
Clausal Tableaux for Hybrid PDL

Mark Kaminski and Gert Smolka

Saarland University

September 20, 2011

We present the first tableau-based decision procedure for PDL with nom-

inals. The procedure is based on a prefix-free clausal tableau system

designed as a basis for gracefully degrading reasoners. The clausal sys-

tem factorizes reasoning into regular, propositional, and modal reasoning.

This yields a modular decision procedure and pays off in transparent cor-

rectness proofs.

1 Introduction

PDL (propositional dynamic logic) [6, 12, 9] is an expressive modal logic invented

for reasoning about programs. It extends basic modal logic with expressions

called programs. Programs describe relations from states to states and are used

to express modalities. Programs are composed with the operators familiar from

regular expressions. In addition, they may employ formulas so that conditionals

and while loops can be expressed. Fischer and Ladner [6] show the decidabil-

ity of PDL using a filtration argument. They also prove that the satisfiability

problem for PDL is EXPTIME-hard. Pratt [16] shows that PDL satisfiability is in

EXPTIME using a tableau method with an and-or graph representation. Goré and

Widmann [7, 8] address the efficient implementation of Pratt-style decision pro-

cedures.

We consider PDL extended with nominals [13, 14], a logic we call hybrid PDL

or HPDL. Nominals are atomic formulas that hold exactly for one state. Nominals

equip PDL with equality and are the characteristic feature of hybrid logic [2]. The

satisfiability problem of HPDL is in EXPTIME [14, 17].

We are interested in a tableau system for HPDL that can serve as a basis for

gracefully degrading decision procedures. We found it impossible to extend one

of the existing tableau methods for PDL [16, 5, 1, 7] to nominals. The difficulties

are in the correctness proofs. For Pratt-like methods [16, 7], the problem stems

1

from the fact that the global and-or graph representation is not compatible with

nominal propagation (see Remark 5.6 in [10] for a discussion and an example;

the problem is also noted in [18]).

The difficulties led us to the development of a new tableau method for modal

logic. The new method is based on a prefix-free clausal form. In a previous

paper [10] we used the method to give a tableau-based decision procedure for

the sublogic of HPDL that restricts programs to the forms a and a∗ where a is a

primitive action. In the present paper we extend the clausal method to full HPDL

and obtain the first tableau-based decision procedure for HPDL.

Our method factorizes reasoning into regular reasoning, propositional rea-

soning and modal reasoning. At each level we realize reasoning with tableau

methods. Nominals are handled at the modal level. Given our approach, the in-

tegration of nominals is straightforward. The modular structure of our decision

procedure pays off in transparent correctness proofs. Each level invites opti-

mizations. The regular level, in particular, asks for further investigation. It may

profit from efficient methods for translating regular expressions into determin-

istic automata.

In contrast to previous approaches, we do not rely on the Fischer-Ladner clo-

sure. Instead, we use the notion of a finitary regular DNF that can be obtained at

the regular level.

Following Baader [3] and De Giacomo and Massacci [5], we disallow bad loops

and thus avoid the a posteriori eventuality checking of Pratt’s method [16].

The paper is organized as follows. First we define HPDL and outline the

clausal tableau method with examples. Then we address, one after the other,

regular, propositional, and modal reasoning. Finally, we prove the correctness of

the decision procedure.

2 Hybrid PDL

We define the syntax and semantics of HPDL. We assume that three kinds of

names are given:

• nominals (metavariables x, y , z; denote states)

• predicates (metavariables p, q, r ; denote sets of states)

• actions (metavariables a, b, c; denote relations from states to states).

The interpretations of HPDL are the usual transition systems where states are

labelled with predicates and edges are labelled with actions. Formally, an inter-

pretation I is a tuple consisting of the following components:

• A nonempty set |I| of states.

• A state Ix ∈ |I| for every nominal x.

2011/9/20 2

• A set Ip ⊆ |I| for every predicate p.

• A relation
a
→I ⊆ |I| × |I| for every action a.

Formulas (metavariables s, t, u) and programs (α, β, γ) are defined as follows:

s ::= x | p | ¬s | s ∧ s | 〈α〉s

α ::= a | s | 1 | α+α | αα | α∗

The grammar is to be read inclusive, that is, every nominal and every predicate

is a formula, and every action and every formula is a program. Given an inter-

pretation, formulas denote sets of states and programs denote relations from

states to states. We use the letters X, Y , Z to denote states. The semantic rela-

tions I , X ⊨ s and X
α
-→I Y are defined by mutual induction on the structure of

formulas and programs:

I , X ⊨ x ⇐⇒ X = Ix

I , X ⊨ p ⇐⇒ X ∈ Ip

I , X ⊨ ¬s ⇐⇒ not I , X ⊨ s

I , X ⊨ s ∧ t ⇐⇒ I , X ⊨ s and I , X ⊨ t

I , X ⊨ 〈α〉s ⇐⇒ ∃Y : X
α
-→I Y and I , Y ⊨ s

X
a
-→I Y ⇐⇒ X

a
→I Y

X
s
-→I Y ⇐⇒ X = Y and I , X ⊨ s

X
1
-→I Y ⇐⇒ X = Y

X
α+β
-→ I Y ⇐⇒ X

α
-→I Y or X

β
-→I Y

X
αβ
-→I Y ⇐⇒ ∃Z : X

α
-→I Z and Z

β
-→I Y

X
α∗
-→I Y ⇐⇒ X

α
-→∗I Y

α
-→∗I denotes the reflexive transitive closure of

α
-→I

Given a set A of formulas, we write I , X ⊨ A if I , X ⊨ s for all formulas s ∈ A. An

interpretation I satisfies (or is a model of) a formula s or a set A of formulas if

there is a state X ∈ |I| such that I , X ⊨ s or, respectively, I , X ⊨ A. A formula s

(a set A) is satisfiable if s (A) has a model.

The complement ∼s of a formula s is t if s = ¬t and ¬s otherwise. Note that

∼∼s = s if s is not a double negation. We use the notations s ∨ t := ¬(∼s ∧ ∼t)

and [α]s := ¬〈α〉∼s. Note that ∼〈α〉p = [α]¬p and ∼〈α〉¬p = [α]p. The

size |s| and |α| of formulas and programs is defined as the size of the abstract

syntax tree. For instance, |ap| = |〈p〉q| = 3. Note that |s ∨ t| > |s|, |t| and

|[α]s| ≥ |〈α〉s| > |α|, |s|.

2011/9/20 3

3 Outline of the Method

Our tableau method is based on a clausal form, which provides for the separation

of regular, propositional, and modal reasoning. We start with a few definitions

and three examples.

A basic formula is a formula of the form p, x, or 〈aα〉s. A literal is a basic

formula or the complement of a basic formula. A clause (written C , D, E) is a

finite set of literals that contains no complementary pair (i.e., a pair of the form

p, ¬p). We interpret clauses conjunctively. Satisfaction of clauses (i.e., I , X ⊨ C)

is a special case of satisfaction of sets of formulas (i.e., I , X ⊨ A), which was

defined in §2. For instance, the clause {〈a〉p, [a](¬p ∧ q)} is unsatisfiable.

A claim is a pair Cs consisting of a clause C and a diamond formula s. While

we do not require s ∈ C , for every claim Cs that we consider in the following

it will be the case that C supports s. The notion of support is defined formally

later such that C supporting s (or A) and I , X ⊨ C implies I , X ⊨ s (I , X ⊨ A).

The request of a clause C for an action a is RaC := { [α]s | [aα]s ∈ C }. As an

example, consider the clause C = {〈ab∗〉p, 〈bb∗〉p, [a(a + b)∗]¬p}. We have

RaC = {[(a + b)
∗]¬p} and RbC = 0.

Our tableau method works on clauses and links (to be formally defined later)

rather than single formulas. Intuitively, a link is a pair of claims CsDt denoting

that in order for a model to satisfy the diamond literal s in C , it suffices to satisfy

D∪{t}. Given a single clause, the method tries to extend it to a tableau branch in

which every diamond literal s in every clause C is realized with a link CsDt where

D is one of the clauses of the branch. Provided the relation induced by the links

is terminating, every such branch is a model of all of its clauses. If every branch

constructed by the method fails to realize some diamond literal with a link or

contains a loop formed by links, we conclude that the input is unsatisfiable. Thus

we obtain a decision procedure for the satisfiability of clauses. At the same time,

the procedure decides the satisfiability of formulas since in HPDL a formula s is

satisfiable if and only if so is the clause {〈a〉s} (the choice of a does not matter).

The method is implemented with three reasoners. The regular reasoner de-

composes a program α into simpler (according to some measure) programs

β1, . . . , βn such that α ≡ β1 + · · · + βn. For instance, a∗ is decomposed into

aa∗ and 1.

The propositional reasoner determines for every set A of formulas a set of

clauses supporting A such that I , X ⊨ A if and only if I , X ⊨ C for one of the

clauses. Given the formula 〈a∗〉p ∧ [b∗]¬p, for instance, the propositional rea-

soner determines the single clause {〈aa∗〉p, ¬p, [bb∗]¬p}.

The modal reasoner is the top-level reasoner of our tableau method. For every

satisfiable clause it constructs a finite model whose states are clauses and where

2011/9/20 4

every state C satisfies the clause C . To do so, the modal reasoner starts with the

initial clause and derives further clauses until every diamond literal s in every

clause C is realized with a link. The modal reasoner calls the regular reasoner to

determine the successor formula t and the propositional reasoner to determine

the successor clause D. The tableau method terminates since the derived clauses

must take their literals from a finite set that can be determined from the initial

formulas.

Let us now give three examples illustrating our method in action. At this

point, they are there to provide some additional intuition about the method and

do not have to be understood in all details. To fully understand the examples one

should review them after all of the formal prerequisites have been introduced

in § 8.

Example 3.1 Consider the following literals and clauses:

s := 〈a(a+ b)∗〉p C := {t,¬p,u}

t := 〈b(a+ b)∗〉p D := {s, t,¬p,u}

u := [bb∗](¬p ∧ t) E := {p}

We start the modal reasoner with the satisfiable clause C . There is one claim Ct

to be realized. We need a clause that supports the formulas 〈(a + b)∗〉p and

[b∗](¬p∧ t). The regular reasoner and the propositional reasoner determine Ct

and Ds as possible successor clauses and successor literals. The modal reasoner

rejects Ct since it would introduce the loop CtCt . The pair Ds is fine and adds

the clause D and the link CtDs . The claim Ct is now realized. However, the new

clause D has two unrealized claims Ds and Dt . To realize Ds , we need a clause

that supports the formula 〈(a + b)∗〉p. The regular and the propositional rea-

soner yield the pairs E〈1〉p, {s}s , and {t}t . We choose E〈1〉p and add the clause E

and the link DtE〈1〉p. It remains to realize Dt . To do so, we need a clause that

supports the formulas 〈(a+b)∗〉p and [b∗](¬p∧ t). As before, the regular and

the propositional reasoner yield Ct and Ds . Both are fine. We choose Ct and

add the link DtCt . This gives us a model for the initial clause C . A graphical

representation of the model looks as follows:

C t, ¬p, u

D s, t, ¬p, u

E p

b b

a

�

2011/9/20 5

Example 3.2 Consider the following literals:

s := 〈a(a+ b)∗〉¬p u := [a(b + a)∗]p

t := 〈b(a+ b)∗〉¬p v := [b(b + a)∗]p

Here is a closed tableau for the unsatisfiable clause {s, u}:

C1 = {s, u}

C2 = {s, p,u, v} C3 = {t, p,u, v}

Cs1C
s
2 Cs1C

t
3

C4 = {t, p,u, v} C5 = {s, p,u, v}

Cs2C
t
4 Ct3C

s
5

The tableau is closed since all possible links for the claims Ct4 and Cs5 introduce

loops. For instance, for Ct4 the regular and the propositional reasoner yield the

links Ct4C
s
2 and Ct4C

t
4. Note that the clause names Ci do not act as prefixes. They

are only used for explanatory purposes. �

Example 3.3 Due to the clausal form, the extension of our tableau method to

nominals is straightforward. When we add a new clause to a branch, we add to

the new clause all literals that occur in clauses of the branch that have a nominal

in common with the new clause. This takes care of nominal propagation. Clauses

and links that are already on the branch remain unchanged.

Consider the clause C = {〈aa∗〉p, [a](x∧¬p), [b]x, 〈b〉[a]¬p}. The initial

tableau just consisting of C can be developed into a maximal branch as shown

below (graphical representation). The numbers indicate the order in which the

clauses are introduced. When clause 4 is introduced, nominal propagation from

clause 2 takes place. Note that we obtain a model of all clauses on the branch by

taking the clauses 1, 3, 4, and 5 as states and the triples 1a4, 1b4, 4a5, and 5a3

as transitions.

〈aa∗〉p, [a](x ∧¬p), [b]x, 〈b〉[a]¬p
1

x, 〈aa∗〉p, ¬p
2

x, 〈aa∗〉p, ¬p, [a]¬p
4

p
3

〈aa∗〉p, ¬p
5

�

4 Language-Theoretic Semantics

We define a language-theoretic semantics for programs that treats formulas as

atomic objects. This semantics is the base for the regular reasoner and decouples

2011/9/20 6

it from the propositional reasoner. It is also essential for the correctness proofs

of the modal reasoner. The semantics is an adaption of the language-theoretic

model of Kleene algebras with tests [11].

The letters A, B range over finite sets of formulas. A guarded string is a finite

sequence Aa1A1 . . . anAn where n ≥ 0. The letters σ and τ range over guarded

strings. Every program corresponds to a set of guarded strings, which can be

seen as runs of the program. For instance, the program (pa)∗b¬p corresponds

to the set of all guarded strings A1aA2 . . . aAnaAn+1bAn+2 such that n ≥ 1,

p ∈ A1 ∩ · · · ∩An, and ¬p ∈ An+2 (there are no restrictions on An+1).

The length |σ | of a guarded string σ = Aa1A1 . . . anAn is n. We use For

to denote the set of all formulas. A language is a set of guarded strings. For

languages L and L′ and sets of formulas A we define the following:

LA := {B | A ⊆ B ⊆fin For } L0 := L0

L · L′ := {ωAω′ |ωA ∈ L, Aω′ ∈ L′ } Ln+1 := L · Ln

L∗ :=
⋃

n∈N

Ln

where ω, ω′ range over partial, possibly empty guarded strings. Note that L∗ =

L0∪ (L−L0) · L∗. We assign to every program α a language Lα:

La := {AaB | A,B ⊆fin For } L(α+ β) := Lα∪Lβ

Ls := L{s} L(αβ) := Lα · Lβ

L1 := L0 Lα∗ := (Lα)∗

Note that L(s∗) = L1 = L((s + t)∗).

Given an interpretation I , we define the relations
σ
-→I ⊆ |I| × |I| by induction

on the structure of σ :

X
A
-→I Y ⇐⇒ X = Y and I , X ⊨ A

X
Aaσ
-→ I Y ⇐⇒ I , X ⊨ A and ∃Z : X

a
-→I Z and Z

σ
-→I Y

Proposition 4.1

1. X
α
-→I Y ⇐⇒ ∃ σ ∈ Lα : X

σ
-→I Y

2. I , X ⊨ 〈α〉s ⇐⇒ ∃ σ ∈ Lα ∃Y : X
σ
-→I Y and I , Y ⊨ s

3. I , X ⊨ [α]s ⇐⇒ ∀σ ∈ Lα ∀Y : X
σ
-→I Y implies I , Y ⊨ s

5 Regular DNF

We now describe the regular reasoner. The regular reasoner relies on the

language-theoretic semantics and ignores the propositional and modal aspects

of the language.

2011/9/20 7

A program is basic if it has the form aα, and normal if it is 1 or ba-

sic. Intuitively, a regular DNF of a program α is a decomposition of α into

normal programs β1, . . . , βn such that α ≡ β1 + · · · + βn (or, more formally,

Lα = Lβ1 ∪ · · · ∪ βn). This simple intuition does not account for tests. The

program p, for instance, cannot be represented by any set of normal programs.

Hence formally we proceed as follows.

We use Fα to denote the set of all formulas that occur in α as subprograms.

For instance, F(a¬p + b〈ap〉q) = {¬p, 〈ap〉q}. Formulas that occur as pro-

grams are called tests. Note that Fα does not include tests that occur in tests

occurring in α.

Proposition 5.1 If s ∈ Fα, then, for every t, |s| < |¬s| < |〈α〉t| ≤ |[α]t|.

A guarded program is a pair Aα where A is a set of formulas and α is a

program. A guarded program Aα is normal if α is normal. The language of a

guarded program is L(Aα) := LA ·Lα. A regular DNF is a function D that maps

every program α to a finite set Dα of normal guarded programs such that:

1. Lα =
⋃

Bβ∈Dα

L(Bβ)

2. If Bβ ∈ Dα, then B ∪Fβ ⊆ Fα.

The regular reasoner computes a regular DNF. Kleene’s theorem (regular ex-

pressions translate into finite automata) [15] suggests that regular DNFs exist.

We give a naive algorithm that computes a regular DNF. For space reasons we

omit the correctness proof. The algorithm employs the following inference rules

for guarded programs.

Aa

Aa1

As

(A ; s)1

Asβ

(A ; s)β

A1β

Aβ

A(α1 +α2)

Aα1 , Aα2

A(α1 +α2)β

Aα1β , Aα2β

A(α1α2)β

Aα1α2β

Aα∗

A1 , Aαα∗

Aα∗β

Aβ , Aαα∗β

The notation A ; s stands for the set A ∪ {s}. Also, we write programs of the

form α(βγ) without parentheses as αβγ. Given a set G of guarded programs,

we denote the closure of G under the rules with RG. One can show that RG

describes the same language as G, and that RG is finite if G is finite. If G is a set

of guarded programs, we call a guarded program Aα ∈ G minimal in G if there

is no Bα ∈ G such that B ⊊ A. We obtain a regular DNF D by taking for Dα all

normal guarded programs in R{0α} that are minimal in R{0α}.

2011/9/20 8

Example 5.2 Consider the program (a+ b)∗. We have:

R{0(a+ b)∗} = {0(a+ b)∗, 01, 0(a+ b)(a+ b)∗, 0a(a+ b)∗, 0b(a+ b)∗}

D{(a+ b)∗} = {01, 0a(a+ b)∗, 0b(a+ b)∗} �

Example 5.3 Consider the program (p+q)∗ where p, q are predicates. We have

D{(p + q)∗} = {01}. We profit from the optimization that only the minimal

guarded programs are taken for the DNF. Otherwise D{(p + q)∗} would contain

three further elements: {p}1, {q}1, and {p, q}1. �

While the above naive algorithm yields a regular DNF for every program α,

its efficiency in practice remains to be seen. For programs without tests (i.e., for

regular expressions), efficient regular DNFs can be obtained via translation into

deterministic finite automata [4]. We expect that similarly efficient regular DNFs

also exist for programs with tests.

We fix some computable regular DNF D for the rest of the paper.

Proposition 5.4

1. I , X ⊨ 〈α〉s ⇐⇒ ∃ Bβ ∈ Dα : I , X ⊨ B ;〈β〉s

2. I , X ⊨ [α]s ⇐⇒ ∀ Bβ ∈ Dα : (∃ t ∈ B : I , X ⊨ ¬t) or I , X ⊨ [β]s

Proof Follows with Proposition 4.1. �

6 Propositional DNF

The propositional reasoner relies on a support relation from clauses to formulas

that abstracts from most modal aspects of the language. We define the support

relation C ⊲ s by recursion on s.

C ⊲ s ⇐⇒ s ∈ C if s is a literal

C ⊲¬¬s ⇐⇒ C ⊲ s

C ⊲ s ∧ t ⇐⇒ C ⊲ s and C ⊲ t

C ⊲ s ∨ t ⇐⇒ C ⊲ s or C ⊲ t

C ⊲ 〈1〉s ⇐⇒ C ⊲ s

C ⊲ [1]s ⇐⇒ C ⊲ s

C ⊲ 〈α〉s ⇐⇒ ∃Bβ ∈ Dα : (∀t ∈ B : C ⊲ t) and C ⊲ 〈β〉s if α not normal

C ⊲ [α]s ⇐⇒ ∀Bβ ∈ Dα : (∃t ∈ B : C ⊲¬t) or C ⊲ [β]s if α not normal

The last two equivalences of the definition employ the regular DNFD fixed above.

The recursion terminates since either the size of the formula is reduced (verify

2011/9/20 9

with Proposition 5.1) or the recursion is on a formula 〈β〉s or [β]s where β is

normal and s is unchanged. We say C supports s if C ⊲ s. We write C ⊲ A and

say C supports A if C ⊲ s for every s ∈ A. Note that C ⊲ D ⇐⇒ D ⊆ C (recall

that C and D denote clauses).

Proposition 6.1 If C ⊲A and C ⊆ D and B ⊆ A, then D ⊲ B.

Proposition 6.2 If I , X ⊨ C and C ⊲A, then I , X ⊨ A.

Proof Follows with Proposition 5.4. �

We define propositional DNFs as functions that, applied to a formula set A,

yield a DNF (in the traditional sense) of the conjunction of the formulas in A,

represented as a set of clauses. In other words, we require that a propositional

DNF D applied to a set A satisfies the equivalence
∧
s∈A s ≡

∨
C∈DA

∧
t∈C t.

Formally, a propositional DNF is a function D that maps every finite set A of

formulas to a finite set of clauses such that:

1. I , X ⊨ A ⇐⇒ ∃D ∈ DA : I , X ⊨ D.

2. C ⊲A ⇐⇒ ∃D ∈ DA : D ⊆ C .

Property (2) for propositional DNFs immediately implies the following proposi-

tion.

Proposition 6.3 If C ∈ DA, then C ⊲A.

In the following, we will often use Proposition 6.3 implicitly.

For the termination of the modal reasoner the propositional DNF must have

some additional finiteness property. We need a few preparatory definitions. The

variants of a program α are the basic programs β such that Bβ ∈ Dα for some B.

A base is a set U of basic formulas such that 〈β〉s ∈ U whenever 〈aα〉s ∈ U and β

is a variant of α. A base U supports a formula s if the following conditions are

satisfied:

1. U contains every basic formula that occurs in s.

2. If 〈α〉t occurs in s, α is not basic, and β is a variant of α, then 〈β〉t ∈ U .

A base supports a set of formulas A if it supports every formula s ∈ A.

Proposition 6.4 Every finite set of formulas is supported by a finite base.

Proof Follows from property (2) for the underlying regular DNF. �

A propositional DNF D is finitary if for every finite set of formulas A and

every base U supporting A and every clause C ∈ DA it holds that U supports C .

Proposition 6.5 There is a computable finitary propositional DNF.

2011/9/20 10

Proof The definition of the support relation can be seen as a tableau-style de-

composition procedure for formulas. Using this procedure, one develops A into

a complete tableau. The literals of each open branch yield a clause. All clauses

obtained this way constitute a DNF of A.

The direction “⇐” of property (1) for propositional DNFs follows with Propo-

sition 6.2. That the DNF is finitary follows from the fact that the decomposition

does not introduce new formulas except for diamond formulas obtained with the

finitary regular DNF. �

Example 6.6 Take the regular DNF given in §5 and the propositional DNF given

in the proof of Proposition 6.5. We have:

D{〈b∗〉p} = {{p}, {〈bb∗〉p}}

D{〈b∗〉p, [b∗](q ∧¬p)} = {{〈bb∗〉p, q, ¬p, [bb∗](q ∧¬p)}}

D{〈a∗〉p, [a∗]¬p} = 0

D{〈(a+ b)∗〉p} = {{p}, {〈a(a+ b)∗〉p}, {〈b(a+ b)∗〉p}}

D{〈(a+ b)∗〉p, [b∗]¬p} = { {〈a(a+ b)∗〉p, ¬p, [bb∗]¬p},

{〈b(a+ b)∗〉p, ¬p, [bb∗]¬p} }

For the third example note that [a∗]¬p is the complement of 〈a∗〉p. �

We fix some computable and finitary propositional DNF D for the rest of the

paper.

7 Diamond Expansion and Nominal Propagation

We now return to the modal reasoner, which was first explained in §3. The

modal reasoner builds a tableau where each branch contains clauses and links.

The goal consists in constructing a branch where every claim is realized with a

link and some further conditions are satisfied. We first make precise how the

modal reasoner derives new clauses.

An expansion of a claim C〈aα〉s is a claim D〈β〉s such that Bβ ∈ Dα and

D ∈ D(B ;〈β〉s ∪RaC) for some B. The following proposition formulates an im-

portant property of expansions (the proposition will not be needed later).

Proposition 7.1 Let Cs be a claim such that s ∈ C and let I satisfy C . Then there

exists an expansion Dt of Cs such that I satisfies D.

A link is a pair CsDt of two claims such that s ∈ C and there is an expansion

Et of Cs such that E ⊆ D. A quasi-branch is a finite set Γ of clauses and links

such that {C, D} ⊆ Γ whenever CsDt ∈ Γ . A quasi-branch Γ realizes a claim Cs

2011/9/20 11

if Γ contains some link CsDt . A base supports a quasi-branch Γ if it supports

every clause of Γ . An interpretation I satisfies a quasi-branch Γ (or is a model

of Γ) if I satisfies every clause in Γ .

We call a clause nominal if it contains a nominal. Let Γ be a quasi-branch

and A be a set of formulas. We realize nominal propagation with the notation

AΓ := A∪ { s | ∃x ∈ A ∃C ∈ Γ : x ∈ C ∧ s ∈ C }

Note that AΓ is the least set of formulas that contains A and all clauses C ∈ Γ

that have a nominal in common with A. Thus (AΓ)Γ = AΓ . Moreover, AΓ = A if A

contains no nominal.

Proposition 7.2 If an interpretation satisfies Γ and C , it satisfies CΓ .

Proposition 7.3 Let U be a base that supports a quasi-branch Γ , Cs be a claim

such that s ∈ C ∈ Γ , and Dt be an expansion of Cs . Then U supports DΓ .

8 Branches and Expansion Rule

A quasi-branch that realizes all its claims does not necessarily have a model.

To guarantee the existence of a model, we impose certain conditions on quasi-

branches that act as invariants of the modal reasoner. One of the conditions is

loop freeness.

Example 8.1 Consider the clause C = {〈aa∗〉¬p, p, q, [aa∗](p ∧ q)}. Note

that C is unsatisfiable, and that {C, C〈aa
∗〉¬pC〈aa

∗〉¬p} is a quasi-branch that

realizes every claim. The link of this quasi-branch describes a loop. �

A path in a quasi-branch Γ is a sequence C1
s1 . . . Cn

sn of claims such that:

1. ∀i ∈ [1, n] : CΓi = Ci.

2. ∀i ∈ [1, n− 1] ∃D : Ci
siDsi+1 ∈ Γ and DΓ = Ci+1.

A loop in a quasi-branch Γ is a path C1
s1 . . . Cn

sn in Γ such that n ≥ 2 and

Cn
sn = C1

s1 . A branch is a quasi-branch Γ that satisfies the following conditions:

• Functionality: If CsDt ∈ Γ and CsEu ∈ Γ , then Dt = Eu.

• Loop-freeness: There is no loop in Γ .

• Nominal coherence: If C ∈ Γ , then CΓ ∈ Γ .

The core of a branch Γ is CΓ := {C ∈ Γ | CΓ = C }. A branch Γ is evident if

Γ realizes C〈α〉s for all 〈α〉s ∈ C ∈ CΓ . We will show that every evident branch

has a model. The modal reasoner works on branches and applies the following

expansion rule:

2011/9/20 12

Expansion Rule

If 〈α〉s ∈ C ∈ CΓ and Γ does not realize C〈α〉s ,

then expand Γ to all branches Γ ;DΓ ;C〈α〉s(DΓ)t

such that Dt is an expansion of C〈α〉s and DΓ is a clause.

Note that a single clause always yields a branch. So the modal reasoner can start

with any clause.

Proposition 8.2 The modal reasoner terminates on every branch.

Proof Since branches are finite by definition, we know by Proposition 6.4 that

the initial branch is supported by a finite base. By Proposition 7.3 we know that

the expansion rule only adds clauses that are supported by the initial base. The

claim follows since a finite base can only support finitely many clauses. �

Given termination, the correctness of the modal reasoner can be established

by showing two properties:

1. Model Existence: Every evident branch has a model.

2. Soundness: Every satisfiable clause can be developed into an evident branch.

9 Model Existence

Proposition 9.1 Let Γ be an evident branch and 〈α〉s ∈ C ∈ CΓ . Then there exists

a unique path C〈α〉s . . . D〈1〉s in Γ .

Proof The path exists since Γ is loop-free and realizes every claim with a clause

in CΓ . The path is unique since Γ is functional. �

Lemma 9.2 If X
a
-→I Y and I , Y ⊨ B ;〈β〉s and Bβ ∈ Dα, then I , X ⊨ 〈aα〉s.

Proof Follows with Propositions 4.1 and 5.4. �

The model existence proof requires a somewhat involved induction, which we

realize with the following lemma.

Lemma 9.3 Let Γ be an evident branch and I be an interpretation such that:

• |I| = CΓ

• C
a
→I D ⇐⇒ ∃α, s, t, E : C〈aα〉sEt ∈ Γ and D = EΓ for all actions a

• C ∈ Ip ⇐⇒ p ∈ C for all predicates p

• Ix = C ⇐⇒ x ∈ C for all nominals x that occur in Γ

Let |Fα| := max{ |s| | s ∈ Fα }. Then for all n ∈ N:

2011/9/20 13

1. For every path C〈α〉s . . . D〈1〉s in Γ such that |Fα|, |s| < n:

I , C ⊨ 〈α〉s.

2. For all C , D, σ , α, s such that |Fα|, |s| < n− 1:

If C ⊲ [α]s, σ ∈ Lα, and C
σ
-→I D, then D ⊲ s.

3. For all C , s such that C ∈ CΓ and |s| = n:

If C ⊲ s, then I , C ⊨ s.

Proof By induction on n. Let n ∈ N. Note that (1) is trivial if n ≤ 1, (2) is trivial if

n ≤ 2, and (3) if n = 0 since, for every formula s, |s| ≥ 1. Otherwise, we proceed

as follows.

(1) Let π = C〈α〉s . . . D〈1〉s be a path in Γ such that |Fα|, |s| < n and C ⊲ 〈α〉s.

We show I , C ⊨ 〈α〉s by induction on the length of π . Case analysis.

• α = 1. Then C ⊲ s and thus I , C ⊨ s by (3) of the outer inductive hypothesis.

The claim follows.

• α = aβ. Then π = C〈aβ〉sE〈γ〉s . . . D〈1〉s for some E and γ. It follows that

E ⊲ 〈γ〉s, C
a
-→I E, Bγ ∈ Dβ, and E ⊲ B for some B. We have I , E ⊨ 〈γ〉s

by the inner inductive hypothesis and I , E ⊨ B by (3) of the outer inductive

hypothesis. The claim follows by Lemma 9.2.

(2) Let C ⊲ [α]s, σ ∈ Lα, C
σ
-→I D, and |Fα|, |s| < n − 1. We show D ⊲ s by

induction on |σ |. Case analysis.

• α = 1. Then C ⊲ s and C = D. The claim follows.

• α = aβ. Then σ = Aaτ , τ ∈ Lβ, and [aβ]s ∈ C for some A and τ . Moreover,

I , C ⊨ A and C
a
-→I E

τ
-→I D for some E. Thus E ⊲RaC . Hence E ⊲ [β]s since

[aβ]s ∈ C . The claim follows by the inner inductive hypothesis.

• α not normal. Then Bβ ∈ Dα and σ ∈ L(Bβ) for some B and β. Thus σ ∈ Lβ

and I , C ⊨ B. Hence we know by (3) of the outer induction hypothesis that

C ⊲¬u for no u ∈ B. Thus C ⊲[β]s since C ⊲[α]s. Since β is normal, we now

obtain the claim by arguing as in the first two cases.

(3) Let C ∈ CΓ such that C ⊲ s and |s| = n. We show I , C ⊨ s. Case analysis:

• s = p. Then p ∈ C and hence C ∈ Ip. The claim follows.

• s = ¬p. Then ¬p ∈ C . Hence p ∉ C and so C ∉ Ip. The claim follows.

• s = x and s = ¬x. Analogously to the above two cases.

• s = ¬¬t. Then C ⊲ t. The claim follows by (3) of the inductive hypothesis.

• s = t1 ∧ t2 and s = t1 ∨ t2. Analogously.

• s = 〈α〉t. Case analysis.

– α = 1. Then C ⊲ t. Thus I , C ⊨ t by (3) of the inductive hypothesis. The

claim follows.

2011/9/20 14

– α basic. Then 〈α〉t ∈ C . By Proposition 9.1 we know that there is a path

C〈α〉t . . . D〈1〉t in Γ . The claim follows by (1) of the inductive hypothesis.

– α not normal. Then C ⊲ B ;〈β〉t for some Bβ ∈ Dα. Thus I , C ⊨ B by

(3) of the inductive hypothesis. Since β is normal, we obtain I , C ⊨ 〈β〉t by

arguing as in the first two cases. The claim follows with Proposition 5.4 (1).

• s = [α]t. Let σ ∈ Lα and C
σ
-→I D. By Proposition 4.1 (3) it suffices to show

that I , D ⊨ t. We have D ⊲ t by (2). Thus I , D ⊨ t by (3) of the inductive

hypothesis. �

Theorem 9.4 (Model Existence) Every evident branch has a finite model.

Proof Let Γ be an evident branch. If Γ = 0, the claim is trivial. Let Γ ≠ 0. Without

loss of generality we assume that for every nominal that occurs in Γ there is a

unique clause C ∈ CΓ such that x ∈ C (add clauses {x} as necessary). Now an

interpretation I as required by Lemma 9.3 exists. Let C ∈ CΓ . It suffices to show

I , C ⊨ C . Let s ∈ C . Then C ⊲ s. The claim follows with Lemma 9.3 (3). �

10 Soundness

We have now arrived at the crucial part of the correctness proof. Ideally, we

would like to show that a satisfiable branch with an unrealized claim can always

be expanded. However, this is not true.

Example 10.1 Consider the following branch where s := [aa∗](q ∨ [a]¬p):

〈aa∗〉p, ¬p, q, s

〈aa∗〉p, [a]¬p, s

〈aa∗〉p, ¬p, [a]¬p, s

The branch is satisfiable. Still it is impossible to realize the claim for the third

clause since each of the two possible expansions introduces a loop. �

Following [10], we solve the problem with the notion of a straight model. A

straight model requires that all links on the branch make progress towards the

fulfillment of the diamond literal they serve. Every satisfiable initial branch has

a straight model, and every unrealized claim on a branch with a straight model

I can be expanded such that I is a straight model of the expanded branch.

2011/9/20 15

Let I be an interpretation and A be a set of formulas. The depth of A and

〈α〉s in I is defined as

δIA(〈α〉s) := min{ |σ | | σ ∈ Lα and

∃X,Y ∈ |I| : I , X ⊨ A and X
σ
-→I Y and I , Y ⊨ s }

where min0 = ∞ and n <∞ for all n ∈ N.

Proposition 10.2 δIAs <∞ iff I satisfies A ; s.

Proof Follows with Proposition 4.1. �

In particular, we have δICs <∞ for every s ∈ C ∈ Γ if I is a model of Γ .

A link CsDt is straight for an interpretation I if δICs > δIDt whenever

δICs > 0. A straight model of a quasi-branch Γ is a model of Γ such that ev-

ery link CsDt ∈ Γ is straight for I .

Proposition 10.3 Let I be a model of a quasi-branch Γ . Then δIAs = δIA
Γ s.

Lemma 10.4 (Straightness) A quasi-branch that has a straight model contains

no loops.

Proof By contradiction. Let I be a straight model of a quasi-branch Γ and

C1
s1 . . . Cn

sn be a loop in Γ . Then n ≥ 2 and C1
s1 = Cn

sn . It suffices to show

that δICisi > δICi+1si+1 for all i ∈ [1, n − 1]. Let i ∈ [1, n − 1]. Then

si = 〈aα〉t, Ci
siDsi+1 ∈ Γ , and DΓ = Ci+1 for some a, α, t, and D. Since every

σ ∈ L(aα) contains the action a, we have δICisi > 0. Since Ci
siDsi+1 is straight

for I , δICisi > δIDsi+1. Hence δICisi > δICi+1si+1 by Proposition 10.3 since

DΓ = Ci+1. �

Theorem 10.5 (Soundness) Let I be a straight model of a branch Γ and let

〈α〉s ∈ C ∈ Γ such that Γ does not realize C〈α〉s . Then there is an expansion Dt

of C〈α〉s such that Γ ;DΓ ;C〈α〉s(DΓ)t is a branch and I is a straight model of

Γ ;DΓ ;C〈α〉s(DΓ)t .

Proof Since I satisfies C , by Proposition 10.2, there is some σ ∈ Lα and X,Y ∈

|I| be such that |σ | = δIC(〈α〉s) and I , X ⊨ C and X
σ
-→I Y and I , Y ⊨ s. Since

〈α〉s is a literal, α = aβ and σ = Aaτ for some a, β, A, and τ ∈ Lβ. Let

Z ∈ |I| be such that X
a
-→I Z and Z

τ
-→I Y . Let Bγ ∈ Dβ such that τ ∈ L(Bγ).

Then I , Z ⊨ B and I , Z ⊨ 〈γ〉s by Proposition 4.1 (2). Moreover, I , Z ⊨ RaC .

Thus, by property (1) for propositional DNFs, there is some D ∈ D(B ;〈γ〉s ∪

RaC) such that I , Z ⊨ D. Clearly, D〈γ〉s is an expansion of C〈α〉s and, since

τ ∈ L(Bγ), δID(〈γ〉s) ≤ |τ| = |σ | − 1 < δIC(〈α〉s). Then, by Proposition 10.3,

δID
Γ (〈γ〉s) < δIC(〈α〉s). Therefore, I is a straight model of Γ ;DΓ ;C〈α〉s(DΓ)〈γ〉s .

Moreover, Γ ;DΓ ;C〈α〉s(DΓ)〈γ〉s satisfies the nominal coherence and functionality

conditions. �

2011/9/20 16

11 Final Remarks

The main innovation of the present paper over our previous paper [10] is the

notion of a finitary regular DNF. This makes it possible to cover all PDL programs

and still have transparent correctness proofs.

It is straightforward to extend the clausal tableau method for HPDL to sat-

isfaction formulas @xs. To deal with such formulas, one adds an additional

expansion rule at the modal level as presented in [10]. Also, the optimizations

for the modal level of clausal tableaux discussed in [10] carry over to HPDL.

It can be seen by a straightforward analysis that the decision procedure uti-

lizing the naive regular reasoner presented in § 5 and the tableau-based proposi-

tional reasoner sketched in Proposition 6.5 runs in NEXPTIME.

We expect that the clausal method can be extended to difference modalities.

Less clear is the possibility of extending the method to converse modalities. As

recently shown by Goré and Widmann [8], converse modalities can be efficiently

dealt with by Pratt-style decision procedures. Their treatment of converse, how-

ever, does not seem to carry over to our approach. On the other hand, Pratt-style

procedures do not seem compatible with nominals (see [10, 18]). Hence, develop-

ing a gracefully degrading decision procedure for a logic featuring eventualities,

nominals, and converse modalities at the same time remains a challenging open

problem.

Acknowledgment. We would like to thank a referee for valuable remarks that

helped to improve the paper.

References

[1] Pietro Abate, Rajeev Goré, and Florian Widmann. An on-the-fly tableau-

based decision procedure for PDL-satisfiability. In Carlos Areces and

Stéphane Demri, editors, Proc. 5th Workshop on Methods for Modalities

(M4M-5), volume 231 of Electr. Notes Theor. Comput. Sci., pages 191–209.

Elsevier, 2009.

[2] Carlos Areces and Balder ten Cate. Hybrid logics. In Patrick Blackburn, Johan

van Benthem, and Frank Wolter, editors, Handbook of Modal Logic, volume 3

of Studies in Logic and Practical Reasoning, pages 821–868. Elsevier, 2007.

[3] Franz Baader. Augmenting concept languages by transitive closure of roles:

An alternative to terminological cycles. Technical Report RR-90-13, DFKI,

1990.

2011/9/20 17

[4] Gérard Berry and Ravi Sethi. From regular expressions to deterministic au-

tomata. Theor. Comput. Sci., 48(3):117–126, 1986.

[5] Giuseppe De Giacomo and Fabio Massacci. Combining deduction and model

checking into tableaux and algorithms for converse-PDL. Inf. Comput.,

162(1–2):117–137, 2000.

[6] Michael J. Fischer and Richard E. Ladner. Propositional dynamic logic of

regular programs. J. Comput. System Sci., pages 194–211, 1979.

[7] Rajeev Goré and Florian Widmann. An optimal on-the-fly tableau-based de-

cision procedure for PDL-satisfiability. In Renate A. Schmidt, editor, CADE

2009, volume 5663 of LNCS, pages 437–452. Springer, 2009.

[8] Rajeev Goré and Florian Widmann. Optimal tableaux for propositional dy-

namic logic with converse. In Jürgen Giesl and Reiner Hähnle, editors, IJCAR

2010, volume 6173 of LNCS, pages 225–239. Springer, 2010.

[9] David Harel, Dexter Kozen, and Jerzy Tiuryn. Dynamic Logic. The MIT Press,

2000.

[10] Mark Kaminski and Gert Smolka. Terminating tableaux for hybrid logic with

eventualities. In Jürgen Giesl and Reiner Hähnle, editors, IJCAR 2010, vol-

ume 6173 of LNCS, pages 240–254. Springer, 2010.

[11] Dexter Kozen and Frederick Smith. Kleene algebra with tests: Completeness

and decidability. In Dirk van Dalen and Marc Bezem, editors, CSL’96, volume

1258 of LNCS, pages 244–259. Springer, 1996.

[12] Dexter Kozen and Jerzy Tiuryn. Logics of programs. In Handbook of The-

oretical Computer Science, Volume B: Formal Models and Sematics, pages

789–840. Elsevier, 1990.

[13] Solomon Passy and Tinko Tinchev. PDL with data constants. Inf. Process.

Lett., 20(1):35–41, 1985.

[14] Solomon Passy and Tinko Tinchev. An essay in combinatory dynamic logic.

Inf. Comput., 93(2):263–332, 1991.

[15] Dominique Perrin. Finite automata. In Handbook of Theoretical Computer

Science, Volume B: Formal Models and Sematics, pages 1–57. Elsevier, 1990.

[16] Vaughan R. Pratt. A near-optimal method for reasoning about action. J.

Comput. System Sci., 20(2):231–254, 1980.

2011/9/20 18

[17] Ulrike Sattler and Moshe Y. Vardi. The hybrid µ-calculus. In Rajeev Goré,

Alexander Leitsch, and Tobias Nipkow, editors, IJCAR 2001, volume 2083

of LNCS, pages 76–91. Springer, 2001.

[18] Florian Widmann. Tableaux-based Decision Procedures for Fixed Point Logics.

PhD thesis, Australian National University, 2010.

2011/9/20 19

	Introduction
	Hybrid PDL
	Outline of the Method
	Language-Theoretic Semantics
	Regular DNF
	Propositional DNF
	Diamond Expansion and Nominal Propagation
	Branches and Expansion Rule
	Model Existence
	Soundness
	Final Remarks

