
Fachbereich 14 InformatikUniversit�at des Saarlandes

Constraint Languages forSemantic Underspeci�cationDiplomarbeitAngefertigt unter der Leitung vonProf. Dr. Manfred PinkalundProf. Dr. Gert Smolka
Alexander Koller

5. Februar 1999

Hiermit erkl�are ich, da� ich diese Arbeit selbst�andig verfa�t und keine anderen alsdie angegebenen Quellen und Hilfsmittel verwendet habe.Saarbr�ucken, den 5. Februar 1999Alexander Koller

AbstractAt all levels of linguistic analysis, natural language can be ambiguous. The numbersof readings of di�erent ambiguous components of a sentence or discourse multiplyover all these components, yielding a number of readings that can be exponentialin the number of ambiguities. Both from a computational and a cognitive point ofview, it seems necessary to �nd small representations for ambiguities that describeall readings in a compact way. This approach is called underspeci�cation, and ithas received increasing attention in the past few years.Lately, two particularly elegant formalisms for the underspeci�ed treatment ofscope ambiguities in semantics have been proposed: Context Uni�cation (Niehrenet al. 1997b) and the Constraint Language for Lambda Structures, CLLS (Egg et al.1998). Common to both is that they regard the term representing the semanticsof a sentence as a tree and describe it by imposing tree constraints. Furthermore,both o�er the expressive power to describe simple ellipses and their interactionwith scope ambiguities.This thesis investigates some formal properties of these two formalisms. It ex-amines their relation and shows that, except for a few additional constructs ofCLLS, both languages are equivalent in expressive power. In terms of computa-tional complexity, this gives us the immediate result that the complexity of thesatis�ability problem of CLLS is exactly the same as that of context uni�cation,which, unfortunately, is unknown. The thesis further investigates the complexityof the satis�ability problem of dominance constraints, an important sublanguageof CLLS, and shows that it is NP-complete. In the course of the discussion ofcomplexity, it also brie
y explains how techniques from concurrent constraint pro-gramming can be applied to implement solution algorithms for these formalisms.

AcknowledgmentsFirst of all, I would like to thank my professors, Manfred Pinkal and Gert Smolka.Together with the other members of the CHORUS team, they have created a uniqueresearch environment and have generally given me the impression that what I wasdoing was signi�cant.I am indebted to Joachim Niehren, who has drawn me into this �eld of research inthe �rst place by infecting me with his enthusiasm. He has also been an excellentdiscussion partner who has contributed much to the work reported here.I am grateful to Patrick Blackburn, Manuel Bodirsky, Markus Egg, Claire Gardent,Joachim Niehren, Manfred Pinkal, Gert Smolka, and Kristina Striegnitz for helpfulcomments on various drafts of the thesis.Finally, I would like to thank my family and Stefanie Schmidt, who have been aninvaluable source of support and inspiration throughout all of this.

Contents
1 Introduction 11.1 Underspeci�cation . 21.1.1 Ambiguities . 21.1.2 Underspeci�cation . 31.1.3 Scope Underspeci�cation . 61.2 CLLS . 91.2.1 Scope ambiguities in CLLS 91.2.2 Ellipses . 101.3 Context Uni�cation . 111.3.1 Context constraints . 121.3.2 Examples . 131.3.3 Computational aspects . 141.4 Contributions of this thesis . 161.5 Previous approaches to underspeci�ed semantics 191.5.1 Quasi Logical Form . 191.5.2 Hole Semantics . 212 CLLS and Context Uni�cation 252.1 Syntax and Semantics of CLLS . 262.1.1 Tree structures . 26i

ii CONTENTS2.1.2 Lambda structures . 282.1.3 Syntax and semantics of CLLS 302.1.4 Lambda structures and lambda terms 322.1.5 Relation to Dominance Constraints with Precedence 332.2 Applying CLLS . 342.2.1 Advanced scope ambiguities 352.2.2 Hirschb�uhler sentences . 362.3 Context Uni�cation . 382.3.1 Contexts and Context Functions 382.3.2 Syntax and Semantics of CU 402.3.3 Context Equations . 412.4 Applying Context Uni�cation . 432.5 Conclusion . 443 Relating Context Uni�cation and CLLS 473.1 Encoding dominance constraints . 483.2 Parallelism . 563.3 Conclusion . 594 Complexity of Dominance Constraints 614.1 Solving Dominance Constraints . 624.1.1 The algorithm . 624.1.2 Soundness . 634.1.3 Completeness . 654.1.4 Larger logical languages . 774.2 NP-Hardness . 794.2.1 An Example . 804.2.2 NP-Completeness of Dominance Constraints 82

CONTENTS iii4.3 Implementations . 914.3.1 Implementing Dominance Constraints 914.3.2 Implementing Context Uni�cation 934.4 Conclusion . 955 Conclusions and Outlook 975.1 Summary . 975.2 Further Work . 985.2.1 Constraint solving . 985.2.2 Linguistic coverage . 1015.2.3 Towards Underspeci�ed Beta Reduction 104Bibliography 111

iv CONTENTS

Chapter 1Introduction
In this chapter, we give a general introduction to the topic of the thesis, explainingthe basic concepts and formalisms that we will be concerned with, and stating ourmain results. For now, our aim is to avoid formalities and work more by intuitionand example than by de�nition and proof; we will deliver these in later chapters.First of all, we introduce the concept of underspeci�cation. Underspeci�cation is anapproach to the treatment of all sorts of natural-language ambiguities that attemptsto avoid the (expensive) enumeration of all readings of an ambiguous expression.Underspeci�cation has been employed on many levels of linguistic analysis, butwe will restrict ourselves to semantic underspeci�cation and, in particular, theunderspeci�ed treatment of scope ambiguities.In the next two sections, we give intuitive \de�nitions" of the two formalisms wewill be primarily concerned with: the Constraint Language for Lambda Structures(CLLS) and context uni�cation (CU). We show how the phenomena mentionedin the �rst section can be analyzed formally in these languages. Our analysis ofscope ambiguities in CU will be oversimpli�ed; we will come back to this in a laterchapter.Next, we state the contributions that this thesis makes to the research on theaforementioned constraint languages. Our �rst contribution is to show that theexpressive powers of CLLS and CU are equal; for every constraint in one language,there is a satis�ability equivalent constraint in the other language. An immediateconsequence of this result is that the complexities of CLLS and CU are the same;but at this time, neither of these is known. This makes our second contributioninteresting: We show that the satis�ability problem of dominance constraints, animportant sublanguage of CLLS, is NP-complete.1

2 CHAPTER 1. INTRODUCTIONFinally, we brie
y review two earlier approaches to scope underspeci�cation to putour work in a broader context.1.1 Underspeci�cation1.1.1 AmbiguitiesIt is a well-known fact that at all levels of linguistic analysis, ambiguities occur.The following is a (not at all exhaustive) list of possible sources of ambiguities.(1.1) a. Lexicon:Mary went to the bank.b. Syntactic attachment:John watched the man with a telescope.c. Coordination:Birds eat small worms and frogs.d. Quanti�er scope:Every man loves a woman.e. Interaction of anaphora and ellipsis:John likes his mother. Peter does, too.f. Discourse:I try to read a novel if I feel bored or I am unhappy.The sentence in Example (a) is ambiguous in the meaning of the word bank; itcan either mean a riverbank or a �nancial institution. In the syntactic analysis ofExample (b), there are two di�erent valid options where the PP with a telescopecan be attached: it can modify either the man, who in this reading is identi�ed asthe man who carries a telescope, or it can modify watched the man, in which caseit is a tool to watch the man. In Example (c), it could be only small frogs thatbirds eat, or it could be any kind of frogs; the ambiguity is in choosing what theconjunction coordinates. Example (d) is ambiguous between expressing that thereis one woman who is loved by all man, or that for each man, there is a woman heloves, but not everyone has to love the same one. In Example (e), it is ambiguouswho it is that Peter likes; it can be either his own mother or John's. Finally, thediscourse in (f) has two di�erent readings: Either the speaker tries to read a novelunder two di�erent conditions, or she is unhappy if she does not read a novel.

1.1. UNDERSPECIFICATION 3Traditionally, computational processing of sentences like these requires the enu-meration of all their readings. What makes this a challenge for natural languageprocessing is that the number of readings of an ambiguous sentence grows exponen-tially with the number of ambiguities. Consider the following well-known example.(1.2) A politician can fool most voters on most issues most of the time, but nopolitician can fool all voters on every single issue all of the time.Each of the two sentences in this example contains four quanti�ers, which meansthat each sentence admits 24 = 4! di�erent orderings of the quanti�ers. Thesentences can be disambiguated independently; so together, they have 576 = 4! �4! readings. Some of these readings may mean the same, but they will still bedistinguished in a traditional (say, �rst-order logic or DRT) analysis of the sentence.On the other hand, a human listener can process a sentence like this quite easily,perhaps without even being aware of its ambiguity. This suggests that we do nothave to enumerate all readings in order to understand an ambiguous sentence.1.1.2 Underspeci�cationThis exponential growth becomes particularly problematic when one does not onlywant to enumerate readings, but wants to do some work with the meaning of thesentence. This happens in virtually all applications of natural language processingin real-world systems; for example, one might want to infer more information fromthe natural-language input. Operations such as deduction are computationallyexpensive on single formulae; executing them on each of an exponential number ofthem in turn makes the task completely unfeasible. This is an additional motivationfor looking into ways of avoiding or delaying the enumeration of readings beyondthe cognitive intuition of the previous paragraph.One such way is underspeci�cation. The idea behind this approach is to representthe meaning of a sentence not as the set of its readings, but as a single, compactrepresentation from which the readings can be extracted if necessary. Since weoperate on only one semantic representation per sentence (as opposed to an expo-nential number if we enumerate all readings), this can be much more e�cient thanthe traditional enumerative treatment.In order to ensure an improvement in e�ciency, two immediate requirements mustbe met. First, while we are trying to delay the enumeration of readings for as long aspossible and hope to lose many spurious readings along the way, we may still wantto know the exact set of readings when all the expensive work has been done. Thismeans that it must be possible to derive the set of readings from the underspeci�ed

4 CHAPTER 1. INTRODUCTIONrepresentation with reasonably e�ciency. Second, it must be possible to derivean underspeci�ed representation from some other level of representation (e.g., anunderspeci�ed semantic representation from a syntactic analysis) e�ciently andsystematically.As an example that shows that underspeci�cation can work, consider the followingdeduction on semantic representations.(1.3) Every man loves a woman.John is a man.John loves a woman.The �rst premise of this argument is ambiguous, but we still �nd the argumentvalid without having to enumerate the readings of the premise. If we representevery line of the argument in an underspeci�ed way, we can say that there is arelation of underspeci�ed entailment between the premises and the conclusion ofthe argument, and we can de�ne direct deduction as deduction in a calculus thatrespects this entailment relation. There are some subtleties to be considered ina de�nition of underspeci�ed entailment (van Deemter 1996), but it can be done;there are sound and complete calculi of direct deduction.The focus of this thesis will be on formalisms for underspeci�ed semantics; moreprecisely, both formalisms we will compare can handle scope ambiguities as in Ex-ample (1.1d), and one of them (CLLS) can also describe strict/sloppy ambiguities(1.1e). But this is not the only area that underspeci�cation has been applied to; infact, people have given underspeci�ed accounts of all the other items in (1.1) as well.For example, Billot and Lang (1989) make use of so-called shared parse forests forthe compact representation of syntactic attachment ambiguities (b); Marcus et al.(1983) employ dominance constraints for an underspeci�ed, monotonic treatmentof various syntactic phenomena, including attachment and coordination (c). Anunderspeci�ed account of lexical ambiguities arising from polysemic words such asschool has been given by Bierwisch (1983); lexical ambiguities between unrelatedlexemes, such as in (a), can be treated, for example, in Jaspars's (1997) underspec-i�ed logic. Finally, Gardent and Webber (1998) give an underspeci�ed account ofdiscourse ambiguities such as (f).But of course, underspeci�cation has its limits. While some phenomena (such asdiscourse or attachment ambiguities) can be processed in an incremental, left-to-right fashion by adding to the underspeci�ed descriptions and leaving all choicesopen until they can be refuted, this approach can probably not be extended to,say, a parsing model that processes a sentence from left to right and does not makechoices about the types of words like that. This is not surprising, as there are

1.1. UNDERSPECIFICATION 5\garden-path" sentences where even human speakers commit to one reading of thepre�x of a sentence and have to backtrack later and choose another.The other extreme of making choices in the incremental processing of language isby defaults: Whenever a choice comes up, we make it immediately, and if it turnsout later that the choice was wrong, we backtrack and change it. This approach isespecially popular in a variant where this decision is guided by statistical data. Butit is not perfect, either; it makes deduction on partially analyzed texts nonmono-tonic, and it predicts garden-pathing for sentences where a human speaker doesn'tgarden-path. For example, Marcus et al. (1983) argue that we do not garden-pathin processing a sentence such as(1.4) I drove my aunt from Stuttgart's car.A parser that is based on defaults might commit early to attaching \my aunt" asthe direct object of the verb; only when \car" is encountered would such a parserrealize its mistake and backtrack to attach the aunt at a lower position in the tree.It seems reasonable to assume that the \psychological reality" of sentence process-ing is somewhere between these two extremes, and �nding the exact balance in acognitive model would be an interesting subject of research. However, this questionis way beyond the scope of this thesis, so let us agree for now that underspeci�ca-tion can be used to gain a computational advantage for a wide range of phenomenaand hence, is interesting to study.To conclude our brief overview of underspeci�cation in general, we illustrate thatone seemingly plausible way to represent semantic ambiguities in a single formula,namely writing down the disjunction of all readings, is not an appropriate rep-resentation. A major problem occurs when we try to analyze negated sentences.Normally, a negated sentence is analyzed simply as the negation of the analysisof the non-negated sentence. See what happens if we do this for a \disjunctive"analysis of a lexical ambiguity.(1.5) Mary goes to the bank.(1.6) Mary does not go to the bank.According to the systematic analysis of negations, the meaning of the sentence(1.6) should just be the negation of the sentence (1.5). But if we represent (1.5)disjunctively, for example as go(m; b1) _ go(m; b2)

6 CHAPTER 1. INTRODUCTION(where b1 and b2 stand for the two di�erent meanings of the word bank), this wouldpredict the meaning of (1.6) to be:(go(m; b1) _ go(m; b2)):However, the disjunctive representation of the intuitive meaning of (1.6) would be:go(m; b1) _ :go(m; b2);and these two formulae are not equivalent.The example of disjunction is a very nice illustration of why there should be aclean distinction between an object language (the language in which the di�erentreadings of the sentence will be represented) and the meta language, in which theunderspeci�ed representations are written. As we have just seen, using object-level disjunction for underspeci�cation runs into problems as soon as we want toanalyze negations. But disjunction on the meta-level, expressing something like\the sentence means R1 or the sentence means R2", does not have this problembecause it doesn't interact with OL negation. The approaches we are going to lookinto in this thesis distinguish very clearly between object-level and meta-level.But while meta-level disjunction allows the correct representation of the meaning,it is still not a compact representation, and hence, we would not necessarily callsuch a representation underspeci�ed. To make the distinction more explicit, it issometimes said that underspeci�cation aims for a non-disjunctive representationof the meaning of a sentence.1.1.3 Scope Underspeci�cationThe type of ambiguity that this thesis is primarily concerned with is the class ofscope ambiguities, as in Example (1.1d). Their name becomes clear when we lookat the logical representations of their meanings. The two formulae that correspondto the two readings of (1.1d) are(1.7) 8x:(man(x)! 9y:(woman(y) ^ love(x; y)))(1.8) 9y:(woman(y) ^ 8x:(man(x)! love(x; y)))If we regard the quanti�ers as �rmly connected to their restrictions { i.e., next tothe central love(x; y) subformula, we have two \fragments" 8x:(man(x) ! �) and9y:(woman(y)^�) {, the main di�erence between the two formulae is in the scopesof the quanti�ers. In the �rst reading, it is the universal quanti�er that has widescope; in the second, it is the existential one.

1.1. UNDERSPECIFICATION 7In general, not only quanti�ers can participate in scope ambiguities, but also otherscope-bearing objects such as negations and some verbs. For instance, the sentence(1.9) has two readings that are represented by the formulae (1.10) and (1.11).(1.9) Every boy does not go to the movies.(1.10) 8x:(boy(x)! :gtm(x))(1.11) :8x:(boy(x)! gtm(x))Early, enumerative approaches to scope ambiguities enumerated all readings of ascope ambiguity by traversing the syntax tree of the sentence and raising quantify-ing NPs above the sentence node; the order in which they were adjoined determinedthe relative scope of the quanti�ers they corresponded to. For example, the Cooperstorage (Cooper 1983) approach equipped each node of the syntax tree with a storefor NPs. The tree was traversed in a bottom-up fashion, and whenever an NP wasencountered, it was added to its mother's store. In this way, all NP semantics werecollected. Whenever an S node was encountered, NPs could be \discharged" byapplying the respective quanti�ers to the preliminary lambda terms that had beenconstructed so far. The choice where NPs were discharged was made nondetermin-istically.Over the past few years, several approaches to an underspeci�ed treatment of thisphenomenon have been proposed, the most prominent of which are Quasi Log-ical Form (QLF, Alshawi and Crouch 1992), Underspeci�ed DRT (Reyle 1993),Muskens's (1995) underspeci�ed semantics, Hole Semantics (Bos 1996), and Min-imal Recursion Semantics (MRS, Copestake et al. 1997). We will give a briefoverview over two of them (QLF and Hole Semantics) in Section 1.5.The key idea of most recent underspeci�ed accounts of scope ambiguities is to breakformulae into di�erent fragments (as we have done above) and impose constraints onthe way these fragments can be assembled to obtain the readings of the sentence.This will become clear in an example. Consider Figure 1.1, which displays thefragments that occur in the description of the meaning of (1.1d).Intuitively, this picture means that every formula which describes a reading of thesentence consists of three fragments: one containing a universal quanti�cation overmen x, one containing an existential quanti�cation over women y, and one express-ing that x loves y. The love subformula must be outscoped by both quanti�ers; butthere is no information on the relative scopes of the two quanti�ers. One possiblereading is for the universal quanti�er to outscope the existential one, correspondingto reading (1.7); the other is for the existential one to outscope the universal one,yielding reading (1.8).

8 CHAPTER 1. INTRODUCTION�8x �! �man �x � � 9y �^ �woman �y �love �x � y �
�

Figure 1.1: An underspeci�ed representation of the meaning of Example 1.1d.
This intuition can be modeled formally in di�erent ways. One is to allow \holes"in fragments and \plug" other fragments into these holes in such a way that givenscoping constraints are obeyed. This is the basic idea of formalisms such as UDRTand Hole Semantics; we will get back to it in Section 1.5.Another way of giving the graph a formal meaning relies on the close correspon-dence between trees and ground terms over ranked signatures (where each symbolis equipped with an arity). We will freely make use of this correspondence through-out the thesis. Once terms and formulae can be regarded as trees, sets of themcan be described as the solutions of formulae in a tree logic. This is the methodadopted in the approaches that we will be primarily concerned with in this thesis,namely, the Constraint Language on Lambda Structures (CLLS, Egg et al. 1998)and Context Uni�cation (CU, Niehren et al. 1997b). These formalisms will beintroduced in Sections 1.2 and 1.3 and de�ned formally in Chapter 2. The maintopic of the thesis will be to investigate their formal relation and complexity.CLLS and CU also capture the interaction of scope ambiguities with ellipses; inaddition, CLLS correctly models the interaction of ellipses with intra-sententialanaphora. We have already seen an example of the latter (so-called strict/sloppyambiguities) as Example 1.1d. The former is most obvious in so-called Hirschb�uhlersentences (Hirschb�uhler 1982):(1.12) Every man loves a woman. Several gorillas do, too.

1.2. CLLS 9In processing the ellipsis, the second (\target") sentence is expanded to Severalgorillas love a woman. This means that both the second and the �rst (\source")sentence contain a scope ambiguity, and if they could be resolved independently,the pair of sentences would have four di�erent readings. But the ellipsis enforcesa parallelism of the scopes of the NPs. So if every man has wide scope in the �rstsentence, several gorillas must have wide scope in the second sentence as well, andvice versa; the pair of sentences only has two readings.1.2 CLLSThe fundamental idea underlying both CLLS and, as we will see, context uni�ca-tion is to regard formulae as trees and impose tree constraints that describe them.These constraints are conjunctions of atomic formulae that can be built from asmall set of relation symbols with a �xed semantics; they can be satis�ed by trees,and we will say that they describe these trees. The variables that occur in CLLSformulae denote nodes of trees; every node of such a tree is labeled with a sym-bol from a given signature �, and the arity of the label determines the numberof children of this node. There are seven types of atomic constraints, the mostprimitive of which are labeling and dominance constraints. A labeling constraintX : f(X1; : : : ; Xn) is satis�ed if the node denoted by X is labeled with f , andits immediate children are the nodes denoted by X1; : : : ; Xn, from left to right.A dominance constraint X��Y is satis�ed if the node denoted by X dominates(not necessarily immediately) the one denoted by Y . To avoid confusion: Wetake \dominance" to be the re
exive, transitive closure of \immediate dominance"throughout the thesis.1.2.1 Scope ambiguities in CLLSTo give Figure 1.1 a formal meaning in CLLS, labeling and dominance constraintsare (almost) su�cient. We can simply construct a CLLS constraint ' that issatis�ed by exactly the same trees that the picture is supposed to describe. To thisend, we associate a CLLS variable with every node of the graph. Whenever a nodeX of the graph is labeled, say, with f and its immediate children are the nodesX1; : : : ; Xn, this is represented in ' as a conjunct X:f(X1; : : : ; Xn); whenever adotted line goes down from a node X to a node Y , ' will contain a conjunct X��Y .For example, we would represent Fig. 1.1 by the following constraint:

10 CHAPTER 1. INTRODUCTION(1.13) X0��X1 ^X0��X2^X1:8x(X3) ^X3:! (X4; X5) ^X4:man(X6) ^X6:x^X2:9y(X7) ^X7: ^ (X8; X9) ^X8:woman(X10) ^X10:y^X5��X11 ^X9��X11 ^X11:love(X12; X13) ^X12:x ^X13:yIn this way, we have reinterpreted solid lines in the graph as immediate dominanceconstraints and dotted lines as dominance constraints. If we add the additionalrestriction that all solutions of the constraint we have just constructed only use thematerial we have mentioned in the constraint, its solutions will be exactly thoseintended by the intuitive idea of the �gure. We will freely use these \constraintgraphs" instead of the constraints they represent for better readability. It is essen-tial to understand the di�erence between the nodes in the constraint graph and thenodes in a solution. While the former are a notational convenience and representthe variables of a CLLS constraint, the latter are part of the structures that satisfythese constraints and can be denoted by CLLS variables.We have glossed over one problem that is worth mentioning: Our treatment ofvariable binding is not adequate yet. Imagine a constraint graph that is like Fig.1.1, but in which all occurrences of y have been replaced by x { i.e., both quanti�ersbind x. When the corresponding constraint is solved, it will depend on the chosenscope relation of the quanti�ers which the actual binder of the variable occurrencesx in the love subformula will be. This is similar to the capturing problems of lambdacalculus; but the situation is even worse in that in lambda calculus, the problemcan be solved by consistent renaming of variables and their binders, whereas in ourexample, the variables do not even have a unique binder. This means it simplydoes not really make sense to talk about \binders"; binders must be unique.This is why CLLS takes resort to so-called lambda structures, trees that have beenequipped with an additional binding relation between nodes. Instead of modelingvariable binding by using variable names, we say that the node representing thebound variable and the node representing the binder are in the binding relation.This works not only for the �rst-order case we have considered so far, but also forencodings of arbitrary lambda terms. We will see in the next chapter how, exactly,this extension can be made.1.2.2 EllipsesLet us now look into the CLLS treatment of ellipses. In Chapter 2, we will showin more detail how their interaction with anaphora and scope ambiguities can behandled; for now, we will restrict ourselves to a simple example to show the basicidea.

1.3. CONTEXT UNIFICATION 11Consider the following simple ellipsis.(1.14) John sleeps. Mary does too.(1.15) sleep � Xsjohn � X1 � Xtmary � X2We have complete knowledge about the semantics Xs of the �rst sentence; it shouldbe simply sleep(john). All we know about the semantics Xt of the second sentencewithout resolving the ellipsis, however, is that it should contain mary somewhere.Finally,Xt should be almost the same as Xs; but where Xs contains john, Xt shouldcontain mary.More formally, we can completely describe the tree corresponding to the semanticsof the �rst sentence with labeling constraints, as in the left diagram in (1.15). Inaddition, we can partially describe the tree corresponding to the semantics of thesecond sentence with labeling and dominance constraints, as in the right diagram.But how do we express the parallelism requirement that relates the structures ofthe two trees?In CLLS, this is done with a so-called parallelism constraint, which in this caselooks like this: Xs=X1�Xt=X2:This formula means that the trees below the nodes denoted by Xs and Xt, re-spectively, must be the same, except for the trees below X1 and X2, which can bedi�erent. From a di�erent perspective, this means that the contexts of X1 and X2in the trees below Xs and Xt must be the same, but di�erent subtrees have beenplugged into these position on both sides. We already know the tree below X2, sowe have complete information about both trees.This works well for our simple example: The constraint we have constructed has aunique solution in which the semantics of the target sentence is determined to besleep(mary). To cover more interesting examples, the actual de�nition of parallelismconstraints is a bit more involved in order to take care of some subtleties, and wewill defer its detailed discussion to Chapter 2.1.3 Context Uni�cationAnother constraint language on trees that has been used for semantic underspeci-�cation is the language of context uni�cation (Niehren et al. 1997b), a variant of

12 CHAPTER 1. INTRODUCTIONPinkal's (1996) \radical underspeci�cation" approach. Although there are manyparallels between the analyses provided by CLLS and CU, most of them may notbe obvious at �rst sight, and there is a fundamental di�erence on the perspective ontrees the two formalisms take. We will discuss these points in Section 1.4. Contextuni�cation is an interesting formalism in its own right that has been investigatedin theoretical computer science; in addition, we will see that its investigation canprovide results about the complexity of solving CLLS constraints.1.3.1 Context constraintsLike CLLS, context uni�cation is a constraint language on trees. CU formulae {conjunctions of equations between certain terms { can be satis�ed by trees. UnlikeCLLS, however, variables denote trees instead of nodes (or, as in the term/treecorrespondence that we noted above, ground terms).The terms t that CU constraints can equate have the following form.t ::= f(t1; : : : ; tn) j x j C(t):In this de�nition, f is a tree constructor from the signature, x is a �rst-ordervariable that denotes a tree, and C is a so-called context variable. Context variablesdenote unary functions (called context functions) from trees to trees that inserttheir arguments into a �xed context { a tree with a hole, or alternatively, a treefrom which a complete subtree has been cut away (Fig. 1.2). We will write contextsas terms with exactly one occurrence of the symbol �, which represents the hole.
γ

σ

π

Figure 1.2: A context.A context constraint is satis�ed by a tree i� all of its variables can be mapped totrees and functions such that in every equation, the trees on the right-hand andleft-hand sides are the same. For example, (1.17) is the unique solution of thecontext constraint (1.16). This can be seen easily by checking each equation in theconstraint, from bottom to top.

1.3. CONTEXT UNIFICATION 13(1.16) x0 = C(b) ^ C(d) = f(a; C 0(a)) ^ C 0(e) = g(d; e)(1.17) x0 = f(a; g(b; a))C = f(a; g(�; a))C 0 = g(d; �)Again, we will say that a context constraint describes a tree if the tree satis�es theconstraint. Context uni�cation is the problem of solving context constraints.1.3.2 ExamplesWe will now take a look at how context constraints can be used as underspeci�edsemantic representations. To this end, we will reconsider the examples of thesection on CLLS and see how to treat them by context uni�cation. In general,the linguistic coverage of context uni�cation is the same as that of CLLS, exceptfor phenomena related to anaphora because these cannot be represented in CU.(In fact, we will show later that CU is formally equivalent to a slightly restrictedvariant of CLLS.)Recall the scope ambiguity Every man loves a woman, whose standard underspec-i�ed analysis was shown in Figure 1.1. We have seen in the previous section howthe trees corresponding to its �rst-order logics semantics can be described with aCLLS constraint. The same trees can be described by the following context con-straint.1 We write the partial trees in a term notation to make the structure of theconstraints more explicit. In a solution of the constraint, the variable x0 denotesthe entire tree corresponding to the semantics of the ambiguous sentence.(1.18) x0 = C1(8x(! (man(x); C3(love(x; y))))) ^x0 = C2(9y(^(woman(y); C4(love(x; y)))))A closer look reveals the similarity to the graph in Figure 1.1. The fragments ofthe formula are still present; and instead of \dotted edges", we have used contextvariables as a device to leave space open. In each of the two solutions we are lookingfor, two of the context variables will be instantiated with the quanti�er in the otherconstraint. The other two context variables will be instantiated with the \emptycontext" � (i.e., the context function that is the identity on trees). For example, x0is instantiated with the reading that assigns wide scope to the universal quanti�erif we instantiate the context variables as follows:1Actually, this context constraint has an additional solution that does not correspond to anylinguistic reading. For sake of simplicity, however, we will go with the given constraint for nowand �x things in Chapter 2.

14 CHAPTER 1. INTRODUCTION(1.19) C1 = C4 = �C2 = 8x(! (man(x); �))C3 = 9y(^(woman(y); �)).To see how context constraints can be used for the description of ellipses, we willreanalyze Example 1.14. In the CLLS analysis, the crucial step towards calculatingthe semantics of the target sentence was that we could express that the contextsof the parallel elements within the sentences had to be the same. In context uni-�cation, we can say this even more directly by introducing a context variable C,which will denote this common context.(1.20) John sleeps. Mary does too.(1.21) xs = sleep(john)xs = C(john) xt = C(mary)The idea underlying this analysis is exactly the same as in CLLS: First, the se-mantics of the source sentence is described precisely, and then the semantics of thetarget sentence is determined by imposing the constraint that mary must appearin it in the same context in which john appeared in the source sentence.Clearly, the CU analysis of ellipsis is similar to the HOU analysis of Dalrymple et al.(1991) (henceforth, DSP). But there are important di�erences. While the equalityof higher-order terms that DSP are interested in is modulo ��� equivalence, theequality considered in CU is simple equality of trees. One e�ect of this is thatCU has a much more direct handle on the actual structure of a term; this isimportant to express things like dominance or subtree relations. On the otherhand, it means that the DSP analysis of strict/sloppy ambiguities does not carryover to CU because it crucially relies on the use of nonlinear lambda terms that canignore arguments in beta reduction. (Context uni�cation does not allow nonlinearfunctions, anyway.)1.3.3 Computational aspectsConsidering the simple structure of context constraints, it is surprisingly di�cultto solve them. In fact, it is not even known if context uni�cation is decidable.However, it is known that the complexity of context uni�cation is between thatof string uni�cation and that of second-order uni�cation. Second-order uni�cation(Goldfarb 1981) is known to be undecidable; context uni�cation can be considereda slightly restricted form of this problem. On the other hand, string uni�cation

1.3. CONTEXT UNIFICATION 15(Makanin 1977), explained below, is known to be decidable, but the best knownalgorithm has a doubly exponential time complexity. There is a straightforwardencoding of string uni�cation problems as context uni�cation problems.String uni�cation is the problem of solving a conjunction of equations betweenstrings in which, beyond the usual characters from a given alphabet, string-valuedvariables can be used. A solution of such a problem is an assignment of groundstrings to variables such that all equations are satis�ed. To illustrate the highcomplexity of string uni�cation (and with that, of context uni�cation), we presenta simple example and invite the reader to �nd its solutions or prove unsatis�ability.In the example, x and y are variables, and a and b are symbols from the signature.(1.22) axxbyx = xayyxyEmbedding string uni�cation into context uni�cation is easy. For each characterin the SU alphabet, we have one unary constructor in the CU signature; in ad-dition, we have one nullary constructor � in the signature to terminate the stringequivalents. Trees from this signature can be read as strings from the root tothe single terminal node; in this way, context variables correspond immediately tostring variables. The above example, written as a context constraint, would looklike this:(1.23) a(C(C(b(D(C(�)))))) = C(a(D(D(C(D(�))))))While the decidability of full context uni�cation is an open problem that is beingactively investigated, there are several known decidable fragments. L�evy (1996)restricts the full language such that every variable may only occur twice to obtaindecidability. Maybe the most powerful known decidable fragment is the so-calledstrati�ed uni�cation (Schmidt-Schau� 1994). But none of these contain the frag-ment that seems to be needed for the linguistic application.A typical (not necessarily terminating) complete solution procedure for contextconstraints is the one given in (Niehren et al. 1997a, Appendix B). It attemptsto infer a contradiction or specify a solution by nondeterministic application ofrewrite rules. In its raw form, this procedure su�ers from massive overgenerationand enormous runtimes. This can be remedied by introducing an object-languagetyping system and removing some of the most problematically nondeterministicrules (Koller 1998). These two changes make the procedure incomplete { somesolutions of a constraint will not be found {, but the linguistically relevant examplesare still found, and performance becomes acceptable. They will be explained inmore detail in Chapter 4.

16 CHAPTER 1. INTRODUCTION1.4 Contributions of this thesisIn this thesis, we make two contributions to the research on CLLS and contextuni�cation:1. We show that for every context constraint, there is an satis�ability equivalentconstraint of CLLS0, a slightly restricted sublanguage, and vice versa.2. We show that the satis�ability problem of the language of dominance (andlabeling) constraints is NP-complete. This result stays true (with one minorrestriction) if we allow the use of the other propositional connectives.Both results were obtained in cooperation with Joachim Niehren. They have beenpublished as (Niehren and Koller 1998) and (Koller et al. 1998).There are several good reasons for a closer examination of the formal relation be-tween CLLS and context uni�cation as underspeci�cation formalisms. First of all,while they are both tree logics, their perspectives on trees are di�erent. In theterminology of Blackburn et al. (1995), the perspective of CLLS, whose variablesdenote nodes of trees, is \internal", while that of context constraints, whose vari-ables stand for trees, is \external". Relating the two logics means relating the twoperspectives.At the same time, if we can show the equivalence of these formalisms and have anykind of information on the complexity of solving constraints on one side, we knowimmediately that the complexity of solving the constraints on the other side mustbe the same.Finally, such a consideration is particularly relevant with respect to the projectin whose context this research stands. This project, CHORUS, is a subprojectof the DFG-funded Sonderforschungsbereich 378 \Ressourcenadaptive kognitiveProzesse" (\ressource-adaptive cognitive processes"). Its general goal is under-speci�ed semantic representation, with a focus on not only achieving good lin-guistic coverage, but also keeping the various operations (disambiguation, directdeduction) computationally feasible. Context uni�cation, which had been the un-derspeci�cation formalism of choice in the project in 1997, was replaced by CLLStowards the end of that year for various reasons that we will explain in Chapter 2.The equivalence result between CLLS and context uni�cation both justi�es to takeover old analyses and contributes to an a posteriori justi�cation of some of the CUanalyses based on the CLLS analyses.The �rst contribution of this thesis is to show that CLLS0, the sublanguage ofCLLS that only allows labeling, dominance, and parallelism constraints, is equiv-

1.4. CONTRIBUTIONS OF THIS THESIS 17alent to context constraints. It is possible to encode CLLS0 constraints as contextconstraints, and vice versa, in such a way that both sides are satis�ed by exactlythe same trees.This is not obvious. Fortunately, a major part of the proof can be reduced to theequivalence of context constraints and so-called equality up-to constraints, whichwas shown by Niehren et al. (1997a). In addition, there is an apparent similar-ity between dominance constraints and subtree constraints (Venkatamaran 1987),which can be written as context constraints in a straightforward manner. But theobvious idea of encoding dominance as a subtree relation is wrong, as the followingexample shows.(1.24) X : f(X1; X2) ^X1��Y ^X2��Y(1.25) x=f(x1; x2) ^ y�x1 ^ y�x2Example (1.24), a dominance constraint in which the variables denote nodes in atree, is unsatis�able. X1 and X2 are nodes in disjoint positions of a tree, so therecan't be any node Y that they both dominate. This is illustrated in Figure 1.3.f � X� X1 � X2� YFigure 1.3: Constraint graph of (1.24).In contrast, (1.25), a subtree constraint in which the variables denote trees, issatis�able. A constraint x�y only requires that the tree denoted by x is a subtreeof that denoted by y, which is a much less strict condition than dominance ofnodes. For example, one way to solve (1.25) is to assign x = f(a; a) and x1 =x2 = y = a. (As it happens, this is exactly the reason why the CU analysis of thescope ambiguity in Example 1.18 is not entirely correct, as we will see later.) Thisshows that a naive encoding of dominance constraints as subtree constraints doesnot preserve satis�ability. The fundamental problem is that subtree constraints donot allow us to identify di�erent occurrences of subtrees: As we have just seen,the subtree constraint above doesn't care that the subtree denoted by y appears indi�erent places of the tree in di�erent conjuncts. On the other hand, we can easilyidentify an occurrence of a subtree with a dominance constraint by specifying itsroot node.

18 CHAPTER 1. INTRODUCTIONWe have called the idea we employ in our construction in Chapter 3 `nodes ascontexts' (as opposed to the `nodes as subtrees' approach in Example 1.24). Thisidea relies on the identi�cations of a context with the path from its root to its holeand of a node with the path leading to it from the root of the tree. If a dominanceconstraint is satis�ed by a tree �, we �x a tree variable > whose purpose it isto denote the entire tree �. Then we introduce for each node variable in thedominance constraint a tree variable denoting the tree below the node (as above)and a context variable denoting the context of the node within �. All of this canbe enforced by context constraints. Finally, we recast every single dominance orlabeling constraint as a context constraint. For example, dominance of nodes nowsimply means that the context associated with the upper node is a subcontext ofthat of the lower one. A detailed discussion of our encoding, along with a proof ofits correctness, will follow in Chapter 3.This equivalence in expressive power yields the immediate corollary that the com-plexity of the satis�ability problem of CLLS0 constraints is the same as that ofcontext uni�cation; but we have seen above that the latter is unknown. A frag-ment about whose complexity we can say something, however { and this is thesecond contribution of the thesis {, is the language of dominance (and labeling)constraints (and various fragments of its full �rst-order language). Dominance con-straints are not only a crucial fragment of full CLLS (as we have seen, they are thefundament of the CLLS treatment of scope ambiguities), but also an interestingand widely used constraint language in their own right (for other linguistic appli-cations, see e.g. Marcus et al. 1983, Vijay-Shanker 1992, Gardent and Webber1998).Previous research on dominance constraints includes a �rst-order axiomatizationby Backofen et al. (1995). In a situation where all trees can be enumerated (for in-stance, �nite trees over a �nite or countable signature), steps in a derivation fromthe axiomatization (which will eventually prove validity if the formula is valid)and enumeration of trees and checking if the formula is satis�ed by them (whichwill eventually �nd a counterexample if one exists) can be interleaved to obtain adecision procedure for validity of �rst-order dominance constraints (Backofen, per-sonal communication). In addition, Rogers and Vijay-Shanker (1994) have givena sound and complete calculus that derives so-called quasi-trees from (conjunc-tive) dominance constraints, from which tree structures solving the constraints canbe extracted straightforwardly. The actual complexity of any language over thedominance constraints, however, has been unclear.In this thesis, it is shown that the satis�ability problems of all languages of domi-nance constraints between the purely conjunctive constraint language (as presentedabove) and the existential fragment over the dominance constraints (including

1.5. PREVIOUS APPROACHES TO UNDERSPECIFIED SEMANTICS 19all propositional connectives) are NP-complete. An additional complexity result,which has been published in (Koller et al. 1998) as well, is that the �rst-ordertheory of dominance constraints has non-elementary complexity.1.5 Previous approaches to underspeci�ed se-manticsTo conclude our introduction and put the two main approaches to be consideredinto a broader context, we now give a brief and informal overview over earlierapproaches to an underspeci�ed treatment of scope ambiguities. From the widevariety of formalisms that we have listed above, the two we pick for a closer lookare Quasi Logical Form and Hole Semantics. The former is of seminal importancefor the �eld and has a broad coverage of linguistic phenomena. The latter isrepresentative of a family of underspeci�cation formalisms that is probably themost in
uential at this time. The most popular member of this family is UDRT(Reyle 1993; Schiehlen 1997), but Hole Semantics is much more accessible, and itsbasic ideas are essentially the same.1.5.1 Quasi Logical FormQLF (Alshawi and Crouch 1992) was the �rst formalism for semantic underspeci-�cation that was implemented and used for real-world applications. It was contin-ually developed over several years and developed further to meet the demands of agrowing linguistic coverage. The original syntax looks rather intimidating. There-fore, we have adopted a heavily simpli�ed version for our exposition here. For theoriginal, we refer the reader to (Alshawi et al. 1992), a comprehensive summary ofQLF and its applications.The underlying idea of the formalism is to provide an underspeci�ed representationof quanti�er raising. In a QLF representing a sentence, the terms representing NPsare arguments of the VPs whose syntactic arguments they are. Each of themis identi�ed by a unique index, and di�erent scope relations can be representedby specifying an order on indices in special scoping lists. In an unresolved QLF,these lists are unspeci�ed; they are represented as uninstantiated variables. Toensure that logical formulae can be derived from fully resolved QLFs, there isthe constraint that for every index, the term it identi�es must appear inside thescoping list that contains the index. Disambiguation means instantiation of thescoping lists.

20 CHAPTER 1. INTRODUCTIONBy way of example, consider the (heavily simpli�ed) QLF representation of thescope ambiguity in Example 1.1d, repeated here as (1.26).(1.26) Every man loves a woman.(1.27) _s:love(term(+m, 8, �X:man(X)),term(+w, 9, �Y:woman(Y)))In the QLF, we �nd the two NPs represented as two terms that are arguments oftheir syntactic mother, the love VP. Each term has a unique index, given as its�rst argument; for the NP quantifying over men, it is +m, for the one quantifyingover women, it is +w. The type of quanti�er (e.g. universal or existential) is storedas the second argument; and the restriction of the quanti�er (i.e. the �rst syntacticargument, or alternatively, the antecedent of the implication under the universalquanti�er or the �rst conjunct under the existential quanti�er) is placed in thethird argument.The love formula is pre�xed with a scoping list that is, at this point, unspeci-�ed and represented by the variable _s. Due to the free-variable constraint wementioned above, any fully resolved QLF that can be derived from (1.27) mustinstantiate _s with a list that contains both +w and +m. This can be done in eitherorder, yielding the two readings (1.28) and (1.30) below.(1.28) [+m,+w]:love(term(+m, 8, �X:man(X)),term(+w, 9, �Y:woman(Y)))(1.29) 8x:man(x)! 9y:(woman(y) ^ love(x; y))(1.30) [+w,+m]:love(term(+m, 8, �X:man(X)),term(+w, 9, �Y:woman(Y)))(1.31) 9y:woman(y) ^ 8x:(man(x)! love(x; y))It is possible to treat various cases of ellipsis (including the interaction of VPellipses with anaphora and scope ambiguities) in QLF (see, for example, Crouch1995). For instance, if we continue the above scope ambiguity with (1.32) to obtaina Hirschb�uhler sentence, we would in a �rst step note the meaning of the targetparallel element several gorillas as in (1.33). For our analysis of the target sentence,we stipulate a generalized quanti�er several with the correct semantics.(1.32) Several gorillas do, too.

1.5. PREVIOUS APPROACHES TO UNDERSPECIFIED SEMANTICS 21(1.33) term(+g, several, �Z:gorilla(Z))To compute the meaning of the target sentence, we have to �nd a contextuallysalient antecedent for it; in this case, this will be (1.26). We can then extract asubstitution that maps the QLF of the source parallel element to that of the targetparallel element. In this case, this is(1.34) [term(+g, several, �Z:gorilla(Z)) / term(+m, 8, �X:man(X)), +g/+m]This substitution, applied to the semantics of the source sentence, will produce thesemantics of the target sentence. To ensure the correct treatment of Hirschb�uhlersentences, the actual application of the substitution is delayed until the scoperelations in the source sentence are fully resolved. Application of the substitutionwill then not only replace the parallel quanti�ers themselves, but will also insertthe index of the target parallel element for that of the source parallel element inthe scoping list. In this way, the scope parallelism of the sentences is enforced.The evolutionary, application-oriented development of QLF has the positive e�ectof leading to a very wide coverage of linguistic phenomena. But the downsideof this is that some aspects of QLF are patchwork needed to make things work,instead of consequences of an overall vision. One particular inconvenience is thatunlike most modern approaches to underspeci�cation, QLF does not provide a cleanseparation between object and meta language; elements of both are distributed allover an underspeci�ed representation. This makes the task of designing a calculusfor direct deduction even more di�cult than it inherently is.1.5.2 Hole SemanticsHole Semantics was developed by Bos (1996) and is a general framework for cre-ating an underspeci�ed representation language from a non-underspeci�ed objectlanguage. Bos himself applies it to predicate logic and DRT; his \DRT unplugged"essentially agrees with UDRT, with which it shares the underlying perspective onscope ambiguities.Hole Semantics is based on underspeci�cation pictures such as Figure 1.1, whichwe repeat below as Fig. 1.4 in a slightly adjusted format, but gives it a di�erenttechnical interpretation than CLLS. Formulae occurring in the nodes of such anunderspeci�ed representation (UR) are taken from the object language; but anysubformula can be replaced by a so-called hole (h0; h1; h2 in the picture). Thefunction of holes is that other formulae can be plugged into them to obtain a larger

22 CHAPTER 1. INTRODUCTIONformula. The lines in the graph are drawn from holes to formulae, and they expressthat the formulae must be subformulae of the formulae into whose holes they willbe plugged. To take care of problems that can arise when the same formula occursmore than once in the graph, each fragment is given a unique identity, its label(l1; l2; l3 in the picture). The graph can be represented as an upper semilatticespecifying a partial order on holes and labels, and disambiguation means to makethis order more speci�c.The object-language formulae a UR represents can be obtained from so-called ad-missible pluggings. A plugging is a bijection between holes and labels, and it iscalled admissible if it agrees with the partial order on labels and holes. An admis-sible plugging P induces a object-language formulae by starting at the (unique)top formula of the UR and subsequently replacing holes h by formulae P (h).� h0l1 : 8x �! �man �x � � h1 l2 : 9y �^ �woman �y �l3 : love �x � y �
� h2

Figure 1.4: A scope ambiguity in Hole Semantics.To see an example for such a plugging, we have equipped Fig. 1.1 with explicitholes and labels in Fig. 1.4. The UR presented in this picture has exactly twoadmissible pluggings. They are shown as (1.35) and (1.37), along with the predicatelogic formulae they induce.(1.35) fh0 = l1; h1 = l2; h2 = l3g(1.36) 8x:man(x)! 9y:(woman(y) ^ love(x; y))(1.37) fh0 = l2; h2 = l1; h1 = l3g(1.38) 9y:woman(y) ^ 8x:(man(x)! love(x; y))Hole Semantics also describes a simple way to obtain an underspeci�ed model-theoretic semantics for underspeci�ed representations from a semantics for the

1.5. PREVIOUS APPROACHES TO UNDERSPECIFIED SEMANTICS 23original object language: For every admissible plugging of a UR, it contains the(object-language) denotation of the induced formula. In itself, it does not say any-thing about the treatment of ellipses or about direct deduction. However, closerelatives of Hole Semantics have been the subject of some research on direct de-duction. For example, Reyle (1993) presents a sound and complete calculus forUDRT, and K�onig and Reyle (1996) present another generalized underspeci�edlogic that can be parameterized with an object language and provides a calculusof direct deduction.The striking similarity of the graphical devices used to make CLLS and Hole Se-mantics representations more transparent suggests a formal connection betweenthe technical methods of representation. Indeed, it is quite easy to encode everyUR of Hole Semantics as a CLLS constraint. All we have to do is fully describethe fragments that constitute the UR with labeling constraints and then to refor-mulate the partial order on the holes and labels with corresponding dominanceconstraints. There is one subtlety, however: We must make sure that in a solutionof the dominance constraint, fragments are not identi�ed with each other. Thiscan be done easily with inequality constraints that state that the nodes denotedby two variables must be di�erent.

24 CHAPTER 1. INTRODUCTIONPlan of the thesisIn Chapter 2, we start o� with a formal de�nition of the syntax and semanticsof context uni�cation and CLLS. Then we prove some basic results about thetwo languages; in particular, that we can allow CU formulae to contain equationsbetween context-valued terms without changing the expressive power. We alsoshow how to formalize some linguistic examples in both approaches.In Chapter 3, we prove the formal equivalence between context uni�cation andCLLS0, the sublanguage of CLLS built up only from labeling, dominance, andparallelism constraints. More precisely, we present encodings of CU into CLLS0and vice versa such that both the original formula and its encoding are satis�edby exactly the same trees. The most interesting part of the proof is to show howto encode dominance constraints as context constraints.In Chapter 4, we investigate the complexity of the satis�ability problem of dom-inance constraints. We present an algorithm that decides this problem and showthat it is sound and complete and terminates in NP time. We also show how thisalgorithm can be extended to decide the satis�ability problems of larger logicallanguages over the dominance constraints without an increase in worst-case com-plexity. Next, we underpin this result by a proof of the NP-completeness of thesatis�ability problem; so we cannot expect to �nd a faster algorithm for the fullproblem. To this end, we show how to encode formulae of propositional logic as sat-isfaction equivalent dominance constraints. Finally, we sketch an implementationof the solution algorithm and some recent results about the complexity of the �rst-order theory of dominance constraints, which is decidable and has non-elementarycomplexity.In Chapter 5, we summarize the work reported in the thesis and present directionsfor further work. In particular, we will discuss requirements for a formal theory ofunderspeci�ed beta reduction on CLLS constraints.

Chapter 2CLLS and Context Uni�cation
In this chapter, we give a formal de�nition of the syntax and semantics of the twoconstraint languages for semantic underspeci�cation we will be looking into. Weprove some basic results about trees and contexts and look into some additionalexamples of applying the two formalisms for linguistic analyses.In the �rst section, we de�ne CLLS. First, we de�ne trees (in a fairly standardway) and tree structures; tree structures are trees with an additional interpretationfunction that interprets certain predicate symbols over the nodes of the tree. Wethen extend this de�nition to lambda structures { tree structures with an additionalbinding function. Lambda structures can be used to model lambda terms in a tree-like fashion. Based on these de�nitions, it is straightforward to de�ne the syntaxand semantics of CLLS.A particularly interesting sublanguage of CLLS is the language of dominance (andlabeling) constraints. Dominance constraints are a common formalism in compu-tational linguistics, but the traditional variant of dominance constraints is di�erentfrom ours. We investigate the relation between these two types of dominance con-straints in Section 2.1.5, thus concluding the �rst section of this chapter.In Section 2.2, we then look into the linguistic application of CLLS in some moredetail. We see how the �ve-readings benchmark scope ambiguity Every researcherof a company saw most samples can be successfully analyzed in CLLS, and wedemonstrate how to use CLLS for an analysis of Hirschb�uhler sentences.Finally, we give a formal de�nition of context constraints, the language underlyingcontext uni�cation. This language is based on equations between terms that denotetrees; these equations can make reference to so-called context variables, whichdenote functions that insert trees in �xed contexts. We extend the language to allow25

26 CHAPTER 2. CLLS AND CONTEXT UNIFICATIONequations between context-valued terms and prove that these equations can beexpressed in the original language of context constraints. As a further illustrationof the linguistic application of CU, we give a correct analysis of scope ambiguitiesin CU.We only introduce the core language of CLLS and don't go into various extensionsthat are irrelevant for our exposition and don't make a di�erence to complexityissues. One extension is to add anaphoric links (Egg et al. 1998) to lambda struc-tures and corresponding constraints to specify them. These links can be used tomodel intrasentential anaphora and interact appropriately with parallelism con-straints for a correct treatment of strict/sloppy ambiguities. Another extension isto add a relation of binding equivalence (Egg et al. 1999) to lambda structures,which can be used to soften the de�nition of parallelism constraints. In its simplestform (which we will adopt here), this is just the identity relation on nodes. Egget al. (1999) show how it can be changed to solve problems that arise in the contextof antecedent-contained deletion, a special case of VP ellipsis.2.1 Syntax and Semantics of CLLSCLLS is a constraint language that is interpreted over lambda structures, tree-like encodings of terms of lambda calculus. Lambda structures are based on treestructures, formalizations of trees that also interpret several predicate symbols.Variables in a CLLS formula denote nodes of a lambda structure. The syntax ofCLLS is de�ned in the usual way as the language of conjunctions over applicationsof these predicate symbols.Below, we will �rst de�ne tree structures. We will then extend this de�nition toa de�nition of lambda structures and explain the correspondence between lambdastructures and lambda terms. Finally, we de�ne the syntax and semantics of CLLSconstraints, which will be straightforward given the groundwork of the �rst twosubsections.2.1.1 Tree structuresThroughout the thesis, we assume that � is a ranked signature that contains func-tion symbols or tree constructors f; g; a; b; : : : , which are assigned arities by anarity function ar : � ! N0 . (We take N to be the set of positive integers and N0to be the set of nonnegative integers.) We further assume that � contains at leasttwo constructors, one of which is nullary. This is a minor restriction because the

2.1. SYNTAX AND SEMANTICS OF CLLS 27resulting logics become rather boring if there is only one possible �nite tree, ornone at all. In some cases, we will further restrict � to be �nite, or to containsymbols of certain arities; but whenever we do, we will say this explicitly.Following Courcelle (1983), we de�ne a tree domain � to be a nonempty pre�xed-closed subset of N� ; i.e., the elements of � are words of positive integers. Thesewords can be thought of as the paths from the root of a tree to its nodes. We writethe concatenation of two words � and �0 as � � �0; whenever convenient, we leavethe concatenation dot away and simply write ��0.We de�ne a constructor tree to be a function� : �! �with the additional property that for every � 2 �, if ar(�(�)) = n, then �1; : : : ; �nare in �, but no �k is, for any k > n. A �nite constructor tree is a constructortree whose domain is �nite.Throughout the thesis, we will always mean \�nite constructor tree" whenever wesay \tree".Clearly, trees can be seen as ground terms over �, and we will frequently writethem as such. The domain of a tree can be seen as the set of its nodes, and we willwrite it as Dom(�). We write �:�# to mean that � is in the domain of �.Paths can select subtrees of a tree. Whenever � is a tree and � is a path in Dom(�),we de�ne the selected subtree �:� as the function�:� : f�0 j �:(��0)#g ! �(�:�)(�0) = �(��0):�:� is unde�ned if � is not in the domain of �.The following \bottom-up" relation about selection is true:Proposition 2.1. If � is a tree, � is a path such that �(�) = f , and n = ar(f),then �:� = f(�:(�1); : : : ; �:(�n)):The tree structure M� over the tree � is a pair (�; I), where I is an interpretationfunction that assigns relations on Dom(�) to a set of �xed predicate symbols. Wewill use the same symbols for these relations and the predicate symbols; as theformer are applied to paths and the latter are applied to CLLS variables, thereis no danger of confusion. I will be fully determined by �; so to specify a treestructure, it is su�cient to specify the underlying tree.

28 CHAPTER 2. CLLS AND CONTEXT UNIFICATIONWe now de�ne the relations assigned to the predicate symbols by I. If f 2 �has arity n, the labeling relation �:f(�1; : : : ; �n) is true i� �(�) = f and for all1 � i � n, �i = �i. The dominance relation ����0 is true i� � is a pre�x of �0.The inequality relation � 6= �0 is true i� � and �0 are di�erent.Finally, there are two relations that are slightly more complex. The similarityrelation � � �0 is true i� �:� = �:�0. The parallelism relation �1=�01��2=�02 holdsi� 1. there is a common \exception path" �0, i.e. �01 = �1�0 and �02 = �2�0;2. Dom(�:�1)� �0 �Dom(�:�01) = Dom(�:�2)� �0 �Dom(�:�02);3. for all �0 of which �0 is not a pre�x, �(�1�0) = �(�2�0).Intuitively, this means that except for the subtrees below �01 and �02, the subtreesbelow �1 and �2 are structurally the same. The region between �1 and �01 (whosedomain is speci�ed in the second condition) is called a context ; it is essentially atree that lacks one leaf. We will say more about contexts in Section 2.3.1.2.1.2 Lambda structuresLambda structures are tree structures that are extended by a notion of variablebinding. To model this, we assume from now on that � contains the nullaryconstructor var and the unary constructor lam.A lambda structure L is a triple (�; �; I), where � is a tree, I is an extendedinterpretation function, and � : Dom(�) Dom(�) is the partial binding function.� must obey the following conditions:1. binding only holds between variables and �-binders:8�8�0:�L(�) = �0) (�:var ^ 9�00 �0:lam(�00))2. every variable has a binder:8�:�:var) 9�0 �L(�) = �03. variables are dominated by their binders:8�8�0:�L(�) = �0) �0���The interpretation function I interprets all predicate symbols that the interpre-tation function of a tree structure does, plus the predicate symbol �(�) = � . I

2.1. SYNTAX AND SEMANTICS OF CLLS 29assigns to most predicate symbols the same relations that the interpretation func-tion of a tree structure would; below, we only discuss the interpretation of thebinding relation (which is not de�ned in tree structures) and of the similarity andparallelism relations (whose de�nitions change).We de�ne the binding relation �(�) = �0 to be true i� the application �(�) isde�ned and equal to �0. We impose an additional restriction on the similarityrelation:1. within the trees, binding is structurally isomorphic:8�8�0 �:(�1�)# ^ �:(�1�0)#) (�(�1�)=�1�0 , �(�2�)=�2�0)2. two variables in identical positions within the trees and bound outside thetrees must be bound by the same binders:8�8�08�00 (� < �1 ^ �0 < �2 ^ :�0��00 ^ �:(�1�00)# ^ �(�1�00)=� ^�(�2�00)=�0)) � = �0:The same restrictions, plus an additional condition about so-called \hangingbinders" (binding nodes within a context that bind variables below the exceptionpath), also apply to the parallelism relation �1=�01��2=�02:1. within the contexts, binding is structurally isomorphic:8�8�0 :�0�� ^ �:(�1�)# ^ :�0��0 ^ �:(�1�0)#) (�(�1�)=�1�0 ,�(�2�)=�2�0)2. two variables in identical positions within their context and bound outsidetheir context must be bound by the same binders:8�8�08�00 (� < �1 ^ �0 < �2 ^ :�0��00 ^ �:(�1�00)# ^ �(�1�00)=� ^�(�2�00)=�0)) � = �0:3. there are no `hanging' binders, i.e., var nodes below the exception positionsare not bound by lam nodes inside the contexts:8�8�0 :(�1 � � < �01 � �0 ^ �(�0)=�)We can draw a lambda structure L by �rst drawing the tree that corresponds to thetree structure M�, and then drawing dashed arrows from the bound nodes to thebinding nodes in the binding relation. For example, the following picture displaysthe lambda structure that is de�ned by the tree lam(@(@(f; var); lam(@(h; var))))and the binding function that maps the node 112 to the node �, and the node 1212to the node 12:

30 CHAPTER 2. CLLS AND CONTEXT UNIFICATION(2.1) lam �@ �@ �f � var � lam �@ �h � var �
2.1.3 Syntax and semantics of CLLSWith these de�nitions, it is straightforward to de�ne the syntax and semantics ofCLLS constraints. Assuming a set of variables X; Y; : : : , an atomic formula (oratomic constraint) '0 of CLLS is one of the following applications of predicatesymbols to variables:'0 ::= X:f(X1; : : : ; Xn) f 2 �, n = ar(f)j X��Yj X 6=Yj X � Yj X=X 0�Y=Y 0j �(X)=Y:We take the language CLLS of constraints over these atomic formulae to be the lan-guage of conjunctions of atomic formulae. The language of dominance constraintsis the sublanguage of CLLS that only uses labeling and dominance constraints.CLLS0 is the sublanguage of CLLS that does not contain binding constraints. Wewill mainly be interested in the constraint languages, but occasionally, we will alsoconsider larger logical languages over them, for example the positive existentialfragment (built up with all propositional connectives and positive occurrences ofexistential quanti�ers) or the full �rst-order language, in which quanti�ers (overnodes) can be used anywhere.Satisfaction of an atomic constraint '0 is de�ned with respect to a pair (L; �) of alambda structure L = (�; �; I) and a variable assignment � : Var ! Dom(�) thatassigns nodes to the variables. The atomic constraint R(X1; : : : ; Xk) (where R isone of :f , ��, etc.) is satis�ed by this pair i� (�(X1); : : : ; �(Xk)) 2 I(R). This isextended to satisfaction of arbitrary formulae in the usual Tarskian way. If a pair(L; �) satis�es ', we also say that ' describes L.For fragments of CLLS that do not contain binding constraints (such as dominanceconstraints or CLLS0), it makes no di�erence if we interpret its formulae over

2.1. SYNTAX AND SEMANTICS OF CLLS 31lambda structures or over tree structures. Therefore, we will only consider the(simpler) interpretations over tree structures in later chapters.Because CLLS constraints can easily become unreadable, we will frequently useconstraint graphs as a graphical device to represent constraints. They are essen-tially an alternative to the original syntax of the language. Constraint graphs aredirected graphs with three kinds of edges: solid edges, used to represent immedi-ate dominance, dotted edges, used to represent arbitrary dominance, and dashedarrows, used to represent binding constraints.The nodes of a constraint graph represent variables of a constraint. Whenever anode of the graph is labeled with a constructor f 2 � of arity n, it must haveexactly n children via solid edges. This con�guration corresponds to a labelingconstraint of the variables corresponding to the nodes. Dotted edges correspond toa dominance constraint of the corresponding variables. And �nally, dashed arrowscorrespond to binding constraints. The other types of atomic constraints cannoteasily be represented in a constraint graph.For example, consider the constraint graph (2.2). It represents the constraint (2.3).(2.2) lam � X1� X2f � X3var � X4 � X5(2.3) X1:lam(X2) ^X2��X3 ^X3:f(X4; X5) ^X4:var ^ �(X4) = X1.Although their pictures look very similar, it is essential not to confuse constraintgraphs with lambda structures. The nodes in a constraint graph stand for variablesin a constraint, and the edges stand for atomic constraints; the nodes in a lambdastructure can be denoted by the variables in a constraint, and the edges are anactual part of the tree. Where constraint graphs are an alternative representationof the syntax of CLLS, lambda structures are objects of its semantics.Note that we have only de�ned one direction of the relation between constraintsand constraint graphs; we have shown how to read a constraint o� of a graph. Itis more di�cult to de�ne the converse relation. Fortunately, we can do without inthis thesis, but we will take a closer look at the problem in the conclusion.

32 CHAPTER 2. CLLS AND CONTEXT UNIFICATION2.1.4 Lambda structures and lambda termsThe relevance of lambda structures and CLLS as the corresponding tree logic isthat we can encode terms of the lambda calculus as lambda structures and talkabout them in terms of trees and nodes. We have seen in the introduction thatthere is an inherent danger in such a tree-like treatment of lambda terms (or moregenerally, any kind of logical formalism that allows to bind variables) that it couldbecome unclear which binder a variable is bound by. Lambda structures solve thisproblem: CLLS does not rely on variable names to determine binding, it relates thebinder and the variable directly. The dashed arrows in a constraint graph can bethought of as \rubber bands"; no matter how much material is interposed betweenthe variable and its binder, the link won't break.The precise relation between lambda structures and lambda terms is that a lambdastructure corresponds uniquely to a class of lambda terms modulo � equivalence.If we assume without loss of generality that all lambda terms are unary and ignorevariable binding in a lambda term for the moment, each such term has a straight-forward tree structure: For every lambda termM , we can obtain the correspondingtree as M y, according to the following de�nition of (�)y:xy = var (x is a variable)f y = f (f 2 �)(M(N))y = M y@N y(�x:M)y = lam(M y):We make use of the symbol @, which is a special binary constructor that we writein left-associative in�x notation.Variable binding can be modeled by requiring that every node that is labeledwith var is in the binding relation to the lam node representing its binder. Thecorrespondence can be reversed by picking a new variable name for each lam nodeand naming all nodes that it binds appropriately.As an example, the lambda term in (2.4) can be represented as the lambda structurein (2.5), and so can any other lambda term to which it is � equivalent.(2.4) �x:f(x)(�x:h(x))(2.5) lam �@ �@ �f � var � lam �@ �h � var �

2.1. SYNTAX AND SEMANTICS OF CLLS 332.1.5 Relation to Dominance Constraints with PrecedenceDominance constraints are an important sublanguage of CLLS. They are alsowidely used throughout computational linguistics. But the variant of dominanceconstraints that is traditionally used by linguists (e.g. Marcus et al. 1983; Backofenet al. 1995) is slightly di�erent than ours. First of all, they consider a di�erent classof trees, where the label of a node does not determine the number of its children.This also suggests a di�erent syntax for the constraint language, talking aboutlabeling, immediate dominance, and precedence (\left-of" relation) separately, asin the following prototypical abstract syntax: ::= X�Y j X��Y j X � Y j X:f:Here, �� is the same (re
exive, transitive) dominance relation as we have de�nedabove. � is immediate dominance, f is labeling (without specifying the immediatechildren), and � is precedence: X � Y is true if X and Y have a common ancestorZ and are dominated by di�erent children of Z. To talk about both types moreeasily, we will call these constraints precedence constraints.It is obvious that when interpreting over constructor trees, for every dominanceconstraint, there is an equivalent precedence constraint. Dominance is trivial; andlabeling constraints X:f(X1; : : : ; Xn) can be expressed in the following way:X:f ^X�X1 ^ : : : ^X�Xn ^X1 � X2 ^ : : : ^Xn�1 � Xn:This works because in a constructor tree, the label f of the node denoted by Xdetermines that there are exactly n immediate children. On an arbitrary tree, wewould have to add a (quanti�ed) formula to say that no other nodes are childrenof X.It is unclear if there is a satis�ability preserving encoding of precedence constraintsinto dominance constraints. However, if the signature is �nite and if we additionallyallow the use of disjunctions in our dominance constraints, we can get such anencoding of precedence constraints in the following way:� Encode an atomic constraint X�Y of as_f2�ar(f)=n n_i=1X : f(Z1; : : : ; Y; : : : ; Zn) (Y is i-th argument, Zk fresh):� Encode an atomic constraint X:f of asX:f(Z1; : : : ; Zn) (Z1; : : : ; Zn fresh):

34 CHAPTER 2. CLLS AND CONTEXT UNIFICATION� Encode an atomic constraint X � Y of as_f2�ar(f)=n(Z:f(Z1; : : : ; Zn)^ _1�i<k�n(Zi��X^Zk��y)) (Z;Z1; : : : ; Zn fresh):Clearly, this encoding does not work for in�nite signatures; but it is easy to seethat it preserves satis�ability.2.2 Applying CLLSIn the introduction, we have seen some �rst examples of how CLLS can be used forthe underspeci�ed description of semantics. In this section, we consider some moreinteresting examples. First, we see scope underspeci�cation in its full beauty bypresenting a treatment of the �ve-readings sentence Every researcher of a companysaw most samples. In addition, we show how Hirschb�uhler sentences such as Everyman loves a woman. Several gorillas do, too. can be correctly addressed in CLLS.But before we go into the details of the linguistic analyses, a word about ourobject language is in order. In the introduction, our semantic object language(the formulae of which we described as trees) was �rst-order predicate logic forsimplicity. Unfortunately, �rst-order logic does not work very well any more oncewe consider more interesting cases of parallelism, such as the Hirschb�uhler sentencein Section 2.2.2. For cases like these, it is necessary that the representation of an NPis a contiguous subtree of the entire semantics. This is not necessarily the case ina �rst-order analysis, but it is in a higher-order analysis before �-reduction. Notethat we do not have builtin �-reduction in our representation of lambda termsas lambda structures; we are representing raw lambda terms, not �-equivalenceclasses.So from here on, we choose our object language to be the language of simplytyped lambda terms. As our syntax/semantic interface, we assume a constructionsimilar to that from Montague grammar (Montague 1974), analyzing every NPas a generalized quanti�er whose type is independent of whether it is a propername or a determiner application such as every man. When we draw constraintgraphs or lambda structures, we will usually compress subtrees that correspond todeterminers into a single node that is labeled with the name of the determiner foreasier readability. For example, we might compress �P�Q8xP (x) ! Q(x) into asingle node labeled with every. This is just an abbreviation.Finally, we will speak about \minimal solutions" of a constraint. We connect withthis term an intuitive idea of a solution which does not contain any unnecessary

2.2. APPLYING CLLS 35material; for example, it might only contain the material that is mentioned inlabeling constraints, or only solutions of minimal size. There is no formal de�nitionof a minimal solution so far that is commonly agreed upon; we will use this notionin an informal way in our discussions of linguistic examples below, but it will notappear in the more formally oriented later chapters of the thesis. We will comeback to the problem in the concluding chapter.2.2.1 Advanced scope ambiguitiesConsider the following sentence.(2.6) Every researcher of a company saw most samples.NP modi�cations as in this example were a problem in early approaches to scopeambiguity. These approaches would simply enumerate all permutations of thethree quanti�ers at the sentence node, so they would predict 6 = 3! readings forthe sentence in the example. But this sentence has only �ve readings. Most recenttheories treat this example correctly, but it is still an important benchmark for atheory of scope ambiguity.CLLS does handle this sentence correctly: The constraint for the semantics of (2.6)is shown as a constraint graph below.(2.7) � X0@ � X1@ �a � comp � lam �� X5 @ � X2@ �every �
@ � X9@ �of � var �var �

lam �^ �� X6 @ �res � var � @ � X10@ �love � var �var �
lam �� X7 @ � X3@ �a � woman � lam �� X8

36 CHAPTER 2. CLLS AND CONTEXT UNIFICATIONThe constraint in (2.7) has a speci�c structure that makes it easy to see its solutions.Due to the left \dominance diamond" (whose points are the root node X0, theleft and the middle quanti�er X1 and X2, respectively, and X9, the tree belowwhich models the genitive relation), there are essentially two possible places forthe left quanti�er in a lambda structure that solves this constraint: above theuniversal quanti�er, or below the universal quanti�er's left daughter X6. Therequirement that both quanti�ers dominate X9 leaves no other options. Likewise,the right \dominance diamond" (whose bottom point is X10, the tree below whichmodels the love relation) allows two di�erent classes of solutions, one where theright quanti�er X3 dominates the universal quanti�er X2, and one where it occursbelow the universal quanti�er's right daughter X7. It is crucial that there are twoindependent \dominance diamonds", each with its own \nucleus" at the bottom.This yields �ve structurally di�erent solutions to the constraint. If the existentialquanti�er X1 dominates the universal quanti�er X2, the existential quanti�er X3may be above, between, or below the other quanti�ers, which gives three options.If, on the other hand, X1 is dominated by X2, there are only two di�erent positionsfor the existential quanti�er X3, viz., either above or below the universal quanti�er:The universal quanti�er essentially acts as a binary constructor, ensuring that ifthe existential quanti�ers are both dominated by (di�erent leaves of) the universalquanti�er, they don't dominate each other. This is exactly where the naive ap-proach of enumerating the permutations of the quanti�ers fails: If the universalquanti�er has widest scope, the two existential quanti�ers must be in disjoint po-sitions in the tree, whereas the two permutations that give the universal quanti�erwidest scope correspond to the two possibilities for the two existential quanti�ersto dominate each other.2.2.2 Hirschb�uhler sentencesAs we have sketched in the introduction, a Hirschb�uhler sentence is an ellipsiswhose source sentence contains a scope ambiguity. The interesting property ofHirschb�uhler sentences is that when resolving the ellipsis, the scope ambiguityis copied over to the target sentence, which might lead one to believe that thepair of sentences has four di�erent readings (two scope ambiguities, each withtwo readings). But there are only two readings, as the ellipsis enforces a \scopeparallelism" between the two sentences; both scope ambiguities must be resolvedin the same way. For reference, we repeat Example 1.12.(2.8) Every man loves a woman. Several gorillas do, too.

2.2. APPLYING CLLS 37In Section 1.2.2, we have seen how to analyze very simple ellipses with CLLSparallelism constraints. A pleasant property of CLLS is that Hirschb�uhler sentencescan be analyzed in precisely the same way without any further modi�cations tothe formalism. When we analyzed our simple example in the introduction, we�rst wrote down all we could say without resolving the ellipsis and then added theparallelism constraint. We will proceed here in the same way. The �rst part of theconstraint is represented as a constraint graph in (2.9).(2.9) � Xs@ �@ � X1every � man � lam �� @ �@ �a �@ �@ �love � var �var �woman � lam �� � Xt@ � X2several � gorilla �(a) (b)Part (a) of this constraint is just the representation of the scope ambiguity in thesource sentence that we have been using since the introduction, written in ourhigher-order object language. Part (b) expresses that somewhere in the semanticsof the target sentence, several gorillas occur.Now we add the parallelism constraint; what we want to say is that the semanticsof the target sentence is just like that of the source sentence, but where the sourcesentence contained \every man", the target sentence should have \several gorillas".(2.10) Xs=X1�Xt=X2This constraint has exactly the two correct minimal solutions, but we should ob-serve that the construction was only possible because the parallel elements wererepresented as subtrees. Parallelism constraints can only replace entire subtrees;had we attempted to do the same thing with the �rst-order representation of thescope ambiguity (Fig. 1.1), we would have failed because the source parallel ele-ment would have been distributed over several nodes in the tree that do not form a

38 CHAPTER 2. CLLS AND CONTEXT UNIFICATIONsubtree. At this point, the di�erence between the CLLS/CU and the DSP analysisof ellipses becomes apparent: DSP need not require that the representation of aparallel element must be contiguous. They consider full higher-order logic withbuiltin �-reduction, so they do not have to worry about the exact representation ofthe NP semantics, and in fact, could not distinguish between the unreduced rep-resentation (where the NP semantics is in a subtree by itself) and the �-reducedrepresentation (which is essentially �rst-order). In CLLS, on the other hand, we aretalking about individual lambda structures instead of �-equivalence classes; here, itdoes make a di�erence if we try to resolve the ellipsis before or after �-reduction.2.3 Context Uni�cationWe now de�ne context uni�cation and its underlying logic, the language of contextconstraints. To this end, we �rst de�ne contexts and context functions, which areused in the de�nition of the semantics of context constraints. Finally, we extendthe language with equations between context-valued terms and prove that thisextension makes no di�erence to the expressive power of the language.2.3.1 Contexts and Context FunctionsIn analogy to tree domains, we de�ne a context domain � to be a �nite pre�xed-closed subset of N� for which there is a path �e 2 N� � � such that � [f�eg is atree domain. The intuition behind a context domain is that it is the set of nodesof a tree that misses one leaf. Note that a context domain must be �nite and canbe empty. �e is called the exception path of �.A context s is a function s : �! �;where � is a context domain with exception path �e, with the additional propertythat for every � 2 �, if ar(s(�)) = n, then �1; : : : ; �n are in � [f�eg, but no �kis, for any k > n. �e is called the exception path of s.Intuitively, we can think of a context as a tree from which an entire subtree (in-cluding its root) has been cut away, leaving behind a hole. Consequently, we canand frequently will write a context as a ground term that contains exactly oneoccurrence of the special symbol �, which we call `hole'. Fig. 2.1 schematicallyshows a tree from which the subtree � has been cut away.

2.3. CONTEXT UNIFICATION 39
σ

πes

Figure 2.1: A context.
If s is a context with exception path �e, we can de�ne the context function
s tobe the unary function from trees to trees that inserts its argument into the contexts in the following way:
s(�)(�) = 8><>:s(�) if de�ned�(�0) if � = �e�0unde�ned otherwise:Clearly, context functions and contexts correspond uniquely to each other, and allcontext functions are injective. The \identity context" �, whose domain is empty,corresponds to the identity function on trees.Throughout, we will switch freely between contexts and context functions and usewhichever is more convenient. To this end, we list some more de�nitions that willmake this easier. We de�ne the exception path of a context function
s to be theexception path of s. If s is a context and � is a tree, we de�ne the insertion s[�]of � into s to be the tree
s(�). In term representation, we can think of this assubstituting � for the hole of s. If s and s0 are contexts, we de�ne the extensions � s0 of s by s0 to be the context corresponding to the context function
s �
s0. Inthe term representation, we can think of this as substituting s0 for the hole of s.As for trees, we can de�ne selection s:� of subcontexts. Let s : �! � be a context,let �e be its exception path, and let � be a path in � [f�eg. Then we can de�nethe selected subcontext s:� as the functions:� : f�0 j ��0 2 � [f�egg ! �(s:�)(�0) = s(��0):s:� is unde�ned if � is not in � [f�eg. s:�e is de�ned; its domain is empty, so itis the identity context �.

40 CHAPTER 2. CLLS AND CONTEXT UNIFICATIONThe following are a few simple but useful lemmas that will facilitate a lot of laterwork.Lemma 2.2. If s is a context, � is its exception path, and � is a tree, then thedomain of s[�] is the disjoint unionDom(s[�]) = Dom(s)] � �Dom(�):Proof. Obvious from the de�nitions of s[�] and of context functions.Lemma 2.3. Two contexts s; s0 are equal i� their exception paths are the sameand there is a tree � such that s[�] = s0[�].Proof. The \)" direction is trivial. For the other direction, all we have to proveis that the domains of the functions s and s0 are equal; it follows immediately thatthe entire functions are equal.We know that s[�] = s0[�]; so in particular, their domains are the same. Callthe common exception path of the two contexts �. According to Lemma 2.2, thefollowing equalities hold:Dom(s[�]) = Dom(s)] � �Dom(�)Dom(s0[�]) = Dom(s0)] � �Dom(�)Because the unions are disjoint, it follows that Dom(s) = Dom(s0).Lemma 2.4. If s1; s2 are contexts, then the exception path of s1 � s2 is the con-catenation of the exception paths of s1 and s2.Proof. By de�nition of s1 � s2.2.3.2 Syntax and Semantics of CUThe language of context constraints is built up from a ranked signature � as in2.1.1, a set of �rst-order variables x; y; : : : , and a set of context variables C;D; : : : .A context constraint is a conjunction of equations t = t0 of terms of the followingsyntax: t ::= x j f(t1; : : : ; tn) j C(t):Context constraints are interpreted over trees. First-order variables (and, in gen-eral, all terms t) denote trees, and context variables denote context functions.

2.3. CONTEXT UNIFICATION 41Variable assignments � that assign trees to �rst-order variables and context func-tions to context variables can be lifted to functions from terms t to trees homo-morphically: �(f(t1; : : : ; tn)) = f(�(t1); : : : ; �(tn))�(C(t)) = �(C)(�(t)):A variable assignment � satis�es an equation t = t0 i� �(t) = �(t0). It satis�esa context constraint i� it satis�es all equations in . Context uni�cation isthe satis�ability problem of context constraints. As for CLLS, we can considerlarger languages; in the full �rst-order language, we allow quanti�cation over both�rst-order variables x and context variables C.2.3.3 Context EquationsIt turns out that in practical work with context uni�cation, it is often convenient toexpress the equality of context-valued terms (such as context variables, extensionsof context variables, contexts that are written down explicitly as terms with oneoccurrence of �, etc.) instead of only of tree-valued terms. In this section, we showthat these context equations can be expressed as standard context constraints. Foreasier reference, we call the terms t from the previous section tree terms in thissection.A context equation is an equation u=u0 between context terms of the following form:u ::= C j s j u � u0;where s is a ground term over � with exactly one occurrence of � (i.e., the termrepresentation of a context).The application of a context term u to a tree term t can be reduced to an ordinarytree term by the following rules:f(t1; : : : ; ui; : : : ; tn)(t) = f(t1; : : : ; ui(t); : : : ; tn)�(t) = t(u1 � u2)(t) = u1(u2(t)):As trees can be seen as a special case of tree terms, we can de�ne the semantics ofa context equation by lifting variable assignments � to context terms u such that�(u) is the context function �(u) : � 7! �(u(�)):

42 CHAPTER 2. CLLS AND CONTEXT UNIFICATIONWe de�ne the language of extended context constraints as the language of conjunc-tions of equations between either tree or context terms.To reduce extended context constraints to standard context constraints, we needto �nd a way to express every context equation as a �nite conjunction of tree equa-tions. This is done by the following proposition. Hence, we can safely use contextequations as \abbreviations" for context constraints whenever it is convenient.Proposition 2.5 (Expressing Context Equations). If u; u0 are context terms,�1; �2 are di�erent ground terms, and � is a variable assignment, then � satis�esthe context equation u = u0i� it satis�es the context constraintu(�1) = u0(�1) ^ u(�2) = u0(�2):Proof. By de�nition of the semantics, it is su�cient to show that any two contextss; s0 are equal i� there are two di�erent trees �1; �2 such that s[�1] = s0[�1] ands[�2] = s0[�2]. The direction from left to right is trivial; we show the other directionbelow.Assume that the exception paths �; �0 of the contexts are di�erent. We will derivea contradiction; it follows that � = �0 and, by application of Lemma 2.3, thats = s0.� cannot be a proper pre�x of �0; otherwise, s[�1] = s0[�1] would not be satis�ed.Symetrically, �0 cannot be a proper pre�x of �. This means that � and �0 must bedisjoint paths.�0 is de�ned in s: Since it is de�ned in s0[�1], we can conclude by Lemma 2.2 that�0 2 Dom(s) [� �Dom(�1):But we have assumed that � is no pre�x (proper or not) of �0, so �0 must alreadybe de�ned in s.As �0 and �, the exception path of s, are disjoint, the following equalities hold:s:�0 = s[�1]:�0 = s0[�1]:�0 = �1s:�0 = s[�2]:�0 = s0[�2]:�0 = �2:So in contradiction to our assumptions, we have derived that �1 = �2. It followsthat � and �0 cannot be disjoint and hence, must be equal.

2.4. APPLYING CONTEXT UNIFICATION 432.4 Applying Context Uni�cationWhen we sketched the CU treatment of scope ambiguities in the introduction, wepointed out that our preliminary analysis allowed a third, linguistically unwantedsolution. In this section, we will analyze this problem more closely and provide asolution. We will not go into accounts of more interesting linguistic examples, asthe CU analysis is largely equivalent to that of CLLS, and we have already seenall the important ideas in Section 2.2.Recall Example 1.18, our preliminary encoding of the scope ambiguity Every manloves a woman, repeated here as Example 2.11. We have converted the example toits higher-order variant; variable binding is modeled with special constructors lamxand varx. As we know from the section on CLLS, modeling binding via variablenames does not work in underspeci�ed descriptions, but it will do for now. Note,by the way, the in�x use of the apply constructor.(2.11) X0 = C1(every@man@lamx(C3(love@varx@vary))) ^X0 = C2(a@woman@lamy(C4(love@varx@vary)))Even if we ignore non-minimal solutions, this context constraint has three struc-turally di�erent solutions:1. A reading that assigns the universal quanti�er wide scope (as in Example1.19).2. A reading that assigns the existential quanti�er wide scope.3. For any binary constructor f , a tree in which the quanti�ers are in disjointpositions, each with its own copy of the love(x; y):f �@ �@ �every � man � lamx �@ �@ �love � varx �vary � @ �@ �a � woman � lamy �@ �@ �love � varx �vary �Clearly, the third reading (whose correctness we invite the reader to verify) doesnot correspond to any linguistically warranted reading of the sentence, and we needto change the constraint to exclude it.

44 CHAPTER 2. CLLS AND CONTEXT UNIFICATIONWhat has gone wrong? Essentially, we have expressed a subtree relation with ourcontext constraint when we wanted to express a dominance relation: We have onlyexpressed that the trees below the quanti�ers both contain the love subtree, but wedid not require that both quanti�ers dominate the same occurrence of this subtree.This leaves the possibility open to have two copies of this subtree, each dominatedby one but not both of the quanti�ers, and let the quanti�ers \escape" into disjointpositions of the tree.To repair this de�ciency, we use context equations. If we equate two contexts, weforce their exception paths to be the same. If, in addition, the quanti�ers appear onthe exception paths of these contexts, we have made sure that they must dominatea common node (namely, the node at the end of the exception path). We can theninsert the love subtree at this location. This is expressed by the following extendedcontext constraint.(2.12) C0 = C1(every@man@lamx(C3(�))) ^C0 = C2(a@woman@lamy(C4(�))) ^X0 = C0(love@varx@vary)This constraint has only the two correct minimal solutions; the use of contextequations (which can nevertheless be expressed as ordinary context constraints, aswe have seen above) has given us a direct handle on nodes of the tree. It followsthe analysis of Niehren et al. (1997b), and it can serve as a �rst example of theencoding of dominance constraints as context constraints that we will present inthe next chapter and that will give a systematic account of this problem.2.5 ConclusionIn this chapter, we have de�ned the syntax and semantics of CLLS and contextconstraints. Starting with a de�nition of trees and tree structures, we have in-troduced the notion of lambda structures, which can be used to model lambdaterms in a tree-like fashion while avoiding problems with variable binding. Thenwe have de�ned the syntax and semantics of CLLS, the conjunctive language overa selection of atomic constraints, including labeling, dominance, parallelism, andbinding constraints. The most interesting sublanguages of CLLS are the fragmentof (labeling and) dominance constraints and CLLS0, the fragment that does notuse binding constraints. We have compared our variant of dominance constraintsto a more common one, and we have found out that if the signature is �nite, bothare equivalent. Finally, we have applied CLLS to some more interesting linguisticexamples.

2.5. CONCLUSION 45In the second half of the chapter, we have discussed context uni�cation, the satis�a-bility problem of context constraints. After de�ning contexts and context functionsin analogy to the trees of the �rst section, we have de�ned the syntax and seman-tics of context constraints; they are equations between tree-valued terms which cancontain �rst-order variables denoting trees and context variables denoting contextfunctions. Afterwards, we have shown that context equations (equations betweencontext-function-valued terms) can be added to context constraints to obtain ex-tended context constraints without changing the expressive power. We have re-visited scope ambiguities in CU and corrected a de�ciency that resulted from aconfusion of subtree and dominance constraints.In the course of our de�nitions, we have introduced various classes of formulae andobjects. To avoid confusion, we comprehensively list them once again, along withthe letters that we use to range over them:� ' are CLLS, CLLS0, or dominance constraints; are context constraints. Wehave generally distinguished constraints (purely conjunctive formulae) fromformulae in general, which we write with the respective capital Greek letters.� X are variables denoting nodes; x are variables denoting trees; C are contextvariables, denoting context functions.� � are variable assignments for CLLS, mapping variables to nodes in a lambdastructure; � are variable assignments for context constraints, mapping treevariables to trees and context variables to context functions.� � are trees; s are contexts;
 are context functions. Trees can be written asground terms, and contexts can be written as ground terms with exactly oneoccurrence of the hole symbol �.

46 CHAPTER 2. CLLS AND CONTEXT UNIFICATION

Chapter 3Relating Context Uni�cation andCLLS
Now that we have our de�nitions straight, we turn to a proof of the equivalence ofCLLS0 and Context Uni�cation in this section. More precisely, we show that forevery constraint of CLLS0, there is a satis�ability equivalent context constraint,and vice versa. The encoding of CLLS0 into context uni�cation can be extendedin a straightforward way to an encoding of the �rst-order theories.The main obstacle that we must overcome in our encoding of CLLS0 into CUis to provide the power to talk about occurrences of subtrees. In CLLS0 (andeven in dominance constraints), we can do this easily because we can talk aboutthe nodes of a tree (i.e., the roots of occurrences); it is not clear at all that thisis possible in the external perspective that CU takes, relating only trees and nottheir nodes. We have seen in the introduction (Section 1.4) that the naive encodingof dominance constraints as subtree constraints, which can be considered a purelyexternal sublanguage of context constraints, does not preserve satis�ability. Moreprecisely, the unsatis�ability of dominance constraints as in Example 1.24, repeatedhere as Example 3.1, is not preserved by the encoding because subtree constraintsdon't talk about occurrences of trees; a tree satisfying the subtree constraint canhave more than one occurrence of the subtree denoted by y, and nothing says thatall occurrences of y must refer to the same occurrence of this tree.(3.1) X:f(X1; X2) ^X1��Y ^X2��Y(3.2) x=f(x1; x2) ^ y�x1 ^ y�x2But as we have seen in Section 2.4, the expressive power to talk about occurrencesof subtrees is, in fact, available in CU, if only in a slightly awkward manner. The47

48 CHAPTER 3. RELATING CONTEXT UNIFICATION AND CLLS�rst section of this chapter will be concerned with extending the intuitive idea of theprevious chapter to a systematic encoding of dominance constraints as (extended)context constraints. Our encoding will not only preserve satis�ability, but even thesolutions of the constraints: In a sense to be de�ned, a dominance constraint andits encoding are satis�ed by exactly the same trees. We �rst de�ne the encodingfor the constraint language; afterwards, we extend it to the �rst-order theories andprove its correctness for the more general case, from which the correctness of theencoding for constraints follows. The basic idea of our encoding will be to identifythe domain of a tree with the set of contexts in this tree that start at its root;under this condition, a context is uniquely identi�ed by its exception path. We canaxiomatize context variables to denote these contexts and then recast dominanceand labeling constraints as context equations.In the second section, we will complete the proof of the equivalence of the twolanguages by covering parallelism. In one direction, we extend the encoding ofthe �rst section by an encoding of parallelism and similarity constraints; this isnot di�cult once we have the intuitions and formal groundwork of the encodingof dominance constraints available. The other direction is much less obvious. For-tunately, we can make use of so-called equality up-to constraints. On one hand,Niehren et al. (1997a) have shown that they are equivalent to context constraints;on the other hand, they are su�ciently similar to CLLS0's parallelism constraintsto allow a simple encoding of equality up-to as parallelism constraints. The bulk ofthis direction of the proof is to show the equivalence between context and equalityup-to constraints (which Niehren et al. already did); once that is out of the way,the rest of the proof is simple.Throughout the chapter, we will freely switch between trees � and tree structuresM�, and contexts s and context functions
s, respectively, whenever it is conve-nient. Furthermore, we will ignore the binding function of lambda structures inthis and the next chapter; as we have seen above, it is su�cient to interpret CLLS0constraints over tree structures.3.1 Encoding dominance constraintsIn this section, we show how to encode dominance constraints as extended con-text constraints such that they have the same solutions. The correctness of ourconstruction follows from a more general encoding of the full �rst-order theories.Nevertheless, we �rst present the encoding for the constraints and extend it to the�rst-order theories later.

3.1. ENCODING DOMINANCE CONSTRAINTS 49We call the encoding function of dominance into extended context constraints[[�]]. For the proof, we will construct a mapping from pairs of tree structures andvariable assignments for dominance constraints to variable assignments for contextconstraints that we call [[�; �]]. With this terminology, the key result (Prop. 3.5) ofour correctness proof (that makes the term \have the same solutions" precise) is(M�; �) j= �, [[M�; �]] j= [[�]];where � is an arbitrary closed �rst-order formula over the dominance constraints.The central idea of the encoding is to identify nodes of a tree with their contexts.We associate with every variableX appearing in a dominance constraint ' a contextvariable CX (whose purpose it is to denote the context starting at the root of thetree and whose hole is the node denoted by X) and a tree variable x (whose purposeit is to denote the tree below X). In addition, we introduce a new tree variable >that we want to denote the entire tree.To ensure that these new variables interact correctly, we impose the followingconstraint, which we call Root('):Root(') = ^X2FV(')>=CX(x);where FV(') stands for the set of free variables of '. (As ' does not containquanti�ers, this is the entire set of variables.)Intuitively, the Root constraint expresses the following facts:1. > denotes the entire tree. More precisely, the tree it denotes contains allsubtrees that we can refer to with a (tree or context) variable, which issu�cient for our purposes.2. The context CX starts at the root node of >; the tree below its hole is denotedby x.Now we can de�ne the encoding [[�]] proper as in Figure 3.1. To encode a dominanceconstraint ' as an extended context constraint, we simply conjoin Root(') and [[']].Proposition 3.1 (Encoding Constraints). Let ' be a dominance constraint. 'describes a tree � i� there is a variable assignment � that satis�es Root(') ^ [[']]and assigns �(>) = �.This proposition is a consequence of the more general Theorem 3.2. For the mo-ment, let us review an example. In Example 1.24, we presented a dominance

50 CHAPTER 3. RELATING CONTEXT UNIFICATION AND CLLS[[X��Y]] = CX � C = CY C is a fresh context variable[[X:f(X1; : : : ; Xn)]] = V1�i�nCXi = CX � f(x1; : : : ; �; : : : ; xn) if n � 1[[X:a]] = x=a[['1 ^ '2]] = [['1]] ^ [['2]]Figure 3.1: Encoding dominance constraints ' as context equations.
constraint (which we repeat here as Example 3.3) and showed how the naive sub-tree encoding failed: The dominance constraint was unsatis�able, but the subtreeconstraint wasn't. Here, we demonstrate that our new encoding preserves the un-satis�ability.(3.3) X : f(X1; X2) ^X1��Y ^X2��Y(3.4) > = CX(x) ^ > = CX1(x1) ^ > = CX2(x2) ^ > = CY (y)^CX1 = CX � f(�; x2) ^ CX2 = CX � f(x1; �)^CX1 � C = CY ^ CX2 � C 0 = CYThe extended context constraint in Example 3.4 is the encoding of the dominanceconstraint according to Proposition 3.1: The �rst line is the Root formula, the sec-ond line is the encoding of the labeling constraint, and the third line, the encodingof the dominance constraints.The context constraint is unsatis�able. Suppose it had a solution, i.e., there existeda satisfying variable assignment �, and consider the exception path � of �(CY). Wecan conclude from the constraint in the third line and Lemma 2.4, we can concludethat the exception paths both of �(CX1) and of �(CX2) must be pre�xes of �. Butthe second line requires that these paths are di�erent in at least one place. This isa contradiction, so the constraint must be unsatis�able.The major conceptual di�erence to the encoding as subtree constraints is that weare no longer just talking about the subtrees; we can explicitly talk about occur-rences of subtrees by identifying them with their contexts, denoted by a contextvariable.To continue with the proof of the proposition, we now lift the encoding of dominanceconstraints to arbitrary closed �rst-order formulae over this language by de�ning itfor a complete set of �rst-order connectives (Fig. 3.2). Note that now that we have

3.1. ENCODING DOMINANCE CONSTRAINTS 51[[X��Y]] = 9C:CX � C = CY C is a fresh context variable[[X:f(X1; : : : ; Xn)]] = V1�i�n CXi = CX � f(x1; : : : ; �; : : : ; xn) if n � 1[[X:a]] = x=a[[�1 ^ �2]] = [[�1]] ^ [[�2]][[:�]] = :[[�]][[9X:�]] = 9CX9x:(> = CX(x) ^ [[�]])Figure 3.2: Encoding �rst-order dominance formulae � as �rst-order context equa-tions.
negation in our language, it is not su�cient to introduce fresh context variables forthe encoding of ��; we must close them o� with existential quanti�ers. For thisencoding, the following theorem holds.Theorem 3.2 (Encoding First-Order Formulae). A closed �rst-order for-mula � over the language of dominance constraints describes a tree � i� thereis a variable assignment � that satis�es [[�]] and assigns �(>) = �.As an immediate consequence, it follows that our encoding preserves both satis�a-bility and validity of formulae. Note that the theorem does not mention Root(�).For closed formulae, Root(�) is the empty conjunction. This is su�cient becausethe conjuncts of the Root formula are distributed over the encodings of the quan-ti�ers.It is easy to see that Proposition 3.1 is a corollary of Theorem 3.2. If we closeo� a dominance constraint by adding existential quanti�ers for all of its variables,we do not change the set of trees that it describes. We can apply the theorem tothis formula and encode it as an extended context formula; we can then removeall existential quanti�ers and gather the occurrences of constraints of the form> = CX(x) in the Root formula. In this way, we have obtained just the encodingof dominance constraints that we constructed above.As mentioned above, we exploit the correspondence between nodes in a tree andtheir contexts for the proof of this theorem. This correspondence is expressedformally by the following lemma.

52 CHAPTER 3. RELATING CONTEXT UNIFICATION AND CLLSLemma 3.3. Let � be a tree, �1; �2 2 Dom(�), and �1 a pre�x of �2; say, �2 =�1�. Then there is a unique context function ���1;�2 such that�:�1 = ���1;�2(�:�2):The exception path of ���1;�2 is �.Proof. First, we show the existence of a context function
 such that �:�1 =
(�:�2).We do this by de�ning a context s for whose context function
s the condition issatis�ed.De�ne D = f�0 j �:�1�0# and �2 6� �1�0gs = �jD;where �jD is the restriction of � to the domain D. s is a context because D is a�nite tree domain, and the arities are respected in all nodes except for the parentof �2, which lacks one child. The exception path of s (the path to the \missingchild" in D) is �.Now we show that
s(�:�2) = �:�1. On a path �0 of which � is a pre�x (say,�0 = ��00),
s(�:�2)(�0) = (�:�2)(�00) (by de�nition)= (�:�1)(�0) (�2 = �1�):On the other hand, if � is not a pre�x of �0,
s(�:�2)(�0) = s(�0) (by de�nition)= �(�1�0) (by de�nition)= (�:�1)(�0);and s is de�ned on �0 i� �2 6� �1�0 or, equivalently, whenever � 6� �0 and it isde�ned in �:�1.This concludes the proof of existence. For the uniqueness proof, we assume thatthere are two context functions
1;
2 that satisfy the condition. These two func-tions must assume the same value on �:�2, and their exception paths must be thesame; so
1 =
2 by Lemma 2.3.A simple but important property of the � functions is expressed in the followinglemma.Lemma 3.4. Let �1 � �2 � �3 be paths in �. Then the following equation holds:���1;�2 � ���2;�3 = ���1;�3:

3.1. ENCODING DOMINANCE CONSTRAINTS 53Proof. By Lemmata 3.3 and 2.4, the exception paths are the same. Moreover, bothsides take the same value on the argument �:�3.In addition, we map pairs of tree structures and variable assignments that satisfya dominance formula to a variable assignment that satis�es an extended contextformula. The following function, [[�; �]], is such a mapping, as Proposition 3.5 says.[[M�; �]](>) = �[[M�; �]](x) = �:�(X) for all variables x such that �(X) is de�ned[[M�; �]](CX) = ���;�(X) for all variables CX such that �(X) is de�ned:Proposition 3.5. Let M� be a tree structure, � a variable assignment, and � a�rst-order formula over the dominance constraints. � is satis�ed by (M�; �) i�[[�]] is satis�ed by [[M�; �]].Proof. We prove the proposition by structural induction. First, we show that itis true for the atomic constraints; towards the end of the proof, we conduct theinduction steps.Throughout the proof, we write � = [[M�; �]]for brevity.� X��Y\)" Assume that (M�; �) satis�es X��Y ; we conclude that � satis�es thecontext equation on the right-hand side.Our assumption means that �(X) � �(Y). Hence, we can construct avariable assignment � 0 that is like �, but assigns ���(X);�(Y) to C. Withthis de�nition, � 0(CY) = � 0(CX � C), by Lemma 3.4.As a consequence, the existentially quanti�ed context equation is satis-�ed by �.\(" Assume that the context equation is satis�ed by �. Then there must bea context function
 such that �(CX) �
 = �(CY); hence, �(X) mustbe a pre�x of �(Y), and (M�; �) satis�es the dominance formula.

54 CHAPTER 3. RELATING CONTEXT UNIFICATION AND CLLS� X:f(X1; : : : ; Xn), where n � 1\)" Assume that (M�; �) satis�es X:f(X1; : : : ; Xn); we conclude that �satis�es each of the context equations on the right side.For any i = 1; : : : ; n, let
1 = �(CX � f(x1; : : : ; �; : : : ; xn)) and
2 =�(CXi). We �rst show that the values of
1 and
2 on �(xi) are equal;then we show that their exception paths are the same. From Lemma 2.3,we can then conclude that
1 and
2 are equal and hence, the contextequation is satis�ed.By de�nition,
2(�(xi)) = �. By the de�nition of the concatenation ofcontext terms,
1(�(xi)) = �(CX)(f(�(x1); : : : ; �(xi); : : : ; �(xn)))= ���;�(X)(f(�:�(X1); : : : ; �:�(Xn))):As (M�; �) satis�es the labeling constraint, we know that �(�(X)) = fand that for all i, �(Xi) = �(X) � i. So by Lemma 2.1 and the de�nitionof ���;�(X), we conclude that
1(�(xi)) = �.By de�nition, the exception path of
2 is �(Xi). On the other hand, byLemma 2.4, the exception path of
1 is �(X) � i, which we already knowto be equal to �(Xi). Hence, we can apply Lemma 2.3 and have shownthis direction.\(" Assume that � satis�es the conjunction of context equations on the right-hand side; we conclude that for all i, �(Xi) = �(X) � i and �(�(X)) = fand hence, that the labeling constraint is satis�ed by (M�; �).First, we show the condition on the paths. By assumption, we know thatfor all i, ���;�(Xi) = ���;�(X) �
f(x1;::: ;�;::: ;xn). If we reduce this equation tothe exception paths, we have shown the �rst part.Second, we show the condition on the label. By inserting from theprevious argument, we know that� = ���;�(Xi)(�:�(Xi))= (���;�(X) �
f(x1;::: ;�;::: ;xn))(�:�(Xi))= ���;�(X)(f(�:�(X1); : : : ; �:�(Xn))):Hence, the node at path �(X) must be labeled with f .� X:a\)" Assume that (M�; �) satis�es X:a. This means that �(�(X)) = a andthat there is no � 6= � such that �(X)� 2 Dom(�). So by Lemma 2.1,�(X) = �:�(X) = a.

3.1. ENCODING DOMINANCE CONSTRAINTS 55\(" Assume that � satis�es X = a; then �(X) = �:�(X) = a. In otherwords, the label of �(X) is a, which shows that the left-hand side issatis�ed.Of the complex cases, negation and conjunction are trivial. Existential quanti�ca-tion is more interesting:� 9X:�\)" We assume that (M�; �) satis�es 9X:�; so there is a path � such that(M�; �[�=X]) satis�es �. We call this new variable assignment �0. Byinduction hypothesis, [[M�; �0]] satis�es [[�]]; it also satis�es > = CX(x),by construction. [[M�; �0]] and � agree on all arguments except possiblyfor x and CX , so we can conclude that � satis�es the formula on theright-hand side.\(" We assume that � satis�es the formula on the right-hand side; thismeans that there are a tree �0 and a context function
 such that � 0 =�[�0=x;
=CX] satis�es both > = CX(x) and [[�]]. We show that thereis a variable assignment �0 that only di�ers from � in X such that� 0 = [[M�; �0]]; from this and the induction hypothesis, satis�edness ofthe left-hand side follows immediately.Let � be the exception path of
. Then we know that as � 0 satis�es> = CX(x),
(�0) must be equal to �, and �0 must be equal to �:�. Wechoose �0 = �[�=X] and verify that � 0 = [[M�; �0]].[[M�; �0]] agrees with � on all arguments except for x and CX , to which itassigns �:� = �0 and ���;�, respectively. As the exception paths of
 and���;� are equal and they assume the same value on the argument �0, thesecontext functions are the same, and we have shown that � 0 = [[M�; �0]].
From the proposition, the theorem follows easily.Proof (Theorem 3.2). Let � be any tree. Clearly, if � is satis�ed by M� and anarbitrary variable assignment � (remember that � must be closed), then [[M�; �]]satis�es [[�]], according to the proposition. [[M�; �]] also assigns � to the variable>, by construction.For the other direction of the proof, observe that the only free (context or tree)variable of 	 = [[�]] is the newly introduced >. If � is a variable assignment that

56 CHAPTER 3. RELATING CONTEXT UNIFICATION AND CLLSsatis�es 	 and assigns the tree � to >, we can restrict it to an assignment � 0 thatonly assigns � to > and does not assign anything to any other variable; � 0 willsatisfy 	 as well. By de�nition, � 0 = [[M�; �0]], where �0 is the \empty variableassignment" whose domain is empty. Now, by Proposition 3.5, (M�; �0) satis�es�, so � describes �.3.2 ParallelismNow that we know how to encode dominance constraints as context constraints, itis surprisingly easy to �nish the construction and encode parallelism and similarityconstraints as context constraints and vice versa. Once we have done this, wehave completed our proof that the expressive powers of context uni�cation and ofCLLS0 are equal in the sense that for each constraint in one language, there is asatis�ability equivalent constraint in the other language. Unfortunately, there is nostraightforward way to lift the strong result from the previous section, where theencoding even preserved solutions. This is because if we allow arbitrary contextconstraints (and not just encodings, as in the previous section), there might not beany tree variable that is mapped to the entire tree; in addition, the nodes denotedby the node variables must all be in the same tree. So we would have to construct alarge tree around the trees mentioned in a satisfying variable assignment �, whichwould lead to a rather complicated correspondence between the solutions of theCLLS0 and CU constraints and doesn't really seem to be worth the trouble.At �rst sight, it is not even obvious that such an extended encoding can easilybe obtained at all. This becomes much clearer, however, if we brie
y review thetheory of equality up-to constraints, as developed by Niehren et al. (1997a).An equality up-to constraint is a conjunction of atomic constraints of the followingform: x=x0=y=y0 j x=f(x1; : : : ; xn):Variables are interpreted as trees; constraints can be satis�ed by variable assign-ments � just like context constraints. The second type of constraint is satis-�ed if �(x) is a tree whose top node is labeled with f and whose children are�(x1); : : : ; �(xn). The �rst type of constraint is satis�ed i� there is a context func-tion
 such that �(x) =
(�(x0)) and �(y) =
(�(y0)). Intuitively, this is the casei� the trees denoted by x and y are equal, up to trees below a common subnode {hence the name.The most important result about equality up-to constraints is that they are equiv-alent to context constraints. More precisely, there are satis�ability preserving en-

3.2. PARALLELISM 57[[X � Y]] = x = y[[X=X 0�Y=Y 0]] = CX0 = CX � C ^ CY 0 = CY � C (C a fresh context variable)Figure 3.3: Encoding parallelism and similarity constraints as context equations.This completes the encoding from Fig. 3.1. To close o� the resulting contextconstraint, add 9C to the second clause.
codings of equality up-to constraints into context constraints (Niehren et al. 1997a,Prop.15) and vice versa (dto., Prop. 17). Note that their result is only about theconstraint languages, not about the �rst-order theories; so we can't state our theo-rem for the �rst-order theories, either. It would probably be possible to repair theirproofs to cover �rst-order theories, but as �rst-order languages are not our mainconcern here, we will not do so and instead, restrict ourselves to the constraintlanguages.With this result, the proof of the following theorem, stating the equivalence ofCLLS0 and context uni�cation, is reasonably easy.Theorem 3.6 (Encoding Parallelism). For every CLLS0 constraint ', there isa satis�ability equivalent context constraint , and vice versa.Proof. First, we present the satis�ability preserving encoding of CLLS0 into CU(Fig. 3.3); then we look into an encoding of context constraints into CLLS0 viaequality up-to constraints (Fig. 3.4).For the �rst direction, we extend our encoding [[�]] by the clauses in Fig. 3.3, coveringparallelism and similarity constraints. For both types of atomic constraints, weshow the base cases for the structural induction of Proposition 3.5; it follows thatProposition 3.1, extended with the de�nitions in Fig. 3.3, still holds, which impliesour claim.� X � Y\)" Assume that (M�; �) satis�es X � Y ; call �1 = �(X) and �2 = �(Y),then �:�1 = �:�2. As [[M�; �]](x) = �:�1 and [[M�; �]](y) = �:�2. thecontext constraint is satis�ed as well.\(" We assume that [[M�; �]] satis�es x = y. Then as above, �:�1 = �:�2,and the similarity constraint is satis�ed.

58 CHAPTER 3. RELATING CONTEXT UNIFICATION AND CLLS[[x=x0=y=y0]]�1 = X=X 00�Y=Y 00 ^X 0 � X 00 ^ Y 0 � Y 00 (X 00; Y 00 fresh)[[x=f(x1; : : : ; xn)]]�1 = X:f(X 01; : : : ; X 0n) ^X1 � X 01 : : :Xn � X 0n(X 01; : : : ; X 0n fresh)Figure 3.4: Encoding equality up-to constraints in CLLS0.
� X=X 0�Y=Y 0\)" Assume that (M�; �) satis�esX=X 0�Y=Y 0; call the paths that � assignsto these variables �1; �01; �2, and �02, respectively. We need to show thatthere is a context function
 such that ���;�01 = ���;�1 �
 and ���;�02 =���;�2 �
; from this, the satis�edness of the right-hand side follows byde�nition.Rephrasing the semantics of the parallelism constraint, we know that���1;�01 and ���2;�02 have a common exception path, �0, and that theircorresponding contexts are equal. Clearly, ���1;�01 = ���2;�02.Now, from Lemma 3.4, we know that ���;�01 = ���;�1 � ���1;�01 and ���;�02 =���;�2 ����2;�02, so we have found the context function
 we needed to �nd.\(" Assume that [[M�; �]] satis�es 9C:(CX0 = CX �C ^CY 0 = CY �C); thismeans that there is a context function
 such that ���;�(X0) = ���;�(X) �
and ���;�(Y 0) = ���;�(Y) �
. We need to show that there is a path �0such that �(X 0) = �(X)�0 and �(Y 0) = �(Y)�0, and that the contextsbetween these nodes are equal.The �rst part is trivial, as by Lemma 2.4, the exception path of thecontext function
 is such a common extension. For the other part,observe that by Lemma 3.4, ���;�(X0) = ���;�(X) ����(X);�(X0) and ���;�(Y 0) =���;�(Y) � ���(Y);�(Y 0). As context functions are injective, the �rst of theseequations implies that
 = ���(X);�(X0) and the second one, that
 =���(Y);�(Y 0); hence, the two context functions and, consequently, theircontexts are equal.This concludes the �rst half of the proof. For the other half of the proof, we haveto encode an arbitrary context constraint as a CLLS0 constraint. This encodingproceeds in three steps. First, we encode as an equality up-to constraint 0according to (Niehren et al. 1997a). Next, we choose a node variable X for everytree variable x that appears in 0; the purpose of these nodes variables is to denote

3.3. CONCLUSION 59nodes the trees under which look like the trees denoted by x. Finally, we apply theencoding [[�]]�1 in Fig. 3.4.It is obvious that this encoding preserves satis�ability. The encoding of the �constraint expresses that somewhere below the nodes X and Y , there are nodesX 00 and Y 00 the trees below which look just like the trees below the nodes X 0 andY 0, and the contexts between X and X 00 and Y and Y 00 are equal. (Note thatthis is a weaker condition than parallelism itself; it does not say anything aboutthe locations of the nodes denoted by X 0 and Y 0.) The encoding of the \labeling"equality up-to constraint works similarly: It expresses that X is labeled with f andthat its subtrees look just like the subtrees below the X1; : : : ; Xn.3.3 ConclusionThe major result of this chapter is that the two constraint languages under investi-gation in this thesis, CLLS0 and context uni�cation, are equivalent: Every CLLS0constraint can be encoded as a satis�ability equivalent context constraint, and viceversa.The most involved part of our proof was to embed dominance constraints as contextconstraints; once that was out of the way, the same intuitions carried over to anembedding of similarity and parallelism constraints (which, incidentally, generalizedominance constraints). We described a node by specifying both its context andthe tree below it; Lemma 3.3 stated that this is always possible uniquely in a formalway. We even showed the more general result that the encoding in this directiondoes not only preserve satis�ability, it also preserves the satisfying trees in a certainsense; in addition, the result not only holds for constraints, but for all �rst-ordersentences.The other direction, the encoding of context constraints in CLLS0, proceeded in twosteps: First, we encoded them as equality up-to constraints, which have a muchmore restricted syntax that makes proofs easier; then we encoded the resultingequality up-to constraint in CLLS0 in a straightforward manner that obviouslypreserved satis�ability.This correspondence between the two languages has two important consequences.For one, it allows us to transfer complexity results between them; if we can deter-mine the complexity of one language, we immediately know that the complexityof the other language must be the same. As the complexity of context uni�ca-tion is actively being investigated by several scientists throughout Europe, we canhope that this will eventually give us a complexity result for CLLS0. For the time

60 CHAPTER 3. RELATING CONTEXT UNIFICATION AND CLLSbeing, however, the complexity of either language is unknown, and it is reason-able to investigate the complexity of sublanguages. We will do this for dominanceconstraints, the most interesting sublanguage of CLLS0, in the next two chapters.The other consequence is a clari�cation of earlier papers on the linguistics applica-tion of context uni�cation. We have seen in the previous chapter that for a correcttreatment of scope ambiguities in context uni�cation, one has to write down slightlyunintuitive constraints. The exact type of constraints we used was introduced byNiehren et al. (1997b); but it was not entirely clear why, exactly, the encodingas context equations worked, and if the more complex encoding really solved allproblems. In the light of the results of this chapter, we easily recognize the contextequations in Example 2.12 as the encoding of a dominance constraint.

Chapter 4Complexity of DominanceConstraints
As we have seen in the previous chapter, the complexities of solving CLLS0 and con-text constraints are the same, but we know neither of these complexities. Hence,it is reasonable to investigate the complexity of sublanguages, both from a sys-tematic point of view (if the complexity of the entire language is too di�cult todetermine, maybe we can say something about fragments?) and from a practical,implementation-oriented point of view.In this chapter, we explore the complexity of the language of dominance constraints,consisting only of atomic labeling and dominance constraints, and show that thesatis�ability problems of dominance constraints and, in case of a �nite signature,also of the propositional language and the positive existential �rst-order fragmentover the language are NP-complete. As we have seen in the introduction, dominanceconstraints are not only the most interesting sublanguage of CLLS, providing theexpressive power to deal with scope ambiguities, but also a popular formalism forlinguistic analysis in their own right.In the �rst section, we present an algorithm that decides the satis�ability of adominance constraint. This algorithm saturates the constraint by adding entailedconjuncts and checking for clashes; it runs in nondeterministically polynomial time.We prove that it is sound and complete for the problem and show how to raise theresult to the positive existential fragment.In the second section, we show that the satis�ability problem even of the purelyconjunctive language of dominance constraints is NP-hard. To this end, we encodeformulae of propositional logic in conjunctive normal form with three literals perclause (3-CNF) as satisfaction equivalent dominance constraints; the satis�ability61

62 CHAPTER 4. COMPLEXITY OF DOMINANCE CONSTRAINTSproblem of these formulae, 3SAT, is a classical NP-complete problem. The keyto this encoding is the \dominance triangle", a special constraint that allows toexpress disjunctions. Together with the result from the �rst section, we have thusshown the complexity result we claimed above.Finally, we investigate implementations. We have just said that the general problemof solving dominance constraints is intractable; but the implementation that wesketch in the third section runs e�ciently at least in those cases that seem to be oflinguistic relevance. This implementation, taken from (Duchier and Gardent 1999),employs set constraints in the programming language Oz. In addition, we sketcha streamlined implementation of a solver for context constraints. This proceduredoes not necessarily terminate, but on linguistic examples, it runs with reasonablee�ciency. We present it as a �rst stab at an implementation of parallelism; at thistime, there is no known algorithm for solving parallelism constraints within CLLSyet, and we must take resort to the more general formalism of context uni�cation.Throughout the chapter, we will use the symbol = to denote that two variables mustbe mapped to the same node; X=Y is simply an abbreviation for the conjunctionX��Y ^ Y��X. Furthermore, we assume a signature that not only contains anullary constructor a, but also a constructor g of arity r � 2. We will use these twoconstructors to simulate constructors of all other arities. As before, we will considersatisfaction of dominance constraints over tree (and not lambda) structures.4.1 Solving Dominance ConstraintsWe now present an algorithm that decides the satis�ability of a conjunction overlabeling, dominance, and negated dominance constraints :X��Y ; for the mostpart of this section, we deviate from the original de�nition by considering negateddominance constraints atomic as well. We prove that the algorithm is sound andcomplete and that it runs in nondeterministically polynomial time.4.1.1 The algorithmThe algorithm proceeds in three steps. First, we guess for each pair X; Y of vari-ables in ' if X dominates Y or not, and add the corresponding atomic constraintto '. This can be expressed as in the following rule, where _ expresses nondeter-ministic choice.

4.1. SOLVING DOMINANCE CONSTRAINTS 63true ! X��Y _ :X��YIn the second step, we saturate ' according to the following deterministic propa-gation rules.(Re
) true ! X��X (X occurs in ')(Trans) X��Y ^ Y��Z ! X��Z(Decomp) X:f(X1; : : : ; Xn) ^ Y :f(Y1; : : : ; Yn) ^ X=Y ! Vni=1Xi=Yi(Disj) X=X 0 ^X:f(: : : ; Y; : : :) ^X 0:f(: : : ; Z; : : :) ! :Y��Z ^ :Z��Y(Dom) X:f(: : : ; Y; : : :) ! X��Y(Parent) X=Y ^X 0:f(: : : ; X; : : :) ^ Y 0:g(: : : ; Y; : : :) ! X 0=Y 0(Child) X��Y ^X:f(X1; : : : ; Xn) ^Vni=1(:Xi��Y) ! Y��X(In the Disj rule, Y is the i-th and Z is the k-th argument of the labeling constraints,where i 6= k; in the Parent rule, f and g need not be di�erent.)In the third step, we detect unsatis�able constraints by applying the following clashrules. (Clash1) X:f(: : :) ^ Y :g(: : :) ^ X=Y ! false; if f 6= g(Clash2) X��Z ^ Y��Z ^ :X��Y ^ :Y��X ! false(Clash3) X��Y ^ :X��Y ! false(Clash4) X:f(X1; : : : ; Xi; : : :; Xn) ^ Xi��X ! falseAs we have guessed the dominance relations between all variables in the �rst step,the second step can never consistently add a new constraint; either the constraintis already known, or it clashes, by the Clash3 rule. In other words, the propagationrules don't really propagate anything. We could have rewritten them all as Clashrules, but writing them as propagation rules simpli�es some proofs. As a naiveapplication strategy, we could simply try all instances of all propagation and clashrules; if one of these applications leads to a clash, we reject, and otherwise, weaccept. Even this simple strategy only takes a polynomial number of steps becauseevery rule only has a polynomial number of instances, so the runtime of the algo-rithm is in NP. In the next two subsections, we show that it also produces correctresults by proving its soundness and completeness.4.1.2 SoundnessWe call a constraint ' consistent if it has a saturation with respect to the above rulesystem that does not contain false. It is inconsistent if every saturation containsfalse.

64 CHAPTER 4. COMPLEXITY OF DOMINANCE CONSTRAINTSProposition 4.1 (Soundness). If a dominance constraint ' is satis�able, thenit is consistent.Proof. Assume that the constraint ' is satis�able. We �rst prove that there is achoice of atomic (possibly negated) dominance constraints whose conjunction with' is satis�able as well; we call this conjunction '0. Then we prove that the left-handside of every Clash rule is unsatis�able. Finally, we show for each propagation rulethat if its left-hand side is satis�able, so is its conjunction with the right-hand side.It follows that we can saturate '0 with propagation rules such that no clash ruleis applicable on the result; hence, this particular saturation cannot contain false,and ' is consistent.For the �rst part of the proof, let (M; �) be such that it satis�es '. For every pairX; Y of variables in ', we consider the paths �(X) and �(Y); if the former is apre�x of the latter, we add X��Y to ', otherwise we add :X��Y to '. Clearly,each of these conjuncts is satis�ed by (M; �), so the entire conjunction '0 is too.Now consider a clash rule; we show that its left-hand side must be unsatis�able.This is very simple to prove; we only show, as an example, that it is true forthe Clash2 rule. Suppose there is a pair (M; �) that satis�es the conjunctionX��Z ^ Y��Z ^ :X��Y ^ :Y��X; then �(X) � �(Z) and �(Y) � �(Z).However, by the other two conjuncts, neither of �(X) and �(Y) can be a pre�x ofthe other, so they must di�er in one position. But this contradicts the assumptionthat they have a common extension �(Z), so the left-hand side of the Clash2 ruleis unsatis�able.Finally, we show that satis�ability of the left-hand side L of a propagation ruleimplies satis�ability of the conjunction L ^ R, where R is the right-hand side ofthe rule. Again, this is generally simple, and we only show it for the Parent rule,by way of example. Assume that (M; �) satis�es the left-hand side of this rule; weshow that it also satis�es the right-hand side, and hence, the conjunction. As X=Yis satis�ed, �(X) must be the same as �(Y) because they are pre�xes of each other.Furthermore, by de�nition of the semantics of labeling constraints, �(X) = �(X 0)�iifX is the i-th argument of the constraint. By the same argument, �(Y) = �(Y 0)�kif Y is the k-th argument of the constraint. Now, as the constraint on the LHS issatis�ed, we can conclude that not only must i and k be the same integer, but also�(Y 0) = �(X 0), which means that (M; �) also satis�es the constraint X 0=Y 0.

4.1. SOLVING DOMINANCE CONSTRAINTS 654.1.3 CompletenessTheorem 4.2 (Completeness). If a dominance constraint ' is consistent, thenit is satis�able.According to the premise of the theorem, there is one saturation of ' that does notcontain false. We call the set of atomic conjuncts in this saturation S.For the proof, we proceed in six steps.1. De�ne an auxiliary graph G0 from S. G0 mirrors all conjuncts in the sat-uration, including redundant dominances. Its nodes are equivalence classesof the variables of ', and its edges correspond to dominance and labelingconstraints.2. Show that G0 is well-de�ned.3. Show thatG0 is `well-behaved' in a certain sense; for example, that it is almostacyclic, that there are no unresolved ambiguities, etc. (We make this moreprecise below.)4. Build another graph G that is like G0, but does not contain redundant dom-inances. We could call G a solved form of '. Show that G is even more`well-behaved' than G0; it is essentially a forest.5. Build a satisfying tree structure and a variable assignment from G.6. Show that this pair satis�es '.It is trivial that whenever both X��Y and :X��Y are in S, S is inconsistentby the Clash3 rule. We will not mention this rule application below, due to itsfrequency, and simply infer that X��Y is in S whenever :X��Y isn't, and viceversa.1. De�ne G0. So �rst of all, let us de�ne G0. G0 = (V 0; E 0; LV 0 ; LE0) is a directedgraph with node and edge labels; the alphabet for the node labels is �, and thealphabet for the edge labels is N [f��g. LE0 is a total function; LV 0 does not haveto be.The relation =S, de�ned byX=SY , (X=Y) 2 S;

66 CHAPTER 4. COMPLEXITY OF DOMINANCE CONSTRAINTSis an equivalence relation. This follows from saturation of S under the Re
 andTrans rules. We de�ne the node set V 0 of G0 to be the set of equivalence classes ofthe variables of ' under this equivalence relation.As the set E 0 of edges of G0, we take the set of pairs (�X; �Y) of equivalence classessuch that there are representatives X; Y for which either X��Y or X:f(: : : ; Y; : : :)are in S.Finally, we de�neLV 0(�X) = (f if there is a representative X s.t. X:f(: : :) 2 S;undef otherwiseandLE0(�X; �Y) = 8><>:i if there are representatives X; Y s.t. X:f(: : : ; Y; : : :) 2 S,where Y is the i-th argument;�� otherwise:2. Well-de�nedness of G0. In order to show that G0 is well-de�ned, we needto show that LV 0 and LE0 are; i.e., that every node of G0 is assigned only one labeland that every N-edge is assigned only one number. (Trivially, no edge is labeledboth with �� and a number.)For the �rst claim, assume that a node �X has representatives X;X 0 such thatX:f(: : :); X 0:g(: : :) 2 S and f 6= g (which is the situation that would make LV ill-de�ned). AsX=X 0 2 S, we can derive failure with the Clash1 rule, in contradictionto our assumption that ' is consistent.For the second claim, assume that LE0 is ill-de�ned; this means that thereare nodes �X; �Y with representatives X;X 0 and Y; Y 0, respectively, such thatY :f(: : : ; X; : : :); Y 0:g(: : : ; X 0; : : :) 2 S, where X is the i-th and X 0 is the k-th ar-gument, and i 6= k. (f and g need not be di�erent.) By construction, X=X 0 2 S;so by the Parent rule, we can derive Y=Y 0 2 S. As S is consistent, it must be thecase that f = g; otherwise, the Clash1 rule would make S inconsistent. But now,by the Disj rule, :X��X 0 2 S, so S is inconsistent.Some properties of G0. G0 is a graph that contains edges that are labeled with�� and edges that are labeled with an integer. We collectively call the second typeof edge N-edge. Furthermore, we call a cycle in G0 that contains an N-edge anN-cycle and a cycle that contains only ��-edges a ��-cycle. To express the factthat there is an edge from �X to �Y that is labeled with a, we write �X[a] �Y . Note

4.1. SOLVING DOMINANCE CONSTRAINTS 67that the source node of an N-edge is always labeled; and if a node is labeled witha non-nullary constructor, it has an outgoing N-edge.If there is a path in G0 from �X to �Y (over edges of any types), we say that �X isreachable from �Y and write �X G0 �Y . Whenever the context makes it clear, weleave the subscript away; we will see later (Lemma 4.8) that the relation is thesame on both graphs that we consider, anyway. It has the important property thata node is reachable from another i� a corresponding dominance constraint is in S,as we show now.Lemma 4.3. For any two variables X; Y , X��Y 2 S i� �X[��] �Y or �X[i] �Y for ani 2 N.Proof. The left-to-right direction is trivial. The right-to-left direction is notmuch more di�cult. If �X[��] �Y , there are representatives X 0; Y 0 such thatX 0��Y 0; X=X 0; Y=Y 0 2 S. Hence, by the Trans rule, X��Y is in S as well. If�X[i] �Y for any i, there are representatives X 0; Y 0 such that X 0:f(: : : ; Y 0; : : :) 2 S.By the Dom rule, X 0��Y 0 is in S as well, and we can continue as above.Lemma 4.4. For any two variables X; Y , �X G0 �Y i� �X[��] �Y or �X[i] �Y for ani 2 N.Proof. The right-to-left direction is trivial. For the left-to-right direction, lete1; : : : ; en be an arbitrary path of length n � 1 from �X to �Y ; we show the lemmaby induction over n. (For a path of length 0, the lemma also holds because ofLemma 4.3 and the Re
 rule.)n = 1. trivial.n� 1! n. Let �Z be the goal node of e1. e2; : : : ; en is a path of length n�1; so bythe induction hypothesis, we know that either �Z[��] �Y or �Z[i] �Y , for an i 2 N .Whichever is the case, we know by Lemma 4.3 that there are representativesY; Z such that Z��Y 2 S.Now e1 can either be an N-edge or a ��-edge; whichever is the case, we knowby Lemma 4.3 that there is a representative X of �X such that X��Z 2 S.By application of the Trans rule, we know that X��Y 2 S, and by the otherdirection of Lemma 4.3, we conclude that there is an edge from �X to �Y .Corollary 4.5. For any two variables X; Y , X��Y 2 S i� �X G0 �Y .

68 CHAPTER 4. COMPLEXITY OF DOMINANCE CONSTRAINTSProof. By Lemmas 4.3 and 4.4.Corollary 4.6. G0 is a partial order on V 0.Proof. Using Corollary 4.5, transitivity of follows from closure of S under theTrans rule, re
exivity follows from closure under the Re
 rule, and antisymmetryfollows from the construction of V 0.3. Well-behavedness of G0. As a prerequisite for the later parts of the proof,we need to know that G0 is `well-behaved' in a certain sense. The following lemmamakes this notion precise.Lemma 4.7. G0 has the following properties:1. The only cycles that G0 contains are the dominance edges (�X; �X).2. If a node in G0 is labeled with f (ar(f) = n), it has exactly one i-child foreach 1 � i � n and no other N-children. All of its N-children are di�erent.3. No node in G0 has two incoming N-edges.4. If a node in G0 has two incoming edges, one of its parents is reachable fromthe other parent.Proof. 1. Suppose G0 contains an N-cycle; w.l.o.g., let e1; : : : ; en be its edgessuch that e1 = (�X; �Y) is an N-edge. Then there must be representatives Xof �X and Y of �Y such that X:f(: : : ; Y; : : :) 2 S.�X is reachable from �Y ; so by Corollary 4.5, X��Y 2 S. By the Clash4 rule,S is inconsistent, so G0 cannot contain an N-cycle.If, on the other hand, G0 contains a ��-cycle, we know for any two nodes�X and �Y on the cycle that �X �Y and �Y �X; so for any representativesX; Y , we conclude by Corollary 4.5 that X=Y 2 S. Hence, �X and �Y are thesame nodes, and the cycle is just a loop.2. Let �X be a node in G0 such that LV 0(�X) = f and ar(f) = n. By de�nition, weknow that �X has a representative X such that there is a labeling constraintX:f(X1; : : : ; Xn) in S. Furthermore, for every 1 � i � n, there is an i-edgefrom �X to �Xi.For the uniqueness result, assume that there are nodes �Y ; �Z and an i suchthat �X[i] �Y and �X[i] �Z. By de�nition, there are representatives X;X 0; Y; Zsuch that there are labeling constraints X:f(: : : ; Y; : : :); X 0:f(: : : ; Z; : : :) in

4.1. SOLVING DOMINANCE CONSTRAINTS 69S, where both Y and Z are i-th children. (We can show that the labels mustbe the same as in the proof of well-de�nedness of G0.) By the Decomp rule,this implies that Y=Z 2 S, so �Y = �Z.To show that all N-children are di�erent, assume otherwise. Suppose thereare di�erent integers 1 � i; k � n and a node �Y such that both �X[i] �Y and�X[k] �Y . This means that there are representatives X;X 0 of �X and Y; Y 0 of�Y such that all of X:f(: : : ; Y; : : :); X 0:f(: : : ; Y 0; : : :); X=X 0; Y=Y 0 are in S.By the Disj rule, we can conclude that :Y��Y 0 2 S, which means that S isinconsistent by the Clash3 rule.Finally, to show that �X has no other N-children, assume it does have a k-child �Y with k > n. This means that there are representatives for which alabeling constraint with a constructor of arity higher than n is in S. But aswe have shown above, all labeling constraints for a representative of �X mustbe labelings with the n-ary label f .3. Suppose that the node �Z has two incoming N-edges, i.e. there are nodes �Y ; �Zand numbers i; k such that �X[i] �Z and �Y [k] �Z. This means that there are repre-sentatives X; Y; Z; Z 0 such that Z=Z 0; X:f(: : : ; Z; : : :); Y :g(: : : ; Z 0; : : :) 2 S(f; g not necessarily di�erent). By the Parent rule, X=Y 2 S and hence,�X = �Y . Furthermore, all N-children of �X are di�erent, so i and k must beequal.4. Assume that �Z has two incoming edges, say, from the nodes �X and �Y . Aswe have just seen, it is not possible that both edges are N-edges; so one ofthe following cases must be true:(a) Both edges are ��-edges. Then there must be representatives X; Y; Z; Z 0such that X��Z; Y��Z 0 2 S. By the Trans and Dom rules, we concludethat Y��Z is in S as well.Suppose that neither X��Y nor Y��X were in S; then both :X��Yand :Y��X must be in S. By the Clash2 rule, this is inconsistent, incontradiction to our assumption. So one of the two dominances mustbe in S, and hence, there must be a ��-edge between �X and �Y (in onedirection).(b) One edge is an N-edge, and the other is a ��-edge; without loss ofgenerality, assume that �X[i] �Z and �Y [��] �Z. Then there must be rep-resentatives X; Y; Z; Z 0 such that X:f(: : : ; Z; : : :); Y��Z 0; Z=Z 0 2 S.By the Dom rule, we conclude that X��Z 2 S; by the Trans rule, weconclude that Y��Z 2 S. From this point, we can proceed as in theprevious case.

70 CHAPTER 4. COMPLEXITY OF DOMINANCE CONSTRAINTS4. Construct G. As we have just shown, the auxiliary graph G0 has a ratherpleasant structure. However, it still contains a lot of redundant dominance edges;Lemma 4.4 says that if we can reach one node from another in G0 via any path, wecan do so via a single edge because all paths of length > 1 can be abbreviated bygoing over a dominance edge. This redundancy gets in the way of the constructionof a satisfying tree structure, so we de�ne a new graph G that has essentially thesame structure as G0, but does not contain the redundant edges.G has the same nodes and node labeling function as G0. We de�ne its edge set Eto beE = fe 2 E 0 j LE0(e) 2 Ng[fe 2 E 0 j e 6= (�X; �X) and there is no cycle-free path e1; : : : ; ek (k > 1)in E 0 such that start(e1) = start(e) and goal(ek) = goal(e)gand obtain LE as the restriction of LE0 to E.The fact thatG has essentially the same structure asG0 is expressed by the followinglemma.Lemma 4.8. For any nodes �X; �Y 2 V , there is a path from �X to �Y in G i� thereis a path from �X to �Y in G0.Proof. One direction of this is trivial: E � E 0, so if there is such a path in G, italso exists in G0.For the other direction, we prove that every cycle-free path e1; : : : ; ek from �X to�Y in G0 of maximal length also exists in G, by induction over k. From this, thelemma follows, as existence of a path from �X to �Y implies existence of a cycle-freepath of maximal length.k = 0. Such a path does not use any edges, so it also exists in G.k = 1. As the longest cycle-free path from �X to �Y has length 1, e1 2 E by de�ni-tion.k � 1! k. Let �Z be the goal of the edge e1. e2; : : : ; en is a maximal cycle-freepath from �Z to �Y : If there was a longer cycle-free path from �Z to �Y , wecould build a longer cycle-free path from �X to �Y from it by pre�xing it withe1 because by Lemma 4.7, we know that the only cycles that G0 containsare the re
exive loops. Furthermore, e1 is a longest cycle-free path from �Xto �Z, by the same argument. Hence, by the induction hypothesis, the pathe1; : : : ; ek also exists in G.

4.1. SOLVING DOMINANCE CONSTRAINTS 71Corollary 4.9. For any two variables X; Y , X��Y 2 S i� �X G �Y .Proof. Follows from Lemma 4.8 and Corollary 4.5.Lemma 4.10. G has the following properties:1. G has no cycles.2. If a node in G is labeled with f (ar(f) = n), it has exactly one i-child foreach 1 � i � n and no other N-children. All of its N-children are di�erent.3. If a node in G is labeled, it has no ��-children.4. If �X and �Y are two nodes in G, there is at most one path from �X to �Y .5. No node in G has two incoming edges.Proof. 1. According to Lemma 4.7, the only cycles in G0 are loops. These loopsare not in E, and no additional edges that could be part of cycles were added.2. Follows from Lemma 4.7 because E and E 0 contain the same N-edges.3. Assume that �X is labeled with f , and that �X[��] �Y . Then there must berepresentatives X;X 0 of �X, a representative Y of �Y , and variablesX1; : : : ; Xn(n � 0) such that X:f(X1; : : : ; Xn); X 0��Y 2 S. By the Trans rule, X��Yis also in S. Now we distinguish the following cases (if n = 0, the �rst twocases can never occur) and derive a contradiction from each case.(a) For one Xi, Xi=Y 2 S. Then �Y = �Xi, and both a ��-edge and anN-edge lead from �X to this node, which is not even possible in G0.(b) For one Xi, �Xi �Y but �Xi 6= �Y . Then the ��-edge from �X to �Yabbreviates the path of length > 1 from �X to �X1, which is not possibleby de�nition of E.(c) For no Xi, �Xi �Y . Then by Corollary 4.9, no Xi��Y is in S, so forall i, :Xi��Y 2 S. Now suppose �X was not reachable from �Y . Then,again by Corollary 4.9, :Y��X 2 S. But by the Child rule, Y��Xmust be in S as well, which means that S would be inconsistent. So �Xmust be reachable from �Y . But this means that the ��-edge from �X to�Y is a loop, which is impossible by the �rst point of this lemma.

72 CHAPTER 4. COMPLEXITY OF DOMINANCE CONSTRAINTS4. Assume that there are nodes �X and �Y in G such that there are two di�erentpaths e1; : : : ; ek and e01; : : : ; e0l from �X to �Y . Assume further that �X and �Yare such that ek 6= e0l, and that k is minimal among all such paths. Let �Z bethe source of e01.�Y has two incoming edges, ek and e0l. By Lemma 4.7, one of its parentsis reachable from the other (by Lemma 4.8, reachability in G is the sameas reachability in G0). Without loss of generality, let the source of e0l bereachable from the source of ek. So we can go to �Y from the source of ek ontwo di�erent paths; either by going to the source of e0l and then over e0l, or bygoing over ek. As k was chosen to be minimal, we can conclude that k = 1.If l > 1, there must be an i such that e1 is an i-edge because E doesnot contain ��-edges that abbreviate paths of length > 1. In addition,e01 must be a ��-edge: it can neither be an i-edge, or else it wouldbe the same as e1, nor can it be a k-edge for a k 6= i; otherwise,there would be representatives X;X 0; Y; Z and a constructor f such thatX=X 0; X:f(: : : ; Y; : : :):X 0:f(: : : ; Z; : : :) 2 S, where Y is the i-th argumentand Z is the k-th argument, so by the Disj rule, :Z��Y 2 S, and hence, �Ywould not be reachable from �Z. But by the previous point of this proof, thiscannot be true: G does not contain any nodes that have both an N-child anda ��-child.So either there is only one path between �X and �Y , or the second path hasonly length 1 as well; but even in G0, there is only one edge between twonodes, so ek = e0l, in contradiction to our assumption.5. Suppose �Z had two incoming edges; then one of its parents would be reachableby the other, by Lemma 4.7. This means that there are two paths from oneparent to �Z: either directly or via the other parent. This is in contradictionto (4).
5. Construct a satisfying tree structure and variable assignment for 'from G. The graph G need not be connected. We call G's connected componentsG1; : : : ; Gm. The connected components are very tree-like, as the following lemmaexpresses.Lemma 4.11. Every connected component Gi of G has exactly one minimal ele-ment ri with respect to the partial order G on nodes, and there is exactly one pathfrom ri to every other node in Gi. We call ri the root of Gi.

4.1. SOLVING DOMINANCE CONSTRAINTS 73Proof. As the number of nodes in Gi is �nite and G is a partial order, it isclear that minimal elements exist. To show that the minimal element is unique,we simply show the second result in the lemma, namely, that every other node inGi is reachable from a minimal element. Given this, it follows that two minimalelements are reachable from each other; as G is cycle-free, they must be the same.So now, we show that for any node �X in Gi, there is a path from ri to �X. Gi isconnected; so between any two nodes in it, there is a cycle-free path in (E�(E�1)�)�,where E�1 is the set of edges in E with their directions reversed. As we know fromLemma 4.10, there are no nodes inG that have two incoming edges; so in particular,all these paths must be in (E�1)�E�. But ri has no incoming edges, otherwise itwould not be minimal, so all paths from ri to another node in Gi are in E�, whichis what we wanted to show.We will now extract a part of a satisfying tree structure from each of the Gk.Intuitively, we will build this tree structure by traversing Gk, starting at the root,and translating paths in Gk to paths in a tree. Whenever we meet a labelednode, we put the label in our tree structure and add the children. If we meetan unlabeled node that has dominance children, things are a bit more di�cult.If there is only one child and there is a negated dominance constraint betweena node that we can reach and the current node, we choose a unary constructorand add the dominance child as a child of this unary constructor. (In this way, weensure the proper dominance.) If there is only one child, but no negated dominancerequirement, we simply identify the two nodes. If there are multiple children, wechoose a constructor of appropriate arity and add our children as the children ofthis constructor.For this construction, we need to simulate that our signature contains at leastone constructor of each signature. As we have assumed that we have at least oneconstructor g of arity r � 2 and at least one nullary constructor a in our signature,this is not di�cult to do. First, we simulate a binary constructor by closing o� ther�2 rightmost children of an occurrence of g with a; then we simulate a constructorof arbitrary arity of at least 2 by sequences of the binary constructor. Similarly,we can simulate a unary constructor by closing o� the r�1 rightmost children of ginstead of the r�2 rightmost ones. We have illustrated the construction in Fig. 4.1.For any trees �1; : : : ; �n, we de�ne the tree fn(�1; : : : ; �n) as the tree obtained byplugging the �i into this construction in a left-to-right fashion. For our purposes,the \simulated constructors" fn behave just like ordinary n-ary constructors, butwe describe them a bit more formally anyway.

74 CHAPTER 4. COMPLEXITY OF DOMINANCE CONSTRAINTSg �� � a � a � f �� f �� f �� �(a) (b)Figure 4.1: (a) Simulation of a binary constructor with a constructor g of arityr � 2. (b) Simulation of a 4-ary constructor with a binary constructor f .
If we de�ne the path pn(i) as the path from the root of fn to its i-th hole (intowhich children can be plugged), it can be described as follows:pn(i) = (2n�1 if i = n;2i�1 � 1 otherwise.All the paths in a tree fn(�1; : : : ; �n) that do not start with one of these pn(i) areartifacts of the construction. We call the set of these paths D(fn). For n > 1, thisset has the form D(fn) = n�2[k=0f2k; 2k � 3; : : : 2k � rg;for n = 1, it is even simpler: D(f1) = f2; : : : ; rg:

4.1. SOLVING DOMINANCE CONSTRAINTS 75Now we can formally de�ne, for each 1 � k � m, a function �k : Vk ! N� , whereVk is the node set of Gk:�k(rk) = �;�k(�X) = �; �X[i] �Y) �k(�Y) = � � i;�k(�X) = �; �X[��] �Y) �k(�Y) = � � p1(1) if �Y is the only child of �X and thereis a node �Z that is reachable from �Xand representatives X;Z such that:Z��X 2 S;�k(�X) = �; �X[��] �Y) �k(�Y) = � if this is not the case and �Y is theonly child of �X;�k(�X) = �) �k(�Xi) = � � pn(i) if �X has n > 1 ��-children,and �Xi is the i-th ��-child.Now we de�ne trees �k that \satisfy" the connected components Gk in the followingway.Dk = �k(Vk)[f�k(�X) � D(fn) j �X has n > 1 ��-childreng[f�k(�X) � D(f1) j �X has exactly one ��-child, and there are a node �Z thatis reachable from �X and representatives X;Z such that :Z��X 2 Sg�k(�) = 8><>:f if there is a �X 2 Vk such that LV (�X) = f and �k(�X) = �;g if this is not the case and � has exactly r successors in Dk;a if this is not the case and � has no successors in Dk.Lemma 4.12. For any k, �k is a tree.Proof. For one, every Dk is a �nite tree domain, by construction. Furthermore,for every k and every path � 2 Dk, the arity of �k(�) agrees with the number ofchildren of �; this is trivial if the label is de�ned by the second or third branch ofthe de�nition of �k, and it follows from the structure of Gk if it is de�ned by the�rst branch.Finally, we assemble the pieces by inserting them into a simulated m-ary construc-tor: Let �1; : : : ; �m be the tree structures that we just extracted from the connectedcomponents G1; : : : ; Gm, then our �nal tree is just fm(�1; : : : ; �m). The subtreecorresponding to the i-th connected component is located below the path pm(i); sowe can de�ne a mapping � : V ! Dom(�) as �(�X) = pm(i) � �i(�X) if �X is in Gi.We claim that M�, together with the variable assignment �(X) = �(�X), satis�esthe original constraint.

76 CHAPTER 4. COMPLEXITY OF DOMINANCE CONSTRAINTS6. Prove satis�edness. For the proof that this construction really satis�es ',we collect some observations about its structure in a lemma.Lemma 4.13. The tree � and the mapping � that we have just constructed havethe following properties:1. If �X �Y , then �(�X) � �(�Y).2. If �(�X) < �(�Y), then �X �Y .3. If �(�X) = �(�Y), then there is a chain �X1[��] : : : [��] �Xr such that all of thenodes �X1; : : : ; Xr�1 have only one outgoing edge and either �X1 = �X and�Xr = �Y or vice versa.4. If �X �Y and there are representatives X; Y such that :Y��X 2 S, then�(�X) < �(�Y).5. If the node �X is labeled with f and has the N-children �X1; : : : ; �Xn, then�(�(�X)) = f and for all 1 � i � n, �(�Xi) = �(�X) � i 2 D�, but for all i > n,�(�X) � i 62 Dom(�).Lemma 4.14. (M�; �) satis�es '.Proof. We show the stronger result that for every atomic constraint C 2 S, (M; �)satis�es C by considering all cases for C.C = X��Y . By Corollary 4.9, we know that �X G �Y ; hence, they are in the sameconnected component, and we know that �(�X) is a pre�x of �(�Y), which iswhat we wanted to show.C = X:f(X1; : : : ; Xn). By construction of G, LV (�X) = f , so �(�(�X)) = f . Fur-thermore, for any 1 � i � n, we know that �X[i] �Xi in G, and hence, that�(�Xi) = �(�X) � i.C = :X��Y . Assume that �(�X) � �(�Y); we derive a contradiction. We knowthat �X and �Y are in the same connected component of G, say in Gk. Let usdistinguish the two possible cases for the relation of �(�X) and �(�Y).1. �(�X) < �(�Y); then we know that �Y is reachable from �X. Hence, byCorollary 4.9, there is also a constraint X��Y in S. This is not possible,as in this case, we could have derived an inconsistency with Clash3.

4.1. SOLVING DOMINANCE CONSTRAINTS 772. �(�X) = �(�Y). There must be a chain of nodes �X1; : : : ; �Xs such that�X1[��] : : : [��] �Xs, where every node is the single child of its predecessorand either �X1 = �X and �Xs = �Y , or vice versa. In the �rst case, we canagain conclude that �Y is reachable from �X and can proceed as above.In the second case, we know by the above lemma that �(�Y) < �(�X), acontradiction.
4.1.4 Larger logical languagesThe algorithm we have de�ned solves dominance constraints that are pure conjunc-tions of labeling, dominance, and negated dominance constraints. We now extendit to allow additionally disjunctions and, later, negations in formulae over theseatomic constraints.1. Disjunctions. First, let us consider the language that contains conjunctionsand disjunctions, but no negations (other than the negated dominance constraints,which we still consider atomic for the moment). To decide the satis�ability ofsuch a formula ', we �rst apply a function A that nondeterministically buildsa conjunction from '; then we apply the algorithm from Section 4.1.1 to thisconjunction.A is a recursive function that maps a formula ' to a conjunction of atomic con-straints. We de�ne it as follows:A('1 ^ '2) = A('1) ^ A('2)A('1 _ '2) = A('i)A('0) = '0;where i is chosen nondeterministically to be either 1 or 2, and '0 is atomic. Clearly,A runs in nondeterministic linear time. The key result about the function is thefollowing lemma.Lemma 4.15. A pair (M; �) satis�es ' i� it satis�es one of the possible resultsof A(').Proof. By structural induction on '.Atoms. trivial.

78 CHAPTER 4. COMPLEXITY OF DOMINANCE CONSTRAINTS' = '1 ^ '2. Consider a pair (M; �). By induction hypothesis, this pair satis�es'1 i� it satis�es one result A('1), and it satis�es '2 i� it satis�es one resultA('2). Hence, it satis�es ' i� it satis�es one possible value of A(').' = '1 _ '2. By induction hypothesis, a pair (M; �) satis�es '1 i� it satis�esa possible result of A('1); call this particular result '01. Likewise, (M; �)satis�es '2 i� it satis�es the possible result '02 of A('2). Now ' is satis�edby (M; �) i� either '1 or '2 is, which is equivalent to the satisfaction of either'01 or '02. Hence, there is a choice such that A(') is satis�ed; and conversely,satis�edness of '0i implies satis�edness of 'i, which implies satis�edness of '.
We decide satis�ability of a formula ' by �rst running A on it and then feeding theresult into the algorithm from the previous sections. Again, we call ' consistent ifthere is a result of A(') that has a saturation which does not contain false. Forthis, the following result holds.Proposition 4.16. A formula ' of disjunctions and conjunctions over the domi-nance constraints is satis�able i� it is consistent.Proof. First, let ' be satis�able. We know by Lemma 4.15 that there is a result '0of running A on ' that is satis�able as well. By Proposition 4.1, this implies that'0 can be saturated in such a way that the saturation does not contain false. So' is consistent.Conversely, let ' be consistent; then there is a result '0 of running A on ' that hasa saturation that does not contain false. By Theorem 4.2, '0 is satis�able; but byLemma 4.15, this means that ' is satis�able, as well.2. Negations. Now we add negation to the list of connectives that we areallowed to use. So far, the only instance of negation we could use was as negateddominance constraints, but we considered those as atomic constraints. Now, welift this restriction and return to the original de�nition of atomic constraints. Aswe are testing for satis�ability of formulae, it does not matter if we additionallyallow positive occurrences of existential quanti�ers; by renaming variables, we canalways get an equivalent quanti�er-free formula. The encoding that we presentdoes not work for the general case; we must require a �nite signature. But forpractical purposes, this restriction does not hurt at all.Clearly, we can reduce a formula that contains negations to an equivalent formulawhere the only negations are single negations of atomic formulae in linear time. In

4.2. NP-HARDNESS 79addition, our original algorithm can handle negated dominance constraints. So theonly di�culty is to extend the algorithm to handle negated labeling constraints.We do this by simply replacing all negated labeling constraints in ' by equivalentformulae that do not contain negated labeling constraints. To be precise, we replacea constraint :X:f(X1; : : : ; Xn) by0BB@ _g 6=fm=ar(g)X:g(X 01; : : : ; X 0m)1CCA _ (X:f(X 001 ; : : : ; X 00n)^ (:X 001=X1_ : : :_:X 00n=Xn));where the X 0i and X 00i are fresh variables. Now all we need to show is that a negatedlabeling constraint ' is satis�ed by a pair (M; �) i� its encoding '0 is satis�ed by(M; �0), where �0 agrees with � on �'s domain.As this is quite simple, we only sketch the proof. By de�nition of the semantics,' is satis�ed by (M�; �) i� either �(�(X)) 6= f or there is an i such that �(Xi) 6=�(X) � i. The �rst case is equivalent with saying that �(�(X)) is a constructordi�erent than f ; this is exactly the situation where the �rst disjunct of '0 is satis�ed.The second case is exactly the situation where the �rst conjunct of the seconddisjunct of '0 and one of the disjuncts of the other conjunct is satis�ed. Hence, 'and '0 are equivalent.4.2 NP-HardnessAs we have seen in the previous section, a wide selection of propositional languagesover the dominance constraints has satis�ability problems that can be solved inNP time. In this section, we supplement this result by showing that even forpurely conjunctive dominance constraints, this problem is NP-hard. To this end,we encode propositional formulae in 3-CNF as satisfaction equivalent dominanceconstraints.We proceed in two steps. First, we go through the encoding of a speci�c exampleto make the general ideas and intuitions clear (Section 4.2.1). In the second step,we present a systematic encoding and prove its correctness (Section 4.2.2). For thecasual reader, it will be much more worthwhile to read the �rst part and the �rstpage or so of the second than the rest of the second part, as the correctness proofis rather tedious and does not provide any new insights.

80 CHAPTER 4. COMPLEXITY OF DOMINANCE CONSTRAINTS4.2.1 An ExampleTo prove the NP-hardness of the satis�ability problem of dominance constraints,we reduce the problem 3SAT, which is well known to be NP-complete, to it. 3SATis the satis�ability problem of propositional formulae in conjunctive normal form,where every conjunct is a disjunction of exactly three literals. This special typeof conjunctive normal form is called 3-CNF. To �x names and avoid confusion, wede�ne the syntax of 3-CNF formulae as follows:formulae = C1 ^ : : : ^ Cmclauses Ci = Li1 _ Li2 _ Li3literals Lij = Xk or �Xk:We write �Xi to mean the negation of the variable Xi; we assume that the variablesthat occur in are X1; : : : ; Xn. As an alternative representation of a literal, wewill sometimes write X t, where X is a variable and t 2 ftrue; falseg is a truthvalue. We take Xtrue to mean X and X false to mean �X; so for any t, tt = true.The central construction that we use to model clauses even in the conjunctive lan-guage of dominance constraints is the dominance triangle. This is a subconstraintwhose graph looks like this:f � X1� � f � X2f � X3f � X4� � � �If (M�; �) is a solution of this constraint, � must map exactly one of the variablesX2; X3; X4 to the same node as X1 because �(X2) must be a pre�x of �(X1), whichin turn must be a pre�x of �(X4). We can exploit this e�ect to model three-waydisjunction { just what we need to encode a clause.As an example of a 3-CNF formula, let us consider the formula in (4.1).(4.1) (X1 _ �X2 _X3) ^ (�X1 _X2 _X3)The constraint graph in Fig. 4.2 represents the dominance constraint ' which isthe encoding of . We are drawing the constraint graph in a somewhat simpli�edmanner by leaving away all labels of inner nodes and most variable names; allinner nodes should be read as being labeled with a �xed binary constructor f . Thesignature we use is ff :2; true:0; false:0g.

4.2. NP-HARDNESS 81

b

b

b

bb

b

b

bb

b

b

bb

b

b

bb

b

b

bb

b

b

bb

b

b

b

b

bb

bb

b

b

bb

b

b

b

b

bb

b

b

bb

b

b

b

b

bb

b

b

bb

b

b

bb

b

b

b

b

bb

bb

b

b

bb

b

b

bb

b

b

b

b

b

b

bb

b

b

b

b

bb

b

b

bb

b

b

b

b

b

b

bb

b

b

bb

b

b

b

b

bb

b

b

bb

b

b

b

b

b

b

bb

b

b

bb

b

b

bb

b

b

b

X1X2X3
C1
C2

L11L12L13 L21L22L23
S S11 S12 S13 S21 S22 S23true false true false true trueFigure 4.2: An encoding of (X1 _ �X2 _ X3) ^ (�X1 _ X2 _ X3) as a dominanceconstraint.

We claim that ' is satis�able i� is satis�able. To understand this, let us take acloser look at the various parts of the diagram.The lower left part of the graph (below the node S) holds a variable assignment:For each of the variables Xk that occur in , there is one node. In a solution, eachof these nodes must be labeled with either true or false, but not both.We can view as a constraint on admissibility of variable assignments by callinga variable assignment admissible if it satis�es . Each clause imposes such arestriction on the variable assignments; within a clause, we have a choice betweenthree di�erent options for satisfying the constraint.The dominance constraint expresses the very same thing.Because it is part of a dominance triangle, C1 must be identi�ed with one of theL1j in any solution. But once we have identi�ed C1 with one of the three L1j,we have decided which of the clause C1's literals we want to satisfy: The rightdaughter of the chosen L1j node is identi�ed with S, some entries in the variableassignment subtree may be skipped, and then a value restriction is imposed onone of the variables Xk. In the example, L11 forces the label of X1 to be true;L12 forces the label of X2 to be false; etc. We have imposed a constraint on thevariable assignment that is obviously equivalent to that imposed by the �rst clausein .

82 CHAPTER 4. COMPLEXITY OF DOMINANCE CONSTRAINTSThe second clause is represented similarly: The dominance triangle between L21,C2, and L23 allows a choice which literal of this clause we want to satisfy. Whicheverliteral we pick, its right daughter �rst skips the entry for C1 (identifying S withone of the S2j), and then it selects a variable entry and imposes a value constraint.An important detail of this encoding is the presence of more nodes than just theCi in the main branch of the graph (for example, there are two additional nodesbetween C1 and C2 in the constraint graph). These nodes are \rubbish dumps"which can be used to store unneeded material in such a way that it won't interferewith anything else. Suppose we identi�ed C1 and L12 in a solution of '. ThenL11 will be identi�ed with the left daughter of C1, and L13 will be identi�ed withthe mother of C1. Clearly, we do not want any other part of the constraint tosay anything about the right child of C1's mother because otherwise, we mightrun into unnecessarily unsatis�able dominance constraints. This means that aboveeach Ci node, we need two additional nodes to drop material from the identi�cationprocess. We do not need any additional nodes below the Ci because the unnecessarymaterial is then a left child of the selected literal node and can safely be storedbelow Ci's left daughter.To summarize, the encoding of 3-CNF formulae as dominance constraints consists ofthe following parts: a) a dedicated subtree to hold variable assignments; b) for eachclause, a dominance triangle to allow the selection of literals; c) for each literal,a subtree that skips lower clauses, selects a variable in the variable assignmentsection, and imposes a value restriction on this variable. It is intuitively clear that and ' are satisfaction equivalent; unsatis�ability of means that one variablewould necessarily have to take two values at once, and in such a situation, thelabeling requirements on the representing node in ' would clash as well.4.2.2 NP-Completeness of Dominance ConstraintsNow that we have made the intuition clear, we de�ne a systematic encoding andprove its correctness.In a simple way, we build the constraint graph that corresponds to ' from the\building blocks" in Fig. 4.3. Larger building blocks can include several copiesof smaller building blocks. For most of the building blocks, we have speci�edwith arrows an upper and a lower attachment site where it can be composed withother blocks by identifying the two attachment sites; we write such compositions astrees whose labels are the two building blocks. Furthermore, we take a block with asuperscript s (such as Skip with superscript i�1 in Xi) to mean s-fold compositionof building blocks. So we want the Xi block to consist of i � 1 occurrences of

4.2. NP-HARDNESS 83Skip: Xi: �Xi: SkipC:�� � Skip i�1�true � � Skip i�1�false � � ���� � � �
Ck = (Lk1 _ Lk2 _ Lk3): ' = C1 ^ : : : ^ Cm:

b

b

b

bb

b

b

bb

b

b

b

b

bb

bb

b

b

bSkipC k�1Lk1
b

bSkipC k�1Lk2
b

bSkipC k�1Lk3
CmCm�1...C1Skip nFigure 4.3: Building blocks for the encoding of 3SAT as a dominance constraint.

Skip blocks and two additional nodes that are immediate children of the lowestattachment site in the sequence of Skips, the left of which is labeled with true.It is easy to see that the constraint graph from the previous section was builtaccording to this scheme. The overall structure consists ofm entries for the clauses,below which n Skip blocks hold a variable assignment. Within each Ci block,there is a dominance triangle that allows the selection of a literal, together with asu�cient number of SkipC blocks to skip lower clauses. Finally, the encoding of aliteral selects a propositional variable and imposes a value restriction.After the intuitive explanation in the previous section, it should be rather straight-forward to see how the encoding works. Below, we prove more formally that it iscorrect, but the proof provides no further insights and can be safely skipped. Evenso, we may not always spell out every single detail.Soundness. First, we show a soundness result: If is satis�able, ' is satis�ableas well. (We will show the corresponding completeness result below.) To this end,

84 CHAPTER 4. COMPLEXITY OF DOMINANCE CONSTRAINTSwe assume that is satis�ed by a valuation V and explicitly construct a pair(M; �) of a tree structure and a variable assignment that satis�es '. As V satis�es , every clause Ck of contains one literal Lkjk that is satis�ed by V . Even ifthe result looks a bit intimidating, it is helpful to write down the entire constraintexplicitly instead of relying on the constraint graph, which we do now. Throughoutthe proof, we will say that the variable involved in the literal Lkl is Xhkl and itspolarity is tkl; in other words, Lkl = X tklhkl.First of all, let us �x a set of variables for use in the constraint representation of '.We will use �ve di�erent families of variables, V A, C, SC, LI, and SK; a variableof a family A has the name XA and typically several additional indices. Eachfamily of variables corresponds roughly to one of the building blocks; indices insuperscript indicate di�erent instances of the same building block, whereas indicesin subscript indicate di�erent positions in an instance of a building block. Moreprecisely, the variables we use are the following:variables ranges encodings of : : :XC;k1;::: ;14 1 � k � m CkXV A;l1;::: ;3 1 � l � n variable assignmentXSC;k;l;i1;::: ;7 1 � k � m; l = 1; 2; 3; 1 � i � k � 1 i-th SkipC block for literal LklXLI;k;l1;::: ;3 1 � k � m; l = 1; 2; 3 lower part of block for LklXSK;k;l;i1;::: ;3 1 � k � m; l = 1; 2; 3; 1 � i � hkl � 1 i-th Skip in Lkl block.Using these variables, the encoding ' can be written as follows:Vnl=1XV A;l1 :f(XV A;l2 ; XV A;l3) ^Vnl=2XV A;l1 =XV A;l�13^ Vmk=1(XC;k1 :f(XC;k2 ; XC;k3) ^XC;k2 :f(XC;k4 ; XC;k5) ^XC;k4 :f(XC;k6 ; XC;k7))^ Vmk=2XC;k7 =XC;k�11 ^XC;17 =XV A;11^ Vmk=1(XC;k8 :f(XC;k9 ; XC;k10) ^XC;k9 :f(XC;k11 ; XC;k12) ^XC;k11 :f(XC;j13 ; XC;k14)^ XC;k14 =XSC;k;1;11 ^XC;k12 =XSC;k;2;11 ^XC;k10 =XSC;k;3;11^ XC;k8 ��XC;k4 ^XC;k4 ��XC;k11)^ Vmk=1V3l=1Vk�1i=1 (XSC;k;l;i1 :f(XSC;k;l;i2 ; XSC;k;l;i3) ^XSC;k;l;i2 :f(XSC;k;l;i4 ; XSC;k;l;i5)^ XSC;k;l;i4 :f(XSC;k;l;i6 ; XSC;k;l;i7))^ Vmk=1V3l=1Vk�1i=2 XSC;k;l;i1 =XSC;k;l;i�17^ Vk;l�Vhkl�1i=1 XSK;k;l;i1 :f(XSK;k;l;i2 ; XSK;k;l;i3)^ Vhkl�1i=2 XSK;k;l;i1 =XSK;k;l;i�13 ^XSK;k;l;11 =XSC;k;l;k�17^ XLI;k;l1 =XSK;k;l;hkl�13 ^XLI;k;l1 :f(XLI;k;l2 ; XLI;k;l3) ^XLI;k;l2 :tkl�

4.2. NP-HARDNESS 85Now we de�ne a satisfying tree structure and variable assignment. First, we de�neauxiliary trees S(k; j; t) inductively in the following way:S(1; 1; t) = f(t; false)S(1; j; t) = f(false; S(1; j � 1; t))S(k; j; t) = f(f(f(false; S(k � 1; j; t)); false); false):(Intuitively, S(k; j; t) consists of �rst k � 1 SkipC blocks, then j � 1 Skip blocks,then f(t; false), where all open leaves have been labeled with false. This is justthe structure around the Lkl blocks in the diagrams.)Now we inductively de�ne trees �0; �1; : : : ; �m in the following way:�0 = f(V (X1); f(V (X2); : : : ; f(V (Xn; false)) : : :)�k = f(f(f(Dk1; �k�1); Dk2); Dk3);where the de�nition of the subtrees Dki depends on the index jk of the satis�edliteral: Dk1 = 8><>:false if jk = 1f(false; S(k; hk1; tk1)) if jk = 2f(f(false; S(k; hk1; tk1)); S(k; hk2; tk2)) if jk = 3;Dk2 = 8><>:S(k; hk2; tk2) if jk = 1S(k; hk3; tk3) if jk = 2false if jk = 3;Dk3 = (S(k; hk3; tk3) if jk = 1false otherwise.Let � = �m, and let M =M�. The following lemma holds about these trees.Lemma 4.17. 1. For any k; j; t, the domain of S(k; j; t) isSk�2i0=0(112)i0 � f�; 1; 2; 11; 12; 111g[(112)k�1 �Sj�1j0=0f2j0; 2j01g[f(112)k�1 � 2jg:2. The domain of �0 is n[j=0f2j; 2j1g [f2n+1g:

86 CHAPTER 4. COMPLEXITY OF DOMINANCE CONSTRAINTS3. For any k; j; t, S(k; j; t)((112)k�1 � 2j�1 � 1) = t:4. For any k; l, �0(2hkl�1 � 1) = tkl:Proof. 1. We proceed along the various stages of the de�nition. Clearly, thedomain of S(1; 1; t) is f�; 1; 2g.For j > 1, the following recursive relation about the domain of S(1; j; t) holds:Dom(S(1; j; t)) = f�; 1g [2 �Dom(S(1; j � 1; t)):By induction over j, it follows easily thatDom(S(1; j; t)) = j�1[i=0f2i; 2i1g [f2jg:Similarly, the following recursive relation about the domains of the S(k; j; t)(for k > 1) is obvious:Dom(S(k; j; t)) = f�; 1; 2; 11; 12; 111g [112 �Dom(S(k � 1; j; t)):Another induction (this time over k) proves the equation in the lemma. Asthe base case of this induction, we use the general equation for the domainof S(1; j; t).3. Follows by induction. The claim is obvious for j = k = 1; we can proveit for arbitrary j by induction (as in the �rst claim), and then by anotherinduction, for arbitrary k.2.,4. Obvious.Now we de�ne a variable assignment � by de�ning the path that is assigned toeach variable.

4.2. NP-HARDNESS 87var �(var) var �(var)XC;k1 (112)m�k XC;k8 (112)m�k � 1jk�1XC;k2 (112)m�k � 1 XC;k9 (112)m�k � 1jk�1 � 1XC;k3 (112)m�k � 2 XC;k10 (112)m�k � 1jk�1 � 2XC;k4 (112)m�k � 11 XC;k11 (112)m�k � 1jk�1 � 11XC;k5 (112)m�k � 12 XC;k12 (112)m�k � 1jk�1 � 12XC;k6 (112)m�k � 111 XC;k13 (112)m�k � 1jk�1 � 111XC;k7 (112)m�k � 112 XC;k14 (112)m�k � 1jk�1 � 112XSC;k;l;i1 �(XC;k8) � 13�l � 2 � (112)i�1 XV A;l1 (112)m � 2l�1XSC;k;l;i2 �(XC;k8) � 13�l � 2 � (112)i�1 � 1 XV A;l2 (112)m � 2l�1 � 1XSC;k;l;i3 �(XC;k8) � 13�l � 2 � (112)i�1 � 2 XV A;l3 (112)m � 2l�1 � 2XSC;k;l;i4 �(XC;k8) � 13�l � 2 � (112)i�1 � 11 XSK;k;l;i1 �(XSC;k;l;k�17) � 2i�1XSC;k;l;i5 �(XC;k8) � 13�l � 2 � (112)i�1 � 12 XSK;k;l;i2 �(XSC;k;l;k�17) � 2i�1 � 1XSC;k;l;i6 �(XC;k8) � 13�l � 2 � (112)i�1 � 111 XSK;k;l;i3 �(XSC;k;l;k�17) � 2i�1 � 2XSC;k;l;i7 �(XC;k8) � 13�l � 2 � (112)i�1 � 112XLI;k;l1 �(XSK;k;l;hkl�13)XLI;k;l2 �(XSK;k;l;hkl�13) � 1XLI;k;l3 �(XSK;k;l;hkl�13) � 2We claim that (M; �) satis�es ', and we show this by verifying that every singleconjunct is satis�ed. But �rst, we must verify that every path that � assigns to avariable really exists in M.Lemma 4.18. 1. For every 0 � r � m, �:(112)r = �m�r.2. For every variable X that appears in ', � is de�ned on �(X).Proof. 1. If k is an arbitrary number between 1 and m, we know by de�nitionthat �k:112 = �k�1. The claim follows by induction over r.2. We prove the claim separately for each family of variables. We write XF;:::for an arbitrary variable XF;:::i of the family F .XV A;l. By the �rst part of this lemma, all the �:�(XV A;l) are de�ned i� allthe �0:(2l�1 � f�; 1; 2g) are. But as l � n, all of these paths are de�nedby Lemma 4.17.XC;k. The de�nedness of the paths assigned to XC;k1 ; : : : ; XC;k7 follows fromthe �rst part of the lemma and the de�nition of �k. For the othervariables XC;k, we distinguish cases by the value of jk and verify thede�nedness of the paths 1jk�1 � f�; 1; 2; 11; 12; 111; 112g in �k.

88 CHAPTER 4. COMPLEXITY OF DOMINANCE CONSTRAINTSjk = 1. Obvious; we don't even have to look inside the Dki.jk = 2. De�nedness of most paths is obvious without looking inside theDki. The only interesting cases are the paths 1111 and 1112, whichare de�ned i� the paths 1 and 2 are de�ned in Dk1, which is thecase for jk = 2.jk = 3. The interesting cases are the four paths 1111; 1112; 11111; 11112.They are de�ned in �k i� the paths 1; 2; 11; 12 are de�ned in Dk1,which they are for jk = 3.XSC;k;l;i. The paths that are assigned to these and the next two families ofvariables all start with p(m; k; l) = (112)m�k � 1jk�l+1 � 2. By inspectionof the structure of the �k and Dki, we notice that�:p(m; k; l) = (�k�1 if jk = l;S(k; hkl; tkl) otherwise.Now, suppose that jk = l. Then the paths assigned to the variableXSC;k;l;i are de�ned in � i� the paths �; 1; 2; 11; 12; 111; 112 are de�nedin �k�i, by the above equation for �:p(m; k; l) and the �rst part of thislemma; clearly, this is true. On the other hand, if jk 6= l, de�nedness ofthese paths follows from Lemma 4.17.XSK;k;l;i. First, consider the case of jk = l. Then by the above result aboutp(m; k; l) and the �rst part of this lemma, the �:�(XSK;k;l;i) are de�nedi� all paths 2i�1 � f�; 1; 2g are de�ned in �0. But by assumption, i � n,so by Lemma 4.17, this is true.On the other hand, suppose jk 6= l. Then the path is de�ned i� all paths2i�1 � f�; 1; 2g are de�ned in S(k; hkl; tkl); as i � hkl � 1, this is true byLemma 4.17.XLI;k;l. Analogous to the previous case.An immediate consequence of the de�nition of � and Lemma 4.18 is that all binarylabeling constraints in ' are satis�ed by (M; �): It is easily veri�ed that all vari-ables that appear as parents in a binary labeling constraint denote internal nodes,and hence, must be labeled with f . To prove that (M; �) satis�es ', it remains toverify the equivalence (=), dominance, and unary labeling constraints in '.By de�nition, an equivalence constraint X=Y is satis�ed by (M; �) i� �(X) =�(Y). � satis�es this condition, as is easily veri�ed for every equivalence constraint

4.2. NP-HARDNESS 89in '. For dominance constraints X��Y , we require that �(X) � �(Y); for thedominance constraints in ', this is true, as�(XC;k8) = (112)m�k � 1jk�1�(XC;k4) = (112)m�k � 11�(XC;k11) = (112)m�k � 1jk�1 � 11;and jk � 1 � 2. Finally, consider the unary labeling constraints; we need to showthat for all k; l, �(�) = tkl;where � = �(XLI;k;l2) = p(m; k; l) � (112)k�1 � 2hkl�1 � 1. This is equivalent to provingthat (�:p(m; k; l))((112)k�12hkl�11) = tkl, which we do for both possible cases ofthe relation of jk and l:jk = l. As we have seen in the proof of Lemma 4.18, �:p(m; k; l) = �k�1, so�:(p(m; k; l) � (112)k�1) = �0. But as Lemma 4.17 expresses, the label ofthe node selected in �0 by the path 2hkl�11 is tkl.jk 6= l. We know that �:p(m; k; l) = S(k; hkl; tkl). By Lemma 4.17, the rest of thepath selects a subtree with root label tkl in this tree.Hence, all atomic conjuncts of ' are satis�ed, which completes the proof of sound-ness.Completeness. We now show that if ' is satis�able, is as well. For this proof,we proceed in three steps:1. There is a solution of a slightly restricted form that essentially looks like the�k's we de�ned in the soundness proof. We call this solution (M�; �).2. For every 1 � k � m, there is a jk 2 f1; 2; 3g such that the jk-th literal node(i.e., XC;k8 , XC;k9 , or XC;k11) is identi�ed with XC;k4 . Let Lkjk = X tj .3. For this jk, �(XLI;k;jk2) = �(XV A;j2).Once we have completed these three steps, the rest of the proof is simple. If wede�ne a propositional valuation V to map a variable Xj to �(�(XV A;j2)), we knowby the third part of the proof that V j= Lkjk for all k. As V satis�es a literal ofeach clause of the formula, it also satis�es the entire formula.

90 CHAPTER 4. COMPLEXITY OF DOMINANCE CONSTRAINTSFor the �rst part, let (M�0 ; �0) be a solution of '. It is easy to see that for all2 � k � m, there are trees �k1; �k2; �k3 such that�0:�0(XC;k1) = f(f(f(�k1; �0:�0(XC;k�11)); �k2); �k3):For let 2 � k � m be arbitrary, then if we call � = �0(XC;k1), the satis�edness ofthe labeling and equivalence constraints in ' requires the following assignments ofpaths and labels: var �0(var) labelXC;k1 � fXC;k2 �1 fXC;k3 �2XC;k4 �11 fXC;k5 �12XC;k6 �111XC;k7 �112XC;k�11 �112This implies not only the above structure of the trees, but by a simple inductionover k, also the relation �0(XC;k1) = (112)m�k:By the same argument, there are trees �11; �12; �13 such that�0:�0(XC;11) = f(f(f(�11; �0:�0(XV A;11)); �12); �13):Furthermore, �0(XC;m1) must dominate all other variables. So if we call � =�0:�0(XC;m1) and let � be such that �0(X) = �0(XC;m1)��(X), we know that (M�; �)satis�es ' as well.For the second point, the following relations must hold to satisfy ':�(XC;k8) � �(XC;k4) � �(XC;k11) = �(XC;k8) � 11:Furthermore, �(XC;k9) = �(XC;k8)�1. So �(XC;k4) must be identical to the denotationof one of the other three variables. Let a be the function that maps literal indicesto their respective variable indices (for example, it maps 3 to 8), then pick jk suchthat �(XC;k4) = �(XC;ka(jk)).Finally, we prove the third part by a series of arguments similar to the main ar-gument of the �rst part: From the satis�edness of ', we derive relations between

4.3. IMPLEMENTATIONS 91the paths denoted by variables X ::: ;r;:::1 and X ::: ;r�1;:::1 and use inductions to extendthis to a result for the path denoted by a variable X ::: ;r�s;:::1 . We will not spell outthese arguments in detail any more.We can conclude that �(XC;k4) = (112)m�k � 11. In particular, �(XC;14) =(112)m�1 �11, so �(XV A;11) = (112)m. This implies that �(XV A;j2) = (112)m �2j�1 �1.Furthermore, we know that �(XC;ka(jk)) = �(XC;k4) = (112)m�k � 11; we concludethat �(XSC;k;jk;11) = (112)m�k+1. By two more inductions, we can concludethat �(XSK;k;jk;11) = (112)m (by going through k � 1 SkipC blocks) and that�(XLI;k;jk1) = (112)m � 2j�1 (by going through j � 1 Skip blocks). So by the re-spective binary labeling constraint, �(XLI;k;jk2) = (112)m � 2j�11, as we wanted toshow.This concludes the proof of completeness. Taking all the results from this and theprevious section together, we have just shown:Theorem 4.19. The satis�ability problems of the language of dominance con-straints and of the language of conjunctions and disjunctions over dominance con-straints are NP-complete. If the signature is �nite, the satis�ability problems of thepropositional language over the dominance constraints and of the positive existentialfragment are NP-complete, as well.4.3 ImplementationsTo close our discussion of the problem of solving dominance constraints, we brie
ygo into how they can be implemented by constraint programming, as laid out byDuchier and Gardent (1999). Furthermore, we brie
y show how to implementcontext uni�cation, as presented by Koller (1998). We will not go into eitherimplementation very deeply, but refer the reader to the respective articles.4.3.1 Implementing Dominance ConstraintsThe algorithm for solving dominance constraints that we have presented in Section4.1 guesses for each pair of variables if one dominates the other in its �rst step.This makes the proof of termination in NP time very convenient, but renders thealgorithm useless for implementation.Koller et al. (1998) present another algorithm for solving dominance constraintswhich replaces this guessing step by a set of distribution rules. The strategy ofthis algorithm is to apply propagation rules, starting with the original constraint,

92 CHAPTER 4. COMPLEXITY OF DOMINANCE CONSTRAINTSuntil no further rules can be applied; if the result does not contain false, onedistribution rule is applied, and the process starts over. This strategy of \propagate& distribute" is the basic paradigm of Constraint Programming.A language that provides very powerful constraint programming techniques is theconcurrent programming language Oz (Smolka 1995; Oz Development Team 1999).Its basic programming model is that a set of concurrent threads operate on aconstraint store. If one of these \agents" detects a certain situation in the constraintstore, it can add more information to the store. The propagation and clash rules ofthe solution algorithm can be programmed very elegantly as agents that wait forthe rule preconditions to be present in the constraint and then add the right-handsides. Once no agent can contribute any more information, a distribution rule canbe applied to distinguish cases.One particularly nice feature of Oz is that it provides set constraints (M�uller andM�uller 1997). These constraints allow to express equations and inequations betweenterms (such as unions and intersections) over variables that denote �nite sets ofintegers, as well as (non-)membership of integers in these sets. The implementationof set constraints used in Oz is very e�cient.Set constraints have an immediate application to a solver for dominance constraints,as noticed by Denys Duchier (Duchier and Gardent 1999). We can associate ev-ery variable X of a dominance constraint with set variables that denote the setsof variables denoting nodes equal to, properly above, properly below, and in dis-joint positions of the node denoted by X, respectively. We can then translate alldominance constraints to set constraints of their associated set variables.For example, we can say that for each node variable X, its associated set variablesmust form a partition of the set of all variables in the dominance constraint. Fur-thermore, a dominance constraint X��Y translates to a conjunction that expressesthat all variables that dominate X must also dominate Y , all variables dominatedby Y must also be dominated by X, and all variables that are disjoint to X mustalso be disjoint to Y .Finally, a distribution rule can be added by taking into account that any twovariables X; Y must either denote the same node, X must properly dominate Y , Ymust properly dominateX, orX and Y must be disjoint. Whenever no propagationrule can contribute information, these cases are tested in turn, producing newinformation in each case.Despite the general intractibility of the problem that we have proved in the pre-vious section, the implementation runs very e�ciently on real problems from thelinguistic domain (see Fig. 4.5).

4.3. IMPLEMENTATIONS 93(Subst) X=t �! true if X does not appear free in t j X 7! t(Decomp) a(t1; :::; tn)=a(t01; :::; t0n) �! Vi=1::n ti=t0i j Id(Proj) t=C(t0) �! t=t0 j C 7! �X:X(Imit) a(t1; :::; tn)=C(t0) �! ti=C 0(t0) j C 7! �X:a(t1; ::; ti�1; C 0(X); ti+1; ::; tn)(Flex-Flex1) C(t)=C 0(t0) �! t=C 00(t0) j C 0 7! �X:C(C 00(X))(Flex-Flex2) C(t)=C 0(t0) �! true j C 7! �Y:C1(a(�(X;C2(Y); C3(t0))));C 0 7! �Z:C1(a(�(X;C2(t); C3(Z))))where � is a permutationFigure 4.4: The algorithms for context uni�cation. The rules below the line areremoved to make the complete algorithm more tractable.
4.3.2 Implementing Context Uni�cationAs we have seen in Chapter 2, the CLLS analysis of ellipsis relies on parallelismconstraints, which we have shown to be equivalent to context constraints in theprevious chapter. So even if the problem turns out to be decidable, we are con-fronted with a much higher level of intractibility when attempting to implementthem; but it is nonetheless necessary, and with some e�ort, it can be done withreasonable e�ciency. As there is currently no known solution procedure for solvingparallelism constraints, we present an implementation for the equivalent problemof context uni�cation.Fortunately, even though the problem is not known to be decidable, there areknown complete solutions algorithms; however, they do not necessarily terminate.One such procedure, taken from (Niehren et al. 1997a), is shown in Figure 4.4.Implemented in its raw form, however, this procedure not only does not necessarilyterminate, but even for the cases when it does terminate, it su�ers from two majorproblems:1. Massive overgeneration: The implementation does not output minimal ormost general solutions of any kind, but a wide variety of (linguistically unin-teresting) partial instantiations.

94 CHAPTER 4. COMPLEXITY OF DOMINANCE CONSTRAINTS(1) Every man loves a woman.(2) Every researcher of a company saw most samples.(3) Peter likes Mary. John does too.Ex. (1) Ex. (2) Ex. (3)Implementation fail sol time fail sol time fail sol timecomplete CU 3000 600 40 sec n/a 13000+ 2200+ 2+ hrsmodi�ed CU 71 2 1 sec 6500 5 40 sec 111 2 1 secdom. constraints 0 2 < 1 sec 0 5 1 sec n/aFigure 4.5: Comparison of the performance of the implementations for dominanceconstraints and context uni�cation.
2. Enormous runtimes: It takes about 40 seconds to solve even the simplestscope ambiguity, and Hirschb�uhler sentences take hours.In (Koller 1998), both of these problems were alleviated. To solve the �rst prob-lem, a step was made from considering (encodings of) untyped lambda terms asthe space of possible solutions to restricting the possible solutions to well-typedlambda terms. Because the terms are present in an encoded form, a distinctionwas made between � -types of subtrees and �-types of constructors f , describing howto compute the � -type of the tree f(t1; : : : ; tn) from those of the trees t1; : : : ; tn;the syntax of these types was as follows:� ::= e j t j h�1; �2i� ::= h�1; : : : ; �ni � (n � 0):By requiring all solutions to be well-typed, the number of solutions was cut downimmensely, the only type of wrong solutions that were still found being those thatinvolved additional quanti�ers while still being well-typed.The second problem was addressed by a more drastic measure: The last two rulesof the algorithm, which contributed most to the nondeterminism that made thesearch space that the implementation had to traverse so huge, were removed. Thisrendered the implementation incomplete, but on all examples that were tested, thelinguistically relevant solutions were still found. A reason for this is that the �rstremoved rule can be simulated in a way by sequences of Imitation and Projection

4.4. CONCLUSION 95rules, and the second removed rule invents new material and introduces it into asolution; in the linguistic application, this is only warranted in very special cases.These two changes to the algorithm made its runtimes much more pleasant (and inmost cases, feasible at all). Fig. 4.5 shows a comparison of the performance of thecomplete and the modi�ed algorithm; for each implementation and each example,the number of failed search paths, the number of found solutions, and the runtimeare shown. But the table also shows that on scope ambiguities, where the solverfor dominance constraints can be applied as well, the latter by far outperformseven the streamlined implementation of context uni�cation. This gives rise tothe hope that once it is known how to solve parallelism constraints, a combinedimplementation that solves the entire language of CLLS will perform much betterthan the implementation of CU.4.4 ConclusionIn this chapter, we have analyzed the complexity of various logical languages overthe dominance constraints. We have shown for all languages between the purelyconjunctive constraint language and the positive existential fragment that thisproblem can be decided in NP by a saturation algorithm (in the latter cases, onlyif the signature is �nite) and that it is NP-hard, as we can use it to express thesatis�ability problem of formulae of propositional logic in 3-CNF. Finally, we havesketched implementations that solve dominance and context constraints.In the light of this complexity result, it is natural to look into analogous resultsabout the full �rst-order language, for which not even decidability is obvious. Infact, it has been known for a while that the problem is decidable. Backofen et al.(1995) have given an axiomatization of the �rst-order theory of dominance con-straints over �nite trees, and while this axiomatization is not complete, we caninterleave steps of �rst-order deduction over this set of axioms (which will eventu-ally show validity if a formula is valid) and steps of enumerating all �nite trees andchecking satis�edness (which will eventually show that the formula is not valid ifit isn't) to obtain a decision procedure (Backofen, personal communication). Thisproof, however, is hardly straightforward and does not say anything about thecomplexity of the problem.Koller et al. (1998) remedy this situation by giving a more straightforward proofof the decidability and pinpointing the complexity of the problem to be non-elementary (i.e. there is no tower of exponentials of any �xed height that isn'texceeded by the running time for large instances). The decidability proof general-izes a similar result by Rogers (1994), who showed decidability for �nite signatures

96 CHAPTER 4. COMPLEXITY OF DOMINANCE CONSTRAINTSby encoding dominance constraints in the monadic second-order logic SnS, whichwas shown to be decidable by Rabin (1969), to signatures of bounded arity. Thekey idea of the complexity proof is to encode the equivalence problem of regularlanguages with concatenation, union, and complement, as �rst-order dominanceformulae.This yields the following state of a�airs in the complexities of languages over thedominance constraints:� The satis�ability problems of dominance constraints and, if the signatureis �nite, also of the propositional language over dominance constraints andof the positive existential fragment over the dominance constraints are NP-complete.� The satis�ability (and validity) problem of the �rst-order language over thedominance constraints is decidable and has non-elementary complexity.� The satis�ability problems of all languages over dominance constraints withprecedence (Section 2.1.5) are in the same complexity classes as their coun-terparts over our variant of dominance constraints. We have seen in Section2.1.5 that it is easy to express our dominance constraints in this language;on the other hand, we can also encode precedence constraints as dominanceconstraints once we have access to disjunction, and the latter can be decidedin NP.One important restriction that we made throughout the chapter was that the signa-ture must contain one constructor of arity at least 2. This restriction was necessaryboth to simulate constructors of arbitrary arity in the completeness proof of thealgorithm and to make space for the \rubbish dumps" in the NP-hardness proof; itis also necessary for the proof of non-elementarity of the �rst-order language. Whilethe problem is clearly still in NP if we leave this restriction away, it is unclear if wecan maintain the NP-hardness result. From a practical perspective, however, thisquestion is of marginal interest.An open question of immediate practical impact is if the complexity can be re-duced by su�cient amounts of inequality constraints between variables to preventthe overlaps or variable identi�cations that were so crucial in our encoding. Inparticular, it is unclear if the complexity of dominance constraints doesn't becomedeterministically polynomial if for any two variables that participate in a labelingconstraint, we impose an inequality constraint. We will come back to this re-striction, which seems to be harmless for the linguistic application and essentiallyreduces the expressive power of dominance constraints to that of Hole Semanticsor UDRT, in a broader context in the concluding chapter.

Chapter 5Conclusions and Outlook
5.1 SummaryIn this thesis, we have explored the formal properties of two computational logicsthat have been used as representation formalisms in natural-language semantics.First, we have shown that CLLS0, the fragment of the language CLLS that talksabout trees (and not the more powerful lambda structures), is equivalent to the lan-guage of context uni�cation, thereby establishing that both satis�ability problemshave the same complexity. Afterwards, we have considered dominance constraints,the most interesting sublanguage of CLLS0. We have proved that their satis�a-bility problem is NP-complete; along the way, we have also shown how to decidesatis�ability and how to implement this in a way that runs e�ciently for linguisticproblems. Both of these results are of general interest, especially the second one,as dominance constraints are widely used in computational linguistics.Within the CHORUS project, an additional bene�t of the result of equivalencebetween the two representation languages is that old results and analyses can es-sentially be taken over; the migration to a new formalism has not changed theexpressive power. However, the CLLS analysis of, say, scope ambiguities is actu-ally simpler than the CU one. The CU analysis of scope ambiguities in (Niehrenet al. 1997b) avoids the problems addressed in Section 2.4, but is rather intrans-parent. As we have argued in Chapter 2, this is so because it is just the encodingof a dominance constraint. So in truth, the equivalence result is not really usefulfor taking over older analyses into the new formalism, but for an a posteriori jus-ti�cation of the old analyses based on the new one. This result also establishesa connection between the language CLLS and the ongoing research on the formalproperties of context uni�cation. 97

98 CHAPTER 5. CONCLUSIONS AND OUTLOOKAs CHORUS also strives to achieve computational feasibility, the investigation ofthe computational complexity of the formalisms used is clearly of central relevancefor the project as well. Our result about the complexity of solving dominanceconstraints comes as a slightly inconvenient truth in this respect, but as we haveseen, implementations of the dominance constraints that we really see are e�cientanyway.5.2 Further WorkThere are a number of highly interesting open questions that will be considered inthe next phase of the CHORUS project. Here, we brie
y discuss some of them,especially inasmuch as they are related to the results in this thesis, and considerideas for answering them. Most of the space will be devoted to perspectives fordirect deduction and underspeci�ed beta reduction; but we will also consider lin-guistic issues and open questions of solving CLLS constraints (in extension to thesolution algorithm of Chapter 4).5.2.1 Constraint solvingThe solution algorithm for dominance constraints in Chapter 4 performs with pleas-ant e�ciency. However, some questions are still open: Why is it that despite theNP-hardness of the problem, the NP algorithm performs so well? How can we solveparallelism constraints? And �nally, is there a way to convert the algorithm to asolution algorithm for constraint graphs instead of constraints?Parallelism constraints. CLLS was designed as a description language not onlyfor scope ambiguities, but also for ellipses and anaphora. Clearly, one needs to beable to solve anaphoric and parallelism constraints to fully achieve this goal.While it seems to be fairly trivial to solve anaphoric constraints, it is currentlyunclear how parallelism constraints can be solved. This is not surprising, as theyapproach the di�cult problem of context uni�cation from an unusual direction. Aswe have shown in Chapter 3, we can always encode a CLLS constraint involvingparallelism as a context constraint and then solve the context constraint, but thisis neither conceptually nor computationally acceptable. So this problem will needto be investigated in the near future.

5.2. FURTHER WORK 99E�cient solution of dominance constraints. Furthermore, as we have saidvariously throughout the thesis, it is striking that although the problem of solvingdominance constraints is NP-hard, those dominance constraints that do appear inthe linguistic analysis can be solved e�ciently. It will be worthwhile to investigatewhat special property distinguishes the constraints in the linguistic applicationfrom the general case and makes the problem of solving them so easy, and toderive better complexity results for the restricted problem.A promising candidate for this property is to require that any two variablesthat participate in a labeling constraint in the same role must denote di�erentnodes { i.e., if a dominance constraint has both a conjunct X:f(X1; : : : ; Xn) andY :g(Y1; : : : ; Ym), X and Y must denote di�erent nodes, and any Xi and Xk musttoo, even if f and g are the same constructor. This can be expressed by inequalityconstraints. The relevance of this becomes apparent when we consider the frag-ments of the constraint graph, i.e. the maximal subgraphs that are connected withN-edges. Fragments correspond to parts of the tree that we describe (hence thename). If the constraint satis�es the above labeling condition, no solutions can beobtained by overlapping fragments. We can de�ne a fragment graph whose nodesare the fragments of the constraint graph and in which an edge is drawn fromone fragment to another if there is a dominance constraint between a node in the�rst fragment and one in the second, and solving the dominance constraint thendegenerates to a tree-like ordering of the fragments that respects the dominancerelations in the fragment graph. (This is exactly the same problem as disambiguat-ing underspeci�ed representations of Hole Semantics, where we have a partial orderon fragments to begin with.) While this is by no means certain, it does look likethis problem might be simpler than the general satis�ability problem of dominanceconstraints.Constraint graphs. This construction illustrates the importance of the graphview on dominance constraints that we have been using throughout the thesis.Unfortunately, the general notion of \constraint graph" has not yet been formallyde�ned. The reader may have noticed that while we have talked about the con-straint that corresponds to a given constraint graph (and considered the graphjust as a more intuitive notation), we have carefully avoided talking about theconverse construction, a constraint graph corresponding to a constraint. This isbecause there is considerable freedom in the degree of redundancy and explicityof representation one chooses in the de�nition of constraint graphs. For example,what should be the condition for drawing a dominance edge in the graph? Shouldwe do so exactly if there is a corresponding dominance constraint; should it bea very explicit representation with an edge for every entailed dominance relation(similarly to the graph G0 we de�ned in the completeness proof of the satis�ability

100 CHAPTER 5. CONCLUSIONS AND OUTLOOKalgorithm for dominance constraints); or should it be very irredundant and onlycontain a dominance edge if it can't be inferred from the rest of the graph (similarlyto the graph G in the completeness proof)? Similar problems arise for inequalityconstraints. It is unclear which choice leads to the most convenient de�nition.One particularly important aspect of this choice is that the resulting notion of con-straint graphs should admit a reasonably convenient algorithm for disambiguatingthem; we will see in our discussion of underspeci�ed beta reduction below thathaving such a solution algorithm on graphs can be very useful. A solution algo-rithm could be a graph rewriting system d that disambiguates the constraint byeliminating ambiguous subgraphs (e.g., nodes with two incoming edges). We cancall such a system sound and complete if its normal forms are solved forms (simi-larly to the de�nition in Chapter 4), and these solved forms correspond exactly tothe solutions of the underlying constraint. Typically, there will be more than oneresult of disambiguating the same ambiguous subgraph (this is what \ambiguity"means, after all); but sometimes, all but one of the options can be excluded, andwe call such a step a propagation step p. In a reasonable solution algorithm, itshould be possible to permute applications of p and d rules (but not necessarilyapplications of two di�erent d rules).Minimal solutions. One issue that we have only hinted at so far is that we stillhave no clear idea of what a \minimal solution" is. We brie
y used this notionin Section 2.2, where we wanted to exclude that arbitrary amounts of semanticmaterial could be �lled into the gaps left open by dominance constraints. It isobviously unsatisfactory to leave such an important point open, but unfortunately,there are at least two promising ways how we could de�ne \minimal", and bothhave their advantages.One of them is to require that all solutions must be formed with known material.Put more formally, this means that every node in a solution must be denoted bya variable that participates in a labeling constraint as the head. This de�nitioncorresponds nicely to the idea of solving a constraint by simply arranging thefragments of the constraint graph, because it implies that every node in a solutionmust correspond to one of the nodes in a fragment.The alternative is to de�ne some order on trees (or as it were, lambda structures)and to only consider solutions that are minimal with respect to this order. Forexample, we could only consider trees with a minimal number of nodes. Theadvantage of this version is that it works well with the ideas on reinterpretationthat we will sketch in the next section.

5.2. FURTHER WORK 101It should be noted that the choice among these alternatives for de�ning minimalitymakes a signi�cant di�erence. For example, there are constraints that are satis�able(and, hence, have minimal solutions by the second version of the de�nition), butthat do not have solutions that only use known material:(5.1) X:a ^ Y :bcan be solved over the tree f(a; b); but the root of this tree (which is labeled withf) is not mentioned in a labeling constraint and hence, was not built with knownmaterial.5.2.2 Linguistic coverageNow we will brie
y sketch three of the various linguistic perspectives of theCHORUS project: the modeling of dynamic semantics, reinterpretation, and syn-tax/semantics interaction.Dynamic semantics. As is well known, the potential positions of the antecedentof a given pronoun are restricted. For example, one common assumption that DRT(Kamp and Reyle 1993) and DPL (Groenendijk and Stokhof 1991) make about thisaccessibility relation is that the antecedent cannot appear within a disjunction,negation, or universal quanti�cation that precedes the anaphor. The way thatthis is usually modeled is by interpreting a sentence as an operator that changesthe anaphoric potential of the discourse, i.e. the list of potential antecedents foran anaphor in the next sentence; this \dynamic" interpretation is in contrast totraditional \static" semantic analyses.In our context, the most interesting aspect of these phenomena is that they interactwith scope ambiguities, as in the following discourse, where the anaphor restrictsthe source sentence to the reading that assigns a woman wide scope; in the otherreading, the antecedent would be located within a universal quanti�cation andhence, be inaccessible.(5.2) Every man loves a woman. Her name is Mary.One idea to model this interaction, which was presented in (Koller and Niehren1999), is to impose restrictions on the relation between the start and endnode of the (currently unrestricted) anaphoric links that CLLS uses to modelanaphor/antecedent relations. For example, it is straightforward to rewrite the

102 CHAPTER 5. CONCLUSIONS AND OUTLOOKDPL accessibility rules as conditions on paths in trees. With this de�nition, thereading of (5.2) that assigns every man wide scope would not be well-formed be-cause one would have to pass through a universal quanti�er on the way from theanaphoric node to the antecedent.Furthermore, it is not di�cult to de�ne a simple (incomplete) inference rule on theconstraint level that can make the e�ects of such an anaphoric link on the structureof a solution explicit as a dominance constraint. In our example, this rule wouldcause the disambiguation of the scope ambiguity on the level of underspeci�edrepresentations. The kind of constraint we need to express this is of the form(5.3) :(X��Y ^ Y��Z);it basically says that Y must not intervene between X and Z, and it seems tobe useful in a variety of other situations as well. We know from Section 4.1 thatadding disjunctions of negated dominance constraints does not a�ect the worst-case complexity of the satis�ability problem. In addition, it seems that even thee�cient actual running times of the implementation via set constraints that wesketched in Section 4.3.1 could be maintained.What is nice about this approach from a linguistic perspective is that it is verymodular: We can easily plug in whatever accessibility relation we want to. Onthe other hand, it is an important step towards a truly underspeci�ed account ofsemantics that we can resolve this kind of interaction between anaphora and scopewithout enumerating readings. Note, by the way, that we are only using the word\dynamic" in a very broad sense; our semantics is fully static (i.e., does not careabout context change potential).Even so, numerous questions about this issue are still open. For example, it is notentirely clear how we can account for sentences like(5.4) Every pilot who shot at it hit the MIG that chased him.that contain kataphoric references, and if we can still process this type of refer-ence e�ciently. Further open questions include how to raise the analysis to thehigher-order case, how to �nd antecedents if coindexation is not given, and accom-modation. We are only beginning to understand our analysis of these phenomena,and it will be intriguing to investigate it further.Reinterpretation. Consider the following example.(5.5) Wine is standing on the table.

5.2. FURTHER WORK 103In this sentence, it is not the liquid that is standing on the table, but a container,e.g. a bottle, that contains wine. The semantics of the container, which has noexplicit linguistic representation, is introduced by a so-called reinterpretation ofthe sentence; similar e�ects can take place for aspect.Traditionally, this kind of phenomenon is treated by destructively introducing areinterpretation operator into the semantics of the sentence after recognizing thesortal con
ict between the mass noun wine and the VP stand on the table, whichexpects a physical object as its argument.Egg (1999) proposes a CLLS-based analysis where the sentence meaning is notdescribed directly, but in a slightly underspeci�ed fashion. The key construction isthat the wine is not connected to the rest of the sentence via a labeling constraint,but only via a dominance constraint. This kind of constraint allows a solutionwhere the reinterpretation operator is added in the right place; in fact, to obtain awell-sorted solution, it is necessary to add the operator. If we think about this interms of \minimal solutions", we essentially change the requirement on a solutionwe are interested in from being minimal among all possible solutions to beingminimal among the well-sorted solutions.This account has several advantages over the traditional analysis. First of all,semantic composition is still a monotonic process, and the introduction of rein-terpretation operators, which is based on sortal information and world knowledge,is a process that can be clearly distinguished from the linguistic side of semanticconstruction. Next, the CLLS analysis does not only cover cases of \type coer-cion" as in Example 5.5, but only other reinterpretation patterns. Finally, it seemsto be possible to apply reinterpretation in such a way that it can be done beforeenumerating the readings of a scope ambiguity.Syntax/semantics interaction. A �nal idea concerns the interaction of syntaxand semantics. As we have seen in the introduction, there are several constraint-based approaches to the underspeci�cation of syntactic ambiguity; CLLS is aconstraint-based approach to the underspeci�cation of (some classes of) seman-tic ambiguity. So it might be worthwhile to investigate if their interaction couldnot be modeled by an additional layer of constraints that translates informationfrom both sides to each other.Both syntax and semantics would be described in an underspeci�ed fashion in thismodel, and before any disambiguation takes place, propagation of constraints tothe other level would be allowed. Then the newly obtained constraints could befurther propagated on the other side, potentially yielding new information thathelps in the disambiguation of the �rst side, and so on. The hope would be that

104 CHAPTER 5. CONCLUSIONS AND OUTLOOKonce we do have to enumerate readings, most options would already be excludedby the mutual constraint propagation, thus reducing the search space.At the moment, we do not know any clear examples where such syntax-semanticsinteraction (to set the idea apart from the unidirectional idea of a syntax-semanticsinterface) can be fruitfully applied, but the idea is certainly something that war-rants further research.The bottom line of this section is that in its current state, there are a large numberof unexplored applications of CLLS. This is remarkable in that an underspeci�ca-tion formalism is usually obtained by stretching the expressive power of an existinglanguage, as we have seen in the introduction. CLLS was developed from scratchwith underspeci�cation in mind and basically describes trees, an extremely
exibledata structure; so far, it has not really been stretched at all, and combined withthe formal foundations as laid out in this thesis, promises to be useful for a widerange of linguistic applications.5.2.3 Towards Underspeci�ed Beta ReductionFinally, we present some thoughts about an important aspect of underspeci�cationthat we have brie
y hinted at in the introduction: underspeci�ed deduction. Aftera brief reintroduction to the basic intuition underlying this operation, we sketchsome more concrete ideas on how to de�ne a simpler, but still very interestingrelated operation: underspeci�ed beta reduction. The details of this constructionare unclear at the moment, but it seems likely that on a large scale, the ideas laidout here should go a long way towards a clean de�nition, and they are concreteenough to illustrate some of the basic problems.Direct deduction. Recall Example 1.3 from the introduction:(5.6) Every man loves a woman.John is a man.John loves a woman.This argument is clearly valid, and we notice this without enumerating all readings,although the premise is ambiguous. To model this intuition, it should be possible toinfer the conclusion from the premises on the level of underspeci�ed representations.This does not only seem natural, it is also the very idea of underspeci�cation to doas much work as possible before disambiguation.

5.2. FURTHER WORK 105It is crucial to understand that this inference does not have much to do withthe usual inference on underspeci�ed representations (e.g. the inference rules fordominance constraints that we de�ned in Section 4.1). The kind of inference wehave just seen (and which we will call direct deduction) derives a description of thelogical consequences of the described formulae from a description; it really caresabout the semantic content of the represented formulae. On the other hand, simpleinference on a CLLS formula can only serve to make the description more explicit.It is an interesting question in itself what conclusions direct deduction should al-low. In the example, the answer is very simple: Every solution of the underspeci�eddescription of the premise entails the (unique) solution of the underspeci�ed de-scription of the conclusion, so the second description should surely be inferrablefrom the �rst one. But for more di�cult cases, for instance with ambiguous con-clusions, the answer is less obvious. There is a wide range of choices for an exactde�nition of underspeci�ed inference (see, e.g., van Deemter 1996), all with dif-ferent logical properties and calculi, and we will not go into them in any detailhere. Common to all of them, however, is that they lift an operation on the se-mantic representations of the single readings of a sentence to an operation on theunderspeci�ed descriptions of these representations, and that this inference mustbe de�ned in a way that is justi�ed by some condition on the relation betweenthe solutions of the underspeci�ed representations on both sides. For example, theinference in (5.6) would be justi�ed by a condition on the solutions that says thatevery solution of the (underspeci�ed representation of the) premise must entail ev-ery solution of the (representation of the) conclusion. (This is not necessarily themost intuitive de�nition for underspeci�ed entailment; it is just a random pick.)Underspeci�ed beta reduction. Instead of direct deduction, we will considerunderspeci�ed beta reduction in more detail, for several reasons. For one thing,lambda structures correspond to lambda terms up to � but not � equivalence; soclearly, beta reduction is a natural and extremely important operation on thesestructures. In particular, it is necessary to apply beta reductions to lambda struc-tures until they represent a �rst-order formula before one can apply deduction rulesat all, and we would like to do this on the underspeci�ed representations. In ad-dition, beta reduction is a much simpler operation than �rst-order deduction, andwe expect that the experiences gathered with underspeci�ed beta reduction will behelpful when considering direct deduction.The basic idea of underspeci�ed beta reduction is the same as that of direct deduc-tion: lift an operation on the described structures (here, beta reduction on lambdastructures) to an operation on the underspeci�ed representations in a way that isjusti�ed by a relation on the described terms. This relation, too, is very simple

106 CHAPTER 5. CONCLUSIONS AND OUTLOOK@ �lam �� �� �var varG1 G2 b����! �� �G01G2 G2Figure 5.1: Underspeci�ed �-reduction.
here: The solutions of the resulting constraint must be exactly the set of terms thatcan be obtained by applying beta reduction at a common redex to the solutions ofthe original constraint.To make this a bit more precise, assume that '1 is a constraint that contains thedescription of a �-reduction redex; i.e., a subconstraint of the formX1:@(X2; X3) ^X2:lam(X4) ^ �(X 01)=X2 ^ : : : ^ �(X 0r)=X2:Then every solution (M; �) of '1 will have a redex at the position �(X1). Hence,we can de�ne that '2 is the result of underspeci�ed beta reduction of '1 at theredex X1 i�S('2) = f(M0; �0) j (M; �) 2 S('1), M0 is the result of �-reduction of Mat redex �(X1), and �0 is \appropriate"g;where S(') is the set of solutions of the constraint '. We will not make \appro-priate" more precise here, as the exact de�nition of �0 is simple and tedious.This de�nition is nice, but what we really want is an operational characterization,for example as a graph rewriting system that transforms constraint graphs. Onesuch system (let us call it b) that looks very natural is shown in Fig. 5.1. If thegraph contains a description of a redex as in the left diagram, this subgraph canbe replaced by a graph as in the right diagram; the description of the redex itselfis removed, and the bound variables are replaced by the description G2 of theargument.At �rst glance, Fig. 5.1 looks just like usual beta reduction. However, it is impor-tant to remember that G1 and G2 are not necessarily trees, but arbitrary constraintgraphs, and there can even be dominance constraints between nodes within G1 andG2 and nodes outside of these subgraphs, which does make a di�erence. Of course,

5.2. FURTHER WORK 107if this is not the case, i.e. G1 and G2 are trees of N-edges and no node of thesesubgraphs is involved in a dominance or parallelism constraint, b does, in fact,degenerate to usual �-reduction.Problems with underspeci�ed beta reduction. For the graph rewriting ruleb to be faithful to the original de�nition of underspeci�ed beta reduction, we haveto require two properties: on the one hand, that the resulting constraint is satis�edby all �-reduced solutions of the original (a kind of completeness result), and onthe other hand, that all solutions of the result can be obtained from solutions ofthe original by �-reduction (a soundness result). Below, we discuss some concreteproblems of both directions, and sketch ideas for solving them.Problems: Completeness. An obvious source of problems with completenessis that a solution of the original constraint '1 may contain more var nodes boundby the lam binder in the redex than the constraint mentions explicitly. In such asituation, the number of copies of G2 in '2 will be too small for such a solution;so the result of applying �-reduction to this solution will not satisfy '2. It seemsthat this problem could be solved by only considering \minimal" solutions, by anappropriate de�nition of \minimal"; for example, we could require that a solutioncan only contain those var nodes that the constraint mentions explicitly. But aswe have seen above, minimality is not a trivial concept, and some thought wouldhave to be put into this �rst.Another source of problems is parallelism. Consider a constraint that contains twocopies of a description of a �-reduction redex and where a similarity constraint isimposed on the roots of these descriptions. Then it is clearly possible that whilethe original constraint is satis�able, the constraint obtained by one b step on one(but not the other) of the redex descriptions is unsatis�able { a clear violation ofcompleteness in the above sense. Parallelism also causes some tricky problems fornotions of minimality, and as we have seen above, there is no algorithm for solvingparallelism constraint so far, which makes the development of a correctness proof ofb very di�cult. In general, parallelism is so inconvenient that it seems reasonable toset it aside for now, consider underspeci�ed beta reduction on a restricted language,and try to extend it to the full language later.Problems: Soundness. These two kinds of restrictions seem to solve (or workaround) all problems involving completeness. However, there can still be problemswith soundness: We can get spurious solutions, i.e. solutions of the resulting con-straint graph that cannot be obtained from solutions of the original by �-reduction.

108 CHAPTER 5. CONCLUSIONS AND OUTLOOK�h �@ �lam ��f �var � �a � g �� b����! �h � X�f � Z�a �
g � Y�

Figure 5.2: b can produce constraints with spurious solutions.
These situations usually involve a functor and/or argument of the �-reduction thatis not su�ciently speci�ed.One problem arises when the argument contains an ambiguity and the functor bindsmore than one var node. In this case, b will produce a constraint that containsseveral copies of the ambiguous argument, and these copies can be disambiguatedindependently. That is, the subtrees satisfying di�erent copies can be di�erent;but in the �-reduction of a solution of the original constraint, they will be severalcopies of the same tree. What we would need to make sure in order to maintainsoundness is that all copies of G2 are disambiguated in the same way. An easy wayto do this would be to impose similarity constraints on them; but as we have justseen, parallelism comes with problems of its own. So the most convenient way towork around this problem seems to be to restrict ourselves to linear lambda termsfor now.Finally, even in this restricted class of constraints, b can be unsound if the originalconstraint is overly ambiguous. Consider, by way of example, Fig. 5.2. All minimalsolutions of the left constraint graph can be �-reduced to either h(f(g(a))) org(h(f(a))) because the fragment with the g can be either above the application nodeor within the argument. But the right constraint graph, the result of applying thegraph transformation b to the left graph, which should have just these two minimalsolutions, has an additional minimal solution h(g(f(a))). This constraint is a goodillustration that, as we said above, the subgraphs G1 and G2 in Fig. 5.1 need notbe trees and can have dominance relations to nodes outside the redex.There are several conceivable ways of excluding this type of mistake. One way couldbe to simply impose a \non-intervention" constraint like we used in the context ofdynamic semantics above. In the example, the problem would go away immediately

5.2. FURTHER WORK 109if we imposed the additional constraint:(X��Y ^ Y��Z)on the result.A di�erent idea of how to approach this problem is to restrict the applicability ofthe rewriting rule b. For example, we could require that for b to be applicable onthe description of a redex, the argument has to be fully speci�ed. Alternatively,we could require that there is a path from the lam node to the var node in thefunctor that consists of N-edges: There is considerable freedom in balancing therestrictions among the descriptions of the functor and the argument.At �rst sight, it seems that this restriction greatly reduces the value of under-speci�ed beta reduction. But if b happens not to be applicable on a particularconstraint graph, we can always disambiguate until it does become applicable; aswe have said above, on fully disambiguated constraint graphs, b degenerates tousual �-reduction, so we can always arrive at a situation where b is applicable.We may need more disambiguations than absolutely necessary, but we will still bebetter than if we generally did �-reduction only on the satisfying lambda struc-tures. In addition, it seems that it might be possible to �nd restrictions that allow(sound) application of b on most examples found in semantics.Proving correctness. The changes and restrictions listed above seem to solveall problems; but of course, it will be necessary to prove that b really modelsunderspeci�ed beta reduction on the restricted cases.One way to do this that looks very promising is based on using a sound and completesolution algorithm on constraint graphs, as sketched in Section 5.2.1. Given suchan algorithm, correctness of b could be shown by proving a bisimulation argumentexpressing that rewriting steps in b and rewriting steps in d permute: In this case,a sequence of applications of d plus one application of b can be replaced by �rst oneapplication of b and then a sequence of (possibly di�erent) applications of d, andvice versa. In this way, applications of b can always be reduced to applications ofb on solved forms, which is essentially usual beta reduction. It might be necessaryto show that applications of p do not have any e�ect on the set of solutions ofa constraint and that hence, we can apply p rules freely to normalize constraintgraphs.But clearly, such a proof relies heavily on the exact rules in the rewriting systemsd and p. So it seems that the most challenging piece of work that has to be donebefore correctness of the restricted case of underspeci�ed beta reduction can beproved is to �nd a solution algorithm for constraint graphs and prove its soundnessand completeness.

110 CHAPTER 5. CONCLUSIONS AND OUTLOOK

BibliographyAlshawi, H., D. Carter, R. Crouch, S. Pulman, M. Rayner, and A. Smith (1992).CLARE: A contextual reasoning and cooperative response framework forthe Core Language Engine. Technical Report CRC-028, SRI International,Cambridge, England. http://www.cam.sri.com/tr/crc028/paper.ps.Z.Alshawi, H. and R. Crouch (1992). Monotonic semantic interpretation. In Pro-ceedings of the 30th ACL, Kyoto, 32{39.Backofen, R., J. Rogers, and K. Vijay-Shanker (1995). A �rst-order axiomatiza-tion of the theory of �nite trees. Journal of Logic, Language, and Informa-tion 4, 5{39.Bierwisch, M. (1983). Semantische und konzeptionelle Repr�asentation lexikalis-cher Einheiten. In R. Ruzicka and W. Motsch (eds), Untersuchungen zurSemantik, 61{99. Berlin: Akademie-Verlag.Billot, S. and B. Lang (1989). The structure of shared forests in ambiguousparsing. In Proceedings of the 27th ACL, Vancouver, 143{151.Blackburn, P., W. Meyer-Viol, and M. de Rijke (1995). A proof system for �nitetrees. In H. K. B�uning (ed.), Computer Science Logic. Selected Papers of the9th International Workshop CSL '95 (Paderborn, Germany), Number 1092in LNCS, 86{105. Springer-Verlag, Berlin.Bos, J. (1996). Predicate logic unplugged. In Proceedings of the 10th AmsterdamColloquium, 133{143.Cooper, R. (1983). Quanti�cation and Syntactic Theory. Dordrecht: Reidel.Copestake, A., D. Flickinger, and I. Sag (1997). Minimal Recursion Semantics.An Introduction. Manuscript, available at ftp://csli-ftp.stanford.edu/linguistics/sag/mrs.ps.gz.Courcelle, B. (1983). Fundamental properties of in�nite trees. Theoretical Com-puter Science 25 (2), 95{169.Crouch, R. (1995). Ellipsis and quanti�cation: A substitutional approach. InProceedings of the 7th EACL, Dublin, 229{236.111

112 BIBLIOGRAPHYDalrymple, M., S. Shieber, and F. Pereira (1991). Ellipsis and higher-order uni-�cation. Linguistics & Philosophy 14, 399{452.Duchier, D. and C. Gardent (1999). A constraint-based treatment of descriptions.In Proceedings of IWCS-3, Tilburg.Egg, M. (1999). Reinterpretation by underspeci�cation. Submitted.Egg, M., A. Koller, J. Niehren, and P. Ruhrberg (1999). Constraints over lambdastructures, antecedent contained deletion, and quanti�er identities. Submit-ted. http://www.coli.uni-sb.de/~koller/papers/acd.html.Egg, M., J. Niehren, P. Ruhrberg, and F. Xu (1998). Constraints over Lambda-Structures in Semantic Underspeci�cation. In Proceedings COLING/ACL'98,Montreal.Gardent, C. and B. Webber (1998). Describing discourse semantics. In Proceed-ings of the 4th TAG+ Workshop, Philadelphia. University of Pennsylvania.Goldfarb, W. D. (1981). The undecidability of the second-order uni�cation prob-lem. Theoretical Computer Science 13, 225{230.Groenendijk, J. and M. Stokhof (1991). Dynamic predicate logic. Linguistics &Philosophy 14, 39{100.Hirschb�uhler, P. (1982). VP deletion and across the board quanti�er scope. InJ. Pustejovsky and P. Sells (eds), NELS 12, Univ. of Massachusetts.Jaspars, J. (1997). Minimal logics for reasoning with ambiguous expressions.Technical Report 94, Universit�at des Saarlandes, Saarbr�ucken. ftp://ftp.coli.uni-sb.de/pub/CLAUS/claus94.ps.Kamp, H. and U. Reyle (1993). From Discourse to Logic. Dordrecht: Kluwer.Koller, A. (1998). Evaluating context uni�cation for semantic underspeci�ca-tion. In I. Kruij�-Korbayov�a (ed.), Proceedings of the Third ESSLLI StudentSession, Saarbr�ucken, Germany, 188{199.Koller, A. and J. Niehren (1999, February). Towards underspeci�ed processingof dynamics. Workshop on Dynamic Logic, Schlo� Dagstuhl.Koller, A., J. Niehren, and R. Treinen (1998). Dominance constraints: Algo-rithms and complexity. In Proceedings of the Third Conference on LogicalAspects of Computational Linguistics, Grenoble.K�onig, E. and U. Reyle (1996). A general reasoning scheme for underspeci�edrepresentations. In H. J. Ohlbach and U. Reyle (eds), Logic and its applica-tions. Festschrift for Dov Gabbay. Part I. Kluwer.L�evy, J. (1996). Linear second order uni�cation. In International Conference onRewriting Techniques and Applications. Springer-Verlag.

BIBLIOGRAPHY 113Makanin, G. (1977). The problem of solvability of equations in a free semigroup.Soviet Akad. Nauk SSSR 223 (2).Marcus, M. P., D. Hindle, and M. M. Fleck (1983). D-theory: Talking abouttalking about trees. In Proceedings of the 21st ACL, 129{136.Montague, R. (1974). The proper treatment of quanti�cation in ordinary En-glish. In R. Thomason (ed.), Formal Philosophy. Selected Papers of RichardMontague. New Haven: Yale University Press.M�uller, T. and M. M�uller (1997). Finite set constraints in Oz. In F. Bry, B. Fre-itag, and D. Seipel (eds), 13. Workshop Logische Programmierung, Technis-che Universit�at M�unchen, 104{115.Muskens, R. (1995). Order-Independence and Underspeci�cation. In J. Groe-nendijk (ed.), Ellipsis, Underspeci�cation, Events and More in DynamicSemantics. DYANA Deliverable R.2.2.C. http://www.ims.uni-stuttgart.de/ftp/pub/papers/DYANA2/95copy/R2.2.C/Mus%kens.ps.gz.Niehren, J. and A. Koller (1998). Dominance Constraints in Context Uni�cation.In Proceedings of the Third Conference on Logical Aspects of ComputationalLinguistics, Grenoble, France.Niehren, J., M. Pinkal, and P. Ruhrberg (1997a). On equality up-to constraintsover �nite trees, context uni�cation, and one-step rewriting. In Proceedings14th CADE. Townsville: Springer-Verlag.Niehren, J., M. Pinkal, and P. Ruhrberg (1997b). A uniform approach to under-speci�cation and parallelism. In Proceedings ACL'97, Madrid, 410{417.Oz Development Team (1999). The Mozart Programming System web pages.http://www.mozart-oz.org/.Pinkal, M. (1996). Radical underspeci�cation. In Proceedings of the 10th Ams-terdam Colloquium, 587{606.Rabin, M. (1969). Decidability of second-order theories and automata on in�nitetrees. Transactions of the American Mathematical Society 141, 1{35.Reyle, U. (1993). Dealing with ambiguities by underspeci�cation: construction,representation, and deduction. Journal of Semantics 10, 123{179.Rogers, J. (1994). Studies in the Logic of Trees with Applications to GrammarFormalisms. Ph. D. thesis, University of Delaware.Rogers, J. and K. Vijay-Shanker (1994). Obtaining trees from their descriptions:An application to tree-adjoining grammars. Computational Intelligence 10,401{421.Schiehlen, M. (1997). Disambiguation of underspeci�ed discourse repesentationstructures under anaphoric constraints. In Proceedings of IWCS-2, Tilburg.

114 BIBLIOGRAPHYSchmidt-Schau�, M. (1994). Uni�cation of strati�ed second-order terms.Technical Report 12/94, J. W. Goethe-Universit�at Frankfurt, Fachbe-reich Informatik. http://www.ki.informatik.uni-frankfurt.de/papers/D-uni-SO-9-95.ps.Smolka, G. (1995). The Oz Programming Model. In J. van Leeuwen (ed.), Com-puter Science Today, 324{343. Springer-Verlag, Berlin.van Deemter, K. (1996). Towards a logic of ambiguous expressions. In (vanDeemter and Peters 1996). Stanford: CSLI Publications.van Deemter, K. and S. Peters (1996). Semantic Ambiguity and Underspeci�ca-tion. Stanford: CSLI.Venkatamaran, K. N. (1987). Decidability of the purely existential fragment ofthe theory of term algebra. J. ACM 34 (2), 492{510.Vijay-Shanker, K. (1992). Using descriptions of trees in a tree adjoining gram-mar. Computational Linguistics 18, 481{518.

