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Abstract. We study finite first-order satisfiability (FSAT) in the con-
structive setting of dependent type theory. Employing synthetic accounts
of enumerability and decidability, we give a full classification of FSAT
depending on the first-order signature of non-logical symbols. On the
one hand, our development focuses on Trakhtenbrot’s theorem, stating
that FSAT is undecidable as soon as the signature contains an at least bi-
nary relation symbol. Our proof proceeds by a many-one reduction chain
starting from the Post correspondence problem. On the other hand, we
establish the decidability of FSAT for monadic first-order logic, i.e. where
the signature only contains at most unary function and relation symbols,
as well as the enumerability of FSAT for arbitrary enumerable signatures.
All our results are mechanised in the framework of a growing Coq library
of synthetic undecidability proofs.

1 Introduction

In the wake of the seminal discoveries concerning the undecidability of first-
order logic by Turing and Church in the 1930s, a broad line of work has been
pursued to characterise the border between decidable and undecidable fragments
of the original decision problem. These fragments can be grouped either by
syntactic restrictions controlling the allowed function and relation symbols or
the quantifier prefix, or by semantic restrictions on the admitted models (see [1]
for a comprehensive description).

Concerning signature restrictions, already predating the undecidability re-
sults, Löwenheim had shown in 1915 that monadic first-order logic, admitting
only signatures with at most unary symbols, is decidable [15]. Therefore, the
successive negative results usually presuppose non-trivial signatures containing
an at least binary symbol.

Turning to semantic restrictions, Trakhtenbrot proved in 1950 that, if only
admitting finite models, the satisfiability problem over non-trivial signatures is
still undecidable [21]. Moreover, the situation is somewhat dual to the unre-
stricted case, since finite satisfiability (FSAT) is still enumerable while, in the
unrestricted case, validity is enumerable. As a consequence, finite validity cannot
be characterised by a complete finitary deduction system and, resting on finite
model theory, various natural problems in database theory are undecidable.
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Conventionally, Trakhtenbrot’s theorem is proved by (many-one) reduction
from the halting problem for Turing machines (see e.g. [1,14]). An encoding of a
given Turing machine M can be given as a formula ϕM such that the models of
ϕM correspond to the runs of M . Specifically, the finite models of ϕM correspond
to terminating runs of M and so a decision procedure for finite satisfiability of
ϕM would be enough to decide whether M terminates or not.

Although this proof strategy is in principle explainable on paper, already the
formal definition of Turing machines, not to mention their encoding in first-order
logic, is not ideal for mechanisation in a proof assistant. So for our Coq mechani-
sation of Trakhtenbrot’s theorem, we follow a different strategy by starting from
the Post correspondence problem (PCP), a simple matching problem on strings.
Similar to the conventional proof, we proceed by encoding every instance R of
PCP as a formula ϕR such that R admits a solution iff ϕR has a finite model.
Employing the framework of synthetic undecidability [8,11], the computability
of ϕR from R is guaranteed since all functions definable in constructive type
theory are computable without reference to a concrete model of computation.

Both the conventional proof relying on Turing machines and our elaboration
starting from PCP actually produce formulas in a custom signature well-suited
for the encoding of the seed decision problems. The sharper version of Trakhten-
brot’s theorem, stating that a signature with at least one binary relation (or one
binary function and one unary relation) is enough to turn FSAT undecidable,
is in fact left as an exercise in e.g. Libkin’s book [14]. However, at least in a
constructive setting, this generalisation is non-trivial and led us to mechanising
a chain of signature transformations eliminating and compressing function and
relation symbols step by step.

Complementing the undecidability result, we further formalise that FSAT
is enumerable for enumerable signatures and decidable for monadic signatures.
Again, both of these standard results come with their subtleties when explored
in a constructive approach of finite model theory.

In summary, the main contributions of this paper are threefold:

– we provide an axiom-free Coq mechanisation comprising a full classification
of finite satisfiability with regards to the signatures allowed;1

– we present a streamlined proof strategy for Trakhtenbrot’s theorem well-
suited for mechanisation and simple to explain informally, basing on PCP;

– we give a constructive account of signature transformations and the treat-
ment of interpreted equality typically neglected in a classical development.

The rest of the paper is structured as follows. We first describe the type-
theoretical framework for undecidability proofs and the representation of first-
order logic in Section 2. We then outline our variant of Trakhtenbrot’s theorem
for a custom signature in Section 3. This is followed by a development of enough
constructive finite model theory (Section 4) to conclude some decidability results
(Section 5) as well as the final classification (Section 6). We end with a brief
discussion of the Coq development and future work in Section 7.

1 Downloadable from http://www.ps.uni-saarland.de/extras/fol-trakh/ and sys-
tematically hyperlinked with the definitions and theorems in this PDF.

http://www.ps.uni-saarland.de/extras/fol-trakh/
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2 First-Order Satisfiability in Constructive Type Theory

In order to make this paper accessible to readers unfamiliar with constructive
type theory, we outline the required features of Coq’s underlying type theory,
the synthetic treatment of computability available in constructive mathematics,
some properties of finite types, as well as our representation of first-order logic.

2.1 Basics of Constructive Type Theory

We work in the framework of a constructive type theory such as the one imple-
mented in Coq, providing a predicative hierarchy of type universes T above a
single impredicative universe P of propositions. On type level, we have the unit
type 1 with a single element ∗ : 1, the void type 0, function spaces X → Y ,
products X × Y , sums X + Y , dependent products ∀x : X.F x, and dependent
sums {x : X | F x}. On propositional level, these types are denoted using the
usual logical notation (>, ⊥, →, ∧, ∨, ∀, and ∃).

We employ the basic inductive types of Booleans (B ::= tt | ff), of Peano
natural numbers (n : N ::= 0 | Sn), the option type (OX ::= pxq | ∅), and lists
(l : LX ::=[ ] | x::l). We write |l| for the length of a list, l++m for the concatenation
of l and m, x ∈ l for membership, and simply f [x1; . . . ;xn] := [f x1; . . . ; f xn] for
the map function. We denote by Xn the type of vectors of length n : N and by Fn
the finite types understood as indices {0, . . . , n − 1}. The definitions/notations
for lists are shared with vectors v : Xn. Moreover, when i : Fn and x : X,
we denote by vi the i-th component of v and by v[x/i] the vector v with i-th
component updated to value x.

2.2 Synthetic (Un-)decidability

We review the main ingredients of our synthetic approach to decidability and
undecidability [7,8,10,11,13,19], based on the computability of all functions de-
finable in constructive type theory.2 We first introduce standard notions of com-
putability theory without referring to a formal model of computation, e.g. Turing
machines.

Definition 1. A problem or predicate p : X → P is

– decidable if there is f : X → B with ∀x. p x↔ f x = tt.
– enumerable if there is f : N→ OX with ∀x. p x↔ ∃n. f n = pxq.

These notions generalise to predicates of higher arity. Moreover, a type X is

– enumerable if there is f : N→ OX with ∀x.∃n. f n = pxq.
– discrete if equality on X (i.e. λxy : X.x = y) is decidable.
– a data type if it is both enumerable and discrete.

2 A result shown and applied for many variants of constructive type theory and which
Coq designers are committed to maintain as Coq evolves.

http://www.ps.uni-saarland.de/extras/fol-trakh/website/Undecidability.TRAKHTENBROT.decidable.html#decidable_bool_eq
http://www.ps.uni-saarland.de/extras/fol-trakh/website/Undecidability.TRAKHTENBROT.enumerable.html#opt_enum_t
http://www.ps.uni-saarland.de/extras/fol-trakh/website/Undecidability.TRAKHTENBROT.enumerable.html#type_enum_t
http://www.ps.uni-saarland.de/extras/fol-trakh/website/Undecidability.TRAKHTENBROT.decidable.html#discrete
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Using the expressiveness of dependent types, we equivalently tend to establish
the decidability of a predicate p : X → P by giving a function ∀x : X. p x+¬p x.
Note that it is common to mechanise decidability results in this synthetic sense
(e.g. [2,16,17]). Next, decidability and enumerability transport along reductions:

Definition 2. A problem p : X → P (many-one) reduces to q : Y → P, written
p � q, if there is a function f : X → Y such that p x↔ q (f x) for all x : X.3

Fact 3. Assume p : X → P, q : Y → P and p � q: (1) if q is decidable, then
so is p and (2) if X and Y are data types and q is enumerable, then so is p.

Item (1) implies that we can justify the undecidability of a target problem
by reduction from a seed problem known to be undecidable, such as the halting
problem for Turing machines. This is in fact the closest rendering of undecidabil-
ity available in a synthetic setting, since the underlying type theory is consistent
with the assumption that every problem is decidable.4 Nevertheless, we believe
that in the intended effective interpretation for synthetic computability, a typ-
ical seed problem is indeed undecidable and so are the problems reached by
verified reductions.5 More specifically, since the usual seed problems are not co-
enumerable, (2) implies that the reached problems are not co-enumerable either.

Given its simple inductive characterisation involving only basic types of lists
and Booleans, the (binary) Post correspondence problem (BPCP) is a well-suited
seed problem for compact encoding into first-order logic.

Definition 4. Given a list R : L(LB × LB) of pairs s/t of Boolean strings,6

we define derivability of a pair s/t from R (denoted by R . s/t) and solvability
(denoted by BPCPR) by the following rules:

s/t ∈ R
R . s/t

s/t ∈ R R . u/v

R . (s++ u)/(t++ v)

R . s/s

BPCPR

Fact 5. Given a list R : L(LB × LB), the derivability predicate λs t.R . s/t is
decidable. However, the halting problem for Turing machines reduces to BPCP.

Proof. We give of proof of the decidability of R . s/t by induction on |s| + |t|.
We also provide a trivial proof of the equivalence of two definitions of BPCP.
See [7,10] for details on the reduction from the halting problem to BPCP. ut

It might at first appear surprising that derivability λs t.R . s/t is decidable
while BPCP is reducible from the halting problem (and hence undecidable). This
simply illustrates that undecidability is caused by the unbounded existential
quantifier in the equivalence BPCPR↔ ∃s.R . s/s.

3 Or equivalently, the dependent characterisation ∀x : X. {y : Y | p x↔ q y}.
4 As witnessed by classical set-theoretic models satisfying ∀p : P. p+ ¬p (cf. [23]).
5 This synthetic treatment of undecidability is discussed in more detail in [8] and [11].
6 Notice that the list R is viewed as a (finite) set of pairs s/t ∈ R (hence ignoring the

order or duplicates), while s and t, which are also lists, are viewed a strings (hence
repetitions and ordering matter for s and t).

http://www.ps.uni-saarland.de/extras/fol-trakh/website/Undecidability.TRAKHTENBROT.decidable.html#decidable
http://www.ps.uni-saarland.de/extras/fol-trakh/website/Undecidability.Problems.Reduction.html#reduces
http://www.ps.uni-saarland.de/extras/fol-trakh/website/Undecidability.TRAKHTENBROT.decidable.html#reduction_decidable
http://www.ps.uni-saarland.de/extras/fol-trakh/website/Undecidability.TRAKHTENBROT.enumerable.html#reduction_opt_enum_t
http://www.ps.uni-saarland.de/extras/fol-trakh/website/Undecidability.TRAKHTENBROT.bpcp.html#pcp_hand
http://www.ps.uni-saarland.de/extras/fol-trakh/website/Undecidability.TRAKHTENBROT.bpcp.html#BPCP_problem
http://www.ps.uni-saarland.de/extras/fol-trakh/website/Undecidability.TRAKHTENBROT.bpcp.html#bpcp_hand_dec
http://www.ps.uni-saarland.de/extras/fol-trakh/website/Undecidability.TRAKHTENBROT.red_utils.html#BPCP_BPCP_problem_eq
http://www.ps.uni-saarland.de/extras/fol-trakh/website/Undecidability.Problems.Reduction.html#reduction_dependent
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2.3 Finiteness

Definition 6. A type X is finite if there is a list lX with x ∈ lX for all x : X
and a predicate p : X → P is finite if there is a list lp with ∀x. p x↔ x ∈ lp.

Note that in constructive settings there are various alternative characterisa-
tions of finiteness7 (bijection with Fn for some n; negated infinitude for some
definition of infiniteness; etc.) and we opted for the above since it is easy to work
with while transparently capturing the expected meaning. One can distinguish
strong finiteness in T (i.e. {lX : LX | ∀x. x ∈ lX}) from weak finiteness in P (i.e.
∃lX : LX.∀x. x ∈ lX), the list lX being required computable in the strong case.

We present three important tools for manipulating finite types: the finite
pigeon hole principle (PHP) here established without assuming discreteness, the
well-foundedness of strict orders over finite types, and quotients over strongly
decidable equivalences that map onto Fn. The proofs are given in Appendix A
of the extended version of this paper [12].

For the finite PHP, the typical classical proof requires the discreteness of X
to design transpositions/permutations. Here we avoid discreteness completely,
the existence of a duplicate being established without actually computing one.

Theorem 7. (Finite PHP) Let R : X → Y → P be a binary relation and
l : LX and m : LY be two lists where m is shorter than l (|m| < |l|). If R is
total from l to m (∀x. x ∈ l→ ∃y. y ∈ m∧Rxy) then the values at two distinct
positions in l are related to the same y in m, i.e. there exist x1, x2 ∈ l and
y ∈ m such that l has shape l = · · ·++ x1 :: · · ·++ x2 :: · · · and Rx1 y and Rx2 y.

Using the PHP, one can constructively show that, for a strict order over a
finite type X, any descending chain has length bounded by the size of X.8

Fact 8. Every strict order on a finite type is well-founded.

Coq’s type theory does not provide quotients in general (see e.g. [6]) but
one can build computable quotients in certain conditions, here for a decidable
equivalence relation of which representatives of equivalence classes are listable.

Theorem 9.(Finite decidable quotient) Let ∼ : X → X → P be a decidable
equivalence with {lr : LX | ∀x∃y. y ∈ lr ∧ x ∼ y}, i.e. finitely many equivalence
classes.9 Then one can compute the quotient X/∼ onto Fn for some n, i.e. n : N,
c : X → Fn and r : Fn → X s.t. ∀p. c (r p) = p and ∀x y. x ∼ y ↔ c x = c y.

Using Theorem 9 with identity over X as equivalence, we get bijections be-
tween finite, discrete types and the type family (Fn)n:N.10

Corollary 10. If X is a finite and discrete type then one can compute n : N
and a bijection from X to Fn.
7 And these alternative characterisations are not necessarily constructively equivalent.
8 i.e. the length of the enumerating list of X.
9 Hence lr denotes a list of representatives of equivalence classes.

10 For a given X, the value n (usually called cardinal) is unique by the PHP.

http://www.ps.uni-saarland.de/extras/fol-trakh/website/Undecidability.Shared.Libs.DLW.Utils.fin_base.html#finite_t
http://www.ps.uni-saarland.de/extras/fol-trakh/website/Undecidability.Shared.Libs.DLW.Utils.fin_base.html#fin_t
http://www.ps.uni-saarland.de/extras/fol-trakh/website/Undecidability.Shared.Libs.DLW.Utils.php.html#PHP_rel
http://www.ps.uni-saarland.de/extras/fol-trakh/website/Undecidability.Shared.Libs.DLW.Wf.wf_finite.html#wf_strict_order_finite
http://www.ps.uni-saarland.de/extras/fol-trakh/website/Undecidability.Shared.Libs.DLW.Utils.fin_quotient.html#decidable_EQUIV_fin_quotient
http://www.ps.uni-saarland.de/extras/fol-trakh/website/Undecidability.Shared.Libs.DLW.Utils.fin_bij.html#finite_t_discrete_bij_t_pos
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2.4 Representing First-Order Logic

We briefly outline our representation of the syntax and semantics of first-order
logic in constructive type theory (cf. [9]). Concerning the syntax, we describe
terms and formulas as dependent inductive types over a signature Σ = (FΣ ;PΣ)
of function symbols f : FΣ and relation symbols P : PΣ with arities |f | and |P |,
using binary connectives �̇ ∈ {→̇, ∧̇, ∨̇} and quantifiers ∇̇ ∈ {∀̇, ∃̇}:

t : TermΣ ::= x | f t (x : N, f : FΣ , t : Term
|f |
Σ )

ϕ,ψ : FormΣ ::= ⊥̇ | P t | ϕ �̇ψ | ∇̇ϕ (P : PΣ , t : Term
|P |
Σ )

Negation is defined as the abbreviation ¬̇ϕ := ϕ →̇ ⊥̇.
In the chosen de Bruijn representation [4], a bound variable is encoded as

the number of quantifiers shadowing its binder, e.g. ∀x. ∃y. P xu → P y v may
be represented by ∀̇ ∃̇P 1 4 →̇P 0 5. The variables 2 = 4 − 2 and 3 = 5 − 2 in
this example are the free variables, and variables that do not occur freely are
called fresh, e.g. 0 and 1 are fresh. For the sake of legibility, we write concrete
formulas with named binders and defer de Bruijn representations to the Coq
development. For a formula ϕ over a signature Σ, we define the list FV(ϕ) : LN
of free variables, the list Fϕ : LFΣ of function symbols and the list Pϕ : LPΣ
of relation symbols that actually occur in ϕ, all by recursion on ϕ.

Turning to semantics, we employ the standard (Tarski-style) model-theoretic
semantics, evaluating terms in a given domain and embedding the logical con-
nectives into the constructive meta-logic (cf. [22]):

Definition 11. A model M over a domain D : T is described by a pair of
functions ∀f.D|f | → D and ∀P.D|P | → P denoted by fM and PM. Given a
variable assignment ρ : N → D, we recursively extend it to a term evaluation
ρ̂ : Term → D with ρ̂ x := ρ x and ρ̂ (f v) := fM (ρ̂v), and to the satisfaction
relation M �ρ ϕ by

M �ρ ⊥̇ := ⊥ M �ρ ϕ �̇ψ := M �ρ ϕ �M �ρ ψ
M �ρ P t := PM (ρ̂ t ) M �ρ ∇̇ϕ := ∇a : D.M �a·ρ ϕ

where each logical connective �̇ /∇̇ is mapped to its meta-level counterpart
�/∇ and where we denote by a · ρ the de Bruijn extension of ρ by a, defined by
(a · ρ) 0 := a and (a · ρ) (1 + x) := ρ x.11

A Σ-model is thus a dependent triple (D,M, ρ) composed of a domain D, a
model M for Σ over D and an assignment ρ : N→ D. It is finite if D is finite,
and decidable if PM : D|P | → P is decidable for all P : PΣ .

Fact 12. Satisfaction λϕ.M �ρ ϕ is decidable for finite, decidable Σ-models.

Proof. By induction on ϕ; finite quantification preserves decidability. ut
11 The notation a · ρ illustrates that a is pushed ahead of the sequence ρ0, ρ1, . . .

http://www.ps.uni-saarland.de/extras/fol-trakh/website/Undecidability.TRAKHTENBROT.fo_sig.html#fo_signature
http://www.ps.uni-saarland.de/extras/fol-trakh/website/Undecidability.TRAKHTENBROT.fo_terms.html#fo_term
http://www.ps.uni-saarland.de/extras/fol-trakh/website/Undecidability.TRAKHTENBROT.fo_logic.html#fol_form
http://www.ps.uni-saarland.de/extras/fol-trakh/website/Undecidability.TRAKHTENBROT.fo_logic.html#fol_vars
http://www.ps.uni-saarland.de/extras/fol-trakh/website/Undecidability.TRAKHTENBROT.fo_logic.html#fol_syms
http://www.ps.uni-saarland.de/extras/fol-trakh/website/Undecidability.TRAKHTENBROT.fo_logic.html#fol_rels
http://www.ps.uni-saarland.de/extras/fol-trakh/website/Undecidability.TRAKHTENBROT.fo_sig.html#fo_model
http://www.ps.uni-saarland.de/extras/fol-trakh/website/Undecidability.TRAKHTENBROT.fo_terms.html#fo_term_sem
http://www.ps.uni-saarland.de/extras/fol-trakh/website/Undecidability.TRAKHTENBROT.fo_logic.html#fol_sem
http://www.ps.uni-saarland.de/extras/fol-trakh/website/Undecidability.TRAKHTENBROT.notations.html#de_bruijn_ext
http://www.ps.uni-saarland.de/extras/fol-trakh/website/Undecidability.TRAKHTENBROT.fo_logic.html#fol_sem_dec
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In this paper, we are mostly concerned with finite satisfiability of formulas.
However, since some of the compound reductions hold for more general or more
specific notions, we introduce the following variants:

Definition 13. (Satisfiability) For a formula ϕ over a signature Σ, we write

– SAT(Σ)ϕ if there is a Σ-model (D,M, ρ) such that M �ρ ϕ;
– FSAT(Σ)ϕ if additionally D is finite and M is decidable;
– FSATEQ(Σ;≡)ϕ if the signature contains a distinguished binary relation

symbol ≡ interpreted as equality, i.e. x ≡M y ↔ x = y for all x, y : D.

Notice that in a classical treatment of finite model theory, models are sup-
posed to be given in extension, i.e. understood as tables providing computational
access to functions and relations values. To enable this view in our constructive
setting, we restrict to decidable relations in the definition of FSAT, and from
now on, finite satisfiability is always meant to encompass a decidable model. One
could further require the domain D to be discrete to conform more closely with
the classical view; discreteness is in fact enforced by FSATEQ. However, we re-
frain from this requirement and instead show in Section 4.1 that FSAT and FSAT
over discrete models are constructively equivalent.

3 Trakhtenbrot’s Theorem for a Custom Signature

In this section, we show that BPCP reduces to FSATEQ(ΣBPCP;≡) for the special
purpose signature ΣBPCP := ({?0, e0, f1tt, f

1
ff}; {P 2,≺2,≡2}). To this end, we fix

an instance R : L (LB × LB) of BPCP (to be understood as a finite set of
pairs of Boolean strings) and we construct a formula ϕR such that ϕR is finitely
satisfiable if and only if R has a solution.

Informally, we axiomatise a family Bn of models over the domain of Boolean
strings of length bounded by n and let ϕR express that R has a solution in
Bn. The axioms express enough equations and inversions of the constructions
included in the definition of BPCP such that a solution for R can be recovered.

Formally, the symbols in ΣBPCP are used as follows: the functions fb and the
constant e represent b :: (·) and [ ] for the encoding of strings s as terms s:

[ ] +++ τ := τ b :: s+++ τ := fb (s+++ τ) s := s+++ e

The constant ? represents an undefined value for strings too long to be encoded
in the finite model Bn. The relation P represents derivability from R (denoted
R . ·/· here) while ≺ and ≡ represent strict suffixes and equality, respectively.

Expected properties of the intended interpretation can be captured formally
as first-order formulas. First, we ensure that P is proper (only subject to defined
values) and that ≺ is a strict order (irreflexive and transitive):

ϕP := ∀̇xy. P x y →̇ x 6≡ ? ∧̇ y 6≡ ? (P proper)

ϕ≺ := (∀̇x. x 6≺ x) ∧̇ (∀̇xyz. x ≺ y →̇ y ≺ z →̇ x ≺ z) (≺ strict order)

http://www.ps.uni-saarland.de/extras/fol-trakh/website/Undecidability.TRAKHTENBROT.fo_sat.html#fo_form_fin_dec_SAT
http://www.ps.uni-saarland.de/extras/fol-trakh/website/Undecidability.TRAKHTENBROT.fo_sat.html#fo_form_fin_dec_eq_SAT
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Next, the image of fb is forced disjoint from e and injective as long as ? is not
reached. We also ensure that the images of ftt and fff intersect only at ?:

ϕf :=

 ftt ? ≡ ? ∧̇ fff ? ≡ ?
∀̇x. ftt x 6≡ e
∀̇x. fff x 6≡ e

 ∧̇
 ∀̇xy. ftt x 6≡ ? →̇ ftt x ≡ ftt y →̇ x ≡ y
∀̇xy. fff x 6≡ ? →̇ fff x ≡ fff y →̇ x ≡ y
∀̇xy. ftt x ≡ fff y →̇ ftt x ≡ ? ∧̇ fff y ≡ ?


Furthermore, we enforce that P simulates R. ·/·, encoding its inversion principle

ϕ. := ∀̇xy. P x y →̇
.∨

s/t∈R

∨̇
{
x ≡ s ∧̇ y ≡ t
∃̇uv. P u v ∧̇ x ≡ s+++ u ∧̇ y ≡ t+++ v ∧̇ u/v ≺ x/y

where u/v ≺ x/y denotes (u ≺ x ∧̇ v ≡ y)∨̇(v ≺ y ∧̇ u ≡ x)∨̇(u ≺ x ∧̇ v ≺ y).
Finally, ϕR is the conjunction of all axioms plus the existence of a solution:

ϕR := ϕP ∧̇ ϕ≺ ∧̇ ϕf ∧̇ ϕ. ∧̇ ∃̇x. P xx.

Theorem 14. BPCP � FSATEQ(ΣBPCP;≡).

Proof. The reduction λR.ϕR is proved correct by Lemmas 15 and 16. ut

Lemma 15. BPCPR→ FSATEQ(ΣBPCP;≡)ϕR.

Proof. Assume R . s/s holds for a string s with |s| = n. We show that the
model Bn over Boolean strings bounded by n satisfies ϕR. To be more precise,
we choose Dn := O{s : LB | |s| ≤ n} as domain, i.e. values in Dn are either an
(overflow) value ∅ or a (defined) dependent pair p(s,Hs)q where Hs : |s| ≤ n.
We interpret the function and relation symbols of the chosen signature by

eBn := [ ] fBn

b ∅ := ∅ PBn s t :=R . s/t

?Bn := ∅ fBn

b s := if |s| < n then b :: s else ∅ s ≺Bn t := s 6= t ∧ ∃u. u++ s = t

where we left out some explicit constructors and the excluded edge cases of the
relations for better readability. As required, Bn interprets ≡ by equality =Dn .

Considering the desired properties of Bn, first note that Dn can be shown
finite by induction on n. This however crucially relies on the proof irrelevance
of the λx. x ≤ n predicate.12 The atoms s ≺Bn t and s ≡Bn t are decidable
by straightforward computations on Boolean strings. Decidability of PBns t (i.e.
R . s/t) was established in Fact 5. Finally, since ϕR is a closed formula, any
variable assignment ρ can be chosen to establish that Bn satisfies ϕR, for instance
ρ := λx.∅. Then showing Bn �ρ ϕR consists of verifying simple properties of the
chosen functions and relations, with mostly straightforward proofs. ut

Lemma 16. FSATEQ(ΣBPCP;≡)ϕR → BPCPR.

12 i.e. that for every x : N and H,H ′ : x ≤ n we have H = H ′. In general, it is not
always possible to establish finiteness of {x | P x} if P is not proof irrelevant.

http://www.ps.uni-saarland.de/extras/fol-trakh/website/Undecidability.TRAKHTENBROT.red_undec.html#BPCP_FIN_DEC_EQ_SAT
http://www.ps.uni-saarland.de/extras/fol-trakh/website/Undecidability.TRAKHTENBROT.BPCP_SigBPCP.html#Sig_bpcp_encode_sound
http://www.ps.uni-saarland.de/extras/fol-trakh/website/Undecidability.TRAKHTENBROT.BPCP_SigBPCP.html#Sig_bpcp_encode_complete
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Proof. Suppose that M �ρ ϕR holds for some finite ΣBPCP-model (D,M, ρ)
interpreting ≡ as equality and providing operations fMb , eM, ?M, PM and ≺M.
Again, the concrete assignment ρ is irrelevant and M �ρ ϕR ensures that the
functions/relations behave as specified and that PM xx holds for some x : D.

Instead of trying to show that M is isomorphic to some Bn, we directly
reconstruct a solution for R, i.e. we find some s with R.s/s from the assumption
thatM �ρ ϕR holds. To this end, we first observe that the relation u/v ≺M x/y
as defined above is a strict order and thus well-founded as an instance of Fact 8.

Now we can show that for all x/y with PM x y there are strings s and t with
x = s, y = t and R.s/t, by induction on the pair x/y using the well-foundedness
of ≺M. So let us assume PM x y. Since M satisfies ϕ. there are two cases:

– there is s/t ∈ R such that x = s and y = t. The claim follows by R . s/t;
– there are u, v : D with PM u v and s/t ∈ R such that x = s+++ u, y = t+++ v,

and u/v ≺M x/y. The latter makes the inductive hypothesis applicable for
PM u v, hence yielding R . s′/t′ for some strings s′ and t′ corresponding to
the encodings u and v. This is enough to conclude x = s++ s′, y = t++ t′

and R . (s++ s′)/(t++ t′) as wished.

Applying this fact to the assumed match PM xx yields a solution R . s/s. ut

4 Constructive Finite Model Theory

Combined with Fact 5, Theorem 14 entails the undecidability (and non-co-
enumerability) of FSATEQ over a custom (both finite and discrete) signature
ΣBPCP. By a series of signature reductions, we generalise these results to any
signature containing an at least binary relation symbol. In particular, we ex-
plain how to reduce FSAT(Σ) to FSAT(0; {∈2}) for any discrete signature Σ,
hence including ΣBPCP. We also provide a reduction from FSAT(0; {∈2}) to
FSAT({fn}; {P 1}) for n ≥ 2, which entails the undecidability of FSAT for signa-
tures with one unary relation and an at least binary function. But first, let us
show that FSAT is unaltered when further assuming discreteness of the domain.

4.1 Removing Model Discreteness and Interpreted Equality

We consider the case of models over a discrete domain D. Of course, in the case
of FSATEQ(Σ;≡) the requirement that ≡ is interpreted as a decidable binary
relation which is equivalent to =D imposes the discreteness of D. But in the
case of FSAT(Σ) nothing imposes such a restriction on D. However, as we argue
here, we can always quotient D using a suitable decidable congruence, making
the quotient a discrete finite type while preserving first-order satisfaction.

Definition 17. We write FSAT′(Σ)ϕ if FSAT(Σ)ϕ on a discrete model.

Let us consider a fixed signature Σ = (FΣ ;PΣ). In addition, let us fix a finite
type D and a (decidable) modelM of Σ over D. We can conceive an equivalence

http://www.ps.uni-saarland.de/extras/fol-trakh/website/Undecidability.TRAKHTENBROT.fo_sat.html#fo_form_fin_discr_dec_SAT
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over D which is a congruence for all the interpretations of the symbols by M,
namely first-order indistinguishability x =̇Σ y := ∀ϕρ.M �x·ρ ϕ↔M �y·ρ ϕ,
i.e. first-order semantics in M is not impacted when switching x with y.

The facts that =̇Σ is both an equivalence and a congruence are easy to prove
but, with this definition, there is little hope of establishing decidability of =̇Σ .
The main reason for this is that the signature may contain symbols of infinitely
many arities. So we fix two lists lF : LFΣ and lP : LPΣ of function and relation
symbols respectively and restrict the congruence requirement to these lists.

Definition 18. (Bounded first-order indistinguishability) We say that x
and y are first-order indistinguishable up to lF/lP , and we write x =̇ y, if for
any ρ : N → D and any first-order formula ϕ built from the symbols in lF and
lP only, we have M �x·ρ ϕ↔M �y·ρ ϕ.

Theorem 19. First-order indistinguishability =̇ up to lF/lP is a strongly de-
cidable equivalence and a congruence for all the symbols in lF/lP .

Proof. The proof is quite involved, we only give its sketch here; see Appendix B
of the extended version of this paper [12] for more details. The real difficulty is
to show the decidability of =̇. To this end, we characterise =̇ as a bisimulation,
i.e. we show that =̇ is extensionally equivalent to Kleene’s greatest fixpoint
Fω(λuv.>) of some ω-continuous operator F : (D → D → P)→ (D → D → P).
We then show that F preserves strong decidability. To be able to conclude, we
establish that F reaches its limit after l := 2d×d iterations where d := cardD, the
length of a list enumerating the finite type D. To verify this upper bound, we
build the weak powerset, a list of length l which contains all the weakly decidable
binary predicates of type D → D → P, up to extensional equivalence. As all the
iterated values Fn(λuv.>) are strongly decidable, they all belong to the weak
powerset, so by Theorem 7, a duplicate is to be found in the first l + 1 steps,
ensuring that the sequence is stalled at l. ut

We use the strongly decidable congruence =̇ to quotient models onto discrete
ones (in fact Fn for some n) while preserving first-order satisfaction.

Theorem 20. For every first-order signature Σ and formula ϕ over Σ, we have
FSAT(Σ)ϕ iff FSAT′(Σ)ϕ, and as a consequence, both reductions FSAT(Σ) �
FSAT′(Σ) and FSAT′(Σ) � FSAT(Σ) hold.

Proof. FSAT(Σ)ϕ entails FSAT′(Σ)ϕ is the non-trivial implication. Hence we
consider a finite Σ-model (D,M, ρ) of ϕ and we build a new finite Σ-model of
ϕ which is furthermore discrete. We collect the symbols occurring in ϕ as the
lists lF :=Fϕ (for functions) and lP :=Pϕ (for relations). By Theorem 19, first-
order indistinguishability =̇ : D → D → P up to Fϕ/Pϕ is a strongly decidable
equivalence over D and a congruence for the semantics of the symbols occurring
in ϕ. Using Theorem 9, we build the quotient D/=̇ on a Fn for some n : N. We
transport the model M along this quotient and because =̇ is a congruence for
the symbols in ϕ, its semantics is preserved along the quotient. Hence, ϕ has a
finite model over the domain Fn which is both finite and discrete. ut

http://www.ps.uni-saarland.de/extras/fol-trakh/website/Undecidability.TRAKHTENBROT.discrete.html#fo_bisimilar
http://www.ps.uni-saarland.de/extras/fol-trakh/website/Undecidability.TRAKHTENBROT.discrete.html#fo_bisimilar_dec_congr
http://www.ps.uni-saarland.de/extras/fol-trakh/website/Undecidability.TRAKHTENBROT.red_utils.html#fo_form_fin_dec_SAT_discr_equiv
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Theorem 21. If ≡ is a binary relation symbol in the signature Σ, one has a
reduction FSATEQ(Σ;≡) � FSAT(Σ).

Proof. Given a list lF (resp. lP) of function (resp. relation) symbols, we construct
a formula ψ(lF , lP ,≡) over the function symbols in lF and relation symbols in
(≡ :: lP) expressing the requirement that ≡ is an equivalence and a congruence
for the symbols in lF/lP . Then we show that λϕ. ϕ ∧̇ ψ(Fϕ,≡ :: Pϕ,≡) is a
correct reduction, where Fϕ and Pϕ list the symbols occurring in ϕ. ut

4.2 From Discrete Signatures to Singleton Signatures

Let us start by converting a discrete signature to a finite and discrete signature.

Lemma 22. For any formula ϕ over a discrete signature Σ, one can compute
a signature Σn,m = (Fn;Fm), arity preserving maps Fn → FΣ and Fm → PΣ
and an equi-satisfiable formula ψ over Σn,m, i.e. FSAT(Σ)ϕ↔ FSAT(Σn,m)ψ.

Proof. We use the discreteness of Σ and bijectively map the lists of symbols Fϕ
and Pϕ onto Fn and Fm respectively, using Corollary 10. We structurally map
ϕ to ψ over Σn,m along this bijection, which preserves finite satisfiability. ut

Notice that n and m in the signature Σn,m depend on ϕ, hence the above
statement cannot be presented as a reduction between (fixed) signatures.

We now erase all function symbols by encoding them with relation symbols.
To this end, let Σ = (FΣ ;PΣ) be a signature, we set Σ′ :=(0; {≡2}+F+1

Σ +PΣ)
where ≡ is a new interpreted relation symbol of arity two and in the conversion,
function symbols have arity lifted by one, hence the F+1

Σ notation.

Lemma 23. For any finite13 type of function symbols FΣ, one has a reduction
FSAT′(FΣ ;PΣ) � FSATEQ(0; {≡2}+ F+1

Σ + PΣ ;≡2).

Proof. The idea is to recursively replace a term t over Σ by a formula which is
“equivalent” to x ≡ t (where x is a fresh variable not occurring in t) and then
an atomic formula like e.g. P [t1; t2] by ∃x1 x2. x1 ≡ t1 ∧̇x2 ≡ t2 ∧̇P [x1;x2]. We
complete the encoding with a formula stating that every function symbol f : FΣ
is encoded into a total functional relation Pf : F+1

Σ of arity augmented by 1. ut

Next, assuming that the function symbols have already been erased, we ex-
plain how to merge the relation symbols in a signature Σ = (0;PΣ) into a single
relation symbol, provided that there is an upper bound for the arities in PΣ .

Lemma 24. The reduction FSAT(0;PΣ) � FSAT
(
0; {Q1+n}

)
holds when PΣ

is a finite and discrete type of relation symbols and |P | ≤ n holds for all P : PΣ.

Proof. This comprises three independent reductions, see Fact 25 below. ut
13 In the Coq code, we prove the theorem for finite or discrete types of function symbols.

http://www.ps.uni-saarland.de/extras/fol-trakh/website/Undecidability.TRAKHTENBROT.red_utils.html#FIN_DEC_EQ_SAT_FIN_DEC_SAT
http://www.ps.uni-saarland.de/extras/fol-trakh/website/Undecidability.TRAKHTENBROT.Sig_Sig_fin.html#Sig_discrete_to_pos
http://www.ps.uni-saarland.de/extras/fol-trakh/website/Undecidability.TRAKHTENBROT.red_undec.html#FIN_DISCR_DEC_SAT_FIN_DEC_EQ_NOSYMS_SAT
http://www.ps.uni-saarland.de/extras/fol-trakh/website/Undecidability.TRAKHTENBROT.red_undec.html#FSAT_REL_BOUNDED_ONE_REL
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In the following, we denote by FnΣ (resp. PnΣ) the same type of function (resp.
relation) symbols but where the arity is uniformly converted to n.

Fact 25. Let Σ = (FΣ ;PΣ) be a signature:

1. FSAT(FΣ ;PΣ) � FSAT(FΣ ;PnΣ) if |P | ≤ n holds for all P : PΣ;
2. FSAT(0;PnΣ) � FSAT(P0

Σ ; {Q1+n}) if PΣ is finite;
3. FSAT(F0

Σ ;PΣ) � FSAT(0;PΣ) if FΣ is discrete.

Proof. For the first reduction, every atomic formula of the form P v with |v| =
|P | ≤ n is converted to P v′ with v′ := v ++ [x0; . . . ;x0] and |v′| = n for an
arbitrary term variable x0. The rest of the structure of formulas is unchanged.

For the second reduction, we convert every atomic formula P v with |v| = n
into Q(P :: v) where P now represents a constant symbol (Q is fixed).

For the last reduction, we replace every constant symbol by a corresponding
fresh variable chosen above all the free variables of the transformed formula. ut

4.3 Compressing n-ary Relations to Binary Membership

Let Σn = (0; {Pn}) be a singleton signature where P is of arity n. We now
show that P can be compressed to a binary relation modelling membership via
a construction using hereditarily finite sets [18] (useful only when n ≥ 3).

Theorem 26. FSAT′(0; {Pn}) � FSAT(0; {∈̇2}).

Technically, this reduction is one of the most involved in this work, although
in most presentations of Trakhtenbrot’s theorem, this is left as an “easy exercise,”
see e.g. [14]. Maybe it is perceived so because it relies on the encoding of tuples in
set theory, which is somehow natural for mathematicians,14 but properly building
the finite set model in constructive type theory was not that easy.

Here we only give an overview of the main tools. We encode an arbitrary
n-ary relation R : Xn → P over a finite type X in the theory of membership
over the signature Σ2 = (0; {∈̇2}). Membership is much weaker than set theory
because the only required set-theoretic axiom is extensionality. Two sets are
extensionally equal if their members are the same, and extensionality states
that two extensionally equal sets belong to the same sets:

∀̇xy. (∀̇z. z ∈̇ x ↔̇ z ∈̇ y) →̇ ∀̇z. x ∈̇ z →̇ y ∈̇ z (1)

As a consequence, no first-order formula over Σ2 can distinguish two extension-
ally equal sets. Notice that the language of membership theory (and set theory)
does not contain any function symbol, hence, contrary to usual mathematical
practices, there is no other way to handle a set than via its characterising formula
which makes it a very cumbersome language to work with formally. However,
this is how we have to proceed in the Coq development but here, we stick to
meta-level “terms” in the prose for simplicity.

14 In our case we use Kuratowski’s encoding.

http://www.ps.uni-saarland.de/extras/fol-trakh/website/Undecidability.TRAKHTENBROT.red_undec.html#FSAT_UNIFORM
http://www.ps.uni-saarland.de/extras/fol-trakh/website/Undecidability.TRAKHTENBROT.red_undec.html#FSAT_ONE_REL
http://www.ps.uni-saarland.de/extras/fol-trakh/website/Undecidability.TRAKHTENBROT.red_undec.html#FSAT_NOCST
http://www.ps.uni-saarland.de/extras/fol-trakh/website/Undecidability.TRAKHTENBROT.red_undec.html#FIN_DISCR_DEC_nSAT_FIN_DEC_2SAT
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The ordered pair of two sets p and q is encoded as (p, q) :={{p}, {p, q}} while
the n-tuple (t1, . . . , tn) is encoded as (t1, (t2, . . . , tn)) recursively. The reduction
function which maps formulas over Σn to formulas over Σ2 proceeds as follows.
We reserve two first-order variables d (for the domain D) and r (for the relation
R). We describe the recursive part of the reduction Σr

n 2

Σr
n 2(P v) := “tuplev ∈̇ r” Σr

n 2(∀̇z. ϕ) := ∀̇z. z ∈̇ d →̇ Σr
n 2(ϕ)

Σr
n 2(ϕ �̇ ψ) := Σr

n 2(ϕ) �̇ Σr
n 2(ψ) Σr

n 2(∃̇z. ϕ) := ∃̇z. z ∈̇ d ∧̇ Σr
n 2(ϕ)

ignoring the de Bruijn syntax (which would imply adding d and r as parameters).
Notice that d and r should not occur freely in ϕ. In addition, we require that:

ϕ1 := ∈̇ is extensional see Equation (1);

ϕ2 := ∃̇z. z ∈̇ d i.e. d is non-empty;
ϕ3 := x1 ∈̇ d ∧̇ · · · ∧̇ xk ∈̇ d where [x1; . . . ;xk] = FV(ϕ).

This gives us the reduction function Σn 2(ϕ) := ϕ1 ∧̇ϕ2 ∧̇ϕ3 ∧̇Σr
n 2(ϕ).

The completeness of the reduction Σn 2 is the easy part. Given a finite
model of Σn 2(ϕ) over Σ2, we recover a model of ϕ over Σn by selecting as the
new domain the members of d and the interpretation of P v is given by testing
whether the encoding of v as a n-tuple is a member of r.

The soundness of the reduction Σn 2 is the formally involved part, with
Theorem 27 below containing the key construction.

Theorem 27. Given a decidable n-ary relation R : Xn → P over a finite,
discrete and inhabited type X, one can compute a finite and discrete type Y
equipped with a decidable relation ∈ : Y → Y → P, two distinguished elements
d, r : Y and a pair of maps i : X → Y and s : Y → X s.t.

1. ∈ is extensional; 4. ∀x : X. i x ∈ d;
2. extensionally equal elements of Y are equal; 5. ∀y : Y. y ∈ d→ ∃x. y = i x;
3. all n-tuples of members of d exist in Y ; 6. ∀x : X. s(i x) = x;

7. R v iff i(v) is a n-tuple member of r, for any v : Xn.

Proof. We give a brief outline of this quite involved proof, referring to the Coq
code for details. The type Y is built from the type of hereditarily finite sets based
on [18], and when we use the word “set” below, it means hereditarily finite set.
The idea is first to construct d as a transitive set of which the elements are in
bijection i/s with the type X, hence d is the cardinal of X in the set-theoretic
meaning. Then the iterated powersets P(d),P2(d), . . . ,Pk(d) are all transitive
as well and contain d both as a member and as a subset. Considering P2n(d)
which contains all the n-tuples built from the members of d, we define r as the
set of n-tuples collecting the encodings i(v) of vectors v : Xn such that R v.
We show r ∈ p for p defined as p :=P2n+1(d). Using the Boolean counterpart of
(·) ∈ p for unicity of proofs, we then define Y :={z | z ∈ p}, restrict membership
∈ to Y and this gives the finite type equipped with all the required properties.
Notice that the decidability requirement for ∈ holds constructively because we
work with hereditarily finite sets, and would not hold with arbitrary sets. ut

http://www.ps.uni-saarland.de/extras/fol-trakh/website/Undecidability.TRAKHTENBROT.Sign_Sig2.html#Sign_Sig2_encoding
http://www.ps.uni-saarland.de/extras/fol-trakh/website/Undecidability.TRAKHTENBROT.Sign_Sig2.html#SAT2_SATn
http://www.ps.uni-saarland.de/extras/fol-trakh/website/Undecidability.TRAKHTENBROT.Sign_Sig2.html#SATn_SAT2
http://www.ps.uni-saarland.de/extras/fol-trakh/website/Undecidability.TRAKHTENBROT.reln_hfs.html#reln_hfs
http://www.ps.uni-saarland.de/extras/fol-trakh/website/Undecidability.TRAKHTENBROT.reln_hfs.html#reln_hfs
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4.4 Summary: From Discrete Signatures to the Binary Signature

Combining all the previous results, we give a reduction from any discrete signa-
ture to the binary singleton signature.

Theorem 28. FSAT(Σ) � FSAT(0; {P 2}) holds for any discrete signature Σ.

Proof. Let us first consider the case of Σn,m = (Fn;Fm), a signature over the
finite and discrete types Fn and Fm. Then we have a reduction FSAT(Fn;Fm) �
FSAT(0; {P 2}) by combining Theorems 20, 21 and 26 and Lemmas 23 and 24.

Let us denote by fn,m the reduction FSAT(Fn;Fm) � FSAT(0; {P 2}). Let
us now consider a fixed discrete signature Σ. For a formula ϕ over Σ, using
Lemma 22, we compute a signature Σn,m and ψ over Σn,m s.t. FSAT(Σ)ϕ ↔
FSAT(Fn;Fm)ψ. The map λϕ.fn,m ψ is the required reduction. ut

Lemma 29. FSAT(0; {P 2}) � FSAT({fn}; {Q1}) when n ≥ 2.

Proof. We encode the binary relation λx y. P [x; y] with λx y.Q
(
f [x; y; . . . ]

)
,

using the first two parameters of f to encode pairing. But since we need to
change the domain of the model, we also use a fresh variable d to encode the
domain as λx.Q(f [d;x; . . . ]) and we restrict all quantifications to the domain
similarly to the encoding Σr

n 2 of Section 4.3. ut

We finish the reduction chains with the weakest possible signature con-
straints. The following reductions have straightforward proofs.

Fact 30. One has reductions for the three statements below (for n ≥ 2):

1. FSAT(0; {P 2}) � FSAT(0; {Pn});
2. FSAT(0; {Pn}) � FSAT(Σ) if Σ contains an n-ary relation symbol;
3. FSAT({fn}; {Q1}) � FSAT(Σ) if Σ contains an n-ary fun. and a unary rel.

5 Decidability Results

Complementing the previously studied negative results, we now examine the
conditions allowing for decidable satisfiability problems.

Lemma 31. (FSAT over a fixed domain) Given a discrete signature Σ and
a discrete and finite type D, one can decide whether or not a formula over Σ
has a (finite) model over domain D.

Proof. By Fact 12, satisfaction in a given finite model is decidable. It is also
invariant under extensional equivalence, so we only need to show that there are
finitely many (decidable) models over D up to extensional equivalence.15 ut

Lemma 32. A formula over a signature Σ has a finite and discrete model if
and only if it has a (finite) model over Fn for some n : N.

15 Without discreteness of Σ, it is impossible to build the list of models over D = B.
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Proof. If ϕ has a model over a discrete and finite domain D, by Corollary 10, one
can bijectively map D to Fn and transport the model along this bijection. ut

Lemma 33. FSAT(0;PΣ) is decidable if PΣ is discrete with uniform arity 1.

Proof. By Lemma 22, we can assume PΣ = Fn w.l.o.g. We show that if ϕ has a
finite model then it must have a model over domain {v : Bn → B | bv = tt} for
some Boolean subset b : (Bn → B) → B. Up to extensional equivalence, there
are only finitely many such subsets b and we conclude with Lemma 31. ut

Lemma 34. For any finite type PΣ of relation symbols and signatures of uni-
form arity 1, we have a reduction FSAT(Fn;PΣ) � FSAT(0;LFn × PΣ + PΣ).

Proof. We implemented a proof somewhat inspired by that of Proposition 6.2.7
(Grädel) in [1, pp. 251] but the invariant suggested in the iterative process
described there did not work out formally and we had to proceed in a single
conversion step instead, switching from single symbols to lists of symbols. ut

If functions or relations have arity 0, one can always lift them to arity 1 using
a fresh variable (of arbitrary value), like in Fact 25, item (1).

Fact 35. The reduction FSAT(FΣ ;PΣ) � FSAT(F1
Σ ;P1

Σ) holds when all arities
in Σ are at most 1, where F1

Σ and P1
Σ denote arities uniformly updated to 1.

6 Signature Classification

We conclude with the exact classification of FSAT regarding enumerability, de-
cidability, and undecidability depending on the properties of the signature.

Theorem 36. Given Σ = (FΣ ;PΣ) where both FΣ and PΣ are data types, the
finite satisfiability problem for formulas over Σ is enumerable.

Proof. Using Theorem 20 and Lemmas 31 and 32, one constructs a predicate
Q : N→ FormΣ → B s.t. FSAT(Σ)ϕ↔ ∃n.Qnϕ = tt. Then, it is easy to build
a computable enumeration e : N→ OFormΣ of FSAT(Σ) : FormΣ → P. ut

Theorem 37. (Full Monadic FOL) FSAT(Σ) is decidable if Σ is discrete
with arities less or equal than 1, or if all relation symbols have arity 0.

Proof. If all arities are at most 1, then by Fact 35, we can assume Σ of uniform
arity 1. Therefore, for a formula ϕ over Σ with uniform arity 1, we need to decide
FSAT for ϕ. By Theorem 22, we can compute a signature Σn,m = (Fn;Fm) and a
formula ψ over Σn,m equi-satisfiable with ϕ. Using the reduction of Lemma 34,
we compute a formula γ, equi-satisfiable with ψ, over a discrete signature of
uniform arity 1, void of functions. We decide the satisfiability of γ by Lemma 33.

If all relation symbols have arity 0, regardless of FΣ , no term can occur
in formulas, hence neither can function symbols. Starting from ϕ over Σ =
(FΣ ;P0

Σ) where only PΣ is assumed discrete, we compute an equi-satisfiable
formula ψ over Σ′ = (0;P0

Σ) and we are back to the previous case. ut

http://www.ps.uni-saarland.de/extras/fol-trakh/website/Undecidability.TRAKHTENBROT.red_dec.html#FSAT_MONADIC_DEC
http://www.ps.uni-saarland.de/extras/fol-trakh/website/Undecidability.TRAKHTENBROT.red_dec.html#FSAT_MONADIC_11_FSAT_MONADIC_1
http://www.ps.uni-saarland.de/extras/fol-trakh/website/Undecidability.TRAKHTENBROT.red_dec.html#FSAT_FULL_MONADIC_FSAT_11
http://www.ps.uni-saarland.de/extras/fol-trakh/website/Undecidability.TRAKHTENBROT.red_enum.html#FSAT_opt_enum_t
http://www.ps.uni-saarland.de/extras/fol-trakh/website/Undecidability.TRAKHTENBROT.red_enum.html#FSAT_rec_enum_t
http://www.ps.uni-saarland.de/extras/fol-trakh/website/Undecidability.TRAKHTENBROT.red_enum.html#FSAT_opt_enum_t
http://www.ps.uni-saarland.de/extras/fol-trakh/website/Undecidability.TRAKHTENBROT.red_dec.html#FULL_MONADIC
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Theorem 38.(Full Trakhtenbrot) If Σ contains either an at least binary re-
lation symbol or a unary relation symbol together with an at least binary function
symbol, then BPCP reduces to FSAT(Σ).

Proof. By Theorems 14, 21 and 28, Lemma 29, and Fact 30. ut

Corollary 39. For an enumerable and discrete signature Σ furthermore satisfy-
ing the conditions in Theorem 38, FSAT(Σ) is both enumerable and undecidable,
thus, more specifically, not co-enumerable.

Proof. Follows by Facts 3 and 5. ut

Notice that even if the conditions on arities of Theorems 37 and 38 fully
classify discrete signatures, it is not possible to decide which case holds unless
the signature is furthermore finite. For a given formula ϕ though, it is always
possible to render it in the finite signature of used symbols.

7 Discussion

The main part of our Coq development directly concerned with the classification
of finite satisfiability consists of 10k loc, in addition to 3k loc of (partly reused)
utility libraries. Most of the code comprises the signature transformations with
more than 4k loc for reducing discrete signatures to membership. Comparatively,
the initial reduction from BPCP to FSATEQ(ΣBPCP) takes less than 500 loc.

Our mechanisation of first-order logic in principle follows previous devel-
opments [8,9] but also differs in a few aspects. Notably, we had to separate
function from relation signatures to be able to express distinct signatures that
agree on one sort of symbols computationally. Moreover, we found it favourable
to abstract over the logical connectives in form of �̇ and ∇̇ to shorten purely
structural definitions and proofs. Finally, we did not use the Autosubst 2 [20]
support for de Bruijn syntax to avoid its current dependency on the functional
extensionality axiom.

We refrained from additional axioms since we included our development in
the growing Coq library of synthetic undecidability proofs [11]. In this context,
we plan to generalise some of the intermediate signature reductions so that they
become reusable for other undecidability proofs concerning first-order logic over
arbitrary models.

As further future directions, we want to explore and mechanise the direct
consequences of Trakhtenbrot’s theorem such as the undecidability of query con-
tainment and equivalence in data base theory or the undecidability of separation
logic [3,5]. Also possible, though rather ambitious, would be to mechanise the
classification of first-order satisfiability with regards to the quantifier prefix as
comprehensively developed in [1]. Finally, we plan to mechanise the undecidabil-
ity of semantic entailment and syntactic deduction in first-order axiom systems
such as ZF set theory and Peano arithmetic.

http://www.ps.uni-saarland.de/extras/fol-trakh/website/Undecidability.TRAKHTENBROT.red_undec.html#FULL_TRAKHTENBROT
https://github.com/uds-psl/coq-library-undecidability/tree/trakhtenbrot_ijcar/theories/TRAKHTENBROT
https://github.com/uds-psl/coq-library-undecidability/tree/trakhtenbrot_ijcar/theories/TRAKHTENBROT
https://github.com/uds-psl/coq-library-undecidability/tree/trakhtenbrot_ijcar/theories/Shared/Libs/DLW
https://github.com/uds-psl/coq-library-undecidability
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