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Abstra
tIn this thesis we des
ribe the design and implementation of a virtual ma
hineLVM for the exe
ution of Oz programs. Oz is a 
on
urrent, dynami
ally typed,fun
tional language with logi
 variables, futures, by-need syn
hronization, re
ords,feature 
onstraints, and deep guard 
onditionals. The LVM supports light-weightthreads, �rst-
lass pro
edures, ex
eption handling, transients as generalization oflogi
 variables, futures, and 
onstraint variables, re
ords and open re
ords, andmultiple 
omputation spa
es to implement the deep guard 
onditional. We dis-
uss the modular, open, and extensible design of the LVM. Te
hniques for theeÆ
ient implementation of the store on standard hardware are shown. The LVMsubsumes well-known virtual ma
hines for fun
tional, logi
, and imperative lan-guages.
ZusammenfassungIn dieser Arbeit bes
hreiben wir das Design und die Implementierung einer vir-tuellen Ma
hine LVM f�ur die Ausf�uhrung von Oz Programmen. Oz ist einenebenl�au�ge, dynamis
h getypte, funktionale Spra
he mit logis
hen Variablen,Futures, by-need Syn
hronization, Re
ords, Feature Constraints, und einer be-dingten Anweisung mit tiefen W�a
htern. Die LVM unterst�utzt lei
htgewi
h-tige Threads, Prozeduren als Datenstrukturen erster Ordnung, Ausnahmebe-handlung, Transients als Verallgemeinerung von logis
hen Variablen, Futuresund Constraint-Variablen, Re
ords und o�ene Re
ords, sowie multiple Bere
h-nungsr�aume zur Implementierung der bedingten Anweisung mit tiefen W�a
htern.Wir diskutieren ein modulares, o�enes und erweiterbares Design der LVM undzeigen Te
hniken zur eÆzienten Implementierung des Spei
hers auf aktuell ver-f�ugbarer Hardware. Die LVM subsummiert virtuelle Mas
hinen f�ur funktionale,logis
he und imperative Spra
hen.

vii



viii



Extended Abstra
tIn this thesis we des
ribe the design and implementation of a virtual ma
hineLVM for the exe
ution of Oz programs. Oz is a 
on
urrent, dynami
ally typed,fun
tional language. For dida
ti
al reasons we restri
t the language to a subset,
alled L.The fo
us of this work is on non-standard extensions of fun
tional languages.These extensions in
lude logi
 variables to represent unknown values and futuresas read-only views on variables. These kinds of unknown values are generalizedto transients.Beside syn
hronization on determination of transients the language L supportsby-need syn
hronization whi
h provides for lazy programming. For the repre-sentation of data stru
tures L supports trees and their partial des
ription withre
ords, feature 
onstraints, and width 
onstraints. L allows for multiple 
ompu-tation spa
es, whi
h are the foundation for implementing sear
h engines. Compu-tation spa
es are introdu
ed for the implementation of the deep guard 
onditionaloperator whi
h allows to de
ide entailment and disentailment.We de�ne the semanti
s of the language informally as a graph rewriting engineon the language graph. The language graph de�nes a representation of the datastru
tures of the language. The language is de�ned as a small set of rewritingoperations on the language graph.We show how the model of the language graph 
an be extended to explain mul-tiple 
omputation spa
es. The extended graph model allows to explain 
on
iselyhow bindings of variables are propagated, how entailment and disentailment isdete
ted, and how two spa
es are merged.The LVM is a virtual ma
hine whi
h serves as an intermediate level between thehigh-level language L and a 
on
rete hardware. It hides the platform-spe
i�
details and serves as a well de�ned target language for the 
ompilation of Lprograms.In this thesis we present a modular, open, and extensible design and implemen-tation of the LVM. The main modules of the virtual ma
hine are the store andthe engine.The store represents the data stru
tures of the language. It is des
ribed witha re�ned graph model whi
h makes essential properties of the implementationexpli
it, e.g. the usage of registers and heap memory.The engine 
onsists of a s
heduler, a worker, and an emulator. The s
hedulermaintains the runnable threads using a simple round robin s
heduling poli
y.The LVM supports extremely light-weight threads and thousands of threads 
anbe 
reated and s
heduled eÆ
iently. ix



The LVM has a single worker to exe
ute threads. The worker maintains the tasksof a thread and implements ex
eption handling. The state of the worker is leanto allow for eÆ
ient 
ontext swit
hes between 
on
urrent threads.The state of the worker is ri
h enough for the eÆ
ient exe
ution of ma
hineprograms through a threaded-
ode emulator. The byte-
ode of ma
hine programsis 
ompa
t and adapted for emulation. The byte-
ode 
ontains dire
t referen
es tonodes in the store, whi
h allows for 
ertain optimizations, e.g. avoiding dynami
type tests.Transients are de�ned in the LVM as a generalization of unknown values, in
lud-ing logi
 variables, futures, and 
onstraint variables. The 
ommon properties oftransients are the single-assignment property and automati
 syn
hronization ofthreads on their determination.The LVM supports the representation of high-level symboli
 data-stru
tures withgra
efully degrading performan
e wrt. expressivity. Simple data-stru
ture likelists, integers, and literals are represented highly optimized. The performan
ede
reases smoothly only when more expressive primitives, like re
ords with dy-nami
 arities and feature 
onstraints, are used.The LVM is extensible in multiple ways. New data stru
tures and transienttypes 
an be integrated with varying degree of eÆ
ien
y and 
omplexity. At thebottom layer a sophisti
ated tagging s
heme allows to eÆ
iently represent the
entral data stru
tures, whi
h in
lude integers, optimized variables and futures,list elements, and literals. At a medium layer the vast majority of data stru
turesare represented, e.g. pro
edures, re
ords, and obje
ts. At the highest layer newdata types 
an be integrated easily using an obje
t-oriented approa
h with latebinding.The LVM design is open for experimentation with new features and 
on
epts.Beside the extension of data stru
tures it also allows to easily extend the engine.It is for example easy to integrate new fun
tionality as built-in pro
edures andbyte-
ode instru
tions.We show te
hniques for the eÆ
ient implementation of the store on standardhardware. The representation of dynami
ally typed values in the store is im-plemented as a hybrid mix of tagged pointers and tagged obje
ts. We explainthe automati
 memory management of the LVM, whi
h is based on a free listsand a stop-and-
opy garbage 
olle
tor. A liveness analysis performed duringthe garbage 
olle
tion allows to release memory whi
h is referred from unusedregisters of the LVM.
x



Erweiterte ZusammenfassungIn dieser Arbeit bes
hreiben wir das Design und die Implementierung einer vir-tuellen Ma
hine LVM f�ur die Ausf�uhrung von Oz Programmen. Oz ist eine ne-benl�au�ge, dynamis
h getypte, funktionale Spra
he. Aus didaktis
hen Gr�undenbes
hr�ankten wir uns auf eine Teilspra
he von Oz, die wir L nennen.Der S
hwerpunkt unserer Arbeit liegt auf untypis
hen Erweiterungen von funktio-nalen Spra
hen. Diese Erweiterungen umfassen unter anderem logis
he Variablenzur Repr�asentation von no
h ni
ht bekannten Werten und Futures, die nur-leseZugri�e auf Variablen de�nieren. Diese und andere Arten von unbekannten Wer-ten werden generalisiert zu Transients.Neben der Syn
hronization auf Transients, erlaubt L au
h die by-need Syn-
hronization, die es unter anderem erlaubt, die Auswertung von Ausdr�u
kenzu verz�ogern, bis sie ben�otigt werden. Zur Repr�asentation von Datenstruktu-ren unterst�utzt die Spra
he L B�aume und ihre partielle Bes
hreibung dur
hRe
ords, Feature-Constraints und Width-Constraints. L erlaubt multiple Be-re
hnungsr�aume, die die Grundlage f�ur die Implementierung von Su
hmas
hi-nen bilden. Bere
hnungsr�aume werden zur Implementierung von bedingten An-weisungen mit tiefen W�a
hter eingesetzt, die es erlauben Erf�ullbarkeit und Un-erf�ullbarkeit zu ents
heiden.Wir de�nieren die Semantik der Spra
he informell als ein Graphersetzungssystemauf dem Spra
hgraphen. Der Spra
hgraph de�niert die Repr�asentation der Da-tenstrukturen der Spra
he. Die Spra
he wird de�niert dur
h eine kleine Mengevon Ersetzungsregeln angewendet auf den Spra
hgraphen.Wir zeigen, wie das Model des Spra
hgraphen erweitert werden kann, um multipleBere
hnungsr�aume zu erkl�aren. Das erweiterte Graphenmodell erlaubt es pr�azisezu erkl�aren, wie die Bindung von Variablen propagiert wird, wie die Erf�ullbarkeitbzw. Unerf�ullbarkeit ents
hieden wird, und wie zwei Bere
hnungsr�aume ver-s
hmolzen werden.Die LVM ist eine virtuelle Mas
hine, die eine Abstraktionsebene zwis
hen derHo
hspra
he L und einer konkreten Hardware realisiert. Sie verbirgt irrelevan-te plattformspezi�s
he Details und dient als wohlde�nierte Zielspra
he f�ur dieKompilierung von L Programmen.In dieser Arbeit pr�asentieren wir einen modularen, o�enen und erweiterbarenDesign sowie eine Implementierung der LVM. Die zentralen Module der virtuellenMas
hine sind der Spei
her und die Verarbeitungsmas
hine.Der Spei
her repr�asentiert die Datenstrukturen der Spra
he. Er ist bes
hriebenals verfeinertes Graphenmodell, das wi
htige Eigens
haften der Implementierungexplizit ma
ht, zum Beispiel die Verwendung von Registern und dem Haldenspei-
her. xi



Die Verarbeitungsmas
hine besteht aus einem S
heduler, einem Worker, und ei-nem Emulator. Der S
heduler verwaltet die re
henf�ahigen Threads dur
h eineeinfa
he zyklis
he Wartes
hlange (round-robin). Die LVM erlaubt extrem lei
ht-gewi
htige Threads, wobei Tausende von Threads eÆzient erzeugt und verwaltetwerden k�onnen.Die LVM hat einen einzigen Worker zur Ausf�uhrung eines Threads. Der Workerverwaltet die Auftr�age des Threads und implementiert die Ausnahmebehandlung.Der Zustand des Workers ist sehr kompakt, um die eÆziente Threadums
haltungzu erm�ogli
hen.Der Zustand des Workers ist rei
h genug, um die eÆziente Ausf�uhrung von Ma-s
hinenprogrammen dur
h einen ,,threaded-
ode" Emulator zu erlauben. DerByte
ode f�ur Mas
hinenprogramme ist sehr kompakt und zuges
hnitten auf einenEmulator-basierten Ansatz. Der Byte
ode enth�alt direkte Referenzen auf Kno-ten im Spei
her, die bestimmte Optimierungen, wie zum Beispiel die Vermeidungdynamis
her Typ�uberpr�ufungen, erlauben.Transients werden in der LVM als Verallgemeinerung unbekannter Werte, wie zumBespiel logis
her Variablen, Futures und Constraint Variablen, eingef�uhrt. Diewi
htigsten Merkmale von Transients sind, da� sie genau einmal gebunden werdenk�onnen und Threads automatis
h auf ihre Determiniertheit syn
hronisieren.Die LVM unterst�utzt die Repr�asentation von ho
hspra
hli
hen, symbolis
hen Da-tenstrukturen mit einer Performanz, die si
h an die gew�uns
hte Expressivit�at an-pa�t. Auf der untersten Ebene steht ein elaboriertes Tag-S
hema zur Verf�ugung,das die eÆziente Repr�asentation wi
htiger Datenstrukturen, wie zum Beispielganze Zahlen, optimierte Variablen und Futures, Listenelemente und Literale,erlaubt. Auf der mittleren Ebene wird der gr�o�te Teil der Datentypen, wie zumBeispiel Prozeduren, Re
ords und Objekte, realisiert. Auf der h�o
hsten Ebeneerlaubt eine einfa
he S
hnittstelle, basierend auf Objekten mit sp�ater Bindung,die einfa
he Integration neuer Datentypen.Das Design der LVM ist o�en, um Experimente mit neuen Ideen und Konzeptendur
hf�uhren zu k�onnen. Neben der Erweiterung von Datenstrukturen erlaubtdie LVM au
h die Erweiterung der Verarbeitungsmas
hine. Zum Beispiel istes einfa
h m�ogli
h zus�atzli
he Funktionalit�at dur
h eingebaute Prozeduren undMas
hinenbefehle zu realisieren.Wir zeigen Te
hniken f�ur die eÆziente Implementierung des Spei
hers auf aktu-ell verf�ugbarer Hardware. Die Repr�asentation von dynamis
h typisierten Wertenim Spei
her ist implementiert als eine hybride Mis
hung von markierten Zeigernmit markierten Objekten. Wir erkl�aren die automatis
he Spei
herverwaltung derLVM, die auf Freispei
herlisten und einem ,,stop-and-
opy" Spei
herbereinigungs-algorithmus basiert. Eine Lebendigkeitsanalyse wird w�ahrend der Spei
herberei-nigung dur
hgef�uhrt, die es erlaubt den Spei
her von ni
ht verwendeten Registernfreizugeben. xii
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Chapter 1Introdu
tionIn this thesis we explain the implementation of the language Oz. Oz is a multi-paradigm programming language integrating 
on
urrent 
onstraint programmingwith �rst-
lass fun
tions, high-level 
onstraint based data stru
tures, 
on
urrentobje
ts, powerful syn
hronization primitives, state of the art 
onstraint systems,and 
exible sear
h engines.We present the implementation as a virtual ma
hine LVM whi
h adds an inter-mediate abstra
tion between the high-level language Oz and the low-level detailsof 
on
rete ma
hines.1.1 Con
epts behind OzThe foundation for Oz was laid in the 
-
al
ulus [94℄ for 
on
urrent program-ming, whi
h integrates logi
 variables, names, �rst-
lass fun
tions, and 
ells intoa formal 
al
ulus. Seminal 
ontributions to the foundation of Oz are the intro-du
tion of �rst 
lass spa
es and sear
h 
ombinators as a generalization of deepguard 
ombinators [93, 90℄ and the integration of spa
es, sear
h 
ombinators, and�nite domain 
onstraints into a 
onstraint programming framework [91℄.The full language Oz is de�ned and explained in [95, 96, 35, 36℄.Mozart is the third release of the Oz system [72, 73, 66℄. Mozart implements thelanguage Oz and provides additionally the infrastru
ture needed for appli
ationdevelopment with Oz.The stru
ture of the Oz implementation is outlined as a pyramid in Figure 1.1.To explain the implementation of the LVM we use a top down approa
h. Con-
epts, te
hniques, and insights are introdu
ed at the highest possible layer andmore and more details are added in lower levels.The following paragraphs introdu
e basi
 
on
epts of Oz.1
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1.1. CONCEPTS BEHIND OZ 31.1.1 First-
lass fun
tionsOz has �rst-
lass fun
tions1. Fun
tions are dynami
ally 
reated 
losures en
ap-sulating the environment in whi
h they are de�ned. Fun
tions 
an be passed asarguments to fun
tions and returned as values of fun
tions; they 
an be storedin data stru
tures; and they even 
an be stored persistently on �les.First-
lass fun
tions are a distinguishing feature of fun
tional languages like Stan-dard ML [63℄, Haskell [75℄, Lisp [50, 31℄, and S
heme [51℄.1.1.2 Transients: Logi
 variables, futuresOz supports logi
 variables, whi
h are not yet known values. A logi
 variable
an be assigned on
e and is than transparently repla
ed by this binding. Logi
variables are a powerful 
on
ept to express partial data stru
tures, to syn
hronizemultiple threads, and to eÆ
iently support 
all-by-referen
e output arguments.A future is a read-only view on a variable, whi
h allows to build safe partialdata-stru
tures, whi
h 
an be modi�ed only by a produ
er and not by 
onsumers.Futures are transparently bound when their variable is bound.Transients are de�ned as a generalization of unknown values, in
luding logi
variables, futures, and 
onstraint variables. The 
ommon properties of transientsare the single-assignment property and automati
 syn
hronization of threads ontheir determination.The use of logi
 variables in programming languages starts with Prolog [55℄. Theidea of futures o

ured in Multilisp [34℄ for expressing the results of parallel
omputations.1.1.3 Threads, ex
eptions, and by-need syn
hronizationOz is a 
on
urrent language with extremely light-weight threads. Thousands ofthreads 
an be exe
uted simultaneously. Threads in Oz are fair and preemptivelys
heduled. Threads in Oz allow for 
oarse-grained 
on
urrent programming, al-though the implementation 
an handle thousands of threads.Threads are a well-known 
on
epts in operating systems, but their support inprogramming languages is still in the early stages. Threads are now standard-ized for the C/C++ language in the POSIX environment [43℄ and the languageJava [30℄ also support these POSIX-like threads.1In the literature �rst-
lass fun
tions are sometimes 
alled higher-order fun
tions.



4 CHAPTER 1. INTRODUCTIONThe ex
eption me
hanism of Oz allows to raise and handle �rst 
lass ex
eptions.Ex
eptions o�er a well-de�ned interfa
e to handle errors. Ex
eptions are foundin all modern languages, e.g. Java [30℄, Standard ML [63℄, and C++ [16℄.By-need syn
hronization integrates lazy 
on
urrent programming into Oz. By-need syn
hronization returns a future, whi
h will be bound by a 
on
urrentthread. This thread is only 
reated, when the value of the future is requested.The future need not be expli
itly requested, but when a thread syn
hronizes onthe value of the future it is impli
itly requested.A well-known lazy fun
tional programming language is Haskell [75℄.1.1.4 Re
ords and feature 
onstraintsOz has re
ords as powerful data-stru
tures to des
ribe rational trees. A rationaltree is a possibly in�nite tree with labelled links and primitive values at the leaves.A re
ord is a des
ription of a node and all its links. With logi
 variables re
ordsallow to express trees where some nodes are unknown.Feature 
onstraints allow to express in
omplete trees where not all links areknown. A feature 
onstraint de�nes that a 
ertain link exists, without de�n-ing all other links.Oz supports several other 
onstraint systems beside trees, e.g. �nite domains and�nite sets, and it is extensible for other 
onstraint systems. In this work we takefeature 
onstraints as an example to show how 
onstraint systems are integratedwith Oz.Constraints over rational trees were introdu
ed in Prolog II [19℄. The foundationfor re
ords in Oz was laid in [98℄.1.1.5 Cells and built-in abstra
t data typesState is introdu
ed in Oz through a primitive entity 
alled a 
ell. A 
ell is a
ontainer for one value. The 
ontent of a 
ell may be a

essed and ex
hangedwith a new value.Re
ords, 
ells, and �rst-
lass fun
tions allow to build a state-of-the-art obje
tsystem [42℄. In this work we will show how to integrate a restri
ted form ofobje
ts as built-in abstra
t data types into the LVM.1.1.6 Deep guard 
onditional and spa
esOz supports multiple 
omputation spa
es to build powerful sear
h engines. A
omputation spa
e en
apsulates a 
omputation. A 
omputation spa
e has a 
er-



1.2. CONTRIBUTIONS 5tain state, namely running, entailed, stable, or disentailed. Threads 
an syn
hro-nize on this state. Two spa
es 
an be merged together and a spa
e 
an be 
opiedto 
reate an independent 
lone.We show the deep guard 
onditional as an instan
e of the general 
on
ept ofspa
es, whi
h allows to dis
uss how the syn
hronization on entailment and dis-entailment works and how spa
es are merged.Deep guards were �rst introdu
ed in AKL [48℄, whi
h was the �rst languageimplementing the 
on
urrent 
onstraint programming model [86℄. Con
urrent
onstraint programming integrates the paradigms of 
on
urrent logi
 program-ming [92℄ and 
onstraint logi
 programming [44, 45, 46℄. In Oz deep guardsare generalized to �rst-
lass 
omputation spa
es, whi
h allow to express manydi�erent deep guard 
ombinators and to build 
exible sear
h engines [90, 88, 89℄.1.2 ContributionsIn this thesis we present the design and implementation of a virtual ma
hinefor a subset L of the full language Oz. L is a multi-paradigm language whi
hin
ludes re
ords, feature 
onstraints, logi
 variables, futures, fun
tions, threads,ex
eptions, and 
onditionals.This thesis presents idealizations of the real VM that we have implemented inthe Mozart system [66℄. The thesis provides suÆ
ient information to re
onstru
tthe implementation.A huge amount of our work, beside the design des
ribed here, went into engi-neering, 
oding, and supporting a pra
ti
al, useful, and stable implementation.The eÆ
ien
y of the LVM is 
omparable to the implementation of modern high-level languages, e.g. Standard ML, Java, Prolog, Lisp, Smalltalk. A detailedevaluation of the LVM is given in [87℄.An idealization of the LVM for rational tree 
onstraints, �rst 
lass fun
tions, lo
al
omputations for deep guards, and preemptive and fair s
heduling was publishedin [62℄. The integration of feature 
onstraints and their gra
efully degradingrepresentation was des
ribed in [108℄.Modular and open designThe design of the LVM is modular and orthogonal to 
ope with the 
omplexity.The modules of the LVM 
orrespond 
losely to the primitives of the language.The modules de�ne a regular lean interfa
e.The design is open in the sense that



6 CHAPTER 1. INTRODUCTION1. Design de
isions and possibilities, espe
ially with respe
t to the trade-o�between eÆ
ien
y and simpli
ity, are made expli
it.2. The hooks needed for the integration of new features, e.g. new data and
ontrol stru
tures, are identi�ed.The virtual ma
hine of Oz subsumes well-known virtual ma
hines for logi
, fun
-tional, and imperative languages.The top-level modules of the LVM are the store, the engine, and spa
es.StoreThe store implements the eÆ
ient representation of values, variables, futures,and 
onstraints. We des
ribe the store with a re�ned graph model, whi
h makes
entral aspe
ts of the design expli
it. In this graph model di�erent representationswith varying 
omplexity and eÆ
ien
y are expressible.Re
ords and feature 
onstraints give the expressivity to de�ne high-level datastru
tures. We show how this expressivity maps to a gra
efully degrading rep-resentation wrt. the expressivity. Closed re
ords 
an be represented with aneÆ
ien
y similar to stru
tures in the WAM. The performan
e overhead for the
reation, a

ess, and de
omposition of re
ords with symboli
 features is minimal
ompared to stru
tures in Prolog implementations. Only when the additionalexpressivity provided by the dynami
 
reation of arities, �rst 
lass features, andfeature 
onstraints is used, a moderate 
ost has to be paid.We show an abstra
tion, 
alled transients, to support logi
 variables, futures,and 
onstraint variables. Transients are generalized to allow for the integrationof new types of unknowns. We analyze the 
ost of adding transients to a languagewhi
h only has determined values.Re
ords with named features allow to de�ne abstra
t data-types. Abstra
t data-types 
an be built into the LVM with a small interfa
e. We des
ribe a layeredapproa
h to implement abstra
t data-types with varying performan
e and 
om-plexity.The store is subje
t to automati
 memory management using a stop-and-
opy
olle
tor and elaborated te
hniques to reuse memory as soon as possible. Weexplain the liveness analysis to ensure that unused registers are dete
ted anddis
uss the impa
t of the optimized representation of variables in �elds to memorymanagement.



1.2. CONTRIBUTIONS 7EngineThe engine takes 
are of the exe
ution of ma
hine programs. We present a 
om-pa
t ma
hine model 
onsisting of the s
heduler, the worker, and the emulator.Threads are managed by a round-robin s
heduler with priorities. The te
hniques,whi
h allow to 
reate and maintain thousands of threads eÆ
iently, are explained.The LVM is a sequential implementation with a single worker to exe
ute threads.We des
ribe the 
ontext swit
hing overhead for the eÆ
ient installation and de-installation of threads by the worker, whi
h is due to a 
ompa
t representationof the state of the worker.The worker exe
utes �rst-
lass fun
tions with 
all-by-referen
e arguments usinglogi
 variables for passing output arguments. The worker implements ex
eptions,where the trade-o� between an eÆ
ient installation of ex
eption handlers and aneÆ
ient lookup for the handler in the 
ase of an ex
eptional 
ondition is dis
ussed.Although the state of the worker is 
ompa
tly represented it is well-suited for aneÆ
ient exe
ution of the byte 
ode by the emulator.We present a 
lassi�
ation of the ma
hine instru
tions, whi
h shows how mu
hsupport for various language 
on
epts is required.The idea of having pi
kles, whi
h de�ne an external representation of Oz data-stru
tures, allows for a novel a

ount to byte 
ode where instru
tions 
an dire
tlyrefer to data-stru
tures in the store. The loader 
reates an internal representationfrom a pi
kle. The transformation and optimizations of the byte 
ode performedby the loader at run time are explained.Spa
esSpa
es allow to express en
apsulated 
omputations with 
onstraint propagationand are an essential building blo
k for 
onstraint programming and sear
h. Weuse 
onditionals as an instan
e of the general 
on
ept of �rst 
lass spa
es to dis-
uss the 
omplexity introdu
ed to the LVM for supporting �rst-
lass 
omputationspa
es.We de�ne an extension of the single store graph model to a multiple store graphmodel whi
h allows to explain at an intermediate level between the high-level
onstraint view and the low-level implementation the key aspe
ts of spa
es.We show the hooks needed in the LVM to support spa
es and the implementa-tion of the s
ript te
hnique for representing multiple bindings of variables. We
ompare the s
ript te
hnique with the binding window te
hnique.



8 CHAPTER 1. INTRODUCTION1.3 Stru
ture of the thesisThe top of the pyramid is the 
omputation model and an informal de�nitionof the subset of the full Oz language in Chapter 2. The 
omputation model isde�ned as a number of threads 
omputing over a shared store. We introdu
ethe units represented in the store, i.e. values, variables, and futures, and theoperations performed on the store when exe
uting threads.The next step down the pyramid is the explanation of the VM in Chapter 3. Itsmain parts are the store and the engine. At the virtual ma
hine level a re�nedgraph model is de�ned whi
h allows to dis
uss many aspe
ts of the representationof dynami
ally typed units.We de�ne a sequential imperative register-based ma
hine for Oz, whi
h 
onsistsof a ma
hine language, the s
heduler, and the worker. The 
onne
tion betweenthe high-level language and the ma
hine language is explained by showing the
ompilation of L expressions into ma
hine programs.The loader is presented as a translator for an external representation of ma
hineprograms, 
alled a pi
kle, into a internal graph and threaded-
ode representation.The s
heduler is the 
omponent whi
h is responsible for the fair, preemptives
heduling of the runnable threads. It sele
ts a thread whi
h is then exe
uted bya worker. The worker is responsible for swit
hing 
ontexts when a new threadmust be installed or deinstalled. The worker exe
utes the tasks of a single threadand emulates the instru
tions.The issues introdu
ed with the integration of spa
es to the LVM are dis
ussednext. We identify the hooks required in the other parts of the VM, explainthe s
ript and binding window te
hnique for representing multiple bindings ofvariables, the propagation of bindings, and the algorithm for de
iding entailment.Then we 
ompare the LVM with other virtual ma
hines for high-level languagesand summarize the main design goals.After this dis
ussion of the high-level aspe
ts of the LVM we explain the imple-mentation aspe
ts in Chapter 4.We explain how the di�erent unit types are represented. The transient abstra
-tion is introdu
ed and its spe
ialization to logi
 variables, futures, and 
onstraintvariables. The next part de�nes re
ord 
onstraints and their gra
efully degradingimplementation. We explain the extension me
hanism for de�ning abstra
t datatypes and explain how they 
an be integrated smoothly into the LVM.This part on the des
ription of the store is 
ompleted with an explanation of theautomati
 memory management.The thesis 
on
ludes in Chapter 5 with a summary, engineering 
onsiderations,and some remarks about future work.



1.4. CONTEXT OF THE THESIS 91.4 Context of the thesisThe LVM was designed and implemented in 
lose 
ollaboration with my 
ol-league Ralf S
heidhauer. Many parts of my work overlap with his thesis [87℄. Hedes
ribes the implementation of the 
ore of the fun
tional language L, whi
his based on dynami
ally typed Standard ML extended by 
on
urren
y, logi
variables, and 
omplex syn
hronization 
onditions for patterns. His fo
us is onthe eÆ
ient implementation of the 
ore language, a performan
e analysis of theMozart implementation of L, dis
ussion of 
omplex syn
hronization 
onditions,and the 
omparison of Mozart with a VM, based on fun
tions. My fo
us is onthe non-standard extensions of the fun
tional 
ore and their gra
efully degradingintegration into the VM.Spa
es and 
onstraint inferen
e engines whi
h exploit the power of �rst 
lass
omputation spa
es are introdu
ed and dis
ussed in [90, 88, 89℄. The fo
us of mywork wrt. to spa
es is their intera
tion with the di�erent modules of the LVMand an analysis of implementation te
hniques for maintaining multiple bindingsof variables.The design of the obje
t system for Oz is explained by Martin Henz [42℄. Thefo
us of his work is on the impa
t of 
on
urren
y for the design and the usageof an obje
t system. Obje
ts are a high-level abstra
tion built on top of thelow-level 
on
ept of extension interfa
e-types, whi
h is des
ribed in my thesis.Finite domain variables are an instan
e of transients, whi
h allow for the eÆ
ientrepresentation of 
onstraints over �nite domains of integers [91℄. The appli
abilityof the 
onstraint solving 
apabilities of Oz was demonstrated with the s
hedulingworkben
h [116, 117, 118℄.The addition of �nite set variables [69, 68℄ as another instan
e of transients alsouses the extension interfa
e to integrate �nite set values as an abstra
t data type.For the eÆ
ient implementation of 
onstraints, whi
h implement propagationof information between 
onstraint variables, propagators were introdu
ed as are�nement of threads, whi
h are 
ompletely implemented in C++ to avoid theoverhead for the worker and the emulation [70℄.Re
ently a distribution model [40, 107, 39℄ was developed and implemented, whi
hallows the transparent distribution of the store among multiple sites.
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Chapter 2The language L
In this 
hapter we de�ne the language L1. L is a subset2 of Oz, whi
h 
ontainsonly a minimal 
ore language and the extensions relevant for my work.The syntax and semanti
s of L is based on Standard ML [63, 74℄. A majordeviation is the repla
ement of the stati
 type system of Standard ML by adynami
 type system [97℄. L extends Standard ML with logi
 variables andfutures, 
exible re
ords and feature 
onstraints, 
on
urren
y, and deep guard
onditionals. The 
ore of L is the same as the language des
ribed in [87℄.2.1 OverviewWe introdu
e the language in a 
on
ise and informal manner to show the re-quirements for our implementation at a high-level. We assume basi
 knowledgeof Standard ML. We use evaluation rules and a graph rewriting model to de�nethe semanti
s of the language.In the following se
tions we des
ribe a 
omputation model and a graph modelfor the data stru
tures of the language. After that we explain the semanti
s of
ore language and of our extensions, namely logi
 variables, futures, threads, by-need syn
hronization, re
ord 
onstraints, and deep guard 
onditionals. Finallywe show the expressiveness of the language by dis
ussing sele
ted examples.The 
ore language of L is given in Figure 2.1. We use some synta
ti
 sugar whi
his summarized in Figure 2.2.In addition to the Standard ML syntax we use strings with ' as delimiters todenote atoms, whi
h are �rst-
lass symboli
 
onstants in L, e.g. ’person’.1The name of L is spelled out as Language.2The language we de�ne is subset with minor modi�
ations for a better idealization and tosimplify the explanation. 11
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Expressionse ::= y identi�erj 
 
onstantj { 
1 = e1,..., 
n = en} re
ord 
onstru
tionj fn x => e fun
tion de�nitionj e e0 appli
ationj let d in e end de
larationj case e of r1|...| rn pattern mat
hingd ::= val x = e value de
larationj name N name de
laration
 ::= i integer 
onstantj a atom 
onstantj M name identi�err ::= p => e mat
h rulep ::= { 
1 = p1, ..., 
1 = pn} re
ord patternj 
 
onstant patternj x variable patternCore operators+,-,... : int * int -> int arithmeti
<,<= : int * int -> bool 
omparisonre
ord : (fea * T) list -> re
 dynami
 re
ordssele
t : re
 * fea -> T �eld sele
tionFigure 2.1: Expressions and 
ore operators of L.
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Abbreviation Core syntax
True name True boolean true
False name False boolean false
() name () the singleton value
x::y fHead = x, Tail = y g list element
[x1, ..., xn] , n � 0 x1::...::xn::nil list
(y1, ..., yn) f1 = y1, ...., n = yn g tuple (n > 1)
let d; d0 in e end let d in let d0 in e end end de
laration sequen
ee; e0 let val x = e in e0 end expression sequen
e
if y then e else e0 case y of True => e| x => e0 simple 
onditional
fn p1 => e1j ...j pn => en

fn x => case x of p1 => e1j ...j pn => en

fun
tional pattern
fun x p1 => e1j ...j x pn => en

val x =
let val x = lvar () in

unif (x, fn p1 => e1j ...j pn => en);
x

end

re
ursive fun
tions
Figure 2.2: Synta
ti
 sugar.



14 CHAPTER 2. THE LANGUAGE LWe use 
apitalized identi�ers N;M for names. Names in L are �rst 
lass 
itizens,whi
h 
an be used as expressions and as �eld names of re
ords. In the re
ord
onstru
tion and in patterns the �eld names are integers, atoms, and stati
allybound names.Features are integers, atoms, and names used as �eld names of re
ords.Re
ords 
an be dynami
ally 
onstru
ted with the record operator. It takes apair-list of pairwise distin
t features and 
orresponding �eld values and 
onstru
tsa re
ord. Fields of re
ords 
an be a

essed with the select operator, whi
h takesa re
ord and a feature as arguments and returns the �eld value under the sele
tedfeature.In the syntax we use the letter x resp. N for a binding o

urren
e of an identi�erand y resp. M for a free o

urren
e. L has the same s
oping rules as Standard ML.Patterns must be linear, i.e. all identi�ers in binding position of re
ord patternsare pairwise distin
t. The syn
hronization 
onditions for patterns are explainedin Se
tion 2.8.We use the usual Standard ML pre
eden
es and allow to use parentheses () togroup expressions.The referen
es of Standard ML are 
alled 
ells in L. We use the name 
ell in thisthesis to avoid 
onfusion with the referen
e nodes introdu
ed at the LVM level(see Chapter 3).Most of the language primitives 
an be ni
ely fa
tored out from the expressionsyntax by using prede�ned fun
tions, 
alled operators. Figure 2.3 shows theoperators for implementing our extensions. These extensions will be explained inthe following se
tions.The operators are shown with their type to guide the intuition of the reader. Thistype language is not used in L and di�ers from the type language in Standard ML.The type restri
tions shown in Figure 2.3 are enfor
ed at run time (dynami
ally)and not stati
ally. The type names and the type hierar
hy are listed in Figure 2.4.We assume a type T at the top of the type hierar
hy, whi
h allows for exampleto use T list for lists of arbitrary values. Cells and other 
ontainer types in L
an 
ontain arbitrary values.2.2 Computation modelComputation in L is organized in 
omputation spa
es (see Figure 2.5). A 
om-putation spa
e 
ontains a number of threads exe
uting over a shared store.The store represents the data stru
tures. The main fo
us of our work are theoperations performed on the store. The 
ontrol aspe
ts are basi
ally the onesknown from Standard ML.
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eptions
at
h : (()->'a)*('b->'a)->'a install handlerthrow : 'a -> 'b raise ex
eptionCellsref : T -> ref new 
ell:= : ref * T -> () assign! : ref -> T a

essex
hange : ref * T -> T ex
hangeVariables and futureslvar : () -> T logi
 variableunif : 'a * 'a -> () uni�
ationfuture : 'a -> 'a futureThreadsspawn : (() -> ()) -> () thread 
reationwaitOr : T * T -> () syn
hronizationbyNeed : (() -> 'a) -> 'a by-need syn
h.Tree 
onstraintsfeatureC : re
 * fea * val -> () feature 
onstraintwidthC : re
 * int -> () width 
onstraintDeep guards
ond : ('a->())*('a->'b)*(()->'b)->'b 
onditionalFigure 2.3: Extensions.Type Des
riptionT topre
 re
ordint integerfun fun
tionref 
elllit literal (name or atom)atom atomname name() singletonbool boolean valuefea feature (lit or int)'a list list of 'a
intrec fun

T

ref

lit

atomname

bool ()Figure 2.4: Type names and the type hierar
hy of L.



16 CHAPTER 2. THE LANGUAGE LThread . . . ThreadStoreFigure 2.5: A 
omputation spa
e.A thread is the sequential 
ontrol for the evaluation of 
losures. A 
losure 
onsistsof an expression of the language and an environment. The environment de�neshow the free identi�ers of expressions are bound to nodes in the store.Threads are the only a
tive entities in the 
omputation model. The exe
ution ofa thread happens in steps. A step is de�ned by an evaluation rule for a 
losure.The evaluation rules for expressions and operators of the 
ore language follow theStandard ML semanti
s and they are summarized in Se
tion 2.4.Threads 
ommuni
ate only via shared nodes in the store. Threads 
an read fromand write into the store and they 
an syn
hronize on 
ertain 
onditions of nodes.The 
omputation is interleaved and fair. Interleaved means that the exe
utionsteps are atomi
 and do not overlap. Fairness requires that a possible exe
utionstep of a thread will eventually happen.2.3 The language graphThe semanti
s of our language is de�ned as a graph rewriting engine. The datastru
tures of the language are modeled as nodes in a dire
ted graph with labellednodes and labelled dire
ted links. This graph is 
alled the language graph.The language graph is built from units. A unit is a labelled node with a �nitenumber of links. Figure 2.6 shows all units of our language.A unit 
an be added to a graph by 
onne
ting its open links to already existingnodes in the graph. When a unit is added to a graph no dangling referen
esremain. Figure 2.7 shows an example of a graph.In our language it is not possible to 
reate a 
y
le in the graph by adding newunits. Cy
les 
an be 
reated through expli
it graph rewriting steps, whi
h are
ell assignment (see Se
tion 2.8) and variable binding (see Se
tion 2.6).
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...f1 fn

Record

...

x/e

x1 xn

Function Cell

Variable Open Record

fnf1

w: m

345 ’a’ N

Integer Atom Name

Future

fut

By-need future

x/e

Figure 2.6: Units of L.

con N;
val y = lvar ();
val z = 1::2::nil
val x = {‘a‘ = (y, ref (z)), 1 = z, N = fn x => z};

x:
N

Nil2

z

x/z

’a’
1

1 2

y:

z:
Head Tail

Head Tail

1

Figure 2.7: An example of a language graph.



18 CHAPTER 2. THE LANGUAGE L2.3.1 ValuesThe graph represents values. Values are stateless mathemati
al entities. Thevalues of L are primitive values (numbers and symbols), and (in�nite) trees withlabelled dire
ted edges. The leaves of these trees are the primitive values.Primitive values Numeri
 values and symboli
 values are primitive values ofL. For every primitive value a unit exists whi
h is labelled with this value. Withthese units leaf nodes of trees with no departing link are 
reated.The numeri
 values of L are integers 0; 1;�1; 2;�2; : : : of arbitrary size, with theusual mathemati
al meaning.The symboli
 values are atoms and names. Atoms are �nite strings over a �niteset of 
hara
ters. Names are an in�nite set of distin
t values with no furtherstru
ture.An essential property of names is that they are only available through a generator.Whenever a name unit is added to the store it obtains a fresh name, whi
h isdistin
t from all existing names in the store.We 
onsider in many aspe
ts 
ells and fun
tions (whi
h are introdu
ed later) alsoas primitive values similar to names, e.g. 
ells and fun
tions 
an be leafs of trees.Re
ords Compound trees are represented in the store using re
ord units. Are
ord is a node with a �nite number of departing links. These links are labelledwith pairwise distin
t features. A feature is an integer, an atom, or a name.The set of features is 
alled the arity of the re
ord. The number of features is
alled the width of the re
ord.The pair of a feature and the node at the end of the link labelled with this featureis 
alled a �eld. The feature is then 
alled the �eld name and the node is the�eld value. The operation to traverse a link from a re
ord is 
alled �eld sele
tionor �eld a

ess.Re
ords in our language are 
exible re
ords, whi
h are very di�erent from stati
re
ords of Standard ML. In L features are �rst-
lass values and it is possible tosele
t a �eld without knowing all the other features of the re
ord. It is furthermorepossible to 
reate re
ords whose feature are not known at 
ompile time, e.g.feature passed as arguments to fun
tions.Figure 2.8 shows how a tree 
an be 
onstru
ted from units.
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1 a

N M

ba c

1

1 a MN

2a b c

1 2

Figure 2.8: Re
ords and trees.2.3.2 Invariants for graph rewritingExa
tly three graph rewriting operations are performed during the exe
ution ofthreads:node 
reation New nodes 
an be 
reated and added to the graph.binding Transient nodes 
an be bound to other nodes. In the graph modelthis operation superimposes the new node onto the transient nodes. Thismakes the transient node transparent. The transient node disappears fromthe graph and all in
oming links are redire
ted to the new node. Anothermetaphor for binding a node v to a node n is that all edges to v are redi-re
ted to n (see Se
tion 2.6).assignment Cells 
an assigned to new values. In this 
ase the 
ontent link ofthe 
ell is redire
ted to a new node.These strong invariants on graph rewriting simplify the reasoning about L pro-grams. They are also very useful for building parallel and distributed implemen-tations, but in our sequential and imperative implementation of the LVM theseinvariants are not exploited.2.4 Sequential exe
utionIn this se
tion we explain the exe
ution of a single thread. A thread is thesequential 
ontrol for the evaluation of 
losures.



20 CHAPTER 2. THE LANGUAGE LA 
losure of an expression e is a pair of an environment u and the expression ewritten as hu,ei. The environment is a mapping of every free identi�er x in theexpression e to a node n in the store. In the following we use the notation x alsofor the node bound to x in the environment u. Furthermore we use the notationx also for the value of the node if it represents a primitive value. The 
ontextallows usually to disambiguate the di�erent meanings easily.An exe
ution step 
an side e�e
t the store and evaluates a 
losure. The evaluationof a 
losure has one of the following out
omes:� It evaluates to a node in the store.� It redu
es to one or more new 
losures.� It raises an ex
eption.In the following we use formulations like \if x is a node of type ..." then thismeans that� The thread has to syn
hronize on x until it is no variable and no future.Syn
hronization is explained in se
tion 2.8 where threads are introdu
ed.� If the node x is of a di�erent type an ex
eption is raised. The ex
eptionme
hanism of L is introdu
ed in se
tion 2.5.2.4.1 Data stru
turesIdenti�ers The 
losure hu,yi evaluates to the node bound to y in u.Atoms The 
losure hu,ai adds an atom node with label a to the store andevaluates to this node.Integers The 
losure hu,ii adds an integer node with label i to the store andevaluates to this node.Re
ord 
onstru
tion The evaluation of hu,{ 
1 = y1, ..., 
n = yn} i tests�rst if 
1; : : : ; 
n are pairwise distin
t features.If the test su

eeds a re
ord node with the arity f
1; : : : ; 
ng is added to the store.For all i 2 f1; : : : ; ng the link labelled with the feature 
i is 
onne
ted to the nodeyi. The re
ord 
onstru
tion evaluates to this node.If y1; : : : ; yn are not pairwise distin
t features the re
ord 
onstru
tion raises anex
eption.
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tionsA fun
tion is a 
losure of a fun
tion de�nition expression fn x => e. We useabstra
tions �x=e as 
ompa
t notation for the fun
tion de�nition.Fun
tions are represented with fun
tion units. A fun
tion unit is a node labelledwith a fun
tion de�nition and labelled links for the free identi�ers in the fun
tionde�nition.Fun
tion de�nition The evaluation of the fun
tion de�nition hu,fn x => eiadds a fun
tion unit to the store whi
h labelled with the fun
tion de�nition. Thelinks for the free identi�ers of the abstra
tion are 
onne
ted to their binding inu. The fun
tion de�nition evaluates to the just added fun
tion node.Appli
ation The evaluation of the appli
ation hu,e e0i �rst evaluates hu,ei toy and then hu,ei to y0. Then it tests if the y is a fun
tion.If y is a fun
tion labelled with an abstra
tion �x=e00 the appli
ation evaluatesto the 
losure hu0,e00i. The new environment u0 
ontains the bindings of the freeidenti�ers of the abstra
tion and the binding of the formal argument x to thea
tual argument y0.2.4.3 Pattern mat
hingThe evaluation of hu,case y of r1|...| rni sequentially tests if y mat
hes oneof the patterns p1; : : : ; pn in the mat
h rules r1; : : : ; rn.The re
ord pattern { 
1 = p1, ..., 
n = pn} => e mat
hes if y is a re
ord withthe arity f
1; : : : ; 
ng. Then the �eld values are sequentially mat
hed againstthe patterns p1; : : : ; pn. If all these mat
hes are su

essful the 
ase expressionevaluates to the 
losure hu0,ei, where u0 is derived from u by adding the bindingsfor the binding identi�ers in the patterns.The 
onstant pattern 
 => e mat
hes if the value of y is equal to the primitivevalue 
. Then the 
ase expression evaluates to the 
losure hu,ei.The variable pattern x => e mat
hes always and evaluates to the 
losure hu0,ei,where u0 is derived from u by adding the binding of the identi�er x to the nodey.
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larationsThe evaluation of the value de
larations hu,let val x = e in e0 endi 
reatestwo new 
losures: the expression hu,ei and the abstra
tion hu,�x=e0i. The ex-pression hu,ei is evaluated �rst and then the abstra
tion hu,�x=e0i is applied toresult of this evaluation.Sequential exe
ution of 
losures 
an be explained su
h that the thread has a sta
kof 
losures to exe
ute and the value de
laration pushes the abstra
tion hu,�x=e0ion this sta
k and evaluates �rst the expression hu,ei. Only when this has �nished,the 
losure found on the sta
k is exe
uted.The evaluation of the name de
larations hu,let name N in e endi adds a newname node to the store and evaluates to the expression hu0,ei, where u0 is derivedfrom u by adding the binding of N to the new name.2.4.5 Core operatorsThe arithmeti
 operators +, �, �, div, mod, <, <= evaluate with their usualmathemati
al semanti
s. We use the in�x notation for these operators.The select operator takes two arguments a re
ord and a feature and evaluatesto the �eld value of the re
ord sele
ted by the feature.The record operator allows to 
reate re
ords dynami
ally. It takes a list of pairs
ontaining �eld names and �eld values as argument an 
reates a re
ord.2.4.6 Synta
ti
 
onvenien
eSequen
es A sequen
es of de
larations 
an be 
ombined into one de
larationusing a semi
olon as separator.
let d; d0 in e end is an abbreviation for let d in let d in e end end.A de
laration let val x = e in e0 end 
an be simpli�ed into the sequen
ee; e0 if the identi�er x does not o

ur free in e0Tuples A re
ord with an arity of f1; : : : ; ng is 
alled a tuple. Tuples are em-inent, be
ause they are optimized in the LVM. A tuple { 1 = y1,..., n = yn}(n > 1) 
an be written as ( y1,..., yn) . A tuple with two �elds is 
alled a pair.



2.5. EXCEPTIONS 23Names We assume that the following identi�ers are bound to distin
t namesin every exe
ution environment and 
annot be rede
lared:� true and false for boolean values.� () for the singleton value.� Head, Tail, and Nil for 
onstru
ting lists.Lists As a 
onvenient syntax for lists the notation x::y is used for the re
ordwritten as fHead:x, Tail:y g. The empty list Nil 
an be written as [] . A listwith a �xed number of elements x1; : : : ; xn 
an be written as [x1; : : : ; xn℄.The tuples and list syntax is also allowed in patterns and expands to the 
orre-sponding re
ord pattern.Fun
tions The 
ore syntax has only single argument fun
tions. Multiple ar-guments are passed as tuples. For 
onvenien
e the syntax
fn p1 => e1 j ... j pn => enis an abbreviation for
fn x => case x of p1 => e1 j ... j pn => enThis allows for example to write a fun
tion with two arguments as
fn (x,y) = > ...Boolean 
onditional if y then e else e0 is an abbreviation for case y
of true => e| x => e0, where x is an identi�er not o

urring free in e0.2.5 Ex
eptionsEx
eptions are a powerful 
on
ept to handle errors and to built non-standard 
on-trol stru
tures [28, 29℄. In this se
tion we explain the semanti
s of the ex
eptionme
hanism in L.An ex
eption is a 
ondition dete
ted during the evaluation of an expression whi
h
annot be handled lo
ally. In su
h a situation an ex
eption is raised.An ex
eption handler 
an be installed for an expression. When an ex
eptionis raised during the evaluation of the expression it is 
aught by the ex
eptionhandler. When an ex
eption is 
aught the 
ontrol is transfered to the handler.
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an be passed from the point where an ex
eption is raised to thehandler of the ex
eption. This information is 
alled the ex
eption value, whi
h isusually abbreviated to \the ex
eption". In L the ex
eption value is an arbitrarynode in the store. The handler is a fun
tion in L and when the ex
eption is
aught this fun
tion is applied to ex
eption value.Ex
eption handlers 
an be nested. In this 
ase the innermost handler 
at
hesthe ex
eption and 
alls its handler. The ex
eption handler is deinstalled when it
at
hes an ex
eption, i.e. further ex
eptions are 
aught by the next handler.Threads install a default ex
eption handler before evaluating an expression, su
hthat ex
eptions 
annot es
ape their thread. The default ex
eption handler typi-
ally prints a message3.2.5.1 Ex
eption handlersThe catch operator is applied to a pair of two fun
tions (x; y). The appli
ationof the handle operator installs the ex
eption handler y during the evaluation ofthe fun
tion x applied to the singleton value ().When the evaluation of x returns a node n, the ex
eption handler is removed andthe catch operator also evaluates to the node n.When an ex
eption is raised during the evaluation of x the ex
eption handleris removed and the catch operator evaluates to the appli
ation of the handlerfun
tion y to the ex
eption value.2.5.2 Raising an ex
eptionThe throw operator has an ex
eption value as argument. The evaluation ofthis operators never returns, but transfers 
ontrol and the ex
eption value to theinnermost installed ex
eption handler.Ex
eptions are raised impli
itly, when an error o

urs, e.g. re
ord 
onstru
tionraises an error if its features are not pairwise disjoint and the appli
ation raisesan ex
eption if the �rst argument is no fun
tion.2.5.3 Dis
ussionThe main problems and the design spa
e for ex
eption handling have been knownsin
e a long time [28, 29℄. The ex
eption me
hanism of L is similar to the onede�ned in Standard ML.3Failure ex
eptions in spa
es are handled spe
ially (see Se
tion 2.10).
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eptions Many languages like Standard ML [63℄, C++ [16, 53℄ andJava [30℄ use typed ex
eptions and the ex
eption me
hanism is extended su
hthat an ex
eption handler is only used if it mat
hes the type of the ex
eptionvalue.In L this 
an be expressed by writing ex
eption handlers su
h that they analyzethe ex
eption value. In the 
ase that they 
annot handle an ex
eption they simplyre-raise it.Finally A �nally expression allows to prote
t the evaluation of an expressionsu
h that independent of the su

ess or failure of this evaluation a 
leanup ex-pression is evaluated. This 
an for example be used to ensure that allo
atedresour
es are released.In L �nally 
an be implement with the following fun
tion:
val finally = fn (body, final) = >
let

name Suc; name Exc;
val result = catch ( fn () = > (Suc, body ()),

fn exc = > (Exc, exc) )
in

final ();
case result
of (Suc, value) = > valuej (Exc, exc) = > throw exc

endThe �nally fun
tion is applied to a pair of two fun
tions. The �rst fun
tion isthe body whi
h is exe
uted and might raise an ex
eption. The se
ond fun
tion isthe �nal 
leanup whi
h is applied regardless of the su

ess or failure of the �rstfun
tion.2.6 Logi
 variablesA logi
 variable is a pla
e holder for a not yet known value. Logi
 variables wereintrodu
ed as a language primitive with the language Prolog [55, 56, 71℄ as thefoundation for logi
 programming. Logi
 variables have been also re
ognized aspowerful 
on
ept for syn
hronization in 
on
urrent languages [94℄. For 
onstraintlogi
 programming logi
 variables have been extended with attributes to representdomain information.A logi
 variable is represented with a variable unit in the store. A variable unitis a node with no departing links. The lvar operator adds a variable node tothe store and evaluates to it.
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ationThe graph rewriting operation on variables is binding. A variable 
an be boundto another node of the store. Binding a variable makes it transparent, i.e. thevariable node disappears and all in
oming edges are redire
ted to the node it isbound to.Binding is not a primitive operation in L, but it is impli
itly performed by uni-�
ation. Uni�
ation is a 
omplex graph rewriting operation to make two nodesequivalent wrt. to the equivalen
e relation de�ned below. If it is possible theuni�
ation performs a minimal number of variable bindings until two nodes areequal. If this is not possible the uni�
ation fails.We �rst de�ne an equivalen
e relation on nodes. Then we present an uni�
ationalgorithm.Equivalen
e of nodes The equivalen
e relation of nodes is de�ned as thegreatest relation, whi
h sati�es the following 
onditions:� Every node is equivalent to itself.� Two primitive nodes are equivalent i� they represent the same value.� Two re
ord nodes are equivalent i� they have the same arity and if theequivalen
e relation holds for every pair of 
orresponding �eld values.The uni�
ation algorithm The uni�
ation algorithm implemented in theLVM is a variation of the uni�
ation algorithm for rational trees resp. 
y
li
stru
tures [18, 98, 38℄. An overview of the algorithm is given in Figure 2.9.The uni�
ation algorithm maintains a todo sta
k and an explored set. The todosta
k 
ontains pairs of nodes whi
h must be uni�ed. The explored set 
ontainspairs of already uni�ed re
ords. Initially the explored set is empty and the todosta
k 
ontains the pair of the two nodes to unify. In every step of the uni�
ationalgorithm a pair of nodes is popped from the todo sta
k and pro
essed. Thealgorithm terminates if the todo sta
k is empty and returns a termination status,whi
h is either su

eed or fail.Two nodes are pro
essed in the following ways� If both nodes or their values are the same, or if they are in the explored setthe pro
essing step su

eeds and nothing needs to be done.� If both nodes are re
ords with the same label and arity, then they are addedto the explored set and 
orresponding pairs of �elds are pushed on the todosta
k.
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INPUT:

node n1;
node n2;

OUTPUT:
enum fSUCCEED, FAILg status;

INIT:
todo = new stack();
todo.push(n1, n2);
explored = new set();
status = SUCCEED;

LOOP:
while (!todo.isEmpty())

(a, b) = todo.pop();

if (a != b)
if (isVar(a))

bind(a,b)
else if (isVar(b))

bind(b,a)
else if (member( fa,b g,explored))

// nothing
else if (isRecord(a) &&

isRecord(b) &&
arity(a) == arity(b))

explored.add( fa, b g);
for (f in arity(a))

todo.push(select(a,f), select(b,f))
else

explored.add( fa, b g);
status = FAILFigure 2.9: A graph uni�
ation algorithm
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val x = lvar ();
val y = (1, x, 2);

1
2 3

1 2

1
2 3

1 2

y

x

y
unif (x,y)

Figure 2.10: Binding variables.� If a node is a variable it is bound to the other node.� In all other 
ases the nodes are put into the explored set and the uni�
ationstatus is set to failed.The algorithm terminates be
ause in every step1. the open set be
omes smaller or2. an element is added to the explored set or3. a variable is bound.The graph is �nite and no new nodes are added during the uni�
ation. Thereforethe number of elements in the explored set must be �nite and only �nitely manybindings of variables 
an be done. This means that eventually the open set mustbe empty.Note that the uni�
ation 
ontinues even in the 
ase that failure is dete
ted. Wedo this to ensure that the uni�
ation algorithm is independ of the order in withthe �elds of re
ords are explored.The unif operator The unif operator is applied to a pair of nodes andperforms their uni�
ation. If the uni�
ation fails the evaluation of the unifoperator raises an ex
eption, else it evaluates to the singleton value.The ex
eption raised by the unif operator is spe
ially marked, be
ause in nested
omputation spa
es it is treated in as disentailment 
ondition (see Se
tion 2.10).The ex
eption is 
alled a failure ex
eption.Binding variables 
an introdu
es 
y
les into the graph. Figure 2.10 shows anexample of a re
ord y with a variable x under feature 2 and the 
y
le introdu
edby the uni�
ation of x and y.
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Figure 2.11: Uni�
ation with futures2.7 FuturesFutures are read-only views of logi
 variables. With futures the s
ope where avariable 
an be bound 
an be stati
ally limited.When the variable is bound to a non-variable a future of this variable is boundsimultaneously to the same node as the variable. Futures are represented in thestore as a future unit and variables are extended with a link to their future.Figure 2.11 shows some interesting 
ases for binding variables with futures. In the�rst 
ase when the variable is bound to a determined node both the variable andits future are superimposed by this node. The se
ond 
ase show what happenswhen a variable is bound to another variable: only the variable is bound thefuture is un
hanged ex
ept that it is now a future for a di�erent variable. Thethird 
ase shows that if the variable is bound to another future f 0 this future issuperimposed on the variable x and its future f .The future operator takes one argument. If this argument is a variable whi
hdoes not yet have a future, a future node is 
reated. The future operatorevaluates to this future of the variable. If the argument is no variable the futureoperator evaluates to its argument.Extending uni�
ation Futures require to extend the uni�
ation algorithm.When a future and a determined node are uni�ed it is not allowed to bind thefuture. In this 
ase it is not yet de
idable, if the future and the determined nodeare equivalent or not. Therefore the uni�
ation has a termination status to signalthis 
ase, whi
h is 
alled suspend.
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ond aspe
t of futures is the extension of the equivalen
e relation su
h thata future is equivalent to its variable, i.e. unif (x, future (x)) must su

eed.To avoid that the semanti
s of uni�
ation depends on the order how the nodes arepro
essed the uni�
ation algorithm 
ontinues after dete
ting the suspend status.Thus it is possible that later on failure is dete
ted.The pairs of nodes whi
h 
ould not be uni�ed due to futures are 
olle
ted andwhen the uni�
ation does not fail they are saved to restart the uni�
ation, whenone of the futures is bound. The next se
tion on threads explains how threadsare suspended and resumed.An interesting 
ase is unif ((f,x),(1,1)) , where f is the future of x . In this
ase the uni�
ation algorithm �rst dis
overs that the equivalen
e of f and 1 isnot de
idable, but later x and simultaneously f is bound to 1. In this 
ase theuni�
ation is restarted and in this se
ond run it returns su

essfully.Transients and determined nodes We 
all variable and future nodes in thestore transients, be
ause they are only temporarily visible and disappear whenthey are bound. Non-transient nodes are 
alled determined.Dis
ussion Futures are useful for example to implement ports [49℄ with safestreams. A safe stream is a stream, where the open tail is a future, whi
h 
annotbe 
orrupted by readers. Only the writer has a

ess to the variable behind thisfuture.Note that the name future is used with various meanings in the literature. Ourfutures are only 
on
erned with the read-only aspe
t of logi
 variables. Futuresin the style of Multilisp [34℄ are related to futures with by-need syn
hronizationand they are dis
ussed below.2.8 Con
urren
yIn this se
tion we explain how 
on
urren
y is integrated in L.2.8.1 ThreadsMultiple threads of 
ontrol 
an be 
reated with the spawn operator. The spawnoperator is applied to a fun
tion as only argument and 
reates a new threadwhi
h has as the initial 
losure the appli
ation of this fun
tion to the singletonvalue.
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reation of the new thread the spawn operator evaluates to the single-ton value without any syn
hronization on the new thread. Communi
ation andsyn
hronization only happens through nodes shared with the spawned fun
tion.A thread 
an for example 
ommuni
ate with other threads through the bindingof variables and 
ell ex
hanges.Threads are exe
uted 
on
urrently, they are independent, and they are s
heduledfairly. Con
urren
y in L means that the evaluation steps are interleaved, but donot overlap. The threads are independent in the sense that the only 
onne
tionbetween them is through shared nodes in the store. Fairness requires that if anevaluation step on a thread is possible it will eventually happen.2.8.2 Syn
hronization and suspensionThreads syn
hronize on the determination of transients. We explain the syn
hro-nization te
hnique with the waitOr operator. The waitOr operator is applied totwo arguments and evaluates to the singleton value, if at least one of its argumentsis a determined node.When both arguments are transients the waitOr operator 
annot be evaluatedand blo
ks the further exe
ution of its thread. The thread is said to suspendon the transient arguments. The waitOr operator and the suspended threadsbe
omes exe
utable if one of the transients is bound to a determined node.The syn
hronization on transients is a monotoni
 
ondition. If an evaluation ofan expression is possible at a 
ertain moment, it 
an be evaluated also after any
hange in the store. This holds be
ause the binding of a transient is a monotoni
operation4.The waitOr operator allows for example to express timeouts. For example bywaiting 
on
urrently on a thread produ
ing a result and another thread produ
inga timeout 
ondition.Wait The fun
tion wait de�ned below is a simpli�
ation of the waitOr oper-ator whi
h suspends on a single argument.
fun wait x = waitOr (x, lvar ());Other suspensions Any operator whi
h expe
ts a determined value suspendswhen it is applied to a transient, e.g. arithmeti
 operators suspend until botharguments are determined and the appli
ation e e0 suspends until e is determined.4In spa
es bindings are retra
ted and the monotoni
ity might be violated, but it makes onlya di�eren
e when the spa
e fails anyway (see Se
tion 2.10).



32 CHAPTER 2. THE LANGUAGE LIn our language we use a very simple syn
hronization 
ondition for pattern mat
h-ing. Pattern mat
hing in our language is 
attened out and suspends if one ofthe sequential simple mat
hes is not de
ideable. S
heidhauer [87℄ analyses more
omplex syn
hronization 
onditions, where for example the mat
h
case (x,x)
of (1,2) = > e1j y => e2redu
es to e2 even when x is not determined. In our language this example isequivalent to
case (x,x)
of (x1,x2) = >
case x1
of 1 =>
case x2
of 2 => e1j y => e2j y => e2j y => e22.8.3 By-need syn
hronizationA di�erent kind of syn
hronization is by-need syn
hronization, whi
h essentiallyallows for lazy programming.To explain it we �rst de�ne the notion of a requested transient. A transient isrequested if a thread is suspended and waits until this transient is bound. Forexample if x is a variable and a thread tries to evaluate x+ 1 then x is requested.By-need syn
hronization is introdu
ed with the byNeed operator. The byNeedoperator is applied to a fun
tion f and evaluates to a future for a newly 
reatedvariable x. When this future is requested a new thread is spawned whi
h uni�esthe variable x with the result of the appli
ation of the fun
tion f to the singletonvalue. Figure 2.12 shows how a by-need future is bound when it is requested.Dis
ussion The by-need syn
hronization in L is similar to the 
on
ept of fu-tures in Multilisp [34, 26℄. Multilisp distinguishes two operators for futures.(future E) returns a future and starts the 
omputation to evaluate E in a 
on-
urrent resp. parallel thread. With (delay E) the evaluation of E only startswhen the value of the future is requested.Futures are proposed as extensions for C++ and Java [57, 85℄. In these proposalfutures are not de�ned as transparent data types, but expli
it operations arerequired to 
ast a future into a determined value. A major problem of this
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Figure 2.12: By-need sy
hronization.approa
h is that for every fun
tion a de
ision has to be made if futures areallowed or not. This espe
ially requires to redesign all libraries.By-need syn
hronization allows to easily express the lazy fun
tional programmingstyle as promoted by lazy fun
tional languages, e.g. Haskell [75℄. In Se
tion 2.11the lazy 
reation of hamming numbers is shown as an example.2.8.4 CellsCells are the only stateful data stru
tures of L. In 
onne
tion with 
on
urren
ystateful nodes must be handled 
arefully, e.g. 
on
urrent a

ess and assign oper-ations must be properly syn
hronized.The exchange operator is a generalization of the assignment operator := ofStandard ML. exchange assigns a new node to the 
ell and returns the old
ontent of the 
ell in a single atomi
 step. This extension is essential be
ause itprovides a powerful syn
hronization primitive.Lo
ks The exchange operator with logi
 variables allows to express lo
ks formutual ex
lusion. A lo
k is implemented as a 
ell where the 
ontent indi
ates ifthe lo
k is free or not. The usage of the 
ell is de�ned su
h that the operation toa
quire the lo
k ex
hanges the 
ontent of the 
ell with a fresh variable and waitsuntil the old 
ontent is determined. When the lo
k is released the just 
reatedvariable is bound to the singleton value.
(� create a new lock �)
fun newLock () = ref ();

(� aquire lock, execute body, release lock �)
fun sync (lock,body) =

let val new = lvar ();
val old = exchange (lock, new)

in
case old of () = >
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let val result = body ()
in

unif (new, ());
result

end
end;The fun
tion newLock 
reates a 
ell with the singleton value as initial 
ontent.The fun
tion sync takes a lo
k and a pro
edure as arguments. It ex
hangesthe 
ontent of the 
ell with a fresh variable and waits until the old 
ontent isdetermined. The the body is exe
uted and with the uni�
ation of the freshvariable with the singleton value the lo
k is released.Without logi
 variables the ex
hange primitive is already expressive enough toimplement lo
ks, but the implementation does not have the following propertiesof our implementation� The implementation is simple.� The thread whi
h must wait for a lo
k needs no busy waiting.� No starvation 
an happen. Every thread 
ompeting for the lo
k will even-tually obtain it, when it is released properly.Cell a

ess With logi
 variables access 
an be expressed with the exchangeoperation.

fun access cell =
let val new = lvar ();

val old = exchange (cell, new)
in

unif (new, old);
new

endIn L access is a primitive operator, be
ause it has a di�erent semanti
s wrt.multiple 
omputation spa
es. The 
ontent of a 
ell 
an be a

essed, but not
hanged when the 
ell is global in a spa
e (see Se
tion 2.10).Abstra
t data types We 
onsider 
ells in this thesis be
ause we want toexplain how the VM supports built-in abstra
t data types, whi
h are a gener-alization of re
ords and 
ells. The built-in abstra
t data types are for examplethe data-stru
tures on whi
h the obje
t implementation of Oz is built. Henz [42℄dis
usses how an obje
t system 
an be build on top of a 
on
urrent 
onstraintlanguage with 
ells.
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h an abstra
t data type is a bit array. A naive implemen-tation whi
h represents a bit array as a list of 
ells with 
ontent 0 or 1 is givenbelow.
let

name BitArray;
fun unbox (b, i) =

nth (select (b, BitArray), i);
fun box (id, l) =f id = (), BitArray = l g;
fun new1 size =

if size >0
then ref 0::new1 (size �1)
else [];

fun new size =
let con Id
in

box (Id, new1 size);
end

fun set (b,i) = exchange (unbox (b,i), 1);
fun clear (b,i) = exchange (unbox (b,i), 0);
fun get (b,i) = ! (unbox (b,i));

in f’new’=new, ’set’=set,
’clear’=clear, ’get’=get g

endIn Chapter 4 we show how eÆ
ient native C/C++ implementations of su
h ab-stra
t data-types 
an be easily integrated into the LVM with a generi
 extensionme
hanism.2.8.5 Dis
ussionJava/POSIX threads Threads in L are very di�erent from threads in Java [30℄.The semanti
s of threads in Java is driven by the available te
hnology in mod-ern operating system. These are typi
ally based on the POSIX 1003.1 stan-dard [15, 43℄.The POSIX standard 
ares a lot about memory 
a
he e�e
ts and makes expli
itthat only when using sy
hronization primitives the (possibly 
a
hed) memoryis updated. In L no 
a
hing e�e
ts are visible at the language level. If animplementation uses memory 
a
hes it has to guarantee that the illusion of aunique store is not violated.
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ify a s
heduling poli
y. The standard allows but does notrequire that 
onforming implementations support di�erent s
heduling methods.This means that for example preemptive s
heduling is platform dependent andan appli
ation 
annot rely on fairness assumptions.Parallelism Con
urren
y does not prevent parallelism, but a parallel imple-mentation has to preserve the invariant that overlapping evaluation steps are notvisible [80℄.2.9 Feature 
onstraintsIn this se
tion we extend re
ords su
h that it be
omes possible to representin
omplete partial information about bran
hes in trees.With re
ords and logi
 variables it is already possible to des
ribe partial trees,where some of the nodes are not yet known. Feature 
onstraints extend thismodel and allow to des
ribe re
ord nodes where the features are partially known.Feature 
onstraints allow to represent for example information about paths in atree without knowing the whole shape of tree, i.e. the arities of some re
ord nodesare underspe
i�ed. Feature stru
tures in natural-language pro
essing systems arean example where this is useful.Re
ords and feature 
onstraints in L are based on re
ords for logi
 program-ming [98℄ and on the work done on  -terms in LIFE [3, 78℄. The implementationof eÆ
ient re
ord 
onstraints for 
on
urrent 
onstraint programming in the Ozsystem was des
ribed in [108℄In the following se
tions we �rst des
ribe a generi
 set of 
onstraints over treesand show then how re
ords and feature 
onstraints of L �t into this model.2.9.1 Constraints over treesThe stru
ture underlying the tree 
onstraint system [98℄ of L 
ontains in�nite setsof features, integers, and rational trees. Rational trees are possibly in�nite treeswith dire
ted links labelled with features. The 
onstraint system is 
losed under
onjun
tion and existential quanti�
ation of domain variables. The 
onstraintsystem has the following basi
 
onstraints.� The feature 
onstraint feature(t; f; t0) states that t is a rational tree witha link to the tree t0 whi
h is labelled with the feature f .
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Figure 2.13: An example of an open re
ord.� The width 
onstraint width(t; n) (n 2 f1; 2; :::g) states that t is a rationaltree with exa
tly n outgoing links.� The equality 
onstraint t = t0 states that the trees t and t0 are equal.In full generality this 
onstraint system is not analyzed yet [102, 103, 10℄. In thefollowing we explain the implemented sub
lass of L.2.9.2 Open re
ordsRe
ords as introdu
ed in Se
tion 2.3 above are an instan
e of the tree 
onstraintwhi
h is restri
ted to 
onstraints of the form:9t; t1; : : : ; tnwidth(t; n) ^ 8i 2 f1; : : : ; ng feature(t; fi; ti):The features fi and the number n in this 
onstraint are 
onstants and the featuresmust be pairwise distin
t.Open re
ords are re
ords where not all features are known. Open re
ords aredes
ribed by the 
onstraints width(t; n) resp. feature(t; f; t0), where the width nand the feature f are 
onstants.In the store open re
ords are represented as variables with attributes. Attributesallow to atta
h information to a variable. The semanti
s of some operations, e.g.uni�
ation, is extended for variables with attributes.Variables representing open re
ords have the attributes width and �elds. Thewidth attribute if de�ned 
ontains a number and the �elds attribute 
ontains aset of pairs of a feature and a node (see Figure 2.13).The 
onstraints on the attributes of a variable are� Every feature o

urs at most on
e in the �elds attribute.
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Figure 2.14: Closing an open re
ord.� The number of elements in �elds attribute is less than the value of the widthattribute.An open re
ord is automati
ally 
losed, when its width attribute be
omes equalto the number of elements in the �elds attribute. Closing means that the variableis bound to a re
ord, where the �elds of the re
ords are exa
tly the elements ofthe �elds attribute (see Figure 2.14).The featureC and widthC operator implement the feature resp. width 
on-straints and the uni�
ation is extended to support the equality 
onstraint onopen re
ords.The featureC operator The featureC operator is applied to three argu-ments (x; f; y) and suspends until f is a feature and x is not a future. Thefollowing 
ases o

urCondition A
tionx is a variable whi
h does not 
ontainthe feature f in its �eld attribute. The feature f and the �eld value y areadded. Impli
itly the open re
ord maybe 
losed.x is a variable with the feature f and�eld value y0 in its �eld attribute or xa re
ord with a feature f and the �eldvalue y0. Then the featureC operator redu
esto the uni�
ation of y and y0.Otherwise. A failure ex
eption is raised.The widthC operator The widthC operator is applied to two arguments (x; n)and suspends until the �rst argument is no future and the se
ond argument is apositive integer.
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tionx is a variable whi
h does not have thewidth attribute and not more than nentries in the �eld attribute. The width attribute with value n isadded to the variable. Impli
itly theopen re
ord may be 
losed.x is a variable with width attributeequal to n or x is a re
ord with widthn. Nothing needs to be done.Otherwise. A failure ex
eption is raised.Extending the uni�
ation algorithm The uni�
ation algorithm must beextended to support open re
ords. If an open re
ord x is uni�ed with anothernode y , then it bound as usual and its attributes are imposed to the new binding.Imposing means that the attributes of x are added to the node y as if the widthCand featureC operators for these attributes are applied.� If x has a width attribute n, then widthC (y, n) is exe
uted.� For all features fi with �eld values zi in the �elds attribute of x theoperator featureC (y, fi, zi) is exe
uted.2.10 Spa
esMultiple 
omputation spa
es are the basis for building 
exible sear
h enginesin the 
on
urrent 
onstraint programming paradigm [90, 91, 88, 89℄. In thisthesis we fo
us on the implementation of entailment, disentailment and mergingof spa
es. Therefore we de�ne one operator, namely the deep guard 
onditional,whi
h requires exa
tly the abilities to dete
t entailment and disentailment andto merge spa
es.We �rst de�ne a multiple store graph model with introdu
es situated nodes. Afterthat we explain the deep guard 
onditional operator.2.10.1 The multiple store graph modelA 
omputation spa
e is a number of threads exe
ution over a shared store. Theexe
ution of a thread 
an 
reate new subordinated 
omputation spa
es. The new
omputation spa
e is initialized with a 
opy of the 
urrent store and an initialthread.
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Figure 2.15: A tree of 
omputation spa
es.Every node in the 
opy is linked to its original. This is essential to de�ne prop-agation and merging. The basi
 invariant between spa
es is that the graph in asubordinated spa
e is a extension of the graph in the store of its parent spa
e. Theintuition should be that subordinated spa
es see every 
hange in their parent'sstore, but not vi
e versa.With this 
onstru
tion a tree of 
omputation spa
es 
an be build (see Figure 2.15).The �gure shows how a graph and its 
opy in a subordinated spa
e are linkedtogether. The top-most spa
e is 
alled root or toplevel spa
e.When a spa
e is 
reated a new variable is 
reated in this spa
e, whi
h is 
alledthe root variable. The root variable is used to 
ommuni
ate 
omputation resultsbetween a spa
e and its parent spa
e. The initial thread exe
utes a fun
tionwhi
h is applied to this root variable.Situated nodes The theoreti
al foundation [95℄ of 
omputation spa
es is basedon a de
larative semanti
s where the store is modeled as a 
onstraint with existen-



2.10. SPACES 41tially quanti�ed variables. In the graph model we repla
e the notion of existentialquanti�
ation with the notion of situated nodes.Transients and 
ells are situated nodes. The spa
e where a situated node is
reated is 
alled the home spa
e of a node. A situated node is 
alled a lo
al nodein its home spa
e and a global node in subordinated spa
es. Figure 2.15 shows aglobal variable x0 in the 
opy and its 
orresponding lo
al variable x in the originalspa
e.In the following we restri
t situated nodes to logi
 variables. Other types ofsituated nodes are introdu
ed later.Store invariant The store invariant ensures the 
onsisten
y of stores in a treeof 
omputation spa
es. It is de�ned su
h that the graph in a subordinated spa
eis an extension of the graph in its parent:� A subordinated graph 
ontains all nodes and links of the graph of its parent.When new nodes are added then these nodes are 
opied to subordinatedspa
es. The 
opies preserve the 
onne
tion to their original nodes.� A subordinated graph 
an 
ontain additional units and links.� Global variables in spa
es 
an be bound. Su
h a binding is 
alled spe
ula-tive. A spe
ulative bindinge 
an be retra
ted.Binding and propagation When a variable is bound this binding is propa-gated to all subordinated spa
es. Propagation ensures that the �rst requirementof the store invariant holds.Propagating a binding retra
ts already existing spe
ulative bindings in subordi-nated spa
es and repla
es these spe
ulative bindings with the new binding.Retra
ting a binding means that an assumption made during a previous uni�
a-tion is invalidated. To ensure that no information is lost a new thread is 
reatedin the subordinated spa
e whi
h uni�es the old and the new binding.Figure 2.16 shows how a binding is propagated to a subordinated spa
e.Binding order When two variables must be bound and one is global and theother is lo
al, the lo
al variable is bound to the global variable. This ensures thata minimal number of spe
ulative bindings are done per spa
e.
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FAILEDFigure 2.16: Propagation of a binding.2.10.2 EntailmentThe distin
tion of lo
al and global variables is essential to de
ide entailment of aspa
e. A spa
e is entailed if� all threads are terminated and� the 
onstraint represented in a store is entailed by the 
onstraint of itsparent store.The se
ond part of the entailment 
ondition expressed in terms of our graphmodel means that no global variable is spe
ulatively bound in the store.Figure 2.17 shows a simple example how entailment is dete
ted after propagation.In step (1) the uni�
ation of a lo
al variable z with a global variable x binds thelo
al variable. In step (2) a spe
ulative binding of x to 1 is added. In step (3) xis bound in its home spa
e to y. This binding is propagated to the subordinatespa
e. This requires a uni�
ation step, whi
h leads to the spe
ulative binding ofy to 1. In step (4) y is bound in its home spa
e to 1. After the propagation ofthis binding the subordinated spa
e is entailed.2.10.3 DisentailmentThe dete
tion of disentailment is build on top of the ex
eption me
hanism of L.When the unif or another 
onstraint operator dete
ts failure they raise a spe
ialex
eption, 
alled a failure ex
eption.
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Figure 2.17: Entailment after propagation.
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h a failure ex
eption rea
hes the default ex
eption handler of a thread,the spa
e is marked as failed. A spa
e marked as failed is disentailed. All sub-ordinated spa
es of a failed spa
e are marked as 
an
eled. The threads in failedand 
an
eled spa
es are not further exe
uted.In L we use re
ords with the single feature name Failure as indi
ation for failureexe
utions. The �eld value of this ex
eptions 
an 
ontain an arbitrary value whi
h
an be used for debugging purposes.2.10.4 MergingA spa
e 
an be merged into its parent spa
e. The purpose of merging is to makethe 
omputation of a subordinated spa
e available in its parent.Merging involves the following operations� New nodes and links are 
opied from the merged spa
e to its parent. Lo
alnodes of the merged spa
e be
ome lo
al nodes of their parent.� The node of the root variable is typi
ally made available (see 
onditionalbelow).� All threads of the merged spa
e are moved to its parent.� All subordinated spa
es of the merged spa
e are merged to its parent.� Spe
ulative bindings in the merged spa
e are turned into uni�
ation oper-ations in the parent spa
e.For the deep guard 
onditional only the �rst two operations are relevant. Whena spa
e is entailed it has no threads, no subordinated spa
es, and no spe
ulativebindings.2.10.5 Deep guard 
onditionalsThe deep guard 
onditional cond is an operator whi
h takes three fun
tions
(guardF, thenF, elseF) as arguments. The evaluation of cond happens intwo steps.In step one a new spa
e is 
reated as de�ned above. The new spa
e has aninitial thread 
ontaining the appli
ation of the fun
tion guardF to the root vari-able. The se
ond step of the evaluation happens when the spa
e is entailed ordisentailed.
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e is entailed it is merged with its parent and the cond operator evaluatesto the appli
ation of the thenF fun
tion to the root variable.If the spa
e is disentailed the cond operator evaluates to the appli
ation of the
elseF fun
tion to the singleton value.2.10.6 Other situated nodesCells in spa
es Cells are situated nodes. When the 
ontent of a lo
al 
ell is
hanged this 
hange is propagated to all subordinated spa
es.The 
ontent of a global 
ell 
an be a

essed, but it 
annot be modi�ed. This isthe reason why L has two built-in operators for 
ells.The exchange operator applied to a global 
ell raises an ex
eption. An alterna-tive design de
ision would be to suspend the ex
hange operation on global 
ells.In L we have 
hoose ex
eption, be
ause it is easy to implement. Suspending thethread does not seem really useful and would add an unne
essary 
omplexity tothe implementation.Futures in spa
es Global futures loose the read-only prote
tion and are treatedas logi
 variables. Spe
ulative binding of global futures in spa
es is allowed.Only when a spa
e is merged the spe
ulative binding is redone in the parent spa
eusing uni�
ation, whi
h will suspend if the future is lo
al. Note, that in L thissituation does not o

ur, be
ause only entailed spa
es are merged.Treating global futures in the same way as lo
al futures, i.e. every binding attemptsuspends has an unwanted e�e
t. The problem whi
h o

urs is the following: as-sume an expression unif (x, 1); if x = 1 then ... is exe
uted in a spa
ewhere x is a global variable. Later an expression unif (x, f) , where f is afuture is exe
uted in the home spa
e of x. In this situation the spe
ulative bind-ing of x must be retra
ted and a thread unifying f and 1 must be exe
uted inthe subordinated spa
e. This thread will of 
ourse 
orre
tly suspend, but thede
ision based on spe
ulative binding 
annot be retra
ted.A spe
ulative binding for
es the lazy 
omputation of futures introdu
ed with the
byNeed operator.Feature 
onstraints in spa
es Feature 
onstraints are represented as vari-ables with attributes. These attributes play a similar role as variable bindingswrt. to spa
es.Variables with attributes preserve the invariant that attributes in subordinatedspa
es inherit all attributes from their parent. Global variables may have addi-tional attributes not available in parent spa
es.
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on
i
t o

urs during propagation the attribute is repla
ed by the new one. Theold attributes are restated with the widthC resp. featureC operator as in theuni�
ation 
ase.A spa
e is not entailed if the attributes of a global variable are stronger than theattributes of the variable in the parent spa
e.2.10.7 Dis
ussionStability, 
loning and inje
ting With the deep guard 
onditional it is possi-ble to syn
hronize on entailment or disentailment of a spa
e. To express 
onstraintprogramming and 
exible sear
h engines spa
es must support stability, 
loning,and inje
tion.Stability is the property that a spa
e is neither entailed, nor disentailed, but ithas no threads whi
h 
an exe
ute and no 
hange in the store of a parent spa
e
an ever 
hange this situation.Inje
tion allows to add a thread to a subordinate spa
e. The inje
ted threadexe
utes a user-de�ned fun
tion applied to the root variable. With inje
tion it ispossible to add for example new 
onstraints into a spa
e.Cloning of a spa
e 
reates an independent 
opy. In a 
lone global nodes are stilllinked to the 
orresponding nodes in the parent, but all lo
al nodes are fresh.For example a 
lone of a lo
al 
ell is a new 
ell independent of it original. The
lone of a global 
ell on the other side is 
onne
ted to the 
orresponding 
ell inthe parent spa
e.In this work we will not explain how stability, 
loning, and inje
ting is imple-mented. These 
on
epts are dis
ussed further in [90, 91, 89℄.Pattern mat
hing Pattern mat
hing 
an be explained as an instan
e of the
onditional. The 
ase expression
case y of fc1=x1,...,cn=xn g => e
an be expressed with the deep guard 
onditional as
cond ( fn x => let val ... xi = lvar () ... in

unif(x, (x1, ..., xn)),
unif(y, fc1 = x1, ..., cn = xn g)

end,
fn x => let val ... xi = lvar () ... in

unif(x, (x1, ..., xn));
e

end,
fn x => throw ...)
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ase statement is well suited as a primitive of the 
ore language. The 
asestatement 
an be explained without introdu
ing spa
es. Its implementation ismu
h simpler and mu
h faster then with spa
es.Semanti
ally it is 
onvenient to de�ne pattern mat
hing with the deep guard
onditionals to have a single semanti
 foundation instead of two slightly di�erentmodels. Espe
ially when using elaborated syn
hronization 
onditions for 
asestatements the semanti
s with deep guards has advantages. The major disadvan-tage of this semanti
s is that a lot of e�ort has to but into the optimization ofthe simple 
ase [87, 14, 78℄.In [87℄ an extension of pattern mat
hing is dis
ussed whi
h allows 
oreferen
esin patterns and reje
ts mat
hes of re
ords with 
oreferen
es early, e.g. the eval-uation of the expression val x = lvar (); case (x,x) of (a,b) = > ...would suspend in our language forever. This mat
hing rule would be reje
tedimmediately in the extension of the 
ase statement dis
ussed in [87℄.2.11 ExamplesTo show the usefulness of the language L a few simple examples in di�erentprogramming paradigms are shown.2.11.1 Fun
tional programming: AppendAs a language based on Standard ML it is trivial in L to write fun
tions like appfor 
on
atenating lists or map for applying a fun
tion to all elements of a list.Note that these fun
tion do not require any expli
it 
ode to syn
hronize on tran-sients. The exe
ution of the pattern mat
hing on the input arguments blo
ksautomati
ally if an in
omplete list is provided and resumes its exe
ution if thelist is further instatiated. Furthermore the map fun
tion does not blo
k, if thelist elements are transients.
(� Functional append �)
fun appF (nil, ys) = ysj appF (x::xr, ys) = x::appF (xr,ys);

(� Functional map �)
fun map (nil, f) = nilj map (x::xr, f) = f x :: map (xr,f);A major extension of L are logi
 variables and futures. Beside their usage aspowerful 
ommuni
ation primitives they allow to write an eÆ
ient tail-re
ursiveversion of the list 
on
atenation.



48 CHAPTER 2. THE LANGUAGE L
(� Tail�recursive append with futures�)
fun appFut (nil, ys, zs) = unif (zs, ys)j appFut (x::xr, ys, zs) =

let val zr = lvar () in
unif (zs, x :: future (zr));
appFut (xr, ys, zr)

end;This implementation is eÆ
ient be
ause the tail-re
ursion does not need memoryfor 
reating and unwinding the re
ursion sta
k. This approa
h of 
reating re-
ursive data stru
tures top-down, 
an be also used in language with destru
tiveoperations. It is un
lear if a 
ompiler 
an automati
ally transform a fun
tion like
appF into an equivalent fun
tion using destru
tive operations internally, whi
hare not visible. E.g. the following transformation of appFut to appD is safe,be
ause no intermediate unde�ned values are ever visible outside of the fun
tion:
fun appHelp (nil, ys, zs) =

replaceTail (zs, ys)j appHelp (x::xr, ys, zs) =
let val zr= x::Undefined
in

replaceTail (zs, zr);
appHelp (xr, ys, zr)

end;
fun appD (nil, ys) = ysj appD (x::xr, ys) =

let val zs= x::Undefined in
appHelp (xr,ys,zs);
zs

end;An advantage of appFut as opposed to appD is that it 
an be used as an agentin a 
on
urrent appli
ation whi
h 
onsumes a stream xs and produ
es a stream
zs even in the 
ase that xs is not fully determined and has an open end.In this s
enario appFut is furthermore safe, be
ause the reader of the outputstream 
annot 
orrupt the open tail, be
ause it is always a future, whi
h 
annotbe bound.2.11.2 Con
urrent lazy programming: HammingThe lazy generation of hamming numbers is a small example whi
h shows howby-need futures support lazy fun
tional programming.
(� Hamming numbers �)
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(� A lazy stream merger �)
fun m (xs, ys) =

byNeed ( fn () = >
case xs of x::xr = >

case ys of y::yr = >
if x<y then x::m (xr, ys)
else

if x>y then y::m (xs, yr)
else x::m (xr, yr));

(� A lazy n times generator �)
fun t (xs, n) =

byNeed ( fn () = >
case xs of x::xr = >

n�x :: t (xr, n));

(� hs is a lazy stream of Hamming numbers �)
val hs = lvar ();
unif (hs, 1 :: m (m (t (hs, 2),

t (hs, 3)),
t (hs ,5)));

(� h is the 10000th hamming number:� 288325195312500000 �)
val h = nth (hs, 10000);The example is also useful as a ben
hmark for threads in L, be
ause for everyrequest of a by-need future a new thread is spawned.2.11.3 Feature 
onstraints: PathsAs an example for feature 
onstraints we de�ne a fun
tion to impose path 
on-straints on trees. A path 
onstraint de�nes that a 
ertain path exists in a treeand returns the node at the end of this path.
fun path (rs, p::pr) =

let
val rr = lvar ()

in
featureC (rs, p, rr);
path (rr, pr)

endj path (rs,[]) = rs;

(� example �)
val r = lvar ();
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val p = path (r, [1,2,3,4]);
unif (p,5);The path equality used in a deep guard 
onditional tests if the node at the endof two path starting at the same node are the same.
fun pathEq (n,p1,p2) =

cond ( fn m =>
(unif (m, path (n,p1));

unif (m, path (n,p2))),
fn n => n,
fn () = > false);The following examples shows how the path 
onstraint and the path equality test
an be used.

(� entailment of records �)
val z = lvar ();
val y = ((1, (z, z), 3), 1);
val v = pathEq (y, [1,2,1], [1,2,2]);

(� returns z �)
(� entailment of open records �)
val y = lvar ();
val z = path (y,[1,2,1]);
unif (z, path (y,[1,2,2]));
val v = pathEq (y, [1,2,1], [1,2,2]);

(� returns z �)
(� disentailment �)
val z = lvar ();
val y = ((1, (1, 2), 3), 1);
val v = pathEq (y, [1,2,1], [1,2,2]);

(� returns false �)



Chapter 3The virtual ma
hine LVM
In this 
hapter we des
ribe a virtual ma
hine (LVM) for L.3.1 OverviewThe virtual ma
hine is a re�nement of the language model de�ned in the previous
hapter.� The graph model of the store is re�ned to make essential aspe
ts of therepresentation expli
it.� The language of the LVM is de�ned as an imperative low-level ma
hinelanguage, whi
h is well suited for an emulator based approa
h.� The ma
hine language allows to integrate stateless data stru
tures, i.e.re
ords and pro
edures, into the byte
odes of ma
hine programs. An ex-ternal format, 
alled pi
kles, is de�ned to represent ma
hine programs andstateless data stru
tures.� The 
ontrol for the exe
ution of ma
hine programs is de�ned as a singlethreaded engine.� The ma
hine language supports pro
edures with multiple arguments. Fun
-tions are implemented with a new variable as output argument.� A 
ompa
t representation of multiple 
omputation spa
es is de�ned us-ing the s
ript te
hnique for maintaining multiple bindings of variables indi�erent spa
es. As an alternate te
hnique for this binding windows aredis
ussed. 51
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Library

Engine SpacesPickle

Figure 3.1: The modules of the LVM.3.1.1 Modules of the LVMThe LVM is modularized as follows (see also Figure 3.1):store The store of the LVM is a high level abstra
tion for storing dynami
allytyped values. It is at a high level 
ompared to the linear storage model ofstandard hardware, but it provides a good intermediate model for explain-ing the design de
ision for representing data stru
tures (see Se
tion 3.3).engine The engine is the sequential 
ontrol for the exe
ution of programs. Theengine has ma
hine registers and sta
ks, and exe
utes an imperative ma-
hine language. This part of the LVM ar
hite
ture maps very well to 
om-mon hardware ar
hite
tures (see Se
tion 3.4).pi
kling Exe
utable programs are stored in an external format, 
alled a pi
kle.A loader is responsible to transform a pi
kle into an internal representation,whi
h 
onsists of a graph in the store and of the program 
ode as threaded
ode suited for emulation. Pi
kles 
an be 
reated from the internal repre-sentation of a graph (see Se
tion 3.2).spa
es For the maintenan
e of multiple 
omputation hooks are supplied in theengine and store modules, e.g. when a thread terminates entailment mustbe 
he
ked and when a global variable is bound the spa
e management mustbe involved (see Se
tion 3.6).
onstraints Other 
onstraint systems are integrated into the LVM as extensionsof logi
 variables with attributes to represent domain information. For theeÆ
ient implementation of 
onstraint propagation a re�nement of threads,
alled propagators, is used, whi
h allows to implement spe
ialized threadsin C++.
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Figure 3.2: The engine of the LVM.In this work we only 
onsider the representation of open re
ords. Otheraspe
ts of the 
onstraint extensions of Oz are dis
ussed in [70, 69, 118℄.distribution The LVM supports the transparent distribution of the store amongmultiple sites. In this thesis we des
ribe only the 
entralized system withoutdistribution. Aspe
ts of distribution in Oz is explained in [40, 107, 39℄.obje
ts The support for obje
ts in the LVM is only partially tou
hed in our workwhen we explain how to integrate new built-in abstra
t data-types. Otherparts e.g. the support for eÆ
ient �rst-
lass messages, the maintenan
e ofthe self register, and the eÆ
ient a

ess to attributes and obje
t features isnot part of our work. Obje
ts in Oz are dis
ussed in [42℄.library Other parts of the LVM are 
ommon libraries and fun
tions, e.g. forsta
ks, queues, 
hara
ters, and strings, and an interfa
e to the operatingsystem, e.g. for I/O and memory management.The des
ription of the LVM in this thesis is an idealization of the 
on
rete im-plementation Mozart [66℄. The LVM is explained at su
h a level that the maindesign de
isions and design alternatives are made expli
it. The des
ription isdetailed enough to understand the Mozart implementation and it allows for there
onstru
tion of the Mozart VM.3.1.2 The engineThe engine is the sequential 
ontrol for the exe
ution of 
on
urrent threads. Themain parts of the engine are the s
heduler, the worker, and the emulator.
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t model of the engine, where the s
heduler, the worker, and theemulator are obje
ts sending messages to ea
h other, is shown in Figure 3.2. Theobje
ts and messages are explained in the following paragraphs.The LVM is a single threaded operating system pro
ess. The light-weight threadsof the language are implemented as user-level threads with a round robin s
hedul-ing poli
y. The s
heduler is responsible for the fair and preemptive s
hedulingof 
on
urrent threads. When bi runnable thread exists the s
heduler runs in theidle loop, typi
ally waiting for I/O. When one or more threads are runnable thes
heduler sele
ts one using a fair strategy and invokes the worker to run thisthread.The worker exe
utes a single thread until it is �nished or until the preemption
ondition is rea
hed. In the �rst 
ase the worker sents the terminate message tothe s
heduler and in the se
ond the preempt message.A thread 
ontains tasks, whi
h are exe
uted sequentially following a sta
k dis-
ipline. A task is a 
losure 
ontaining the byte
ode, a pro
edure environment,and a lo
al environment. The environments are mappings from indi
es to nodesin the store. The pro
edure environment is allo
ated per pro
edure and is a

es-sible through the G registers. The lo
al environment is allo
ated per pro
edurea
tivation and is a

essible through the Y registers.The worker exe
utes the tasks and sents the emulate message to the emulatorto exe
ute the ma
hine 
ode of a task. The emulator interprets instru
tion perinstru
tion of the byte
ode indi
ated with the next message, until it rea
hes theend of the instru
tion sequen
e (pop), until a new task is 
reated (push), or untilan ex
eption is raised (raise). In these 
ases 
ontrol is passed ba
k to the worker.Control is passed to the s
heduler with the suspend message, when the exe
utionof an instru
tions must blo
k, e.g. when a determined node is expe
ted, but atransient node is found.The main parts 
omprising the state of the engine are shown in Figure 3.3 andan overview of their role is given in the following paragraphs.Store The graph store, the atom and arity table, and the operations on thegraph are dis
ussed in Se
tion 3.3. For the introdu
tion of the LVM it is suÆ
ientto understand that the graph has labelled nodes, with dire
ted labelled links. Thenodes in the store are referen
ed through ma
hine registers and from the ma
hine
ode.Instru
tions and built-in pro
edures The operations performed by the en-gine are de�ned by the instru
tion set and by a number of prede�ned pro
edures,
alled built-ins. The instru
tions have the advantage that they are part of theworker with full a

ess to the state of the LVM and with an eÆ
ient dispat
h.
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edures on the other side allow to fa
tor out parts of the engine tomake the emulator lean. The overhead for built-in pro
edures is a fun
tion 
allwith the preparation of its arguments and the test of the return status.X and SP A worker maintains the state for the exe
ution of a single thread.The worker has a �xed number of global registers X to store temporary referen
esto nodes and to pass arguments to pro
edures.The register SP is the stru
ture pointer whi
h is used to read or write the �eldsof re
ord in
rementally (see Se
tion 3.4).Threads and tasks A thread has a sta
k of tasks. A task 
onsists of a triple(PC; Y;G), where PC is the address of the next instru
tion in the program store,Y is a lo
al environment with a number of registers, and G is a referen
e to the
urrent pro
edure. The tasks of the LVM are similar to sta
k frame in imperativelanguages. The worker exe
utes the tasks on the sta
k sequentially. A task isexe
uted by emulating the instru
tion at the PC using the lo
al environmentand the environment de�ned by the 
urrent pro
edure. The lo
al environment isimplemented as a node in the store with a �xed number of modi�able �elds.Program store The program store 
ontains ma
hine programs. A ma
hineprogram is a sequen
e of ma
hine instru
tions. A ma
hine instru
tion 
onsistsif a byte
ode and arguments. Every instru
tion has an address. The program
ounter, whi
h is stored in the PC register, 
ontains the address of the 
urrentlyexe
uted instru
tion.The internal representation of the program store uses threaded 
ode for an ef-�
ient emulation. This internal representation is not relevant for this overviewof the design of the LVM. In the following we use a readable assembler syntaxfor instru
tions, whi
h is summarized in Figure 3.8 on page 62 and Figure 3.9 onpage 63.Implementation Implementing the model presented above dire
tly in C++,where the s
heduler, worker, and emulator are obje
ts sending messages to ea
hother, is not possible. It would 
reate deeply nested re
ursion sta
ks, be
ause theC++ standard does not require tail-
all optimization and only very few C/C++
ompiler implement it.The implementation is therefore broken down into a single pro
edure with la-bels and gotos as outlined in Figure 3.5. The main registers of the engine aresummarized in Figure 3.4.
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ription
Space� space 
urrent spa
e
Thread � running running thread
ThreadQueue runnable runnable threads
ProgramCounter PC program 
ounter
Tagged[] X global registers
Tagged � Y lo
al environment
Procedure � G pro
edure environment
volatile unsigned SR status register
union f

Tagged exception; raised ex
eption
Tagged suspendVarList; transients listg retInfo return infoFigure 3.4: The registers of the engine.The s
heduler is implemented with the entry points Schedule , Suspend , Terminate ,and Preempt (see Se
tion 3.5). The worker is implemented with the entry points

Raise , Pop and Run. The push method to 
reate a new task is dire
tly imple-mented in the 
orresponding instru
tions (see Se
tion 3.4). The emulator usesthe threaded 
ode te
hnique [11, 21, 54℄ as an eÆ
ient method to dispat
h on theinstru
tion1.3.2 The ma
hine languageThe ma
hine language of the LVM is an imperative language with instru
tionsand built-in pro
edures. A 
ompiler translates the high-level language L into thisma
hine language.3.2.1 Pi
klesA pi
kle is a 
losed representation of a graph spawned by a node in the store.Pi
kles 
ontain stateless repli
able nodes and 
ode. Repli
able nodes are nodeswhi
h have no state. Re
ords and pro
edures are repli
able and 
ells and tran-sients are non-repli
able. If a graph spawned by a node 
ontains a non-repli
ablenode it 
annot be represented as a pi
kle.1The GNU C++ 
ompiler supports the nonstandard feature of 
omputed labels, whi
his need for threaded 
ode generation. The implementation provides a 
ompilation swit
h todisable threaded 
ode.
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engine() f

runnable = ... // initialize

Schedule:
if (SR) handleEvents();
while (runnable �>empty()) idle();
running = runnable �>get();
startTimer(TimeSlice);
goto Run;

Suspend:
running �>saveX(X);
goto Schedule;

Terminate:
goto Schedule;

Preempt:
running �>saveX(X);
runnable �>add(running);
goto Schedule;

Raise:
running �>raise(retInfo.exception);
goto Run;

Pop:
goto Run;

Run:
if (statusReg) goto Preempt;
if (running �>empty()) goto Terminate;
(PC,Y,G) = running �>popTask();
goto �PC; // threaded code emulator

MOVEX X: ...
PC+=3;
goto �PC;

CALLX: ...
running �>push(...);
goto Run;

RETURN:
goto Run;

... g Figure 3.5: The main pro
edure of the engine.



3.2. THE MACHINE LANGUAGE 59e ::= int(s) integerj atom(s) atomj name(s) global namej re
(n; e1; e01; : : : ; en; e0n) re
ordj tup(n; e1; : : : ; en) tuplej 
ons(e; e0) list elementj pro
(s; [e1; : : : ; en℄; lbl; :::) pro
edurej bi(s) built-in pro
edurej v : e labelled expressionj ref(v) referen
ev ::= an identi�er label of a nodes ::= a stringlbl ::= an identi�er 
ode labelFigure 3.6: The pi
kle format.Pi
kles allow to 
reate persistent representation of nodes and 
ode. The 
reationof su
h a representation is 
alled pi
kling and the operation to internalize a pi
kleis 
alled loading. Pi
kling takes a node and 
reates the pi
kle representation ofthe graph spawned by the node. The load operation reads the pi
kle des
rip-tion, 
reates an internal representation, and returns the node whi
h was used forpi
kling.A pi
kle 
onsists of two major parts: the representation of the nodes and therepresentation of the byte
ode. Figure 3.6 shows an overview of the representationof the nodes v. The byte
odes are summarized in Figure 3.8 and Figure 3.9.Integers, atoms, and re
ords The representation of a node starts with a tag,e.g. int, atom, followed by a number of arguments. Integers int(s) and atomsatom(s) are represented using a string representation for their numeri
 resp.symboli
 value. Re
ords are represented as re
(n; e1; e01; : : : ; en; e0n) with theirwidth n, their features e1; : : : ; en and the 
orresponding �eld values e01; : : : ; e0n.Tuples tup(n; e1; : : : ; en) are represented as 
ompa
t re
ords without the featuresand list elements 
ons(e; e0) also without the features and the width.Names For the representation of names as name(s) the LVM generates aunique string s. This string s is build of several 
omponents: a unique iden-ti�er for the LVM pro
ess and a unique 
ounter value whi
h is 
hoosen when anew name is 
reated.The unique identi�er for a LVM pro
ess is 
reated from the internet address of
omputer (ip address), the time when the LVM was started (timestamp), the
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Source Compiler Pickle Loader Engine

Store

Program
Machine-Figure 3.7: From Oz sour
e to the LVM.pro
ess id (pid), and a random number. Under the assumption that all hostshave a unique internet address this ip address, the timestamp, and the pid wouldalready give a unique identi�
ation of an LVM pro
ess, but many hosts do nothave a unique ip address therefor some form of randomness is added.Referen
es Cy
les in the graph are represented using labelled nodes v : e. A la-belled node is referred by a referen
e ref(v). For example v : tup(2; ref(v); ref(v))is the representation of the tree generated by the expression

let val x = lvar () in unif (x, (x,x)); x end.Pro
edures The representation of a pro
edure pro
(s; [e1; : : : ; en℄; lbl; :::) hasas �rst argument a globally unique string as de�ned above for names. The fol-lowing argument 
ontains the nodes e1; : : : ; en stored in the G registers. Thelast argument lbl is the 
ode label of the start of byte
ode for the pro
edurebody. A pro
edure has further arguments, e.g. a print name and other debugginginformation, whi
h are irrelevant here.Built-in pro
edures are represented as bi(s), where s is a unique name of a built-inpro
edure, e.g. 're
ord' or 'newName'.Compiling and loading Pi
kles are 
reated by the Oz 
ompiler. The Oz
ompiler translates an Oz sour
e �les using a given environment into a pi
kle(see Figure 3.7). The pi
kles 
reated by the 
ompiler are fun
tors. A fun
tor2is a data stru
ture whi
h 
onsists of a spe
i�
ation of its dependen
y (importedmodules), a pro
edure, and a spe
i�
ation of the resulting module. When thepi
kle is loaded into the LVM the import dependen
ies are resolved. Then thepro
edure of the fun
tor is applied to the nodes obtained by this resolution. Theappli
ation returns a module.The loader 
onverts the pi
kle format of the byte
ode to the internal formatexe
uting the following steps:2We do not explain the details of fun
tors here (see [22℄ for more information).
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 names, and integers.� Internalize feature lists to arities.� Convert the byte
ode into threaded 
ode [11, 21, 54℄.� Initialize the inline 
a
hes of 
ertain instru
tions.� Internalize built-in names to built-in pro
edures.� Internalize swit
h tables for the indexing instru
tions.� Resolve optimized 
alls.� Platform dependent byte order 
onversion.3.2.2 Instru
tionsThe instru
tions of the LVM are summarized in Figure 3.8 and Figure 3.9. Thenumber of instru
tion is less than 150, whi
h is an indi
ation that the byte
ode ofthe LVM is very 
ompa
t. In this se
tion we give only an overview of the existinginstru
tions. In the following se
tions we introdu
e them step by step.The instru
tions are stru
tured into the following 
ategoriesStore operations The 
reation and a

ess of symboli
 data stru
tures is an es-sential property of the LVM and it has a number of instru
tions to eÆ
ientlymaintain them.The LVM does some optimizations for numeri
 data by implementing someof the arithmeti
 operators as instru
tions, but we have not spent mu
he�ort to 
ompete with other languages wrt. numeri
 
al
ulations.Control The LVM has extensive support for simple tests and pattern mat
hingon re
ords. Furthermore instru
tions for threads, ex
eptions, lo
ks, anddeep guards are available.Pro
edures Pro
edures are at the heart of the LVM. Many instru
tions supportthe de�nition and appli
ation of pro
edures and the maintenan
e of thelo
al environment.Uni�
ation The LVM has a number of instru
tions to support the eÆ
ient
ompilation of uni�
ation. The major reason for optimized uni�
ation isthat the LVM uses variables to pass output arguments.
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moveXX(i; j) [/XY/YX/GX℄ register move
moveMoveXYXY(i; j; i0; j0) [/YXYX/YXXY℄ multiple register move
putRecordX (ar; i) [/Y℄ 
reate re
ord node
putListX (i) [/Y℄ 
reate list node
putConstant (v
; i) load node in register
setVariableX (i) [/Y℄ put new var in �eld
setVoid (n) put n new vars in �elds
setValueX (i) [/Y℄ put value in �eld
setConstant (v
) put 
onstant in �eld
select (i; v
; j; 
key; 
ind) �eld sele
tion with 
a
hing
createVariableX (i) [/Y℄ 
reate new variable
createVariableMove (i; j) . . . 
ombined with move
inlinePlus (i; j; k) addition
inlinePlus1 (i; j) add one
inlineMinus (i; j; k) subtra
tion
inlineMinus1 (i; j) subtra
t one
testLT (i; j; l) less than test
testLE (i; j; l) less or equal testControl (23)
matchX (i; ht) [/Y℄ indexing
getVariableX (i) [/Y℄ get value from �eld
getVarVarXX (i; j) [/XY/YX/YY℄ . . . double value
getVoid (n) skip �elds
testConstantX (i; v
; l) [/Y℄ equality test
testRecordX (i; ar; l) [/Y℄ test arity
testListX (i; l) [/Y℄ test list element
testBoolX (i; l; l) [/Y℄ test boolean
testBI (bi; lo
; l) built-in appli
ation and test
try (l) install ex
eption handler
popEx deinstall ex
eption handler
lock (l, i) require lo
k
cond (l; l0) 
onditional
branch (l) forward jumpPro
edures (35)
definition (i; pro
Body) pro
edure de�nition
definitionCopy (i; pro
Body; v
opy) . . . optimized
endDefinition (l) marker
callX (i; n) [/Y/G℄ �rst-
lass appli
ation
tailCallX (i; n) [/Y/G℄ . . . tail-re
ursive
directCall (v; n) �rst-order appli
ation
directTailCall (v; n) . . . tail-re
ursive
callBI (v; lo
) built-in appli
ation
return end of task
allocateL (i) environment allo
ation
allocateL1 [/2/3/4/5/6/7/8/9/10℄ . . . with �xed size
deallocateL (i) environment deallo
ation
deallocateL1 [/2/3/4/5/6/7/8/9/10℄ . . . with �xed sizeFigure 3.8: Instru
tions (Part I)
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Uni�
ation (17)

unifyXX (i; j) [/XY℄ uni�
ation
getRecordX (ar; i) [/Y℄ . . . with re
ord
getListX (i) [/Y℄ . . . with list
getListValVar (i; j; k) . . . 
ombined
getConstantX (v
; i) [/Y℄ uni�
ation with 
onstant
unifyVariableX (i) [/Y℄ read/write variable in �eld
unifyVoid (n) read/write variables in �elds
unifyValueX (i) [/Y℄ read/write value in �eld
unifyValVarX (i; j) [/Y℄ . . . 
ombined
unifyConstant (v
) read/write 
onstant in �eldObje
ts (14)
getSelf (i) read self register
setSelf (i) write self register
inlineAt (v
; i; 
key; 
ind) attribute a

ess
inlineAssign (v
; i; j; 
key; 
ind) attribute assignment
sendMsgX(v; i; ar; 
key; 
val) [/Y℄ message sending
tailSendMsgX (v; i; ar; 
key; 
val) [/Y℄ . . . tail-re
ursive
applMethX (ami; v
) [/Y/G℄ method appli
ation
tailApplMethX (ami; v
) [/Y/G℄ . . . tail-re
ursiveDebugging (9)
skip no operation
raiseError (v; v0; v00; v000) raise error ex
eption
debugEntry (: : :) enter pro
edure
debugExit (: : :) exit pro
edure
globalVarname (v
) print name of G register
localVarname (v
) print name of Y register
clearY (i) mark register unused
profileProc start pro�ling
endOfFile markerFigure 3.9: Instru
tions (Part II)
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esn positive numberv a label of a nodev
 label of a 
onstant nodel 
ode labelar re
ord aritypri pro
edure infod
i dire
t 
all infoami appli
ation method infoht hash table
 
a
heFigure 3.10: Instru
tion arguments.Obje
ts We will not explain the instru
tions whi
h support obje
ts. They arelisted here just to give an impression how mu
h support is given for obje
tsin the LVM.Debugging The 
ompiler 
an generate extra 
ode, whi
h allows a debugger torelate the byte
ode to the sour
e 
ode and to pro�le the 
ode.The identi�ers used for arguments are summarized in Figure 3.10. We explainthem when we introdu
e the instru
tions.Dire
t nodes An unusal aspe
t of the Oz byte
ode is the dire
t referen
e tonodes in the store from the byte
ode. In the instru
tion tables the arguments
ontaining su
h dire
t nodes are indi
ated with a v pre�x.Dire
t nodes in instru
tions provide for 
ertain optimizations:� Nodes 
an be a

essed dire
tly without an indire
tion through registers.� Nodes need not to be stored in pro
edure environments.� It be
omes possible to use unboxed representation of some data stru
tures.The optimized �rst-order appli
ation is for example transformed at run-time into an internal instru
tion using an unboxed representation of thepro
edure.� Some data stru
tures, e.g. strings, atoms, and names, 
an be 
reated atload time and need no resour
es at run time.Dire
t nodes are inserted by the 
ompiler. The 
ompiler 
an 
reate these nodesat 
ompile time, e.g. strings, atoms, and names. Dire
t nodes may be also taken



3.2. THE MACHINE LANGUAGE 65void* CodeLabelint32 Arg1. . .int32 ArgNFigure 3.11: Instru
tion formatfrom the 
ompiler environment, e.g. referen
es to already loaded pro
edures for�rst-order appli
ations. When the 
ompiler 
reates a pi
kle all nodes referred tofrom the byte
ode are pi
kled too.The possibilities opened by using dire
t nodes in the 
ompiler-VM interfa
e arenot fully explored yet, but the 
urrent usage shows already that they are veryuseful.Internal format The program store is represented as an array of 32-bit words.An instru
tion starts with a pointer to the native 
ode implementing the instru
-tion (threaded 
ode). The following words are the arguments of the instru
tionand their number depends on the type of instru
tion (see Figure 3.11). Thenumber of words needed for an instru
tion is 
alled the size of the instru
tion.In the internal format more instru
tions are supported than listed above. In thefollowing we will explain these extensions to the byte
ode when they are needed.3.2.3 Addressing modesThe instru
tions of the virtual ma
hine 
an use three di�erent addressing modesfor refering nodes in the graph store:� The X addressing mode uses the global X registers, whi
h are allo
atedper thread.� The Y addressing mode uses the lo
al environment, whi
h is allo
ated perpro
edure invokation.� The G addressing mode uses the pro
edure environment, whi
h is allo
atedper pro
edure de�nition.In the assembler notation the symbol Ri represents one of these modes plus anindex. Register indi
es start with zero. For example the register G5 refers to thesixth entry in the 
urrent pro
edure environment.
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tions makes the instru
tion set veryregular, but a drawba
k is that too many op
odes are needed. Three op
odesare for example ne
essary for instru
tions with one register argument and nineop
odes are required for instru
tions with two register arguments.The LVM instru
tion set is designed su
h that frequently used addressing modesare dire
tly supported, e.g. the call instru
tion supports all three addressingmode. When an addressing mode is used infrequently at least the X addressingmode is supported, be
ause it is always possible to load any register into an Xregister with additional moves.3.2.4 Dis
ussionThreaded 
ode Threaded 
ode [11, 21, 54℄ is the state of the art method for avery eÆ
ient dispat
h on the byte
odes of instru
tions. Threaded 
ode requiresthat the implementation language supports 
omputed jumps. In our 
ase theC++ language does not support 
omputed jumps, but the GNU C++ 
ompilerhas an extension whi
h supports them.A drawba
k of threaded 
ode is that the emulator is one huge C++ pro
edure,whi
h makes it hard for the C++ 
ompiler to generate highly optimized 
ode.An alternative whi
h was re
ently proposed by Magnusson, et al. [61℄ is based onthe assumption that a C++ 
ompiler does the tail 
all optimization and manyma
hine registers are available. In this 
ase every instru
tion 
an be implementedas a fun
tion whi
h does a tail-
all to the next instru
tion. The state of theemulator is passed in the arguments of these fun
tions.Sta
k ma
hines Many virtual ma
hines use an operand sta
k instead of globalregisters, e.g. the JVM [60℄. A major advantage of a sta
k ma
hine is that noregister allo
ation is ne
essary in the 
ompiler. For these ma
hines advan
edruntime optimizations resp. optimizations when translating the ma
hine 
ode tonative 
ode are ne
essary [23, 24℄.Closure 
onversion The G addressing mode 
an be removed using a 
ompi-lation te
hnique 
alled 
losure 
onversion [7℄. The 
losure 
onversion adds addi-tional arguments to every pro
edure through whi
h the free variables are passedwhen the pro
edure is applied. A drawba
k of 
losure 
onversion is that it maybe ne
essary to save the free variables from the additional arguments in the lo
alenvironment. This is not ne
essary in our approa
h, be
ause the free variablesare stored in the global environment.
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onversion 
ould also be applied to our language. It would redu
e thenumber of instru
tions, but it would not give any speed up, be
ause the G ad-dressing mode does not in
ur an overhead in our emulator-based LVM.3.3 A re�ned graph modelThis part of the thesis des
ribes a re�ned graph model for the store of the LVM.The store is a module of the LVM whi
h is independent of the exe
ution model.It provides hooks to support multiple 
omputation spa
es whi
h are explained inSe
tion 3.6.The level of detail exposed in the re�ned graph model is su
h that the key de-sign de
isions and optimizations of the implementation 
an be dis
ussed, e.g.optimized representation of variables in stru
tures, usage of registers, storage
onsumption, and memory management.The re�nements of the graph model whi
h are explained below 
an be summarizedas followstagged nodes Units are represented as tagged nodes.three-level tagging s
heme A unit is either represented as a single taggednode, a tagged node with a heap node, or a tagged node with a generi
node.referen
e nodes Binding of variables is implemented with referen
e nodes.eÆ
ient 
y
le 
he
k The 
y
le 
he
k in the uni�
ation algorithm is imple-mented with a destru
tive operation on the graph.3.3.1 Node 
lassi�
ationFigure 3.12 shows a 
lassi�
ation of nodes in the LVM. In the following paragraphsthe properties of the di�erent node types are de�ned.The nodes in the LVM store 
an be 
lassi�ed into tagged nodes and heap nodes,whi
h are de�ned below.Tagged nodes are small nodes. Tagged nodes have a label, 
alled the tag. Thetag dis
riminates di�erent kinds of units. Tagged nodes are small nodes,be
ause they must �t into one ma
hine word of the real ma
hine. All datastru
tures represented in the graph are referred to through a tagged node.
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Direct

Tagged

Node

Heap

GenericLabelledUnlabelledPointerFigure 3.12: Classi�
ation of nodes.Dire
t nodes are tagged nodes with an additional label. The tag and thislabel is suÆ
ient to represent a unit dire
tly.Pointer nodes are tagged nodes with have a single link to a heap node.Pointer nodes store only the type information of a unit dire
tly. Otherparts of the representation are stored in the heap node.Heap nodes are nodes of arbitrary size. Heap nodes are only referred to throughpointer nodes. They represent those parts of a unit whi
h does not �t inthe tagged node.Unlabelled heap nodes are heap nodes with do no have a se
ondary tag.The primary tag in the pointer node is suÆ
ient to dis
riminate thetype of the unit.Labelled heap nodes are heap nodes with a se
ondary tag . The and these
ondary tag together dis
riminate the type of the unit.Generi
 heap nodes are heap nodes whi
h hide the details of their rep-resentation. These nodes are only a

essible through a number ofinterfa
e fun
tions.A unit is either represented as a dire
t node or as a pointer node and a heap node(see Figure 3.13).Figure 3.14 shows an overview of the tags in the LVM. The 
on
ept of taggednodes is essential for the design, be
ause:1. Every tagged nodes needs the same amount of memory. This means amemory 
ell storing su
h a node 
an be used and maybe updated to storedi�erent nodes of this 
lass. Espe
ially for a dynami
ally typed languagethis property is needed, be
ause nodes of arbitrary types 
an for examplebe passed as arguments and stored in �elds.
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CONS

REC

GEN

tagged node

pointer node generic heap node

vt: gc, type, ...

pointer node unlabelled heap node

Hd Tl

pointer node labelled heap node

TUP

1
INT

Figure 3.13: Examples of node representations.
Tag Dire
t pointer toREF tagged referen
eWREF tagged write referen
eVAR spa
e optimized variableFUT spa
e optimized futureTRANS labelled gen. transientCONS unlabelled list elementREC labelled re
ord or tupleLIT labelled atom or nameINT int value small integerFLOAT unlabelled 
oat valueEXT labelled labelled extensionGEN generi
 generi
 extensionFigure 3.14: Tagged nodes.
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Graph view

Tagged Heap

Implementation view

Tagged Heap

Figure 3.15: Fields are glued with their heap node.2. The word size of tagged nodes is the natural size for operations of pro
es-sors, e.g. load, store, and arithmeti
 instru
tions typi
ally operate mosteÆ
iently on words.Fields Heap nodes in the LVM have a regular stru
ture. They 
an have multiplelabels, e.g. a se
ondary tag or an arity, and a number of �elds. The number of�elds is 
alled the �eld width. The �elds are ordered and they are a

essed bynumbers f1; : : : ; ng.A �eld has a �eld value, whi
h is a tagged node. In the LVM all �eld values 
anbe modi�ed. When new heap nodes are 
reated all �eld values are initialized tothe tagged zero, whi
h is a spe
ial tagged node, with tag zero and pointer �eldzero, used to indi
ate an ex
eptional value. The initialization of the heap nodesupdates this tagged zeros to useful values.An essential aspe
t of �elds is that a heap node with n �elds has enough storageto represent the n tagged nodes in the �elds. When we draw a graph (see Fig-ure 3.15) we use arrows between the heap node and its �elds values, but thesearrows are spe
ial be
ause they do not need any memory. A pi
ture whi
h givesa better intuition is that of a heap node with dire
tly glued tagged nodes.Changes to the graph invariants A 
onsequen
e of storing tagged nodes in�elds and registers is that these nodes 
an be overwritten and thus destroyed.This is a major 
hange with respe
t to the language graph, be
ause in the re�nedgraph one has to be very 
areful when 
reating links to tagged nodes, that thislink is not broken unintentionally by overwriting the �eld resp. register.To alleviate this problem no links to nodes in registers 
an be 
reated and onlylinks to nodes in �elds whi
h are not modi�ed are 
reated in the LVM.
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lass of tagged nodes whi
h 
an bestored in registers of the LVM. The unique property of register nodes is thatthey 
an be repli
ated without 
hanging the meaning of the unit they represent.Ex
ept for transients (TRANS, VAR, FUT) all tagged nodes of the LVM havethis property.This property is for example needed to make the register allo
ation independentof the store. The 
ompiler 
an move and 
opy nodes between registers freely.Another example is the initialization of �elds in new heap nodes. They 
an beinitialized by 
opying register nodes into the �elds values.3.3.2 Re
ordsThe LVM supports di�erent representations for re
ords: as names and atoms, aslist elements, as tuples, and as other re
ords.Literals Literals are names and atoms. They are represented as tagged pointerswith the tag LIT. Their heap node has a se
ondary tag to distinguish atoms andnames.The heap node of an atom is labelled with the string of 
hara
ters for the atom.A string is internalized into the LVM through an atom table whi
h guaranteethat every atom is represented with an unique node. The atom table maps astring uniquely to an atom node in the store.The heap node of a name is labelled with a number and its home spa
e. Thenumber is used for generating a hash value for the eÆ
ient implementation of thearity (see below). A se
ond reason for a number is that names must be orderedto simplify the 
reation of new arities. Names are situated in spa
es and needtherefore a home spa
e (see Se
tion 3.6).Non-primitive re
ords List elements are represented as tagged pointers (CONS)with an unlabelled heap node with �elds for the head and tail of the list. Listelements obtain spe
ial optimizations be
ause they are the most frequently usedkinds of re
ords.The representation of tuples and other re
ords is not really di�erent. Only therepresentation of the arity (see below) is optimized in the 
ase of tuples. Re
ordsare represented as tagged pointers with the tag REC. The heap node has thearity as label and �elds. The number of �elds of the heap node is equal to thewidth of the re
ord.Re
ords are always represented in a 
anoni
al form. This means that everyoperation produ
ing a re
ord needs to normalize it, if it is a list element or a
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e test in the uni�
ation algorithmbe
omes simple. Two re
ords are only equal if at least the tags in the taggednodes are the same and also the arities in the 
ase of non-list re
ords.Arities A re
ord arity is a partial fun
tion from the set of features to a integer.The features f
1; : : : ; 
ng are mapped to the numbers f1; : : : ; ng.The arity has the additional fun
tionality to eÆ
iently implement the memberfun
tion to test if a feature is in the domain of the arity fun
tion. The arityfun
tion is therefore extended to a total fun
tion mapping the features not in thedomain to the index 0.Arities are uniquely represented in the LVM. For every set of features a uniqueentry in the arity table is used. The 
osts for 
reating resp. �nding a unique arityhave to be paid when new re
ords are 
reated. In many 
ases the arity 
an be
reated at 
ompile resp. load time. Only when arities are 
reated dynami
allythe 
osts for 
reating a unique arity must be paid at run-time.Unique arities allow to test the equality of two arities very eÆ
iently. This isfor example ne
essary for inline-
a
hing of �eld sele
tions and for the eÆ
ientuni�
ation and mat
hing of re
ords.For the eÆ
ient 
ompilation of re
ord 
onstru
tion and re
ord mat
h (see Se
-tion 3.4) a global order on all features must exist. This order must be 
onsistentwith the mapping of the arities: if f < f 0 wrt. to the global order then in everyarity 
ontaining f and f 0 the mapping of f must be less than the mapping of f 0.3.3.3 TransientsAn essential 
hange in the re�ned graph model is the representation of transients.In the language graph the binding of transients was explained as superimpositionof a new node on the transient. It is pra
ti
ally not possible to implement thisoperation dire
tly, be
ause all links to the transient 
annot be redire
ted to itsbinding.Referen
es Transients in the LVM use a variation of the representation intro-du
ed in the WAM for logi
 variables. A transient is only a

essible through anindire
tion, 
alled a referen
e. A referen
e is tagged pointer with the tag REFwhere the pointer refers to another tagged node.Transients are represented as tagged pointers with tag TRANS and a labelledheap node, whi
h 
ontains a se
ondary tag for the di�erent kinds of transients,the home spa
e, the suspensions, and possibly attributes.
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REFREF REF

TRANS

VAR

x:

unif (y, z)

VAR

REF REF

TRANS

REF

TRANS

FUT

y: z:

unif (x, 1)

REFREF REF

INT1

REF REF REF REF

TRANS

FUT

z:

REF

Figure 3.16: Binding transients with multiple referen
es.Binding A transient is bound by overwriting its tagged node with a new taggednode. Figure 3.16 shows a variable x with multiple referen
es whi
h is bound tothe number 1 and a uni�
ation of a variable y with a future z .Dereferen
ing The referen
e nodes are not 
hanged when a variable is boundand remain in the graph. When binding a transient to another transient a 
hainof referen
es is 
reated. A referen
e node 
an therefor refer to a transient node,another referen
e node, or a determined node.The LVM handles these 
ases by transparently dereferen
ing tagged nodes, beforeusing them. The dereferen
e operation follows a 
hain of referen
e nodes untilthe end. The dereferen
e operation is performed whenever the type of a node isneeded.Van Roy [104, 105, 106℄ uses an alternative design for dereferen
ing for high-performan
e Prolog implementations. In this approa
h referen
es are not deref-eren
ed transparently, but an expli
it operation to dereferen
e a node is used.This s
heme is espe
ially useful if the 
ompiler �nds out, e.g. with global analysiste
hniques, where no referen
es ever o

ur.
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ases the dereferen
e operation is needless, be
ause only very few ref-eren
e nodes exist in typi
al programs. The LVM 
an 
ir
umvent the problemof useless dereferen
e operation, be
ause it is dynami
ally typed. Whenever anode of a 
ertain type is expe
ted, e.g. an integer in an arithmeti
 operation, atype test has to be performed anyway to ensure that the node is of the expe
tedtype. In the LVM the test for the expe
ted type is done before the dereferen
eoperation. Only if the node is not of the expe
ted type a dereferen
e operationis performed and the type test is repeated.The following program fragment shows the example of an operation to add oneto a node, whi
h is expe
ted to be an integer.
Tagged plus1(Tagged a) f
if (!isInteger(a)) f

a=deref(a);
if (!isInteger(a)) error;g

// perform operation on integer node
...gSafe dereferen
ing As already pointed out transient nodes are no registernodes and they 
annot be dupli
ated. A problem whi
h o

urred frequently dur-ing the implementation was the repli
ation of transients after using dereferen
ing.One has to be very 
areful that the node obtained by the dereferen
e operator isonly stored in registers if it is no transient.To 
ir
umvent this kind of bugs an alternative to the dereferen
ing until the endof a referen
e 
hain is the safe dereferen
ing whi
h guarantees that only registernodes are returned. A referen
e node is only returned if it is the last referen
e ina 
hain whi
h points to a transient.Shorten referen
e 
hains The virtual ma
hine guarantees that no 
y
li
 ref-eren
e 
hain 
an be 
reated, but referen
e 
hains 
an be arbitrary long. Possiblemeans to shorten referen
e 
hains3 are:� A heuristi
s whi
h binds newer to older transients is useful for the fun
tionalprogramming style, where two types of variables o

ur frequently: shortlived temporary variables whi
h are bound qui
kly after their 
reation andlong lived variables whi
h are for example bound at the end of a re
ursion.3With spa
es using the s
ripting te
hnique the shortening of 
hains needs spe
ial 
are,be
ause it must be possible to undo bindings of transients.
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olle
tor traverses the graph store it shortens the refer-en
e 
hains, su
h that only referen
es to transient nodes remain.� Nodes 
an be dereferen
ed before they are stored in a �eld. Under theassumption that referen
es are rare and most nodes are a

essible withouta referen
es the overhead for this te
hnique is to high for a little gain andis not used in the LVM.� Similar is the te
hnique to shorten referen
e 
hains when a

essing a �eld,whi
h is also not performed in the LVM.Transients in �elds Transient nodes are not stored in the registers of theLVM dire
tly. They 
an be stored only on the heap and have to be referen
edindire
tly with referen
e nodes in registers.It is however possible to store transients dire
tly in �elds. This is useful to savememory. Espe
ially with the optimized representation explained below somevariables need no memory at all. Transients in �elds are 
alled dire
t transients.When a transient in a �eld is a

essed, e.g. to store it in another �eld or ama
hine register, a 
ompli
ation o

urs, be
ause transients 
annot be repli
ated.The a

ess to su
h a �eld needs to 
reate a referen
e to this �eld whi
h 
an thenbe stored in registers and other �elds.To avoid that every �eld a

ess introdu
es a sometimes super
uous referen
e nodea test is performed for every �eld a

ess if the �eld 
ontains a dire
t transient ornot. Allo
ating transients in �elds requires spe
ial 
are in the 
opying garbage
olle
tor to ensure that dire
t transients are not 
opied out from their �elds (seeChapter 4).In the WAM representation of variables no su
h problem o

urs be
ause variablesare represented as self referen
es and an a

ess resp. 
opy of su
h a self referen
ingpointer automati
ally turns it into a referen
e to the variable.Transients 
annot be stored dire
tly in �elds of 
ells, be
ause these are overwrittenand potentially 
reated referen
es to this transient will refer to a wrong value afteran ex
hange.Optimized variables The LVM supports an optimized representation of vari-ables, with a single tagged pointer node with tag VAR. The pointer �eld of thisnode refers to the home spa
e of the variable (see Se
tion 3.6).The optimized variable is a variable with no suspensions and no attributes. When-ever a suspension or attributes are added to this variables its representation istransformed into the unoptimized transient representation.
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tion of optimized variables is that the LVMuses pro
edures with variables as 
all-by-referen
e parameters for returning out-put and has no support for fun
tions with a return value. Variables are thus
reated frequently whi
h are only introdu
ed for the output argument and theiroptimization has a real in
uen
e on the performan
e of almost every program.The se
ond e�e
t of optimized variables is that they 
an be dire
tly stored in�elds of re
ords without requiring additional memory. In 
onne
tion with the
all-by-referen
e ability this means that stru
tures 
an be eÆ
iently 
onstru
tedtop-down with tail-re
ursive pro
edures.In the following example of the append pro
edure app to 
on
atenate two liststhe output list zs is 
onstru
ted top-down. The temporary variable zr needs nomemory, be
ause it 
an be dire
tly allo
ated in the tail �eld of the list x::xr .The re
ursive appli
ation of app then gets a referen
e node to the tail �eld asthird argument.
fun app (nil, ys, zs) = unif (zs, ys)j app (x::xr, ys, zs) =

let val zr = lvar () in
unif (zs, x :: zr);
app (xr, ys, zr)

end;Optimized futures It is often useful to use futures instead of variables instru
tures whi
h are visible to 
on
urrent threads to prote
t them. For examplein a 
onsumer-produ
er appli
ation where the 
ommuni
ation 
hannel is imple-mented as a stream it is usually desirable that only the 
onsumer is able to writeto the stream. In this 
ase the 
onsumer would 
reate a stream where the tailis a future. The 
orresponding variable would be only visible to the 
onsumer.With the implementation of futures des
ribed above memory for a variable anda future would be needed besides the memory for the stream.The pro
edure appFut shows an append pro
edure with futures. The tail of thelist is the future of zr to avoid that a 
on
urrent reader 
an write on the outputstream.
fun appFut (nil, ys, zs) = unif (zs, ys)j appFut (x::xr, ys, zs) =

let val zr = lvar () in
unif (zs, x :: future zr);
appFut (xr, ys, zr)

end;A variable with a future 
an be represented similarly to the optimized variablesdes
ribed before. An optimized future is a tagged node with tag FUT and a
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e. Similar to the optimized variable it is turned into thetransient representation when a thread suspends on it.To represent the variable of this future we introdu
e a se
ond kind of referen
es,namely write referen
es, with the tag WREF. The variable of a future is thenrepresented as a write referen
e to the optimized future. When this variableshould be bound the dereferen
e operation dis
overs that the referen
e is a writereferen
e to a future and the binding operations repla
es the future with the newbinding.A variable 
an be assigned only when the 
hain of referen
es to the future 
ontainsonly write referen
es. When a usual referen
e is found in the 
hain this meansthat the variable represented with the write referen
e was already bound. Onlyin the 
ase that a transient must be bound the dereferen
ing operation has to beextended to test that only write referen
es are found.When a �eld with an optimized future is a

essed a usual referen
e is 
reated.When a �eld with an optimized variable is a

essed a read-write referen
e isgenerated.3.3.4 Uni�
ationThe basi
 idea of a pra
ti
al implementation of the uni�
ation algorithm is toimplement the equivalen
e 
lasses by binding one stru
ture to the other and
reating a referen
e similar to binding variables.This algorithm has quadrati
 
omplexity, be
ause the referen
e 
hains 
an growto the size of the tree, but for pra
ti
al programs this does not o

ur and theoverhead for this implementation is mu
h smaller 
ompared to overhead for main-taining the equivalen
e set.This implementation of uni�
ation 
reates sharing of 
ommon stru
tures. Insome 
ases this is a desired feature to redu
e the memory 
onsumption and italso is a kind of memorization. To avoid problems with spa
es the sharing mustbe retra
table. Therefore the uni�
ation algorithm trails every stru
ture bindingand undoes all binding when the uni�
ation terminates (su

essfully or not).The destru
tive uni�
ation is only possible be
ause the LVM has a single workerand uni�
ation is a non-interruptible atomi
 operation.For an optimized implementation of uni�
ation it is essential to try the frequentlyused 
ases �rst. Be
ause the LVM implements output arguments of fun
tions as
all-by-referen
es parameters, it o

urs very frequently that a variable is 
reatedbefore a fun
tion appli
ation with is bound to a value inside the fun
tion. Theunify instru
tion therefore �rst tests for this very 
ommon 
ase.
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ussionThree-layered representation s
heme The LVM supports many built-indata types, e.g. small integers, big integers, atoms, names, re
ords, logi
 variables,futures, 
ells, and pro
edures, and it is extensible to support even more types.This is possible be
ause it uses a s
heme with three layers: tagged nodes, taggedextensions, and generi
 extension.The bottom layer are tagged nodes. Tagged nodes allow to implement frequentlyused data types like small integers, lists, literals, variables and futures, eÆ
iently.Tagged extensions are not as eÆ
ient as tagged nodes, but there overhead isvery small 
ompared to the 
ost of operations on the data they represent, e.g.arithmeti
 on big numbers (see Chapter 4).Generi
 extensions allow through a small set of interfa
e fun
tion the integrationof arbitrary new data types. This interfa
e is very 
onvenient to experimentwith no types and to add data types where unbox, box, and type tests are notperforman
e 
riti
al (see Chapter 4).The same layered approa
h is also used for transients, with optimized represen-tations as tagged nodes for variables and futures, and a generi
 representationas transient heap nodes. In Chapter 4 we show the virtual fun
tion interfa
e fortransients whi
h allows to integrate other types of transient values.Other transient representations The representation of variables in the mostpopular ma
hine for Prolog, the WAM [110, 111, 1℄, inspired mu
h of the represen-tation of transients in the LVM. The representation of variables as self-referen
esfrom the WAM whi
h is extremely useful for making the allo
ation of variablesin �elds and their a

ess eÆ
ient 
annot be used in the LVM, be
ause we supportmultiple 
omputation spa
es and a variable needs to represent its home spa
e.The WAM allo
ates variables also in the registers of the environments. Theseunsafe variables have to be treated 
arefully su
h that they are moved to the heap,if they extend the lifetime of their a
tivation re
ord. In the LVM variables arenever allo
ated in registers, but it should be possible to integrate this te
hniqueinto the LVM. It is questionable what the gain of this optimization 
ould be underour assumption of an infrequent use of logi
 variables.Return value pla
ement Van Roy [105℄ proposes an optimized representationof uninitialized variable for high-performan
e Prolog implementations. In theLVM we do not use this te
hnique be
ause the number of variables used foroutput arguments of fun
tions whi
h are not allo
ated in �elds is very small. Itis furthermore un
lear how to integrate spa
es and uninitialized variables.
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 programming and in the LVM return values are passed in memory usinglogi
 variables as 
all-by value parameters. Fun
tional languages typi
ally usema
hine registers to pla
e return values. Both approa
hes have advantages anddisadvantages, e.g. the logi
 approa
h works very well for the tail-re
ursive top-down 
onstru
tion of stru
tures and the fun
tional approa
h works very well fornumeri
 problems.Bigot and Debray [13℄ dis
uss how to 
ombine the pla
ement of return valuesin logi
 programming and fun
tional programming and how to provide 
ompilersupport for an optimal pla
ement poli
y.S
heidhauer [87℄ analyses the di�eren
e between the two pla
ement poli
ies forOz.Taylor's s
heme Taylor [101℄ proposed a s
heme to represent variables su
hthat no referen
es remain after a variable is bound. This s
heme was analyzed in[59℄ and the authors 
ame to the 
on
lusion that for Prolog the gain is doubtful.Taylors s
heme is not 
ompatible with the idea of tagged register nodes in theLVM, be
ause their essential property is that they are repli
able and keepingtra
k of all valid repli
as in
urs to mu
h overhead.In the fun
tional programming style referen
es o

ur very infrequently and asexplained above the possibility of referen
e 
hains does not have an e�e
t on theeÆ
ien
y of programs whi
h do not have referen
es.3.4 Sequential exe
utionIn this se
tion we explain how a single thread is exe
uted by the worker. We ex-plain the instru
tions to 
reate and a

ess nodes, pro
edure de�nitions, pro
edureappli
ations, and pre-de�ned built-in pro
edures.3.4.1 WorkerThe worker exe
utes the tasks of a thread in sequential order. The tasks on thethread are of di�erent types, namely 
ontinuations, save tasks, and handler tasks(see Figure 3.17).A 
ontinuation task (PC;G; Y ) is a 
losure of a ma
hine program starting atthe 
ode address PC. G and Y are the environment for the exe
ution of theinstru
tions. G is the referen
e to the pro
edure node in the store and Y is areferen
e to the lo
al environment.
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ontent
ontinuation (PC;G; Y )save task save(X1; : : : ; Xn)handler task ex(PC;G; Y )Figure 3.17: Tasks.The worker exe
utes 
ontinuations by loading them into the 
orresponding taskregisters PC, G, and Y . A 
ontinuation is then exe
uted by an emulator in thea fet
h-de
ode-exe
ute 
y
le. Instru
tions are fet
hed from the program store atthe address PC and exe
uted using the G, Y and X registers to address nodesin the store.In the literature a 
ontinuation task is sometimes 
alled pro
edure invo
ation ora
tivation re
ord of pro
edures.Saving X registers The worker maintains a single set of global registers X,but it provides the illusion that every thread has its private set of X registers. Theillusion is preserved by saving all valid X registers when a thread is preemptedor suspended and restoring them when the thread is restarted.A save task 
ontains all 
urrently valid nodes in the X registers. When theworker restarts the exe
ution of this thread the �rst task to exe
ute is the savetask, whi
h restores the values of the X registers.The valid X registers are only approximated when a save task is 
reated. TheLVM saves all X registers from zero to maxX, where maxX is the maximal num-ber of X registers used in a pro
edure. This number is 
al
ulated by the 
ompilerand stored in the pro
edure de�nition instru
tion. During garbage 
olle
tion theexa
t number of used X registers is 
al
ulated using a liveness analysis algorithm(see Chapter 4).Ex
eption handler task A handler task is 
reated for ex
eption handling.They are never exe
uted dire
tly, but they are used as a marker on the sta
k ofa thread, when an ex
eption is raised (see Se
tion 3.4.7 below).3.4.2 Store operationsIn this se
tion we give a brief overview of the instru
tions for 
reating and a
-
essing nodes. An example for 
reating a re
ord node is the fun
tion f as follows
fun f z =
let val x=lvar ();
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val y=f’a’=1, ’b’=x, ’c’=zg

in
...

endIt 
ompiles into the following snippet of a pi
kle
v0: proc(s,[],lbl,...)
v1: int(1)
...
% X[0] contains z
% X[1] contains x
% X[2] contains y
lbl:
createVariableX(1)
putRecordX(ar( ’a’, ’b’, ’c’),2)
setConstant(v1)
setValueX(1)
setValueX(0)
...The createVariableX(1) instru
tion adds a variable node to the store andputs a referen
e to it into the register X1. The putRecordX instru
tion adds are
ord node with arity fa; b; 
g to the store and stores it into register X2.The �elds of the re
ord are not yet initialized. The stru
ture pointer SP is setto the �rst �eld of the re
ord su
h that the following instru
tions 
an initializethe �elds of the re
ord.The instru
tion setConstant(v1) writes the node represented at the pi
klelabel v1 (the integer one) into the �rst �eld and in
rements the stru
ture pointer(SP). setValueX(1) resp. setValueX(0) write x stored in X1 resp. z stored inX0 into the remaining �elds of the re
ord.The stru
ture pointer (SP) is a generalization of the te
hnique known from theWAM to a

ess the �elds of tuples. In the LVM it allows to a

ess the �eldsof re
ords. The insight here is that if the arity of a re
ord is known at 
ompiletime then the 
ompiler 
an already 
ompute the mapping of features to indi
es.This mapping de�nes the order of the set instru
tions su
h that the �elds 
anbe 
onse
utively written.Similar to the WAM the uni�
ation of re
ords is optimized using get and unifyinstru
tions. For example the fun
tion
fn x =>
let val y=lvar()
in

unif(x, f’a’:y ’b’:y g)
end
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ompiled into the byte
ode
% X[0] contains x
% X[1] contains y
getRecordX(ar( ’a’, ’b’),0)
unifyVariableX(1)
unifyValueX(1)3.4.3 ControlIn this se
tion we brie
y explain the basi
 ideas for 
ompiling pattern mat
hing.In detail the 
ontrol aspe
ts of the 
ore language are dis
ussed in [87℄.A 
ase statement is 
ompiled into a match (i; ht) instru
tion, whi
h 
ontains ahash table ht whi
h maps primitive values and re
ord arities to 
ode labels. Weuse the notation ht(
1 : l1; : : : ; 
n : ln; : : : ; ar1 : l01; : : : ; arm : l0m; else : le) for ahashtable whi
h maps the 
onstants 
i to the labels li and the arities ari to thelabels l0i. The mat
h instru
tion has the else label le, whi
h is used if no othermat
h is found in the hash table. The instru
tion suspends if the register Xi isa transient value4.The following 
ase expression
case x of f’a’=x1, ’b’=x2g => unif(o,x1+x2)j 1 => 2j x => 3is 
ompiled to
v2: int(2)
v3: int(3)
...
% X[0] contains x
% X[1] contains o
matchX(0,ht(1:l1,ar( ’a’, ’b’):l2,else:l3))
l1:

getConstant(v2,1)
return

l2:
getVarVar(0,2)
inlinePlus(0,2,0)
unifyXX(0,1)
return

l3:
getConstant(v3,1)
return4In mozart the mat
h instru
tion is extended to support early failure for attributed variables.
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iently de
ompose re
ords the match instru
tions initializes the stru
turepointer (SP) su
h that getVariableX instru
tions 
an be used to read the �eldvalues of re
ords. The instru
tion getVarVar (i; j) is a 
ombination of two get-

VariableX instru
tions and reads the next two �elds into the registers Xi andXj.As optimization of the match instru
tion with a single 
ase the test instru
-tions are provided, e.g. testConstantX (i; v
; l) is equivalent to the instru
tion
matchX (i; ht(v
 : l1; else : l)), where l1 is a label added to the dire
tly followinginstru
tion.3.4.4 Pro
eduresFun
tions of the language L are represented as pro
edures in the LVM. Fun
-tions are 
onverted to pro
edures by adding an impli
it argument, whi
h is usedas 
all-by-referen
e argument for the result value. This means every fun
tion
fn x => e is transformed into a pro
edure with two arguments. In the oursyntax the resulting fun
tion would be fn (x, y) = > unif (y, e) .In the LVM pro
edures with many arguments are allowed. The te
hnique howsingle argument fun
tions 
an take advantage of the multiple argument 
alling
onvention of the LVM is not dis
ussed in detail here. Brie
y every pro
edureand every pro
edure appli
ation knows the expe
ted resp. supplied arity andduring the appli
ation the proper 
onversions are done. When a pro
edure whi
hexpe
ts a single argument is 
alled with multiple arguments these are pa
kagedinto a single re
ord. When a pro
edure whi
h expe
ts multiple arguments is
alled with a single argument this is unpa
ked during the appli
ation.Pro
edures are �rst 
lass values and they are dynami
ally 
reated. First 
lassvalue means that pro
edures are nodes in the graph store, whi
h 
an for examplebe passed as parameters to pro
edures and stored in other stru
tures.Dynami
 
reation means that pro
edures not only have a stati
 part, the 
ode,but also a dynami
 part, the pro
edure environment. The pro
edure environmenten
apsulates the values of the free variables of a pro
edure at the moment of thepro
edure de�nition.To store temporary values during a pro
edure invo
ation a lo
al environment 
anbe allo
ated (see below).Pro
edure de�nition Pro
edures are 
reated dynami
ally with the instru
-tion definition (i; pro
Body). The pro
edure body pro
Body 
ontains thestati
 information about the pro
edure. We use the notation pb(
ode : lbl; arity :n; g : pe(r0 : i0; : : : ; rm : im); maxX : k; : : :) for the pro
edure body. The �elds ofthe pro
edure body are
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ode label lbl for the start of the byte
ode of the pro
edure.� The arity n of the pro
edure whi
h de�nes the number of arguments.� The pro
edure environment pe(r0 : i0; : : : ; rm : im), where rl 2 f0x0;0 y0;0 g0gand il is an index. rl : il means that the lth entry of the pro
edure envi-ronment is in register Ril , where R is X resp. Y resp. Z) if rl is 'x' resp. 'y'resp. 'z'. The node in Ril 
an be addressed with the G-addressing mode asGl in body of the pro
edure.� The maximal number (maxX) of X registers used in the pro
edure. Thisnumber is used for saving the X registers for 
ontext swit
hes.� Further stati
 information, e.g. debug information like the pro
edure name,the �le, and line number.The instru
tion definition (i; pb) where pb is pb(
ode : lbl; arity : n; g : pe;maxX :k; : : :) and pe is pe(r1 : i1; : : : ; rm : im) 
reates a new pro
edure node in the graphstore with m �elds, whi
h are initialized with the nodes stored in Ri1 ; : : : ; Rim .The pro
edure node is labelled with the pro
edure body pb. A referen
e to thepro
edure node is written into the register Xi.As an example we show the 
ompilation of the fun
tion f with argument x anda free o

urren
e of c .
val c=1;
fun f x = x+c;It is 
ompiled to the pi
kle
v1: int(1)
...
% X[0] = c
% X[1] = f
putConstant(v1,0)
definition(1,pb(code:lbl, arity:2,

g:pe(x:0), maxX=2,...))
...
lbl:

moveGX(0,2)
inlinePlus(0,2,0)
unifyXX(0,1)
returnPro
edure appli
ation The pro
edure appli
ation callX (i; n) waits until Xiis a determined node. If Xi is no pro
edure or the number of a
tual arguments ndoes not mat
h the expe
ted number of formal arguments an ex
eption is raised.
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edure node with label pb(
ode : lbl; arity : n; g : pe;maxX :k; : : :) then a 
ontinuation (lbl;�; Ri) is 
reated. The lo
al environment in this
ontinuation is initially empty.The worker saves the 
urrent 
ontinuation from the task registers on the tasksta
k and starts with the exe
ution of this new 
ontinuation.Return The 
ode of a pro
edure is terminated with the return instru
tion.The exe
ution of this instru
tion informs the worker to exe
ute the next taskfrom the thread.Tail-
all Tail-
all optimization is essential in languages without loop 
onstru
ts.The 
ompiler inserts the instru
tion tailCallX (i; n) for a sequen
e callX (i; n);
return of an appli
ation and a return instru
tion. When the worker exe
utes
tailCallX (i; n) it 
reates a new 
ontinuation task as for the callX (i; n) instru
-tion, but does not save the 
urrent 
ontinuation from the task registers onto thesta
k.For tail-
alls the task sta
k does not grow and therefore arbitrary deep re
ur-sions are possible. Tail-
all optimization is trivial in LVM, be
ause there are nointer-task referen
es. In other words 
ommuni
ation between tasks is done onlythrough the global X registers and the graph store. This is in 
ontrast to manyother imperative languages, where referen
es to lo
al sta
k frames 
an be passedas arguments or where sta
k frames are linked together.Calling 
onvention The LVM has a single 
alling 
onvention for user-de�nedpro
edures. A pro
edure has a �xed number of input arguments and no outputarguments. The arguments 
an be seen as 
all-by-referen
e parameters, be
auseonly referen
es to nodes in the store are passed as arguments.The parameter are passed in the X registers, where X0; : : : ; Xn 
ontain the a
tualarguments. The 
ontent of the other X registers is unde�ned.We use a 
aller-save model for registers whi
h means that the 
aller is responsiblefor saving X registers into the lo
al environment before an appli
ation. After anappli
ation the 
ontent of the X registers is unde�ned.Optimized appli
ation The instru
tion directCall (v; n) is an instan
e ofthe 
all-instru
tion where the 
ompiler stati
ally knows that the pro
edure is a�xed value and will not 
hange.The virtual ma
hine optimizes this 
ase by using an unboxed representation forthe pro
edure. Furthermore the test if the number of a
tual and formal arguments
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h is performed only on
e. The details of these optimized 
alls are explainedin [87℄.The performan
e di�eren
e between the optimized and the non-optimized appli-
ation is approximately a fa
tor of two. A dire
t 
all is almost as eÆ
ient as ajump. A small overhead has to be paid for the preemption test.Lo
al environment Lo
al environments allow to store temporary values dur-ing a pro
edure a
tivation. A lo
al environment whi
h allows to store n referen
esto nodes is 
reated with the instru
tion allocate (n). Lo
al environments areaddressed with the Y addressing mode.In the virtual ma
hine the allo
ation of the lo
al environment is separated fromthe 
reation of pro
edure tasks to allow for optimized allo
ations in di�erentbran
hes of the 
omputation, e.g. in many pro
edures no lo
al environment isneeded in one of the bran
hes of the 
omputation.Lo
al environments have the property that they are single referen
ed, whi
h is animportant invariant for memory management. After the deallo
ation the storageof lo
al environments 
an be immediately reused. This reuse provides for lo
alityof memory usage whi
h maximizes the use of 
a
hes.Lo
al environments are expli
itly deallo
ated with the deallocate (n) instru
-tion. The expli
it deallo
ation allows to reuse memory as soon as possible. Analternate design would be the impli
it deallo
ation when the task terminates.This design would limit the possibilities of a 
ompiler to allo
ate and deallo
atemany di�erent environments on one paths of a pro
edure, e.g. to trim the envi-ronment to the 
urrent need, and it would in
ur an overhead even for pro
edureswhi
h do not need an environment.Example As a very small example we show the byte
ode generated for theappend fun
tion to 
on
atenate two lists
fun app (nil, ys, zs) = unif (zs, ys)j app (x::xr, ys, zs) =

let val zr = lvar () in
unif (zs, x :: zr);
app (xr, ys, zr)

end;The fun
tion app is 
ompiled into the following pi
kle
vApp:

proc(s,[],lbl)

...
definition(0,pb(code:lbl, arity:3, g;[],maxX:3,...))
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riptionre
ord/1/1 dynami
 re
ord 
onstru
tionsele
t/2/1 �eld sele
tionnewCell/1/1 
ell 
reation
ellA

ess/1/1 
ell a

ess
ellEx
hange/2/1 
ell ex
hangenewName/0/1 name generation�,div,mod/2/1 arithmeti
future/1/1 futurewaitOr/2/0 syn
hronizationbyNeed/1/1 by-need syn
hronizationfeatureC/3/0 feature 
onstraintwidthC/2/0 width 
onstraintraise/1/0 raise an ex
eptionspawn/1/0 fork a threadFigure 3.18: Built-ins of the LVM.
...
lbl:

matchX(0,ht(nil:l1, cons:l2 else:l3))
l1:

unifyXX(1,2)
return

l2:
getVarVar(3,0)
getListValVar(2,3,2)
directTailCall(vApp,3)

l3:
raiseError(...)3.4.5 Built-in pro
eduresSimilar to the usage of operators in the language de�nition the virtual ma
hinehas built-ins. Built-ins implement 
ore fun
tionality of the LVM whi
h is notdire
tly available through instru
tions. The built-ins of the LVM are summarizedin Figure 3.18.Built-in pro
edures are a 
exible extension me
hanism for adding new fun
tion-ality to the engine of the LVM.The designer of the VM has the 
hoi
e to implement operations as ma
hineinstru
tions or as built-in pro
edures. The trade-o� between these possibilities
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ode Explanation
PROCEED su

essful termination
SUSPEND blo
k the thread
RAISE raise an ex
eption. . . other spe
ial purpose 
odesFigure 3.19: Return 
odes.is that the dispat
h for instru
tions is mu
h faster than the appli
ation of abuilt-in. The number of instru
tions should be small to redu
e the 
omplexityof the emulator. The overhead for 
alling a built-in pro
edure 
an, for example,be tolerated if it is mu
h smaller than the time spend for the operation itself,e.g. dynami
 
reation of an arity. Built-in pro
edures are also well suited if thefun
tionality they provide is not time 
riti
al at all. They are very useful forexperimentation.The instru
tion callBI (vbi; lo
) implements the appli
ation of built-in pro
e-dures, where vbi is a referen
e to a node representing the built-in pro
edure andlo
 is the mapping of the X registers to the input and output arguments. Thebuilt-in pro
edure is 
alled with the mapping as argument.Return 
odes The result of the appli
ation of a buil-in fun
tion 
an be su
-
essful, it may require to suspend the thread, or it raises an ex
eption. These
onditions are signalled with a return 
ode. The return 
odes are listed in Fig-ure 3.19.When a built-in pro
edure returns PROCEEDit was su

essful and the next in-stru
tion is exe
uted.When a built-in pro
edure suspends, signaled with the SUSPENDreturn 
ode, itreturns a list of transients in the �eld suspendVarList in the register retInfo .In this 
ase the worker saves the 
urrent task (PC; Y;G) and the X registers.Then it 
reates a suspension to res
hedule the thread when any of the transientsin the register retInfo.suspendVarList is bound. The appli
ation of the built-in pro
edure is retried when the thread is woken up. The suspension me
hanismis explained in Se
tion 3.5.When a built-in pro
edure raises an ex
eption then the ex
eption value is putinto the retInfo.exceptionValue register. The worker is then responsible tosear
h for an ex
eption handler as des
ribed in Se
tion 3.4.7.The callBI instru
tion is a spe
ial 
ase of the call instru
tion whi
h is ex-plained in Se
tion 3.4. The 
ompiler generates the optimized built-in 
all if itstati
ally known that a built-in pro
edure is applied.
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e between the generi
 appli
ation and the built-in appli
ationis that the later is an inlined appli
ation. For inlined appli
ations the 
ompilerdoes not generate 
ode to save the global registers Xi into the lo
al environment,be
ause the built-in pro
edure only modi�es the registers marked as output valuesin the lo
ation mapping lo
 and leaves all other registers un
hanged.For example the 
ompilation of the following two fun
tions shows the di�eren
ebetween the inlined 
ompilation of sele
t in f1 and the non-inlined 
ompilationof a user-de�ned fun
tion in f2 .
fun f1 (x,y) =
let val z = select(x,y)
in

(x,z)
end

fun f2 (x,y) =
let val z = g(x,y)
in

(x,z)
endThe 
ompilation of f1 is short and straightforward.

% function f1
% X[0]=x
% X[1]=y and z
% X[2]=output
l f1:

callBI(vselect,loc([0,1],[1])
getRecordX(ar(1,2),2)
unifyValueX(0)
unifyValueX(1)
returnIn the byte
ode for f2 a lo
al environment is needed to save three registers beforethe appli
ation of the fun
tion g.

% function f2
% Y[0]=x
% Y[1]=output
% Y[2]=z
l f2:

allocateL3
moveXY(0,0)
moveXY(2,1)
createVariableX(2)
moveXY(2,2)
callG(0,2)



90 CHAPTER 3. THE VIRTUAL MACHINE LVMBit 0 1 2 3 4 : : : 31Flag NeedGC PreemptThread IOReady Timer unusedNeedGC Trigger a garbage 
olle
tion. (see Chapter 4)PreemptThread The time sli
e for a thread is expired.IOReady An I/O 
hannel is ready for new data. (see Chapter 4)Timer The user timer is expired. (see also 
hapter Chapter 4)Figure 3.20: The status register.
getRecordY(ar(1,2),1)
unifyValueY(0)
unifyValueY(2)
deallocateL3
return3.4.6 Status registerBefore exe
uting a task the worker 
he
ks if a bit in the status register is set(see Figure 3.20). The status register signals events that have to be handledsyn
hronously to guarantee mutual ex
lusion for the store. These events areasyn
hronously dete
ted, e.g. in the memory management layer during the allo-
ation of new memory, when the operating system delivers Unix signals, whenpreemption or user-de�ned timers expire, or when I/O 
hannels are ready.The worker preempts the exe
ution of a thread when any bit in the status registeris set. The 
ost of the syn
hronization is: reading the status register, a test if itis zero, and a 
onditional bran
h.Dis
ussion Various methods for the eÆ
ient integration of I/O are dis
ussedin [81, 5℄. For an emulator-based approa
h our method seems to be well-suited.One possible optimization is to lower the frequen
y of syn
hronization points byusing a 
ounter stored in a native register. The 
ounter is de
remented at everysyn
hronization point, but the status register is only 
he
ked when the 
ounteris expired.In an implementation of the LVM whi
h supports multiple workers the statusregister is obsolete. The te
hniques to syn
hronize the 
on
urrent workers 
an bealso used to syn
hronize the asyn
hronous events.Another alternative would be to give up fairness of threads and provide primitivesat the user level to preempt and yield a thread. This approa
h is for example
hosen for Java: the s
heduling poli
y and fairness assumptions are not spe
i�ed,
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i�
. Oz is designed as a languagewhi
h supports eÆ
ient 
on
urren
y, whi
h is s
alable to thousands of threads.Leaving fairness unspe
i�ed would lead to nonportable designs, whi
h depend on
ertain implementations resp. platforms.3.4.7 Ex
eptionsEx
eption handling is implemented in the LVM with the instru
tion sequen
e asfollows
try (L). . . body . . .
popExThe try instru
tions installs the ex
eption handler during the exe
ution of thebody and the popEx instru
tion removes the handler.The try instru
tion �rst 
reates a handler task ex(L;G; Y 0), where Y 0 is a 
opyof the 
urrent lo
al environment Y , and pushes this handler as a marker on thetask sta
k.After the installation of the handler the following instru
tions are exe
uted untilan ex
eption is raised or the popEx instru
tion is exe
uted. When no ex
eptionis raised during the exe
ution of the ex
eption body the handler task is removedfrom the top of the sta
k by the popEx instru
tion.The generi
 
ompilation of catch (body, handler) operator does not takeadvantage of the lo
al and pro
edure environment. Only if the 
ompiler knowsthe de�nition of the body resp. handler pro
edure it 
an generate more eÆ
ient
ode to reuse the environments.Ex
eptions are �rst-
lass values and the built-in pro
edure raise (i) raises theex
eption with value Xi. When a built-in pro
edure returns the ex
eption status
ode the worker sear
hes for the topmost handler task on the task sta
k. If su
ha task ex(PC;G; Y ) is found all tasks in
luding the handler task are removedfrom the sta
k. Then the ex
eption value is moved to X0 and the handler task isexe
uted. If no handler is found on the task sta
k a default handler is exe
uted,whi
h usually prints the ex
eption and terminates the thread.The main 
ost fa
tors of the LVM ex
eption handling are� Two instru
tions must be exe
uted to install and deinstall the handler ifno ex
eption is ever raised.� For the 
ompiler the ex
eption handler, and the 
ode following return aredi�erent tasks, i.e. nothing about the 
ontent of the X registers, ex
ept forX0 in the ex
eption body, 
an be assumed.
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h reorder instru
tions have to be very 
areful to respe
tthe ex
eption semanti
s, e.g. moving 
onstant expressions out of a pro
edureis not allowed when this expression 
ould possibly raise an ex
eption.Handler register A simple optimization of the me
hanism to �nd an ex
eptionhandler is the introdu
tion of a handler register per thread, whi
h 
ontains areferen
e to the topmost ex
eption handler task. To allow the eÆ
ient update ofthe handler register all handler tasks are then linked together.Tail-
all optimization Ex
eption handling prevents tail-
all optimization forthe ex
eption body, be
ause the ex
eption handler has to be expli
itly deinstalledwith the instru
tion popEx .It is possible to impli
itly dis
ard the ex
eption handler whenever the worker seessu
h a task at the top of the thread. This would allow to repla
e the sequen
e
popEx ;return by a single return . A small drawba
k of this solution is thatthe lo
al environment 
annot be shared between the ex
eption body and theex
eption handler, but it has to be expli
itly 
opied.Dis
ussion The LVM ex
eption me
hanism is similar to the Standard ML ofNew Jersey (SML/NJ) implementation of ex
eption handling [7℄. In SML/NJan expli
it ex
eption sta
k of handlers is maintained, whi
h is updated wheneverthe 
omputation enters and exists the ex
eption body. In the LVM the ex
eptionsta
k and the task sta
k are integrated, whi
h allows for the tail-
all optimization.In imperative languages, e.g. GNU C++ [99℄ and the JVM [60℄, ex
eption han-dling is implemented with tables, whi
h map a range of program 
ode to anex
eption handler. When an ex
eption is raised for ea
h sta
k frame a lookup inthe ex
eption table has to be performed. The advantage of ex
eption tables isthat no instru
tion is exe
uted at runtime when no ex
eption is raised.The LVM design does not use ex
eption tables, be
ause a design goal was thatraising an ex
eption should be eÆ
ient and enables the use of ex
eptions as apowerful programming 
onstru
t for non lo
al exits of re
ursive fun
tions andblo
ks.3.5 Threads3.5.1 Thread modelThe LVM exe
utes at most one thread at a time. A thread 
an be in one of threestates: runnable, running, or blo
ked (see Figure 3.21).



3.5. THREADS 93
runnable running

blocked

terminatecreate schedule

preempt

wakeup suspend

Figure 3.21: Thread states.A new thread is 
reated with the spawn built-in applied to a pro
edure. Theinitial task on this thread is the appli
ation of the pro
edure. The new thread isinitially in the runnable state, whi
h means that it has the potential to exe
uteits next task.When a thread is sele
ted for exe
ution its state 
hanges from runnable to runningand the worker starts its exe
ution. In the LVM exa
tly one thread is in the staterunning, be
ause it has a singe worker.An exe
ution of a running thread 
an be preempted to guarantee fairness withother runnable threads. In this 
ase the status of the thread is 
hanged fromrunning to runnable.When the running thread suspends on one or more transients it be
omes blo
ked.A blo
ked thread is woken up when a transient on whi
h it suspends is bound.A running thread terminates when its task sta
k is empty.3.5.2 S
hedulerThe s
heduler is responsible for maintaining the runnable threads and assignsa thread to the worker for exe
ution. The s
heduler 
ontrols the preemptionof the thread exe
uted by the worker to guarantees fairness among all runnablethreads. The runnable threads are stored in a queue and the s
heduler uses asimple round-robin poli
y to sele
t a thread for the worker.A preemption timer is started and the worker exe
utes the thread. When thepreemption timer expires the time sli
e for the running thread is over and itis preempted. Preemption of a running thread only happens when the workeris a
tive. During the emulation of instru
tions the preemption is ignored anddelayed until the next syn
hronization point.
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heduling The worker be
omes a
tive during the emulation at
ertain syn
hronization points. The syn
hronization points are 
hosen su
h thatthey are met frequently, but not too frequently.Æ(t) << d The time between to syn
hronization points Æ(t) should be mu
hsmaller then the duration of the time sli
e d.o << Æ(t) The overhead at the syn
hronization points to 
he
k if the s
hedulerrequests preemption o should be mu
h smaller than the time between twosyn
hronization points.The LVM has two syn
hronization points. The �rst is the 
reation of new tasks,e.g. when applying a pro
edure. The se
ond is when a task is popped fromthe sta
k. This s
heme guarantees fairness, be
ause unbound 
omputations areonly possible through the 
reation of new tasks5. The syn
hronization pointwhen popping a task is ne
essary to avoid that the unwinding of a deeply nestedre
ursion does not impose an arbitrary delay on preemption.Light-weight threads Threads in Oz are extremely light-weight, i.e. thou-sands of threads 
an be 
reated and s
heduled. The major reasons for the ef-�
ien
y of LVM threads are that no random preemption takes pla
e and thatthreads are implemented at the user level and not at the operating system level.Fixed syn
hronization points for preemption ensure that the state of the enginewhi
h has to be saved and restored when s
heduling a thread is very small, i.e. theX register, the self register, and the 
urrent task have to be saved and restored.The overhead for testing the preemption 
ondition at the syn
hronization pointis small.Fairness The s
heduler guarantees fairness for the exe
ution of all runnablethread by preempting the worker. The preemption 
ondition 
an be a timeouton a timer provided by the operating system or a timeout on the number ofinstru
tions (or tasks) exe
uted by the worker.Preempting the worker means that the worker returns the thread to the s
heduler.It does so only after the exe
ution of the 
urrent task is stopped. The fairness
ondition is ful�lled, be
ause the exe
ution of every task is bound by an upperlimit.One reason for delaying the preemption is that this gives a strong invariant foratomi
ity: the exe
ution of a task is never interrupted. While exe
uting a task the5Ex
ept for naive pro
edures implemented through the LVM native API. The time for thesepro
edures is potentially unbound.
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hine 
an be in an in
onsistent state, e.g. unde�ned values in registersand in the store, as long as it is 
onsistent again when the exe
ution of the taskstops.The se
ond reason is that the global X registers are shared among all threads.To make this feasible a thread has ex
lusive a

ess to them during the exe
utionof a task. Whenever a task stops the X registers are saved on the thread by
reating a save task, whi
h restores the X registers when the thread is exe
utedagain.Dis
ussion The s
heduler is an orthogonal unit in the virtual ma
hine. There-fore it 
an be extended easily to support sophisti
ated s
heduling te
hniques, e.g.priorities or resour
e-based s
heduling.A disadvantage of this user-level thread pa
kage is that it 
annot take advantageof multiples pro
essors. Two models are proposed to use multi-pro
essors. Onemodel is a parallel implementation of the LVM [80℄ and the se
ond model is adistributed implementation of the LVM whi
h uses shared memory as an eÆ
ient
ommuni
ation layer [39℄.3.5.3 SuspensionsThreads 
an suspend on transients. This means that the thread is removed fromthe runnable queue of the s
heduler until the transient is bound.Suspending a thread on a transient involves the following steps� A suspension is 
reated, whi
h 
ontains a referen
e to the thread.� This suspension is hooked onto the transient.� The worker is informed that the 
urrent task is suspended.A suspension is woken up when a transient is bound. Waking up a suspensioninforms the s
heduler that the thread is runnable.Using suspensions as indire
tion between transients and threads is ne
essary be-
ause it is possible that a suspension is hooked to many transients. To explainthis we use the built-in waitOr (x; x0), whi
h suspends the thread if both x andx0 are transients. If one of these transients is bound the thread is woken up. Inthis 
ase the suspension has to be unhooked from the other transient to avoidfurther wakeups.To optimize the wakeup operation the unhook operation is done lazily. Thesuspension is marked when the wakeup is done. It is not unhooked from theother transients suspending on the disjun
tive 
ondition. Suspensions marked asdone are skipped during the wakeup.
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hanism of the operating system allows to trigger a signal handlerafter a 
ertain time. In the engine this alarm signal is used to exe
ute a 
he
kfun
tion at regular time intervals. This fun
tion serves di�erent purposes:� PreemptThread The expiration of the time sli
e of a thread is 
he
ked.� IOReady I/O 
hannels are wat
hed for data.� Timer User-de�ned timer events are handled.The 
he
k fun
tion is triggered every 10 ms and sets the 
orresponding bits in thestatus register. As explained above the engine eventually preempts the exe
utionof instru
tions and handles the events dete
ted in the 
he
k fun
tion.Threads are preempted at every 5th 
lo
k ti
k, whi
h means that the time sli
eof a thread is 50 millise
onds. This is implemented with an alarm timer whi
h isinitialized when a new thread is s
heduled.In the LVM it is possible to blo
k a thread on the ability to read resp. writean I/O 
hannel. The implementation maintains a list of all threads waiting forI/O and their resp. I/O 
hannels. During exe
ution of the 
he
k fun
tion theoperating system is polled if one of these I/O 
hannels is ready for read resp.write.An alternative approa
h to polling I/O would be asyn
hronous I/O, whi
h hasthe advantage that the operating system informs the engine when I/O is available.The drawba
k of asyn
hronous I/O is that it is not portable between di�erentplatforms.The LVM supports soft real-time 
ontrol with timers. A thread 
an be delayedfor a 
ertain amount of time with the primitive delay t where t is the time todelay in millise
onds. This is implemented with a list of threads. This list issorted a

ording to the time after the delay. During the exe
ution of the 
he
kfun
tion only the time after the �rst delay is tested for expiration.3.5.5 Dis
ussionThe thread model of L has the property that threads are expli
itly 
reated.Before rea
hing this model we investigated two other approa
hes: the �ne-grained
on
urren
y and jobs as an intermediate granularity.In the �ne-grained model the 
omposition of two expressions is 
on
urrent. Se-quential exe
ution 
an only be spe
i�ed using data 
ow syn
hronization. In
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on
urren
y model was used. It has the advantage that it supportsvery well the de
larative 
onstraint programming style.The �ne-grained model introdu
es a huge burden on the implementation, be
ausemany optimizations possible in a sequential environment are not possible, e.g.the lifetime of X registers is mu
h shorter. A major disadvantage of �ne-grained
on
urren
y wrt. the language de�nition is that it is very diÆ
ult to 
ombinestateful programming with data 
ow-only syn
hronization.A hybrid job model was designed, where a job is a sequen
e of expressions witha sequential exe
ution strategy. A program is a sequen
e of jobs, whi
h arealso exe
uted sequentially, but when an expression suspends a new 
on
urrentthread is 
reated for the suspended job. This model was designed as a 
ompro-mise between the �ne-grained 
on
urrent 
onstraint approa
h and the expli
it
on
urren
y approa
h.At the LVM level this job model has some ni
e properties, e.g. in most 
asesthe thread 
reation and s
heduling overhead was saved, be
ause jobs did notsuspend frequently. On the other side the maintenan
e of the jobs in
urred anoverhead, be
ause the tasks on the task sta
k had to be grouped into jobs. Itturned out that the impli
it thread 
reation in the job model was to 
ompli
atedas a programming 
on
ept.The 
ompromise 
hosen in Oz is now su
h that threads must be expli
itly 
reatedand for 
onstraint programming built-in light-weight threads 
alled propagatorsare used.3.6 Spa
esIn this se
tion we introdu
e the extension of the virtual ma
hine, whi
h areneeded to support multiple 
omputation spa
es.The basi
 servi
es provided by the virtual ma
hine are the exe
ution of threadssituated in spa
es and the dete
tion of entailment and disentailed. The virtualma
hine is extended with an additional storage area for spa
es, with a trail, andwith a spa
e register. A single instru
tion for the deep guard 
onditional is addedto 
reate a new spa
e and to syn
hronize on entailment or disentailment of thisspa
e.The main re�nement of the spa
e model introdu
ed at the LVM layer is therepresentation of multiple 
omputation spa
es multiplexed into a single store.We introdu
e the s
ript te
hnique for maintaining multiple transient bindingsand 
ompare it to the binding window te
hnique.
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Figure 3.22: The extension of the engine for spa
es.3.6.1 Overview of the extended engineThe engine model is extended for spa
es with hooks for the installation, termi-nation, and suspension of threads and for the dete
tion of failure ex
eptions asoutlined in Figure 3.22.The hooks are drawn as boxes and have the following fun
tions:install When a thread is sele
ted for exe
ution its spa
e is installed, i.e. thes
ript is exe
uted.exit When a thread is terminated the entailment and stability 
ondition aretested.ex
ept The ex
eption me
hanism is extended to dete
t failure ex
eptions.fail If a failure ex
eption is raised and not handled by an ex
eption handler orthe installation of the s
ript fails, then the spa
e is marked as failed and
onsidered as disentailed.
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Figure 3.23: Engine state with spa
es.suspend When a thread is suspended a hook is needed for dete
ting stability,whi
h is not further explained in this thesis.A new 
ompartment of the engine is the store of spa
es. Figure 3.23 shows astore, where situated nodes and threads are labelled with their home spa
e.The LVM is extended with a spa
e register space whi
h 
ontains the 
urrentspa
e. The trail keeps tra
k of the installed spe
ulative bindings.A spa
e has a referen
e to its parent spa
e, a 
ounter for the number of non-terminated threads, a s
ript 
ontaining the spe
ulative bindings, a number of
ags, a referen
e to the root node, and a referen
e to the thread 
ontaining the
onditional whi
h waits until entailment or disentailment of the spa
e is dete
ted.3.6.2 Threads and spa
esThreads are situated in spa
es. This is implemented in the virtual ma
hine by areferen
es from the thread to its spa
e. This means that the thread \knows" itsspa
e. No referen
es from the spa
e to its threads are needed. The number of



100 CHAPTER 3. THE VIRTUAL MACHINE LVMnon-terminated threads is 
ounted per spa
e to de
ide one part of the entailment
ondition.When new threads are 
reated they inherit the spa
e from the 
urrent thread. Inthis spa
e the thread 
ounter is in
remented. A new spa
e is equipped with aninitial thread.Be
ause the engine refers to the spa
e of the 
urrent thread very often, this isstore in a space register. The spa
e register is initialized from the thread whenits exe
ution starts.In the LVM all runnable threads are maintained by the s
heduler in a globalthread queue. An alternate design to a global queue would be an organization ofthe runnable threads per spa
e. These lo
al queues are used in AKL and havethe advantage that the lo
ality of exe
ution is exploited6.When a spa
e is failed all threads belonging to this spa
e must be terminated.To avoid referen
es from a spa
e to all its threads this is done lazily. Lazy meansthat when a thread situated in a failed spa
e or below is s
heduled for exe
utionit is dis
arded during the installation, when the failed spa
e is dis
overed.3.6.3 The s
ript te
hniqueThe basi
 problem of deeps guards is to eÆ
iently represent spe
ulative bindings.In this se
tion we des
ribe the s
ript te
hnique for maintaining multiple bindingsof transients in di�erent spa
es.Every spa
e has a s
ript. The s
ript 
ontains all spe
ulative bindings of globaltransients of a spa
e. The s
ript 
ontains pairs of nodes: a global transient nodeand its spe
ulative binding.To eÆ
iently a

ess the 
urrent binding of transients the spa
e of a thread isinstalled. A spa
e is installed by installing its s
ript. The installation of the s
riptmakes all the spe
ulative bindings a
tive by exe
uting the uni�
ation algorithmwith every pair of nodes in the s
ript.The spe
ulative bindings have to be undone when the worker exe
utes anotherthread in a di�erent spa
e. For this purpose the spe
ulative bindings are pushedonto a sta
k, 
alled the trail. Spe
ulative bindings may be 
reated during theinstallation of the s
ript and during the exe
ution of a thread in a spa
e.The entries on the trail are pairs of a referen
e to the tagged node whi
h wasspe
ulatively bound and its old 
ontent, e.g. its old tag and pointer.6This approa
h is taken for propagators, whi
h implement built-in threads for 
onstraintpropagation.
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Figure 3.24: Installation and deinstallation.When the worker leaves a spa
e it is deinstalled. Deinstallation writes all spe
u-lative bindings from the trail into the s
ript and retra
ts the spe
ulative bindingsin the store.Bindings of lo
al transients are not trailed and 
orrespondingly never written intothe s
ript. These bindings need not to be deinstalled, be
ause the lo
al transientsare not visible in the parent spa
e.Figure 3.24 shows the installation and deinstallation of a spa
e. During theinstallation the unif
ations of x with 1 and of y with z are performed. Weassume that x was already bound globally and therefore the �rst uni�
ation is ano op. The se
ond uni�
ation spe
ulatively binds u, whi
h is trailed and duringthe deinstallation this spe
ulative binding is written to the s
ript.



102 CHAPTER 3. THE VIRTUAL MACHINE LVMInstallation and deinstallation of paths L allows arbitrarily nested spa
esand the worker has to install the s
ripts in all spa
es from the root of the 
om-putation tree to the spa
e of the thread.The algorithm to install a path from the root spa
e to a target spa
e has twophases: a 
olle
t phase and an a
tivate phase. The 
olle
t phase starts from thetarget spa
e and 
olle
ts all spa
es on the path to the root of 
omputation treeon a sta
k. For this purpose every spa
e needs a referen
es to its parent spa
e.In the a
tivate phase the spa
es on the sta
k are installed.The deinstallation of a path simply starts from the 
urrent spa
e and deinstallsall spa
es up to the root spa
e.If the worker deinstalls a spa
e and installs another spa
e this 
an be optimizedby performing the deinstallation only until a 
ommon an
estor of both spa
es isrea
hed. The installation of the path 
an started from this 
ommon an
estor. ToeÆ
iently �nd the 
ommon an
estor spa
es are marked when they are installed.The 
olle
tion phase starts as usual at the target spa
e, but it stops when a spa
eis found whi
h is marked as installed. This spa
e is the 
ommon an
estor andthe deinstallation and installation pro
edure 
an pro
eed from there.To write the lo
al bindings into the s
ript of the 
orre
t spa
e during the dein-stallation the trail has to be segmented with one segment per spa
e on the path.When the worker starts to install a spa
e a new segment is allo
ated on the trail.When a spa
e is deinstalled the transients in the top segment are deinstalled andthis segment is removed from the trail.The trail/s
ript te
hnique outlined above requires that the binding of a tran-sient in the store 
an be undone. This implies that the virtual ma
hine is notallowed to shrink existing referen
e 
hains, while spe
ulative bindings of tran-sients are stored on the trail. This requires for example spe
ial 
are when doinga garbage 
olle
tion. In the LVM garbage 
olle
tion is performed when all spa
esare deinstalled and no spe
ulative binding is a
tive.Propagation The 
onsisten
y 
ondition for bindings in a tree of 
omputationspa
es is that every transient is bound at most on
e on every path from its hometo any des
endant spa
e. To preserve this 
ondition a binding is propagated toall 
hild spa
es. Propagation removes the spe
ulative bindings and reexe
utesthe uni�
ation algorithm with the new and the old binding in the subordinatedspa
es.To �nd all spe
ulative bindings the suspensions are extended for spa
es. When aspa
e is deinstalled whi
h has spe
ulative bindings a suspension is 
reated whi
hhas a referen
e to the spa
e. This suspension is hooked to every transient whi
his spe
ulatively bound in the spa
e.



3.6. SPACES 103The propagation of bindings is not done immediately when a new binding isadded, but it is done lazily. A wakeup thread is 
reated in all spa
es 
ontaininglo
al bindings. A wakeup thread has an empty task sta
k. The purpose ofthe wakeup thread is to install its spa
e and thereby performing the impli
itpropagation of bindings.The propagation happens impli
itly during the exe
ution of the s
ript. As ex-plained above the s
ript 
ontains pairs of nodes, whi
h are uni�ed during theinstallation of the s
ript. In the 
ase of propagation both nodes are possiblydetermined values. The appli
ation of the uni�
ation algorithm guarantees thatthe equality of the two nodes is preserved or that the spa
e is failed.An interesting property of the installation te
hnique is that 
onstraint propaga-tion is done lazily. Whenever a thread is exe
uted in a spa
e it is ensured thatall 
onstraints are propagated to this spa
e, be
ause the s
ript is installed beforethe exe
ution starts.A little optimization is implemented in the LVM whi
h ensures that for everyspa
e a wakeup thread is only 
reated if needed. When a thread enters therunning state its spa
e is marked as propagated. If this mark is already set the
reation of the wakeup thread is omitted, be
ause a runnable thread situated inthis spa
e exists whi
h ensures that the propagation takes pla
e. The mark isdeleted when the spa
e is installed.Failure A spa
e is failed when a failure ex
eption is raised and not handled. Thefailed spa
e is deinstalled7 and marked as failed to allow for the lazy terminationof its threads and the threads in 
hild spa
es.Entailment The entailment 
ondition for a spa
e has two parts: it 
ontains nospe
ulative bindings and and all threads are terminated. For the LVM the �rst
ondition is equivalent to the test if the trail resp. s
ript is empty.The test that all threads are terminated 
an be implemented with a 
ounter,whi
h is in
remented for every new thread and de
remented for every terminatedthread.It is suÆ
ient to 
he
k for entailment when a thread terminates. Both 
onditionsare only ful�lled together if the last thread terminates.Merging The merge operation for entailed spa
es 
onsists of three parts: mak-ing the merged spa
e transparent, merging the s
ript, and merging the thread
ounter. Merging the thread 
ounter simply adds the 
ounter of the merged spa
eto the 
urrent spa
e.7Creating the s
ript is not ne
essary, be
ause the spa
e will never be installed again.
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e is marked as transparent, whi
h means that all operations ontransparent spa
es are redire
ted to the parent spa
e. Spa
es are made trans-parent to avoid a 
omplex ma
hinery for updating all referen
es from transients,suspensions, and threads to the spa
e. This is similar to the te
hnique for bindingtransients and has the same overhead for dereferen
ing.The spe
ulative bindings stored in the s
ript of the merged spa
e are added tothe 
urrent spa
e through uni�
ation and thereby propagated to the subordinatedspa
es.Transient - transient bindings Bindings of transients to transients have tobe treated spe
ially. The main reason for potential problems is that transientsare not ordered and the uni�
ation of two variables may bind them in any order.For example when exe
uting the following 
ode fragment it may happen that inthe 
onditional (1) the transient x is bound to y and at position (2) y is boundto x .
val x=lvar();
val y=lvar();

spawn fn () = >
cond ( fn () = > unif (x, y), ..., ...); (� 1 �)

unif (y, x); (� 2 �)In this situation the wakeup me
hanism would not trigger propagation, be
ausein (1) a suspension is only added to x and in (2) only the suspensions of y arewoken.Two possible symmetri
 solutions to �x this problem are:1. Suspensions are added to both nodes if a transients is spe
ulative bound toanother transient.2. The suspensions of both transients are woken, when a transient is boundto another transient.The �rst solution is realized in the LVM. It has the advantage that, in the 
aseof binding a lo
al transients to a value, it is not ne
essary to test that the boundvalue is a transient. In this 
ase work has to be done only when a spe
ulativebinding is written into the s
ript8.Both solution have the problem that too many unne
essary wakeups may beperformed. Therefore we did an experimental implementation of spe
ial kinds8A se
ond reason for this approa
h is that stability 
an be dete
ted easily
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ase. These suspension allowed to perform the wakeupexa
tly when needed. It turned out that the 
ase of spe
ulative bindings betweentwo transients o

urs very infrequently and no optimization of this 
ase is needed.3.6.4 Binding windows and relative simpli�
ationMany te
hniques are proposed in the literature to provide multiple views ontrees of 
onstraint stores with shared variables. Espe
ially in the 
ontext of OR-parallel Prolog implementations sophisti
ated te
hniques are developed. Guptaand Jayaraman [33℄ give an overview of the known te
hniques and 
lassify thesea

ording to three eÆ
ien
y 
riteria: 
onstant time a

ess to the 
urrent bindingin a spa
e, 
onstant time thread 
reation, and 
onstant time thread swit
hing.They show that at most two of these 
riteria 
an be simultaneously satis�ed.Beside of these three eÆ
ien
y problems a virtual ma
hine with deep guard op-erators like the LVM must also implement the entailment test and the mergeoperation of two spa
es, whi
h are not needed in Prolog implementations.In the following paragraph we present two other te
hniques to represent multiplebindings.Binding arrays The binding array method was introdu
ed in the 
ontext ofProlog implementations by D. S. Warren [113℄. The motivation for the bindingarrays was to allow for an exploration of the sear
h tree using other strategiesthan the built-in depth-�rst order of Prolog, but keeping the same performan
eas ba
ktra
king. The te
hnique was independently developed for OR-parallelexe
ution of Prolog by D. H. D. Warren [112℄.The basi
 idea of the method is to allo
ate forwarder lists in every spa
e. Theseforwarder lists maintains the spe
ulative bindings. When a global variable isbound in a spa
e an entry is added to the forwarder list, instead of modifyingthe variable node and trailing it. To a

ess the value of a variable a lookup inall forwarder lists up to the home of the variable is exe
uted, until a binding isfound or the home spa
e is rea
hed.The lookup is optimized with a binding array. This is a stru
ture allo
ated perworker whi
h 
ontains all forwarders on the path from the 
urrent spa
e of theworker to the root spa
e. The binding array allows to a

ess variable values in
onstant time9.The 
omplexity of this s
heme for a single worker traversing the sear
h spa
edepth-�rst is the same as for ba
ktra
king, be
ause the overhead for dereferen
ing,binding, and unbinding is 
onstant.9The binding array 
an be implemented as an array be
ause in ea
h path of the 
omputationtree the variables 
an be numbered 
onse
utively.



106 CHAPTER 3. THE VIRTUAL MACHINE LVMThe overhead for swit
hing the 
ontext is linear in the number of spe
ulative bind-ings whi
h is a

eptable be
ause 
ontext swit
hes are assumed to be infrequent
ompared to the amount of work done in one spa
e.The binding s
heme of Penny The binding s
heme of the parallel AKL sys-tem, Penny [65, 64℄, uses a simple forwarder list without binding arrays. Theauthors argue that this simple s
heme is very good for typi
al appli
ations, be-
ause 
ontext swit
hing 
an be done in 
onstant time and the forwarder lists aretypi
ally very short. Furthermore the trees of 
omputation spa
es are typi
ally
at and bushy and not deeply nested.To eÆ
iently �nd the suspended binding the forwarder list 
ontains, beside spe
-ulative bindings, also lo
al suspensions. The suspension for a binding is added tothe forwarder list in the parent spa
e. If the parent is the home spa
e suspensionsare added to the suspension list of the variable itself.If a global variable is bound the forwarder list of the 
urrent spa
e is sear
hed forsuspensions. If a lo
al variable is bound the suspension list of the variable arewoken up.The beauty and the beast The beauty and the beast algorithm [78℄ is atrue in
remental algorithm for de
iding entailment for 
at guards with feature
onstraints. The basi
 idea is to avoid any kind of unne
essary re
omputation by
reating a so-
alled beast storing all the work already done.This algorithm was only studied in theory but a pra
ti
al implementation is stilloutstanding. Under the assumptions that spe
ulative bindings are very infrequentit is questionable if this approa
h leads to an improved algorithm.Situated simpli�
ation A formalization of the entailment and disentailmenttests and proof of its 
orre
tness for rational tree 
onstraints for deep guards isgiven in [77℄.The authors de�ne the situated simpli�
ation as an extension of the uni�
ationalgorithm, whi
h propagates bindings immediately. When the uni�
ation termi-nates the path 
onsisten
y 
ondition holds, whi
h states that at most one bindingfor every variable on every path exists.In the situated simpli�
ation and the beauty and the beast algorithm the equiv-alen
e sets of stru
tures dis
overed during the uni�
ation are re
orded to avoidtheir re
omputation.
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ript te
hnique as implemented in the LVM is a simplebinding method if the virtual ma
hine has a single worker. It is also used in thesequential implementation of AKL [47℄. AKL only supports Prolog stru
turesand the extension of the s
ript te
hnique to re
ords is de�ned in [98℄.The reason for using the s
ript te
hnique for implementing multiple in LVM 
anbe summarized as follows:� The virtual ma
hine has a single worker. This implies that at every momentonly a single view on the bindings has to be eÆ
iently supported.� Spa
es are used primarily for en
apsulating 
omputations for 
onstraintprogramming and sear
h, where the vast amount of time is spent in prop-agators and for 
loning.� The overhead for 
ontext swit
hes for the worker, i.e. moving from one spa
eto another, is small 
ompared to the exe
ution time within a 
ontext. Thetime sli
e for the exe
ution of a thread is mu
h longer then time needed toswit
h the 
ontext. In 
onstraint solving problems many threads run in thesame 
ontext.� Only very few global variables are spe
ulatively bound. The overwhelmingmajority of bindings are for lo
al variables. The overhead for implementinga truly in
remental algorithm is therefore not related to its bene�ts.In our implementation a suspension is 
reated for ea
h deinstallation of the s
ript.This 
an be optimized by 
reating a single thread per spa
e whi
h has the roleof the wakeup thread and whi
h is responsible for propagating bindings into thisspa
e.The s
ript te
hnique in the LVM has quadrati
 
omplexity for examples within
remental bindings, be
ause� All bindings in the s
ript are exe
uted, even if a single binding must bepropagated.� Stru
ture-stru
ture bindings are not stored in the s
ript and must be reex-e
uted for every installation of the s
ript.3.7 Other virtual ma
hines3.7.1 Prolog Abstra
t Ma
hinesThe design of LVM was in
uen
ed to a great extend by Warren's design of theabstra
t ma
hine for Prolog, 
alled WAM [110, 111, 1℄.



108 CHAPTER 3. THE VIRTUAL MACHINE LVMThe LVM uses the basi
 te
hniques developed for the WAM to represent symboli
stru
tures on a heap. This representation was adapted for re
ords. The LVM usesthe same optimized representation of lists as found in many Prolog implementa-tions. The optimizations for 
ompiling uni�
ation into low level instru
tions 
anbe dire
tly applied.The LVM supports logi
 variables, but their representation 
ould not be optimizedinto self-referen
es, be
ause variables are situated in spa
es and need to representtheir home pointer.In the LVM variables are never allo
ated on the sta
k resp. in Y registers, butonly on the heap. Therefore no 
on
ept of unsafe variables is needed.L does not support ba
ktra
king as primitive sear
h strategy, but �rst 
lassspa
es, whi
h allow to eÆ
iently program di�erent sear
h strategies [89℄. Themajor di�eren
e for the virtual ma
hine is that many environments resp. spa
esare a
tive simultaneously. Instead of generating 
hoi
e points and trailing 
hangesthe virtual ma
hine supports 
loning, i.e. 
opying, of spa
es.Like the WAM the virtual ma
hine of L has global resp. temporary registers Xand lo
al resp. permanent registers Y. Arguments are passed through X registersin both ma
hines. To support �rst-
lass pro
edures the LVM has an additionalregister G for addressing the pro
edure environment.The design of the LVM is targeted for an emulator-based approa
h and not fora high-performan
e native implementation. It is expe
ted that the te
hniquesdeveloped for high-performan
e Prolog implementation, e.g. Van Roy's [105℄, orTaylor's [101℄, 
an be adapted.3.7.2 The abstra
t ma
hine of AKLThe Agents system [47℄ is the �rst implementation of AKL [27, 37℄ a deep guardprogramming language. Many implementation te
hniques for deep guards werepioneered in the Agents system.L radi
ally di�ers from AKL in its 
ontrol strategy. Con
urren
y in AKL is �negrained as opposed to L, whi
h supports 
ourse grained 
on
urren
y. The im-plementation 
on
urren
y for L requires to support preemption of 
omputationsto guarantee fairness among threads and rea
tivity. Ex
eption handling is notsupported in AKL, be
ause it is only useful in the paradigm of threads.Sear
h in AKL is built-in and impli
itly triggered. In L sear
h is �rst-
lass [89℄.The LVM supports a ri
her set of data types than AKL, e.g. names, re
ords, and�rst 
lass pro
edures are essential parts requiring new implementation te
hniques.The basi
 data type for stateful programming in AKL is a port. Compared to
ells in L the implementation of ports is of a similar 
omplexity.
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tures realized in the LVM are based on the foundational workon re
ords [98℄ and features [4℄. As part of the work on LIFE [2, 3, 78, 79℄re
ord-like stru
tures were analysed and implemented in a 
on
urrent 
onstraintframework.3.7.4 The Java Virtual Ma
hine (JVM)The Java Virtual Ma
hine (JVM) [60℄ is a ma
hine designed for the implemen-tation of Java. Java is an imperative 
on
urrent programming language usingthe obje
t-oriented imperative programming paradigm with automati
 memorymanagement.The JVM is designed to support a wide range of platforms in
luding embeddedsystems. The language requirements wrt. fairness and unsyn
hronized update anda

ess in Java are very weak. This weakness simpli�es the implementation of theJVM 
ompared to the burden on the LVM to respe
t the interleaved semanti
sof L.The JVM is a sta
k based ma
hine, i.e. it has no general purpose ma
hine regis-ters, but operands and arguments are passed through a data sta
k. This approa
h
ompared to the register-based approa
h of LVM simpli�es the 
ompiler and theimplementation of the virtual ma
hines in some aspe
ts, but many optimizations,e.g. using ma
hine registers for passing arguments, requires non-trivial runtimeoptimizations [23, 24℄.The design of the ex
eption me
hanism in the JVM is optimized for the 
ase thatex
eptions are raised only in rare 
ir
umstan
es. An ex
eption handler in
ursno overhead at runtime if no ex
eption is raised. When an ex
eption is raisedall sta
k frames are s
anned to test if its PC refers to a region prote
ted by anex
eption handler. Using ex
eptions for non-standard 
ontrol primitives is notfeasible with this approa
h.The JVM does not support tail-
all optimization, instead the usual loop 
on-stru
ts of imperative languages, e.g. while and for, are supported. The designof the JVM does not prevent tail-
all optimization, but it seems that tail-
alloptimization has no priority for JVM developers.3.7.5 Fun
tional languagesMany ideas from the implementation of fun
tional languages [7, 76℄ apply verywell to the LVM. First-
lass pro
edures in L are very similar to �rst-
lass fun
tions



110 CHAPTER 3. THE VIRTUAL MACHINE LVMand 
ompilation te
hniques like 
losure 
onversion and 
ontinuation passing 
ouldbe easily adapted to the LVM.Closure 
onversion transform pro
edures su
h that its free variables be
ome addi-tional formal arguments. To su
h a 
onverted pro
edure the values of the 
losureare passed as additional a
tual arguments. This te
hnique makes the G address-ing mode obsolete and is espe
ially useful for native implementations and forelaborated 
ompiler optimizations.The 
ontinuation passing style is an alternative implementation to a sta
k basedimplementation of threads. In this approa
h every pro
edure is 
onverted intoa pro
edure with a 
ontinuation as additional argument. The 
ontinuation istail-
alled at the end of the pro
edure instead of returning from the pro
edure.The 
ontinuation passed when 
alling a pro
edure is a 
losure representing the
ode whi
h follows the pro
edure 
all.Using 
ontinuation passing style for the a virtual ma
hine simpli�es the repre-sentation of threads, but requires to 
reate a lot of 
losures. It pays o� if the
ompiler aggressively optimizes the 
reation of 
losures.The 
onvention for returning values di�ers between L and fun
tional languages.In L logi
 variables are used to pass values ba
k to the 
aller of a pro
edure. Inthe LVM this is optimized for 
reating symboli
 data stru
tures. In the imple-mentation of fun
tional languages values are usually returned through registers.This typi
ally avoids the overhead of 
reating and binding variables and oftenleads to a better register usage. On the other side it 
an hinder the tail re
ursionoptimization, e.g. the L pro
edure for 
on
atenation app is tail re
ursive, whereasthe fun
tional version is not.Many fun
tional languages have single argument fun
tions. Multiple argumentsare realized with pairing. To get the same eÆ
ien
y as possible with multiplearguments a te
hnique 
alled deforestation [109℄ 
an be used. The basi
 idea ofdeforestation is to delay the pairing as far as possible. If a pair for example ispassed as an argument to a pro
edure its �elds are passed separately and theyare never 
ombined into the stru
ture if the pro
edure dire
tly de
omposes itsargument. In the LVM we use a similar te
hnique for the implementation of�rst-
lass messages in the obje
t system.A major di�eren
e between L and many fun
tional language is the type system. InL everything is dynami
ally typed, whereas fun
tional languages, like StandardML and Haskell, have a strong type system. The dynami
 type system of Lhinders many optimizations whi
h take advantage of stati
 type information, e.g.avoiding dereferen
ing and dynami
 type tests and representing values as unboxand untagged data stru
tures.Reppy [81, 82, 83, 84℄ des
ribes a 
on
urrent extension (CML) of Standard ML.The 
ommuni
ation primitive of CML is a �rst-
lass 
hannel with two syn-
hronous operations. a

ept reads from and send writes to a 
hannel. Both
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k until a pair of threads meet at a 
hannel where one performs ana

ept and the other a send operation.The implementation of CML is build on top of Standard ML using its primitivesfor �rst-
lass 
ontinuations and asyn
hronous signals to implement light-weightthreads. When a signal o

urs the 
urrent 
ontinuation is grabbed and passed toa signal handler. This allows to preempt a thread with its state 
aptured in the
urrent 
ontinuation.3.7.6 Erlang's virtual ma
hines (JAM, TEAM/BEAM)Erlang [9℄ is a 
on
urrent fun
tional language designed for telephony appli
ations.Two aspe
ts of the language design are di�erent 
ompared to L: threads (whi
hare 
alled pro
esses in Erlang) have no shared memory and the language doesnot support stateful data types.As a fun
tional language Erlang requires proper tail-
all optimization. The 
om-muni
ation is based on a message queue per pro
ess and a wait primitive tosyn
hronize on messages in queue.For Erlang two sequential virtual ma
hines were designed: JAM [8℄ an emulator-based sta
k ma
hine and TEAM/BEAM [41℄ a high-performan
e native imple-mentation with a register based intermediate language.Both implementation use separate sta
ks and heaps for every thread. The Erlangimplementation is also in
uen
ed by the WAM, e.g. for the representation of datastru
tures they use tagged pointers and pattern mat
hing is implemented withindexing. Environments are allo
ated per pattern rule, whi
h is similar to theWAM where the environment is allo
ated per 
lause.Similar to the LVM Erlang has light-weight pro
esses with a well-de�ned seman-ti
s. The implementation is a single threaded OS pro
ess with a round robins
heduler and possible preemption when exe
uting 
alls.The memory management of Erlang is based on a 
opying garbage 
olle
tor.Garbage 
olle
tion is performed on a per-thread basis, be
ause every thread hasits own heap. A ni
e property of Erlang is that no 
y
li
 data stru
tures 
an be
reated, whi
h simpli�es the garbage 
olle
tion algorithm.The overhead for garbage 
olle
tion in Erlang is very high for examples withmany threads and a lot of 
ommuni
ation. The problem o

urs be
ause threadshave no shared memory and the messages must be 
opied between the threads.The problem is further enlarged by the fa
t that obje
t oriented programming issupported as a
tive obje
ts with a thread per obje
t. Erlang has no stateful datastru
tures and hen
e no possibility to express obje
ts without thread.



112 CHAPTER 3. THE VIRTUAL MACHINE LVMAs a summary the shared store for threads in the LVM has the advantage that nodata stru
tures must be 
opied during the 
ommuni
ation among threads. Onthe other side the te
hnique to allo
ate memory per thread in Erlang has theadvantage that independent and 
on
urrent garbage 
olle
tion for ea
h threadis possible. Furthermore the distribution of threads among many sites and themapping of threads to multiple pro
essors be
omes simpler.3.8 Summary of the design prin
iplesIntermediate level of abstra
tion The virtual ma
hine hides irrelevant de-tails of 
on
rete ma
hines. It provides suÆ
ient high-level abstra
tions to avoidunne
essarily 
ompli
ated 
ompilers. It provides enough low-level abstra
tionsto allow the 
ompiler to generate 
ode whi
h 
an be eÆ
iently emulated.A virtual ma
hine is a good implementation 
ompromise for a new programminglanguage, whi
h 
hanges frequently and where experiments with new ideas areperformed. A virtual ma
hine is not as 
exible, wrt. 
hanges, as an interpreter,but its performan
e is mu
h better.Another advantage of a virtual ma
hine is portability. The Mozart implementa-tion, whi
h is written in C/C++, has been adapted to many platforms.Emulator-based implementation The ma
hine language is designed for anemulator-based implementation. This means that the emulation overhead shouldbe minimized. Therefor the instru
tion set is 
oarse-grained: many mi
ro in-stru
tions are 
ombined into one LVM instru
tion.An intermediate language as target for native 
ompilation has to be designed verydi�erently. The work of Van Roy [105℄ and Taylor [101℄ on high-performan
e
ompilation of Prolog indi
ates that the intermediate language has to be at avery low-level and 
lose to the hardware to rea
h the speed of C/C++. Thisis de�nitely not the 
ase for the LVM, whi
h has for example high-level graphrewriting and syn
hronization instru
tions.Using a simple ma
ro expansion of the LVM ma
hine 
ode to native 
ode willsurely give some speedup, but it is not the right tra
k to rea
h a high-performan
eimplementation.Single worker The virtual ma
hine is designed to run on single pro
essor ma-
hines. A simple s
heduler for 
on
urrent threads is built into the virtual ma
hine.The single pro
essor model gives strong invariants for atomi
ity and simpli�es theimplementation of the interleaved semanti
s of L.
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hite
tures for 
on
urrent 
onstraint languages are studiedin [80℄ and [64℄. In [80℄ the 
oarse-grained parallelism on the thread level ofL is exploited. [64℄ exploits �ne grained parallelism in the language AKL. Bothproje
ts show that a sequential virtual ma
hine is a good starting point to exploreparallelism.Shared memory ar
hite
ture The graph store of the LVM is shared betweenall threads. This di�ers from message passing ar
hite
tures, where all threadshave their own memory and 
ommuni
ation between threads is done by messagepassing. The only means to 
ommuni
ate between threads in the LVM is throughshared nodes. The LVM has no message passing primitives built-in, but they 
anbe expressed eÆ
iently using re
ords, transients and 
ells.A shared memory ar
hite
ture has the advantage that data stru
tures need notto be 
opied when 
ommuni
ating between threads. Only a referen
e to a nodein the graph has to be a
tually sent from one thread to another.For parallel and distributed implementations shared data stru
tures require moree�ort in the syn
hronization 
ode of the implementation, but for programmersshared data stru
tures are very powerful.Memory management in shared ar
hite
tures is also more ambitious: to re
laimthe memory of nodes potentially many threads are involved and have to be syn-
hronized. In Erlang implementations [41, 8℄ every thread (
alled pro
ess there)has its own memory management. Non-shared memory ar
hite
tures allow for abetter real-time 
ontrol, be
ause threads are better de
oupled. In the LVM (see
hapter Se
tion 4.6) we use a stop and 
opy 
olle
tor, whi
h stops the exe
utionof all threads, re
laims the memory and after that restarts the exe
ution of thethreads.Automati
 memory management The LVM provides automati
 memorymanagement. Automati
 memory management is well-understood and standardin modern high-level languages [114, 115℄.The basi
 garbage 
olle
tion rule for the LVM is that only the nodes rea
hablefrom the runnable threads and threads pending on I/O or the timer are live data.In Se
tion 4.6 the implementation issues for the automati
 memory managementin the LVM is dis
ussed.First-
lass pro
edures The LVM has dire
t support for pro
edures with lex-i
al s
ope and in�nite extend, so 
alled �rst-
lass pro
edures. Basi
ally thismeans that the pro
edure appli
ation installs the environment 
aptured at thepro
edure de�nition. The virtual ma
hine has an additional addressing mode for



114 CHAPTER 3. THE VIRTUAL MACHINE LVMthis environment. In an emulator-based implementation the support of �rst-
lasspro
edures 
omes almost for free.An alternative approa
h to 
ompile �rst-
lass pro
edures is 
losure 
onversion [7℄.This te
hnique 
onverts �rst-
lass pro
edures into pro
edures with an additionalargument 
ontaining the 
aptured 
losure. The advantage of this te
hnique is thatno additional addressing mode is needed. A disadvantage of 
losure 
onversionis that it adds a level of indire
tion to address a node.Tail 
all optimization The virtual ma
hine has no loop 
onstru
ts, but im-plements tail 
all optimization, i.e. if the last instru
tion of a pro
edure is anappli
ation, the sta
k frame of the 
aller is removed before the appli
ation. Tail
all optimization allows to implement loop 
onstru
ts eÆ
iently. It has additionalexpressiveness, be
ause any tail 
all is optimized and for example mutually tailre
ursive pro
edures don't need spa
e on the sta
k of the thread.In an emulator-based implementation tail 
alls 
an be implemented almost aseÆ
iently as jumps. Therefore it is not ne
essary to 
ompli
ate the 
ompiler andengine with loop 
onstru
ts.Graph abstra
tion The graph abstra
tion is the 
anoni
al representation ofdata-stru
tures in high-level languages with automati
 memory management. Aunit with links to other nodes is the single primitive abstra
tion for the repre-sentation of a value. The unit itself 
ontains type spe
i�
 s
alar information andthe links are dire
ted and ordered 
onne
tions to other nodes.With this single 
on
ept all primitive language data types 
an be implementedeÆ
iently. The graph abstra
tion maps very well to imperative data stru
turesand automati
 memory management is straightforward.The store of the LVM is designed su
h that it provides for eÆ
ient representationsof dynami
ally typed values for an emulator based VM. The underlying assump-tion is that the 
ompiler does not 
ompute stati
 type information, e.g. an a
tualargument of a pro
edure (user-de�ned or built-in) 
an be of an arbitrary typeand the VM has to handle it dynami
ally.The store has to represent many di�erent types of values. We use a layered ap-proa
h. The 
ore layer 
ontains a few main data types, whi
h are implementedhighly eÆ
ient using tagged pointers. The basi
 layer, whi
h 
ontains the ma-jority of types, is implemented with tagged obje
ts. The extension layer, whi
hopens the system to add new data types, uses obje
ts with late binding.The layered approa
h has the advantage that eÆ
ien
y 
an be traded with sim-pli
ity, e.g. experimental data-types 
an be added easily and the essential data-types, e.g. integers, referen
es, and transients, 
an be optimized.



3.8. SUMMARY OF THE DESIGN PRINCIPLES 115Transient values are basi
ally used for 
onstraint programming and syn
hroniza-tion of threads. The store is designed su
h that transient values are almostgra
efully degrading. If transient values do not o

ur in programs there shouldbe no penalty. The major reason why this 
ould be a
hieved in the LVM is,that all values are represented with dynami
 type information and the test fordetermination 
an be integrated at no 
ost with the type test.Another design goal is modularity and orthogonality of data stru
tures. Datatypes are implemented in the LVM independently. The glue is the tagging s
hemeat the 
ore layer, the tagged obje
ts at the basi
 layer, and a virtual fun
tioninterfa
e at the extension layer.I/O as orthogonal 
on
ept Input and output is not integrated into the vir-tual ma
hine. I/O is modeled with ports as endpoints for 
ommuni
ation withthe outside world. A port [49℄ is an abstra
tion for many many-to-one 
ommu-ni
ation with a stream for the reader and a send pro
edure for the writer. Ports
an be easily expressed in L (see [96℄).Output is modeled as a port to whi
h messages 
an be sent from MyOz and whi
hhave some impa
t on the outside. Input is modeled as a port on whi
h messagesarrive from the outside.No limitations The virtual ma
hine imposes no arti�
ial limitations: the num-ber of lo
al registers Y is unlimited, arbitrary many threads 
an be 
reated ands
heduled, the graph store is unlimited, arities and the number of subtrees 
an bearbitrary large, an in�nite number of new names 
an be generated, integers arenot limited. These requirements simplify the 
ompilation of the high-level lan-guage into the ma
hine language, but they require some e�ort when implementingthe virtual ma
hine.Control-sta
k and data heap The sta
k of tasks in threads is solely a 
ontrolsta
k and the data stru
tures of the language are stored on the heap. This setup
learly separates 
ontrol from data. This separation guarantees for example thatthe tail-
all optimization 
an be applied for every tail re
ursive appli
ation.Built-in pro
edures Some of fun
tionality of the LVM is implemented asbuilt-in pro
edures, where performan
e is not an issue. This allows to keep thenumber of ma
hine instru
tions small and fo
ussed on the performan
e 
riti
alaspe
ts.Built-in pro
edures 
an also be used as a 
exible me
hanism to extend the virtualma
hine.
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t to 
ompiler optimizations built-in pro
edures 
an be handled likeother ma
hine instru
tions, e.g. an appli
ation of a built-in does not invalidatethe 
ontents of X registers.



Chapter 4Implementation aspe
ts
In this 
hapter some aspe
ts of the implementation of the LVM in C++ aredis
ussed. The main fo
us is on the representation of the data-stru
tures in thestore.4.1 Storage representationsIn the LVM the type of every unit is available at runtime and the implementationhas to dynami
ally represent these types of units.The main te
hniques for representing dynami
 type information are tagged ob-je
ts and tagged pointers. Typi
ally an implementation has to �nd a 
ompromiseusing a hybrid mix to trade the simpli
ity of tagged obje
ts vs. the eÆ
ien
y oftagged pointers.The virtual ma
hine supports more types than the language, be
ause varioussubtypes have optimized representations, e.g. lists and tuples. The LVM tags
heme uses a representation, whi
h allows for speed and memory optimizationsof frequently used data types.The operations on dynami
ally typed values are type tests, boxing, and unboxing.Types tests require the type of a unit and test if this unit is of a 
ertain requiredtype. Boxing 
reates a dynami
ally typed unit. Unboxing extra
ts the rawinformation from a dynami
ally typed unit.In a language where virtually all units are dynami
ally typed, these operationsare exe
uted most frequently and therefore every optimization 
ontributes signif-i
antly to the performan
e of the whole system.
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118 CHAPTER 4. IMPLEMENTATION ASPECTS4.1.1 Tagged obje
tsTagged obje
ts are simple data stru
tures whi
h have a type �eld and additional�elds depending on the type. Tagged obje
ts of a 
ertain type 
an be implementedas sub
lasses of the 
lass TaggedObject .
class TaggedObject f
protected:
int type;
TaggedObject( int t) : type(t) fg

public:
int getType() f return type; ggA list element Cons for example 
an be implemented trivially as a tagged obje
twith two additional �elds for the head and the tail of the list.

class Cons : public TaggedObject f
protected:

TaggedObject �head;
TaggedObject �tail;

public:
Cons(TaggedObject �h,TaggedObject �t)

: TaggedObject(CONS), head(h), tail(t) fg
TaggedObject �head() f return head; g
TaggedObject �tail() f return tail; ggSimilarly integers 
an be implemented as tagged obje
t with an additional integervalued �eld.

class Int : public TaggedObject f
protected:
int val;

public:
Int( int v)

: TaggedObject(INT), val(v) fg
int getInt() f return val; ggThe main advantage of the tagged obje
t implementation is its simpli
ity and reg-ularity, e.g. the memory management 
an use the invariant that all data stru
tureson the heap start with the type �eld.In a system using only tagged obje
ts the ma
hine registers and the �elds of stru
-tures, e.g. the head and tail in the 
lass Cons, 
ontain pointers to tagged obje
ts.This means that tagged obje
ts are always referen
ed through an indire
tion.



4.1. STORAGE REPRESENTATIONS 119The type test therefore requires not only a 
omparison but additionally a memorya

ess for the indire
t a

ess to the tagged obje
t. Boxing and unboxing are trivial
asts with no runtime 
osts.4.1.2 Tagged pointersTagged pointers are a data stru
ture whi
h �ts into a word of the target ar
hite
-ture (typi
ally 32 bits). The word is split into the tag (4 bits) and data �eld (28bits). The tag 
ontains the type informations. And the data �eld 
ontains thevalue. If the value does not �t in the data, then additional storage is allo
atedand the data �eld 
ontains a pointer to this additional storage.Pointers Pointers are en
oded into the 28 data bits of a tagged pointer 
ombin-ing two te
hniques. First, every heap node is aligned to word size. This ensuresthat the least signi�
ant two bits of a pointer are always zero, hen
e only 30 bitsmust be stored. Se
ond, only 230 bytes (1 GB) of the available virtual memory isused. These two te
hniques allow to represent a pointer in 28 bits. The overheadfor tagging and untagging pointers is signi�
ant.The 
lass Tagged shown below is an implementation of tagged pointers. It hasinitialization (Tagged 
onstru
tors), update (set ), and a

ess (get ) methods.
class Taggedf
private:
static const mask=15;
static const bits=4;
unsigned int tagged;
void checkTag( int tag) f

Assert(tag >= 0 && tag <= mask);g
void checkVal( int val) f

Assert((val & (mask <<(32 �bits))) == 0);g
void checkPtr( void� ptr) f
unsigned int val=( unsigned int) ptr;
Assert((val&3)==0);
Assert((val&(3 <<30))==mallocBase);g

public:
Tagged() f tagged = 0; g
Tagged( void� ptr, int tag) f set(ptr,tag); g
Tagged( unsigned int val, int tag) f set(val,tag); g
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void set( void� ptr, int tag) f

checkPtr(ptr);
checkTag(tag);
tagged = ((( unsigned int)ptr) <<(bits �2)) j tag;g

void set( unsigned int val, int tag) f
checkTag(tag);
checkVal(val);
tagged = (val <<bits) j tag;g

unsigned int� getRef() f return &tagged; g
int tag() f return (tagged&mask); g
unsigned int getData() f return tagged >>bits; g
void� getPtr() f
return ( void�)(mallocBase j(( tagged >>(bits �2))&˜3));gg;Boxing The set methods implement boxing. They need one shift and onelogi
al OR operation. For the zero tag1 boxing redu
es to a single shift. Thisoptimization 
omes for free, when using an optimizing C++ 
ompiler.Unboxing The get methods implement unboxing. They need a single shift fornon pointer values. Pointers require a shift by two and a AND operation to putzeros in the two least signi�
ant bits. Unboxing pointers 
an be 
ompiled into asingle shift if the tag has the bit pattern xx00 .On some ar
hite
tures, where the heap segment 
annot be allo
ated at the bot-tom of the memory, i.e. the two most signi�
ant bits of pointers are not zero,an additional operation to add the segment start is required when unboxing apointer.Type tests Type tests are done by masking out the bits of the tag and 
om-paring this tag with the required tag. The zero tag is optimized by the C++
ompiler, be
ause the result of mask operation is already the negated result ofthe type test: false (zero in C++), if the tagged pointer has the zero tag andtrue (non-zero in C++) otherwise. When the result is immediately used in a
onditional the C++ 
ompiler 
an remove the otherwise required negation andnormalization.1The zero tag is used for representing referen
es in the LVM tag s
heme.



4.1. STORAGE REPRESENTATIONS 121The check methods show how we implement method 
ontra
ts in C++ as amixture of 
omments and runtime 
he
ks: the Assert ma
ro expands to theempty statement in the produ
tion system and to an expli
it test with an errormessage in the development system.The following 
ode shows examples of a tagged pointer representation of listelements and integers.
class ConsData f
friend class Cons;

Tagged head;
Tagged tail;g;

class Cons : public Tagged f
public:

Cons(Tagged h, Tagged t) : Tagged() f
set(CONS, new ConsData(h,t));g

Tagged getHead() f return ( �(ConsData �) getPtr()).head; g
Tagged getTail() f return ( �(ConsData �) getPtr()).tail; gg;The list element does not �t into the tagged pointer and requires to allo
ateadditional data class ConsData for the head and tail �elds.

class SmallInt : public Tagged f
public:

Int( int i) : Tagged(INT,i) f g
int getInt() f return getData(); gg;The integer type implementation is a straight-forward re�nement of the Tagged
lass with the limitation that only 28 bit integers 
an be stored.The advantage of the tagged pointer s
heme is the smaller memory footprint anda better performan
e espe
ially for type tests. Tagged pointers 
an be storedin the �elds of stru
tures and in ma
hine registers. For some values,e.g. smallintegers, everything �ts into the tagged pointer and does not need additionalmemory. Compared to the tagged obje
ts the type tests for tagged pointersrequire no memory a

ess, be
ause the type information is stored dire
tly in thepointer.The main drawba
k of tagged pointers is that they impose several restri
tions.Pointers must �t into the remaining bits of the data �eld. For integers the im-plementation limits their range to [�227;+227� 1℄. The eÆ
ient implementationof the arithmeti
 operators requires additional e�orts [87℄.



122 CHAPTER 4. IMPLEMENTATION ASPECTSNum Bits Tag Data Explanation0 0000 REF Tagged � referen
e4 0100 WREF Tagged � read-write referen
e8 1000 REF3 reserved12 1100 REF4 reserved1 0001 TRANS TransBody � transient5 0101 UVAR spa
e optimized variable9 1001 FUT spa
e optimized future13 1101 GC Tagged � garbage 
olle
tion2 0010 CONS ConsData � list element3 0011 REC Structure � re
ord or tuple6 0110 INT dire
t value small integer7 0111 EXT Extension � extension10 1010 VEXT ExtBody � generi
/virtual extension11 1011 FLOAT Float � 
oating point value14 1110 unused15 1111 LIT Literal � literalFigure 4.1: The LVM tag s
heme.Furthermore the number of available tag bits limits the number of possible repre-sentations for data-types. Instead of a �xed number of tag bits an implementationwith varying numbers bits is possible.Another variant of tagged pointers used in the LVM is an en
oding where two bitsare used for tagging and 30 bits are available for data. This allows to representarbitrary pointers to word aligned data. It is for example used for the se
ondarytag to distinguish re
ords and tuples.4.1.3 The LVM tag s
hemeFigure 4.1 shows the tag s
heme of the LVM. The di�erent types are explainedin the following se
tions. Pointer values are marked with a star, e.g. Tagged* isa pointer to a tagged pointer.The LVM uses a hybrid s
heme of tagged pointers and tagged obje
ts: as mu
has needed is en
oded as tagged pointer (see Figure 4.1). One tag EXT is reservedfor tagged obje
ts whi
h have se
ondary tags as listed in Figure 4.2. Another tag
VEXTis reserved for virtual obje
ts, whi
h uses late binding instead of an expli
ittag. These virtual obje
ts are explained in Se
tion 4.5.The tagged pointer with all bits zero, the TaggedNULL, is reserved for spe
ialproposes, e.g. for signalling errors and ex
eptions.



4.1. STORAGE REPRESENTATIONS 123Tag ExplanationPROC user-de�ned pro
edureBUILTIN built-in pro
edureCLASS 
lassOBJECT obje
tTHREAD �rst 
lass threadCELL 
ellSPACE �rst 
lass spa
ePORT portCHUNK 
hunkARRAY arrayDICT di
tionaryLOCK lo
kFigure 4.2: Se
ondary tags.Integers Integers in the interval [�227 + 1;+227 � 1℄ are represented dire
tlyin the data part of the tagged pointer using the INT tag. Operations on theseintegers are optimized su
h that no unboxing is needed.Integers outside this interval are represented as extension with a se
ondary tag(see Se
tion 4.5). These integers use an external pa
kage, namely the GNU multipre
ision library, version 2 to implement big integers and their operations.Floats Floats are represented as tagged pointers using the FLOAT tag. Theyrefer to a heap node 
ontaining a IEEE 
oating point with double pre
isionrepresentation of 
oat values. These heap nodes are aligned to double wordboundaries on the heap, be
ause 
oating point arithmeti
 requires it. It is thenpossible that for every 
oat a word is vasted on the heap for alignment.4.1.4 Dis
ussionGudeman [32℄ gives a good overview of te
hniques to represent values in dynam-i
ally typed languages and de�nes basi
 notions.The LVM tag s
heme is a 
ompromise whi
h optimizes the 
ase that dereferen
ingand test for determination must be done at runtime. As explained above the zerotag (REF in the LVM tag s
heme) allows for optimized type tests, boxing andunboxing operations.We have also analyzed an alternative tag s
heme, where no boxing and unboxingis needed for the REF tag. In this s
heme all tags (0,4,8, and 12) with the
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ant bits of zero are used as REF tags. For small ben
hmarks(tak, nrev) boxing and unboxing of REF tags, espe
ially in 
onjun
tion with theallo
ation of transients in stru
tures (see Se
tion 4.2), are done so frequently thatthis optimization implies a performan
e di�eren
e of approximately ten per
ent.In other appli
ations, e.g. the 
ompiler or the s
heduler, the di�eren
e is notsigni�
ant.The en
oding of transients is su
h that if a tagged pointer is known to be noreferen
e then the test if it is a transient is very 
heap: t is a transient if t&2==0 ,whi
h is similar to the test for a referen
e.Another optimization is the en
oding of the CONStag for the representation oflists. The CONStag is espe
ially optimized, be
ause lists are a 
onvenient methodfor representing dynami
 data stru
tures and list iteration o

urs frequently inappli
ations. If it is known that a tagged pointer is no referen
e and no transientthen the test if t is CONSis a single AND operation t&13==0 .Using tagged pointers has a drawba
k with respe
t to moving and 
opying values.A tagged pointer representing transients 
an never be 
opied, be
ause the identityof a transient is represented by its lo
ation in memory. Therefore transients storedin registers and re
ord �elds must be handled 
arefully.In the LVM transients are never stored in registers. Registers 
an only 
ontainreferen
es to transients on the heap. This allows to 
opy and move nodes betweenregisters without danger of o

asionally 
reating 
opies of transients by movingtagged pointers. Furthermore this restri
tion of the implementation avoids theproblem of unsafe variables known from the WAM [1℄.Oz has integers of in�nite pre
ision and in the implementation a subset 
alledsmall integers are represented eÆ
iently. Lisp [100℄ optimize integers even more.They use two tags: 0000 for positive and 1111 for negative values. Therefore notagging and untagging is needed and the over
ow test simply 
he
ks if the resultof an operation has a valid integer tag.The tag s
heme of the LVM is optimized for a 
ompiler whi
h does no aggressivestati
 analysis to dedu
e stati
 type information. Other tag s
hemes are neededfor a highly optimizing 
ompiler. For example if it does stati
 analysis to dete
tdetermined and dereferen
ed values [12℄, then the optimization for referen
es andvariables would loose their prominent role.Other languages whi
h have stati
 type systems or where the 
ompiler 
an extra
tstati
 type information 
an often avoid using run-time tags. Untagged values 
anthen for example be stored dire
tly in registers. Dynami
 types are still needed,e.g. for doing garbage 
olle
tion [6℄, but there overhead during the exe
ution 
anbe often avoided. Possible type systems and type inferen
e for Oz are analyzedin [67℄



4.2. TRANSIENTS 125In the LVM pro
edures are represented as unboxed values when they are used in�rst-
lass pro
edure appli
ations, i.e. at 
ompile time it is known that a appli-
ation is always applied to the same pro
edure. Another example of a unboxedrepresentation is the referen
e to self during the exe
ution of methods, whi
h isstored as unboxed value in a LVM register.4.2 Transients4.2.1 Referen
esA referen
e in the LVM is a tagged pointer with the REF tag and a pointer to atagged pointer.
class Ref : public Tagged f
public:

Ref(Tagged �vPtr) : Tagged() f set(REF,vPtr); g
Tagged �getRef() f return (Tagged �)getPtr(); gg;

Bool isRef(Tagged v) f return v.tag()==REF; g4.2.2 Representation of TransientsThe LVM supports three levels of representations for transients. At the bot-tom layer a highly optimized representation for storing variables in the �elds ofstru
tures is implemented. The medium layer with a se
ondary tag is used toimplement the built-in transient types, i.e. free variables, futures, and kindedvariables. The medium layer uses a se
ondary tag to distinguish the di�erenttypes of transients. For experiments new transient types 
an be added (dynami-
ally) using a virtual layer, whi
h uses late binding of a small number of interfa
efun
tions.
enum TransType f

FREE,
FUTURE,
KINDED FD,
KINDED FS,
KINDED OR,
...g;

class SuspList f
Thread � thread;
SuspList � next;g;
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class TransBody f

TransType type;
SuspList � suspList;
Space � home;
TransBody(TransType t,Space � s)
: type(t), suspList(0), home(s) fgg;

class Trans : public Tagged f
Trans(TransBody � tb) : Tagged(tb,TRANS) fg
TransBody � getBody() f return (TransBody �) getPtr(); gg;

Bool isTrans(Tagged v) f return v.tag() & 2 == 0; gThe standard representation of transients is a tagged pointer with the tag TRANSand a pointer to a transient node. A transient node (TransBody ) is a labelledheap node whi
h is labelled with the type, e.g. free, future, or kinded variable,a spa
e and a suspension list. The suspension list 
ontains threads whi
h aresuspended until the transient is bound.4.2.3 VariablesA new variable is 
reated with newVar() . newVar() returns a referen
e to thevariable.
class FreeBody : public TransBody f

FreeBody(Space � s) : TransBody(FREE,s) fgg;
Tagged newVar(Space � s) f
return Ref( new Trans( new FreeBody(s)));g

Bool isFree(Tagged t) f
return t.tag()==TRANS &&

((Trans)t).getBody() �>type==FREE;gNote that the memory needed for a new variable is the memory for the body andthe memory for the tagged pointer. The referen
e does not use heap memory,be
ause the C++ 
ompiler 
an store it in registers and �elds.4.2.4 FuturesA future is a read-only view on a transient. Futures are implemented as transientnodes where the assignment operation blo
ks and suspends its thread until theprote
ted transient is bound. A future of a transient is 
reated with futureOf .
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class FutureBody : public TransBody f

FutureBody(Space � s) : TransBody(FUTURE,s) fgg;
Tagged futureOf(Tagged v) f

Tagged tmp=deref(v);
if (!isTrans(tmp)) return tmp;
Space � s=((Trans)tmp).getBody().home;
TransBody � tb= new FutureBody(s);
Trans �t = new Trans(tb);
addPropagator(tmp,Ref(t));
return Ref(t);gThis fun
tion �rst tests if the argument is a transient. If it is not the argumentis dire
tly returned. If the argument is a transient a new future is 
reated and apropagator is installed to propagate the binding of the transient to the future.4.2.5 By-need FuturesBy-need futures are a spe
ialization of futures. Additionally to the read-onlyaspe
t, is has an asso
iated fun
tion. The by-need future is impli
itly assigned tothe result of the 
on
urrent exe
ution of the fun
tion, when its value is requested.A by-need future is requested when a threads blo
ks on it.The LVM supports an optimized by-need future for the 
ase that the fun
tion isa simple �eld sele
tion of a re
ord. When the by-need future is requested this�eld sele
tion is tried without spawning a 
on
urrent thread. This optimizationis needed for the lazy loading of modules in Oz [22℄.4.2.6 BindingWhen a transient is bound the threads stored in the suspensions must be resumedand then the transient node is destru
tively updated to the new value.

void bind(Tagged v1, Tagged v2)f
Tagged � vPtr=derefPtr(v1);
TransBody �tb=((Trans)v1).getBody();
wakeup(tb �>suspList);�vPtr = v2;
free tb;gThe memory used for the transient body 
an be safely released, be
ause after thebinding no referen
e to it exists any more.
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ompli
ated, be
ause hooks for handling spa
es areneeded, e.g. bind has to de
ide if a transient is lo
al or not and eventually trailthe binding (s
ript model) or store the binding in a lo
al binding frame (situatedmodel).4.2.7 SuspensionsOperations expe
ting a determined value suspend if they are applied to tran-sients. Suspending means that the thread exe
uting the operation is stopped anda suspension is hooked to the transient. A thread hooked onto a transient isrestarted when this transient is bound. More than one thread 
an suspend on asingle transient, i.e. a transient 
an be hooked with many threads. The stru
tureto store the threads is 
alled suspension list.The primitive operation to suspend on the determination of a single value is
void wait(Tagged) . It simply tests if its argument is determined, if not itblo
ks and suspends the 
urrent thread. When the transient is bound the threadis resumed and the wait operation is restarted and 
he
ks again if the new valueis now determined.A thread 
an suspend on more than one transient. The primitive operationfor this 
ase is void waitOr(Tagged,Tagged) . It suspends if both argumentsare transients. In this 
ase the thread is added to the suspension list of bothtransients.In the LVM threads are never removed from a suspension list. This 
an leadto spurious wakeup and memory leak. If a thread suspends on more than onevariable after a wakeup it potentially remains in the suspensions of the othervariable.A spurious wakeup o

urs for example in the following 
ode
spawn fn () = >

(waitOr (x, y);
wait z)The thread starts running and suspends on x and y . When x is bound and y isnot bound waitOr su

eeds and the thread suspends on z . If y is now boundthe thread is woken up without need and retries wait z , whi
h suspends again.An example of a memory leak is shown in the following example

spawn fn () = >
(waitOr (x, y);

wait )When x is bound the thread 
annot be garbage 
olle
ted, be
ause a referen
e toit remains in the suspension list of y .



4.2. TRANSIENTS 129Both problems 
an be solved using a shared suspension stru
ture in the suspen-sion lists. This suspension stru
ture has a referen
e to the suspended thread andis stored in both suspension lists. After a wakeup it 
an be marked, su
h thatfurther wakeups are inhibited [87℄.4.2.8 Usage patternsThe major design goal for the implementation of transients is that they are gra
e-fully degrading wrt. to determined values. Every operation has to be preparedto handle transients, but if no transients are used no performan
e penalty shouldbe payed. This is only possible in the 
urrent design of the LVM be
ause alloperations have to test the type of the node dynami
ally and transients are of adistinguished type.Therefore spe
ial attention has been payed to an optimized implementation ofreferen
es (REF) and transients (UVAR, FUT, TRANS). Every operation has to testsits arguments at least for the following 
ases:referen
e If the argument is a referen
e it has to be dereferen
ed.transient If the argument is a transient the operation has to suspend until thetransient is bound.Several variants of the dereferen
e operation are useful. The simple deref fun
-tion follows the referen
e 
hain until the end.
Tagged deref(Tagged v) f
while (isRef(v)) f

v = �((Ref)v).getRef();g
return v;gThis fun
tion is 
onsidered dangerous. Several hard to tra
k bugs o

ured duringthe implementation of Mozart. The problem is that this fun
tion makes it easy todupli
ate a transient by mistake. When the node returned by deref is a transientand it is stored into a register or �eld the transient is dupli
ated (see Figure 4.3).A variant of this fun
tion is safeDeref whi
h guarantees that a register nodeis returned, i.e. no transient is ever returned by safeDeref . The result of

safeDeref 
an be stored safely into registers and �elds.
Tagged safeDeref(Tagged v) f

while (isRef(v)) f
Tagged tmp = �((Ref)v).getRef();
if (!isRef(tmp) && isTrans(tmp)) f
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return v;g

v = tmp;g
return v;gThe last variant is derefPtr , whi
h returns a pointer to the last tagged pointer, ifthe input is a referen
e. Furthermore it side-e�e
ts its 
all by referen
e argumentand leaves the dereferen
ed value there.

Tagged �derefPtr(Tagged &v) f
Tagged �ptr=0;
while (isRef(v)) f

ptr = ((Ref)v).getRef();
v = �ptr;g

return ptr;gIn the following we present some implementation patterns for handling dynami-
ally typed values and dis
uss their usage.Optimisti
 pattern The optimisti
 pattern �rst tests if value is of the requiredtype. Only if it is not dereferen
ing and the transient 
ase are handled.
if !is <T>(v)

v=safeDeref(v);
if isRef(v) suspend;
else if !is <T>(v) error;

doit;This pattern is very good if transients and referen
e 
hains o

ur infrequently.The LVM is optimized towards this 
ase, be
ause in the 
on
urrent fun
tionalprogramming style transients and referen
es o

ur only for the syn
hronizationof 
on
urrent a
tivities.Deref pattern The deref pattern ensures that the value is dereferen
ed beforeany type tests are performed.
v=safeDeref(v)
if is <T>(v) doit
else if isRef(v) suspend
else errorThis pattern was used in the LVM before we had the insight that L 
an be seenas a fun
tional language with extensions from logi
 programming rather than the
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 programming many referen
eso

ur only, be
ause return values are passed as referen
es to variables used as
ontainers for return values.Optimized deref pattern The optimized deref pattern allows to slightly opti-mize the deref pattern su
h that the transient 
ase is more eÆ
ient. An invariantof the LVM is that transients are never a

essed dire
tly but always through theindire
tion of a referen
e. This 
an be used to test the transient 
ase only whendereferen
ing is needed.
if (isRef(v))

v=safeDeref(v);
if isRef(v) suspend;

if is <T>(v) doit
else errorCaller responsible pattern The 
aller responsible pattern only tests if theargument is of required type. No dereferen
ing and transient test is done. Ifthe required type is no supplied an error is signalled to the 
aller. The 
aller isresponsible for dereferen
ing and suspending in the 
ase of a transient. The 
aller
an ensure that dereferen
ing and the transient tests are performed before theappli
ation or it 
an do it lazily, i.e. after the operation has signalled an error.Non-monotoni
 pattern The non-monotoni
 pattern is used for non-monotoni
operations on transients, e.g. binding.

Tagged �vPtr=deref(v)
if isTrans(v) f�vPtr = ...
else errorWhen the dereferen
ed node is a transient the pointer vPtr refers to the transientwhi
h 
an be bound to a new value.4.2.9 Uni�
ationThe store abstra
tions allow to implement the WAM-like instru
tions for an op-timized uni�
ation. As an example we show the 
ompilation of the followingprogram
let Y=lvar() in

unif (X, fa=Y, b=a g);
unif (Z, fa=Yg);
...

end
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ode
get record [a b], X
unify variable Y
unify constant a
get record [a], Z
unify value YThe implementation of the instru
tions 
an be outlined as follows:
get record(ar,R) f
if (isTrans(R)) f

mode = WRITE;
node n = newRecord(ar);
status = bind(R,n);g else f
mode = READ;
if (arity(R) != ar) status = FAIL;g

sPointer = getArgRef(R);g
unify variable(R) f
if (mode == READ) f

R = �sPointer++;g else f
R = newVar(currentSpace);�sPointer++ = R;gg

unify value(R) f
if (mode == READ) f

status = unify(R, �sPointer++);g else f�sPointer++ = R;gg
unify constant(c) f
if (mode == READ) f

node n = �sPointer++;
if (isTrans(n)) f

status = bind(n,c);g else if (n != c) f
status = FAIL;g
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ompiler knows the mapping of the arity from the features tothe index and s
hedules the unify instru
tions for reading resp. writing thearguments in the 
orre
t order.The get record implementation shows that re
ord 
onstraints 
an be imple-mented as eÆ
iently as prolog stru
tures, if the arity is known at 
ompile time.4.2.10 Extending transientsIn this se
tion we explain a minimal and 
onvenient interfa
e to add new transienttypes to the LVM.The interfa
e for adding new transient types is de�ned by the 
lass ExtBody .
class ExtBody : public TransBody f
public:

ExtBody(Space �s) : TransBody(EXTVAR,s) fg
virtual int getIdV();

virtual TransBody � gcV();
virtual void gcRecurseV();
virtual void disposeV();

virtual ReturnCode bindV(Tagged �, Tagged);
virtual ReturnCode unifyV(Tagged �, Tagged �);
virtual ReturnCode addSuspV(Tagged �, Thread �);

virtual Tagged statusV();g;Every transient has a type. The type is en
oded as a unique id returned by themethod getIdV . A new unique id may be obtained from a generator.The methods gcV, gcRecurseV , and disposeV are used for memory manage-ment. In the stop and 
opy garbage 
olle
tor gcV is used to 
opy a variable and
gcRecurseV is used to update the referen
e after 
opying. These two methodsare separated to allow the garbage 
olle
tor to dete
t and break 
y
les.The method bindV is 
alled when the LVM wants to bind a transient to a value.This method su

eeds if the binding is possible, fails if it is impossible, or suspendsif the binding is neither possible nor impossible.
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alls the method unifyV if the value is a transient. The method
unifyV 
alls its own bindV method or the bindV method of the argument.With this te
hnique it is possible to in
rementally add new types, where only thenewer types need to know how to unify themselves with the transients of oldertypes. The uni�
ation of two variables unifyV(x, y) 
alls bindV(x, y) if x\knows" how to unify with y else it 
alls bindV(x, y) .When a thread needs to suspend until a transient is bound the method addSuspVis 
alled to hook the thread to the fun
tion. For experimental purposes thisfun
tion 
an fail, e.g. to enfor
e a programming style where only suspensions onfutures are allowed.The last fun
tion statusV() allows to distinguish the status of a transient. Thestatus distinguishes variables, 
onstraint variables, and futures.As an example we show the by-need future implemented with the extension in-terfa
e.
class ByNeed: public ExtBody f
private:

Tagged fun;
public:

ByNeed(Space � s,Tagged fun) : ExtBody(s), fun(fun) fg
virtual int getIdV() f return TRANSBY NEED; g
// memory management
ExtBody � gcV() f return new ByNeed( �this); g
void gcRecurseV() f if (fun) collect(fun,fun); g
void disposeV( void) f delete this; g
// always suspend binding
ReturnCode bindV(Tagged � vPtr,Tagged t) f

return SUSPENDg;

// allow unification with variables, otherwise suspend
ReturnCode unifyV(Tagged � vPtr,Tagged � tPtr) f
if (isFree( �tPtr))
return ((Trans) �tPtr).getBody() �>bindV(Ref(vPtr));

return bindV(Ref(tPtr));g
// kick the by need computation once
ReturnCode addSuspV(Tagged �, Thread t) f
if (fun) kick(fun);
fun=0;
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suspList= new SuspList(t,suspList);
return SUSPEND;g

// a by need transient is a future
Tagged statusV() f return atom( "future"); gg;

Tagged byNeed(Tagged fun) f
return Ref( new Trans( new ByNeed(current space,fun)));g

Bool isByNeed(Tagged t) f
return t.tag()==TRANS &&

((Trans)t).getBody() �>type==EXTVAR &&
((ExtBody �)((Trans)t).getBody())�>getIdV==TRANS BY NEED;g4.3 Re
ordsIn this se
tion we explain the implementation of literals, re
ords, and arities.4.3.1 LiteralsLiterals are tagged pointers using the LIT tag. The pointer refers to a node witha se
ondary tag of an atom ATOMor a name NAME.Atoms are allo
ated and stored in the atom table. The atom table2 is anothermemory area beside registers and the heap. Atoms have �elds for the ATOMtag, a print name, and the length of the print name.New strings are internalized to atoms using hashing. The fun
tion newAtom( char�)�nds or allo
ates an entry in the atom table, by 
al
ulating a hash value over all
hara
ters in the argument string. For every atom in a L sour
e program this isdone at 
ompile or load time.The hash value of atoms for sele
ting �elds in re
ords (see se
tion 4.3.2) is doneby the fun
tion hashAtom(Tagged) . It uses the �xed memory address of theatom in the atom table to eÆ
iently generate a hash value.Names are represented in the LVM either as named names or as free names.Named names 
an be 
reated stati
ally. The 
ompiler 
an optimize the usage ofnamed names similar to atoms.2In other systems the atom table is also 
alled symbol table.
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lassi�ed into unique names, 
opyable names, and opti-mized names. Unique names are true, false and () whi
h are unique in everyVM3. Optimized names are all other stati
ally 
reated names.Named names are allo
ated and stored in the name table. The name table issimilar to the atom table. Named name are labelled with a hash value, a printname, and their type, i.e. unique, 
opyable, or optimized.Free names are dynami
ally 
reated heap nodes whi
h are labelled with a hashvalue and a spa
e. The hash value is needed for the eÆ
ient representationof re
ord arities (see Se
tion 4.3.2) and 
an be extra
ted with the fun
tion
int hashName(Tagged) .Names are situated in spa
es to be 
onsistent with pro
edures and obje
ts whi
hmust be situated4. The representation of a name thus 
ontains a pointer to itsspa
e.The implementation of free names needs two words. The �rst word representsthe kind of literal, and the hash value. The se
ond word 
ontains the spa
e.The fun
tion Tagged newName() 
reates a new free name. It 
hooses a newhash value by in
rementing a global 
ounter, allo
ates an obje
t of class Nameon the heap, initializes it, and 
reates a tagged pointer to this obje
t with thetag LIT .A basi
 property distinguishing atoms and names is s
alability. The number ofatoms is �xed at 
ompile time5. In 
ontrast free names are 
reated at run timeand the number of names is unlimited. Therefore names are allo
ated from theheap and they are subje
t to garbage 
olle
tion.HashingFor implementing re
ord arities (see below) a hash fun
tion mapping a featureto a positive integer must be implemented for all types of features. For hashingon small integers their absolute value is used. Big integers are not hashed in the
urrent implementation: all big integers are mapped to the same value.The hash value of atoms is the unique address of their entry in the atom table.It is very eÆ
ient to use the address be
ause it avoids the 
al
ulation of a hashvalue depending on the 
hara
ters in the string.A random hash value for names is 
omputed when a name is 
reated and it isstored in the data stru
ture representing the name.3Unique names are needed for serialization and pi
kling.4Situated names are required to simplify the de
ision if pro
edures and obje
ts must be
opied when a spa
e is 
loned.5Creating atoms dynami
ally is possible in full Oz, but it is depre
iated. Strings or virtualstrings 
an be used instead of dynami
ally 
reated atoms.
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hniques for getting a hash value for names is theallo
ation of names in a separate memory area, where their address is �xed.Using this �xed address as hash value redu
es the memory 
onsumption of namesdramati
ally: for a name generated in the top level spa
e only one bit is needed.The garbage 
olle
tor has to be adapted to use a non-
opying, e.g. mark andsweep, 
olle
tor for the new memory area instead of the implemented 
opying
olle
tor for the heap.To eÆ
iently implement the arity table it should be possible to order names.Using the �xed memory address a total order on names is trivially indu
ed. Oth-erwise the random hash values must be all distin
t. In the 
urrent implementationthe distin
tness is guaranteed by using a 
ounter instead of a random numbergenerator6.4.3.2 Re
ord representationsThe LVM uses four di�erent representations for re
ords with varying eÆ
ien
y:list elements, tuples, simple re
ords, and open re
ords. The representation of are
ord is always normalized to its 
anoni
al representation. A re
ord with thefeatures Head and Tail is represented as list element. Re
ords with 
onse
utivenumeri
 features from 1 to n are represented as tuples. Other determined re
ordsare represented as standard re
ords. We use the name re
ord also for the standardrepresentation if it is 
lear from the 
ontext what we mean.Tuples and (standard) re
ords The representation of tuples and (standard)re
ords are tagged pointers with tag RECwhere the pointer refers to a labelledheap node. The label of the heap nodes 
ontains a se
ondary tag for distinguish-ing tuples and re
ords. Furthermore the heap node is labelled with the tuplewidth resp. the re
ord arity (see below). The heap node has a �eld for everyfeature.
class Structure f

ArityOrWidth arity;
Tagged field[n];gThe �eld ArityOrWidth is a tagged pointer with an RECORDresp. TUPLE tagand the arity of the re
ord resp. the width of the tuple.The only reason to support an optimized representation for tuples in the LVMis that the dynami
 
reation of tuples is signi�
antly (approximately a fa
tor of�ve) faster than the dynami
 
reation of re
ords, be
ause no lookup in the aritytable is needed.6The implementation uses a 32 bit 
ounter and e�e
ts related to 
ounter over
ow are nothandled.



4.3. RECORDS 139List elements List elements are represented as tagged pointers (CONS) wherethe pointer refers to an unlabelled heap node with one �eld for the head and onefor the tail of the list.The operations on list elements are the 
reation of new lists and the �eld sele
tion.The 
lass Cons implementing list elements was already shown in Se
tion 4.1.This representation saves a word, i.e. �fty per
ent, per list element, be
ause thearity required for re
ords is represented in the tag. The test for a non-empty list ismore eÆ
ient then the test for a re
ord with a 
ertain label and arity, be
ause onlythe tag bits must be 
he
ked and additionally the CONStag is 
hosen su
h thatthe test for CONSneeds only two native ma
hine instru
tions (see Se
tion 4.1.3).A small issue with the list optimization is that the forwarding pointer has tobe stored in the �eld of the head or the tail, whi
h are also subje
t to garbage
olle
tion (see Se
tion 4.6).4.3.3 ArityEÆ
ient lookup The representation of an arity 
ontains the hash table andthe hash mask.
class KeyAndIndex f

Tagged key;
int index;g

class Arity f
Tagged featureList;
int width;
int hashMask;
KeyAndIndex table[hashMask+1];gFor an eÆ
ient a

ess to the re
ord width and the list of features both are storedin the arity. An alternate design would be to 
ompute them from the 
ontent ofthe hash table on demand.The size of the hash table is the next power of two whi
h is greater than 1:5 timesthe width of the arity. The hash mask is the size of the table minus one. Thesize and hash mask are 
hosen su
h that the 
al
ulation of an index modulo thetable size is a bitwise AND with the hash mask.The table is 
reated as hash table with the open addressing s
heme from Knuth [52℄.The table 
ontains pairs of features and indi
es (KeyAndIndex). The featuresare stored as tagged pointer (Tagged key) and the indi
es (int index) are uniqueindi
es of the �eld at the 
orresponding feature. The lookup fun
tion returns a�eld index or �1 if the feature is not in the arity.
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int Arity::lookup(Tagged feature)f
int i = featureHash(feature) & hashMask;
int step = (i%7) �2+1;
while (1) f
if (table[i].key == feature)

return table[i].index;
if (!table[i].key)

return �1;
i = (i + step) & hashMask;ggThe size of the table is at least 1:5 times the width to have enough empty entriesto make the member test also eÆ
ient for the 
ase that a feature is not found.The fun
tion featureHash 
omputes a hash value for a literal or an integer.An implementation of arities using bu
ket lists instead of the open addressings
heme would have fewer 
ollisions, but the size required per arity would be larger.For bu
kets 3+3�width+size words are needed in a linked list implementation.This is larger than 3+2�size words for the open addressing s
heme if we assumethat the size is between 1:5 � width and 2 � width.Furthermore the a

ess of the key resp. value of an entry requires one morememory a

ess if the bu
ket list is represented as a linked list.The arity table The arity table is a hash table using hashing with bu
ket liststo store all arities. The key used to a

ess the arity table is the list of featuresof an arity. The hash value of a feature list is the sum of the hash values of itselements.To 
ompare a feature list with an entry of the arity table in linear time thelist of features should be sorted. A problem when sorting a list of features arenames, be
ause they are not ordered in the Oz programming model. In the LVMnames are ordered using the hash value. The order of names is not a total order,be
ause the hash value is derived from a 
ounter modulo the C++ word size. If
onse
utive names in the feature list have the same 
ounter value it is thereforene
essary to 
ompare all there permutations7.A better heuristi
s to 
ompute a hash value for a list of features 
ould 
ompute ahash value based only on the �rst k features. This optimization has no pra
ti
alrelevan
e, be
ause dynami
 re
ord and hen
e arity 
reation o

urs too infre-quently. Furthermore dynami
ally 
reated arities are in many 
ase new, i.e. not7With the te
hnique of allo
ating names in a separate memory area the ordering problemof names disappears.
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ost of their 
reation dominates the 
omputationof the hash value.4.3.4 The re
ord interfa
eThe basi
 operations on re
ords are the 
reation of new re
ords, the sele
tion of�elds, and pattern mat
hing. The fun
tions for 
reating and a

essing tuples andre
ords are summarized in the following table
Structure � newTuple( int) allo
ate a new tuple
Structure � newRecord(Arity �) allo
ate a new re
ord
Tagged Structure::setArg( int,Tagged) initialize a �eld
Tagged Structure::makeRecord() 
reate a tagged pointer
Arity �Structure::getArity() a

ess the arity
int width(Tagged) a

ess the width
Arity � arity(Tagged) a

ess the arity
Tagged arg(Tagged, int) sele
t a �eld by index
Tagged field(Tagged,Tagged) sele
t a �eld by feature
Bool isTuple(Tagged) test if is tuple or re
ordRe
ord 
reation Two kinds of re
ord 
reations are distinguished stati
 anddynami
 
reation.Stati
 re
ord 
reation is used when the arity is known at 
ompile time. In this
ase the arity is looked up and added to the arity table when the ma
hine 
odeis loaded. This is similar to internalizing string into the atom table.Stati
 re
ord 
reation allo
ates the memory for the re
ord stru
ture on the heap,writes the label and arity into the re
ord stru
ture. The �eld values are writteninto the �eld array without hashing. This 
an be done be
ause the arity is knownat 
ompile time and hen
e the index is also known at 
ompile time. Of 
oursethe 
ompiler and LVM must agree on mapping of feature to index.We present one example of a dynami
 re
ord 
reation whi
h allows to adjoin onefeature and its �eld value to an existing re
ord. This adjoin operation 
reatesa new re
ord, whi
h has the same �elds and �eld values as the original re
ord,ex
ept that the new feature is added or that is value repla
es an existing �eld.� The new re
ord has the same arity if the adjoined feature is already in itsarity.� If the adjoined feature is not yet in the re
ord arity then a lookup in thearity table is performed with the new feature inserted into the feature list.
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Tagged adjoinAt(Tagged rec, Tagged fea, Tagged val)f
// find arity
Arity �newArity;
Arity �oldArity = arity(rec);
if (oldArity �>lookup(fea)) f

newArity = oldArity;g else f
Tagged newList = insert(fea, oldArity �>featureList);
newArity = arityTable.find(newList);g

// create record
Structure �newRecord = newRecord(newArity);

// copy fields
Tagged l=oldArity �>featureList;
while (isCons(l)) f

f = head(l);
newRecord �>setArg(newArity �>lookup(f),field(rec,f));
l = tail(l);g

// new field
newRecord �>setArg(newArity �>lookup(fea),val);
return newRecord �>normalize();gThe 
ost of this adjoin operation has two parts: the test if the feature is alreadyin the arity and eventually the dynami
 lookup of the new arity. The �rst part isvery eÆ
ient, be
ause it uses the arity lookup fun
tion. The se
ond parts requireshashing a feature list in the arity table and eventually 
reation of a new arity.Additional optimized adjoin fun
tions are provided by the implementation toadjoin more than one new feature at on
e and to 
reate a new re
ord from a listof features.Field sele
tion Sele
ting the �eld at feature of a re
ord �rst 
alls the lookupfun
tion of the arity and if this is su

essful reads the 
orresponding entry of the�eld array.

Tagged arg(Tagged rec, int i) f
Structure �str = getStructure(rec);
Tagged val = str �>field[i];
return isDirectVariable(val) ? makeRef(&str �>field[i]) : val;g
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Tagged field(Tagged rec, TaggedRef fea) f
int i = arity(record) �>lookup(fea);
if (i <0) return 0; // not found
return arg(rec,i);gThe value stored in the �eld array 
annot be used un
onditionally. The problemis the memory eÆ
ient representation of variables (see 
hapter Se
tion 4.2). If avariable is allo
ated dire
tly in the array and not on the heap a referen
e to thisvariable has to be returned by the �eld sele
tion fun
tion. This means that anadditional test is required for every �eld a

ess.To optimize the �eld sele
tion inline 
a
hing [20, 108, 87℄ is used. The instru
tion

fieldCached 
a
hes the triple of last feature, arity, and index. If the samefeature is sele
ted using the same arity then the index is dire
tly taken from the
a
he.
Tagged fieldCached(Tagged rec, Tagged fea,

Arity �&cachedArity, Tagged &cachedFea,
int &cachedIndex)f

int i;
if (arity(rec) == cachedArity && fea == cachedFeature) f

i = cachedIndex;g else f
i = arity(rec) �>lookup(feature);
cachedArity = arity(rec);
cachedFeature = fea;
cachedIndex = i;g

if (i <0) return 0; // not found
return arg(rec,i);gPattern mat
hing: tests and indexing Pattern mat
hing deals with eÆ-
iently de
omposing re
ords. The main te
hniques used to implement patternmat
hing are tests and indexing. A test 
ompares a re
ord with one pattern andindexing sele
ts a mat
hing pattern from a set of patterns.The eÆ
ient 
ompilation is based on the fa
t that the arity of the patterns areknown at 
ompile time. When the test resp. indexing 
ode dis
overs that apattern mat
hes then the �elds 
an be sele
ted without hashing, be
ause the
ompiler 
an pre
ompute the lookup of the index.The fun
tion testRecord 
he
ks if a node is a re
ord with a given arity. Besidethe type test the testRecord fun
tion redu
es to exa
tly one 
omparison for the
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tly the same number of 
omparisons as required for tuples. Fortuples only the width is 
ompared instead of the arity.
ReturnCode testRecord(Tagged rec, Arity �ar)f

Assert(ar != ArityEmpty);

loop:
if (isRecord(rec)) f
return arity(rec) == ar ? PROCEED : FAILED;g

if (isCons(rec)) f
return ArityCons == ar ? PROCEED : FAILED;g

// deref and test for variable
if (isRef(rec)) f

rec = deref(rec);
if (isTrans(rec)) return SUSPEND;
goto loop;g

return FAILED;gIndexing 
onsists of two parts. The arity is hashed into the indexing table (usingopen addressing). The entries of the bu
ket list are then 
ompared using thesame 
omparison te
hnique as testRecord .4.3.5 Dis
ussionFlexible �eld sele
tion Subtrees of re
ords 
an be sele
ted with de
reasingeÆ
ien
y numeri
ally by an index if the feature and arity are stati
ally known,with a stati
ally known feature, or with a built-in pro
edure.Sele
tion by index is supported well on standard hardware and is therefore fast.The virtual ma
hine has no instru
tion to support this sele
t method for re
ords,be
ause in an emulator-based approa
h the performan
e di�eren
e to the sele
tionby a stati
ally known feature with inlining 
a
hing is negligible. The sele
tion byindex is useful in optimized built-in pro
edures, e.g. for sele
ting �elds of re
ordswith known arities like tuples.Arity The arity abstra
tion allows to separate the issues of �eld sele
tion andof mapping of features to the �elds. This provides a uniform model of the graphand an eÆ
ient mapping of the graph to standard hardware.
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h guarantees that every arity is represented exa
tly on
e.Features The feature abstra
tion en
apsulates two eÆ
ien
y problems: theequality test of two features and the mapping of features to indi
es througharities.Equality of features is implemented by the identity of nodes. Strings of 
hara
tersare made unique with an atom table, whi
h guarantees that two equal strings aremapped to the same atom. For names the runtime system maintains the invariantthat they are never dupli
ated, whi
h makes the equality test trivial.The eÆ
ient mapping of features to indi
es is done through hashing. Useful hashfun
tions are dis
ussed in Se
tion 4.3.2.Representations Supporting three representations for determined re
ords re-quires in the implementation additional 
ode, be
ause 
ode dealing with re
ordsmust be written su
h that all the representations are 
orre
tly handled. In 
aseswhere eÆ
ien
y is not the major 
on
ern it is possible 
ir
umvent this problem by
onverting any re
ord into the standard re
ord representation and operate onlyon this representation.Furthermore the dynami
 
reation of re
ords has the overhead that the repre-sentation must be normalized. This basi
ally means that list elements must bedete
ted and turned into their optimized representation.4.4 Feature 
onstraintsRepresentation Feature 
onstraints are implemented as transients with a �eldfor the width attribute and a hash table for the �elds attribute, whi
h 
ontainspairs of features and �eld values.
class OFVar : public TransBody f
private:
int width;
DT �dt;

public:
OFVar(Space �s, int n)
: TransBody(OFVAR,s) f

width= �1;
dt = DT::allocate(n);g

...g;
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Tagged newOF( int n) f

TransBody � tb= new OFVar(space);
Trans �t = new Trans(tb);
return Ref(t);gThe hash table class DT, 
alled dynami
 table, 
ontains an array of pairs

DTE table[] , the size of this array int size , and the number of elementsin the array int num. The size of the array is a power of two to simplify openhashing. When the array is �lled up to 75 per
ent the array size is doubled.
// dynamic table entry
class DTE f

Tagged ident;
Tagged value;g;

// dynamic table
class DT f
static:

DT �allocate( int n);
private:

int num;
int size;
DTE table[N];g;Feature 
onstraints The feature 
onstraint is implemented su
h that �rst atest if the feature is already in the hash table is performed. If this is the 
ase theold and new feature are uni�ed.

ReturnCode OFVar::featureC
(Tagged �vPtr, Tagged fea, Tagged val)f
Tagged oldVal=dt �>get(fea);
if (oldVal) return unify(oldVal,val);

if (dt �>isFull()) dt=DT::resize(dt);
dt �>add(fea,val);
if (width==dt �>num) return this�>toRecord(vPtr);
return PROCEED;gIf a new feature is added then a test is performed if the table is up to 75 per
ent�lled and must be resized. Then the feature with the 
orresponding value isadded to the hash table.
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ase the open re
ord is 
losed as shown in the method
toRecord .
Return OFVar::toRecord(Tagged �vPtr)f

Tagged alist=dt �>getArityList();
Arity �arity=aritytable.find(alist);
Structure �newrec = newRecord(arity);
newrec �>initArgs();
return this�>bindRecord(vPtr,newrec);gClosing an open re
ord means to dynami
ally lookup resp. 
reate an arity inthe arity table. To simplify the implementation the �elds of the new re
ord areinitialized with variables and the generi
 fun
tion to bind an open re
ord to a
losed re
ord is 
alled.

Return OFVar::bindRecord(Tagged �vPtr, Structure �str)f
PairList � pairs = dt �>check(str);
if (!pairs) return FAILED;

Tagged saved= �vPtr;�vPtr = str �>normalize());

Return ret = unifyPairs(pairs);

if (ret == PROCEED) f
this�>checkSuspension();g else f�vPtr = saved;g

return ret;gBinding an open re
ord to a 
losed re
ord �rst 
he
ks if every feature of the openre
ord is in the 
losed re
ord. The check method returns the mat
hing pairs of�eld values in the open and 
losed re
ord.
Pairs �DT::check(Structure �str)f

Pairs �pairs= new PairList();

for ( int i=size; i ��; ) f
if (table[i].value) f

Tagged val=str �>field(table[i].ident);
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if (!val) f

pairs �>free();
return 0;g

pairs �>addpair(val, table[i].value);gg
return pairs;gIf check was su

essful the se
ond step in bindRecord is to bind the open re
ordtransient to the new re
ord. This is ne
essary at this point to break a possible
y
le when unifying the �elds. Then 
orresponding �elds in the pair list areuni�ed. If all pairs are uni�ed su

essful the suspensions are woken up.Uni�
ation The merge method is the main part of the uni�
ation of two openre
ords. It merges the features of one dynami
 table into the other table.

PairList �DT::merge(DT � &dt)f
PairList �pairs= new PairList();

for ( int i=0; i <size; i++) f
if (table[i].value) f

Tagged val = dt �>get(table[i].ident);
if (val) f

pairs �>addpair(val, table[i].value);g else f
if (dt �>isFull()) dt=DT::resize(dt);
dt �>add(table[i].ident, table[i].value);ggg

return pairs;gThe merge method merges the features of the 
urrent table into its argument.Merging means that a feature is added if it is not yet in the table. The �eldvalues of features whi
h are already in both tables are 
olle
ted in a pair list forlater uni�
ation with the unifyPairs fun
tion.
Return unifyPairs(PairList �pairs)f

PairList � p = pairs;
TaggedRef t1, t2;
Return ret = PROCEED;
while (p �>getpair(t1, t2)) f
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Assert(!p �>isempty());
ret = oz unify(t1, t2);
if (ret != PROCEED) break;
p�>nextpair();g

pairs �>free();
return ret;gDuring the uni�
ation of two open re
ords the following 
ases must be distin-guished� If both are lo
al the largest dynami
 table is used to merge in the smallerone.� If one is lo
al and the other is global, then the lo
al variable is bound tothe global one and the table of the global one is merged into the table ofthe lo
al variable.� If both are global then a 
opy of the largest table is 
reated and the othertable is merged into the 
opy.4.5 ExtensionsIn this se
tion we des
ribe two methods to add new datatypes to the LVM. Bothte
hniques use more memory for representing the type information and are slowerfor type tests. They are used for datatypes whi
h need more memory anyway,e.g. arrays or for datatypes whi
h are not frequently used.4.5.1 Standard extensionsStandard extension nodes, have the head tag EXTand a se
ondary tag. Figure 4.4lists the se
ondary tags.The additional 
osts for these extension types are moderate. The type test hasto test the primary tag, unbox the extension and then test the se
ondary tag. Inthe 
ase of a su

essful test the already unboxed extension 
an be simply 
astedto the proper type for applying an operation. The 
osts of su

essful type testsis therefore amortized by the following operation on the datatype.To 
reate a new node a small overhead o

urs only for storing the se
ondary tag.The LVM knows all these types and 
an do some optimizations, e.g. inlining themethods of the 
orresponding implementation 
lasses. For gaining eÆ
ien
y this
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 user-de�ned pro
eduresBuiltin built-in pro
eduresCell 
ellsSpa
e �rst 
lass referen
e to a spa
esObje
t user-de�ned obje
tsPort portsArray multiple 
ellsDi
tionary hash table of 
ellsLo
k lo
kClass user-de�ned 
lassChunk non-mutable obje
tFigure 4.4: Se
ondary tags.is needed, but from a design point it would be ni
er to have a small interfa
e,as provided by the virtual extension explained below. For every data-type aperforman
e analysis 
an be made and a design de
ision 
an be made on whi
hlevel to support it.Pro
edures and obje
ts are further optimized in the LVM. In the byte
ode toplevel pro
edures are represented dire
tly. During a method appli
ation the un-boxed representation of the 
urrent obje
t, 
alled self, is stored in a expli
itma
hine registers the LVM for immediate a

ess.In the following we des
ribe some of the extensions.Big integers The tag BigInt allows to represent integers, whi
h do not �tinto the small integer representation des
ribe in Se
tion 4.1.2. In the LVM theGNU Multiple Pre
ision Arithmeti
 Library (GMP) is used. The representationand the operations are taken from the library. Only the memory managementis hooked to allo
ate big integers on the heap of the LVM using the free listte
hnique (see Se
tion 4.6).Pro
edures Pro
edures are represented as built-in pro
edures or user de�nedpro
edures. Built-in pro
edures are native pro
edures typi
ally written in C orC++. User de�ned pro
edures are written in L and 
ompiled into LVM byte
ode.Obje
ts and 
lasses Obje
ts and 
lasses allow for an eÆ
ient representationof the obje
t-oriented extension of Oz.
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es Spa
es allow for �rst 
lass referen
es to 
omputation spa
es. First
lass spa
e nodes are labelled with a referen
e to the internal representation of a
omputation spa
e.Cells Cells have a modi�able �eld for the 
ontent of the 
ell. To allow for themodi�
ation of the �eld only register nodes 
an be stored in it. The register noderestri
tion guarantees that there are no referen
e from other nodes dire
tly to the�eld. Cells are heap nodes whi
h are labelled with their spa
e.A 
ell needs in addition to the se
ondary tag two words on heap. They are notoptimized, be
ause they are rarely used. Their primary usage is to serve as atheoreti
al foundation for obje
ts. Obje
ts are built into the LVM as optimizeddatatypes. The representation of obje
ts is 
onverted to a 
ell based representa-tion to simplify the distribution proto
ols.Ports Ports are represented in the same way as 
ells. The only di�eren
e is thatthe 
ell is not dire
tly a

essible. The update of the 
ontent is restri
ted to theport send operation, whi
h 
reates puts another element on a stream asso
iatedwith the port [49℄.Lo
ks Lo
ks are another variant of 
ells, with a proto
ol to implement mutualex
lusion.Arrays Arrays are a straightforward extension of 
ells to multiple 
ells indexedby integers.Di
tionaries Di
tionaries are more elaborate extension of multiple 
ells usinga hash table mapping features (integers and literals) to 
ells. The hash tableimplementation of di
tionaries is shared with the dynami
 tables of the openre
ords implementation.4.5.2 Virtual extensionsThe major di�eren
e between the standard extensions des
ribed before and vir-tual extensions is the usage of late binding for virtual extensions.A virtual fun
tion interfa
e de�nes all the hooks needed in the LVM to add newdata-types. It allows to add arbitrary many new built-in data types in a modularway. It de�nes a small and simple interfa
e for adding new types.
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k of virtual extensions is that a performan
e penalty has to be payed.Late binding implies that no inlining optimizations 
an be performed, i.e. 
allinga virtual method always needs a table a

ess and a fun
tion 
all, whi
h 
annotbe inlined.
class VExtension f
public:
virtual ˜VExtension();
VExtension() fg
virtual int getIdV();
virtual VExtension � gcV();
virtual void gcRecurseV() fg
virtual Tagged printV( int = 10);
virtual Tagged typeV();
virtual Bool isChunkV()
virtual Tagged accessV(Tagged);
virtual ReturnCode eqV(Tagged);
virtual Bool marshalV( void �);
Bool isLocal();g;The virtual extension has virtual methods for typing (getIdV ), garbage 
olle
tion(gcV and gcRecurseV ), inspe
ting (printV, typeV ), �eld sele
tion (accessV ),equality test (eqV), and marshaling (marshalV ). The minimal e�ort to add anextension is to implement the garbage 
olle
tion and the getIdV() method.The virtual methods are 
alled by hooks in the memory management, printing,uni�
ation resp. equality test, the select operator, and the marshaling andunmarshaling routines of the LVM.Two kinds of virtual extension are possible: situated and non-situated. Situatedextensions are labelled with a spa
e. They are handled 
orre
tly when spa
esare 
loned, by 
alling the garbage 
olle
tion methods if needed. Non-situatedextensions are never 
opied when spa
es are 
loned. New extensions need onlyto spe
ify if they are situated or not.To di�erentiate extensions a unique id is used. Every type of extension 
hoosesa di�erent id. New ids 
an be generated using a built-in id generator or ids 
anbe pre-registered in LVM.The type test for a virtual extension involves the following steps: test the pri-mary tag, unbox the virtual extension, 
all the virtual fun
tion to get the id and
ompare it with the required id.For operations on virtual extension the same argument as above holds: after typetest the unboxed value 
an be 
asted to the required type without additional 
osts.To 
reate a new node the storage must be allo
ated, the method table must beinitialized, if needed additional �elds and labels must be initialized and �nally
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e between virtual extensions andstandard extensions is the initialization of the method table instead of storingthe se
ondary tag.4.6 Memory ManagementAs usual for high-level languages L requires automati
 memory management.The mapping of the language graph to the memory is done transparently, withno expli
it requests to free or allo
ate memory at the language level.4.6.1 Prin
iplesThe design goals of the memory management are similar to the design goals formost other parts of LVM: simpli
ity, 
exibility, extensibility, and eÆ
ien
y.Simpli
ity Simpli
ity is required be
ause the resour
es for our resear
h proje
tare limited and dis
overing elaborated memory management te
hniques wasnot in the fo
us of our resear
h. The system should be stable and pra
ti
allyuseful without too mu
h e�ort for maintenan
e.Flexibility For an explorative development, where new te
hniques and 
on
eptsare tried out and often repla
ed by new and better ideas the primitives haveto be designed su
h that its easy to adapt them.Extensibility The integration of new data-types must be simple.EÆ
ien
y The performan
e of the system should, of 
ourse, not be degradingbe
ause of a bad memory management.Generi
 prin
iples of automati
 memory management are� Find garbage as soon as possible and make it available for reuse. The LVMsupports free lists for data-stru
tures whi
h 
an be reused, e.g. the body oftransients 
an be reused when transients are bound.� Follow the prin
iple of lo
ality of memory a

ess. The memory hierar
hiesof modern pro
essors really pay o� if the working set of the memory is nots
attered all over the available memory. In the LVM we use therefor sta
kdis
iplines wherever possible.� If none of the previous prin
iples apply the graph representing the store hasto be s
anned and partitioned into the used and unused nodes. The unusednodes must then be made available.
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opy 
olle
tor is used. All 
on
urrent a
tivities are �rststopped, su
h that the memory management has ex
lusive a

ess to the memory.The living parts of the graph are traversed and 
opied into new segments of thememory. Finally the old segments are released for future use.A stop and 
opy 
olle
tor has the advantage that it is simple be
ause it has ex
lu-sive a

ess to the memory. It behaves very well if the amount of living memory issmall 
ompared to the garbage. The memory is 
ompa
ted automati
ally, whi
hprovides better lo
ality. The node representation in the store 
an be very irreg-ular, be
ause their stru
ture must be only known when a link is followed, e.g. norun-time type information is needed if a link is stati
ally typed.A stop and 
opy 
olle
tor has the disadvantage that it is not 
on
urrent andarbitrary delays of 
on
urrent a
tivities 
an o

ur during the exe
ution of the
olle
tor. The 
olle
tor needs (temporary) mu
h more memory as required forthe representation of the living graph.4.6.2 PrimitivesIn this se
tion we des
ribe the primitives supplied in the LVM for maintainingmemory. C++ supports to overwrite the memory management fun
tions per
lass. In the LVM we use this to repla
e the operators new and delete withimplementation to use heap resp. free list memory.Heap memoryThe heap memory is allo
ated from the operating system in 
hunks of memory
alled segments. The LVM maintains a 
hain of allo
ated segments. When a seg-ment is full a new segment is allo
ated. The size of the segments is 
on�gurable.When the garbage 
olle
tion starts a new 
hain of segments is allo
ated andthe living nodes are 
opied into the new 
hain. When the garbage 
olle
tion is�nished the old 
hain is released to the operating system.The memory in a segment is allo
ated in a sta
k fashion starting from the top-most address down to the bottom. The LVM has two pointers for maintainingthe available memory in a segment: the segments 
urrent top and the segmentbottom. When new memory is requested the segments 
urrent top is de
re-mented until the segment bottom is rea
hed. When it is rea
hed a new segmentis allo
ated from the operating system.Free list memoryA frequent 
ase is that memory allo
ated for a stru
ture 
an be released aftera 
ertain operation was performed, but that some of these stru
tures 
an be
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ause they are not longer rea
hable in the graph. For this 
ase theLVM supports free lists on top of the heap memory.A typi
al 
ase where a free list is useful are the body of transient values. Whena transient is bound the body 
an be safely released. Using only this 
onditionto release this memory is not suÆ
ient: in the 
ase of an unrea
hable transientin the graph its body should be released too. Therefore it is essential to 
ombinethe free lists with garbage 
olle
tion.Whenever a stru
ture whi
h was allo
ated from the heap 
an be safely releasedit is put into a free list. A request for a new stru
ture then 
he
ks if memoryis available from the free list. New memory is allo
ated from the heap when nomemory is available from the free list.Te
hni
ally it is a useful optimization to have di�erent free lists for di�erentsizes of memory. This avoid problems with fragmentation and the release andallo
ation 
an be done eÆ
iently in 
onstant time.Sta
k memorySta
k memory is used for maintaining the tasks on threads. The problem whi
harises here is that multiple 
on
urrent threads exists and therefore multiple sta
ksmust be maintained. Another 
ompli
ation is that the size of these sta
ks shouldbe dynami
ally adaptable. Furthermore the 
onditions for deallo
ating the sta
kdepends on the rea
hability of transient nodes in the graph.All these problems are solved by allo
ating the sta
ks of threads on the heap.When a sta
k over
ows a new sta
k is allo
ated and the old one it is 
opied tothe new one and released to the free list.4.6.3 The implementation of the garbage 
olle
torThe garbage 
olle
tor of the LVM starts traversing the graph of the store from theroots. The roots for garbage 
olle
tion are the threads in the runnable queue andsome global data-stru
tures, e.g. global properties, the default ex
eption handler,et
.For every living referen
e to a node the garbage 
olle
tor performs the followingsteps
opy The node is 
opied to the new 
hain and the referen
e to the node isupdated.mark The original node is marked and a forward pointer is stored there. Whenthe node is visited again this is dete
ted and the forward pointer is used toupdate the referen
e to the new lo
ation.
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olle
t The additional entry points rea
hable from the just 
olle
ted node are
olle
ted after 
opying and marking. The order of the mark and 
olle
tsteps is essential to avoid in�nite re
ursion in the 
ase of 
y
li
 stru
tures.To avoid deep re
ursion on the runtime sta
k an expli
it sta
k, the update sta
k,is used to maintain the not yet 
olle
ted entry points. The update sta
k 
ontainsthe type of the node and a pointer to the node. The LVM use the tagged pointerte
hnique for the entries on the update sta
k.The LVM does not use pointer reversal [25℄ and Cheney's breadth-�rst [17℄ te
h-niques to make the update sta
k obsolete. These te
hniques 
an be adapted easilyfor the LVM.Be
ause many stru
tures and nodes on the heap are implemented as C++ 
lassesit is straight-forward to implement the 
olle
tion algorithm with the followingmethods
class Node f

Bool gcTestMark() test if node is marked
Node� gcGetForward() get the forward pointer if node is marked
void gcPutMark() mark the node
void gcPutForward() put the forward pointer
Node� gcCopy() 
opy an unmarked node
void gcCollect() 
olle
t the entry points

... g;The implementation of the methods maintaining the mark and the forward pointeris trivial. E.g. for tagged nodes one tag is reserved as garbage 
olle
tion markand the data part is used as forward pointer.The gcCopy method 
an simply use the C++ 
opy 
onstru
tor, be
ause thememory management 
onstru
tor new is overwritten to use the heap of the LVM:
Node� Node::gcCopy() f return new Node( �this); gFor nodes with an expli
it tag the 
opy 
onstru
tor depends on the tag:
TransBody � TransBody::gcCopy() f
switch ( this.type) f
case FREE: return new FreeBody( �(FreeBody �) this);
case FUTURE: return new FutureBody( �(FutureBody �) this);
...ggThe mark, forward, and 
opy methods are usually 
ombined into one method

Node �gc() , whi
h returns the forward pointer if the node is already 
olle
ted,else the node is 
opied and the new node is pushed onto the update sta
k for thefurther 
olle
tion of entry points.The gcCollect method then simply updates its �elds using the gc method.
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void Node::gcCollect() f
this.n1 = this.n1 �>gc();
this.n2 = this.n2 �>gc();
...gThe main g
 pro
edure �rst 
opies the roots, and pushes additional entry pointsto the update sta
k. Then it loops until the update sta
k is empty to 
olle
t allentries.

void gcMain() f
runnable=runnable �>gc();
...

while (!updateStack.isEmpty()) f
GcNode n = updateStack.pop();
switch (n.tag()) f
case GCTRANS: ((Trans �)n.getPtr()) �>gcCollect();
case GCTHREAD: ((Thread �)n.getPtr()) �>gcCollect();
...ggg4.6.4 Optimized transientsTo avoid that optimized transients allo
ated in �elds of re
ords are 
opied intothe heap, the 
olle
tion of referen
es to optimized transients is delayed untilthe end of the garbage 
olle
tion. When an optimized transient is found duringthe 
olle
tion of a re
ord it is dire
tly 
opied with this re
ord. The 
olle
tionof transients found through a referen
e node is delayed be
ause it may be thatthis transient is allo
ated in a �eld of some re
ord rea
hed later in the garbage
olle
tion.The delayed updates are pushed onto an additional sta
k, 
alled the var �x sta
k.When the regular update sta
k is empty the var �x sta
k is pro
essed. If thereferen
e is found to be marked as already 
olle
ted, then the variable was ina �eld and the forward pointer is used for the update. If the referen
e is notmarked the variable is 
opied to the new 
hain.4.6.5 Liveness analysisThe X registers are allo
ated per thread, but in the implementation only oneshared register array is used. When a thread is preempted or suspended the living
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heduled again they arerestored. The number of X registers saved and restored is only an approximationof the exa
t number of living X registers, i.e. the 
ompiler 
al
ulates the maximalnumber of registers used per pro
edure.During the garbage 
olle
tion an exa
t analysis of the liveness of the X registersis performed to avoid that unrea
hable data in X registers is 
olle
ted.The base of the liveness analysis is the 
ontrol 
ow graph of the byte
ode. The
ontrol 
ow graph of a 
ode segment has a node for every instru
tion in the 
odesegment. The graph has a dire
ted link from node A to node B if it is possiblethat the instru
tion B is exe
uted dire
tly after the instru
tion A. The 
ontrol
ow graph has no 
y
les.The liveness analysis s
ans the 
ontrol 
ow graph starting from the instru
tionwhi
h is exe
uted when the thread is res
heduled. It �nds out whi
h X registersare never used. The algorithm works su
h that all possible paths in the 
ontrol
ow graph are examined.For every path in the data 
ow graph the liveness maintains a map of the 
urrentregister usage. The status of a register 
an bewritten The �rst usage of the register in the path was an assignment operation.In this 
ase the register 
an be assumed to be dead.read The �rst usage of the register was an a

ess operation. In this 
ase theregister must be saved.unknown The register is neither assigned nor a

essed. This is the initial statusof every register.When two paths join at an instru
tion the maps of these paths have to be joined.For every register the state of the two maps are 
ompared and the result statusis 
omputed as follows� If both stati are the same the result status is also the same.� If one status is unknown the other status is the result status.� If one status is written and the other status is read the result status is read.Two invariants of the LVM byte
ode allow for an eÆ
ient implementation ofliveness:� Bran
hes are always forward bran
hes to higher addresses. No ba
kwardbran
hes are allowed. This makes it easy to ensure that no instru
tion iss
anned more than on
e.
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tion no register is marked aswritten on one path and marked as read on the other path. This allows tomaintain one status map for the whole liveness analysis, be
ause two pathsnever disagree on the status of a register.Besides a register usage map the algorithm maintains an ordered list of addresses,the todo list, and the address of the 
urrently s
anned instru
tion. The todo list
ontains a list of in
reasing addresses.For the 
urrent instru
tion one or more of the following a
tions are performed:write If the instru
tion writes into a register and its status is unknown, thestatus is 
hanged to written.read If the instru
tion reads a register and its status is unknown, the status is
hanged to read.bran
h If the instru
tion 
an bran
h the target address of the bran
h is insertedinto the todo list.The main pro
edure for the liveness analysis has two loops: the outer loop it-erates over the ordered todo list and the inner loop iterates over a sequen
e ofinstru
tions until a break point is rea
hed. Break points are instru
tions afterwhi
h no assumption about the liveness of X registers 
an be made, e.g. the
return instru
tion at end of a pro
edure or a non-inlined appli
ation.Addresses on the todo list are skipped if they are less or equal than the 
urrentaddress, be
ause its guaranteed that the instru
tion at this address was alreadys
anned.
RegMap liveness(ByteCode �startAddr)f

RegMap regMap[] = UNKNOWN;
Todo todo = nil;
ByteCode � PC = 0;

todo.add(startAddr);

outerloop:
while (!todo.isEmpty()) f

ByteCode �newPC = todo.pop();
// already scanned?
if (newPC <= PC) goto outerloop;
PC=newPC;

innerloop:
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while ( true) f
switch (getOP(PC)) f
case MOVEXX(i,j):
if (regMap[i] == UNKNOWN)

regMap[i] = READ;
if (regMap[j] == UNKNOWN)

regMap[i] = WRITE;
break;

case TEST�(...,addr1,addr2):
...
todo.add(addr1);
todo.add(addr2);
break;

case RETURN:
goto outerloop;

...g
PC=PC+1;
goto innerloop;gg

return regMap;gY registers The liveness analysis is only performed for X registers, be
auseone array of X registers is saved per thread. This means for every thread foundduring a garbage 
olle
tion the liveness analysis has to be performed on
e.No liveness analysis is performed for Y registers, be
ause Y registers are usuallyallo
ated per pro
edure appli
ation, i.e. per task. A liveness analysis for Y regis-ters would be too expensive, be
ause the number of tasks is under the assumptionthat in the average ten tasks per thread are a
tive an order of magnitude largerthan the number of threads. Furthermore non-inlined pro
edure appli
ations areno longer break-points for stopping the liveness analysis of Y registers.4.6.6 ListsLists are frequently used data stru
tures. With the generi
 
olle
tion algorithmoutlined above an entry is pushed onto the update sta
k and popped immediatelyafterwards for every list element.The solution is to use an iterative algorithm for 
olle
ting list elements. Duringthe 
olle
tion phase the head is 
opied and eventually pushed onto the update
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k as usual, but the 
olle
tion dire
tly 
ontinues with the 
opying and 
olle
-tion of the tail while it is a list element.The memory eÆ
ient representation of list elements has the 
onsequen
e that theforward pointer for the list element and its �rst element are shared. Coin
iden-tially this does no harm, be
ause both forward pointers are equal.
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Chapter 5Con
lusion
5.1 SummaryWe have presented an eÆ
ient mapping of a 
on
urrent fun
tional programminglanguage L with logi
 variables, futures, re
ord 
onstraints, and deep guards toan imperative virtual ma
hine LVM.The virtual ma
hine is 
onstru
ted using a modular and open design. The mod-ules 
orrespond 
losely to the language primitives and 
an be to a large extenddeveloped and explained independently. The open design allows for simpli�edmodi�
ations and for an easy integration of extensions into the LVM.The implementation of data stru
tures uses a layered ar
hite
ture with a highlyoptimized tagged pointer s
heme at the bottom, a medium level tagged obje
ts
heme for many datatypes, and an extensible and open layer based on latebinding for experiments and easy integration of new data types.We have shown that many well known ideas from di�erent resear
h 
ommunities
an be integrated into a single system. For example �rst-
lass pro
edures, logi
variables, deep guards, 
on
urren
y, re
ords and feature 
onstraints, and state-full programming 
ould be smoothly 
ombined in the LVM.Personal remarks Many parts of the implementation have an extremely minorimpa
t on the performan
e of the systems. If these parts 
an be integrated inan orthogonal manner, then the lesson learned is: don't invest too mu
h time in
lever algorithms and design, but simply do it in the naive way qui
kly.A lot of time during the work on the LVM went into the engineering of a stableand useful system for users. Typi
ally bugs found by users were 
orre
ted in lessthan a day. New features 
ould often be implemented before their spe
i�
ationwas �nished due to the 
exible design.163



164 CHAPTER 5. CONCLUSIONThe development of the LVM was highly explorative. New ideas for languageprimitives 
ame up frequently. As implementors we are eager to in
orporatethem qui
kly to �nd out if they 
an be eÆ
iently implemented and what aretheir 
osts.After some time of programming experien
e these ideas were typi
ally re�ned andsometimes repla
ed by more powerful 
on
epts. One example of su
h a devel-opment are threads. At the beginning we started with �ne-grained 
on
urren
yand we tuned and optimized the LVM to support them very well. Then we sawthat this �ne-grained 
on
urren
y is not really wanted and needed. After an in-termezzo based on jobs, whi
h allowed for a semi-grained 
on
urren
y, we arrivedat the thread model.Performing all these frequent 
hanges throughout the LVM was a 
hallengingtask. A major e�ort was to identify orthogonal pie
es and to design interfa
esbetween them, su
h that further 
hanges only e�e
t small parts of the wholesystem.5.2 Engineering 
onsiderationsIn this se
tion we summarize some of our engineering experien
es with respe
tto the implementation language and hardware platforms.5.2.1 C++ vs. C as implementation languageAt the beginning of the proje
t C++ was 
hosen as implementation language.The main reason was that C++ has a lot of features whi
h simpli�ed the �rstimplementation and it allowed us to make many experiments.En
apsulation of data stru
tures using 
lasses and methods was useful be
ausethe implementation 
ould be 
hanged frequently, without too mu
h in
uen
e onthe rest of the system.During the development performan
e be
ame an issue and it turned out thatbe
ause of the number of features supported by C++ it was diÆ
ult to predi
tthe performan
e dire
tly from the sour
e 
ode.One useful feature for high-performan
e implementations are inlined fun
tions.The 
ompiler usually repla
es the 
all of su
h a fun
tion during 
ompile timeby its de�nition. This optimization avoids a fun
tion 
all and typi
ally 
reateslarger basi
 blo
ks for other optimizations. The drawba
k of inlining is that it isnot a language requirement of C++ and the 
ompiler 
an also de
ide not to doit. This means that as an implementor one has to 
he
k what the 
ompiler hasdone.
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tions and the basi
 
on
ept for a
hieving a similarresult is to use ma
ros. Ma
ros are not as safe as inline fun
tions, e.g. the 
om-piler does not 
he
k the types of arguments, but there expansion is predi
tableand does not depend on the 
ompiler. A major trap of ma
ros is that the pro-grammer must be 
areful to that arguments are not evaluated twi
e.Another sour
e of optimization are virtual fun
tions: in our implementation weavoid virtual fun
tions in many 
lasses and implemented the dispat
h to di�erentimplementation in sub
lasses using expli
it tags. Together with inlining this wasfaster and less memory was needed per obje
t. Only a small number of bits arerequired for the tag bits to distinguish di�erent subtypes and the memory for thepointer to a virtual fun
tion table is saved.In the 
urrent implementation we only use a small amount of features whi
h arenot available in C. For optimizing the emulator it would be helpful to rewrite itin C, be
ause the optimizations done by the C 
ompiler are better predi
table.The shear amount of features in C++ makes it extremely diÆ
ult to predi
tif the 
ompiler 
an optimize them. An example to illustrate this: re
ently wefound out that GCC 2.7.2 
annot optimize 
onditions if the se
ond 
ondition ofa 
onjun
tion (&&) 
ontains a 
all to an inline fun
tion.Another problem whi
h o

urs with C++ is that the size of header �les is hugeand the dependen
y among them be
omes quite 
omplex for su
h a large proje
tas the LVM.5.2.2 The role of the target platformImplementing the emulator in C++ makes it easy to port it to di�erent platforms,be
ause 
ompilers for C++ are available on every platform and 
ompilers arealmost 
ompatible. The main e�ort when porting the Mozart system to a newplatform are the operating system dependent fun
tions.Porting the OS spe
i�
 parts is not the only problem. A se
ond problem is thatdi�erent hardware ar
hite
tures require di�erent kinds of optimizations at thelevel of the C++ sour
e 
ode to gain maximal eÆ
ien
y. This problem is notspe
i�
 to the implementation of virtual ma
hines, but the performan
e of theLVM depends to a large extended on the exa
t understanding of the mapping toreal hardware.Dispat
h One performan
e bottlene
k is the threaded-
ode interpretation, whi
hneeds to dispat
h to the next instru
tion. RISC ar
hite
tures have one or moredelay slots whi
h 
an be exe
uted in parallel with a jump. To use this slot thein
rement of the program 
ounter must be de
oupled from the jump:



166 CHAPTER 5. CONCLUSION#define DISPATCH_OPT(n)void *lbl = *(PC+n);PC += n;goto *lbl;This 
ode allows the 
ompiler to in
rement the PC in parallel to the jump, byusing the delay slot for the in
rement.The following naive dispat
h#define DISPATCH_NAIVE(n)PC += n;goto *PC;will stall the jump until the PC is in
remented and if no other instru
tions 
ouldbe s
heduled the delay slot remains empty.When the emulator was ported to the INTEL x86 ar
hite
tures we noti
ed thatthe DISPATCH OPT did not generate optimal 
ode. For this ar
hite
ture thenaive DISPATCH was better, be
ause x86 pro
essors have fewer registers and ithas an indire
t jump instru
tion whi
h 
an read an address dire
tly from memory.Ma
hine registers A typi
al di�eren
e between CISC and RISC ar
hite
turesis the number of available assembler registers and the addressing modes. RISChave many general purpose registers and CISC have few and some spe
ial purposeregisters. RISC only supports a limited number of addressing modes whi
h aretypi
ally based on registers. CISC supports a ri
h number of addressing modes.As an example we analyzed the usage of the X registers in the LVM. The LVMhas a single set of the global X registers at a �xed address in memory.For RISC ar
hite
tures it is good to load this address into a lo
al ma
hine registerof the workers main pro
edure, be
ause this address is frequently used and RISCpro
essors need two instru
tions to load an address.CISC ar
hite
tures support the dire
t addressing of every memory lo
ation andit is better to use this dire
t addressing mode instead of storing the address inone of the few available registers.As an example a

essing X[i℄ needs two RISC instru
tions if X is not in a register
ompared to one if it is. On CISC pro
essors the situation is swapped. CISCneeds two instru
tions if X is in a temporary variable and only one if the �xedaddress is used.



5.3. FUTURE WORK 1675.3 Future work5.3.1 Improve 
ompilationA disadvantage wrt. a high-performan
e implementation is that every data stru
-ture is dynami
ally typed and type tests, unbox, and box operations have to beperformed frequently at runtime. If more type information would be availableat 
ompile-time a better interfa
e between the 
ompiler and the LVM allows touse unboxed representations for values, e.g. storing 
oating point values in 
oatregisters for numeri
 
al
ulations.Another aspe
t of this problem are referen
es and transients. It would be useful ifthe 
ompiler 
ould derive information about referen
e 
hains and determinationof values. Impli
it dereferen
e operations and syn
hronization 
ode all over theLVM 
ould then be repla
ed by expli
it byte
ode instru
tions.5.3.2 Reuse existing te
hnologyThe Mozart system is self 
ontained, whi
h means that it has only few depen-den
ies on third-party tools and software. The development model was 
exible,be
ause only few people had to 
oordinate their 
hanges and no lega
y problemso

ur. A disadvantage of su
h a model is that new te
hniques, libraries, and toolsdeveloped in other proje
ts 
ould not be easily reused.Often it is possible to design and implement interfa
es to third-party software,e.g. for GUI programming we use an interfa
e to T
l/Tk. Typi
ally su
h aninterfa
e is not trivial and requires a lot of e�ort. Sometimes the wheel has tobe invented again for designing useful libraries, e.g. for OS servi
es like so
kets,pipes, and �les, database interfa
es, et
.For the future of Oz/Mozart I think it would be useful to investigate the pos-sibility to add our ideas to existing systems and to reuse their te
hnology andinfrastru
ture.One promising 
andidate is Java and the Java Virtual Ma
hine as a platform for
ompiling Oz programs. The JVM is nowadays available on virtually all plat-forms, in
luding 
o�ee ma
hines and libraries and API for all kinds of appli
ationsexist. It would be ne
essary to analyze the limitations of the JVM and how resp.if it 
an be a target language for Oz.Another option is to in
orporate the Oz ideas into fun
tional languages, likeObje
tive Caml, Standard ML, and S
heme. These languages are 
loser to thelanguage model of Oz than the imperative language Java. These languages havenot the 
ommer
ial impa
t and the library base of Java, but they are well-knownin the a
ademi
 
ommunity. Another advantage of this dire
tion is that software
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ademi
 institutions is typi
ally available freely and 
an thus beadapted to the spe
i�
 needs.5.3.3 Fun
tional 
oreThe original design of the LVM was based on the relational model inherited fromlogi
 programming. In many parts the 
urrent design des
ribed in this thesisis based on the fun
tional programming model. In the design some parts areleft over from the relational model. The LVM has only pro
edures and returnparameters are passed using logi
 variables as 
all-by-referen
e parameters. Inthis design logi
 variables are at the 
ore of the system.An alternate design 
ould be a VM based on fun
tions, where logi
 variables andother transient types 
an be introdu
ed as fully orthogonal primitives.5.3.4 DistributionThe LVM is implemented as a single-threaded operating system pro
ess with asingle worker for the exe
ution of threads. It is useful to investigate how to takeadvantage of the emerging multi-pro
essor te
hnology.The dire
tions 
urrently investigated are parallelism and distribution. Paral-lelism [80℄ starts with the idea of a single LVM and investigates whi
h syn
hro-nization is needed to allow for multiple workers in a single address spa
e. Distri-bution [39℄ starts with multiple LVMs and analyzes how to give the illusion of atransparent distributed store, based on distributed a

ess stru
tures to nodes inthe store and proto
ols to implement graph rewriting steps.It seems that the distributed approa
h dominates parallelism. Distribution allowsalso to take advantage of multiple pro
essors by starting two LVM on one 
om-puter and it allows also to explore the 
omputation power of 
omputer 
lusters.It seems that the amount of 
ommuni
ation ne
essary for interesting parallel ap-pli
ations is small 
ompared to the amount of 
omputation. In this 
ase a parallelimplementation has no advantage over a distributed implementation.
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