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Abstract

At all levels of linguistic analysis, natural language can be ambiguous. The numbers
of readings of different ambiguous components of a sentence or discourse multiply
over all these components, yielding a number of readings that can be exponential
in the number of ambiguities. Both from a computational and a cognitive point of
view, it seems necessary to find small representations for ambiguities that describe
all readings in a compact way. This approach is called underspecification, and it
has received increasing attention in the past few years.

Lately, two particularly elegant formalisms for the underspecified treatment of
scope ambiguities in semantics have been proposed: Context Unification (Niehren
et al. 1997b) and the Constraint Language for Lambda Structures, CLLS (Egg et al.
1998). Common to both is that they regard the term representing the semantics
of a sentence as a tree and describe it by imposing tree constraints. Furthermore,
both offer the expressive power to describe simple ellipses and their interaction
with scope ambiguities.

This thesis investigates some formal properties of these two formalisms. It ex-
amines their relation and shows that, except for a few additional constructs of
CLLS, both languages are equivalent in expressive power. In terms of computa-
tional complexity, this gives us the immediate result that the complexity of the
satisfiability problem of CLLS is exactly the same as that of context unification,
which, unfortunately, is unknown. The thesis further investigates the complexity
of the satisfiability problem of dominance constraints, an important sublanguage
of CLLS, and shows that it is NP-complete. In the course of the discussion of
complexity, it also briefly explains how techniques from concurrent constraint pro-
gramming can be applied to implement solution algorithms for these formalisms.
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Chapter 1

Introduction

In this chapter, we give a general introduction to the topic of the thesis, explaining
the basic concepts and formalisms that we will be concerned with, and stating our
main results. For now, our aim is to avoid formalities and work more by intuition
and example than by definition and proof; we will deliver these in later chapters.

First of all, we introduce the concept of underspecification. Underspecification is an
approach to the treatment of all sorts of natural-language ambiguities that attempts
to avoid the (expensive) enumeration of all readings of an ambiguous expression.
Underspecification has been employed on many levels of linguistic analysis, but
we will restrict ourselves to semantic underspecification and, in particular, the
underspecified treatment of scope ambiguities.

In the next two sections, we give intuitive “definitions” of the two formalisms we
will be primarily concerned with: the Constraint Language for Lambda Structures
(CLLS) and context unification (CU). We show how the phenomena mentioned
in the first section can be analyzed formally in these languages. Our analysis of
scope ambiguities in CU will be oversimplified; we will come back to this in a later
chapter.

Next, we state the contributions that this thesis makes to the research on the
aforementioned constraint languages. Our first contribution is to show that the
expressive powers of CLLS and CU are equal; for every constraint in one language,
there is a satisfiability equivalent constraint in the other language. An immediate
consequence of this result is that the complexities of CLLS and CU are the same;
but at this time, neither of these is known. This makes our second contribution
interesting: We show that the satisfiability problem of dominance constraints, an
important sublanguage of CLLS, is NP-complete.
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Finally, we briefly review two earlier approaches to scope underspecification to put
our work in a broader context.

1.1 Underspecification

1.1.1 Ambiguities

It is a well-known fact that at all levels of linguistic analysis, ambiguities occur.
The following is a (not at all exhaustive) list of possible sources of ambiguities.

(1.1)  a. Lexicon:
Mary went to the bank.

b. Syntactic attachment:
John watched the man with a telescope.

c. Coordination:
Birds eat small worms and frogs.

d. Quantifier scope:
Every man loves a woman.

e. Interaction of anaphora and ellipsis:
John likes his mother. Peter does, too.

f. Discourse:
I try to read a novel if I feel bored or I am unhappy.

The sentence in Example (a) is ambiguous in the meaning of the word bank; it
can either mean a riverbank or a financial institution. In the syntactic analysis of
Example (b), there are two different valid options where the PP with a telescope
can be attached: it can modify either the man, who in this reading is identified as
the man who carries a telescope, or it can modify watched the man, in which case
it is a tool to watch the man. In Example (c), it could be only small frogs that
birds eat, or it could be any kind of frogs; the ambiguity is in choosing what the
conjunction coordinates. Example (d) is ambiguous between expressing that there
is one woman who is loved by all man, or that for each man, there is a woman he
loves, but not everyone has to love the same one. In Example (e), it is ambiguous
who it is that Peter likes; it can be either his own mother or John’s. Finally, the
discourse in (f) has two different readings: Either the speaker tries to read a novel
under two different conditions, or she is unhappy if she does not read a novel.
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Traditionally, computational processing of sentences like these requires the enu-
meration of all their readings. What makes this a challenge for natural language
processing is that the number of readings of an ambiguous sentence grows exponen-
tially with the number of ambiguities. Consider the following well-known example.

(1.2) A politician can fool most voters on most issues most of the time, but no
politician can fool all voters on every single issue all of the time.

Each of the two sentences in this example contains four quantifiers, which means
that each sentence admits 24 = 4! different orderings of the quantifiers. The
sentences can be disambiguated independently; so together, they have 576 = 4! -
4! readings. Some of these readings may mean the same, but they will still be
distinguished in a traditional (say, first-order logic or DRT) analysis of the sentence.
On the other hand, a human listener can process a sentence like this quite easily,
perhaps without even being aware of its ambiguity. This suggests that we do not
have to enumerate all readings in order to understand an ambiguous sentence.

1.1.2 Underspecification

This exponential growth becomes particularly problematic when one does not only
want to enumerate readings, but wants to do some work with the meaning of the
sentence. This happens in virtually all applications of natural language processing
in real-world systems; for example, one might want to infer more information from
the natural-language input. Operations such as deduction are computationally
expensive on single formulae; executing them on each of an exponential number of
them in turn makes the task completely unfeasible. This is an additional motivation
for looking into ways of avoiding or delaying the enumeration of readings beyond
the cognitive intuition of the previous paragraph.

One such way is underspecification. The idea behind this approach is to represent
the meaning of a sentence not as the set of its readings, but as a single, compact
representation from which the readings can be extracted if necessary. Since we
operate on only one semantic representation per sentence (as opposed to an expo-
nential number if we enumerate all readings), this can be much more efficient than
the traditional enumerative treatment.

In order to ensure an improvement in efficiency, two immediate requirements must
be met. First, while we are trying to delay the enumeration of readings for as long as
possible and hope to lose many spurious readings along the way, we may still want
to know the exact set of readings when all the expensive work has been done. This
means that it must be possible to derive the set of readings from the underspecified
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representation with reasonably efficiency. Second, it must be possible to derive
an underspecified representation from some other level of representation (e.g., an
underspecified semantic representation from a syntactic analysis) efficiently and
systematically.

As an example that shows that underspecification can work, consider the following
deduction on semantic representations.

(1.3) FEwvery man loves a woman.
John is a man.
John loves a woman.

The first premise of this argument is ambiguous, but we still find the argument
valid without having to enumerate the readings of the premise. If we represent
every line of the argument in an underspecified way, we can say that there is a
relation of underspecified entailment between the premises and the conclusion of
the argument, and we can define direct deduction as deduction in a calculus that
respects this entailment relation. There are some subtleties to be considered in
a definition of underspecified entailment (van Deemter 1996), but it can be done;
there are sound and complete calculi of direct deduction.

The focus of this thesis will be on formalisms for underspecified semantics; more
precisely, both formalisms we will compare can handle scope ambiguities as in Ex-
ample (1.1d), and one of them (CLLS) can also describe strict/sloppy ambiguities
(1.1e). But this is not the only area that underspecification has been applied to; in
fact, people have given underspecified accounts of all the other items in (1.1) as well.
For example, Billot and Lang (1989) make use of so-called shared parse forests for
the compact representation of syntactic attachment ambiguities (b); Marcus et al.
(1983) employ dominance constraints for an underspecified, monotonic treatment
of various syntactic phenomena, including attachment and coordination (c). An
underspecified account of lexical ambiguities arising from polysemic words such as
school has been given by Bierwisch (1983); lexical ambiguities between unrelated
lexemes, such as in (a), can be treated, for example, in Jaspars’s (1997) underspec-
ified logic. Finally, Gardent and Webber (1998) give an underspecified account of
discourse ambiguities such as (f).

But of course, underspecification has its limits. While some phenomena (such as
discourse or attachment ambiguities) can be processed in an incremental, left-to-
right fashion by adding to the underspecified descriptions and leaving all choices
open until they can be refuted, this approach can probably not be extended to,
say, a parsing model that processes a sentence from left to right and does not make
choices about the types of words like that. This is not surprising, as there are
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“garden-path” sentences where even human speakers commit to one reading of the
prefix of a sentence and have to backtrack later and choose another.

The other extreme of making choices in the incremental processing of language is
by defaults: Whenever a choice comes up, we make it immediately, and if it turns
out later that the choice was wrong, we backtrack and change it. This approach is
especially popular in a variant where this decision is guided by statistical data. But
it is not perfect, either; it makes deduction on partially analyzed texts nonmono-
tonic, and it predicts garden-pathing for sentences where a human speaker doesn’t
garden-path. For example, Marcus et al. (1983) argue that we do not garden-path
in processing a sentence such as

(1.4) I drove my aunt from Stuttgart’s car.

A parser that is based on defaults might commit early to attaching “my aunt” as
the direct object of the verb; only when “car” is encountered would such a parser
realize its mistake and backtrack to attach the aunt at a lower position in the tree.

It seems reasonable to assume that the “psychological reality” of sentence process-
ing is somewhere between these two extremes, and finding the exact balance in a
cognitive model would be an interesting subject of research. However, this question
is way beyond the scope of this thesis, so let us agree for now that underspecifica-
tion can be used to gain a computational advantage for a wide range of phenomena
and hence, is interesting to study.

To conclude our brief overview of underspecification in general, we illustrate that
one seemingly plausible way to represent semantic ambiguities in a single formula,
namely writing down the disjunction of all readings, is not an appropriate rep-
resentation. A major problem occurs when we try to analyze negated sentences.
Normally, a negated sentence is analyzed simply as the negation of the analysis
of the non-negated sentence. See what happens if we do this for a “disjunctive”
analysis of a lexical ambiguity.

(1.5) Mary goes to the bank.
(1.6) Mary does not go to the bank.
According to the systematic analysis of negations, the meaning of the sentence

(1.6) should just be the negation of the sentence (1.5). But if we represent (1.5)
disjunctively, for example as

go(m, bl) \% go(m, b2)
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(where by and by stand for the two different meanings of the word bank), this would
predict the meaning of (1.6) to be

=(go(m, by) V go(m, by)).

However, the disjunctive representation of the intuitive meaning of (1.6) would be
—go(m, by) V —go(m, by),

and these two formulae are not equivalent.

The example of disjunction is a very nice illustration of why there should be a
clean distinction between an object language (the language in which the different
readings of the sentence will be represented) and the meta language, in which the
underspecified representations are written. As we have just seen, using object-
level disjunction for underspecification runs into problems as soon as we want to
analyze negations. But disjunction on the meta-level, expressing something like
“the sentence means R; or the sentence means I,", does not have this problem
because it doesn’t interact with OL negation. The approaches we are going to look
into in this thesis distinguish very clearly between object-level and meta-level.

But while meta-level disjunction allows the correct representation of the meaning,
it is still not a compact representation, and hence, we would not necessarily call
such a representation underspecified. To make the distinction more explicit, it is
sometimes said that underspecification aims for a non-disjunctive representation
of the meaning of a sentence.

1.1.3 Scope Underspecification

The type of ambiguity that this thesis is primarily concerned with is the class of
scope ambiguities, as in Example (1.1d). Their name becomes clear when we look
at the logical representations of their meanings. The two formulae that correspond
to the two readings of (1.1d) are

(1.7) Vx.(man(z) — Jy.(woman(y) A love(z,y)))

(1.8) Fy.(woman(y) A Vz.(man(z) — love(z,y)))

If we regard the quantifiers as firmly connected to their restrictions — i.e., next to
the central love(z,y) subformula, we have two “fragments” Vz.(man(x) — -) and
Jy.(woman(y) A-) —, the main difference between the two formulae is in the scopes
of the quantifiers. In the first reading, it is the universal quantifier that has wide
scope; in the second, it is the existential one.
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In general, not only quantifiers can participate in scope ambiguities, but also other
scope-bearing objects such as negations and some verbs. For instance, the sentence
(1.9) has two readings that are represented by the formulae (1.10) and (1.11).

(1.9) Ewvery boy does not go to the movies.
(1.10) Va.(boy(x) — —gtm(z))

(1.11) =Vz.(boy(x) — gtm(x))

Early, enumerative approaches to scope ambiguities enumerated all readings of a
scope ambiguity by traversing the syntax tree of the sentence and raising quantify-
ing NPs above the sentence node; the order in which they were adjoined determined
the relative scope of the quantifiers they corresponded to. For example, the Cooper
storage (Cooper 1983) approach equipped each node of the syntax tree with a store
for NPs. The tree was traversed in a bottom-up fashion, and whenever an NP was
encountered, it was added to its mother’s store. In this way, all NP semantics were
collected. Whenever an S node was encountered, NPs could be “discharged” by
applying the respective quantifiers to the preliminary lambda terms that had been
constructed so far. The choice where NPs were discharged was made nondetermin-
istically.

Over the past few years, several approaches to an underspecified treatment of this
phenomenon have been proposed, the most prominent of which are Quasi Log-
ical Form (QLF, Alshawi and Crouch 1992), Underspecified DRT (Reyle 1993),
Muskens’s (1995) underspecified semantics, Hole Semantics (Bos 1996), and Min-
imal Recursion Semantics (MRS, Copestake et al. 1997). We will give a brief
overview over two of them (QLF and Hole Semantics) in Section 1.5.

The key idea of most recent underspecified accounts of scope ambiguities is to break
formulae into different fragments (as we have done above) and impose constraints on
the way these fragments can be assembled to obtain the readings of the sentence.
This will become clear in an example. Consider Figure 1.1, which displays the
fragments that occur in the description of the meaning of (1.1d).

Intuitively, this picture means that every formula which describes a reading of the
sentence consists of three fragments: one containing a universal quantification over
men z, one containing an existential quantification over women y, and one express-
ing that x loves y. The love subformula must be outscoped by both quantifiers; but
there is no information on the relative scopes of the two quantifiers. One possible
reading is for the universal quantifier to outscope the existential one, corresponding
to reading (1.7); the other is for the existential one to outscope the universal one,
yielding reading (1.8).
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Figure 1.1: An underspecified representation of the meaning of Example 1.1d.

This intuition can be modeled formally in different ways. One is to allow “holes”
in fragments and “plug” other fragments into these holes in such a way that given
scoping constraints are obeyed. This is the basic idea of formalisms such as UDRT
and Hole Semantics; we will get back to it in Section 1.5.

Another way of giving the graph a formal meaning relies on the close correspon-
dence between trees and ground terms over ranked signatures (where each symbol
is equipped with an arity). We will freely make use of this correspondence through-
out the thesis. Once terms and formulae can be regarded as trees, sets of them
can be described as the solutions of formulae in a tree logic. This is the method
adopted in the approaches that we will be primarily concerned with in this thesis,
namely, the Constraint Language on Lambda Structures (CLLS, Egg et al. 1998)
and Context Unification (CU, Niehren et al. 1997b). These formalisms will be
introduced in Sections 1.2 and 1.3 and defined formally in Chapter 2. The main
topic of the thesis will be to investigate their formal relation and complexity.

CLLS and CU also capture the interaction of scope ambiguities with ellipses; in
addition, CLLS correctly models the interaction of ellipses with intra-sentential
anaphora. We have already seen an example of the latter (so-called strict/sloppy
ambiguities) as Example 1.1d. The former is most obvious in so-called Hirschbiihler
sentences (Hirschbiihler 1982):

(1.12) Every man loves a woman. Several gorillas do, too.
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In processing the ellipsis, the second (“target”) sentence is expanded to Several
gorillas love a woman. This means that both the second and the first (“source”)
sentence contain a scope ambiguity, and if they could be resolved independently,
the pair of sentences would have four different readings. But the ellipsis enforces
a parallelism of the scopes of the NPs. So if every man has wide scope in the first
sentence, several gorillas must have wide scope in the second sentence as well, and
vice versa; the pair of sentences only has two readings.

1.2 CLLS

The fundamental idea underlying both CLLS and, as we will see, context unifica-
tion is to regard formulae as trees and impose tree constraints that describe them.
These constraints are conjunctions of atomic formulae that can be built from a
small set of relation symbols with a fixed semantics; they can be satisfied by trees,
and we will say that they describe these trees. The variables that occur in CLLS
formulae denote nodes of trees; every node of such a tree is labeled with a sym-
bol from a given signature Y, and the arity of the label determines the number
of children of this node. There are seven types of atomic constraints, the most
primitive of which are labeling and dominance constraints. A labeling constraint
X @ f(Xy,...,X,) is satisfied if the node denoted by X is labeled with f, and
its immediate children are the nodes denoted by Xi,...,X,, from left to right.
A dominance constraint X <1*Y is satisfied if the node denoted by X dominates
(not necessarily immediately) the one denoted by Y. To avoid confusion: We
take “dominance” to be the reflexive, transitive closure of “immediate dominance”
throughout the thesis.

1.2.1 Scope ambiguities in CLLS

To give Figure 1.1 a formal meaning in CLLS, labeling and dominance constraints
are (almost) sufficient. We can simply construct a CLLS constraint ¢ that is
satisfied by exactly the same trees that the picture is supposed to describe. To this
end, we associate a CLLS variable with every node of the graph. Whenever a node
X of the graph is labeled, say, with f and its immediate children are the nodes
Xy, ..., X,, this is represented in ¢ as a conjunct X:f(Xy,...,X,); whenever a
dotted line goes down from a node X to a node Y, ¢ will contain a conjunct X <*Y".

For example, we would represent Fig. 1.1 by the following constraint:
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(1.13) Xo<* X1 A Xo<t* XoA
X1§V$(X3) AN Xz — (X4,X5) N X4:man(X6) A Xg:x
Xg:Ely(X7) A X7Z A (‘ng7 Xg) N Xg:woman(Xlo) N Xloiy/\
X5<]*X11 A Xg<]*X11 A X113|OVG(X12, X13) A Xlgll‘ N X132y

In this way, we have reinterpreted solid lines in the graph as immediate dominance
constraints and dotted lines as dominance constraints. If we add the additional
restriction that all solutions of the constraint we have just constructed only use the
material we have mentioned in the constraint, its solutions will be exactly those
intended by the intuitive idea of the figure. We will freely use these “constraint
graphs” instead of the constraints they represent for better readability. It is essen-
tial to understand the difference between the nodes in the constraint graph and the
nodes in a solution. While the former are a notational convenience and represent
the variables of a CLLS constraint, the latter are part of the structures that satisfy
these constraints and can be denoted by CLLS variables.

We have glossed over one problem that is worth mentioning: Our treatment of
variable binding is not adequate yet. Imagine a constraint graph that is like Fig.
1.1, but in which all occurrences of y have been replaced by x —i.e., both quantifiers
bind x. When the corresponding constraint is solved, it will depend on the chosen
scope relation of the quantifiers which the actual binder of the variable occurrences
x in the love subformula will be. This is similar to the capturing problems of lambda
calculus; but the situation is even worse in that in lambda calculus, the problem
can be solved by consistent renaming of variables and their binders, whereas in our
example, the variables do not even have a unique binder. This means it simply
does not really make sense to talk about “binders”; binders must be unique.

This is why CLLS takes resort to so-called lambda structures, trees that have been
equipped with an additional binding relation between nodes. Instead of modeling
variable binding by using variable names, we say that the node representing the
bound variable and the node representing the binder are in the binding relation.
This works not only for the first-order case we have considered so far, but also for
encodings of arbitrary lambda terms. We will see in the next chapter how, exactly,
this extension can be made.

1.2.2 Ellipses

Let us now look into the CLLS treatment of ellipses. In Chapter 2, we will show
in more detail how their interaction with anaphora and scope ambiguities can be
handled; for now, we will restrict ourselves to a simple example to show the basic
idea.
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Consider the following simple ellipsis.

(1.14) John sleeps. Mary does too.

(1.15) sleep I X, o X,

john e X, mary e X,

We have complete knowledge about the semantics X of the first sentence; it should
be simply sleep(john). All we know about the semantics X; of the second sentence
without resolving the ellipsis, however, is that it should contain mary somewhere.
Finally, X; should be almost the same as X; but where X, contains john, X; should
contain mary.

More formally, we can completely describe the tree corresponding to the semantics
of the first sentence with labeling constraints, as in the left diagram in (1.15). In
addition, we can partially describe the tree corresponding to the semantics of the
second sentence with labeling and dominance constraints, as in the right diagram.
But how do we express the parallelism requirement that relates the structures of
the two trees?

In CLLS, this is done with a so-called parallelism constraint, which in this case
looks like this:
XS/XlNXt/XQ.

This formula means that the trees below the nodes denoted by X; and X;, re-
spectively, must be the same, except for the trees below X; and X5, which can be
different. From a different perspective, this means that the contezts of X; and X,
in the trees below X, and X; must be the same, but different subtrees have been
plugged into these position on both sides. We already know the tree below Xs, so
we have complete information about both trees.

This works well for our simple example: The constraint we have constructed has a
unique solution in which the semantics of the target sentence is determined to be
sleep(mary). To cover more interesting examples, the actual definition of parallelism
constraints is a bit more involved in order to take care of some subtleties, and we
will defer its detailed discussion to Chapter 2.

1.3 Context Unification

Another constraint language on trees that has been used for semantic underspeci-
fication is the language of context unification (Niehren et al. 1997b), a variant of
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Pinkal’s (1996) “radical underspecification” approach. Although there are many
parallels between the analyses provided by CLLS and CU, most of them may not
be obvious at first sight, and there is a fundamental difference on the perspective on
trees the two formalisms take. We will discuss these points in Section 1.4. Context
unification is an interesting formalism in its own right that has been investigated
in theoretical computer science; in addition, we will see that its investigation can
provide results about the complexity of solving CLLS constraints.

1.3.1 Context constraints

Like CLLS, context unification is a constraint language on trees. CU formulae —
conjunctions of equations between certain terms — can be satisfied by trees. Unlike
CLLS, however, variables denote trees instead of nodes (or, as in the term/tree
correspondence that we noted above, ground terms).

The terms ¢ that CU constraints can equate have the following form.

to=f(ty,...,ty) || C(2).

In this definition, f is a tree constructor from the signature, x is a first-order
variable that denotes a tree, and C'is a so-called context variable. Context variables
denote unary functions (called context functions) from trees to trees that insert
their arguments into a fixed context — a tree with a hole, or alternatively, a tree
from which a complete subtree has been cut away (Fig. 1.2). We will write contexts
as terms with exactly one occurrence of the symbol e, which represents the hole.

y T

N

Figure 1.2: A context.

A context constraint is satisfied by a tree iff all of its variables can be mapped to
trees and functions such that in every equation, the trees on the right-hand and
left-hand sides are the same. For example, (1.17) is the unique solution of the
context constraint (1.16). This can be seen easily by checking each equation in the
constraint, from bottom to top.
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(1.16) o = C(b) ANC(d) = f(a,C"(a)) A C'(e) = g(d, e)

(1.17) 2o = f(a,g(b,a))
C = f(avg(.’ a))
C'= g(d7 .)

Again, we will say that a context constraint describes a tree if the tree satisfies the
constraint. Context unification is the problem of solving context constraints.

1.3.2 Examples

We will now take a look at how context constraints can be used as underspecified
semantic representations. To this end, we will reconsider the examples of the
section on CLLS and see how to treat them by context unification. In general,
the linguistic coverage of context unification is the same as that of CLLS, except
for phenomena related to anaphora because these cannot be represented in CU.
(In fact, we will show later that CU is formally equivalent to a slightly restricted
variant of CLLS.)

Recall the scope ambiguity Fvery man loves a woman, whose standard underspec-
ified analysis was shown in Figure 1.1. We have seen in the previous section how
the trees corresponding to its first-order logics semantics can be described with a
CLLS constraint. The same trees can be described by the following context con-
straint.! We write the partial trees in a term notation to make the structure of the
constraints more explicit. In a solution of the constraint, the variable z; denotes
the entire tree corresponding to the semantics of the ambiguous sentence.

(1.18) zo = Cy(Va(— (man(z), C3(love(z,y))))) A
zo = Co(Fy(A(woman(y), Cy(love(x,y)))))

A closer look reveals the similarity to the graph in Figure 1.1. The fragments of
the formula are still present; and instead of “dotted edges”, we have used context
variables as a device to leave space open. In each of the two solutions we are looking
for, two of the context variables will be instantiated with the quantifier in the other
constraint. The other two context variables will be instantiated with the “empty
context” e (i.e., the context function that is the identity on trees). For example, x
is instantiated with the reading that assigns wide scope to the universal quantifier
if we instantiate the context variables as follows:

T Actually, this context constraint has an additional solution that does not correspond to any
linguistic reading. For sake of simplicity, however, we will go with the given constraint for now
and fix things in Chapter 2.



14 CHAPTER 1. INTRODUCTION

(119) Cy=Cy=o
Cy =V (— (man(z),e))
C5 = Jy(A(woman(y), e)).

To see how context constraints can be used for the description of ellipses, we will
reanalyze Example 1.14. In the CLLS analysis, the crucial step towards calculating
the semantics of the target sentence was that we could express that the contexts
of the parallel elements within the sentences had to be the same. In context uni-
fication, we can say this even more directly by introducing a context variable C,
which will denote this common context.

(1.20) John sleeps. Mary does too.

(1.21) x4 = sleep(john)
zs = C(john) x; = C(mary)

The idea underlying this analysis is exactly the same as in CLLS: First, the se-
mantics of the source sentence is described precisely, and then the semantics of the
target sentence is determined by imposing the constraint that mary must appear
in it in the same context in which john appeared in the source sentence.

Clearly, the CU analysis of ellipsis is similar to the HOU analysis of Dalrymple et al.
(1991) (henceforth, DSP). But there are important differences. While the equality
of higher-order terms that DSP are interested in is modulo afn equivalence, the
equality considered in CU is simple equality of trees. One effect of this is that
CU has a much more direct handle on the actual structure of a term; this is
important to express things like dominance or subtree relations. On the other
hand, it means that the DSP analysis of strict/sloppy ambiguities does not carry
over to CU because it crucially relies on the use of nonlinear lambda terms that can
ignore arguments in beta reduction. (Context unification does not allow nonlinear
functions, anyway.)

1.3.3 Computational aspects

Considering the simple structure of context constraints, it is surprisingly difficult
to solve them. In fact, it is not even known if context unification is decidable.

However, it is known that the complexity of context unification is between that
of string unification and that of second-order unification. Second-order unification
(Goldfarb 1981) is known to be undecidable; context unification can be considered
a slightly restricted form of this problem. On the other hand, string unification
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(Makanin 1977), explained below, is known to be decidable, but the best known
algorithm has a doubly exponential time complexity. There is a straightforward
encoding of string unification problems as context unification problems.

String unification is the problem of solving a conjunction of equations between
strings in which, beyond the usual characters from a given alphabet, string-valued
variables can be used. A solution of such a problem is an assignment of ground
strings to variables such that all equations are satisfied. To illustrate the high
complexity of string unification (and with that, of context unification), we present
a simple example and invite the reader to find its solutions or prove unsatisfiability.
In the example, x and y are variables, and a and b are symbols from the signature.

(1.22) axzbyx = rayyry

Embedding string unification into context unification is easy. For each character
in the SU alphabet, we have one unary constructor in the CU signature; in ad-
dition, we have one nullary constructor € in the signature to terminate the string
equivalents. Trees from this signature can be read as strings from the root to
the single terminal node; in this way, context variables correspond immediately to
string variables. The above example, written as a context constraint, would look
like this:

(1.23) a(C(C((D(C(e))))) = Ca(D(D(C(D(e))))))

While the decidability of full context unification is an open problem that is being
actively investigated, there are several known decidable fragments. Lévy (1996)
restricts the full language such that every variable may only occur twice to obtain
decidability. Maybe the most powerful known decidable fragment is the so-called
stratified unification (Schmidt-Schaufi 1994). But none of these contain the frag-
ment that seems to be needed for the linguistic application.

A typical (not necessarily terminating) complete solution procedure for context
constraints is the one given in (Niehren et al. 1997a, Appendix B). It attempts
to infer a contradiction or specify a solution by nondeterministic application of
rewrite rules. In its raw form, this procedure suffers from massive overgeneration
and enormous runtimes. This can be remedied by introducing an object-language
typing system and removing some of the most problematically nondeterministic
rules (Koller 1998). These two changes make the procedure incomplete — some
solutions of a constraint will not be found —, but the linguistically relevant examples
are still found, and performance becomes acceptable. They will be explained in
more detail in Chapter 4.
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1.4 Contributions of this thesis

In this thesis, we make two contributions to the research on CLLS and context
unification:

1. We show that for every context constraint, there is an satisfiability equivalent
constraint of CLLSy, a slightly restricted sublanguage, and vice versa.

2. We show that the satisfiability problem of the language of dominance (and
labeling) constraints is NP-complete. This result stays true (with one minor
restriction) if we allow the use of the other propositional connectives.

Both results were obtained in cooperation with Joachim Niehren. They have been
published as (Niehren and Koller 1998) and (Koller et al. 1998).

There are several good reasons for a closer examination of the formal relation be-
tween CLLS and context unification as underspecification formalisms. First of all,
while they are both tree logics, their perspectives on trees are different. In the
terminology of Blackburn et al. (1995), the perspective of CLLS, whose variables
denote nodes of trees, is “internal”, while that of context constraints, whose vari-
ables stand for trees, is “external”. Relating the two logics means relating the two
perspectives.

At the same time, if we can show the equivalence of these formalisms and have any
kind of information on the complexity of solving constraints on one side, we know
immediately that the complexity of solving the constraints on the other side must
be the same.

Finally, such a consideration is particularly relevant with respect to the project
in whose context this research stands. This project, CHORUS, is a subproject
of the DFG-funded Sonderforschungsbereich 378 “Ressourcenadaptive kognitive
Prozesse” (‘“ressource-adaptive cognitive processes”). Its general goal is under-
specified semantic representation, with a focus on not only achieving good lin-
guistic coverage, but also keeping the various operations (disambiguation, direct
deduction) computationally feasible. Context unification, which had been the un-
derspecification formalism of choice in the project in 1997, was replaced by CLLS
towards the end of that year for various reasons that we will explain in Chapter 2.
The equivalence result between CLLS and context unification both justifies to take
over old analyses and contributes to an a posteriori justification of some of the CU
analyses based on the CLLS analyses.

The first contribution of this thesis is to show that CLLS,, the sublanguage of
CLLS that only allows labeling, dominance, and parallelism constraints, is equiv-
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alent to context constraints. It is possible to encode CLLS, constraints as context
constraints, and vice versa, in such a way that both sides are satisfied by exactly
the same trees.

This is not obvious. Fortunately, a major part of the proof can be reduced to the
equivalence of context constraints and so-called equality up-to constraints, which
was shown by Niehren et al. (1997a). In addition, there is an apparent similar-
ity between dominance constraints and subtree constraints (Venkatamaran 1987),
which can be written as context constraints in a straightforward manner. But the
obvious idea of encoding dominance as a subtree relation is wrong, as the following
example shows.

(1.24) X : f(X1. Xo) A X1 <Y A X'

(125) I.E:f(l‘l, I’Q) NyLry Ny,

Example (1.24), a dominance constraint in which the variables denote nodes in a
tree, is unsatisfiable. X; and X, are nodes in disjoint positions of a tree, so there
can’t be any node Y that they both dominate. This is illustrated in Figure 1.3.

Figure 1.3: Constraint graph of (1.24).

In contrast, (1.25), a subtree constraint in which the variables denote trees, is
satisfiable. A constraint <<y only requires that the tree denoted by x is a subtree
of that denoted by y, which is a much less strict condition than dominance of
nodes. For example, one way to solve (1.25) is to assign = = f(a,a) and z; =
s =y = a. (As it happens, this is exactly the reason why the CU analysis of the
scope ambiguity in Example 1.18 is not entirely correct, as we will see later.) This
shows that a naive encoding of dominance constraints as subtree constraints does
not preserve satisfiability. The fundamental problem is that subtree constraints do
not allow us to identify different occurrences of subtrees: As we have just seen,
the subtree constraint above doesn’t care that the subtree denoted by y appears in
different places of the tree in different conjuncts. On the other hand, we can easily
identify an occurrence of a subtree with a dominance constraint by specifying its
root node.
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We have called the idea we employ in our construction in Chapter 3 ‘nodes as
contexts’ (as opposed to the ‘nodes as subtrees’ approach in Example 1.24). This
idea relies on the identifications of a context with the path from its root to its hole
and of a node with the path leading to it from the root of the tree. If a dominance
constraint is satisfied by a tree o, we fix a tree variable T whose purpose it is
to denote the entire tree ¢. Then we introduce for each node variable in the
dominance constraint a tree variable denoting the tree below the node (as above)
and a context variable denoting the context of the node within o. All of this can
be enforced by context constraints. Finally, we recast every single dominance or
labeling constraint as a context constraint. For example, dominance of nodes now
simply means that the context associated with the upper node is a subcontext of
that of the lower one. A detailed discussion of our encoding, along with a proof of
its correctness, will follow in Chapter 3.

This equivalence in expressive power yields the immediate corollary that the com-
plexity of the satisfiability problem of CLLS, constraints is the same as that of
context unification; but we have seen above that the latter is unknown. A frag-
ment about whose complexity we can say something, however — and this is the
second contribution of the thesis —, is the language of dominance (and labeling)
constraints (and various fragments of its full first-order language). Dominance con-
straints are not only a crucial fragment of full CLLS (as we have seen, they are the
fundament of the CLLS treatment of scope ambiguities), but also an interesting
and widely used constraint language in their own right (for other linguistic appli-
cations, see e.g. Marcus et al. 1983, Vijay-Shanker 1992, Gardent and Webber
1998).

Previous research on dominance constraints includes a first-order axiomatization
by Backofen et al. (1995). In a situation where all trees can be enumerated (for in-
stance, finite trees over a finite or countable signature), steps in a derivation from
the axiomatization (which will eventually prove validity if the formula is valid)
and enumeration of trees and checking if the formula is satisfied by them (which
will eventually find a counterexample if one exists) can be interleaved to obtain a
decision procedure for validity of first-order dominance constraints (Backofen, per-
sonal communication). In addition, Rogers and Vijay-Shanker (1994) have given
a sound and complete calculus that derives so-called quasi-trees from (conjunc-
tive) dominance constraints, from which tree structures solving the constraints can
be extracted straightforwardly. The actual complexity of any language over the
dominance constraints, however, has been unclear.

In this thesis, it is shown that the satisfiability problems of all languages of domi-
nance constraints between the purely conjunctive constraint language (as presented
above) and the existential fragment over the dominance constraints (including
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all propositional connectives) are NP-complete. An additional complexity result,
which has been published in (Koller et al. 1998) as well, is that the first-order
theory of dominance constraints has non-elementary complexity.

1.5 Previous approaches to underspecified se-
mantics

To conclude our introduction and put the two main approaches to be considered
into a broader context, we now give a brief and informal overview over earlier
approaches to an underspecified treatment of scope ambiguities. From the wide
variety of formalisms that we have listed above, the two we pick for a closer look
are Quasi Logical Form and Hole Semantics. The former is of seminal importance
for the field and has a broad coverage of linguistic phenomena. The latter is
representative of a family of underspecification formalisms that is probably the
most influential at this time. The most popular member of this family is UDRT
(Reyle 1993; Schiehlen 1997), but Hole Semantics is much more accessible, and its
basic ideas are essentially the same.

1.5.1 Quasi Logical Form

QLF (Alshawi and Crouch 1992) was the first formalism for semantic underspeci-
fication that was implemented and used for real-world applications. It was contin-
ually developed over several years and developed further to meet the demands of a
growing linguistic coverage. The original syntax looks rather intimidating. There-
fore, we have adopted a heavily simplified version for our exposition here. For the
original, we refer the reader to (Alshawi et al. 1992), a comprehensive summary of
QLF and its applications.

The underlying idea of the formalism is to provide an underspecified representation
of quantifier raising. In a QLF representing a sentence, the terms representing NPs
are arguments of the VPs whose syntactic arguments they are. FEach of them
is identified by a unique index, and different scope relations can be represented
by specifying an order on indices in special scoping lists. In an unresolved QLF,
these lists are unspecified; they are represented as uninstantiated variables. To
ensure that logical formulae can be derived from fully resolved QLFs, there is
the constraint that for every index, the term it identifies must appear inside the
scoping list that contains the index. Disambiguation means instantiation of the
scoping lists.
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By way of example, consider the (heavily simplified) QLF representation of the
scope ambiguity in Example 1.1d, repeated here as (1.26).

(1.26) Ewvery man loves a woman.

(1.27) _s:love(term(+m, V, A X.man(X)),
term(+w, 3, AY.woman(Y")))

In the QLF, we find the two NPs represented as two terms that are arguments of
their syntactic mother, the love VP. Each term has a unique index, given as its
first argument; for the NP quantifying over men, it is +m, for the one quantifying
over women, it is +w. The type of quantifier (e.g. universal or existential) is stored
as the second argument; and the restriction of the quantifier (i.e. the first syntactic
argument, or alternatively, the antecedent of the implication under the universal
quantifier or the first conjunct under the existential quantifier) is placed in the
third argument.

The love formula is prefixed with a scoping list that is, at this point, unspeci-
fied and represented by the variable _s. Due to the free-variable constraint we
mentioned above, any fully resolved QLF that can be derived from (1.27) must
instantiate _s with a list that contains both +w and +m. This can be done in either

order, yielding the two readings (1.28) and (1.30) below.

(1.28) [+m,+w]:love(term(+m, V, A X .man(X)),
term(+w, 3, AY.woman(Y')))

(1.29) Vz.man(x) — Jy.(woman(y) A love(z,y))
(1.30) [+w,+m] :love(term(+m, V, AX.man(X)),
term(+w, 3, AY.woman(Y)))

)

(1.31) Fy.woman(y) AVz.(man(z) — love(z,y))

It is possible to treat various cases of ellipsis (including the interaction of VP
ellipses with anaphora and scope ambiguities) in QLF (see, for example, Crouch
1995). For instance, if we continue the above scope ambiguity with (1.32) to obtain
a Hirschbiihler sentence, we would in a first step note the meaning of the target
parallel element several gorillas as in (1.33). For our analysis of the target sentence,
we stipulate a generalized quantifier several with the correct semantics.

(1.32) Sewveral gorillas do, too.
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(1.33) term(+g, several, AZ.gorilla(Z))

To compute the meaning of the target sentence, we have to find a contextually
salient antecedent for it; in this case, this will be (1.26). We can then extract a
substitution that maps the QLF of the source parallel element to that of the target
parallel element. In this case, this is

(1.34) | term(+g, several, AZ.gorilla(Z)) / term(+m, ¥V, AX.man(X)), +g/+m |

This substitution, applied to the semantics of the source sentence, will produce the
semantics of the target sentence. To ensure the correct treatment of Hirschbiihler
sentences, the actual application of the substitution is delayed until the scope
relations in the source sentence are fully resolved. Application of the substitution
will then not only replace the parallel quantifiers themselves, but will also insert
the index of the target parallel element for that of the source parallel element in
the scoping list. In this way, the scope parallelism of the sentences is enforced.

The evolutionary, application-oriented development of QLF has the positive effect
of leading to a very wide coverage of linguistic phenomena. But the downside
of this is that some aspects of QLF are patchwork needed to make things work,
instead of consequences of an overall vision. One particular inconvenience is that
unlike most modern approaches to underspecification, QLF does not provide a clean
separation between object and meta language; elements of both are distributed all
over an underspecified representation. This makes the task of designing a calculus
for direct deduction even more difficult than it inherently is.

1.5.2 Hole Semantics

Hole Semantics was developed by Bos (1996) and is a general framework for cre-
ating an underspecified representation language from a non-underspecified object
language. Bos himself applies it to predicate logic and DRT; his “DRT unplugged”
essentially agrees with UDRT, with which it shares the underlying perspective on
scope ambiguities.

Hole Semantics is based on underspecification pictures such as Figure 1.1, which
we repeat below as Fig. 1.4 in a slightly adjusted format, but gives it a different
technical interpretation than CLLS. Formulae occurring in the nodes of such an
underspecified representation (UR) are taken from the object language; but any
subformula can be replaced by a so-called hole (hg, hy, hs in the picture). The
function of holes is that other formulae can be plugged into them to obtain a larger
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formula. The lines in the graph are drawn from holes to formulae, and they express
that the formulae must be subformulae of the formulae into whose holes they will
be plugged. To take care of problems that can arise when the same formula occurs
more than once in the graph, each fragment is given a unique identity, its label
(l1,15,13 in the picture). The graph can be represented as an upper semilattice
specifying a partial order on holes and labels, and disambiguation means to make
this order more specific.

The object-language formulae a UR represents can be obtained from so-called ad-
missible pluggings. A plugging is a bijection between holes and labels, and it is
called admissible if it agrees with the partial order on labels and holes. An admis-
sible plugging P induces a object-language formulae by starting at the (unique)
top formula of the UR and subsequently replacing holes h by formulae P(h).

Figure 1.4: A scope ambiguity in Hole Semantics.

To see an example for such a plugging, we have equipped Fig. 1.1 with explicit
holes and labels in Fig. 1.4. The UR presented in this picture has exactly two
admissible pluggings. They are shown as (1.35) and (1.37), along with the predicate
logic formulae they induce.

1.35) {ho =11, hy =15, hy =I5}

1.36) Vx.man(z) — Jy.(woman(y) A love(z,y))

1.37 {hO = l2ah2 = llahl - 13}

(1.35)
(1.36)
(1.37)
(1.38) Jy.woman(y) A Vz.(man(xz) — love(x,y))

Hole Semantics also describes a simple way to obtain an underspecified model-
theoretic semantics for underspecified representations from a semantics for the
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original object language: For every admissible plugging of a UR, it contains the
(object-language) denotation of the induced formula. In itself, it does not say any-
thing about the treatment of ellipses or about direct deduction. However, close
relatives of Hole Semantics have been the subject of some research on direct de-
duction. For example, Reyle (1993) presents a sound and complete calculus for
UDRT, and Kénig and Reyle (1996) present another generalized underspecified
logic that can be parameterized with an object language and provides a calculus
of direct deduction.

The striking similarity of the graphical devices used to make CLLS and Hole Se-
mantics representations more transparent suggests a formal connection between
the technical methods of representation. Indeed, it is quite easy to encode every
UR of Hole Semantics as a CLLS constraint. All we have to do is fully describe
the fragments that constitute the UR with labeling constraints and then to refor-
mulate the partial order on the holes and labels with corresponding dominance
constraints. There is one subtlety, however: We must make sure that in a solution
of the dominance constraint, fragments are not identified with each other. This
can be done easily with inequality constraints that state that the nodes denoted
by two variables must be different.



24 CHAPTER 1. INTRODUCTION

Plan of the thesis

In Chapter 2, we start off with a formal definition of the syntax and semantics
of context unification and CLLS. Then we prove some basic results about the
two languages; in particular, that we can allow CU formulae to contain equations
between context-valued terms without changing the expressive power. We also
show how to formalize some linguistic examples in both approaches.

In Chapter 3, we prove the formal equivalence between context unification and
CLLSg, the sublanguage of CLLS built up only from labeling, dominance, and
parallelism constraints. More precisely, we present encodings of CU into CLLS,
and vice versa such that both the original formula and its encoding are satisfied
by exactly the same trees. The most interesting part of the proof is to show how
to encode dominance constraints as context constraints.

In Chapter 4, we investigate the complexity of the satisfiability problem of dom-
inance constraints. We present an algorithm that decides this problem and show
that it is sound and complete and terminates in NP time. We also show how this
algorithm can be extended to decide the satisfiability problems of larger logical
languages over the dominance constraints without an increase in worst-case com-
plexity. Next, we underpin this result by a proof of the NP-completeness of the
satisfiability problem:; so we cannot expect to find a faster algorithm for the full
problem. To this end, we show how to encode formulae of propositional logic as sat-
isfaction equivalent dominance constraints. Finally, we sketch an implementation
of the solution algorithm and some recent results about the complexity of the first-
order theory of dominance constraints, which is decidable and has non-elementary
complexity.

In Chapter 5, we summarize the work reported in the thesis and present directions
for further work. In particular, we will discuss requirements for a formal theory of
underspecified beta reduction on CLLS constraints.



Chapter 2

CLLS and Context Unification

In this chapter, we give a formal definition of the syntax and semantics of the two
constraint languages for semantic underspecification we will be looking into. We
prove some basic results about trees and contexts and look into some additional
examples of applying the two formalisms for linguistic analyses.

In the first section, we define CLLS. First, we define trees (in a fairly standard
way) and tree structures; tree structures are trees with an additional interpretation
function that interprets certain predicate symbols over the nodes of the tree. We
then extend this definition to lambda structures — tree structures with an additional
binding function. Lambda structures can be used to model lambda terms in a tree-
like fashion. Based on these definitions, it is straightforward to define the syntax
and semantics of CLLS.

A particularly interesting sublanguage of CLLS is the language of dominance (and
labeling) constraints. Dominance constraints are a common formalism in compu-
tational linguistics, but the traditional variant of dominance constraints is different
from ours. We investigate the relation between these two types of dominance con-
straints in Section 2.1.5, thus concluding the first section of this chapter.

In Section 2.2, we then look into the linguistic application of CLLS in some more
detail. We see how the five-readings benchmark scope ambiguity Every researcher
of a company saw most samples can be successfully analyzed in CLLS, and we
demonstrate how to use CLLS for an analysis of Hirschbiihler sentences.

Finally, we give a formal definition of context constraints, the language underlying
context unification. This language is based on equations between terms that denote
trees; these equations can make reference to so-called context variables, which
denote functions that insert trees in fixed contexts. We extend the language to allow

25
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equations between context-valued terms and prove that these equations can be
expressed in the original language of context constraints. As a further illustration

of the linguistic application of CU, we give a correct analysis of scope ambiguities
in CU.

We only introduce the core language of CLLS and don’t go into various extensions
that are irrelevant for our exposition and don’t make a difference to complexity
issues. One extension is to add anaphoric links (Egg et al. 1998) to lambda struc-
tures and corresponding constraints to specify them. These links can be used to
model intrasentential anaphora and interact appropriately with parallelism con-
straints for a correct treatment of strict/sloppy ambiguities. Another extension is
to add a relation of binding equivalence (Egg et al. 1999) to lambda structures,
which can be used to soften the definition of parallelism constraints. In its simplest
form (which we will adopt here), this is just the identity relation on nodes. Egg
et al. (1999) show how it can be changed to solve problems that arise in the context
of antecedent-contained deletion, a special case of VP ellipsis.

2.1 Syntax and Semantics of CLLS

CLLS is a constraint language that is interpreted over lambda structures, tree-
like encodings of terms of lambda calculus. Lambda structures are based on tree
structures, formalizations of trees that also interpret several predicate symbols.
Variables in a CLLS formula denote nodes of a lambda structure. The syntax of
CLLS is defined in the usual way as the language of conjunctions over applications
of these predicate symbols.

Below, we will first define tree structures. We will then extend this definition to
a definition of lambda structures and explain the correspondence between lambda
structures and lambda terms. Finally, we define the syntax and semantics of CLLS
constraints, which will be straightforward given the groundwork of the first two
subsections.

2.1.1 Tree structures

Throughout the thesis, we assume that ¥ is a ranked signature that contains func-
tion symbols or tree constructors f,g,a,b,..., which are assigned arities by an
arity function ar : ¥ — Ny;. (We take N to be the set of positive integers and N
to be the set of nonnegative integers.) We further assume that ¥ contains at least
two constructors, one of which is nullary. This is a minor restriction because the
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resulting logics become rather boring if there is only one possible finite tree, or
none at all. In some cases, we will further restrict ¥ to be finite, or to contain
symbols of certain arities; but whenever we do, we will say this explicitly.

Following Courcelle (1983), we define a tree domain A to be a nonempty prefixed-
closed subset of N*; i.e., the elements of A are words of positive integers. These
words can be thought of as the paths from the root of a tree to its nodes. We write
the concatenation of two words 7 and 7’ as 7 - 7’; whenever convenient, we leave
the concatenation dot away and simply write 7’

We define a constructor tree to be a function
oc: A=Y

with the additional property that for every 7 € A, if ar(o(7)) = n, then 7l,... ,7n
are in A, but no 7k is, for any k > n. A finite constructor tree is a constructor
tree whose domain is finite.

Throughout the thesis, we will always mean “finite constructor tree” whenever we
say “tree”.

Clearly, trees can be seen as ground terms over Y, and we will frequently write
them as such. The domain of a tree can be seen as the set of its nodes, and we will
write it as Dom(o). We write o.7] to mean that 7 is in the domain of o.

Paths can select subtrees of a tree. Whenever o is a tree and 7 is a path in Dom(o),
we define the selected subtree 0.7 as the function

on:{r' |o.(rr' )} = 2
(o.m)(7") = o(nn’).

o.m is undefined if 7 is not in the domain of o.

The following “bottom-up” relation about selection is true:

Proposition 2.1. If o is a tree, © is a path such that o(w) = f, and n = ar(f),
then
on = f(o.(rl),...,0.(mn)).

The tree structure M over the tree o is a pair (o, I), where I is an interpretation
function that assigns relations on Dom(o) to a set of fixed predicate symbols. We
will use the same symbols for these relations and the predicate symbols; as the
former are applied to paths and the latter are applied to CLLS variables, there
is no danger of confusion. [ will be fully determined by o; so to specify a tree
structure, it is sufficient to specify the underlying tree.



28 CHAPTER 2. CLLS AND CONTEXT UNIFICATION

We now define the relations assigned to the predicate symbols by I. If f € ¥
has arity n, the labeling relation m:f(my,... ,m,) is true iff o(7) = f and for all
1 <i <mn, m = mi. The dominance relation m<t*z’ is true iff 7 is a prefix of 7',
The inequality relation m # «' is true iff 7 and ' are different.

Finally, there are two relations that are slightly more complex. The similarity
relation m ~ 7’ is true iff o.m = o.7'. The parallelism relation my /) ~ms/7h holds

iff

1. there is a common “exception path” mg, i.e. 1} = mmy and 75 = mamy;

2. Dom(o.m) — mg - Dom(o.7}) = Dom(o.m3) — 7y - Dom(o.7});

3. for all 7" of which 7y is not a prefix, o(mn’) = o(man’).
Intuitively, this means that except for the subtrees below 77 and 75, the subtrees
below 7; and 7y are structurally the same. The region between m; and 7] (whose

domain is specified in the second condition) is called a context; it is essentially a
tree that lacks one leaf. We will say more about contexts in Section 2.3.1.

2.1.2 Lambda structures

Lambda structures are tree structures that are extended by a notion of variable
binding. To model this, we assume from now on that ¥ contains the nullary
constructor var and the unary constructor lam.

A lambda structure L is a triple (o, A, I), where o is a tree, I is an extended
interpretation function, and A : Dom(o) ~» Dom(o) is the partial binding function.
A must obey the following conditions:

1. binding only holds between variables and A-binders:
Vavr' A (m) = 7' = (mwvar A In” 7':lam(7”))

2. every variable has a binder:
Vrmvar = 3n’ Ap(m) =7’

3. variables are dominated by their binders:

Vavr' Ap(m) = 7' = o'<*n

The interpretation function I interprets all predicate symbols that the interpre-
tation function of a tree structure does, plus the predicate symbol A(-) = -. T
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assigns to most predicate symbols the same relations that the interpretation func-
tion of a tree structure would; below, we only discuss the interpretation of the
binding relation (which is not defined in tree structures) and of the similarity and
parallelism relations (whose definitions change).

We define the binding relation A(w) = 7' to be true iff the application A(w) is
defined and equal to n’. We impose an additional restriction on the similarity
relation:

1. within the trees, binding is structurally isomorphic:
Vavr' o (mm)L Ao.(mn')] = (A(mm)=mn' < N(mm)=myn’)

2. two variables in identical positions within the trees and bound outside the
trees must be bound by the same binders:
Vv’V (m < m AT < mg A ome<a” A o.(ma")L A Amr")=1 A
A(men")=n") = 7 =7".

The same restrictions, plus an additional condition about so-called “hanging
binders” (binding nodes within a context that bind variables below the exception
path), also apply to the parallelism relation 7y /7]~y /7

1. within the contexts, binding is structurally isomorphic:
Vavr' —mo<m A o.(mm)l A me<n’ A o.(mn')] = (A(mm)=mr’ &
A(mom)=my7’)

2. two variables in identical positions within their context and bound outside
their context must be bound by the same binders:
Vava'va" (m < m A < m A mme<a” A o.(mr") ] A Mmr")=m A
A" )=n") = 7 =7".

3. there are no ‘hanging’ binders, i.e., var nodes below the exception positions
are not bound by lam nodes inside the contexts:
Vavr' =(m <wm <7 <7 AXNr')=mn)

We can draw a lambda structure L by first drawing the tree that corresponds to the
tree structure M7, and then drawing dashed arrows from the bound nodes to the
binding nodes in the binding relation. For example, the following picture displays
the lambda structure that is defined by the tree lam(Q(Q(f,var), lam(Q(h, var))))
and the binding function that maps the node 112 to the node €, and the node 1212
to the node 12:
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(2.1)

2.1.3 Syntax and semantics of CLLS

With these definitions, it is straightforward to define the syntax and semantics of
CLLS constraints. Assuming a set of variables X,Y,..., an atomic formula (or
atomic constraint) ¢ of CLLS is one of the following applications of predicate
symbols to variables:

wo = X:f(Xy,...,X,) fex, n=ar(f)
| X<'Y

| XY

| X~V

| X/X'~Y)Y!

| AMX)=Y.

We take the language CLLS of constraints over these atomic formulae to be the lan-
guage of conjunctions of atomic formulae. The language of dominance constraints
is the sublanguage of CLLS that only uses labeling and dominance constraints.
CLLS, is the sublanguage of CLLS that does not contain binding constraints. We
will mainly be interested in the constraint languages, but occasionally, we will also
consider larger logical languages over them, for example the positive existential
fragment (built up with all propositional connectives and positive occurrences of
existential quantifiers) or the full first-order language, in which quantifiers (over
nodes) can be used anywhere.

Satisfaction of an atomic constraint ¢q is defined with respect to a pair (L, «) of a
lambda structure L = (o, A, I) and a variable assignment « : Var — Dom(o) that
assigns nodes to the variables. The atomic constraint R(Xq,...,X;) (where R is
one of :f, <*, etc.) is satisfied by this pair iff (a(X3),..., (X)) € I(R). This is
extended to satisfaction of arbitrary formulae in the usual Tarskian way. If a pair
(L, o) satisfies ¢, we also say that ¢ describes L.

For fragments of CLLS that do not contain binding constraints (such as dominance
constraints or CLLSy), it makes no difference if we interpret its formulae over
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lambda structures or over tree structures. Therefore, we will only consider the
(simpler) interpretations over tree structures in later chapters.

Because CLLS constraints can easily become unreadable, we will frequently use
constraint graphs as a graphical device to represent constraints. They are essen-
tially an alternative to the original syntax of the language. Constraint graphs are
directed graphs with three kinds of edges: solid edges, used to represent immedi-
ate dominance, dotted edges, used to represent arbitrary dominance, and dashed
arrows, used to represent binding constraints.

The nodes of a constraint graph represent variables of a constraint. Whenever a
node of the graph is labeled with a constructor f € 3 of arity n, it must have
exactly n children via solid edges. This configuration corresponds to a labeling
constraint of the variables corresponding to the nodes. Dotted edges correspond to
a dominance constraint of the corresponding variables. And finally, dashed arrows
correspond to binding constraints. The other types of atomic constraints cannot
easily be represented in a constraint graph.

For example, consider the constraint graph (2.2). It represents the constraint (2.3).

(2-2) lam ’I X
/0 Xy
/
/
/ 3
var ! 4 X5

(23) X1:|am(X2) N X2<]*X3 A X32f(X4, X5) A X4IV3F N )\(X4) = Xl.

Although their pictures look very similar, it is essential not to confuse constraint
graphs with lambda structures. The nodes in a constraint graph stand for variables
in a constraint, and the edges stand for atomic constraints; the nodes in a lambda
structure can be denoted by the variables in a constraint, and the edges are an
actual part of the tree. Where constraint graphs are an alternative representation
of the syntax of CLLS, lambda structures are objects of its semantics.

Note that we have only defined one direction of the relation between constraints
and constraint graphs; we have shown how to read a constraint off of a graph. It
is more difficult to define the converse relation. Fortunately, we can do without in
this thesis, but we will take a closer look at the problem in the conclusion.
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2.1.4 Lambda structures and lambda terms

The relevance of lambda structures and CLLS as the corresponding tree logic is
that we can encode terms of the lambda calculus as lambda structures and talk
about them in terms of trees and nodes. We have seen in the introduction that
there is an inherent danger in such a tree-like treatment of lambda terms (or more
generally, any kind of logical formalism that allows to bind variables) that it could
become unclear which binder a variable is bound by. Lambda structures solve this
problem: CLLS does not rely on variable names to determine binding, it relates the
binder and the variable directly. The dashed arrows in a constraint graph can be
thought of as “rubber bands”; no matter how much material is interposed between
the variable and its binder, the link won't break.

The precise relation between lambda structures and lambda terms is that a lambda
structure corresponds uniquely to a class of lambda terms modulo a equivalence.
If we assume without loss of generality that all lambda terms are unary and ignore
variable binding in a lambda term for the moment, each such term has a straight-
forward tree structure: For every lambda term M, we can obtain the corresponding
tree as M, according to the following definition of (-)':

ot = var (x is a variable)
M= (fex)
(M(N))! = M'anNt

(Az. M)t = lam(M").

We make use of the symbol @, which is a special binary constructor that we write
in left-associative infix notation.

Variable binding can be modeled by requiring that every node that is labeled
with var is in the binding relation to the lam node representing its binder. The
correspondence can be reversed by picking a new variable name for each lam node
and naming all nodes that it binds appropriately.

As an example, the lambda term in (2.4) can be represented as the lambda structure
in (2.5), and so can any other lambda term to which it is « equivalent.

(2.4) Az.f(x)(Az.h(z))
(2.5)
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2.1.5 Relation to Dominance Constraints with Precedence

Dominance constraints are an important sublanguage of CLLS. They are also
widely used throughout computational linguistics. But the variant of dominance
constraints that is traditionally used by linguists (e.g. Marcus et al. 1983; Backofen
et al. 1995) is slightly different than ours. First of all, they consider a different class
of trees, where the label of a node does not determine the number of its children.
This also suggests a different syntax for the constraint language, talking about
labeling, immediate dominance, and precedence (“left-of” relation) separately, as
in the following prototypical abstract syntax:

Y = XY | X<V | X <Y | X:f.

Here, <* is the same (reflexive, transitive) dominance relation as we have defined
above. < is immediate dominance, f is labeling (without specifying the immediate
children), and < is precedence: X < Y is true if X and Y have a common ancestor
7/ and are dominated by different children of Z. To talk about both types more
easily, we will call these constraints precedence constraints.

It is obvious that when interpreting over constructor trees, for every dominance
constraint, there is an equivalent precedence constraint. Dominance is trivial; and
labeling constraints X:f(Xy,...,X,) can be expressed in the following way:

X fAX<SXIA . AXDX AXE < Xo Ao A X1 < X

This works because in a constructor tree, the label f of the node denoted by X
determines that there are exactly n immediate children. On an arbitrary tree, we

would have to add a (quantified) formula to say that no other nodes are children
of X.

It is unclear if there is a satisfiability preserving encoding of precedence constraints
into dominance constraints. However, if the signature is finite and if we additionally
allow the use of disjunctions in our dominance constraints, we can get such an
encoding of precedence constraints 1 in the following way:

e Encode an atomic constraint X <Y of ¢ as

V VX:f(Z.....Y.....Z,) (Y isithargument, Z; fresh).

fes =1
ar(f)=n

e Encode an atomic constraint X:f of ¢ as

X:f(Z1, ... Zy) (Z1,...,Z, fresh).
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e Encode an atomic constraint X <Y of ¢ as

\ Z:f(Z,.... 20~ \| (Zi<"XAZ<y))  (Z. 7, ... . Zy fresh).

fes 1<i<k<n
ar(f)=n

Clearly, this encoding does not work for infinite signatures; but it is easy to see
that it preserves satisfiability.

2.2 Applying CLLS

In the introduction, we have seen some first examples of how CLLS can be used for
the underspecified description of semantics. In this section, we consider some more
interesting examples. First, we see scope underspecification in its full beauty by
presenting a treatment of the five-readings sentence Every researcher of a company
saw most samples. In addition, we show how Hirschbiihler sentences such as Every
man loves a woman. Several gorillas do, too. can be correctly addressed in CLLS.

But before we go into the details of the linguistic analyses, a word about our
object language is in order. In the introduction, our semantic object language
(the formulae of which we described as trees) was first-order predicate logic for
simplicity. Unfortunately, first-order logic does not work very well any more once
we consider more interesting cases of parallelism, such as the Hirschbiihler sentence
in Section 2.2.2. For cases like these, it is necessary that the representation of an NP
is a contiguous subtree of the entire semantics. This is not necessarily the case in
a first-order analysis, but it is in a higher-order analysis before -reduction. Note
that we do not have builtin S-reduction in our representation of lambda terms
as lambda structures; we are representing raw lambda terms, not (-equivalence
classes.

So from here on, we choose our object language to be the language of simply
typed lambda terms. As our syntax/semantic interface, we assume a construction
similar to that from Montague grammar (Montague 1974), analyzing every NP
as a generalized quantifier whose type is independent of whether it is a proper
name or a determiner application such as every man. When we draw constraint
graphs or lambda structures, we will usually compress subtrees that correspond to
determiners into a single node that is labeled with the name of the determiner for
easier readability. For example, we might compress APAQVzP(z) — Q(x) into a
single node labeled with every. This is just an abbreviation.

Finally, we will speak about “minimal solutions” of a constraint. We connect with
this term an intuitive idea of a solution which does not contain any unnecessary



2.2. APPLYING CLLS 35

material; for example, it might only contain the material that is mentioned in
labeling constraints, or only solutions of minimal size. There is no formal definition
of a minimal solution so far that is commonly agreed upon; we will use this notion
in an informal way in our discussions of linguistic examples below, but it will not
appear in the more formally oriented later chapters of the thesis. We will come
back to the problem in the concluding chapter.

2.2.1 Advanced scope ambiguities

Consider the following sentence.
(2.6) Ewvery researcher of a company saw most samples.

NP modifications as in this example were a problem in early approaches to scope
ambiguity. These approaches would simply enumerate all permutations of the
three quantifiers at the sentence node, so they would predict 6 = 3! readings for
the sentence in the example. But this sentence has only five readings. Most recent
theories treat this example correctly, but it is still an important benchmark for a
theory of scope ambiguity.

CLLS does handle this sentence correctly: The constraint for the semantics of (2.6)
is shown as a constraint graph below.

(2.7)

comp woman
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The constraint in (2.7) has a specific structure that makes it easy to see its solutions.
Due to the left “dominance diamond” (whose points are the root node Xj, the
left and the middle quantifier X; and X, respectively, and Xy, the tree below
which models the genitive relation), there are essentially two possible places for
the left quantifier in a lambda structure that solves this constraint: above the
universal quantifier, or below the universal quantifier’s left daughter X4. The
requirement that both quantifiers dominate Xy leaves no other options. Likewise,
the right “dominance diamond” (whose bottom point is X, the tree below which
models the love relation) allows two different classes of solutions, one where the
right quantifier X3 dominates the universal quantifier X5, and one where it occurs
below the universal quantifier’s right daughter X;. It is crucial that there are two
independent “dominance diamonds”, each with its own “nucleus” at the bottom.

This yields five structurally different solutions to the constraint. If the existential
quantifier X; dominates the universal quantifier X5, the existential quantifier X3
may be above, between, or below the other quantifiers, which gives three options.
If, on the other hand, X, is dominated by X5, there are only two different positions
for the existential quantifier X3, viz., either above or below the universal quantifier:
The universal quantifier essentially acts as a binary constructor, ensuring that if
the existential quantifiers are both dominated by (different leaves of) the universal
quantifier, they don’t dominate each other. This is exactly where the naive ap-
proach of enumerating the permutations of the quantifiers fails: If the universal
quantifier has widest scope, the two existential quantifiers must be in disjoint po-
sitions in the tree, whereas the two permutations that give the universal quantifier
widest scope correspond to the two possibilities for the two existential quantifiers
to dominate each other.

2.2.2 Hirschbuhler sentences

As we have sketched in the introduction, a Hirschbiihler sentence is an ellipsis
whose source sentence contains a scope ambiguity. The interesting property of
Hirschbiihler sentences is that when resolving the ellipsis, the scope ambiguity
is copied over to the target sentence, which might lead one to believe that the
pair of sentences has four different readings (two scope ambiguities, each with
two readings). But there are only two readings, as the ellipsis enforces a “scope
parallelism” between the two sentences; both scope ambiguities must be resolved
in the same way. For reference, we repeat Example 1.12.

(2.8) Ewvery man loves a woman. Several gorillas do, too.
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In Section 1.2.2, we have seen how to analyze very simple ellipses with CLLS
parallelism constraints. A pleasant property of CLLS is that Hirschbiihler sentences
can be analyzed in precisely the same way without any further modifications to
the formalism. When we analyzed our simple example in the introduction, we
first wrote down all we could say without resolving the ellipsis and then added the
parallelism constraint. We will proceed here in the same way. The first part of the
constraint is represented as a constraint graph in (2.9).

(2.9)

1 lam \ lam \ ?Xt
every man . a woman ) :
N / .
N
N : -

X5
- several gorilla

@'\. ,..-"'b//
@) \var>e”
love var

(a) (b)

—
-

Part (a) of this constraint is just the representation of the scope ambiguity in the
source sentence that we have been using since the introduction, written in our
higher-order object language. Part (b) expresses that somewhere in the semantics
of the target sentence, several gorillas occur.

Now we add the parallelism constraint; what we want to say is that the semantics
of the target sentence is just like that of the source sentence, but where the source
sentence contained “every man”, the target sentence should have “several gorillas”.

(210) Xs/XlNXt/XQ

This constraint has exactly the two correct minimal solutions, but we should ob-
serve that the construction was only possible because the parallel elements were
represented as subtrees. Parallelism constraints can only replace entire subtrees;
had we attempted to do the same thing with the first-order representation of the
scope ambiguity (Fig. 1.1), we would have failed because the source parallel ele-
ment would have been distributed over several nodes in the tree that do not form a
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subtree. At this point, the difference between the CLLS/CU and the DSP analysis
of ellipses becomes apparent: DSP need not require that the representation of a
parallel element must be contiguous. They consider full higher-order logic with
builtin -reduction, so they do not have to worry about the exact representation of
the NP semantics, and in fact, could not distinguish between the unreduced rep-
resentation (where the NP semantics is in a subtree by itself) and the [-reduced
representation (which is essentially first-order). In CLLS, on the other hand, we are
talking about individual lambda structures instead of #-equivalence classes; here, it
does make a difference if we try to resolve the ellipsis before or after g-reduction.

2.3 Context Unification

We now define context unification and its underlying logic, the language of context
constraints. To this end, we first define contexts and context functions, which are
used in the definition of the semantics of context constraints. Finally, we extend
the language with equations between context-valued terms and prove that this
extension makes no difference to the expressive power of the language.

2.3.1 Contexts and Context Functions

In analogy to tree domains, we define a context domain ? to be a finite prefixed-
closed subset of N* for which there is a path 7, € N* — 7 such that 7 U {7} is a
tree domain. The intuition behind a context domain is that it is the set of nodes
of a tree that misses one leaf. Note that a context domain must be finite and can
be empty. m, is called the exception path of 7.

A context s is a function
s:7 =3

where 7 is a context domain with exception path m., with the additional property
that for every m € 7, if ar(s(m)) = n, then w1,... ,7n are in 7 U {m.}, but no 7k
is, for any k > n. 7. is called the exception path of s.

Intuitively, we can think of a context as a tree from which an entire subtree (in-
cluding its root) has been cut away, leaving behind a hole. Consequently, we can
and frequently will write a context as a ground term that contains exactly one
occurrence of the special symbol e, which we call ‘hole’. Fig. 2.1 schematically
shows a tree from which the subtree ¢ has been cut away.
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Te

N

Figure 2.1: A context.

If s is a context with exception path 7., we can define the context function -, to
be the unary function from trees to trees that inserts its argument into the context
s in the following way:

s(m) if defined
Ys(0) () = { o (') if 7 = mon!

undefined otherwise.

Clearly, context functions and contexts correspond uniquely to each other, and all
context functions are injective. The “identity context” e, whose domain is empty,
corresponds to the identity function on trees.

Throughout, we will switch freely between contexts and context functions and use
whichever is more convenient. To this end, we list some more definitions that will
make this easier. We define the exception path of a context function v, to be the
exception path of s. If s is a context and o is a tree, we define the insertion s[o]
of o into s to be the tree v4(c). In term representation, we can think of this as
substituting o for the hole of s. If s and s’ are contexts, we define the extension
so s of s by s' to be the context corresponding to the context function 7, 0vy. In
the term representation, we can think of this as substituting s’ for the hole of s.

As for trees, we can define selection s.m of subcontexts. Let s : 7 — X be a context,
let 7, be its exception path, and let = be a path in ? U {n.}. Then we can define
the selected subcontext s.m as the function

s A{rn' |nr" € ?U{m.}} = &
(s.m)(n') = s(mr’).

s.m is undefined if 7 is not in ? U {m.}. s.m. is defined; its domain is empty, so it
is the identity context e.
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The following are a few simple but useful lemmas that will facilitate a lot of later
work.

Lemma 2.2. If s is a context, w is its exception path, and o is a tree, then the
domain of s[o] is the disjoint union

Dom(s[o]) = Dom(s) & 7 - Dom(o).

Proof. Obvious from the definitions of s[o] and of context functions. O

Lemma 2.3. Two contexts s,s' are equal iff their exception paths are the same
and there is a tree o such that s[o] = §'[o].

Proof. The “=" direction is trivial. For the other direction, all we have to prove
is that the domains of the functions s and s' are equal; it follows immediately that
the entire functions are equal.

We know that s[o] = s'[o]; so in particular, their domains are the same. Call
the common exception path of the two contexts m. According to Lemma 2.2, the
following equalities hold:

Dom(s[o]) = Dom(s) W 7 - Dom(o)
Dom(s'[¢]) = Dom(s') & 7 - Dom(o)
Because the unions are disjoint, it follows that Dom(s) = Dom(s'). O

Lemma 2.4. If sy, sy are contexts, then the exception path of sq o sy is the con-
catenation of the exception paths of s; and ss.

Proof. By definition of s1 o s». O

2.3.2 Syntax and Semantics of CU

The language of context constraints is built up from a ranked signature > as in
2.1.1, a set of first-order variables x, v, ..., and a set of context variables C, D, ....
A context constraint v is a conjunction of equations ¢t = ' of terms of the following
syntax:

to=x| f(tr,... . t,) | C(t).

Context constraints are interpreted over trees. First-order variables (and, in gen-
eral, all terms t) denote trees, and context variables denote context functions.
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Variable assignments (3 that assign trees to first-order variables and context func-
tions to context variables can be lifted to functions from terms ¢ to trees homo-
morphically:
Bf(tr,. .. tn)) = f(B(t1). ... B(tn))
BCt)) = B(C)B(L)).

A variable assignment (3 satisfies an equation ¢t = ' iff 5(¢t) = (B(t'). It satisfies
a context constraint ¢ iff it satisfies all equations in . Context unification is
the satisfiability problem of context constraints. As for CLLS, we can consider
larger languages; in the full first-order language, we allow quantification over both
first-order variables  and context variables C.

2.3.3 Context Equations

It turns out that in practical work with context unification, it is often convenient to
express the equality of context-valued terms (such as context variables, extensions
of context variables, contexts that are written down explicitly as terms with one
occurrence of e, etc.) instead of only of tree-valued terms. In this section, we show
that these context equations can be expressed as standard context constraints. For
easier reference, we call the terms ¢ from the previous section tree terms in this
section.

A context equation is an equation u=u' between context terms of the following form:
w = C|s|uou,

where s is a ground term over ¥ with exactly one occurrence of e (i.e., the term
representation of a context).

The application of a context term u to a tree term ¢ can be reduced to an ordinary
tree term by the following rules:

f(tl,... s Uiy o ,tn)(t) = f(tl, ,’LLZ(t)7 7tn)
oft) =t
(ug oug)(t) = wuq(ua(t)).

As trees can be seen as a special case of tree terms, we can define the semantics of
a context equation by lifting variable assignments (3 to context terms u such that
[(u) is the context function

Bu) : o B(u(o)).
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We define the language of extended context constraints as the language of conjunc-
tions of equations between either tree or context terms.

To reduce extended context constraints to standard context constraints, we need
to find a way to express every context equation as a finite conjunction of tree equa-
tions. This is done by the following proposition. Hence, we can safely use context
equations as “abbreviations” for context constraints whenever it is convenient.

Proposition 2.5 (Expressing Context Equations). Ifu,u' are context terms,
01,09 are different ground terms, and ( is a variable assignment, then (3 satisfies
the context equation

iff it satisfies the context constraint

u(or) = u'(o1) A u(oz) = u'(02).

Proof. By definition of the semantics, it is sufficient to show that any two contexts
s, 8" are equal iff there are two different trees oy, 09 such that s[oy] = §'[oy] and
sloa] = s'[o3]. The direction from left to right is trivial; we show the other direction
below.

Assume that the exception paths 7, 7" of the contexts are different. We will derive

a contradiction; it follows that 7 = #’ and, by application of Lemma 2.3, that
!

s=y¢.

7 cannot be a proper prefix of n’; otherwise, s[o1] = s'[o7] would not be satisfied.
Symetrically, 7’ cannot be a proper prefix of 7. This means that 7 and 7’ must be
disjoint paths.

7' is defined in s: Since it is defined in s'[oy], we can conclude by Lemma 2.2 that
7' € Dom(s) Un - Dom(ay).

But we have assumed that 7 is no prefix (proper or not) of 7', so 7' must already
be defined in s.

As 7" and 7, the exception path of s, are disjoint, the following equalities hold:

s = sloy|n = So]d = o
s’ = slog| = o] = 0.

So in contradiction to our assumptions, we have derived that oy = 05. It follows
that 7 and 7’ cannot be disjoint and hence, must be equal. O
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2.4 Applying Context Unification

When we sketched the CU treatment of scope ambiguities in the introduction, we
pointed out that our preliminary analysis allowed a third, linguistically unwanted
solution. In this section, we will analyze this problem more closely and provide a
solution. We will not go into accounts of more interesting linguistic examples, as
the CU analysis is largely equivalent to that of CLLS, and we have already seen
all the important ideas in Section 2.2.

Recall Example 1.18, our preliminary encoding of the scope ambiguity Fvery man
loves a woman, repeated here as Example 2.11. We have converted the example to
its higher-order variant; variable binding is modeled with special constructors lam,
and var,. As we know from the section on CLLS, modeling binding via variable
names does not work in underspecified descriptions, but it will do for now. Note,
by the way, the infix use of the apply constructor.

(2.11) Xo = Cy(every@man@lam,(Cj3(love@var,@Qvar,))) A
Xy = C3(a@woman@lam, (Cy(love@var,Qvar,)))

Even if we ignore non-minimal solutions, this context constraint has three struc-
turally different solutions:

1. A reading that assigns the universal quantifier wide scope (as in Example
1.19).

2. A reading that assigns the existential quantifier wide scope.

3. For any binary constructor f, a tree in which the quantifiers are in disjoint
positions, each with its own copy of the love(z, y):

every

love

Clearly, the third reading (whose correctness we invite the reader to verify) does
not correspond to any linguistically warranted reading of the sentence, and we need
to change the constraint to exclude it.
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What has gone wrong? Essentially, we have expressed a subtree relation with our
context constraint when we wanted to express a dominance relation: We have only
expressed that the trees below the quantifiers both contain the love subtree, but we
did not require that both quantifiers dominate the same occurrence of this subtree.
This leaves the possibility open to have two copies of this subtree, each dominated
by one but not both of the quantifiers, and let the quantifiers “escape” into disjoint
positions of the tree.

To repair this deficiency, we use context equations. If we equate two contexts, we
force their exception paths to be the same. If, in addition, the quantifiers appear on
the exception paths of these contexts, we have made sure that they must dominate
a common node (namely, the node at the end of the exception path). We can then
insert the love subtree at this location. This is expressed by the following extended
context constraint.

(2.12) Cy = Cy(every@man@lam,(Cs(e))) A
Co = Cy(a@woman@lam, (Cy(e))) A
Xy = Cy(love@var,@Qvar,)

This constraint has only the two correct minimal solutions; the use of context
equations (which can nevertheless be expressed as ordinary context constraints, as
we have seen above) has given us a direct handle on nodes of the tree. It follows
the analysis of Niehren et al. (1997b), and it can serve as a first example of the
encoding of dominance constraints as context constraints that we will present in
the next chapter and that will give a systematic account of this problem.

2.5 Conclusion

In this chapter, we have defined the syntax and semantics of CLLS and context
constraints. Starting with a definition of trees and tree structures, we have in-
troduced the notion of lambda structures, which can be used to model lambda
terms in a tree-like fashion while avoiding problems with variable binding. Then
we have defined the syntax and semantics of CLLS, the conjunctive language over
a selection of atomic constraints, including labeling, dominance, parallelism, and
binding constraints. The most interesting sublanguages of CLLS are the fragment
of (labeling and) dominance constraints and CLLSy, the fragment that does not
use binding constraints. We have compared our variant of dominance constraints
to a more common one, and we have found out that if the signature is finite, both
are equivalent. Finally, we have applied CLLS to some more interesting linguistic
examples.
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In the second half of the chapter, we have discussed context unification, the satisfia-
bility problem of context constraints. After defining contexts and context functions
in analogy to the trees of the first section, we have defined the syntax and seman-
tics of context constraints; they are equations between tree-valued terms which can
contain first-order variables denoting trees and context variables denoting context
functions. Afterwards, we have shown that context equations (equations between
context-function-valued terms) can be added to context constraints to obtain ex-
tended context constraints without changing the expressive power. We have re-
visited scope ambiguities in CU and corrected a deficiency that resulted from a
confusion of subtree and dominance constraints.

In the course of our definitions, we have introduced various classes of formulae and
objects. To avoid confusion, we comprehensively list them once again, along with
the letters that we use to range over them:

e ¢ are CLLS, CLLSy, or dominance constraints; ) are context constraints. We
have generally distinguished constraints (purely conjunctive formulae) from
formulae in general, which we write with the respective capital Greek letters.

e X are variables denoting nodes; = are variables denoting trees; C' are context
variables, denoting context functions.

e « are variable assignments for CLLS, mapping variables to nodes in a lambda
structure; [ are variable assignments for context constraints, mapping tree
variables to trees and context variables to context functions.

e o are trees; s are contexts; v are context functions. Trees can be written as
ground terms, and contexts can be written as ground terms with exactly one
occurrence of the hole symbol e.
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Chapter 3

Relating Context Unification and
CLLS

Now that we have our definitions straight, we turn to a proof of the equivalence of
CLLSy and Context Unification in this section. More precisely, we show that for
every constraint of CLLSy, there is a satisfiability equivalent context constraint,
and vice versa. The encoding of CLLS into context unification can be extended
in a straightforward way to an encoding of the first-order theories.

The main obstacle that we must overcome in our encoding of CLLS, into CU
is to provide the power to talk about occurrences of subtrees. In CLLS, (and
even in dominance constraints), we can do this easily because we can talk about
the nodes of a tree (i.e., the roots of occurrences); it is not clear at all that this
is possible in the external perspective that CU takes, relating only trees and not
their nodes. We have seen in the introduction (Section 1.4) that the naive encoding
of dominance constraints as subtree constraints, which can be considered a purely
external sublanguage of context constraints, does not preserve satisfiability. More
precisely, the unsatisfiability of dominance constraints as in Example 1.24, repeated
here as Example 3.1, is not preserved by the encoding because subtree constraints
don’t talk about occurrences of trees; a tree satisfying the subtree constraint can
have more than one occurrence of the subtree denoted by y, and nothing says that
all occurrences of y must refer to the same occurrence of this tree.

(31) )(Zf()(l7 XQ) AN X;<'Y A Xo<*Y

(32) I:f(f.Eh I.EQ) NyLey Ny,

But as we have seen in Section 2.4, the expressive power to talk about occurrences
of subtrees is, in fact, available in CU, if only in a slightly awkward manner. The

47
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first section of this chapter will be concerned with extending the intuitive idea of the
previous chapter to a systematic encoding of dominance constraints as (extended)
context constraints. Our encoding will not only preserve satisfiability, but even the
solutions of the constraints: In a sense to be defined, a dominance constraint and
its encoding are satisfied by exactly the same trees. We first define the encoding
for the constraint language; afterwards, we extend it to the first-order theories and
prove its correctness for the more general case, from which the correctness of the
encoding for constraints follows. The basic idea of our encoding will be to identify
the domain of a tree with the set of contexts in this tree that start at its root;
under this condition, a context is uniquely identified by its exception path. We can
axiomatize context variables to denote these contexts and then recast dominance
and labeling constraints as context equations.

In the second section, we will complete the proof of the equivalence of the two
languages by covering parallelism. In one direction, we extend the encoding of
the first section by an encoding of parallelism and similarity constraints; this is
not difficult once we have the intuitions and formal groundwork of the encoding
of dominance constraints available. The other direction is much less obvious. For-
tunately, we can make use of so-called equality up-to constraints. On one hand,
Niehren et al. (1997a) have shown that they are equivalent to context constraints;
on the other hand, they are sufficiently similar to CLLS,’s parallelism constraints
to allow a simple encoding of equality up-to as parallelism constraints. The bulk of
this direction of the proof is to show the equivalence between context and equality
up-to constraints (which Niehren et al. already did); once that is out of the way,
the rest of the proof is simple.

Throughout the chapter, we will freely switch between trees o and tree structures
M?, and contexts s and context functions 7y, respectively, whenever it is conve-
nient. Furthermore, we will ignore the binding function of lambda structures in
this and the next chapter; as we have seen above, it is sufficient to interpret CLLS,
constraints over tree structures.

3.1 Encoding dominance constraints

In this section, we show how to encode dominance constraints as extended con-
text constraints such that they have the same solutions. The correctness of our
construction follows from a more general encoding of the full first-order theories.
Nevertheless, we first present the encoding for the constraints and extend it to the
first-order theories later.
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We call the encoding function of dominance into extended context constraints
[-]. For the proof, we will construct a mapping from pairs of tree structures and
variable assignments for dominance constraints to variable assignments for context
constraints that we call [-,-]. With this terminology, the key result (Prop. 3.5) of
our correctness proof (that makes the term “have the same solutions” precise) is

(M%,a) =@ < [M%,a] = [9],
where @ is an arbitrary closed first-order formula over the dominance constraints.

The central idea of the encoding is to identify nodes of a tree with their contexts.
We associate with every variable X appearing in a dominance constraint ¢ a context
variable C'x (whose purpose it is to denote the context starting at the root of the
tree and whose hole is the node denoted by X') and a tree variable x (whose purpose
it is to denote the tree below X). In addition, we introduce a new tree variable T
that we want to denote the entire tree.

To ensure that these new variables interact correctly, we impose the following
constraint, which we call Root(yp):

where FV(p) stands for the set of free variables of ¢. (As ¢ does not contain
quantifiers, this is the entire set of variables.)

Intuitively, the Root constraint expresses the following facts:

1. T denotes the entire tree. More precisely, the tree it denotes contains all
subtrees that we can refer to with a (tree or context) variable, which is
sufficient for our purposes.

2. The context Cx starts at the root node of T; the tree below its hole is denoted
by .

Now we can define the encoding [-] proper as in Figure 3.1. To encode a dominance
constraint ¢ as an extended context constraint, we simply conjoin Root(y) and [¢].

Proposition 3.1 (Encoding Constraints). Let ¢ be a dominance constraint. ¢
describes a tree o iff there is a variable assignment 3 that satisfies Root(p) A [¢]
and assigns 3(T) = o.

This proposition is a consequence of the more general Theorem 3.2. For the mo-
ment, let us review an example. In Example 1.24, we presented a dominance
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[X<*Y] = CxoC =Cy Cis a fresh context variable
[X:f(Xiooo s Xo)] = Aicicn Oxi =Cx 0 f(z1,... 0, 1) ifn>1
[X:a] = x=a
[o1 A 2] = [ed Al

Figure 3.1: Encoding dominance constraints ¢ as context equations.

constraint (which we repeat here as Example 3.3) and showed how the naive sub-
tree encoding failed: The dominance constraint was unsatisfiable, but the subtree
constraint wasn’t. Here, we demonstrate that our new encoding preserves the un-
satisfiability.

(3.3) X : f(X1,X2) A X1<*Y A Xo<Y

(34) T=Cx(x) AT =Cx, (@) AT = Cx,(22) AN T = Cy (y)A
Cx, =Cxo f(e,22) NCx, = Cx o f(x1,0)A
CXIOC:C)//\CXQOC”:CY

The extended context constraint in Example 3.4 is the encoding of the dominance
constraint according to Proposition 3.1: The first line is the Root formula, the sec-
ond line is the encoding of the labeling constraint, and the third line, the encoding
of the dominance constraints.

The context constraint is unsatisfiable. Suppose it had a solution, i.e., there existed
a satisfying variable assignment 3, and consider the exception path m of (Cy). We
can conclude from the constraint in the third line and Lemma, 2.4, we can conclude
that the exception paths both of #(Cx,) and of (Cx,) must be prefixes of m. But
the second line requires that these paths are different in at least one place. This is
a contradiction, so the constraint must be unsatisfiable.

The major conceptual difference to the encoding as subtree constraints is that we
are no longer just talking about the subtrees; we can explicitly talk about occur-
rences of subtrees by identifying them with their contexts, denoted by a context
variable.

To continue with the proof of the proposition, we now lift the encoding of dominance
constraints to arbitrary closed first-order formulae over this language by defining it
for a complete set of first-order connectives (Fig. 3.2). Note that now that we have
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[X<*Y] = 3C.CxoC =Cy Cis a fresh context variable

[X:f(Xioo  Xo)] = Aicicu Ox, =Cx 0 f(m1,... 0,00 1) ifn>1

[X:a] = r=a
[[@1 /\ q)g]] - [[q)l]] /\ [[(1)2]]
[-9] = 2]
[3X.9] = 3Cx3a.(T = Cx(z) A[@])

Figure 3.2: Encoding first-order dominance formulae ® as first-order context equa-
tions.

negation in our language, it is not sufficient to introduce fresh context variables for
the encoding of <I*; we must close them off with existential quantifiers. For this
encoding, the following theorem holds.

Theorem 3.2 (Encoding First-Order Formulae). A closed first-order for-
mula ® over the language of dominance constraints describes a tree o iff there
is a variable assignment (3 that satisfies [®] and assigns 3(T) = o.

As an immediate consequence, it follows that our encoding preserves both satisfia-
bility and validity of formulae. Note that the theorem does not mention Root(®).
For closed formulae, Root(®) is the empty conjunction. This is sufficient because
the conjuncts of the Root formula are distributed over the encodings of the quan-
tifiers.

It is easy to see that Proposition 3.1 is a corollary of Theorem 3.2. If we close
off a dominance constraint by adding existential quantifiers for all of its variables,
we do not change the set of trees that it describes. We can apply the theorem to
this formula and encode it as an extended context formula; we can then remove
all existential quantifiers and gather the occurrences of constraints of the form
T = Cx(x) in the Root formula. In this way, we have obtained just the encoding
of dominance constraints that we constructed above.

As mentioned above, we exploit the correspondence between nodes in a tree and
their contexts for the proof of this theorem. This correspondence is expressed
formally by the following lemma.
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Lemma 3.3. Let 0 be a tree, mp,m € Dom(o), and m a prefix of my; say, mo =

mm. Then there is a unique context function 77, _ such that

om =" 0.T3).

T (
T m,T2

o
1,72

The exception path of ? 8 .
Proof. First, we show the existence of a context function «y such that o.m; = y(0.73).
We do this by defining a context s for whose context function 7, the condition is

satisfied.

Define
D {7 | o.m7'] and my £ m7'}

s = o|D,

where o|D is the restriction of o to the domain D. s is a context because D is a
finite tree domain, and the arities are respected in all nodes except for the parent
of w9, which lacks one child. The exception path of s (the path to the “missing
child” in D) is .

Now we show that vs(o.my) = o.mp. On a path 7' of which 7 is a prefix (say,
a = 7'('71'"),

vs(o.me)(n') = (o.m)(x") (by definition)
= (om)(n') (mg =mm).

On the other hand, if 7 is not a prefix of 7',

vs(ome)(n') = s(n') (by definition)
= o(mn') (by definition)

and s is defined on #' iff 7y £ w7’ or, equivalently, whenever 7 £ #’ and it is
defined in o.7.

This concludes the proof of existence. For the uniqueness proof, we assume that
there are two context functions =i, y2 that satisfy the condition. These two func-
tions must assume the same value on 0.7, and their exception paths must be the
same; so y; = ¥ by Lemma 2.3. O

A simple but important property of the ? functions is expressed in the following
lemma.
Lemma 3.4. Let my < my < 73 be paths in o. Then the following equation holds:

20 579 =70

t LT t w3 T " m1,M3t
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Proof. By Lemmata 3.3 and 2.4, the exception paths are the same. Moreover, both
sides take the same value on the argument o.7s. O

In addition, we map pairs of tree structures and variable assignments that satisfy
a dominance formula to a variable assignment that satisfies an extended context
formula. The following function, [-, -], is such a mapping, as Proposition 3.5 says.

M7 a](T) = o

M7, a](z) = o.a(X) for all variables x such that «(X) is defined

M al(Cx) = 77 for all variables C'x such that a(X) is defined.
(X)

€,a

Proposition 3.5. Let M7 be a tree structure, o a variable assignment, and ® a
first-order formula over the dominance constraints. ® is satisfied by (M7, ) iff
[®] is satisfied by [M,a].

Proof. We prove the proposition by structural induction. First, we show that it
is true for the atomic constraints; towards the end of the proof, we conduct the
induction steps.

Throughout the proof, we write
p =M’ a]

for brevity.

o XY

“=" Assume that (M7, «) satisfies X <*Y; we conclude that [ satisfies the
context equation on the right-hand side.
Our assumption means that a(X) < «(Y’). Hence, we can construct a
variable assignment (3 that is like 3, but assigns ?Z(X),a(y) to C'. With
this definition, #'(Cy) = f'(Cx o C), by Lemma 3.4.
As a consequence, the existentially quantified context equation is satis-
fied by f.

“<=" Assume that the context equation is satisfied by 3. Then there must be
a context function 7 such that §(Cx) oy = 3(Cy); hence, a(X) must
be a prefix of a(Y'), and (M7, ) satisfies the dominance formula.
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o X:f(Xy,...,X,), where n > 1

43 b
=

o X:a

41 7
=

Assume that (M7, «) satisfies X:f(Xy,...,X,); we conclude that /3
satisfies each of the context equations on the right side.

For any i = 1,... ,n, let vy = B(Cx o f(x1,... ,0,... . x,)) and 75 =
B(Cx,). We first show that the values of v; and 75 on f(z;) are equal;
then we show that their exception paths are the same. From Lemma 2.3,
we can then conclude that v; and 7, are equal and hence, the context
equation is satisfied.

By definition, v2(3(z;)) = o. By the definition of the concatenation of
context terms,

n(Bx:) = BCx)(f(B(x1), ... .B(w:),....B(xn)))
= 7700 (flea(Xy), ... o.a(X,)).

As (M7, ) satisfies the labeling constraint, we know that o(a(X)) = f
and that for all i, a(X;) = a(X)-i. So by Lemma 2.1 and the definition
of 77 ,(x)» we conclude that v:(5(z;)) = 0.

By definition, the exception path of 75 is a(X;). On the other hand, by
Lemma 2.4, the exception path of 4 is a(X) - i, which we already know
to be equal to a(X;). Hence, we can apply Lemma 2.3 and have shown
this direction.

Assume that [ satisfies the conjunction of context equations on the right-
hand side; we conclude that for all i, a(X;) = a(X)-i and o(a(X)) = f
and hence, that the labeling constraint is satisfied by (M7, ).

First, we show the condition on the paths. By assumption, we know that
for all i, ?Za(Xi) = ?é‘ya(X) O Yf(a1,... o an)- 1 We reduce this equation to
the exception paths, we have shown the first part.

Second, we show the condition on the label. By inserting from the
previous argument, we know that

7 = 1% (a(X)
= (? S,OL(X) © fyf(xlvv"’xn))(aa(XZ))
= 17 x(floalXi).. .. oa(X,))).

Hence, the node at path a(X) must be labeled with f.

Assume that (M7, ) satisfies X:a. This means that o(a(X)) = a and
that there is no m # € such that a(X)r € Dom(o). So by Lemma 2.1,
B(X) =0.a(X)=a.
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W, m
<=

Assume that (3 satisfies X = a; then f(X) = 0.a(X) = a. In other
words, the label of a(X) is a, which shows that the left-hand side is
satisfied.

Of the complex cases, negation and conjunction are trivial. Existential quantifica-
tion is more interesting:

e 1X.®

43 b
=

We assume that (M7, ) satisfies IX.®; so there is a path 7 such that
(M, a[r/X]) satisfies . We call this new variable assignment o/. By
induction hypothesis, [M7, /] satisfies [®]; it also satisfies T = Cx (),
by construction. [M,a'] and (3 agree on all arguments except possibly
for x and Cy, so we can conclude that ( satisfies the formula on the
right-hand side.

We assume that [ satisfies the formula on the right-hand side; this
means that there are a tree ¢’ and a context function v such that g’ =
Blo'/x,~v/Cx] satisfies both T = Cx(x) and [®]. We show that there
is a variable assignment o' that only differs from « in X such that
B = [M?,d]; from this and the induction hypothesis, satisfiedness of
the left-hand side follows immediately.

Let m be the exception path of 4. Then we know that as 3’ satisfies
T = Cx(z), v(0') must be equal to o, and ¢’ must be equal to o.7. We
choose o = afr/X] and verify that ' = [M7,a/].

[M?,a'] agrees with 3 on all arguments except for z and Cx, to which it
assigns o.m = o' and 77, respectively. As the exception paths of v and
77 . are equal and they assume the same value on the argument o', these
context functions are the same, and we have shown that 3’ = [M7,o/].

O

From the proposition, the theorem follows easily.

Proof (Theorem 3.2). Let o be any tree. Clearly, if ® is satisfied by M7 and an
arbitrary variable assignment « (remember that ® must be closed), then [M7, a]
satisfies [®], according to the proposition. [M?, a] also assigns o to the variable
T, by construction.

For the other direction of the proof, observe that the only free (context or tree)
variable of U = [®] is the newly introduced T. If 3 is a variable assignment that
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satisfies U and assigns the tree o to T, we can restrict it to an assignment (3’ that
only assigns o to T and does not assign anything to any other variable; ' will
satisfy ¥ as well. By definition, 8" = [M7, ag], where aq is the “empty variable
assignment” whose domain is empty. Now, by Proposition 3.5, (M7, ) satisfies
®, so ® describes o. H

3.2 Parallelism

Now that we know how to encode dominance constraints as context constraints, it
is surprisingly easy to finish the construction and encode parallelism and similarity
constraints as context constraints and vice versa. Once we have done this, we
have completed our proof that the expressive powers of context unification and of
CLLS, are equal in the sense that for each constraint in one language, there is a
satisfiability equivalent constraint in the other language. Unfortunately, there is no
straightforward way to lift the strong result from the previous section, where the
encoding even preserved solutions. This is because if we allow arbitrary context
constraints (and not just encodings, as in the previous section), there might not be
any tree variable that is mapped to the entire tree; in addition, the nodes denoted
by the node variables must all be in the same tree. So we would have to construct a
large tree around the trees mentioned in a satisfying variable assignment 3, which
would lead to a rather complicated correspondence between the solutions of the
CLLSy and CU constraints and doesn’t really seem to be worth the trouble.

At first sight, it is not even obvious that such an extended encoding can easily
be obtained at all. This becomes much clearer, however, if we briefly review the
theory of equality up-to constraints, as developed by Niehren et al. (1997a).

An equality up-to constraint is a conjunction of atomic constraints of the following
form:

z/x'=y/y | x=f(21,. .., Tn).

Variables are interpreted as trees; constraints can be satisfied by variable assign-
ments [ just like context constraints. The second type of constraint is satis-
fied if 3(x) is a tree whose top node is labeled with f and whose children are
B(x1),...,B(x,). The first type of constraint is satisfied iff there is a context func-
tion 7 such that B(x) = v(6(2")) and B(y) = v(B(y')). Intuitively, this is the case
iff the trees denoted by x and y are equal, up to trees below a common subnode —
hence the name.

The most important result about equality up-to constraints is that they are equiv-
alent to context constraints. More precisely, there are satisfiability preserving en-
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[X~Y] = 2=y

[X/X'~Y/)Y'] = Cx =CxoCACy =CyoC (C afresh context variable)

Figure 3.3: Encoding parallelism and similarity constraints as context equations.
This completes the encoding from Fig. 3.1. To close off the resulting context
constraint, add 3C' to the second clause.

codings of equality up-to constraints into context constraints (Niehren et al. 1997a,
Prop.15) and vice versa (dto., Prop. 17). Note that their result is only about the
constraint languages, not about the first-order theories; so we can’t state our theo-
rem for the first-order theories, either. It would probably be possible to repair their
proofs to cover first-order theories, but as first-order languages are not our main
concern here, we will not do so and instead, restrict ourselves to the constraint
languages.

With this result, the proof of the following theorem, stating the equivalence of
CLLS, and context unification, is reasonably easy.

Theorem 3.6 (Encoding Parallelism). For every CLLSy constraint ¢, there is
a satisfiability equivalent context constraint v, and vice versa.

Proof. First, we present the satisfiability preserving encoding of CLLS, into CU
(Fig. 3.3); then we look into an encoding of context constraints into CLLS, via
equality up-to constraints (Fig. 3.4).

For the first direction, we extend our encoding [-] by the clauses in Fig. 3.3, covering
parallelism and similarity constraints. For both types of atomic constraints, we
show the base cases for the structural induction of Proposition 3.5; it follows that
Proposition 3.1, extended with the definitions in Fig. 3.3, still holds, which implies
our claim.

e X ~Y

“=" Assume that (M7, «a) satisfies X ~ Y call m = a(X) and 1y = a(Y),
then o.my = o.m. As [M7,a](z) = o.my and [M7,a](y) = o.m. the
context constraint is satisfied as well.

“<" We assume that [M?7, o] satisfies x = y. Then as above, o.m; = 0.7,
and the similarity constraint is satisfied.
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[z/2'=y/y]™" = X/X"~Y/Y"AX' ~X"AY' ~Y" (X" Y" fresh)

[e=f(z1,...,2,)] " = X:f(X|,... . X)AX;~X|... X, ~ X/

(X1,..., X, fresh)

Figure 3.4: Encoding equality up-to constraints in CLLS.

o X/X'~Y/Y'

4 b
=

Assume that (M7, «) satisfies X/ X'~Y/Y'; call the paths that a assigns

to these variables 7y, 7], mo, and 75, respectively. We need to show that

there is a context function + such that 7;, = 77, o7 and 7; =

77 __o~; from this, the satisfiedness of the rlght hand side follows by

€,79
definition.

Rephrasing the semantics of the parallelism constraint, we know that

77 woand 77, have a common exception path, m, and that their
sty 12

corresponding contexts are equal. Clearly, ?;1 =17
LA §

7r2,71'2 :

20 _ 90 20 20
Now, from Lemma 3.4, we know that et = 1m0 T and i

?¢ 077, . s0 we have found the context function v we needed to find.
’ 2

Assume that [M7, ] satisfies 3C.(Cx: = Cx o C A Cyr = Cy o C); this
means that there is a context function « such that 77 a(X) = ?ga(X) oy
and 77 5y = 77 ,y) 07 We need to show that there is a path mg

such that a(X') = a(X)m and a(Y’) = a(Y)m, and that the contexts
between these nodes are equal.

The first part is trivial, as by Lemma 2.4, the exception path of the

context function = is such a common extension. For the other part,

observe that by Lemma 3.4, ? Ca(xX) = ?;”Q(X) O?Z(X) a(X") and 7 (Y =

?Za(Y) o ?g(y),a(y')- As context functions are injective, the first of these

equations implies that v = ?Z(X) a(X) and the second one, that v =
g

?a(Y),a(Y’); hence, the two context functions and, consequently, their
contexts are equal.

This concludes the first half of the proof. For the other half of the proof, we have
to encode an arbitrary context constraint ¢ as a CLLSy constraint. This encoding
proceeds in three steps. First, we encode v as an equality up-to constraint 1’
according to (Niehren et al. 1997a). Next, we choose a node variable X for every
tree variable z that appears in v); the purpose of these nodes variables is to denote
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nodes the trees under which look like the trees denoted by x. Finally, we apply the
encoding [-]~" in Fig. 3.4.

It is obvious that this encoding preserves satisfiability. The encoding of the ~
constraint expresses that somewhere below the nodes X and Y, there are nodes
X" and Y" the trees below which look just like the trees below the nodes X' and
Y’, and the contexts between X and X” and Y and Y" are equal. (Note that
this is a weaker condition than parallelism itself; it does not say anything about
the locations of the nodes denoted by X’ and Y'.) The encoding of the “labeling”
equality up-to constraint works similarly: It expresses that X is labeled with f and
that its subtrees look just like the subtrees below the Xy,..., X,,. O

3.3 Conclusion

The major result of this chapter is that the two constraint languages under investi-
gation in this thesis, CLLSy and context unification, are equivalent: Every CLLS,
constraint can be encoded as a satisfiability equivalent context constraint, and vice
versa.

The most involved part of our proof was to embed dominance constraints as context
constraints; once that was out of the way, the same intuitions carried over to an
embedding of similarity and parallelism constraints (which, incidentally, generalize
dominance constraints). We described a node by specifying both its context and
the tree below it; Lemma 3.3 stated that this is always possible uniquely in a formal
way. We even showed the more general result that the encoding in this direction
does not only preserve satisfiability, it also preserves the satisfying trees in a certain
sense; in addition, the result not only holds for constraints, but for all first-order
sentences.

The other direction, the encoding of context constraints in CLLSy, proceeded in two
steps: First, we encoded them as equality up-to constraints, which have a much
more restricted syntax that makes proofs easier; then we encoded the resulting
equality up-to constraint in CLLSy in a straightforward manner that obviously
preserved satisfiability.

This correspondence between the two languages has two important consequences.
For one, it allows us to transfer complexity results between them; if we can deter-
mine the complexity of one language, we immediately know that the complexity
of the other language must be the same. As the complexity of context unifica-
tion is actively being investigated by several scientists throughout Europe, we can
hope that this will eventually give us a complexity result for CLLS,. For the time
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being, however, the complexity of either language is unknown, and it is reason-
able to investigate the complexity of sublanguages. We will do this for dominance
constraints, the most interesting sublanguage of CLLSy, in the next two chapters.

The other consequence is a clarification of earlier papers on the linguistics applica-
tion of context unification. We have seen in the previous chapter that for a correct
treatment of scope ambiguities in context unification, one has to write down slightly
unintuitive constraints. The exact type of constraints we used was introduced by
Niehren et al. (1997b); but it was not entirely clear why, exactly, the encoding
as context equations worked, and if the more complex encoding really solved all
problems. In the light of the results of this chapter, we easily recognize the context
equations in Example 2.12 as the encoding of a dominance constraint.



Chapter 4

Complexity of Dominance
Constraints

As we have seen in the previous chapter, the complexities of solving CLLS, and con-
text constraints are the same, but we know neither of these complexities. Hence,
it is reasonable to investigate the complexity of sublanguages, both from a sys-
tematic point of view (if the complexity of the entire language is too difficult to
determine, maybe we can say something about fragments?) and from a practical,
implementation-oriented point of view.

In this chapter, we explore the complexity of the language of dominance constraints,
consisting only of atomic labeling and dominance constraints, and show that the
satisfiability problems of dominance constraints and, in case of a finite signature,
also of the propositional language and the positive existential first-order fragment
over the language are NP-complete. As we have seen in the introduction, dominance
constraints are not only the most interesting sublanguage of CLLS, providing the
expressive power to deal with scope ambiguities, but also a popular formalism for
linguistic analysis in their own right.

In the first section, we present an algorithm that decides the satisfiability of a
dominance constraint. This algorithm saturates the constraint by adding entailed
conjuncts and checking for clashes; it runs in nondeterministically polynomial time.
We prove that it is sound and complete for the problem and show how to raise the
result to the positive existential fragment.

In the second section, we show that the satisfiability problem even of the purely
conjunctive language of dominance constraints is NP-hard. To this end, we encode
formulae of propositional logic in conjunctive normal form with three literals per
clause (3-CNF) as satisfaction equivalent dominance constraints; the satisfiability

61
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problem of these formulae, 3SAT, is a classical NP-complete problem. The key
to this encoding is the “dominance triangle”, a special constraint that allows to
express disjunctions. Together with the result from the first section, we have thus
shown the complexity result we claimed above.

Finally, we investigate implementations. We have just said that the general problem
of solving dominance constraints is intractable; but the implementation that we
sketch in the third section runs efficiently at least in those cases that seem to be of
linguistic relevance. This implementation, taken from (Duchier and Gardent 1999),
employs set constraints in the programming language Oz. In addition, we sketch
a streamlined implementation of a solver for context constraints. This procedure
does not necessarily terminate, but on linguistic examples, it runs with reasonable
efficiency. We present it as a first stab at an implementation of parallelism; at this
time, there is no known algorithm for solving parallelism constraints within CLLS
yet, and we must take resort to the more general formalism of context unification.

Throughout the chapter, we will use the symbol = to denote that two variables must
be mapped to the same node; X=Y is simply an abbreviation for the conjunction
XY ANY<*X. Furthermore, we assume a signature that not only contains a
nullary constructor a, but also a constructor g of arity » > 2. We will use these two
constructors to simulate constructors of all other arities. As before, we will consider
satisfaction of dominance constraints over tree (and not lambda) structures.

4.1 Solving Dominance Constraints

We now present an algorithm that decides the satisfiability of a conjunction over
labeling, dominance, and negated dominance constraints =X <1*Y’; for the most
part of this section, we deviate from the original definition by considering negated
dominance constraints atomic as well. We prove that the algorithm is sound and
complete and that it runs in nondeterministically polynomial time.

4.1.1 The algorithm

The algorithm proceeds in three steps. First, we guess for each pair X,Y of vari-
ables in ¢ if X dominates Y or not, and add the corresponding atomic constraint
to . This can be expressed as in the following rule, where V expresses nondeter-
ministic choice.
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true — XY Vv -X<«'Y

In the second step, we saturate ¢ according to the following deterministic propa-
gation rules.

(Refl) true — X<*X (X occurs in )

(Trans) XY NY<Z — X<*Z

(Decomp)  X:f(Xq,..., X)) AY:f(Yy,... . V) AX=Y — AL, X;=Y,
(Disj) X=X'AXf(o Yo VAXF( . Z) = —Y<ZA=ZY
(Dom) X:f(....Y,...) = X<V

(Parent) X=YANX"f(...,X,...)AY"g(...)Y,...) = X'=Y'

(Child) XY AXf(Xp oo X)) AN (AX7Y) = V<X

(In the Disj rule, Y is the i-th and Z is the k-th argument of the labeling constraints,
where i # k; in the Parent rule, f and g need not be different.)

In the third step, we detect unsatisfiable constraints by applying the following clash
rules.

(Clashl)  X:f(...)AY:yg(...) AN X=Y — false, iff#g
( ) X< ZANY<SZAN-XDY AY<*X  —  false
(Clash3) X<V A =X<'Y — false
( )

Clash4 X:f( Xy, .o, Xy oo X)) A Xy<* X —  false

As we have guessed the dominance relations between all variables in the first step,
the second step can never consistently add a new constraint; either the constraint
is already known, or it clashes, by the Clash3 rule. In other words, the propagation
rules don’t really propagate anything. We could have rewritten them all as Clash
rules, but writing them as propagation rules simplifies some proofs. As a naive
application strategy, we could simply try all instances of all propagation and clash
rules; if one of these applications leads to a clash, we reject, and otherwise, we
accept. Even this simple strategy only takes a polynomial number of steps because
every rule only has a polynomial number of instances, so the runtime of the algo-
rithm is in NP. In the next two subsections, we show that it also produces correct
results by proving its soundness and completeness.

4.1.2 Soundness

We call a constraint ¢ consistent if it has a saturation with respect to the above rule
system that does not contain false. It is inconsistent if every saturation contains
false.
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Proposition 4.1 (Soundness). If a dominance constraint ¢ is satisfiable, then
it is consistent.

Proof. Assume that the constraint ¢ is satisfiable. We first prove that there is a
choice of atomic (possibly negated) dominance constraints whose conjunction with
¢ is satisfiable as well; we call this conjunction ¢'. Then we prove that the left-hand
side of every Clash rule is unsatisfiable. Finally, we show for each propagation rule
that if its left-hand side is satisfiable, so is its conjunction with the right-hand side.
It follows that we can saturate ¢’ with propagation rules such that no clash rule
is applicable on the result; hence, this particular saturation cannot contain false,
and ¢ is consistent.

For the first part of the proof, let (M, «) be such that it satisfies p. For every pair
X,Y of variables in ¢, we consider the paths a(X) and «(Y); if the former is a
prefix of the latter, we add X <*Y to ¢, otherwise we add =X <*Y to ¢. Clearly,
each of these conjuncts is satisfied by (M, a), so the entire conjunction ¢’ is too.

Now consider a clash rule; we show that its left-hand side must be unsatisfiable.
This is very simple to prove; we only show, as an example, that it is true for
the Clash2 rule. Suppose there is a pair (M, «) that satisfies the conjunction
XIZANYQZ N -XIY AN -Y<*X; then a(X) < a(Z) and oY) < a(2).
However, by the other two conjuncts, neither of a(X) and a(Y’) can be a prefix of
the other, so they must differ in one position. But this contradicts the assumption
that they have a common extension «(Z), so the left-hand side of the Clash2 rule
is unsatisfiable.

Finally, we show that satisfiability of the left-hand side L of a propagation rule
implies satisfiability of the conjunction L A R, where R is the right-hand side of
the rule. Again, this is generally simple, and we only show it for the Parent rule,
by way of example. Assume that (M, «) satisfies the left-hand side of this rule; we
show that it also satisfies the right-hand side, and hence, the conjunction. As X=Y
is satisfied, (X)) must be the same as a(Y’) because they are prefixes of each other.
Furthermore, by definition of the semantics of labeling constraints, a/(X) = a(X")-i
if X is the i-th argument of the constraint. By the same argument, a(Y) = a(Y”")-k
if Y is the k-th argument of the constraint. Now, as the constraint on the LHS is
satisfied, we can conclude that not only must ¢ and £ be the same integer, but also
a(Y') = a(X'), which means that (M, «) also satisfies the constraint X'=Y’. O
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4.1.3 Completeness

Theorem 4.2 (Completeness). If a dominance constraint ¢ is consistent, then
it is satisfiable.

According to the premise of the theorem, there is one saturation of ¢ that does not
contain false. We call the set of atomic conjuncts in this saturation S.

For the proof, we proceed in six steps.

1. Define an auxiliary graph G’ from S. G’ mirrors all conjuncts in the sat-
uration, including redundant dominances. Its nodes are equivalence classes
of the variables of ¢, and its edges correspond to dominance and labeling
constraints.

2. Show that G’ is well-defined.

3. Show that G’ is ‘well-behaved’ in a certain sense; for example, that it is almost
acyclic, that there are no unresolved ambiguities, etc. (We make this more
precise below.)

4. Build another graph G that is like G’, but does not contain redundant dom-
inances. We could call G a solved form of ¢. Show that G is even more
‘well-behaved’ than G'; it is essentially a forest.

5. Build a satisfying tree structure and a variable assignment from G.

6. Show that this pair satisfies .

It is trivial that whenever both X <1*Y and =X <*Y are in S, S is inconsistent
by the Clash3 rule. We will not mention this rule application below, due to its
frequency, and simply infer that X <*Y is in S whenever =X <*Y isn’t, and vice
versa.

1. Define G'. So first of all, let us define G'. G' = (V', E', Ly, L) is a directed
graph with node and edge labels; the alphabet for the node labels is ¥, and the
alphabet for the edge labels is NU{<1*}. Lg is a total function; Ly does not have
to be.

The relation =g, defined by

X=5Y & (X=Y)es,
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is an equivalence relation. This follows from saturation of S under the Refl and
Trans rules. We define the node set V' of G’ to be the set of equivalence classes of
the variables of ¢ under this equivalence relation.

As the set E' of edges of G', we take the set of pairs (X,Y) of equivalence classes
such that there are representatives X, Y for which either X <*Y or X:f (... ,Y,...)
are in S.

Finally, we define

f if there is a representative X s.t. X:f(...) € S;

undef otherwise

LV’(X):{

and

) if there are representatives X,Y s.it. X:f(....,Y,...) €S,
Lp/(X,Y) = where Y is the i-th argument;

<* otherwise.

2. Well-definedness of G'. In order to show that G’ is well-defined, we need
to show that Ly+ and Lg are; i.e., that every node of G’ is assigned only one label
and that every N-edge is assigned only one number. (Trivially, no edge is labeled
both with <* and a number.)

For the first claim, assume that a node X has representatives X, X’ such that
X:f(...),X"g(...) € Sand f # g (which is the situation that would make Ly ill-
defined). As X=X' € S, we can derive failure with the Clash1 rule, in contradiction
to our assumption that ¢ is consistent.

For the second claim, assume that Lz is ill-defined; this means that there
are nodes X,Y with representatives X, X' and Y,Y’, respectively, such that
Yif(oo., X,.00),Yig(... , X' ...) € S, where X is the i-th and X' is the k-th ar-
gument, and i # k. (f and g need not be different.) By construction, X=X' € S;
so by the Parent rule, we can derive Y=Y' € S. As S is consistent, it must be the
case that f = ¢; otherwise, the Clash1 rule would make S inconsistent. But now,
by the Disj rule, =X <1*X’ € S, so S is inconsistent.

Some properties of G'. G’ is a graph that contains edges that are labeled with
<* and edges that are labeled with an integer. We collectively call the second type
of edge N-edge. Furthermore, we call a cycle in G’ that contains an N-edge an
N-cycle and a cycle that contains only <*-edges a <*-cycle. To express the fact
that there is an edge from X to Y that is labeled with a, we write X[a]Y". Note
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that the source node of an N-edge is always labeled; and if a node is labeled with
a non-nullary constructor, it has an outgoing N-edge.

If there is a path in G’ from X to Y (over edges of any types), we say that X is
reachable from Y and write X ~»¢ Y. Whenever the context makes it clear, we
leave the subscript away; we will see later (Lemma 4.8) that the ~~ relation is the
same on both graphs that we consider, anyway. It has the important property that
a node is reachable from another iff a corresponding dominance constraint is in S,
as we show now.

Lemma 4.3. For any two variables X, Y, X<*Y € S iff X[<*]Y or X[i]Y for an
1€ N.

Proof. The left-to-right direction is trivial. The right-to-left direction is not
much more difficult. If X[<*]Y, there are representatives X' Y’ such that
X'<*Y'" X=X"Y=Y' € S. Hence, by the Trans rule, X<*Y is in S as well. If
X[i]Y for any i, there are representatives X', Y’ such that X":f(...,Y’,...) € S.
By the Dom rule, X'<1*Y”" is in S as well, and we can continue as above. O

Lemma 4.4. For any two variables X,Y, X ~q Y iff X[<*]Y or X[i]Y for an
1€ N

Proof. The right-to-left direction is trivial. For the left-to-right direction, let
ei,...,e, be an arbitrary path of length n > 1 from X to Y; we show the lemma
by induction over n. (For a path of length 0, the lemma also holds because of
Lemma 4.3 and the Refl rule.)

n = 1. trivial.

n —1 — n. Let Z be the goal node of e;. es,... ,e, is a path of length n —1; so by
the induction hypothesis, we know that either Z[<1*]Y or Z[i]Y, for an i € N.
Whichever is the case, we know by Lemma 4.3 that there are representatives
Y, Z such that Z<*Y € S.

Now e; can either be an N-edge or a <*-edge; whichever is the case, we know
by Lemma 4.3 that there is a representative X of X such that X<*Z € S.
By application of the Trans rule, we know that X <*Y € S, and by the other
direction of Lemma 4.3, we conclude that there is an edge from X to Y.

Corollary 4.5. For any two variables X.Y, X<*Y € S iff X ~a Y.
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Proof. By Lemmas 4.3 and 4.4. O

Corollary 4.6. ~»¢ is a partial order on V',

Proof. Using Corollary 4.5, transitivity of ~» follows from closure of S under the
Trans rule, reflexivity follows from closure under the Refl rule, and antisymmetry
follows from the construction of V', O

3. Well-behavedness of G'. As a prerequisite for the later parts of the proof,
we need to know that G’ is ‘well-behaved’ in a certain sense. The following lemma
makes this notion precise.

Lemma 4.7. G’ has the following properties:

1. The only cycles that G' contains are the dominance edges (X, X).

2. If a node in G' is labeled with f (ar(f) = n), it has exactly one i-child for
each 1 < i <n and no other N-children. All of its N-children are different.

3. No node in G' has two incoming N-edges.

4. If a node in G' has two incoming edges, one of its parents is reachable from
the other parent.

Proof. 1. Suppose G’ contains an N-cycle; w.l.o.g., let e1,... e, be its edges
such that e; = (X,Y) is an N-edge. Then there must be representatives X
of X and Y of Y such that X:f(... Y,...) € S.

X is reachable from Y'; so by Corollary 4.5, X<1*Y € S. By the Clash4 rule,
S is inconsistent, so G’ cannot contain an N-cycle.

If, on the other hand, G’ contains a <*-cycle, we know for any two nodes
X and Y on the cycle that X ~» Y and Y ~ X so for any representatives
X,Y, we conclude by Corollary 4.5 that X=Y € S. Hence, X and Y are the
same nodes, and the cycle is just a loop.

2. Let X be anode in G’ such that Ly/(X) = f and ar(f) = n. By definition, we
know that X has a representative X such that there is a labeling constraint
X:f(Xy,...,X,) in S. Furthermore, for every 1 < i < n, there is an i-edge
from X to X;.

For the uniqueness result, assume that there are nodes Y,Z and an i such
that X[i]Y and X[i]Z. By definition, there are representatives X, X' Y, Z
such that there are labeling constraints X:f(... |Y,...), X" f(...,Z,...) in
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S, where both Y and Z are i-th children. (We can show that the labels must
be the same as in the proof of well-definedness of G'.) By the Decomp rule,
this implies that Y=2 € S,s0 Y = Z.

To show that all N-children are different, assume otherwise. Suppose there
are different integers 1 < 4,k < n and a node Y such that both X[i]Y" and
X[k]Y. This means that there are representatives X, X’ of X and Y,Y’ of
Y such that all of X:f(...,Y,...), X" :f(..., Y, ...), X=X"Y=Y"arein S.
By the Disj rule, we can conclude that =Y <*Y’ € S, which means that S is
inconsistent by the Clash3 rule.

Finally, to show that X has no other N-children, assume it does have a k-
child Y with k& > n. This means that there are representatives for which a
labeling constraint with a constructor of arity higher than n is in S. But as
we have shown above, all labeling constraints for a representative of X must
be labelings with the n-ary label f.

. Suppose that the node Z has two incoming N-edges, i.e. there are nodes Y, Z

and numbers i, k such that X [i]Z and Y[k]Z. This means that there are repre-
sentatives X,Y, Z, Z' such that Z=2'. X:f(... ., Z,...),Y:g(..., Z2',...) €S
(f, g not necessarily different). By the Parent rule, X=Y € S and hence,
X =Y. Furthermore, all N-children of X are different, so i and k& must be
equal.

. Assume that Z has two incoming edges, say, from the nodes X and Y. As

we have just seen, it is not possible that both edges are N-edges; so one of
the following cases must be true:

(a) Both edges are <t*-edges. Then there must be representatives X, Y, Z, 7'

such that X<*Z,Y <*Z' € S. By the Trans and Dom rules, we conclude
that Y<*Z is in S as well.
Suppose that neither X <*Y nor Y <*X were in S; then both =X <*Y
and =Y <*X must be in S. By the Clash2 rule, this is inconsistent, in
contradiction to our assumption. So one of the two dominances must
be in S, and hence, there must be a <*-edge between X and Y (in one
direction).

(b) One edge is an N-edge, and the other is a <*-edge; without loss of
generality, assume that X[i]Z and Y[<*]Z. Then there must be rep-
resentatives X, Y, 7, 7' such that X:f(... . 7,...),Y<* 2", Z=7" € S.
By the Dom rule, we conclude that X<*Z € S; by the Trans rule, we
conclude that Y<1*Z € S. From this point, we can proceed as in the
previous case.

O
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4. Construct G. As we have just shown, the auxiliary graph G’ has a rather
pleasant structure. However, it still contains a lot of redundant dominance edges;
Lemma 4.4 says that if we can reach one node from another in G’ via any path, we
can do so via a single edge because all paths of length > 1 can be abbreviated by
going over a dominance edge. This redundancy gets in the way of the construction
of a satisfying tree structure, so we define a new graph G that has essentially the
same structure as G', but does not contain the redundant edges.

G has the same nodes and node labeling function as G'. We define its edge set E
to be

E = {ecE | Lg(e) €N}
U {e€E'" | e#(X,X) and there is no cycle-free path eq,... e, (k> 1)
in E’ such that start(e;) = start(e) and goal(ex) = goal(e)}

and obtain Lg as the restriction of Lg to FE.

The fact that G has essentially the same structure as G’ is expressed by the following
lemma.

Lemma 4.8. For any nodes X.,Y €V, there is a path from X toY in G iff there
is a path from X toY in G'.

Proof. One direction of this is trivial: £ C E’, so if there is such a path in G, it
also exists in G'.

For the other direction, we prove that every cycle-free path e, ... ,e; from X to
Y in G’ of maximal length also exists in G, by induction over k. From this, the
lemma follows, as existence of a path from X to Y implies existence of a cycle-free
path of maximal length.

k = 0. Such a path does not use any edges, so it also exists in G.

kE = 1. As the longest cycle-free path from X to Y has length 1, e; € E by defini-
tion.

k—1— k. Let Z be the goal of the edge e;. es,..., e, is a maximal cycle-free
path from Z to Y: If there was a longer cycle-free path from Z to Y, we
could build a longer cycle-free path from X to Y from it by prefixing it with
e1 because by Lemma 4.7, we know that the only cycles that G’ contains
are the reflexive loops. Furthermore, e; is a longest cycle-free path from X
to Z, by the same argument. Hence, by the induction hypothesis, the path
€1, ..., e also exists in G.
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Corollary 4.9. For any two variables X, Y, X<*Y € S iff X ~¢ Y.

Proof. Follows from Lemma 4.8 and Corollary 4.5. O

Lemma 4.10. G has the following properties:

1. G has no cycles.

2. If a node in G is labeled with f (ar(f) = n), it has exactly one i-child for
each 1 < i < n and no other N-children. All of its N-children are different.

3. If a node in G is labeled, it has no <*-children.
4. If X and Y are two nodes in G, there is at most one path from X to Y.

5. No node in G has two incoming edges.

Proof. 1. According to Lemma 4.7, the only cycles in G’ are loops. These loops
are not in £, and no additional edges that could be part of cycles were added.

2. Follows from Lemma 4.7 because F and F’ contain the same N-edges.

3. Assume that X is labeled with f, and that X[<*]Y. Then there must be
representatives X, X’ of X, a representative Y of Y, and variables X3, ..., X,
(n > 0) such that X:f(Xy,...,X,), X'<*Y € S. By the Trans rule, X<*Y
is also in S. Now we distinguish the following cases (if n = 0, the first two
cases can never occur) and derive a contradiction from each case.

(a) For one X;, X;=Y € S. Then Y = X;, and both a <1*-edge and an
N-edge lead from X to this node, which is not even possible in G'.

(b) For one X;, X; ~ Y but X; # Y. Then the <*-edge from X toY
abbreviates the path of length > 1 from X to Xy, which is not possible
by definition of F.

(¢) For no X;, X; ~» Y. Then by Corollary 4.9, no X;<*Y is in S, so for
all i, = X;<*Y € S. Now suppose X was not reachable from Y. Then,
again by Corollary 4.9, =Y <*X € S. But by the Child rule, Y<*X
must be in S as well, which means that S would be inconsistent. So X
must be reachable from Y. But this means that the <*-edge from X to
Y is a loop, which is impossible by the first point of this lemma.
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4. Assume that there are nodes X and Y in G such that there are two different
paths e;,...,ex and e},... €| from X to Y. Assume further that X and Y
are such that e; # e}, and that & is minimal among all such paths. Let Z be
the source of €.

Y has two incoming edges, e, and e;. By Lemma 4.7, one of its parents
is reachable from the other (by Lemma 4.8, reachability in G is the same
as reachability in G'). Without loss of generality, let the source of €] be
reachable from the source of e;. So we can go to Y from the source of e; on
two different paths; either by going to the source of €] and then over e}, or by
going over e;. As k was chosen to be minimal, we can conclude that & = 1.

If I > 1, there must be an ¢ such that e; is an i-edge because E does
not contain <1*-edges that abbreviate paths of length > 1. In addition,
€] must be a <*-edge: it can neither be an i-edge, or else it would
be the same as e;, nor can it be a k-edge for a k # 1i; otherwise,
there would be representatives X, X', Y, Z and a constructor f such that
X=X""X:f(....Y,...):X"f(...,Z,...) € S, where Y is the i-th argument
and Z is the k-th argument, so by the Disj rule, ~Z<*Y € S, and hence, Y
would not be reachable from Z. But by the previous point of this proof, this
cannot be true: GG does not contain any nodes that have both an N-child and
a <1*-child.

So either there is only one path between X and Y, or the second path has
only length 1 as well; but even in G’, there is only one edge between two
nodes, so e = e}, in contradiction to our assumption.

5. Suppose Z had two incoming edges; then one of its parents would be reachable
by the other, by Lemma 4.7. This means that there are two paths from one
parent to Z: either directly or via the other parent. This is in contradiction
to (4).

O

5. Construct a satisfying tree structure and variable assignment for ¢
from G. The graph G need not be connected. We call G’s connected components
G1,...,Gp. The connected components are very tree-like, as the following lemma
expresses.

Lemma 4.11. Every connected component G; of G has exactly one minimal ele-
ment r; with respect to the partial order ~>g on nodes, and there is exactly one path
from r; to every other node in G;. We call r; the root of G;.



4.1. SOLVING DOMINANCE CONSTRAINTS 73

Proof. As the number of nodes in Gj is finite and ~-4 is a partial order, it is
clear that minimal elements exist. To show that the minimal element is unique,
we simply show the second result in the lemma, namely, that every other node in
GG; is reachable from a minimal element. Given this, it follows that two minimal
elements are reachable from each other; as GG is cycle-free, they must be the same.

So now, we show that for any node X in G;, there is a path from r; to X. G; is
connected; so between any two nodes in it, there is a cycle-free path in (E*(E~1)*)*,
where F ! is the set of edges in £ with their directions reversed. As we know from
Lemma 4.10, there are no nodes in G that have two incoming edges; so in particular,
all these paths must be in (E~1)*E*. But 7; has no incoming edges, otherwise it
would not be minimal, so all paths from r; to another node in GG; are in E*, which
is what we wanted to show. 0

We will now extract a part of a satisfying tree structure from each of the GYy.
Intuitively, we will build this tree structure by traversing Gy, starting at the root,
and translating paths in Gy to paths in a tree. Whenever we meet a labeled
node, we put the label in our tree structure and add the children. If we meet
an unlabeled node that has dominance children, things are a bit more difficult.
If there is only one child and there is a negated dominance constraint between
a node that we can reach and the current node, we choose a unary constructor
and add the dominance child as a child of this unary constructor. (In this way, we
ensure the proper dominance.) If there is only one child, but no negated dominance
requirement, we simply identify the two nodes. If there are multiple children, we
choose a constructor of appropriate arity and add our children as the children of
this constructor.

For this construction, we need to simulate that our signature contains at least
one constructor of each signature. As we have assumed that we have at least one
constructor g of arity » > 2 and at least one nullary constructor a in our signature,
this is not difficult to do. First, we simulate a binary constructor by closing off the
r—2 rightmost children of an occurrence of g with a; then we simulate a constructor
of arbitrary arity of at least 2 by sequences of the binary constructor. Similarly,
we can simulate a unary constructor by closing off the » — 1 rightmost children of ¢
instead of the r—2 rightmost ones. We have illustrated the construction in Fig. 4.1.
For any trees o1, ... ,0,, we define the tree f,(oy,...,0,) as the tree obtained by
plugging the o; into this construction in a left-to-right fashion. For our purposes,
the “simulated constructors” f, behave just like ordinary n-ary constructors, but
we describe them a bit more formally anyway.
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— 7 N/
a a f

(a) (b)

Figure 4.1: (a) Simulation of a binary constructor with a constructor g of arity
r > 2. (b) Simulation of a 4-ary constructor with a binary constructor f.

If we define the path p,(i) as the path from the root of f, to its i-th hole (into
which children can be plugged), it can be described as follows:

, gn-1 if i = n;
pli) = {

2i=1.1  otherwise.

All the paths in a tree f,(o1,...,0y,) that do not start with one of these p,(i) are
artifacts of the construction. We call the set of these paths D(f,). For n > 1, this
set has the form

n—2
D(fn) = [J{2"2F-3... 2" o ps
k=0
for n =1, it is even simpler:

D(fi)={2,....r}.
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Now we can formally define, for each 1 < k < m, a function 7 : V, — N*, where
V}. is the node set of Gy:

() =6

(X)) =m, X[i]Y =

m(X) =7, X[<*]Y = m(Y)=x pi(1) ifY is the only child of X and there
is a node Z that is reachable from X

and representatives X, Z such that

—Z<*X € S

(X)) =m, X[<*]Y = m(Y)=n if this is not the case and Y is the
only child of X;

m(X) =7 = m(X;) = m-pn(i) if X has n > 1 <*-children,

and X; is the i-th <1*-child.

Now we define trees o, that “satisfy” the connected components Gy, in the following
way.

D, = Wk(Vk) B
U {m(X) - D(fn) | X has n > 1 <*-children} )
U {m(X) - D(f1) | X has exactly one <*-child, and there are a node Z that
is reachable from X and representatives X, Z such that =Z<*X € S}
f if there is a X € V; such that Ly (X) = f and m(X) = 7;
or(m) = < g if this is not the case and 7 has exactly r successors in Dy;

a if this is not the case and 7 has no successors in Dj,.

Lemma 4.12. For any k, o is a tree.

Proof. For one, every Dy is a finite tree domain, by construction. Furthermore,
for every k and every path m € Dy, the arity of o4 (7) agrees with the number of
children of 7; this is trivial if the label is defined by the second or third branch of
the definition of oy, and it follows from the structure of Gy, if it is defined by the
first branch. O

Finally, we assemble the pieces by inserting them into a simulated m-ary construc-
tor: Let o1, ..., 0, be the tree structures that we just extracted from the connected
components Gy, ... ,Gp,, then our final tree is just f,(o1,...,0.,). The subtree
corresponding to the i-th connected component is located below the path p,,(7); so
we can define a mapping 7 : V — Dom(o) as 7(X) = p,,(i) - m(X) if X is in G;.

We claim that M7, together with the variable assignment a(X) = m(X), satisfies
the original constraint.
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6. Prove satisfiedness. For the proof that this construction really satisfies ¢,
we collect some observations about its structure in a lemma.

Lemma 4.13. The tree o and the mapping © that we have just constructed have
the following properties:

1. If X ~ Y, then m(X) < n(Y).
2. If n(X) < (YY), then X ~ Y.

3. If m(X) = n(Y), then there is a chain X1[<*]...[<*]X, such that all of the
nodes Xi,...,X,_1 have only one outgoing edge and either X; = X and
X, =Y or vice versa.

4. If X ~Y and there are representatives X.Y such that =Y <*X € S, then

m(X) < w(Y).

5. If the node X is labeled with f and has the N-children Xi,...,X,, then
o(n(X)) = f and for all 1 < i <n, n(X;) = 7(X)-i € D, but for all i > n,
m(X) -i € Dom(o).

Lemma 4.14. (M7, «a) satisfies ¢.

Proof. We show the stronger result that for every atomic constraint C' € S, (M, «)
satisfies C by considering all cases for C.

C = X<*Y. By Corollary 4.9, we know that X wG_Y; hence, they are in the same

connected component, and we know that 7(X) is a prefix of 7(Y"), which is
what we wanted to show.

C = X:f(Xy,...,X,). By construction of G, Ly (X) = f, so o(r(X)) = f. Fur-
thermore, for any 1 < i < n, we know that X[i]X; in G, and hence, that

m(X;) = m(X) -i.

C = =-X<'Y. Assume that 7(X) < 7(Y); we derive a contradiction. We know
that X and Y are in the same connected component of GG, say in G;,. Let us

distinguish the two possible cases for the relation of 7(X) and =(Y).

1. 7(X) < m(Y); then we know that Y is reachable from X. Hence, by
Corollary 4.9, there is also a constraint X <*Y in S. This is not possible,
as in this case, we could have derived an inconsistency with Clash3.
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2. m(X) = 7(Y). There must be a chain of nodes X,..., X, such that
X;[<*]...[<*] X, where every node is the single child of its predecessor
and either X; = X and X, = Y, or vice versa. In the first case, we can
again conclude that Y is reachable from X and can proceed as above.

In the second case, we know by the above lemma that 7(Y) < n(X), a
contradiction.

4.1.4 Larger logical languages

The algorithm we have defined solves dominance constraints that are pure conjunc-
tions of labeling, dominance, and negated dominance constraints. We now extend
it to allow additionally disjunctions and, later, negations in formulae over these
atomic constraints.

1. Disjunctions. First, let us consider the language that contains conjunctions
and disjunctions, but no negations (other than the negated dominance constraints,
which we still consider atomic for the moment). To decide the satisfiability of
such a formula ¢, we first apply a function A that nondeterministically builds
a conjunction from ¢; then we apply the algorithm from Section 4.1.1 to this
conjunction.

A is a recursive function that maps a formula ¢ to a conjunction of atomic con-
straints. We define it as follows:

Alpi Apa) = A(pr) A Alpo)
Alp1 Vo) = Alpi)
A(SOO) = o,

where 7 is chosen nondeterministically to be either 1 or 2, and ¢ is atomic. Clearly,
A runs in nondeterministic linear time. The key result about the function is the
following lemma.

Lemma 4.15. A pair (M, «) satisfies ¢ iff it satisfies one of the possible results
of A(p).

Proof. By structural induction on .

Atoms. trivial.
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© = 1 A pa. Consider a pair (M, «). By induction hypothesis, this pair satisfies
o1 iff it satisfies one result A(p;), and it satisfies s, iff it satisfies one result
A(ps). Hence, it satisfies ¢ iff it satisfies one possible value of A(yp).

© = ¢1 V ps. By induction hypothesis, a pair (M, «) satisfies ¢; iff it satisfies
a possible result of A(py); call this particular result ¢|. Likewise, (M, «)
satisfies o iff it satisfies the possible result ¢} of A(ps). Now ¢ is satisfied
by (M, «) iff either ¢; or @9 is, which is equivalent to the satisfaction of either
¢} or ¢y, Hence, there is a choice such that A(yp) is satisfied; and conversely,
satisfiedness of ¢} implies satisfiedness of ¢;, which implies satisfiedness of ¢.

O

We decide satisfiability of a formula ¢ by first running A on it and then feeding the
result into the algorithm from the previous sections. Again, we call ¢ consistent if
there is a result of A(p) that has a saturation which does not contain false. For
this, the following result holds.

Proposition 4.16. A formula ¢ of disjunctions and conjunctions over the domi-
nance constraints is satisfiable iff it is consistent.

Proof. First, let ¢ be satisfiable. We know by Lemma 4.15 that there is a result ¢’
of running A on ¢ that is satisfiable as well. By Proposition 4.1, this implies that
¢’ can be saturated in such a way that the saturation does not contain false. So
 is consistent.

Conversely, let ¢ be consistent; then there is a result ¢’ of running A on ¢ that has
a saturation that does not contain false. By Theorem 4.2, ¢’ is satisfiable; but by
Lemma 4.15, this means that ¢ is satisfiable, as well. O

2. Negations. Now we add negation to the list of connectives that we are
allowed to use. So far, the only instance of negation we could use was as negated
dominance constraints, but we considered those as atomic constraints. Now, we
lift this restriction and return to the original definition of atomic constraints. As
we are testing for satisfiability of formulae, it does not matter if we additionally
allow positive occurrences of existential quantifiers; by renaming variables, we can
always get an equivalent quantifier-free formula. The encoding that we present
does not work for the general case; we must require a finite signature. But for
practical purposes, this restriction does not hurt at all.

Clearly, we can reduce a formula that contains negations to an equivalent formula
where the only negations are single negations of atomic formulae in linear time. In
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addition, our original algorithm can handle negated dominance constraints. So the
only difficulty is to extend the algorithm to handle negated labeling constraints.

We do this by simply replacing all negated labeling constraints in ¢ by equivalent
formulae that do not contain negated labeling constraints. To be precise, we replace
a constraint = X:f(Xq,..., X,) by

V o XgX{.o X0 | VXX XA (X=X VLV X =X,)),

97 f
m=ar(g)

where the X and X' are fresh variables. Now all we need to show is that a negated
labeling constraint ¢ is satisfied by a pair (M, «) iff its encoding ¢’ is satisfied by
(M, /), where o' agrees with @ on a’s domain.

As this is quite simple, we only sketch the proof. By definition of the semantics,
o is satisfied by (M, «) iff either o(a(X)) # f or there is an i such that a(X;) #
a(X) -i. The first case is equivalent with saying that o(a(X)) is a constructor
different than f; thisis exactly the situation where the first disjunct of ¢’ is satisfied.
The second case is exactly the situation where the first conjunct of the second
disjunct of ¢’ and one of the disjuncts of the other conjunct is satisfied. Hence, ¢
and ¢’ are equivalent.

4.2 NP-Hardness

As we have seen in the previous section, a wide selection of propositional languages
over the dominance constraints has satisfiability problems that can be solved in
NP time. In this section, we supplement this result by showing that even for
purely conjunctive dominance constraints, this problem is NP-hard. To this end,
we encode propositional formulae in 3-CNF as satisfaction equivalent dominance
constraints.

We proceed in two steps. First, we go through the encoding of a specific example
to make the general ideas and intuitions clear (Section 4.2.1). In the second step,
we present a systematic encoding and prove its correctness (Section 4.2.2). For the
casual reader, it will be much more worthwhile to read the first part and the first
page or so of the second than the rest of the second part, as the correctness proof
is rather tedious and does not provide any new insights.
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4.2.1 An Example

To prove the NP-hardness of the satisfiability problem of dominance constraints,
we reduce the problem 3SAT, which is well known to be NP-complete, to it. 3SAT
is the satisfiability problem of propositional formulae in conjunctive normal form,
where every conjunct is a disjunction of exactly three literals. This special type
of conjunctive normal form is called 3-CNF. To fix names and avoid confusion, we
define the syntax of 3-CNF formulae as follows:

formulae ¢ = CiA...ANCp,
clauses Cz = Lil V LZ_Q V Lig
literals  L;; = Xj or Xj.

We write X; to mean the negation of the variable X;; we assume that the variables
that occur in ¢ are Xi,...,X,. As an alternative representation of a literal, we
will sometimes write X!, where X is a variable and ¢ € {true, false} is a truth
value. We take X* "¢ to mean X and Xf!*¢ to mean X; so for any t, t! = true.

The central construction that we use to model clauses even in the conjunctive lan-
guage of dominance constraints is the dominance triangle. This is a subconstraint
whose graph looks like this:

If (M7, ) is a solution of this constraint, o must map exactly one of the variables
X5, X3, X4 to the same node as X; because a(Xs) must be a prefix of a(X;), which
in turn must be a prefix of a(X4). We can exploit this effect to model three-way
disjunction — just what we need to encode a clause.

As an example of a 3-CNF formula, let us consider the formula ¢ in (4.1).
(4.1) (X1 V Xy V X3) A (X1 V XV X3)

The constraint graph in Fig. 4.2 represents the dominance constraint ¢ which is
the encoding of ¢. We are drawing the constraint graph in a somewhat simplified
manner by leaving away all labels of inner nodes and most variable names; all
inner nodes should be read as being labeled with a fixed binary constructor f. The
signature we use is {f:2, true:0, false:0}.



4.2. NP-HARDNESS 81

Figure 4.2: An encoding of (X; V X5 V X3) A (X1 V X3 V X3) as a dominance
constraint.

We claim that ¢ is satisfiable iff ¢/ is satisfiable. To understand this, let us take a
closer look at the various parts of the diagram.

The lower left part of the graph (below the node S) holds a variable assignment:
For each of the variables X that occur in ), there is one node. In a solution, each
of these nodes must be labeled with either true or false, but not both.

We can view 1) as a constraint on admissibility of variable assignments by calling
a variable assignment admissible if it satisfies ). Each clause imposes such a
restriction on the variable assignments; within a clause, we have a choice between
three different options for satisfying the constraint.

The dominance constraint expresses the very same thing.

Because it is part of a dominance triangle, C'y must be identified with one of the
Lq; in any solution. But once we have identified C; with one of the three L,
we have decided which of the clause Cj'’s literals we want to satisfy: The right
daughter of the chosen Lq; node is identified with .S, some entries in the variable
assignment subtree may be skipped, and then a value restriction is imposed on
one of the variables X;. In the example, Lq; forces the label of X; to be true;
L5 forces the label of X, to be false; etc. We have imposed a constraint on the
variable assignment that is obviously equivalent to that imposed by the first clause

in 1.
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The second clause is represented similarly: The dominance triangle between Loy,
Cs, and Las allows a choice which literal of this clause we want to satisfy. Whichever
literal we pick, its right daughter first skips the entry for Cy (identifying S with
one of the Sy;), and then it selects a variable entry and imposes a value constraint.

An important detail of this encoding is the presence of more nodes than just the
C; in the main branch of the graph (for example, there are two additional nodes
between C; and Cs in the constraint graph). These nodes are “rubbish dumps”
which can be used to store unneeded material in such a way that it won’t interfere
with anything else. Suppose we identified C; and L5 in a solution of ¢. Then
Ly; will be identified with the left daughter of C;, and L3 will be identified with
the mother of C;. Clearly, we do not want any other part of the constraint to
say anything about the right child of C}’s mother because otherwise, we might
run into unnecessarily unsatisfiable dominance constraints. This means that above
each C; node, we need two additional nodes to drop material from the identification
process. We do not need any additional nodes below the C; because the unnecessary
material is then a left child of the selected literal node and can safely be stored
below C;’s left daughter.

To summarize, the encoding of 3-CNF formulae as dominance constraints consists of
the following parts: a) a dedicated subtree to hold variable assignments; b) for each
clause, a dominance triangle to allow the selection of literals; ¢) for each literal,
a subtree that skips lower clauses, selects a variable in the variable assignment
section, and imposes a value restriction on this variable. It is intuitively clear that
1 and ¢ are satisfaction equivalent; unsatisfiability of ¢ means that one variable
would necessarily have to take two values at once, and in such a situation, the
labeling requirements on the representing node in ¢ would clash as well.

4.2.2 NP-Completeness of Dominance Constraints

Now that we have made the intuition clear, we define a systematic encoding and
prove its correctness.

In a simple way, we build the constraint graph that corresponds to ¢ from the
“building blocks” in Fig. 4.3. Larger building blocks can include several copies
of smaller building blocks. For most of the building blocks, we have specified
with arrows an upper and a lower attachment site where it can be composed with
other blocks by identifying the two attachment sites; we write such compositions as
trees whose labels are the two building blocks. Furthermore, we take a block with a
superscript s (such as Skip with superscript i —1 in X;) to mean s-fold composition
of building blocks. So we want the X; block to consist of ¢ — 1 occurrences of
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Skip: X;: X;: SkipC:
| 1 1 |
/\ Skip | ! Skip | !
true false
v
Ck:(Lkl\/Lkg\/Lkg)i QOZCl/\/\Om

v

Figure 4.3: Building blocks for the encoding of 3SAT as a dominance constraint.

Skip blocks and two additional nodes that are immediate children of the lowest
attachment site in the sequence of Skips, the left of which is labeled with true.

It is easy to see that the constraint graph from the previous section was built
according to this scheme. The overall structure consists of m entries for the clauses,
below which n Skip blocks hold a variable assignment. Within each C; block,
there is a dominance triangle that allows the selection of a literal, together with a
sufficient number of SkipC blocks to skip lower clauses. Finally, the encoding of a
literal selects a propositional variable and imposes a value restriction.

After the intuitive explanation in the previous section, it should be rather straight-
forward to see how the encoding works. Below, we prove more formally that it is
correct, but the proof provides no further insights and can be safely skipped. Even
so, we may not always spell out every single detail.

Soundness. First, we show a soundness result: If v is satisfiable, ¢ is satisfiable
as well. (We will show the corresponding completeness result below.) To this end,
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we assume that 1 is satisfied by a valuation V and explicitly construct a pair
(M, @) of a tree structure and a variable assignment that satisfies p. As V satisfies
1, every clause Cj of 1 contains one literal L;; that is satisfied by V. Even if
the result looks a bit intimidating, it is helpful to write down the entire constraint
explicitly instead of relying on the constraint graph, which we do now. Throughout
the proof, we will say that the variable involved in the literal Ly is Xj,, and its
polarity is t;;; in other words, Lj; = X,ii’l.

First of all, let us fix a set of variables for use in the constraint representation of .
We will use five different families of variables, VA, C', SC, LI, and SK a variable
of a family A has the name X# and typically several additional indices. Each
family of variables corresponds roughly to one of the building blocks; indices in
superscript indicate different instances of the same building block, whereas indices
in subscript indicate different positions in an instance of a building block. More
precisely, the variables we use are the following:

variables ranges encodings of ...

X'y 1<k<m Ch

XVAZ 1<l <n variable assignment

XSCW 1<k<mi1=1231<i<k—1 ith SkipC block for literal L
XL”” 1<k<ml=12.3 lower part of block for Ly

Xffﬁg’;vlv’ 1<k<ml=1231<i<hy—1 ithSkipin Ly block.

Using these variables, the encoding ¢ can be written as follows:

A /\k 2X _X X _X
C.k C\k Ck Ck C\k C\k C,j C\k
N /\k I(X f(X XIO )/\X f(Xll 7X12 )/\X 'f(X13J7X14 )
A X14 —Xka’l’l /\ch,;k_Xlsch /\ch(')k_Xka31
XCk XC’k XCk XC’k
A /\k 1/\[ 1/\k I(XSC‘klz fEE()SCk“ XSCkIZ)/\XSCklz f(XSCklz X;”C,k,l,i)
Xsc, 1 f(XSC'k,l,z XSCk,l,z))
k—1 5 SC.k,l,i SCk,li—1
5 X1 =X
/\k lAifklll/\ SKklz SKklz SK,k,li
A N (N2 X0 (X0, X )
A /\hkl IXSA ki XSKk,l,z 1 Xisz,u_X%sc,k,z,kA

LIkl ~SK.klhu— 3 LIk, LIkl ~ LIkl LIkl

>

>
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Now we define a satisfying tree structure and variable assignment. First, we define
auxiliary trees S(k, j,t) inductively in the following way:

S(1,1,t) = f(t,false)
(Ljat) = f(false,S(l,j—l,t))
S(k,j.t) = f(f(f(false,S(k—1,7.t)),false), false).

(Intuitively, S(k, j,t) consists of first & — 1 SkipC blocks, then j — 1 Skip blocks,
then f(t,false), where all open leaves have been labeled with false. This is just
the structure around the Ly, blocks in the diagrams.)

Now we inductively define trees ¢, 04, ... , 0, in the following way:

gy = f(V(Xl)v f(V(XQ)a te af(V(Xna false)) . )
or = f(f(f(Dk1,0k-1), Di2), Di3),

where the definition of the subtrees D;; depends on the index j; of the satisfied
literal:

( false if j. =1

D =« f(false, S(k, hy1,tr1)) if 7, =2

| f(f(false, S(k, hy1,t1)), S(k, hpo, tro)) if Ji = 3;

(S(k, hyg. tre) if o =1

Dy =  S(k, his, tgs) if jp =2
| false if jr, = 3;
D — S(k. hys,tys) if g =1
k3 = :
false otherwise.

Let 0 = 0, and let M = M. The following lemma holds about these trees.

Lemma 4.17. 1. For any k, j,t, the domain of S(k,j,t) is

UsZ2(112)" - {e,1,2,11,12,111}
U2t Ui {2, 271}
U {(112)%1 . %9},

2. The domain of oq is

0{2& 211} U {271},
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3. For any k, j,t, ‘
S(k,g,t)((112)* 1. 2071 . 1) = ¢,

4. For any k.1,
O'O(Qhkl_l : 1) = tkl-
Proof. 1. We proceed along the various stages of the definition. Clearly, the
domain of S(1,1,¢) is {e, 1, 2}.
For j > 1, the following recursive relation about the domain of S(1, j,¢) holds:

Dom(S(1.7.)) = {e,1}U2- Dom(S(1,j — 1.1)).

By induction over 7, it follows easily that

j—1

Dom(S(1.4.t)) = | J{2'.2"1} U {2/}.

1=0

Similarly, the following recursive relation about the domains of the S(k, j,t)
(for £ > 1) is obvious:

Dom(S(k, j,t)) = {e,1,2,11,12, 111} U 112 - Dom(S(k — 1,4, ¢)).

Another induction (this time over k) proves the equation in the lemma. As

the base case of this induction, we use the general equation for the domain
of S(1,7,1).

3. Follows by induction. The claim is obvious for j = k = 1; we can prove
it for arbitrary j by induction (as in the first claim), and then by another
induction, for arbitrary k.

2.,4. Obvious.
O

Now we define a variable assignment a by defining the path that is assigned to
each variable.
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var a(var) var a(var)

xXo* (112)™* x$F (112)m k. 1361

x$F (112)m=*k .1 x$F (112)m=Fk . 13s=1 .1
x$F (112)™F . 2 xoF (112)mF . 1361
XoF (112)™ % .11 x&F (112)™ k. 131,11
XF (112)™F . 12 xGF (112)mF . 13k=1.12
x$* (112)™* . 111 xgF (112)™ k. 131,111
xXoF (112)™* . 112 xqF (112)m=k . 176=1.112
XM a(X$F) 1372 (112)! x4 [ (a1gym .2t
X0 L a(xOFy -3t 12t [ Xy [ (2)me2h g
X; M L a(x$M) - 13-to2 (1122 [ Xy [ (112)m -2t
XM a(x$r) 132 (112) 1 | XPEEY ] (xSRI gt
XPOM T a(xgh) 12 (112) 0 12 | XN (X7 O Lot
XM a(X$F) - 13702 (112) - 111 | XJRRN L (X PORPET) Lgi-T g
XPCRLET (X EFY 13T 2 (112)7 - 112

XlLLk,l a(XéSIs’7k,l,hkl—1)

XQLI,kl Oé(Xés*K,k,z,hqu) 1

XsLLk,l O[(X:fmk,z,hqu) D)

We claim that (M, «) satisfies ¢, and we show this by verifying that every single
conjunct is satisfied. But first, we must verify that every path that a assigns to a
variable really exists in M.

Lemma 4.18. 1. For every 0 <r <m, 0.(112)" = 0, ..

2. For every variable X that appears in ¢, o is defined on a(X).

Proof. 1. If k£ is an arbitrary number between 1 and m, we know by definition
that 04.112 = g,_1. The claim follows by induction over r.

2. We prove the claim separately for each family of variables. We write X
for an arbitrary variable XZF of the family F'.

XVA!, By the first part of this lemma, all the o.a( XV4") are defined iff all
the 0o.(2"° 1 - {€,1,2}) are. But as [ < n, all of these paths are defined
by Lemma 4.17.

X" The definedness of the paths assigned to ch’k, e ,X7C’k follows from
the first part of the lemma and the definition of o,. For the other
variables X*, we distinguish cases by the value of j; and verify the
definedness of the paths 17+~ - {e,1,2,11,12,111, 112} in oy.
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jr = 1. Obvious; we don’t even have to look inside the Dj;.

Jr = 2. Definedness of most paths is obvious without looking inside the
Dy;. The only interesting cases are the paths 1111 and 1112, which
are defined iff the paths 1 and 2 are defined in Dy, which is the
case for j, = 2.

Jr = 3. The interesting cases are the four paths 1111, 1112, 11111, 11112.
They are defined in oy, iff the paths 1,2,11,12 are defined in Dy,
which they are for j, = 3.

. The paths that are assigned to these and the next two families of
variables all start with p(m, k,1) = (112)™ % . 17+~*1 .2 By inspection
of the structure of the o, and Dy;. we notice that

op(m, 1) = Ok-1 if g =1
o S(k, hkla tkl) otherwise.

Now, suppose that j, = [. Then the paths assigned to the variable
X9CkLi are defined in o iff the paths €,1,2,11,12,111, 112 are defined
in oy_;, by the above equation for o.p(m, k,l) and the first part of this
lemma; clearly, this is true. On the other hand, if j, # [, definedness of
these paths follows from Lemma 4.17.

First, consider the case of j, = [. Then by the above result about
p(m, k, 1) and the first part of this lemma, the o.a( X*%*) are defined
iff all paths 271 - {¢, 1,2} are defined in ¢y. But by assumption, i < n,
so by Lemma 4.17, this is true.

On the other hand, suppose ji # [. Then the path is defined iff all paths
201 . fe. 1,2} are defined in S(k, hy, ty); as i < hy — 1, this is true by
Lemma 4.17.

XELEL - Analogous to the previous case.

O

An immediate consequence of the definition of o and Lemma 4.18 is that all binary
labeling constraints in ¢ are satisfied by (M, «): It is easily verified that all vari-
ables that appear as parents in a binary labeling constraint denote internal nodes,
and hence, must be labeled with f. To prove that (M, «) satisfies ¢, it remains to
verify the equivalence (=), dominance, and unary labeling constraints in ¢.

By definition, an equivalence constraint X=Y is satisfied by (M, a) iff a(X) =
a(Y). « satisfies this condition, as is easily verified for every equivalence constraint
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in ¢. For dominance constraints X <*Y, we require that a(X) < «(Y); for the
dominance constraints in ¢, this is true, as

a(Xgh) = (112)m k.t
a(XEH) = (12)ym k.11
a(Xg") = (112)mk .1t

and 7 — 1 < 2. Finally, consider the unary labeling constraints; we need to show
that for all £, 1,
0'(71') == tkl,

where 7 = (X" = p(m, k. 1) - (112)F=1. 2= .1, This is equivalent to proving

that (o.p(m, k,1))((112)k"12hm-11) = ¢, which we do for both possible cases of
the relation of j; and I:

Jr = 1. As we have seen in the proof of Lemma 4.18, o.p(m,k,l) = o}_1, so
o.(p(m,k,l) - (112)*1) = 05. But as Lemma 4.17 expresses, the label of
the node selected in oy by the path 2"%=11 is t,.

Jr # 1. We know that o.p(m,k,1) = S(k, hy, t1;). By Lemma 4.17, the rest of the
path selects a subtree with root label ¢;; in this tree.

Hence, all atomic conjuncts of ¢ are satisfied, which completes the proof of sound-
ness.

Completeness. We now show that if ¢ is satisfiable, v is as well. For this proof,
we proceed in three steps:

1. There is a solution of a slightly restricted form that essentially looks like the
or’s we defined in the soundness proof. We call this solution (M7, a).

2. For every 1 < k < m, there is a j; € {1,2, 3} such that the ji-th literal node
(ie., Xg*, Xg*, or X{7*) is identified with X", Let L;, = X!.

3. For this ji, a(XQLI*k’jk) — Oé(XQVAJ')_

Once we have completed these three steps, the rest of the proof is simple. If we
define a propositional valuation V to map a variable X; to o(a(Xy 7)), we know
by the third part of the proof that V' |= Ly;, for all k. As V satisfies a literal of
each clause of the formula, it also satisfies the entire formula.
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For the first part, let (M, a/) be a solution of ¢. It is easy to see that for all
2 < k < m, there are trees oy, 012, 03 such that

U'.a'(ch’k) = f(f(f(ok, U'.a'(ch’kfl)),akg), Ok3).

For let 2 < k < m be arbitrary, then if we call 7 = o/(XC"), the satisfiedness of
the labeling and equivalence constraints in ¢ requires the following assignments of
paths and labels:

var o'(var) | label
X;t | f
XQCJC ml f
X3CJC T2

D SRS f
X&F | 712

X< ol

X w112

XOH | 7112

This implies not only the above structure of the trees, but by a simple induction

over k, also the relation
o (XTF) = (112)™F,

By the same argument, there are trees 11, 012, 013 such that

o' .o (XN = f(F(f(o11, 0" (X)), 012), 013).

Furthermore, o/ (X{™) must dominate all other variables. So if we call 0 =
o'/ (XF™) and let a be such that o/ (X) = o/ (X5™)- (X)), we know that (M7, a)
satisfies ¢ as well.

For the second point, the following relations must hold to satisfy ¢:
a(X5™) < a(X7) < a(X") = a(Xg) - 1L

Furthermore, a(X$*) = a(X$)-1. So (X ") must be identical to the denotation
of one of the other three variables. Let a be the function that maps literal indices

to their respective variable indices (for example, it maps 3 to 8), then pick j; such

that a(X{™) = a(X, ).

Finally, we prove the third part by a series of arguments similar to the main ar-
gument of the first part: From the satisfiedness of ¢, we derive relations between
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the paths denoted by variables X;"" and X;*" " and use inductions to extend
this to a result for the path denoted by a variable X;" ", We will not spell out
these arguments in detail any more.

We can conclude that o(X{%) = (112)™% . 11. In particular, a(X{h =
(112)™=1.11, so a(Xy ) = (112)™. This implies that a(X, *7) = (112)™.2i-1.1,

Furthermore, we know that a(Xac(’;Z)) = a(X{F) = (112)™F . 11; we conclude

that a(XPOFw) = (112)"*+1 By two more inductions, we can conclude
that a(XP"1) = (112)™ (by going through k — 1 SkipC blocks) and that
a(X[TFIRY = (112)™ . 291 (by going through j — 1 Skip blocks). So by the re-
spective binary labeling constraint, o(X2"*7%) = (112)™ . 2/-11, as we wanted to
show.

This concludes the proof of completeness. Taking all the results from this and the
previous section together, we have just shown:

Theorem 4.19. The satisfiability problems of the language of dominance con-
straints and of the language of conjunctions and disjunctions over dominance con-
straints are NP-complete. If the signature is finite, the satisfiability problems of the
propositional language over the dominance constraints and of the positive existential
fragment are NP-complete, as well.

4.3 Implementations

To close our discussion of the problem of solving dominance constraints, we briefly
go into how they can be implemented by constraint programming, as laid out by
Duchier and Gardent (1999). Furthermore, we briefly show how to implement
context unification, as presented by Koller (1998). We will not go into either
implementation very deeply, but refer the reader to the respective articles.

4.3.1 Implementing Dominance Constraints

The algorithm for solving dominance constraints that we have presented in Section
4.1 guesses for each pair of variables if one dominates the other in its first step.
This makes the proof of termination in NP time very convenient, but renders the
algorithm useless for implementation.

Koller et al. (1998) present another algorithm for solving dominance constraints
which replaces this guessing step by a set of distribution rules. The strategy of
this algorithm is to apply propagation rules, starting with the original constraint,
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until no further rules can be applied; if the result does not contain false, one
distribution rule is applied, and the process starts over. This strategy of “propagate
& distribute” is the basic paradigm of Constraint Programming.

A language that provides very powerful constraint programming techniques is the
concurrent programming language Oz (Smolka 1995; Oz Development Team 1999).
Its basic programming model is that a set of concurrent threads operate on a
constraint store. If one of these “agents” detects a certain situation in the constraint
store, it can add more information to the store. The propagation and clash rules of
the solution algorithm can be programmed very elegantly as agents that wait for
the rule preconditions to be present in the constraint and then add the right-hand
sides. Once no agent can contribute any more information, a distribution rule can
be applied to distinguish cases.

One particularly nice feature of Oz is that it provides set constraints (Miiller and
Miiller 1997). These constraints allow to express equations and inequations between
terms (such as unions and intersections) over variables that denote finite sets of
integers, as well as (non-)membership of integers in these sets. The implementation
of set constraints used in Oz is very efficient.

Set constraints have an immediate application to a solver for dominance constraints,
as noticed by Denys Duchier (Duchier and Gardent 1999). We can associate ev-
ery variable X of a dominance constraint with set variables that denote the sets
of variables denoting nodes equal to, properly above, properly below, and in dis-
joint positions of the node denoted by X, respectively. We can then translate all
dominance constraints to set constraints of their associated set variables.

For example, we can say that for each node variable X, its associated set variables
must form a partition of the set of all variables in the dominance constraint. Fur-
thermore, a dominance constraint X <*Y translates to a conjunction that expresses
that all variables that dominate X must also dominate Y, all variables dominated
by Y must also be dominated by X, and all variables that are disjoint to X must
also be disjoint to Y.

Finally, a distribution rule can be added by taking into account that any two
variables X, Y must either denote the same node, X must properly dominate Y, Y
must properly dominate X, or X and Y must be disjoint. Whenever no propagation
rule can contribute information, these cases are tested in turn, producing new
information in each case.

Despite the general intractibility of the problem that we have proved in the pre-
vious section, the implementation runs very efficiently on real problems from the
linguistic domain (see Fig. 4.5).
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(Subst) X=t — true if X does not appear freeint | X — ¢
(Decomp) a(ty, ... ty)=a(ty,....t,) — Ni_, ,ti=t; | Id
(Proj) t=C(t') — t=t' |C— AX.X

(Imlt) a(tl, vees tn):C(tl) — tZ:CH(tl) | C— )\X.a(tl, v bi1, C”(X), Titty s tn)

(Flex-Flex1) C(t)=C'(t') — t=C"(t") | C' AX.C(C"(X))

(Flex-Flex2) C(t)=C"(t') — true | C+ AY.C1(a(m(X,Co(Y),Cs(t)))),
C' = MZ.C1(a(7(X,Cy(t),C3(Z))))
where 7 is a permutation

Figure 4.4: The algorithms for context unification. The rules below the line are
removed to make the complete algorithm more tractable.

4.3.2 Implementing Context Unification

As we have seen in Chapter 2, the CLLS analysis of ellipsis relies on parallelism
constraints, which we have shown to be equivalent to context constraints in the
previous chapter. So even if the problem turns out to be decidable, we are con-
fronted with a much higher level of intractibility when attempting to implement
them; but it is nonetheless necessary, and with some effort, it can be done with
reasonable efficiency. As there is currently no known solution procedure for solving
parallelism constraints, we present an implementation for the equivalent problem
of context unification.

Fortunately, even though the problem is not known to be decidable, there are
known complete solutions algorithms; however, they do not necessarily terminate.
One such procedure, taken from (Niehren et al. 1997a), is shown in Figure 4.4.

Implemented in its raw form, however, this procedure not only does not necessarily
terminate, but even for the cases when it does terminate, it suffers from two major
problems:

1. Massive overgeneration: The implementation does not output minimal or
most general solutions of any kind, but a wide variety of (linguistically unin-
teresting) partial instantiations.
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(1) Every man loves a woman.
(2) Every researcher of a company saw most samples.
(3) Peter likes Mary. John does too.

Ex. (1) Ex. (2) Ex. (3)
Implementation || fail | sol | time fail ‘ sol ‘ time fail sol time
complete CU 3000 | 600 | 40 sec “n/a 13000+ | 2200+ | 2+ hrs
modified CU 71 2 1 sec 6500 | 5 | 40 sec || 111 2 1 sec
dom. constraints || 0 2 <lsec |0 5 | 1sec n/a

Figure 4.5: Comparison of the performance of the implementations for dominance
constraints and context unification.

2. Enormous runtimes: It takes about 40 seconds to solve even the simplest
scope ambiguity, and Hirschbiihler sentences take hours.

In (Koller 1998), both of these problems were alleviated. To solve the first prob-
lem, a step was made from considering (encodings of) untyped lambda terms as
the space of possible solutions to restricting the possible solutions to well-typed
lambda terms. Because the terms are present in an encoded form, a distinction
was made between 7-types of subtrees and k-types of constructors f, describing how
to compute the 7-type of the tree f(t1,...,t,) from those of the trees ¢q,...,t,;
the syntax of these types was as follows:

T = el|t]| (m,m)
K= (1. Tn) ~ T (n >0).

By requiring all solutions to be well-typed, the number of solutions was cut down
immensely, the only type of wrong solutions that were still found being those that
involved additional quantifiers while still being well-typed.

The second problem was addressed by a more drastic measure: The last two rules
of the algorithm, which contributed most to the nondeterminism that made the
search space that the implementation had to traverse so huge, were removed. This
rendered the implementation incomplete, but on all examples that were tested, the
linguistically relevant solutions were still found. A reason for this is that the first
removed rule can be simulated in a way by sequences of Imitation and Projection
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rules, and the second removed rule invents new material and introduces it into a
solution; in the linguistic application, this is only warranted in very special cases.

These two changes to the algorithm made its runtimes much more pleasant (and in
most cases, feasible at all). Fig. 4.5 shows a comparison of the performance of the
complete and the modified algorithm; for each implementation and each example,
the number of failed search paths, the number of found solutions, and the runtime
are shown. But the table also shows that on scope ambiguities, where the solver
for dominance constraints can be applied as well, the latter by far outperforms
even the streamlined implementation of context unification. This gives rise to
the hope that once it is known how to solve parallelism constraints, a combined
implementation that solves the entire language of CLLS will perform much better
than the implementation of CU.

4.4 Conclusion

In this chapter, we have analyzed the complexity of various logical languages over
the dominance constraints. We have shown for all languages between the purely
conjunctive constraint language and the positive existential fragment that this
problem can be decided in NP by a saturation algorithm (in the latter cases, only
if the signature is finite) and that it is NP-hard, as we can use it to express the
satisfiability problem of formulae of propositional logic in 3-CNF. Finally, we have
sketched implementations that solve dominance and context constraints.

In the light of this complexity result, it is natural to look into analogous results
about the full first-order language, for which not even decidability is obvious. In
fact, it has been known for a while that the problem is decidable. Backofen et al.
(1995) have given an axiomatization of the first-order theory of dominance con-
straints over finite trees, and while this axiomatization is not complete, we can
interleave steps of first-order deduction over this set of axioms (which will eventu-
ally show validity if a formula is valid) and steps of enumerating all finite trees and
checking satisfiedness (which will eventually show that the formula is not valid if
it isn’t) to obtain a decision procedure (Backofen, personal communication). This
proof, however, is hardly straightforward and does not say anything about the
complexity of the problem.

Koller et al. (1998) remedy this situation by giving a more straightforward proof
of the decidability and pinpointing the complexity of the problem to be non-
elementary (i.e. there is no tower of exponentials of any fixed height that isn't
exceeded by the running time for large instances). The decidability proof general-
izes a similar result by Rogers (1994), who showed decidability for finite signatures
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by encoding dominance constraints in the monadic second-order logic SnS, which
was shown to be decidable by Rabin (1969), to signatures of bounded arity. The
key idea of the complexity proof is to encode the equivalence problem of regular
languages with concatenation, union, and complement, as first-order dominance
formulae.

This yields the following state of affairs in the complexities of languages over the
dominance constraints:

e The satisfiability problems of dominance constraints and, if the signature
is finite, also of the propositional language over dominance constraints and
of the positive existential fragment over the dominance constraints are NP-
complete.

e The satisfiability (and validity) problem of the first-order language over the
dominance constraints is decidable and has non-elementary complexity.

e The satisfiability problems of all languages over dominance constraints with
precedence (Section 2.1.5) are in the same complexity classes as their coun-
terparts over our variant of dominance constraints. We have seen in Section
2.1.5 that it is easy to express our dominance constraints in this language;
on the other hand, we can also encode precedence constraints as dominance
constraints once we have access to disjunction, and the latter can be decided
in NP.

One important restriction that we made throughout the chapter was that the signa-
ture must contain one constructor of arity at least 2. This restriction was necessary
both to simulate constructors of arbitrary arity in the completeness proof of the
algorithm and to make space for the “rubbish dumps” in the NP-hardness proof; it
is also necessary for the proof of non-elementarity of the first-order language. While
the problem is clearly still in NP if we leave this restriction away, it is unclear if we
can maintain the NP-hardness result. From a practical perspective, however, this
question is of marginal interest.

An open question of immediate practical impact is if the complexity can be re-
duced by sufficient amounts of inequality constraints between variables to prevent
the overlaps or variable identifications that were so crucial in our encoding. In
particular, it is unclear if the complexity of dominance constraints doesn’t become
deterministically polynomial if for any two variables that participate in a labeling
constraint, we impose an inequality constraint. We will come back to this re-
striction, which seems to be harmless for the linguistic application and essentially
reduces the expressive power of dominance constraints to that of Hole Semantics
or UDRT, in a broader context in the concluding chapter.



Chapter 5

Conclusions and Outlook

5.1 Summary

In this thesis, we have explored the formal properties of two computational logics
that have been used as representation formalisms in natural-language semantics.

First, we have shown that CLLSg, the fragment of the language CLLS that talks
about trees (and not the more powerful lambda structures), is equivalent to the lan-
guage of context unification, thereby establishing that both satisfiability problems
have the same complexity. Afterwards, we have considered dominance constraints,
the most interesting sublanguage of CLLS,. We have proved that their satisfia-
bility problem is NP-complete; along the way, we have also shown how to decide
satisfiability and how to implement this in a way that runs efficiently for linguistic
problems. Both of these results are of general interest, especially the second one,
as dominance constraints are widely used in computational linguistics.

Within the CHORUS project, an additional benefit of the result of equivalence
between the two representation languages is that old results and analyses can es-
sentially be taken over; the migration to a new formalism has not changed the
expressive power. However, the CLLS analysis of, say, scope ambiguities is actu-
ally simpler than the CU one. The CU analysis of scope ambiguities in (Niehren
et al. 1997b) avoids the problems addressed in Section 2.4, but is rather intrans-
parent. As we have argued in Chapter 2, this is so because it is just the encoding
of a dominance constraint. So in truth, the equivalence result is not really useful
for taking over older analyses into the new formalism, but for an a posteriori jus-
tification of the old analyses based on the new one. This result also establishes
a connection between the language CLLS and the ongoing research on the formal
properties of context unification.

97
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As CHORUS also strives to achieve computational feasibility, the investigation of
the computational complexity of the formalisms used is clearly of central relevance
for the project as well. Our result about the complexity of solving dominance
constraints comes as a slightly inconvenient truth in this respect, but as we have
seen, implementations of the dominance constraints that we really see are efficient
anyway.

5.2 Further Work

There are a number of highly interesting open questions that will be considered in
the next phase of the CHORUS project. Here, we briefly discuss some of them,
especially inasmuch as they are related to the results in this thesis, and consider
ideas for answering them. Most of the space will be devoted to perspectives for
direct deduction and underspecified beta reduction; but we will also consider lin-
guistic issues and open questions of solving CLLS constraints (in extension to the
solution algorithm of Chapter 4).

5.2.1 Constraint solving

The solution algorithm for dominance constraints in Chapter 4 performs with pleas-
ant efficiency. However, some questions are still open: Why is it that despite the
NP-hardness of the problem, the NP algorithm performs so well? How can we solve
parallelism constraints? And finally, is there a way to convert the algorithm to a
solution algorithm for constraint graphs instead of constraints?

Parallelism constraints. CLLS was designed as a description language not only
for scope ambiguities, but also for ellipses and anaphora. Clearly, one needs to be
able to solve anaphoric and parallelism constraints to fully achieve this goal.

While it seems to be fairly trivial to solve anaphoric constraints, it is currently
unclear how parallelism constraints can be solved. This is not surprising, as they
approach the difficult problem of context unification from an unusual direction. As
we have shown in Chapter 3, we can always encode a CLLS constraint involving
parallelism as a context constraint and then solve the context constraint, but this
is neither conceptually nor computationally acceptable. So this problem will need
to be investigated in the near future.
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Efficient solution of dominance constraints. Furthermore, as we have said
variously throughout the thesis, it is striking that although the problem of solving
dominance constraints is NP-hard, those dominance constraints that do appear in
the linguistic analysis can be solved efficiently. It will be worthwhile to investigate
what special property distinguishes the constraints in the linguistic application
from the general case and makes the problem of solving them so easy, and to
derive better complexity results for the restricted problem.

A promising candidate for this property is to require that any two variables
that participate in a labeling constraint in the same role must denote different
nodes — i.e., if a dominance constraint has both a conjunct X:f(Xy,...,X,) and
Yig(Y1,....Y,), X and Y must denote different nodes, and any X; and X; must
too, even if f and g are the same constructor. This can be expressed by inequality
constraints. The relevance of this becomes apparent when we consider the frag-
ments of the constraint graph, i.e. the maximal subgraphs that are connected with
N-edges. Fragments correspond to parts of the tree that we describe (hence the
name). If the constraint satisfies the above labeling condition, no solutions can be
obtained by overlapping fragments. We can define a fragment graph whose nodes
are the fragments of the constraint graph and in which an edge is drawn from
one fragment to another if there is a dominance constraint between a node in the
first fragment and one in the second, and solving the dominance constraint then
degenerates to a tree-like ordering of the fragments that respects the dominance
relations in the fragment graph. (This is exactly the same problem as disambiguat-
ing underspecified representations of Hole Semantics, where we have a partial order
on fragments to begin with.) While this is by no means certain, it does look like
this problem might be simpler than the general satisfiability problem of dominance
constraints.

Constraint graphs. This construction illustrates the importance of the graph
view on dominance constraints that we have been using throughout the thesis.
Unfortunately, the general notion of “constraint graph” has not yet been formally
defined. The reader may have noticed that while we have talked about the con-
straint that corresponds to a given constraint graph (and considered the graph
just as a more intuitive notation), we have carefully avoided talking about the
converse construction, a constraint graph corresponding to a constraint. This is
because there is considerable freedom in the degree of redundancy and explicity
of representation one chooses in the definition of constraint graphs. For example,
what should be the condition for drawing a dominance edge in the graph? Should
we do so exactly if there is a corresponding dominance constraint; should it be
a very explicit representation with an edge for every entailed dominance relation
(similarly to the graph G’ we defined in the completeness proof of the satisfiability
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algorithm for dominance constraints); or should it be very irredundant and only
contain a dominance edge if it can’t be inferred from the rest of the graph (similarly
to the graph G in the completeness proof)? Similar problems arise for inequality
constraints. It is unclear which choice leads to the most convenient definition.

One particularly important aspect of this choice is that the resulting notion of con-
straint graphs should admit a reasonably convenient algorithm for disambiguating
them; we will see in our discussion of underspecified beta reduction below that
having such a solution algorithm on graphs can be very useful. A solution algo-
rithm could be a graph rewriting system d that disambiguates the constraint by
eliminating ambiguous subgraphs (e.g., nodes with two incoming edges). We can
call such a system sound and complete if its normal forms are solved forms (simi-
larly to the definition in Chapter 4), and these solved forms correspond exactly to
the solutions of the underlying constraint. Typically, there will be more than one
result of disambiguating the same ambiguous subgraph (this is what “ambiguity”
means, after all); but sometimes, all but one of the options can be excluded, and
we call such a step a propagation step p. In a reasonable solution algorithm, it
should be possible to permute applications of p and d rules (but not necessarily
applications of two different d rules).

Minimal solutions. One issue that we have only hinted at so far is that we still
have no clear idea of what a “minimal solution” is. We briefly used this notion
in Section 2.2, where we wanted to exclude that arbitrary amounts of semantic
material could be filled into the gaps left open by dominance constraints. It is
obviously unsatisfactory to leave such an important point open, but unfortunately,
there are at least two promising ways how we could define “minimal”, and both
have their advantages.

One of them is to require that all solutions must be formed with known material.
Put more formally, this means that every node in a solution must be denoted by
a variable that participates in a labeling constraint as the head. This definition
corresponds nicely to the idea of solving a constraint by simply arranging the
fragments of the constraint graph, because it implies that every node in a solution
must correspond to one of the nodes in a fragment.

The alternative is to define some order on trees (or as it were, lambda structures)
and to only consider solutions that are minimal with respect to this order. For
example, we could only consider trees with a minimal number of nodes. The
advantage of this version is that it works well with the ideas on reinterpretation
that we will sketch in the next section.
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It should be noted that the choice among these alternatives for defining minimality
makes a significant difference. For example, there are constraints that are satisfiable
(and, hence, have minimal solutions by the second version of the definition), but
that do not have solutions that only use known material:

(5.1) X:aAY:b

can be solved over the tree f(a,b); but the root of this tree (which is labeled with
f) is not mentioned in a labeling constraint and hence, was not built with known
material.

5.2.2 Linguistic coverage

Now we will briefly sketch three of the various linguistic perspectives of the
CHORUS project: the modeling of dynamic semantics, reinterpretation, and syn-
tax/semantics interaction.

Dynamic semantics. Asis well known, the potential positions of the antecedent
of a given pronoun are restricted. For example, one common assumption that DRT
(Kamp and Reyle 1993) and DPL (Groenendijk and Stokhof 1991) make about this
accessibility relation is that the antecedent cannot appear within a disjunction,
negation, or universal quantification that precedes the anaphor. The way that
this is usually modeled is by interpreting a sentence as an operator that changes
the anaphoric potential of the discourse, i.e. the list of potential antecedents for
an anaphor in the next sentence; this “dynamic” interpretation is in contrast to
traditional “static” semantic analyses.

In our context, the most interesting aspect of these phenomena is that they interact
with scope ambiguities, as in the following discourse, where the anaphor restricts
the source sentence to the reading that assigns a woman wide scope; in the other
reading, the antecedent would be located within a universal quantification and
hence, be inaccessible.

(5.2) Ewvery man loves a woman. Her name is Mary.

One idea to model this interaction, which was presented in (Koller and Niehren
1999), is to impose restrictions on the relation between the start and end
node of the (currently unrestricted) anaphoric links that CLLS uses to model
anaphor/antecedent relations. For example, it is straightforward to rewrite the
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DPL accessibility rules as conditions on paths in trees. With this definition, the
reading of (5.2) that assigns every man wide scope would not be well-formed be-
cause one would have to pass through a universal quantifier on the way from the
anaphoric node to the antecedent.

Furthermore, it is not difficult to define a simple (incomplete) inference rule on the
constraint level that can make the effects of such an anaphoric link on the structure
of a solution explicit as a dominance constraint. In our example, this rule would
cause the disambiguation of the scope ambiguity on the level of underspecified
representations. The kind of constraint we need to express this is of the form

(5.3) "(X<*Y ANY<*Z);

it basically says that Y must not intervene between X and Z, and it seems to
be useful in a variety of other situations as well. We know from Section 4.1 that
adding disjunctions of negated dominance constraints does not affect the worst-
case complexity of the satisfiability problem. In addition, it seems that even the
efficient actual running times of the implementation via set constraints that we
sketched in Section 4.3.1 could be maintained.

What is nice about this approach from a linguistic perspective is that it is very
modular: We can easily plug in whatever accessibility relation we want to. On
the other hand, it is an important step towards a truly underspecified account of
semantics that we can resolve this kind of interaction between anaphora and scope
without enumerating readings. Note, by the way, that we are only using the word
“dynamic” in a very broad sense; our semantics is fully static (i.e., does not care
about context change potential).

Even so, numerous questions about this issue are still open. For example, it is not
entirely clear how we can account for sentences like

(5.4) Ewery pilot who shot at it hit the MIG that chased him.

that contain kataphoric references, and if we can still process this type of refer-
ence efficiently. Further open questions include how to raise the analysis to the
higher-order case, how to find antecedents if coindexation is not given, and accom-
modation. We are only beginning to understand our analysis of these phenomena,
and it will be intriguing to investigate it further.

Reinterpretation. Consider the following example.

(5.5) Wine is standing on the table.
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In this sentence, it is not the liquid that is standing on the table, but a container,
e.g. a bottle, that contains wine. The semantics of the container, which has no
explicit linguistic representation, is introduced by a so-called reinterpretation of
the sentence; similar effects can take place for aspect.

Traditionally, this kind of phenomenon is treated by destructively introducing a
reinterpretation operator into the semantics of the sentence after recognizing the
sortal conflict between the mass noun wine and the VP stand on the table, which
expects a physical object as its argument.

Egg (1999) proposes a CLLS-based analysis where the sentence meaning is not
described directly, but in a slightly underspecified fashion. The key construction is
that the wine is not connected to the rest of the sentence via a labeling constraint,
but only via a dominance constraint. This kind of constraint allows a solution
where the reinterpretation operator is added in the right place; in fact, to obtain a
well-sorted solution, it is necessary to add the operator. If we think about this in
terms of “minimal solutions”, we essentially change the requirement on a solution
we are interested in from being minimal among all possible solutions to being
minimal among the well-sorted solutions.

This account has several advantages over the traditional analysis. First of all,
semantic composition is still a monotonic process, and the introduction of rein-
terpretation operators, which is based on sortal information and world knowledge,
is a process that can be clearly distinguished from the linguistic side of semantic
construction. Next, the CLLS analysis does not only cover cases of “type coer-
cion” as in Example 5.5, but only other reinterpretation patterns. Finally, it seems
to be possible to apply reinterpretation in such a way that it can be done before
enumerating the readings of a scope ambiguity.

Syntax/semantics interaction. A final idea concerns the interaction of syntax
and semantics. As we have seen in the introduction, there are several constraint-
based approaches to the underspecification of syntactic ambiguity; CLLS is a
constraint-based approach to the underspecification of (some classes of) seman-
tic ambiguity. So it might be worthwhile to investigate if their interaction could
not be modeled by an additional layer of constraints that translates information
from both sides to each other.

Both syntax and semantics would be described in an underspecified fashion in this
model, and before any disambiguation takes place, propagation of constraints to
the other level would be allowed. Then the newly obtained constraints could be
further propagated on the other side, potentially yielding new information that
helps in the disambiguation of the first side, and so on. The hope would be that
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once we do have to enumerate readings, most options would already be excluded
by the mutual constraint propagation, thus reducing the search space.

At the moment, we do not know any clear examples where such syntax-semantics
interaction (to set the idea apart from the unidirectional idea of a syntax-semantics
interface) can be fruitfully applied, but the idea is certainly something that war-
rants further research.

The bottom line of this section is that in its current state, there are a large number
of unexplored applications of CLLS. This is remarkable in that an underspecifica-
tion formalism is usually obtained by stretching the expressive power of an existing
language, as we have seen in the introduction. CLLS was developed from scratch
with underspecification in mind and basically describes trees, an extremely flexible
data structure; so far, it has not really been stretched at all, and combined with
the formal foundations as laid out in this thesis, promises to be useful for a wide
range of linguistic applications.

5.2.3 Towards Underspecified Beta Reduction

Finally, we present some thoughts about an important aspect of underspecification
that we have briefly hinted at in the introduction: underspecified deduction. After
a brief reintroduction to the basic intuition underlying this operation, we sketch
some more concrete ideas on how to define a simpler, but still very interesting
related operation: underspecified beta reduction. The details of this construction
are unclear at the moment, but it seems likely that on a large scale, the ideas laid
out here should go a long way towards a clean definition, and they are concrete
enough to illustrate some of the basic problems.

Direct deduction. Recall Example 1.3 from the introduction:

(5.6) FEwvery man loves a woman.
John is a man.
John loves a woman.

This argument is clearly valid, and we notice this without enumerating all readings,
although the premise is ambiguous. To model this intuition, it should be possible to
infer the conclusion from the premises on the level of underspecified representations.
This does not only seem natural, it is also the very idea of underspecification to do
as much work as possible before disambiguation.
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It is crucial to understand that this inference does not have much to do with
the usual inference on underspecified representations (e.g. the inference rules for
dominance constraints that we defined in Section 4.1). The kind of inference we
have just seen (and which we will call direct deduction) derives a description of the
logical consequences of the described formulae from a description; it really cares
about the semantic content of the represented formulae. On the other hand, simple
inference on a CLLS formula can only serve to make the description more explicit.

It is an interesting question in itself what conclusions direct deduction should al-
low. In the example, the answer is very simple: Fvery solution of the underspecified
description of the premise entails the (unique) solution of the underspecified de-
scription of the conclusion, so the second description should surely be inferrable
from the first one. But for more difficult cases, for instance with ambiguous con-
clusions, the answer is less obvious. There is a wide range of choices for an exact
definition of underspecified inference (see, e.g., van Deemter 1996), all with dif-
ferent logical properties and calculi, and we will not go into them in any detail
here. Common to all of them, however, is that they lift an operation on the se-
mantic representations of the single readings of a sentence to an operation on the
underspecified descriptions of these representations, and that this inference must
be defined in a way that is justified by some condition on the relation between
the solutions of the underspecified representations on both sides. For example, the
inference in (5.6) would be justified by a condition on the solutions that says that
every solution of the (underspecified representation of the) premise must entail ev-
ery solution of the (representation of the) conclusion. (This is not necessarily the
most intuitive definition for underspecified entailment; it is just a random pick.)

Underspecified beta reduction. Instead of direct deduction, we will consider
underspecified beta reduction in more detail, for several reasons. For one thing,
lambda structures correspond to lambda terms up to o but not 3 equivalence; so
clearly, beta reduction is a natural and extremely important operation on these
structures. In particular, it is necessary to apply beta reductions to lambda struc-
tures until they represent a first-order formula before one can apply deduction rules
at all, and we would like to do this on the underspecified representations. In ad-
dition, beta reduction is a much simpler operation than first-order deduction, and
we expect that the experiences gathered with underspecified beta reduction will be
helpful when considering direct deduction.

The basic idea of underspecified beta reduction is the same as that of direct deduc-
tion: lift an operation on the described structures (here, beta reduction on lambda
structures) to an operation on the underspecified representations in a way that is
justified by a relation on the described terms. This relation, too, is very simple
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var var

Figure 5.1: Underspecified -reduction.

here: The solutions of the resulting constraint must be exactly the set of terms that
can be obtained by applying beta reduction at a common redex to the solutions of
the original constraint.

To make this a bit more precise, assume that ¢; is a constraint that contains the
description of a (-reduction redex; i.e., a subconstraint of the form
Xli@(XQ, X3) N Xg:lam(X4) A )\(X{):XQ VANPIAN )\(X;):XQ

Then every solution (M, ) of p; will have a redex at the position a(X;). Hence,

we can define that ¢, is the result of underspecified beta reduction of ¢; at the
redex X iff

S(p2) ={(M'.a’) | (M,a)e S(p1), M'is the result of S-reduction of M
at redex a(X7), and o' is “appropriate” },

where S(¢p) is the set of solutions of the constraint ¢. We will not make “appro-
priate” more precise here, as the exact definition of o’ is simple and tedious.

This definition is nice, but what we really want is an operational characterization,
for example as a graph rewriting system that transforms constraint graphs. One
such system (let us call it b) that looks very natural is shown in Fig. 5.1. If the
graph contains a description of a redex as in the left diagram, this subgraph can
be replaced by a graph as in the right diagram; the description of the redex itself
is removed, and the bound variables are replaced by the description G5 of the
argument.

At first glance, Fig. 5.1 looks just like usual beta reduction. However, it is impor-
tant to remember that G; and G5 are not necessarily trees, but arbitrary constraint
graphs, and there can even be dominance constraints between nodes within GGy and
(G5 and nodes outside of these subgraphs, which does make a difference. Of course,
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if this is not the case, i.e. (G; and (G5 are trees of N-edges and no node of these
subgraphs is involved in a dominance or parallelism constraint, b does, in fact,
degenerate to usual f-reduction.

Problems with underspecified beta reduction. For the graph rewriting rule
b to be faithful to the original definition of underspecified beta reduction, we have
to require two properties: on the one hand, that the resulting constraint is satisfied
by all B-reduced solutions of the original (a kind of completeness result), and on
the other hand, that all solutions of the result can be obtained from solutions of
the original by (-reduction (a soundness result). Below, we discuss some concrete
problems of both directions, and sketch ideas for solving them.

Problems: Completeness. An obvious source of problems with completeness
is that a solution of the original constraint ¢; may contain more var nodes bound
by the lam binder in the redex than the constraint mentions explicitly. In such a
situation, the number of copies of G5 in ¢y will be too small for such a solution;
so the result of applying (-reduction to this solution will not satisfy ¢s. It seems
that this problem could be solved by only considering “minimal” solutions, by an
appropriate definition of “minimal”; for example, we could require that a solution
can only contain those var nodes that the constraint mentions explicitly. But as
we have seen above, minimality is not a trivial concept, and some thought would
have to be put into this first.

Another source of problems is parallelism. Consider a constraint that contains two
copies of a description of a (-reduction redex and where a similarity constraint is
imposed on the roots of these descriptions. Then it is clearly possible that while
the original constraint is satisfiable, the constraint obtained by one b step on one
(but not the other) of the redex descriptions is unsatisfiable — a clear violation of
completeness in the above sense. Parallelism also causes some tricky problems for
notions of minimality, and as we have seen above, there is no algorithm for solving
parallelism constraint so far, which makes the development of a correctness proof of
b very difficult. In general, parallelism is so inconvenient that it seems reasonable to
set it aside for now, consider underspecified beta reduction on a restricted language,
and try to extend it to the full language later.

Problems: Soundness. These two kinds of restrictions seem to solve (or work
around) all problems involving completeness. However, there can still be problems
with soundness: We can get spurious solutions, i.e. solutions of the resulting con-
straint graph that cannot be obtained from solutions of the original by g-reduction.



108 CHAPTER 5. CONCLUSIONS AND OUTLOOK

=

-

Q
>

~
N

Figure 5.2: b can produce constraints with spurious solutions.

These situations usually involve a functor and/or argument of the -reduction that
is not sufficiently specified.

One problem arises when the argument contains an ambiguity and the functor binds
more than one var node. In this case, b will produce a constraint that contains
several copies of the ambiguous argument, and these copies can be disambiguated
independently. That is, the subtrees satisfying different copies can be different;
but in the (-reduction of a solution of the original constraint, they will be several
copies of the same tree. What we would need to make sure in order to maintain
soundness is that all copies of GG are disambiguated in the same way. An easy way
to do this would be to impose similarity constraints on them; but as we have just
seen, parallelism comes with problems of its own. So the most convenient way to
work around this problem seems to be to restrict ourselves to linear lambda terms
for now.

Finally, even in this restricted class of constraints, b can be unsound if the original
constraint is overly ambiguous. Consider, by way of example, Fig. 5.2. All minimal
solutions of the left constraint graph can be [-reduced to either h(f(g(a))) or
g(h(f(a))) because the fragment with the g can be either above the application node
or within the argument. But the right constraint graph, the result of applying the
graph transformation b to the left graph, which should have just these two minimal
solutions, has an additional minimal solution h(g(f(a))). This constraint is a good
illustration that, as we said above, the subgraphs GG; and G5 in Fig. 5.1 need not
be trees and can have dominance relations to nodes outside the redex.

There are several conceivable ways of excluding this type of mistake. One way could
be to simply impose a “non-intervention” constraint like we used in the context of
dynamic semantics above. In the example, the problem would go away immediately
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if we imposed the additional constraint
(XY ANY<'Z)
on the result.

A different idea of how to approach this problem is to restrict the applicability of
the rewriting rule b. For example, we could require that for b to be applicable on
the description of a redex, the argument has to be fully specified. Alternatively,
we could require that there is a path from the lam node to the var node in the
functor that consists of N-edges: There is considerable freedom in balancing the
restrictions among the descriptions of the functor and the argument.

At first sight, it seems that this restriction greatly reduces the value of under-
specified beta reduction. But if b happens not to be applicable on a particular
constraint graph, we can always disambiguate until it does become applicable; as
we have said above, on fully disambiguated constraint graphs, b degenerates to
usual (-reduction, so we can always arrive at a situation where b is applicable.
We may need more disambiguations than absolutely necessary, but we will still be
better than if we generally did (-reduction only on the satisfying lambda struc-
tures. In addition, it seems that it might be possible to find restrictions that allow
(sound) application of b on most examples found in semantics.

Proving correctness. The changes and restrictions listed above seem to solve
all problems; but of course, it will be necessary to prove that b really models
underspecified beta reduction on the restricted cases.

One way to do this that looks very promising is based on using a sound and complete
solution algorithm on constraint graphs, as sketched in Section 5.2.1. Given such
an algorithm, correctness of b could be shown by proving a bisimulation argument
expressing that rewriting steps in b and rewriting steps in d permute: In this case,
a sequence of applications of d plus one application of b can be replaced by first one
application of b and then a sequence of (possibly different) applications of d, and
vice versa. In this way, applications of b can always be reduced to applications of
b on solved forms, which is essentially usual beta reduction. It might be necessary
to show that applications of p do not have any effect on the set of solutions of
a constraint and that hence, we can apply p rules freely to normalize constraint
graphs.

But clearly, such a proof relies heavily on the exact rules in the rewriting systems
d and p. So it seems that the most challenging piece of work that has to be done
before correctness of the restricted case of underspecified beta reduction can be
proved is to find a solution algorithm for constraint graphs and prove its soundness
and completeness.
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