑛 . The vector [0, 3, 1] : (F4)3 can be used
to convert a 3-tape machine into a 4-tape machine. Tape 0
is kept in the same place, tape 1 becomes tape 3 and tape 2
becomes tape 1. Tape 2 of the resulting machine is unused.

The transition function of ⇑𝐼 𝑀 uses 𝐼 to permute all read
and write operations on the tapes accordingly. All of the
tapes not mentioned in 𝐼 are never read or written in ⇑𝐼 𝑀 .
To add the corresponding rules in Figure 3, we define

tape-lifts for realisation and running time relations in the
Appendix [Forster et al. 2019]: We write ⇑𝐼 𝑅 and ⇑𝐼 𝑇 for
them.

The alphabet-lift ⇑(𝑓 ,𝑑) (·) changes a machine𝑀 : TM𝑛
Σ (𝐿)

over an alphabet Σ to a machine ⇑(𝑓 ,𝑑) 𝑀 : TM𝑛
Γ (𝐿) for any

retraction 𝑓 : Σ ↩→ Γ and default symbol 𝑑 : Σ.
The idea of the alphabet-lift of a machine is to translate

every read symbol using 𝑓 −1 and every written symbol using
𝑓 ; thus the transition relation of𝑀 , which originally operated
on Σ, can now operate on Γ. Every read symbol which is
not hit by 𝑓 , e.g. for which 𝑓 −1 returns ∅, is translated to 𝑑 .
In practice, when constructing machines, one thus always
wants that𝑀 does not normally read 𝑑 .

To complete Figure 3, we again overload the alphabet-lift
for relations, which we write as ⇑(𝑓 ,𝑑) 𝑅 and ⇑(𝑓 ,𝑑) 𝑇 . Their
definitions are in the Appendix [Forster et al. 2019].
During proofs, tape-lifts result in renaming some tapes

and equalities of unmentioned tapes. To deal with many
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equations, we develop automation in Coq, for more details
see Section 9. Alphabet-lifts that occur during the use of
the abstractions presented in Section 6 are handled by our
automation as well.

5.4 Verifying Simple Machines
As an example, we construct and verify the two-tapemachine
CopyLeft which copies the symbol on the left of the head of
tape 0 to the current position on tape 1.

Definition 5.3. We define CopyLeft : TM2
Σ as

CopyLeft :=
⇑[0]Move L ;
Switch (⇑[0] Read)

(𝜆(ℓ : O(Σ)) . match ℓ with
⌊𝑠⌋⇒⇑[1]Write 𝑠
| ∅⇒Nop )

To shorten the example, we will verify a weak relation
that omits that all other cells on tape 1 remain unchanged
and does not fully specify what happens if there is no symbol
to read.

Lemma 5.4. CopyLeft 𝑑0 𝑑1 ⊨ CopyLeftRel with

CopyLeftRel := 𝜆𝑡 𝑡 ′. 𝑡 [0] = 𝑡 ′[0]
∧ ∀(𝑠 : Σ). current (move L 𝑡 [0]) = ⌊𝑠⌋

→ current 𝑡 ′[1] = ⌊𝑠⌋

Proof. The rules from Figures 1 to 3 directly yield a correct-
ness relation forCopyLeft, which can be used in combination
with fact 4.4 to reduce our proof obligation to a relational
inclusion:
⇑[0] (𝜆 𝑡0 𝑡1. 𝑡1 [0] = tape_move L 𝑡0 [0])
◦
(
𝜆 𝑡1 ((ℓ ′ : 1), 𝑡3).
∃𝑡2 (ℓ : O(Σ)). (⇑[0] (𝜆 𝑡1 (ℓ, 𝑡2). ℓ = current(𝑡 [0]) ∧ 𝑡2 = 𝑡1))

𝑡1 (ℓ, 𝑡2)
∧ (match ℓ with
⌊𝑠⌋⇒⇑[1] (𝜆 𝑡2 𝑡3 . 𝑡3 [0] = tape_write 𝑠 𝑡2 [0]) 𝑡2 𝑡3
| ∅⇒𝑡3 = 𝑡2)

)
⊆ CopyLeftRel

This inclusion follows by unfolding all definitions and basic
logical transformations. □

We could prove the running time for CopyLeft in a similar
fashion. Note that these kinds of proofs are very mechanical
as long as noWhile loop is involved. We only need to unfold
the relations and rewrite tapes, which can be automated in
Coq. We will not detail more proofs of this kind on paper.

6 Generalised Register Machines (L3)
We now come to the highest layer of abstraction of our frame-
work, where we treat Turing machines as abstract register
machines. Each tape of such an abstract register machine

contains a value of an encodable inductive type. We first
define the notion of encodable types and tape containment,
and then show how to specify machines constructing values.
Afterwards, we show how case analysis can be implemented
and give an exemplary implementation of addition and mul-
tiplication of natural numbers as abstract register machines.

6.1 Tapes as Registers
Definition 6.1. A type 𝑋 is encodable on Σ if there is an

injective function 𝜀 : 𝑋 → L(Σ), where Σ is a finite type.

For encodable types 𝑋 we can define the size of elements
𝑥 : 𝑋 as the number |𝜀 (𝑥) |. We can also define what it means
for a tape 𝑡 to contain a value 𝑥 : 𝑋 . Note that if the type𝑋 is
encodable, the proof of encodability gives a canonical alpha-
bet that can encode 𝑋 , which we denote by Σ𝑋 . In addition,
𝑋 is by definition encodable on Γ given any 𝑓 : Σ𝑋 ↩→ Γ.
We make this distinction between canonical alphabets and
extension via retractions explicit and define 𝑡 ≃𝑓 ,𝑘 𝑥 . Here,
𝑥 : 𝑋 , 𝑓 : Σ𝑋 ↩→ Γ, 𝑘 : N is denoting the number of symbols
on the tape that are irrelevant to the encoding and 𝑡 is a tape
over the alphabet Γ+, which extends Γ by symbols denoting
the start and end of the encoding:

Definition 6.2. Let Γ be a type. We define

Γ+ ::= START | STOP | UNKNOWN | (𝑠 : Γ).

Definition 6.3. Let 𝑋 be encodable on Σ, 𝑓 : Σ ↩→ Γ and
𝑡 : TapeΓ+ . We define

𝑡 ≃𝑓 ,𝑘 𝑥 :=∃ 𝑙𝑠 . |𝑙𝑠 | ≤ 𝑘 ∧
𝑡 = midtape 𝑙𝑠 START (𝑓@(𝜀 (𝑥)) ++ [STOP]).

Note that the length of the tape (and thus the space con-
sumption of themachine up to this point) is exactly𝑘+|𝜀𝑥 |+2.
If we write 𝑡 ≃𝑘 𝑥 , we mean that 𝑓 is the identity retrac-
tion and thus 𝑡 : Σ+

𝑋
. Explicitly mentioning the additional

retract 𝑓 is useful when combining machines over differ-
ent alphabets: The alphabet-lift that are then required can
be composed and stored into the retract, e.g. the relation
⇑(𝑔,𝑑) (𝜆𝑡 𝑡 ′.𝑡 ′[0] ≃𝑓 ,𝑘 𝑥) is the same as (𝜆𝑡 𝑡 ′.𝑡 ′[0] ≃𝑔−1◦𝑓 ,𝑘
𝑥). This enables our framework to hide alphabet lifts to the
user.
The special symbol UNKNOWN is used globally as the

default-symbol for the alphabet-lift. It is never read/written
from/to a tape.

Lemma 6.4. The types 1, B, and N are all encodable. If 𝑋
and 𝑌 are encodable, then O(𝑋 ), L(𝑋 ), 𝑋 +𝑌 , and 𝑋 ×𝑌 are
encodable.

Proof. The type N is encodable on the alphabet ΣN ::= S | O:

𝜀 (0) := [O]
𝜀 (𝑆 𝑛) := S :: 𝜀 (𝑛)

The encodings for the other types work similarly. □
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Using this definitions, we have
midtape 𝑙𝑠 START [S, S, S,O, STOP] ≃ |𝑙𝑠 | 3

for all contents 𝑙𝑠 to the left — that is, we ignore garbage on
the tape (apart from the length) and only require that to the
right of the START symbol we have exactly an encoding and
the STOP symbol. As an invariant, we will never consider
empty tapes on the level of abstract register machines. This
makes realisation proofs easier, because it restricts the shape
of tapes. Thus, we define isVoid𝑘 (𝑡) to mean that 𝑡 is non-
empty, the head points to the right-most symbol and there
are at most 𝑘 other symbols.

Definition 6.5. isVoid𝑘 (𝑡) := ∃𝑚𝑙𝑠. 𝑡 = midtape 𝑙𝑠 𝑚 nil∧
|𝑙𝑠 | ≤ 𝑘 .

We can now define our first abstract register machine, a
machine that statically writes a value into a register given
its encoding:

Lemma 6.6. Let 𝑋 be encodable over Σ and 𝑠𝑡𝑟 : L(Σ).
There is a machine WriteValue(𝑠𝑡𝑟 ) : TM1

Σ s.t.:

WriteValue(𝑠𝑡𝑟 ) ⊨3+2· |𝑠𝑡𝑟 | 𝜆𝑡 𝑡 ′.
∀𝑥 𝑘. 𝜀 (𝑥) = 𝑠𝑡𝑟 → isVoid𝑘 𝑡 [0] → 𝑡 ′[0] ≃𝑘−|𝜀 (𝑥) |−1 𝑥 .

Note that the machine takes a string instead of a value as
static input to avoid parametrising the machine over encod-
ing functions, which then is only necessary for the correct-
ness statement.

Similarly, we can reset a tape which contains a value and
make it void:

Lemma 6.7. Let 𝑋 be encodable over Σ𝑋 and 𝑓 : Σ𝑋 ↩→ Γ.
There is a machine Reset : TM1

Γ s.t.:

Reset ⊨ 𝜆𝑡 𝑡 ′.∀𝑥𝑘.𝑡 [0] ≃𝑓 ,𝑘 𝑥 → isVoid1+𝑘+|𝜀 (𝑥) | 𝑡 ′[0]
Lastly, we can change the retraction explicitly by inserting

a translation machine which does not actually change tapes:

Lemma 6.8. Let 𝑋 be encodable over Σ𝑋 and 𝑓 , 𝑔 : Σ𝑋 ↩→
Γ. There is a machine Translate 𝑓 𝑔 : TM1

Γ s.t.:

Translate 𝑓 𝑔 ⊨ 𝜆𝑡 𝑡 ′.∀𝑥𝑘.𝑡 [0] ≃𝑓 ,𝑘 𝑥 → 𝑡 ′[0] ≃𝑔,𝑘 𝑥

6.2 Constructor and Destructor Machines
Building on the previous definitions and machines we imple-
ment the two constructors of natural numbers:

Lemma 6.9. There is a machine ConstrO : TM1
ΣN

s.t.

ConstrO ⊨5 𝜆𝑡 𝑡 ′. isVoid𝑘 𝑡 [0] → 𝑡 ′[0] ≃𝑘−2 0.
Proof. Define ConstrO := WriteValue(𝜀0). □

The 𝑆 constructor overwrites the current symbol (which
is the start symbol) with S and writes a new start symbol
one step left.

Lemma 6.10. There is a machine ConstrS : TM1
ΣN

s.t.

ConstrS ⊨3 𝜆𝑡 𝑡 ′. ∀𝑛𝑘. 𝑡 [0] ≃𝑘 𝑛 → 𝑡 ′[0] ≃𝑘−1 𝑆 𝑛.

We now define the destructor machine for N. As all de-
structor machines will, it analyses the head constructor on
the tape, remove it and signal which constructor was found
via labels. For the case of natural numbers, the destructor ma-
chine CaseNat reads a number from tape 𝑡 [0]. If the number
is 0, CaseNat leaves the number unchanged and terminates
in the label false. Else, it decreases the number and termin-
ates in true.

Lemma 6.11. There is a machine CaseNat : TM1
ΣN
(B) s.t.

CaseNat ⊨5

𝜆𝑡 (ℓ, 𝑡 ′) . ∀(𝑛 : N). 𝑡 [0] ≃𝑘 𝑛 → match ℓ, 𝑛 with
false, 0⇒𝑡 ′[0] ≃𝑘 0
| true, 𝑆 𝑛′⇒𝑡 ′[0] ≃𝑘+1 𝑛′
| _ , _⇒⊥

Proof. We implement the machine using Switch and Read:

CaseNat :=
Move R ;
Switch Read

(𝜆(𝑠 : O(Σ+N)) . match 𝑠 with
⌊S⌋⇒Returntrue (Write START)
| ⌊O⌋⇒Returnfalse (Move L)
| _⇒_ ) □

We implement and use similar machines for Booleans
(ConstrTrue, ConstrFalse, CaseBool), options (ConstrNone,
ConstrSome,CaseOption), and lists (ConstrNil,ConstrCons,
CaseOption), but leave out their definitions in the paper.

6.3 Case Study: Addition and Multiplication
We now explain how to actually implement recursive ab-
stract register machines. We will not require any direct op-
erations on tapes and only use combinators from L2 and
constructors and destructors from L3.

Recall that theWhile𝑀 operator corresponds to ‘do-while’
in imperative languages, i.e. the machine𝑀 has to decide at
the end of its execution whether to continue or break out of
the loop. Tail-recursive functions can easily be transformed
into ‘do-while’ loops. Thus, when we translate functions to
Turing machines, we first have to implement the function as
a tail-recursive function.

As an example, we implement addition Add and multiplic-
ation Mult for natural numbers.
The algorithm for addition can be described with the fol-

lowing pseudocode:

a ← n
b ← m
While ( b−−) {

a++
}
Reset b

https://uds-psl.github.io/tm-verification-framework/website/Undecidability.TM.Code.CodeTM.html#isRight_size
https://uds-psl.github.io/tm-verification-framework/website/Undecidability.TM.Code.CodeTM.html#isRight_size
https://uds-psl.github.io/tm-verification-framework/website/Undecidability.TM.Code.WriteValue.html#WriteValue_Sem
https://uds-psl.github.io/tm-verification-framework/website/Undecidability.TM.Code.WriteValue.html#WriteValue_Sem
https://uds-psl.github.io/tm-verification-framework/website/Undecidability.TM.Code.Copy.html#Reset_Realise
https://uds-psl.github.io/tm-verification-framework/website/Undecidability.TM.Code.Copy.html#Reset_Realise
https://uds-psl.github.io/tm-verification-framework/website/Undecidability.TM.Code.Copy.html#Translate_Realise
https://uds-psl.github.io/tm-verification-framework/website/Undecidability.TM.Code.Copy.html#Translate_Realise
https://uds-psl.github.io/tm-verification-framework/website/Undecidability.TM.Code.CaseNat.html#Constr_O_Sem
https://uds-psl.github.io/tm-verification-framework/website/Undecidability.TM.Code.CaseNat.html#Constr_O_Sem
https://uds-psl.github.io/tm-verification-framework/website/Undecidability.TM.Code.CaseNat.html#Constr_S_Sem
https://uds-psl.github.io/tm-verification-framework/website/Undecidability.TM.Code.CaseNat.html#Constr_S_Sem
https://uds-psl.github.io/tm-verification-framework/website/Undecidability.TM.Code.CaseNat.html#CaseNat_Sem
https://uds-psl.github.io/tm-verification-framework/website/Undecidability.TM.Code.CaseNat.html#CaseNat_Sem


CPP ’20, January 20–21, 2020, New Orleans, LA, USA Yannick Forster, Fabian Kunze, and Maximilian Wuttke

Tape of Add Variable Tape in AddStep
0 𝑚 –
1 𝑛 –
2 𝑎 0
3 𝑏 1

Figure 4. Tape assignment for Add and AddStep

The output tape is the tape that is represented by the
variable 𝑎. First, we copy the input 𝑛 to this tape, and the
number𝑚 to an internal tape. In the loop, as long as we can
decrease the copy of𝑚, we increment 𝑎. After the loop, we
reset the copy 𝑏 and the machine terminates. The first step in
the design of the machine is to specify, which tape contains
which variable. This is visualised in Figure 4.

Because the machine only operates on natural numbers,
we choose Σ+N as the alphabet ofAdd and all its sub-machines.

The next step is to implement the step machine. AddStep
has only access to the variables 𝑎 and 𝑏, stored on tape 0
and 1 (fig. 4). The decrement operation and test whether
𝑏 was 0 is implemented using the deconstructor machine
CaseNat. In the case that 𝑏 is 0, the step machine terminates
in ⌊()⌋, so that the loop breaks. In case 𝑏 is greater than 0,
CaseNat decreases 𝑏 and the step machine increases 𝑎. Then
it terminates in ∅, so that the loop continues.

Definition 6.12. AddStep :=
If (⇑[1] CaseNat) Then (Return∅ (⇑[0] ConstrS)) Else (Return ⌊ () ⌋ Nop)

Because all parts of AddStep terminate in constant time,
we get the constant running time part of the semantics of
AddStep for free.

Lemma 6.13. AddStep ⊨9 AddStepRel :=

𝜆 𝑡 (ℓ, 𝑡 ′). ∀𝑎 𝑏 𝑘𝑎 𝑘𝑏 .
𝑡 [0] ≃𝑘𝑎 𝑎 → 𝑡 [1] ≃𝑘𝑏 𝑏 →
match ℓ, 𝑏 with
⌊()⌋ ,𝑂⇒𝑡 ′[0] ≃𝑘𝑎 𝑎 ∧ 𝑡 ′[1] ≃𝑘𝑏 𝑏
| ∅, 𝑆 𝑏 ′⇒𝑡 ′[0] ≃𝑘𝑎−1 𝑆 𝑎 ∧ 𝑡 ′[1] ≃1+𝑘𝑏 𝑏 ′
| _ , _⇒⊥

According to the general design plan, we defineAddLoop :=
While AddStep. The correctness relation of AddLoop now
says, that after the execution of the loop, 𝑡 ′[0] contains 𝑎 +𝑏
and 𝑡 ′[1] contains 0:

Lemma 6.14. AddLoop ⊨ 𝜆𝑡 𝑡 ′. ∀𝑎𝑏𝑘𝑎𝑘𝑏 .

𝑡 [0] ≃𝑘𝑎 𝑎 → 𝑡 [1] ≃𝑘𝑏 𝑏 → 𝑡 ′[0] ≃𝑘𝑎−𝑏 𝑎+𝑏∧𝑡 ′[1] ≃𝑘𝑏+𝑏 0.

Proof. By fact 4.4 and induction on the structure ofWhileRel.
In the case the loop terminates, 𝑏 is 0 and 𝑡 ′[0] ≃ 𝑎, therefore
𝑡 ′[0] contains 𝑎 = 𝑎 + 0 = 𝑎 + 𝑏. In the induction/loop case,
we know that 𝑏 = 𝑆 𝑏 ′ and that 𝑡 ′[0] ≃ 𝑆 𝑎 and 𝑡 ′[1] ≃ 𝑏 ′.
By the inductive hypothesis, we know that 𝑡 ′′[0] contains
𝑏 ′ + 𝑆 𝑎 = 𝑎 + 𝑏 and 𝑡 ′′[1] ≃ 0. □

Input CopyValue CopyValue AddLoop Reset
0 :𝑚 0 :𝑚
1 : 𝑛 0 : 𝑛
2 : ⊣ 1 : 𝑛 0 :𝑚 + 𝑛
3 : ⊣ 1 :𝑚 1 : 0 0 : ⊣

Figure 5. Execution protocol of Add
The running time of AddLoop must be shown separately.

We know that the loop is executed 𝑏 + 1 times, and each
iteration takes 9 steps. We have to add 1 step for each re-
iteration of the loop. Thus, the total step number is 9 + 10 · 𝑏.

Lemma 6.15. AddLoop ↓ 𝜆𝑡 𝑘.
∃(𝑎 𝑏 : N). 𝑡 [0] ≃ 𝑎 ∧ 𝑡 [1] ≃ 𝑏 ∧ 9 + 10 · 𝑏 ≤ 𝑘

Now we can define the full machine Add:

Definition 6.16. Add := ⇑[1,2] CopyValue;
⇑[0,3] CopyValue; ⇑[2,3] AddLoop; ⇑[3] Reset.

At this point, we introduce a graphical notation of exe-
cution protocols, that show the value of each tape after the
execution of each sub-machine. In the left column, we have
the input values for each tape, or ⊣ if the tape is initially void.
Each further column denotes the (lifted) sub-machines. We
write entries 𝑗 : 𝑥 in each cell that is in the index-vector
of the sub-machine, where 𝑗 is the tape-index of the lifted
machine and 𝑥 is the value after the execution of the sub-
machine on this tape. We write 𝑗 : ⊣ when the tape 𝑗 is void
after the execution of the sub-machine. If a cell of the table
is empty, then the tape has not changed, thus the current
value is found further left in the same row. In Figure 5, we
have an example of an execution protocol for Add.

From the execution protocol in Figure 5, we see that after
the execution of all four sub-machines, the tapes 0 and 1 still
contain the values𝑚 and 𝑛, tape 2 contains𝑚 + 𝑛, and tape
3 is void. Execution protocols serve as outlines of the formal
correctness proofs. We conclude the correctness of Add.

Lemma 6.17.

Add ⊨ 𝜆𝑡𝑡 ′. ∀𝑚 𝑛 𝑘0 𝑘1 𝑘2 𝑘3.

𝑡 [0] ≃𝑘0 𝑚 → 𝑡 [1] ≃𝑘1 𝑛 →
isVoid𝑘2 (𝑡 [2]) → isVoid𝑘3 (𝑡 [3]) →
𝑡 ′[0] ≃𝑘0 𝑚 ∧ 𝑡 ′[1] ≃𝑘1 𝑛 ∧ 𝑡 ′[2] ≃𝑘2+𝑚−𝑛−2 (𝑚 + 𝑛)∧
isVoid2+(𝑘3−(2+𝑚)+𝑚)

For the running time function of Add, we have to add
linear components for copying𝑚 and 𝑛, a constant for Reset,
and 1 step for each sequential composition operator.

Lemma 6.18. Add ↓ 𝜆𝑡 𝑘. ∃𝑚 𝑛. 𝑡 [0] ≃ 𝑚 ∧ 𝑡 [1] ≃ 𝑛 ∧
isVoid(𝑡 [2]) ∧ isVoid(𝑡 [3]) ∧ 98 + 22 ·𝑚 + 12 · 𝑛 ≤ 𝑘 .

When we prove the running time of sequences of multiple
machines, we have to give running time functions for all
suffixes of the sequence in terms of the sequence operator.
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We use the machine Add to implement a machine Mult
that computes the multiplication function𝑚𝑢𝑙𝑡 : N→ N→
N. The machine Mult ‘calls’ the machine Add 𝑚-times to
add 𝑛 to a counter 𝑐 that is initialised with 0. The following
pseudo code presents the algorithm that we implement:

𝑐 ← 0
𝑚′ ←𝑚

While (𝑚′−−) {
𝑐 ′ ←Add (𝑛 , 𝑐 )
Reset 𝑐

𝑐 ← 𝑐 ′

Reset 𝑐 ′

}
Reset 𝑚′

Note that we do not have to copy 𝑛, since we do not write
on 𝑛 and the machine Add does not change 𝑛. Also note that
we cannot simply add 𝑛 to 𝑐 , since input and output tapes are
distinct. Therefore, we have to store the result of the addition
to an intermediate variable (i.e. internal tape), which has to
be reset afterwards.

MultStep, has only access to the copy of 𝑚, which is
mapped to tape 0 of MultStep. In the following, we also
use the name𝑚 for its copy in the context of MultStep.

Definition 6.19. MultStep :=

If ⇑[0] CaseNat

Then Return∅
(
⇑[1,2,3,4] Add; ⇑[2] Reset; ⇑[3,2] CopyValue; ⇑[3] Reset

)
Else Return ⌊ () ⌋ Nop.

The correctness relation ofMultStep is analogous toAddStep.

Lemma 6.20. MultStep ⊨ MultStepRel with

MultStepRel : =
𝜆 𝑡 (ℓ, 𝑡 ′). ∀(𝑐 𝑚 𝑛 : N)𝑘0 𝑘1 𝑘2 𝑘3 𝑘4 .

𝑡 [0] ≃𝑘0 𝑚 → 𝑡 [1] ≃𝑘1 𝑛 → 𝑡 [2] ≃𝑘2 𝑐 →
isVoid𝑘3 𝑡 [3] → isVoid𝑘4 𝑡 [4] →
match ℓ,𝑚 with
[ ⌊()⌋ ,𝑂 ⇒ 𝑡 ′[0] ≃𝑘0 𝑚 ∧ 𝑡 ′[1] ≃𝑘1 𝑛 ∧ 𝑡 ′[2] ≃𝑘2 𝑐

∧ isVoid𝑘3 𝑡
′[3] ∧ isVoid𝑘4 𝑡

′[4]
| ∅, 𝑆 𝑚′ ⇒ 𝑡 ′[0] ≃𝑘0+1 𝑚′ ∧ 𝑡 ′[1] ≃𝑘1 𝑛 ∧ 𝑡 ′[2] ≃𝑘2−𝑛 𝑛 + 𝑐

∧ isVoid(2+𝑛+𝑐+( (𝑘3+𝑛)−𝑐−2)) 𝑡
′[3]

∧ isVoid(2+(𝑘4−(2+𝑛)+𝑛)) 𝑡
′[4]

| _ , _ ⇒ ⊥

Note that for AddStep, we also prove termination in con-
stant running time in lemma 6.13. This is not true forMultStep,
because it calls Add, which has non-constant running time.
As usual, we define MultLoop := While MultStep. The

correctness statement ofMultLoop says that if the first three
tapes contain𝑚, 𝑛, 𝑐 , and all other tapes are void, then after
the execution of the loop, the tapes contain 0, 𝑛, and𝑚 ·𝑛 +𝑐
and the other tapes are void. Thus, when we instantiate the
𝑐-tape with the value 0, the output tape contains𝑚 · 𝑛.

Lemma 6.21. MultLoop ⊨ MultLoopRel with

MultLoopRel := 𝜆𝑡 𝑡 ′. ∀(𝑐 𝑚 𝑛 : N) 𝑘0 𝑘1 𝑘2 𝑘3 𝑘4 .
𝑡 [0] ≃𝑘0 𝑚 → 𝑡 [1] ≃𝑘1→ 𝑡 [2] ≃𝑘2 𝑐
→ isVoid𝑘3 𝑡 [3] → isVoid𝑘4 𝑡 [4] →
𝑡 ′[0] ≃𝑘0+𝑚 0 ∧ 𝑡 ′[1] ≃𝑘1 𝑛 ∧ 𝑡

′[2] ≃𝑘2−𝑚 ·𝑛 𝑚 · 𝑛 + 𝑐
∧ isVoid𝑃 𝑡 ′[3] ∧ isVoid𝑃 ′ 𝑡 ′[4]

Where 𝑃 and 𝑃 ′ are polynomials linear in𝑚, 𝑛, 𝑐 , 𝑘3, and 𝑘4.

It is now easy to define the rest of Mult.

Definition 6.22. Mult := ⇑[0,5] CopyValue;
⇑[2] ConstrO; ⇑[5,1,2,3,4]MultLoop; ⇑[5] Reset

It follows that Mult computes multiplication with time
complexity in O(𝑚 · 𝑛2) and linear space overhead. We omit
the detailed theorems for brevity.

7 Multi-tape to Single-tape Compiler
All our constructions that use tapes as registers, as described
in Section 6, are quite generous with the number of used
tapes. It is a well-known fact that any 𝑛-tape Turing machine
can be converted into an equivalent single-tape machine. In
this section, we formalise such a compiler.

Given a labelled 𝑛-tape machine𝑀𝑛 : TM𝑛
Σ (𝐿) we want to

define a single-tape machine𝑀1 : TM1
Γ (𝐿) that simulates𝑀𝑛 .

This means that if𝑀1 terminates, so does𝑀𝑛 , and vice versa.
Additionally, the runtime overhead of𝑀1 is polynomial, and
the space overhead is linear.

As in the literature (e.g. [Sipser 2006, p. 149]), we encode
the vector of tapes on the single tape of 𝑀1. The machine
state of𝑀𝑛 is encoded in the machine state of𝑀1.

7.1 Encoding of Tapes
We first have to address how𝑀1 encodes a vector of tapes on
its single tape. We follow Sipser [2006] and choose to encode
tapes as a delimited list of (encodings of) tapes. The alphabet
of𝑀1 includes markers for the current symbols of each tape
and delimiters for the encoded tapes.

We define functions 𝜀 which encode vectors of tapes and
tapes as strings. To encode vectors, every tape is delimited by
‘#’ and the encoding of the entire vector of tapes is terminated
by the symbol ‘$’:

𝜀 nil := [$]
𝜀 (𝑡 :: 𝑡𝑠) := # :: 𝜀 (𝑡) ++ 𝜀 (𝑡𝑠)

We still have to define how to encode a single tape as a
string of symbols. Like Sipser, we have to mark the current
symbol. However, there is a complication that is due to our
tape model: On a multi-tape machine, moving the head one
position after the rightmost symbol and back to the right-
most symbol on a tape does not change this tape at all. The
encoding as a string has to reflect this property, in particular
the length of the encoding must be invariant during head
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movement. The length of the encoding may only increase
when we allocate a new symbol.

These constraints give rise to the following alphabet for
the tape encoding:

Σtp ::= 𝐵 | ←−𝐵 | −→𝐵 | ←−𝐵 | −→𝐵 | 𝑥 | 𝑥 (𝑥 : Σ)
Underlined symbols denote that this is the current symbol
of a tape. All encodings are delimited by the symbol 𝐵 (for
boundary) symbol, where the arrows indicate whether it is
the left or right boundary. We then define the encoding of
tapes as strings as follows:

𝜀 (niltape) := [𝐵]

𝜀 (leftof 𝑟 𝑟𝑠) :=
←−
𝐵 :: 𝑟 ++ 𝑟𝑠 ++ [−→𝐵 ]

𝜀 (midtape 𝑙 𝑚 𝑟𝑠) :=←−𝐵 :: rev 𝑙𝑠 ++𝑚 :: 𝑟𝑠 ++ [−→𝐵 ]

𝜀 (rightof 𝑙 𝑙𝑠) :=
←−
𝐵 :: rev 𝑙𝑠 ++ [𝑙 ;−→𝐵 ]

For example, the tape encodings in the above mentioned
manoeuvre look like this:

[←−𝐵 , 𝑎, 𝑏, 𝑐,−→𝐵 ] { [←−𝐵 , 𝑎, 𝑏, 𝑐,−→𝐵 ] { [←−𝐵 , 𝑎, 𝑏, 𝑐,−→𝐵 ]
We add the delimiter symbols ‘#’ and ‘$’ to define the

alphabet Γ of 𝑀1. Additionally, we use the symbol START
and STOP to delimit the entire encoding of the vector of
tapes:

Γ ::= 𝜎 | # | $ | START | STOP (𝜎 : Σtp)
Note that START and STOP are in theory not neccessary, but
it simplifies the implementation.

When𝑀1 starts, the head position is assumed to be on the
START symbol. We then write 𝑡 ≃ 𝑡𝑝𝑠 :

Definition 7.1 (Containment of tapes). Let 𝑡 : TapeΓ and
𝑡𝑝𝑠 : Tape𝑛Σ. Then:

𝑡 ≃ 𝑡𝑝𝑠 := 𝑡 = midtape [] START (𝜀 (𝑡𝑝𝑠) ++ [STOP])

7.2 Implementation
The concrete implementation and verification is very tech-
nical; we only outline the definition of𝑀1 in this paper.
As noted above, we want to encode the machine states

of 𝑀𝑛 in the state of 𝑀1. For that, we use the MemWhile
operator, a combination of While and Switch described in
the Appendix [Forster et al. 2019]. We have to give a function
Step : 𝑄𝑀 → TM1

Γ (𝑄𝑀 + 𝐿). After we defined the function
Step(𝑞), we define𝑀1 := MemWhile Step (𝑠𝑡𝑎𝑟𝑡𝑀𝑛

).
Step𝑞 : TM1

Γ (𝑄𝑀+𝐿) is defined to beReturninl(lab𝑀𝑛𝑞) Nop
if 𝑞 is a halting state of𝑀𝑛 . That way, Step 𝑞 will terminate
immediately with the right label. If 𝑞 is not a halting state,
Step 𝑞 has to simulate one machine step of 𝑀𝑛 . For that, it
first scans the single tape to construct the vector of all current
symbols. Since the set of all possible vectors 𝑐𝑠 : O(Σ)𝑛 of
current symbols is finite, we can store it in the state space of
Step 𝑞. Similarly, the computation of the tuple (𝑞′, 𝑎𝑐𝑡𝑠) =
𝛿𝑀𝑛
(𝑞, 𝑐𝑠) can be encoded in the state space, where 𝑞′ : 𝑄𝑀𝑛

is the state in which 𝑀𝑛 transitioned and 𝑎𝑐𝑡𝑠 : Act𝑛 is the
vector of actions that have to be executed on each tape. After
executing these actions, Step 𝑞 terminates in the label inl𝑞′,
indicating that 𝑀1 will continue to execute Step 𝑞′ in the
next loop iteration.

We usemany auxiliarymachines, likeGoToCurrent, which
starts at the # symbol of an encoded tape and halts at the
current (i.e. marked) symbol of the selected tape. The ma-
chine GoToNext : TM1

Γ (B) starts at the current symbol and
either goes to the # symbol of the next tape, or stops at $ and
terminates in a state labelled with false, in the case that the
head was already on the last tape.
For the auxiliary machines, the position of the tape head

is an important part of their specifications. For example, we
have a predicate atCons 𝑡 𝑡𝑝𝑠1 𝑡𝑝𝑠2 𝑡𝑝 which states that the
tape 𝑡 : TapeΓ of𝑀1 is under a # symbol and to the left there
is the encoding of the tapes 𝑡𝑝𝑠1; to the right, there is the
encoding of the tape 𝑡𝑝 : TapeΣ, and after this the encoding
of the list of tapes 𝑡𝑝𝑠2. We also have to maintain invariants
like |𝑡𝑝𝑠1 | + 1 + |𝑡𝑝𝑠2 | = 𝑛.

7.2.1 Reading all Current Symbols
In order to know which actions Step 𝑞 has to emulate, it first
has to scan all current (i.e. marked) symbols on the tapes.
The machine ReadCurrentSymbols : TM1

ΓO(Σ)𝑛 scans the
list of tapes from left to right and stores the read symbols in
a vector, and counts how many symbols it has already read.
Note that an exponential blow-up of the states of Step𝑞 (w.r.t.
𝑛) seems to be inevitable because ReadCurrentSymbols has
to account for all permutations of read symbols.
In order to store all read symbols, ReadCurrentSymbols

has to do some ‘book keeping’. It uses the MemWhile oper-
ator, with O(Σ)𝑛 × F𝑛 as the internal state type. The vector
contains the already read symbols, and the index 𝑖 is the
number of tapes that have already been scanned. After ex-
ecutingGoToCurrent andGoToNext, it increases the counter
and repeats the loop if GoToNext terminated on a # symbol.
Otherwise, if the $ symbol was reached, the counter 𝑖 must
have been 𝑛 − 1; ReadCurrentSymbols will then terminate
in the state that is labelled with the complete vector of read
symbols 𝑐𝑠 : O(Σ)𝑛 .

7.2.2 Executing Actions
After ReadCurrentSymbols has read all symbols, we can use
the state 𝑞 and the vector 𝑐𝑠 on the meta level to access
the vector 𝑎𝑐𝑡𝑠 : Act𝑛 . The machine DoActions 𝑎𝑐𝑡𝑠 : TM1

Γ
scans the tape again and executes each action. Similar to
ReadCurrentsymbols, it keeps track of the index 𝑖 of the
current tape.
The interesting part is the machine DoAction 𝑎, which

executes the action 𝑎 : O(Σ) ×Move.
Executing single actions consists of two steps: first, the

current symbol is overwritten (if the O(Σ) is not ∅), and
then the move is performed. Moving the current symbol just
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amounts to toggling the ‘underline’ marking of two adjacent
symbols, as we have shown in the above example. Writing is
simple if we are not at a boundary symbol; we just have to
overwrite the current symbol. However, in the case that we
write on an underlined boundary symbol, we have to shift
the entire tape content on one of the sides in order to append
a new boundary symbol to the left or right. Here, we need
the arrows over the boundary symbols, in order to know in
which direction we have to shift the tape.

7.2.3 Complete Machine
Using the outlined machines ReadCurrentSymbols and
DoActions, we can, for each step 𝑞, define a machine Step 𝑞
executing it, found in the appendix [Forster et al. 2019]. The
loop function Loop : 𝑄𝑀𝑛

→ TM1
Γ (𝐿) and the machine

𝑀1 : TM1
Γ can now be finally defined:

Loop := MemWhile Step

𝑀1 := Loop 𝑖𝑛𝑖𝑡𝑀𝑛

The correctness statement says that whenever𝑀1 termin-
ates, 𝑀𝑛 also terminates given the encoded tapes with the
same label as𝑀1:

Theorem 7.2 (Correctness of𝑀1).
𝑀1 ⊨

(
𝜆𝑡 (ℓ, 𝑡 ′). ∀(𝑡𝑝𝑠 : Tape𝑛Σ). 𝑡 [0] ≃ 𝑡𝑝𝑠 →

∃𝑞 𝑡𝑝𝑠 ′. 𝑀𝑛 (𝑡𝑝𝑠) ⊲ (𝑞, 𝑡𝑝𝑠 ′) ∧ 𝑡 ′[0] ≃ 𝑡𝑝𝑠 ′ ∧ ℓ = lab𝑀𝑛
𝑞
)

Note that, similar to our universal machine, the constant-
factor space overhead follows as our tape encoding guaran-
tees that, except for boundary symbols, every symbol on the
tapes 𝑡𝑝𝑠 corresponds to symbols on 𝑡 .

The termination statement says that if𝑀𝑛 terminates, then
𝑀1 will also terminate when given the encoding of the tapes
of 𝑀𝑛 ; and the running time of 𝑀1 can be bounded by a
concrete function. We have also shown that this running
time function can be bounded by a polynomial.

Theorem 7.3 (Running time of𝑀1). There is a constant 𝑐
s.t.

𝑀1 ↓
(
𝜆𝑡 𝑘.∃𝑡𝑝𝑠 𝑘 ′ 𝑐 ′. 𝑀𝑛 (𝑡𝑝𝑠) ⊲𝑘

′
𝑐 ′ ∧ 𝑡 ≃ 𝑡𝑝𝑠

∧ 𝑐 · ( |𝑡𝑝𝑠 | + 𝑛 · 𝑘 ′)2 · 𝑘 ′ ≤ 𝑘
)

8 Universal Turing Machine
In this section, we outline a universal Turing machine Univ.
Univ expects as input the encoding of a single-tape Turing
machine𝑀 and a tape 𝑡 and computes the result of𝑀 on 𝑡 .
Tape 0 is treated as a ‘raw’ tape, containing the tape of the
simulated machine, while all other tapes are registers. For
instance, tape 1 will contain an encoding of 𝛿𝑀 while tape 2
will contain the encoding of the current state of𝑀 . Instead
of restricting to binary machines 𝑀 , we parametrise Univ
over the tape alphabet of the machines that can be simulated.

The high-level outline of Univ is as follows: The machine
Step first checks whether the current state is a final state and

halts if this is the case. Otherwise, it reads the current symbol
and looks up the action to be executed from the encoding of
𝛿 . After this, it executes the action on the object state and
updates the tape for the current state. Ultimately, we will
define Univ := While Step.

Encoding of transition functions We encode states as
tuples B × N. The Boolean encodes whether the state is a
halting state. The number is a numerical representation for
the machine state.

Transition functions 𝛿 are encoded as an ‘association list’,
i.e. a list L(𝐴 × 𝐵), specifically with:

𝐴 := O(Σ𝑀 ) × (B × N) 𝐵 := (O(Σ𝑀 ) ×Move) × (B × N)
Σ𝛿 is defined as the canonical alphabet that is used to encode
this list.

We have a family of machines Lookup : TM5
ΣL(𝑋×𝑌 )

(para-
metrised over alphabets Σ𝑋 and Σ𝑌 ), that looks up a value 𝑥
in an associative list of type L(𝑋 ×𝑌 ). This machine is used
in order to lookup the pair of the required actions and the
successor state according to the transition function 𝛿 .

Alphabet For the definition of Univ, we follow a general
practice for machines involving complex alphabets, which
we demonstrate as an example here. The class of machines
Univ : TM6

Σ+Univ
is parametrised over an arbitrary alphabet

ΣUniv. This alphabet has to ‘include’ some smaller alphabets
that we need for the definition of Univ. In this case, we need
an alphabet Σ𝛿 (for the encoding of 𝛿), and the alphabet
Σ𝑀 (the object tape). The ‘inclusion’ of these alphabets is
specified by the user of Univ using retractions into ΣUniv, i.e.
𝑓𝛿 : Σ𝛿 ↩→ ΣUniv and 𝑓𝑀 : Σ𝑀 ↩→ ΣUniv.

Outline We have some auxiliary machines that work dir-
ectly on the object tape. We say that the object tape 𝑡 :
TapeΣUniv contains the simulated tape 𝑡𝑀 : TapeΣ𝑀 if we have
𝑡 = (𝜆𝑠. 𝑓𝑀 𝑠)@𝑡𝑀 , and write 𝑡 ≃ 𝑡𝑀 .3

The auxiliary machine ReadCurrent : TM1
Σ+Univ
(O(Σ𝑀 ))

reads the current symbol from the object tape by reading its
current symbol and mapping it to the alphabet of Σ𝑀 using
𝑓 −1
𝑀

. Similarly, the machine DoAction 𝑎 executes an action
𝑎 : O(Σ𝑀 ) ×Move on the object tape.

We also have auxiliary machines SetFinal 𝑏 and IsFinal :
TM(B) that set or get the Boolean in the encoding of a state.

The step machine Step : TM6
Σ+Univ
(O(1)) works as follows:

It first uses IsFinal to check whether the machine is in a final
state. If so, it will immediately terminate in the label ⌊()⌋.
Otherwise, it will copy the read symbol from the object tape
to an internal tape. It will then construct the pair (𝑐𝑠, 𝜀 (𝑞))
and uses the machine Lookup to look up the pair (𝜀 (𝑞′), 𝑎)
for this combination of read symbols and current state. It
destructs the pair, executes the action, and stores the state 𝑞′
as the current state. Finally, we define Univ := While Step.

3Note that we implicitly map 𝑓𝑀 𝑠 to the extended alphabet Σ+Univ.
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Note that if we want an actual machine (for a given alpha-
bet Σ𝑀 ), we have to instantiate the retractions 𝑓𝛿 and 𝑓𝑀 . For
example, we can choose ΣUniv := Σ𝛿 and 𝑓𝛿 := 𝑖𝑑 ; there are
multiple options to define 𝑓𝑀 (because Σ𝑀 occurred multiple
times in Σ𝛿 ).
The correctness theorem states that if Univ contained a

configuration 𝑐 of some machine 𝑀 : TM1
Σ𝑀

, and if Univ
terminated, then𝑀 also terminates in some number of steps,
and the tapes of Univ encode the final configuration of𝑀 .

Theorem 8.1 (Correctness of Univ).

Univ ⊨ 𝜆𝑡 𝑡 ′.

∀(𝑀 : TM1
Σ𝑀
) (𝑡𝑀 : TapeΣ𝑀 ) (𝑞 : 𝑄𝑀 ) (𝑠1 𝑠2 𝑠3 𝑠4 𝑠5 : N).

𝑡 [0] ≃ 𝑡𝑀 → 𝑡 [1] ≃𝑠1 𝛿𝑀 → 𝑡 [2] ≃𝑠2 𝑞 →
isVoid𝑠3 (𝑡 [3]) → isVoid𝑠4 (𝑡 [4]) → isVoid𝑠5 (𝑡 [5]) →
∃(𝑡 ′𝑀 : TapeΣ𝑀 ) (𝑞

′ : 𝑄𝑀 ). 𝑀 (𝑞, 𝑡𝑀 ) ⊲ (𝑞′, 𝑡 ′𝑀 ) ∧
𝑡 ′[0] ≃ 𝑡 ′𝑀 ∧ 𝑡 ′[1] ≃𝑠1 𝛿𝑀 ∧ 𝑡 [2] ≃(2+|𝑄𝑀 |+max 𝑐𝑀 𝑠2) 𝑞

′ ∧
isVoidmax 𝑐𝑀 𝑠3 (𝑡 ′[3]) ∧ isVoidmax 𝑐𝑀 𝑠4 (𝑡 ′[4]) ∧
isVoidmax 𝑐𝑀 𝑠5 (𝑡 ′[5]), where 𝑐𝑀 := |𝜀 (𝛿𝑀 ) | + 1

Here, note that regarding space, we have that every tape
(except for the object tape) can be bounded by a constant
depending on𝑀 . The object tape 𝑡𝑀 itself uses exactly the
same number of symbols as in the simulated machine𝑀 , as
it contains the same content.

The running time theorem of Univ states that if𝑀 termin-
ates in 𝑘 steps, then Univ will terminate in a certain number
of steps if Univ’s input tapes contain the encoding of𝑀 ’s ini-
tial configuration. Furthermore, we polynomially bounded
the number of steps.

Theorem 8.2 (Running time of Univ). There is a constant
𝑐 such that for every alphabet Σ𝑀 :

Univ ↓ 𝜆𝑡 𝑘.
∃(𝑀 : TM1

Σ𝑀
) (𝑡𝑀 𝑡 ′𝑀 : TapeΣ𝑀 ) (𝑞 𝑞

′ : 𝑄𝑀 ) (𝑘 ′ : N).
𝑡 [0] ≃ 𝑡𝑀 ∧ 𝑡 [1] ≃ 𝛿𝑀 ∧ 𝑡 [2] ≃ 𝑞𝑀 ∧
isVoid(𝑡 [3]) ∧ isVoid(𝑡 [4]) ∧ isVoid(𝑡 [5]) ∧
𝑀 (𝑞, 𝑡𝑀 ) ⊲𝑘

′ (𝑞′, 𝑡 ′𝑀 ) ∧ 𝑐 · (1 + 𝑘 ′) · |𝜀 (𝛿) | · |𝑄𝑀 | ≤ 𝑘

We summarise the above theorems:

Theorem 8.3. Univ is a universal Turing machine that sim-
ulates single-tape machines with constant space overhead and
linear running time overhead.

Using the compiler from section 7 we can compile Univ
to a class of single-tape universal Turing machines U (para-
metrised over an alphabet Σ𝑀 ) simulating other single-tape
machines. Furthermore, if we see the compiler as an encod-
ing for 𝑛-tape machines, we can define a class of single-tape
universal Turing machines MU (again parametrised over an
alphabet Σ𝑀 ) simulating multi-tape Turing machines.

Table 1. Line counts (grouped, counted with coqwc)

Component Spec Proof
Libraries (finite types, retractions, etc.) 2157 2716
L0&L1 Semantics of (labelled) TMs 644 288

Primitive Machines 178 48
L2 Lifts 367 195

Combinators 561 541
Simple machines 598 432

L3 Encodable types 282 179
Tape-containment 171 43
(De-) constructors 501 511
CopyValue, Reset, Compare 538 548
Refinement on alphabet-lift 139 93

Ltac automation (for L2 and L3) 156 15
Complexity Time (infrastructure and machines) 268 279

Space (infrastructure and machines) 259 193
Add andMult 222 276
𝑀1 Encoding 76 65

Implementation 783 1186
Time bounds 236 371

Univ Lookup in association list 169 120
Implementation 324 333
Time bounds 146 212
Space bounds 240 300

MU (single-tape Univ for multi-tape machines) 408 637
Total (excl. libraries) 7327 6957

9 Mechanisation in Coq
The development covered in this paper consists of ca. 19100
lines of code. Of that, ca. 4800 lines are various extensions
of the standard library. The development of L0 and L1 take
together 1158 lines, L2 2694 lines, and L3 3005 lines. The
implementation of addition and multiplication takes 496
lines, whereas the multi-tape to single-tape compiler takes
2717 lines, and the universal machine takes 1844 lines. In
total, we have a ratio of 51% to 49% specification vs. proofs
(excluding libraries). We developed ca. 200 lines of new Ltac
tactics. The development takes about 5 minutes to compile
on an Intel(R) Core(TM) i7-6600U CPU @ 2.60GHz machine.
Our project started in October 2016 and needed several

re-implementations to serve as a basis for feasible imple-
mentations covering both time- and space-complexity. We
had an almost finished implementation of levels L0-L3 not
covering termination or any complexity analyses early on.
This implementation however did parameterise every ma-
chine w.r.t. both tapes and an alphabet, which lead to very
high compile-times and finally to unsolvable problems with
deconstructor machines on level L3.
We tried to keep the paper presentation faithful to the

mechanisation. There are however several minor differences.
For instance, we do not use the implicit coercion from ma-
chines to unit-labelled machines in Coq and always write
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TM𝑛
Σ (1) explicitly. In some cases, it made sense to split type

classes to decrease the size of proof terms. For instance, we
do not capture injectivity in the type class for encodable
types, because it is never technically needed, but only prove
it as a lemma. More notably, we define tapes over arbitrary
types𝑋 instead of finite types Σ for all definitions not making
use of the finiteness. The definition of Turing machines then
instantiates the alphabet with a finite type. This change had
noticeable impact on compilation times: In dependent type
theory, equalities take the type over which they are defined
as argument. Finiteness proofs can be big, and rewriting
with bigger proof terms can take longer time, making our
change result in a significant speed-up since we rewrite with
tape-equalities a lot.

Finite types in general proved to be a hurdle. We relied on
the implementation by Menz [2016] in Coq. However, using
a more mature implementation like that of mathcomp would
have been more helpful, since we found ourselves going back
to changing the implementation of finite types more than
once. At the start of our project, the Coq ecosystem was not
as mature as it is today, and the installation of third-party
libraries was sometimes a hassle, which prevented us from
using mathcomp.4 The ease of installing new libraries using
opam would thus have spared us lots of work.

For realisation proofs, we developed a considerable amount
of automation. Crucial for this were three tools: First, Sig-
urd Schneider’s smpl plugin,5 which allows automated for-
ward reasoning and simplification and is extendable by hints.
Second, Coq’s tactic language Ltac, with the ability to intro-
duce existential variables (so called evars). And third, Coq’s
setoid rewriting facilities [Sozeau 2010]. In total, we are sure
that implementing a project like ours in a proof assistant
without tactics is infeasible.

The most advanced simplification tactic we use is called
TMSimp. It destructs complex assumptions and simplifies the
goal by exhaustively rewriting with all available equations
between tapes. The tape equations can be considered the
main antagonist in terms of usability and compile time in
our framework, using them by hand is almost impossible,
and the introduction of TMSimp eased our work on all levels.

10 Related Work
To the best of our knowledge, there are three mature mech-
anisations of Turing machines in the literature.
Ciaffaglione [2016] formalises the undecidability of the

halting problem for Turing machines in Coq. They use a
coinductive encoding of tapes. Since only a finite part of
tapes is used in any computation, we were happy with our
inductive characterisation.

Xu, Zhang, and Urban [2013] formalise Turing machines,
Abacus machines and 𝜇-recursive functions. They obtain

4In retrospect, we should have gone through the hassle.
5https://github.com/sigurdschneider/smpl

a universal Turing machine by formalising a universal 𝜇-
recursive function and verified compilers from 𝜇-recursive
functions to Abacus machines and on to Turing machines.
Abacus machines are a simple form of register machines
which allow incrementation, decrementation and an uncon-
ditional jump operation. Xu et al. also verify that the halting
problem of Turing machines is undecidable.
Asperti and Ricciotti [2012, 2015] formalise single- and

multi-tape Turing machines over arbitrary finite alphabets
in Matita [Asperti et al. 2011], an interactive theorem prover
based on the same constructive type theory as Coq. They
define a universal Turing machine and show the functional
correctness and termination of their machine.

We build upon their work: We use almost the same defin-
ition of Turing machines in constructive type theory, and
especially their representation of tapes as an inductive type
is very useful, as it is canonical and abstracts away from
the notion of blank cells used commonly on paper. We build
upon their notion of realisability that specifies the semantics
of a machine in terms of the relation that holds between the
input and the output tape, and upon their idea of composing
machines by using shallowly-embedded combinators.

We see four main improvements in our work:
First, we introduce the possibility to analyse time and

space complexity of machines. Thus, both our universal
machine and the compiler from multi-tape to single-tape
machines have stronger specifications. In principle, since
space complexity is a correctness property (for the defini-
tion of tapes used in their and our work), analysing space
would have already been possible in Asperti and Ricciotti’s
approach, but is not considered.

Secondly, our notions of encoding and containment allow
constructions of Turing machines reading like programs in
a while-language that supports (a finite number of) registers
containing values of inductive types. This simplified the
construction of our universal Turing machine considerably.

Thirdly, Asperti and Ricciotti use concrete final states of the
implicitly constructed machines to handle the control flow
in the ‘if’ and ‘while’ combinator. This breaks the abstrac-
tions their realisability framework provides, thus they define
a second version of realisability that mentions a concrete
‘accepting’ state. Because we want to abstract away from
the state space of machines, we introduce labelled Turing
machines, with a labelling function mapping (final) states to
the elements of an arbitrary type. Compositions of machines
can now be specified w.r.t. their labels, and we never have
to mention states.

Fourthly, Asperti and Ricciotti usually construct machines
parametrically in the alphabet used. Similarly, the number of
tapes of the constructed machines is a parameter. This means
that when composing machines, each composed machine
has to work with the same alphabet and the same number
of tapes as the resulting machine. Therefore, a lot of basic
machines are parametric in the number of tapes and the index

https://github.com/sigurdschneider/smpl
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of the different used tapes, which need to be given explicitly.
We use the notion of liftings to extend tapes and the alphabet.
The tape-lift significantly simplifies both the definition and
verification of machines, whereas for the alphabet we think
that the two approaches don’t differ considerably.

To our knowledge, we presented the first completely axiom-
free mechanisation of a multi-tape-to-single-tape compiler.
There is a conceptually different, but incomplete, mechan-
isation of such a compiler in Matita’s standard library.

Concerning other sequential models of computations, we
are aware of the formalisation of register machines by For-
ster and Larchey-Wendling [2019] in Coq, which are proven
equivalent to Diophantine equations [Larchey-Wendling and
Forster 2019]. We believe that showing the equivalence of
their register machines and our Turing machines would be
relatively straightforward. Bayer et al. [2019] formalise a vari-
ant of register machines for their work-in-progress proof of
the undecidability of Hilbert’s tenth problem in Isabelle.
There are various other formalisation of other models of

computation. Norrish [2011] formalises the full 𝜆-calculus in
HOL light and proves the undecidability of the halting prob-
lem, besides various other computability-theoretic results.
In a similar spirit, Forster and Smolka [2017] formalise the
weak call-by-value 𝜆-calculus in Coq and also formalise basic
computability theory. Carneiro [2018] formalises 𝜇-recursive
functions and similar basic computability results in Lean. Fi-
nally, Ramos et al. [2018] formalise the undecidability of the
halting problem of a PVS-like functional language in PVS.

11 Discussion and Future Work
Asperti and Ricciotti [2015] set out with the goal to formalise
complexity theory in a proof assistant, and accomplished to
verify the correctness of a universal machine.We have gotten
some steps closer to formalising actual complexity theoretic
results by extending their results with time and space com-
plexity, but are still nowhere near making formalisations
of complexity theory feasible. With the current state of the
art, neither simple examples nor interesting complexity the-
oretic theorems are in reach, much less results requiring
oracles or nondeterminism. We are convinced that this is
not due to the lack of powerful verification tools for Turing
machinesbut rather because Turing machines as model of
computation are inherently infeasible for the formalisation
of any computability or complexity theoretic result.
The most promising approach to formalising complexity

theory in our eyes is to carry out formalised complexity
theory in the 𝜆-calculus, following formalisations of com-
putability theory (e.g. by Forster and Smolka [2017]). For
the most satisfying results, a complexity-theoretic equival-
ence between Turing machines and some form of 𝜆-calculus
should then be formalised, allowing results proved in the
𝜆-calculus to be formally translated back to Turing machines.
Forster and Kunze [2019] show in Coq that the weak call-
by-value 𝜆-calculus 𝐿 can simulate Turing machines with a

linear time overhead, building on our definition of machines.
Their translation also is linear in space (although that fact is
notmade formal in Coq). Similarly, Forster et al. [2020a] show
that Turing machines can simulate 𝐿 with polynomial time
and constant factor space overhead, using a rather involved
simulation technique. In the current state of our framework,
formalising this technique would take very long and would
be at least daunting, but probably entirely infeasible.
What we have accomplished is to use the combinators

from layer L2 and the register operations from L3 to obtain
a relatively easy and explainable verification of a universal
Turing machine w.r.t. to the notions of correctness and ter-
mination defined on layer L1. The multi-tape to single-tape
compiler explained in Section 7 did not make use of L3.

For these large programs, proofs oftentimes became hard
to navigate: The relations our framework derives follow
the structure of the program. This is helpful in getting an
intuition for proving these relations equivalent to shorter,
problem-focused relations, but the equivalence proofs can
become huge and involve a lot of tedious reasoning.
Coq’s kernel takes long to elaborate the verification of

large machines likeUniv. One problem is that the tape-lifting
operator introduces equations between tapes, and the auto-
mation that tries to rewrite with them everywhere has bad
asymptotic complexity. The equations cannot be simply re-
moved, because they may still be needed in some later part
of the proof. Furthermore, termination proofs have a similar
structure as realisation proofs, but are too different to make
generalisations or copy-and-paste approaches impossible.
Xu et al. [2013] employ a very low-level Hoare logic to

verify their machines. For low-level verification, we actually
found our realisation framework to be quite well-suited. In
futurework, wewant to investigate aHoare-logic with native
support for realisation, termination, asymptotic time- and
space complexity as well as value-containment. We have
hope that this would make a simulation of the 𝜆-calculus in
Turing machines feasible.

We contribute our formalisation to the library of unde-
cidable problems in Coq [Forster et al. 2020b]. Note that
Section 7 contains a synthetic many-one reduction reduc-
tion from the halting problem of multi-tape Turing machines
to the halting problem of single-tape machines. To connect
the halting problem of single-tape Turing machines to other
problems in the library, we translated the halting problem
for machines 𝑀 : TM1

Σ to the formalisation of single-tape
machines used by Forster, Heiter, and Smolka [2018], thereby
obtaining a reduction from halting to the Post correspond-
ence problem.
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