
Mi
hael Mehl
The Oz Virtual Ma
hineRe
ords, Transients, and Deep Guards

Mi
hael Mehl
The Oz Virtual Ma
hineRe
ords, Transients, and Deep Guards
Dissertationzur Erlangung des GradesDoktor der Ingenieurwissens
haften (Dr.-Ing.)der Te
hnis
hen Fakult�atder Universit�at des Saarlandes
Saarbr�u
ken1999

Das Promotionskolloquium fand am 18. Mai 1999 statt.Dekan: Prof. Wolfgang PaulGuta
hter: Prof. Gert SmolkaProf. Peter van Roy

To my familyBarbara, Lukas, and Julius

Abstra
tIn this thesis we des
ribe the design and implementation of a virtual ma
hineLVM for the exe
ution of Oz programs. Oz is a
on
urrent, dynami
ally typed,fun
tional language with logi
 variables, futures, by-need syn
hronization, re
ords,feature
onstraints, and deep guard
onditionals. The LVM supports light-weightthreads, �rst-
lass pro
edures, ex
eption handling, transients as generalization oflogi
 variables, futures, and
onstraint variables, re
ords and open re
ords, andmultiple
omputation spa
es to implement the deep guard
onditional. We dis-
uss the modular, open, and extensible design of the LVM. Te
hniques for theeÆ
ient implementation of the store on standard hardware are shown. The LVMsubsumes well-known virtual ma
hines for fun
tional, logi
, and imperative lan-guages.
ZusammenfassungIn dieser Arbeit bes
hreiben wir das Design und die Implementierung einer vir-tuellen Ma
hine LVM f�ur die Ausf�uhrung von Oz Programmen. Oz ist einenebenl�au�ge, dynamis
h getypte, funktionale Spra
he mit logis
hen Variablen,Futures, by-need Syn
hronization, Re
ords, Feature Constraints, und einer be-dingten Anweisung mit tiefen W�a
htern. Die LVM unterst�utzt lei
htgewi
h-tige Threads, Prozeduren als Datenstrukturen erster Ordnung, Ausnahmebe-handlung, Transients als Verallgemeinerung von logis
hen Variablen, Futuresund Constraint-Variablen, Re
ords und o�ene Re
ords, sowie multiple Bere
h-nungsr�aume zur Implementierung der bedingten Anweisung mit tiefen W�a
htern.Wir diskutieren ein modulares, o�enes und erweiterbares Design der LVM undzeigen Te
hniken zur eÆzienten Implementierung des Spei
hers auf aktuell ver-f�ugbarer Hardware. Die LVM subsummiert virtuelle Mas
hinen f�ur funktionale,logis
he und imperative Spra
hen.

vii

viii

Extended Abstra
tIn this thesis we des
ribe the design and implementation of a virtual ma
hineLVM for the exe
ution of Oz programs. Oz is a
on
urrent, dynami
ally typed,fun
tional language. For dida
ti
al reasons we restri
t the language to a subset,
alled L.The fo
us of this work is on non-standard extensions of fun
tional languages.These extensions in
lude logi
 variables to represent unknown values and futuresas read-only views on variables. These kinds of unknown values are generalizedto transients.Beside syn
hronization on determination of transients the language L supportsby-need syn
hronization whi
h provides for lazy programming. For the repre-sentation of data stru
tures L supports trees and their partial des
ription withre
ords, feature
onstraints, and width
onstraints. L allows for multiple
ompu-tation spa
es, whi
h are the foundation for implementing sear
h engines. Compu-tation spa
es are introdu
ed for the implementation of the deep guard
onditionaloperator whi
h allows to de
ide entailment and disentailment.We de�ne the semanti
s of the language informally as a graph rewriting engineon the language graph. The language graph de�nes a representation of the datastru
tures of the language. The language is de�ned as a small set of rewritingoperations on the language graph.We show how the model of the language graph
an be extended to explain mul-tiple
omputation spa
es. The extended graph model allows to explain
on
iselyhow bindings of variables are propagated, how entailment and disentailment isdete
ted, and how two spa
es are merged.The LVM is a virtual ma
hine whi
h serves as an intermediate level between thehigh-level language L and a
on
rete hardware. It hides the platform-spe
i�
details and serves as a well de�ned target language for the
ompilation of Lprograms.In this thesis we present a modular, open, and extensible design and implemen-tation of the LVM. The main modules of the virtual ma
hine are the store andthe engine.The store represents the data stru
tures of the language. It is des
ribed witha re�ned graph model whi
h makes essential properties of the implementationexpli
it, e.g. the usage of registers and heap memory.The engine
onsists of a s
heduler, a worker, and an emulator. The s
hedulermaintains the runnable threads using a simple round robin s
heduling poli
y.The LVM supports extremely light-weight threads and thousands of threads
anbe
reated and s
heduled eÆ
iently. ix

The LVM has a single worker to exe
ute threads. The worker maintains the tasksof a thread and implements ex
eption handling. The state of the worker is leanto allow for eÆ
ient
ontext swit
hes between
on
urrent threads.The state of the worker is ri
h enough for the eÆ
ient exe
ution of ma
hineprograms through a threaded-
ode emulator. The byte-
ode of ma
hine programsis
ompa
t and adapted for emulation. The byte-
ode
ontains dire
t referen
es tonodes in the store, whi
h allows for
ertain optimizations, e.g. avoiding dynami
type tests.Transients are de�ned in the LVM as a generalization of unknown values, in
lud-ing logi
 variables, futures, and
onstraint variables. The
ommon properties oftransients are the single-assignment property and automati
 syn
hronization ofthreads on their determination.The LVM supports the representation of high-level symboli
 data-stru
tures withgra
efully degrading performan
e wrt. expressivity. Simple data-stru
ture likelists, integers, and literals are represented highly optimized. The performan
ede
reases smoothly only when more expressive primitives, like re
ords with dy-nami
 arities and feature
onstraints, are used.The LVM is extensible in multiple ways. New data stru
tures and transienttypes
an be integrated with varying degree of eÆ
ien
y and
omplexity. At thebottom layer a sophisti
ated tagging s
heme allows to eÆ
iently represent the
entral data stru
tures, whi
h in
lude integers, optimized variables and futures,list elements, and literals. At a medium layer the vast majority of data stru
turesare represented, e.g. pro
edures, re
ords, and obje
ts. At the highest layer newdata types
an be integrated easily using an obje
t-oriented approa
h with latebinding.The LVM design is open for experimentation with new features and
on
epts.Beside the extension of data stru
tures it also allows to easily extend the engine.It is for example easy to integrate new fun
tionality as built-in pro
edures andbyte-
ode instru
tions.We show te
hniques for the eÆ
ient implementation of the store on standardhardware. The representation of dynami
ally typed values in the store is im-plemented as a hybrid mix of tagged pointers and tagged obje
ts. We explainthe automati
 memory management of the LVM, whi
h is based on a free listsand a stop-and-
opy garbage
olle
tor. A liveness analysis performed duringthe garbage
olle
tion allows to release memory whi
h is referred from unusedregisters of the LVM.
x

Erweiterte ZusammenfassungIn dieser Arbeit bes
hreiben wir das Design und die Implementierung einer vir-tuellen Ma
hine LVM f�ur die Ausf�uhrung von Oz Programmen. Oz ist eine ne-benl�au�ge, dynamis
h getypte, funktionale Spra
he. Aus didaktis
hen Gr�undenbes
hr�ankten wir uns auf eine Teilspra
he von Oz, die wir L nennen.Der S
hwerpunkt unserer Arbeit liegt auf untypis
hen Erweiterungen von funktio-nalen Spra
hen. Diese Erweiterungen umfassen unter anderem logis
he Variablenzur Repr�asentation von no
h ni
ht bekannten Werten und Futures, die nur-leseZugri�e auf Variablen de�nieren. Diese und andere Arten von unbekannten Wer-ten werden generalisiert zu Transients.Neben der Syn
hronization auf Transients, erlaubt L au
h die by-need Syn-
hronization, die es unter anderem erlaubt, die Auswertung von Ausdr�u
kenzu verz�ogern, bis sie ben�otigt werden. Zur Repr�asentation von Datenstruktu-ren unterst�utzt die Spra
he L B�aume und ihre partielle Bes
hreibung dur
hRe
ords, Feature-Constraints und Width-Constraints. L erlaubt multiple Be-re
hnungsr�aume, die die Grundlage f�ur die Implementierung von Su
hmas
hi-nen bilden. Bere
hnungsr�aume werden zur Implementierung von bedingten An-weisungen mit tiefen W�a
hter eingesetzt, die es erlauben Erf�ullbarkeit und Un-erf�ullbarkeit zu ents
heiden.Wir de�nieren die Semantik der Spra
he informell als ein Graphersetzungssystemauf dem Spra
hgraphen. Der Spra
hgraph de�niert die Repr�asentation der Da-tenstrukturen der Spra
he. Die Spra
he wird de�niert dur
h eine kleine Mengevon Ersetzungsregeln angewendet auf den Spra
hgraphen.Wir zeigen, wie das Model des Spra
hgraphen erweitert werden kann, um multipleBere
hnungsr�aume zu erkl�aren. Das erweiterte Graphenmodell erlaubt es pr�azisezu erkl�aren, wie die Bindung von Variablen propagiert wird, wie die Erf�ullbarkeitbzw. Unerf�ullbarkeit ents
hieden wird, und wie zwei Bere
hnungsr�aume ver-s
hmolzen werden.Die LVM ist eine virtuelle Mas
hine, die eine Abstraktionsebene zwis
hen derHo
hspra
he L und einer konkreten Hardware realisiert. Sie verbirgt irrelevan-te plattformspezi�s
he Details und dient als wohlde�nierte Zielspra
he f�ur dieKompilierung von L Programmen.In dieser Arbeit pr�asentieren wir einen modularen, o�enen und erweiterbarenDesign sowie eine Implementierung der LVM. Die zentralen Module der virtuellenMas
hine sind der Spei
her und die Verarbeitungsmas
hine.Der Spei
her repr�asentiert die Datenstrukturen der Spra
he. Er ist bes
hriebenals verfeinertes Graphenmodell, das wi
htige Eigens
haften der Implementierungexplizit ma
ht, zum Beispiel die Verwendung von Registern und dem Haldenspei-
her. xi

Die Verarbeitungsmas
hine besteht aus einem S
heduler, einem Worker, und ei-nem Emulator. Der S
heduler verwaltet die re
henf�ahigen Threads dur
h eineeinfa
he zyklis
he Wartes
hlange (round-robin). Die LVM erlaubt extrem lei
ht-gewi
htige Threads, wobei Tausende von Threads eÆzient erzeugt und verwaltetwerden k�onnen.Die LVM hat einen einzigen Worker zur Ausf�uhrung eines Threads. Der Workerverwaltet die Auftr�age des Threads und implementiert die Ausnahmebehandlung.Der Zustand des Workers ist sehr kompakt, um die eÆziente Threadums
haltungzu erm�ogli
hen.Der Zustand des Workers ist rei
h genug, um die eÆziente Ausf�uhrung von Ma-s
hinenprogrammen dur
h einen ,,threaded-
ode" Emulator zu erlauben. DerByte
ode f�ur Mas
hinenprogramme ist sehr kompakt und zuges
hnitten auf einenEmulator-basierten Ansatz. Der Byte
ode enth�alt direkte Referenzen auf Kno-ten im Spei
her, die bestimmte Optimierungen, wie zum Beispiel die Vermeidungdynamis
her Typ�uberpr�ufungen, erlauben.Transients werden in der LVM als Verallgemeinerung unbekannter Werte, wie zumBespiel logis
her Variablen, Futures und Constraint Variablen, eingef�uhrt. Diewi
htigsten Merkmale von Transients sind, da� sie genau einmal gebunden werdenk�onnen und Threads automatis
h auf ihre Determiniertheit syn
hronisieren.Die LVM unterst�utzt die Repr�asentation von ho
hspra
hli
hen, symbolis
hen Da-tenstrukturen mit einer Performanz, die si
h an die gew�uns
hte Expressivit�at an-pa�t. Auf der untersten Ebene steht ein elaboriertes Tag-S
hema zur Verf�ugung,das die eÆziente Repr�asentation wi
htiger Datenstrukturen, wie zum Beispielganze Zahlen, optimierte Variablen und Futures, Listenelemente und Literale,erlaubt. Auf der mittleren Ebene wird der gr�o�te Teil der Datentypen, wie zumBeispiel Prozeduren, Re
ords und Objekte, realisiert. Auf der h�o
hsten Ebeneerlaubt eine einfa
he S
hnittstelle, basierend auf Objekten mit sp�ater Bindung,die einfa
he Integration neuer Datentypen.Das Design der LVM ist o�en, um Experimente mit neuen Ideen und Konzeptendur
hf�uhren zu k�onnen. Neben der Erweiterung von Datenstrukturen erlaubtdie LVM au
h die Erweiterung der Verarbeitungsmas
hine. Zum Beispiel istes einfa
h m�ogli
h zus�atzli
he Funktionalit�at dur
h eingebaute Prozeduren undMas
hinenbefehle zu realisieren.Wir zeigen Te
hniken f�ur die eÆziente Implementierung des Spei
hers auf aktu-ell verf�ugbarer Hardware. Die Repr�asentation von dynamis
h typisierten Wertenim Spei
her ist implementiert als eine hybride Mis
hung von markierten Zeigernmit markierten Objekten. Wir erkl�aren die automatis
he Spei
herverwaltung derLVM, die auf Freispei
herlisten und einem ,,stop-and-
opy" Spei
herbereinigungs-algorithmus basiert. Eine Lebendigkeitsanalyse wird w�ahrend der Spei
herberei-nigung dur
hgef�uhrt, die es erlaubt den Spei
her von ni
ht verwendeten Registernfreizugeben. xii

A
knowledgments
I thank foremost the whole team of the Programming Systems Lab at DFKI andat the University of Saarbr�u
ken. The atmosphere was stimulating and a lot offruitful dis
ussion took pla
e over the years.I thank my advisor, Prof. Gert Smolka, as a great sour
e of inspiration and newideas and as a very knowledgeable expert in the �eld of programming languages.I admire his
ompeten
e to explain and analyze
ompli
ated topi
s in a pre
iseand
lear manner. He
ommuni
ated his insights and ideas to us, su
h that wewere able to
onvert them into a pra
ti
al useful system.For seven years I shared my oÆ
e with my
olleague Ralf S
heidhauer and wedeveloped many ideas presented in his and my thesis in
lose
ollaboration. Iespe
ially thank him for his
lear mind wrt. the
on
rete realization of interestingbut often too abstra
t and generi
 solutions of mine.I thank Martin Henz, Denys Du
hier, Ralf S
heidhauer, and Leif Kornstaedt forreading and
ommenting early drafts of this thesis. They gave me valuable hints,but I'm to be blamed for not following them.I thank my
olleagues Prof. Seif Haridi, Prof. Peter Van Roy, Kostja Popov,Per Brand, and Erik Klintskog for the international atmosphere in our proje
t.I enjoyed the workshops with you very mu
h, be
ause you showed me that thereis often more than one right opinion and how
ompromises
an be found in afriendly environment. Kostja was in the
ore team for the implementation ofMozart from the beginning and it was always possible to dis
uss with him all thenasty but nevertheless essential details of the implementation.I thank my employer, the German Resear
h Center for Arti�
ial Intelligen
e(DFKI), for supporting me and my work and for giving our proje
t room for thebasi
 resear
h on programming languages with no immediate pra
ti
al appli
a-tion. My work at DFKI was funded by the German Government (BMBF) undergrant ITW 9105 and ITW 9601. The German Telekom, my
urrent employer,gave me some support in the �nal stage of this work.At the end, but not for the smallest part, I want to thank my family, espe
iallymy wife, my parents, and my parents in law, for their help, support, and patien
exiii

during the very very time
onsuming preparation of this thesis. My kids, Lukasand Julius, deserve thanks for their e�ort to show me that life is not only work.Mi
hael Mehl, January 1999

xiv

Contents
1 Introdu
tion 11.1 Con
epts behind Oz . 11.1.1 First-
lass fun
tions . 31.1.2 Transients: Logi
 variables, futures 31.1.3 Threads, ex
eptions, and by-need syn
hronization 31.1.4 Re
ords and feature
onstraints 41.1.5 Cells and built-in abstra
t data types 41.1.6 Deep guard
onditional and spa
es 41.2 Contributions . 51.3 Stru
ture of the thesis . 81.4 Context of the thesis . 92 The language L 112.1 Overview . 112.2 Computation model . 142.3 The language graph . 162.3.1 Values . 182.3.2 Invariants for graph rewriting 192.4 Sequential exe
ution . 192.4.1 Data stru
tures . 202.4.2 Fun
tions . 212.4.3 Pattern mat
hing . 212.4.4 De
larations . 22xv

2.4.5 Core operators . 222.4.6 Synta
ti

onvenien
e . 222.5 Ex
eptions . 232.5.1 Ex
eption handlers . 242.5.2 Raising an ex
eption . 242.5.3 Dis
ussion . 242.6 Logi
 variables . 252.6.1 Uni�
ation . 262.7 Futures . 292.8 Con
urren
y . 302.8.1 Threads . 302.8.2 Syn
hronization and suspension 312.8.3 By-need syn
hronization 322.8.4 Cells . 332.8.5 Dis
ussion . 352.9 Feature
onstraints . 362.9.1 Constraints over trees . 362.9.2 Open re
ords . 372.10 Spa
es . 392.10.1 The multiple store graph model 392.10.2 Entailment . 422.10.3 Disentailment . 422.10.4 Merging . 442.10.5 Deep guard
onditionals 442.10.6 Other situated nodes . 452.10.7 Dis
ussion . 462.11 Examples . 472.11.1 Fun
tional programming: Append 472.11.2 Con
urrent lazy programming: Hamming 482.11.3 Feature
onstraints: Paths 49xvi

3 The virtual ma
hine LVM 513.1 Overview . 513.1.1 Modules of the LVM . 523.1.2 The engine . 533.2 The ma
hine language . 573.2.1 Pi
kles . 573.2.2 Instru
tions . 613.2.3 Addressing modes . 653.2.4 Dis
ussion . 663.3 A re�ned graph model . 673.3.1 Node
lassi�
ation . 673.3.2 Re
ords . 713.3.3 Transients . 723.3.4 Uni�
ation . 773.3.5 Dis
ussion . 783.4 Sequential exe
ution . 793.4.1 Worker . 793.4.2 Store operations . 803.4.3 Control . 823.4.4 Pro
edures . 833.4.5 Built-in pro
edures . 873.4.6 Status register . 903.4.7 Ex
eptions . 913.5 Threads . 923.5.1 Thread model . 923.5.2 S
heduler . 933.5.3 Suspensions . 953.5.4 Events . 963.5.5 Dis
ussion . 963.6 Spa
es . 973.6.1 Overview of the extended engine 98xvii

3.6.2 Threads and spa
es . 993.6.3 The s
ript te
hnique . 1003.6.4 Binding windows and relative simpli�
ation 1053.7 Other virtual ma
hines . 1073.7.1 Prolog Abstra
t Ma
hines 1073.7.2 The abstra
t ma
hine of AKL 1083.7.3 LIFE . 1093.7.4 The Java Virtual Ma
hine (JVM) 1093.7.5 Fun
tional languages . 1093.7.6 Erlang's virtual ma
hines (JAM, TEAM/BEAM) 1113.8 Summary of the design prin
iples 1124 Implementation aspe
ts 1174.1 Storage representations . 1174.1.1 Tagged obje
ts . 1184.1.2 Tagged pointers . 1194.1.3 The LVM tag s
heme . 1224.1.4 Dis
ussion . 1234.2 Transients . 1254.2.1 Referen
es . 1254.2.2 Representation of Transients 1254.2.3 Variables . 1264.2.4 Futures . 1264.2.5 By-need Futures . 1274.2.6 Binding . 1274.2.7 Suspensions . 1284.2.8 Usage patterns . 1294.2.9 Uni�
ation . 1324.2.10 Extending transients . 1344.3 Re
ords . 1364.3.1 Literals . 136xviii

4.3.2 Re
ord representations . 1384.3.3 Arity . 1394.3.4 The re
ord interfa
e . 1414.3.5 Dis
ussion . 1444.4 Feature
onstraints . 1454.5 Extensions . 1494.5.1 Standard extensions . 1494.5.2 Virtual extensions . 1514.6 Memory Management . 1534.6.1 Prin
iples . 1534.6.2 Primitives . 1544.6.3 The implementation of the garbage
olle
tor 1554.6.4 Optimized transients . 1574.6.5 Liveness analysis . 1574.6.6 Lists . 1605 Con
lusion 1635.1 Summary . 1635.2 Engineering
onsiderations . 1645.2.1 C++ vs. C as implementation language 1645.2.2 The role of the target platform 1655.3 Future work . 1675.3.1 Improve
ompilation . 1675.3.2 Reuse existing te
hnology 1675.3.3 Fun
tional
ore . 1685.3.4 Distribution . 168Bibliography 169Index 179
xix

xx

List of Figures
1.1 Overview of the layers. 22.1 Expressions and
ore operators of L. 122.2 Synta
ti
 sugar. 132.3 Extensions. 152.4 Type names and the type hierar
hy of L. 152.5 A
omputation spa
e. 162.6 Units of L. 172.7 An example of a language graph. 172.8 Re
ords and trees. 192.9 A graph uni�
ation algorithm . 272.10 Binding variables. 282.11 Uni�
ation with futures . 292.12 By-need sy
hronization. 332.13 An example of an open re
ord. 372.14 Closing an open re
ord. 382.15 A tree of
omputation spa
es. 402.16 Propagation of a binding. 422.17 Entailment after propagation. 433.1 The modules of the LVM. 523.2 The engine of the LVM. 533.3 The state of the LVM. 553.4 The registers of the engine. 57xxi

3.5 The main pro
edure of the engine. 583.6 The pi
kle format. 593.7 From Oz sour
e to the LVM. 603.8 Instru
tions (Part I) . 623.9 Instru
tions (Part II) . 633.10 Instru
tion arguments. 643.11 Instru
tion format . 653.12 Classi�
ation of nodes. 683.13 Examples of node representations. 693.14 Tagged nodes. 693.15 Fields are glued with their heap node. 703.16 Binding transients with multiple referen
es. 733.17 Tasks. 803.18 Built-ins of the LVM. 873.19 Return
odes. 883.20 The status register. 903.21 Thread states. 933.22 The extension of the engine for spa
es. 983.23 Engine state with spa
es. 993.24 Installation and deinstallation. 1014.1 The LVM tag s
heme. 1224.2 Se
ondary tags. 1234.3 A possible dereferen
e bug. 1304.4 Se
ondary tags. 150

xxii

Chapter 1Introdu
tionIn this thesis we explain the implementation of the language Oz. Oz is a multi-paradigm programming language integrating
on
urrent
onstraint programmingwith �rst-
lass fun
tions, high-level
onstraint based data stru
tures,
on
urrentobje
ts, powerful syn
hronization primitives, state of the art
onstraint systems,and
exible sear
h engines.We present the implementation as a virtual ma
hine LVM whi
h adds an inter-mediate abstra
tion between the high-level language Oz and the low-level detailsof
on
rete ma
hines.1.1 Con
epts behind OzThe foundation for Oz was laid in the
-
al
ulus [94℄ for
on
urrent program-ming, whi
h integrates logi
 variables, names, �rst-
lass fun
tions, and
ells intoa formal
al
ulus. Seminal
ontributions to the foundation of Oz are the intro-du
tion of �rst
lass spa
es and sear
h
ombinators as a generalization of deepguard
ombinators [93, 90℄ and the integration of spa
es, sear
h
ombinators, and�nite domain
onstraints into a
onstraint programming framework [91℄.The full language Oz is de�ned and explained in [95, 96, 35, 36℄.Mozart is the third release of the Oz system [72, 73, 66℄. Mozart implements thelanguage Oz and provides additionally the infrastru
ture needed for appli
ationdevelopment with Oz.The stru
ture of the Oz implementation is outlined as a pyramid in Figure 1.1.To explain the implementation of the LVM we use a top down approa
h. Con-
epts, te
hniques, and insights are introdu
ed at the highest possible layer andmore and more details are added in lower levels.The following paragraphs introdu
e basi

on
epts of Oz.1

2 CHAPTER 1. INTRODUCTION

Transients
Records
Chunks

Threads

Spaces

Constraint Store

Implementation

Pickle/Instruction Script
Trail
Home

Language

Virtual Machine

Core

Store Deep guardsEngine

Declare

Operators

Functions

Spaces

Features

Transients

Store

Graph

Rewriting

Threads
Worker/Emulator

Computation Model

Extension

Figure 1.1: Overview of the layers.

1.1. CONCEPTS BEHIND OZ 31.1.1 First-
lass fun
tionsOz has �rst-
lass fun
tions1. Fun
tions are dynami
ally
reated
losures en
ap-sulating the environment in whi
h they are de�ned. Fun
tions
an be passed asarguments to fun
tions and returned as values of fun
tions; they
an be storedin data stru
tures; and they even
an be stored persistently on �les.First-
lass fun
tions are a distinguishing feature of fun
tional languages like Stan-dard ML [63℄, Haskell [75℄, Lisp [50, 31℄, and S
heme [51℄.1.1.2 Transients: Logi
 variables, futuresOz supports logi
 variables, whi
h are not yet known values. A logi
 variable
an be assigned on
e and is than transparently repla
ed by this binding. Logi
variables are a powerful
on
ept to express partial data stru
tures, to syn
hronizemultiple threads, and to eÆ
iently support
all-by-referen
e output arguments.A future is a read-only view on a variable, whi
h allows to build safe partialdata-stru
tures, whi
h
an be modi�ed only by a produ
er and not by
onsumers.Futures are transparently bound when their variable is bound.Transients are de�ned as a generalization of unknown values, in
luding logi
variables, futures, and
onstraint variables. The
ommon properties of transientsare the single-assignment property and automati
 syn
hronization of threads ontheir determination.The use of logi
 variables in programming languages starts with Prolog [55℄. Theidea of futures o

ured in Multilisp [34℄ for expressing the results of parallel
omputations.1.1.3 Threads, ex
eptions, and by-need syn
hronizationOz is a
on
urrent language with extremely light-weight threads. Thousands ofthreads
an be exe
uted simultaneously. Threads in Oz are fair and preemptivelys
heduled. Threads in Oz allow for
oarse-grained
on
urrent programming, al-though the implementation
an handle thousands of threads.Threads are a well-known
on
epts in operating systems, but their support inprogramming languages is still in the early stages. Threads are now standard-ized for the C/C++ language in the POSIX environment [43℄ and the languageJava [30℄ also support these POSIX-like threads.1In the literature �rst-
lass fun
tions are sometimes
alled higher-order fun
tions.

4 CHAPTER 1. INTRODUCTIONThe ex
eption me
hanism of Oz allows to raise and handle �rst
lass ex
eptions.Ex
eptions o�er a well-de�ned interfa
e to handle errors. Ex
eptions are foundin all modern languages, e.g. Java [30℄, Standard ML [63℄, and C++ [16℄.By-need syn
hronization integrates lazy
on
urrent programming into Oz. By-need syn
hronization returns a future, whi
h will be bound by a
on
urrentthread. This thread is only
reated, when the value of the future is requested.The future need not be expli
itly requested, but when a thread syn
hronizes onthe value of the future it is impli
itly requested.A well-known lazy fun
tional programming language is Haskell [75℄.1.1.4 Re
ords and feature
onstraintsOz has re
ords as powerful data-stru
tures to des
ribe rational trees. A rationaltree is a possibly in�nite tree with labelled links and primitive values at the leaves.A re
ord is a des
ription of a node and all its links. With logi
 variables re
ordsallow to express trees where some nodes are unknown.Feature
onstraints allow to express in
omplete trees where not all links areknown. A feature
onstraint de�nes that a
ertain link exists, without de�n-ing all other links.Oz supports several other
onstraint systems beside trees, e.g. �nite domains and�nite sets, and it is extensible for other
onstraint systems. In this work we takefeature
onstraints as an example to show how
onstraint systems are integratedwith Oz.Constraints over rational trees were introdu
ed in Prolog II [19℄. The foundationfor re
ords in Oz was laid in [98℄.1.1.5 Cells and built-in abstra
t data typesState is introdu
ed in Oz through a primitive entity
alled a
ell. A
ell is a
ontainer for one value. The
ontent of a
ell may be a

essed and ex
hangedwith a new value.Re
ords,
ells, and �rst-
lass fun
tions allow to build a state-of-the-art obje
tsystem [42℄. In this work we will show how to integrate a restri
ted form ofobje
ts as built-in abstra
t data types into the LVM.1.1.6 Deep guard
onditional and spa
esOz supports multiple
omputation spa
es to build powerful sear
h engines. A
omputation spa
e en
apsulates a
omputation. A
omputation spa
e has a
er-

1.2. CONTRIBUTIONS 5tain state, namely running, entailed, stable, or disentailed. Threads
an syn
hro-nize on this state. Two spa
es
an be merged together and a spa
e
an be
opiedto
reate an independent
lone.We show the deep guard
onditional as an instan
e of the general
on
ept ofspa
es, whi
h allows to dis
uss how the syn
hronization on entailment and dis-entailment works and how spa
es are merged.Deep guards were �rst introdu
ed in AKL [48℄, whi
h was the �rst languageimplementing the
on
urrent
onstraint programming model [86℄. Con
urrent
onstraint programming integrates the paradigms of
on
urrent logi
 program-ming [92℄ and
onstraint logi
 programming [44, 45, 46℄. In Oz deep guardsare generalized to �rst-
lass
omputation spa
es, whi
h allow to express manydi�erent deep guard
ombinators and to build
exible sear
h engines [90, 88, 89℄.1.2 ContributionsIn this thesis we present the design and implementation of a virtual ma
hinefor a subset L of the full language Oz. L is a multi-paradigm language whi
hin
ludes re
ords, feature
onstraints, logi
 variables, futures, fun
tions, threads,ex
eptions, and
onditionals.This thesis presents idealizations of the real VM that we have implemented inthe Mozart system [66℄. The thesis provides suÆ
ient information to re
onstru
tthe implementation.A huge amount of our work, beside the design des
ribed here, went into engi-neering,
oding, and supporting a pra
ti
al, useful, and stable implementation.The eÆ
ien
y of the LVM is
omparable to the implementation of modern high-level languages, e.g. Standard ML, Java, Prolog, Lisp, Smalltalk. A detailedevaluation of the LVM is given in [87℄.An idealization of the LVM for rational tree
onstraints, �rst
lass fun
tions, lo
al
omputations for deep guards, and preemptive and fair s
heduling was publishedin [62℄. The integration of feature
onstraints and their gra
efully degradingrepresentation was des
ribed in [108℄.Modular and open designThe design of the LVM is modular and orthogonal to
ope with the
omplexity.The modules of the LVM
orrespond
losely to the primitives of the language.The modules de�ne a regular lean interfa
e.The design is open in the sense that

6 CHAPTER 1. INTRODUCTION1. Design de
isions and possibilities, espe
ially with respe
t to the trade-o�between eÆ
ien
y and simpli
ity, are made expli
it.2. The hooks needed for the integration of new features, e.g. new data and
ontrol stru
tures, are identi�ed.The virtual ma
hine of Oz subsumes well-known virtual ma
hines for logi
, fun
-tional, and imperative languages.The top-level modules of the LVM are the store, the engine, and spa
es.StoreThe store implements the eÆ
ient representation of values, variables, futures,and
onstraints. We des
ribe the store with a re�ned graph model, whi
h makes
entral aspe
ts of the design expli
it. In this graph model di�erent representationswith varying
omplexity and eÆ
ien
y are expressible.Re
ords and feature
onstraints give the expressivity to de�ne high-level datastru
tures. We show how this expressivity maps to a gra
efully degrading rep-resentation wrt. the expressivity. Closed re
ords
an be represented with aneÆ
ien
y similar to stru
tures in the WAM. The performan
e overhead for the
reation, a

ess, and de
omposition of re
ords with symboli
 features is minimal
ompared to stru
tures in Prolog implementations. Only when the additionalexpressivity provided by the dynami

reation of arities, �rst
lass features, andfeature
onstraints is used, a moderate
ost has to be paid.We show an abstra
tion,
alled transients, to support logi
 variables, futures,and
onstraint variables. Transients are generalized to allow for the integrationof new types of unknowns. We analyze the
ost of adding transients to a languagewhi
h only has determined values.Re
ords with named features allow to de�ne abstra
t data-types. Abstra
t data-types
an be built into the LVM with a small interfa
e. We des
ribe a layeredapproa
h to implement abstra
t data-types with varying performan
e and
om-plexity.The store is subje
t to automati
 memory management using a stop-and-
opy
olle
tor and elaborated te
hniques to reuse memory as soon as possible. Weexplain the liveness analysis to ensure that unused registers are dete
ted anddis
uss the impa
t of the optimized representation of variables in �elds to memorymanagement.

1.2. CONTRIBUTIONS 7EngineThe engine takes
are of the exe
ution of ma
hine programs. We present a
om-pa
t ma
hine model
onsisting of the s
heduler, the worker, and the emulator.Threads are managed by a round-robin s
heduler with priorities. The te
hniques,whi
h allow to
reate and maintain thousands of threads eÆ
iently, are explained.The LVM is a sequential implementation with a single worker to exe
ute threads.We des
ribe the
ontext swit
hing overhead for the eÆ
ient installation and de-installation of threads by the worker, whi
h is due to a
ompa
t representationof the state of the worker.The worker exe
utes �rst-
lass fun
tions with
all-by-referen
e arguments usinglogi
 variables for passing output arguments. The worker implements ex
eptions,where the trade-o� between an eÆ
ient installation of ex
eption handlers and aneÆ
ient lookup for the handler in the
ase of an ex
eptional
ondition is dis
ussed.Although the state of the worker is
ompa
tly represented it is well-suited for aneÆ
ient exe
ution of the byte
ode by the emulator.We present a
lassi�
ation of the ma
hine instru
tions, whi
h shows how mu
hsupport for various language
on
epts is required.The idea of having pi
kles, whi
h de�ne an external representation of Oz data-stru
tures, allows for a novel a

ount to byte
ode where instru
tions
an dire
tlyrefer to data-stru
tures in the store. The loader
reates an internal representationfrom a pi
kle. The transformation and optimizations of the byte
ode performedby the loader at run time are explained.Spa
esSpa
es allow to express en
apsulated
omputations with
onstraint propagationand are an essential building blo
k for
onstraint programming and sear
h. Weuse
onditionals as an instan
e of the general
on
ept of �rst
lass spa
es to dis-
uss the
omplexity introdu
ed to the LVM for supporting �rst-
lass
omputationspa
es.We de�ne an extension of the single store graph model to a multiple store graphmodel whi
h allows to explain at an intermediate level between the high-level
onstraint view and the low-level implementation the key aspe
ts of spa
es.We show the hooks needed in the LVM to support spa
es and the implementa-tion of the s
ript te
hnique for representing multiple bindings of variables. We
ompare the s
ript te
hnique with the binding window te
hnique.

8 CHAPTER 1. INTRODUCTION1.3 Stru
ture of the thesisThe top of the pyramid is the
omputation model and an informal de�nitionof the subset of the full Oz language in Chapter 2. The
omputation model isde�ned as a number of threads
omputing over a shared store. We introdu
ethe units represented in the store, i.e. values, variables, and futures, and theoperations performed on the store when exe
uting threads.The next step down the pyramid is the explanation of the VM in Chapter 3. Itsmain parts are the store and the engine. At the virtual ma
hine level a re�nedgraph model is de�ned whi
h allows to dis
uss many aspe
ts of the representationof dynami
ally typed units.We de�ne a sequential imperative register-based ma
hine for Oz, whi
h
onsistsof a ma
hine language, the s
heduler, and the worker. The
onne
tion betweenthe high-level language and the ma
hine language is explained by showing the
ompilation of L expressions into ma
hine programs.The loader is presented as a translator for an external representation of ma
hineprograms,
alled a pi
kle, into a internal graph and threaded-
ode representation.The s
heduler is the
omponent whi
h is responsible for the fair, preemptives
heduling of the runnable threads. It sele
ts a thread whi
h is then exe
uted bya worker. The worker is responsible for swit
hing
ontexts when a new threadmust be installed or deinstalled. The worker exe
utes the tasks of a single threadand emulates the instru
tions.The issues introdu
ed with the integration of spa
es to the LVM are dis
ussednext. We identify the hooks required in the other parts of the VM, explainthe s
ript and binding window te
hnique for representing multiple bindings ofvariables, the propagation of bindings, and the algorithm for de
iding entailment.Then we
ompare the LVM with other virtual ma
hines for high-level languagesand summarize the main design goals.After this dis
ussion of the high-level aspe
ts of the LVM we explain the imple-mentation aspe
ts in Chapter 4.We explain how the di�erent unit types are represented. The transient abstra
-tion is introdu
ed and its spe
ialization to logi
 variables, futures, and
onstraintvariables. The next part de�nes re
ord
onstraints and their gra
efully degradingimplementation. We explain the extension me
hanism for de�ning abstra
t datatypes and explain how they
an be integrated smoothly into the LVM.This part on the des
ription of the store is
ompleted with an explanation of theautomati
 memory management.The thesis
on
ludes in Chapter 5 with a summary, engineering
onsiderations,and some remarks about future work.

1.4. CONTEXT OF THE THESIS 91.4 Context of the thesisThe LVM was designed and implemented in
lose
ollaboration with my
ol-league Ralf S
heidhauer. Many parts of my work overlap with his thesis [87℄. Hedes
ribes the implementation of the
ore of the fun
tional language L, whi
his based on dynami
ally typed Standard ML extended by
on
urren
y, logi
variables, and
omplex syn
hronization
onditions for patterns. His fo
us is onthe eÆ
ient implementation of the
ore language, a performan
e analysis of theMozart implementation of L, dis
ussion of
omplex syn
hronization
onditions,and the
omparison of Mozart with a VM, based on fun
tions. My fo
us is onthe non-standard extensions of the fun
tional
ore and their gra
efully degradingintegration into the VM.Spa
es and
onstraint inferen
e engines whi
h exploit the power of �rst
lass
omputation spa
es are introdu
ed and dis
ussed in [90, 88, 89℄. The fo
us of mywork wrt. to spa
es is their intera
tion with the di�erent modules of the LVMand an analysis of implementation te
hniques for maintaining multiple bindingsof variables.The design of the obje
t system for Oz is explained by Martin Henz [42℄. Thefo
us of his work is on the impa
t of
on
urren
y for the design and the usageof an obje
t system. Obje
ts are a high-level abstra
tion built on top of thelow-level
on
ept of extension interfa
e-types, whi
h is des
ribed in my thesis.Finite domain variables are an instan
e of transients, whi
h allow for the eÆ
ientrepresentation of
onstraints over �nite domains of integers [91℄. The appli
abilityof the
onstraint solving
apabilities of Oz was demonstrated with the s
hedulingworkben
h [116, 117, 118℄.The addition of �nite set variables [69, 68℄ as another instan
e of transients alsouses the extension interfa
e to integrate �nite set values as an abstra
t data type.For the eÆ
ient implementation of
onstraints, whi
h implement propagationof information between
onstraint variables, propagators were introdu
ed as are�nement of threads, whi
h are
ompletely implemented in C++ to avoid theoverhead for the worker and the emulation [70℄.Re
ently a distribution model [40, 107, 39℄ was developed and implemented, whi
hallows the transparent distribution of the store among multiple sites.

10 CHAPTER 1. INTRODUCTION

Chapter 2The language L
In this
hapter we de�ne the language L1. L is a subset2 of Oz, whi
h
ontainsonly a minimal
ore language and the extensions relevant for my work.The syntax and semanti
s of L is based on Standard ML [63, 74℄. A majordeviation is the repla
ement of the stati
 type system of Standard ML by adynami
 type system [97℄. L extends Standard ML with logi
 variables andfutures,
exible re
ords and feature
onstraints,
on
urren
y, and deep guard
onditionals. The
ore of L is the same as the language des
ribed in [87℄.2.1 OverviewWe introdu
e the language in a
on
ise and informal manner to show the re-quirements for our implementation at a high-level. We assume basi
 knowledgeof Standard ML. We use evaluation rules and a graph rewriting model to de�nethe semanti
s of the language.In the following se
tions we des
ribe a
omputation model and a graph modelfor the data stru
tures of the language. After that we explain the semanti
s of
ore language and of our extensions, namely logi
 variables, futures, threads, by-need syn
hronization, re
ord
onstraints, and deep guard
onditionals. Finallywe show the expressiveness of the language by dis
ussing sele
ted examples.The
ore language of L is given in Figure 2.1. We use some synta
ti
 sugar whi
his summarized in Figure 2.2.In addition to the Standard ML syntax we use strings with ' as delimiters todenote atoms, whi
h are �rst-
lass symboli

onstants in L, e.g. ’person’.1The name of L is spelled out as Language.2The language we de�ne is subset with minor modi�
ations for a better idealization and tosimplify the explanation. 11

12 CHAPTER 2. THE LANGUAGE L

Expressionse ::= y identi�erj

onstantj {
1 = e1,...,
n = en} re
ord
onstru
tionj fn x => e fun
tion de�nitionj e e0 appli
ationj let d in e end de
larationj case e of r1|...| rn pattern mat
hingd ::= val x = e value de
larationj name N name de
laration
 ::= i integer
onstantj a atom
onstantj M name identi�err ::= p => e mat
h rulep ::= {
1 = p1, ...,
1 = pn} re
ord patternj

onstant patternj x variable patternCore operators+,-,... : int * int -> int arithmeti
<,<= : int * int -> bool
omparisonre
ord : (fea * T) list -> re
 dynami
 re
ordssele
t : re
 * fea -> T �eld sele
tionFigure 2.1: Expressions and
ore operators of L.

2.1. OVERVIEW 13

Abbreviation Core syntax
True name True boolean true
False name False boolean false
() name () the singleton value
x::y fHead = x, Tail = y g list element
[x1, ..., xn] , n � 0 x1::...::xn::nil list
(y1, ..., yn) f1 = y1,, n = yn g tuple (n > 1)
let d; d0 in e end let d in let d0 in e end end de
laration sequen
ee; e0 let val x = e in e0 end expression sequen
e
if y then e else e0 case y of True => e| x => e0 simple
onditional
fn p1 => e1j ...j pn => en

fn x => case x of p1 => e1j ...j pn => en

fun
tional pattern
fun x p1 => e1j ...j x pn => en

val x =
let val x = lvar () in

unif (x, fn p1 => e1j ...j pn => en);
x

end

re
ursive fun
tions
Figure 2.2: Synta
ti
 sugar.

14 CHAPTER 2. THE LANGUAGE LWe use
apitalized identi�ers N;M for names. Names in L are �rst
lass
itizens,whi
h
an be used as expressions and as �eld names of re
ords. In the re
ord
onstru
tion and in patterns the �eld names are integers, atoms, and stati
allybound names.Features are integers, atoms, and names used as �eld names of re
ords.Re
ords
an be dynami
ally
onstru
ted with the record operator. It takes apair-list of pairwise distin
t features and
orresponding �eld values and
onstru
tsa re
ord. Fields of re
ords
an be a

essed with the select operator, whi
h takesa re
ord and a feature as arguments and returns the �eld value under the sele
tedfeature.In the syntax we use the letter x resp. N for a binding o

urren
e of an identi�erand y resp. M for a free o

urren
e. L has the same s
oping rules as Standard ML.Patterns must be linear, i.e. all identi�ers in binding position of re
ord patternsare pairwise distin
t. The syn
hronization
onditions for patterns are explainedin Se
tion 2.8.We use the usual Standard ML pre
eden
es and allow to use parentheses () togroup expressions.The referen
es of Standard ML are
alled
ells in L. We use the name
ell in thisthesis to avoid
onfusion with the referen
e nodes introdu
ed at the LVM level(see Chapter 3).Most of the language primitives
an be ni
ely fa
tored out from the expressionsyntax by using prede�ned fun
tions,
alled operators. Figure 2.3 shows theoperators for implementing our extensions. These extensions will be explained inthe following se
tions.The operators are shown with their type to guide the intuition of the reader. Thistype language is not used in L and di�ers from the type language in Standard ML.The type restri
tions shown in Figure 2.3 are enfor
ed at run time (dynami
ally)and not stati
ally. The type names and the type hierar
hy are listed in Figure 2.4.We assume a type T at the top of the type hierar
hy, whi
h allows for exampleto use T list for lists of arbitrary values. Cells and other
ontainer types in L
an
ontain arbitrary values.2.2 Computation modelComputation in L is organized in
omputation spa
es (see Figure 2.5). A
om-putation spa
e
ontains a number of threads exe
uting over a shared store.The store represents the data stru
tures. The main fo
us of our work are theoperations performed on the store. The
ontrol aspe
ts are basi
ally the onesknown from Standard ML.

2.2. COMPUTATION MODEL 15Ex
eptions
at
h : (()->'a)*('b->'a)->'a install handlerthrow : 'a -> 'b raise ex
eptionCellsref : T -> ref new
ell:= : ref * T -> () assign! : ref -> T a

essex
hange : ref * T -> T ex
hangeVariables and futureslvar : () -> T logi
 variableunif : 'a * 'a -> () uni�
ationfuture : 'a -> 'a futureThreadsspawn : (() -> ()) -> () thread
reationwaitOr : T * T -> () syn
hronizationbyNeed : (() -> 'a) -> 'a by-need syn
h.Tree
onstraintsfeatureC : re
 * fea * val -> () feature
onstraintwidthC : re
 * int -> () width
onstraintDeep guards
ond : ('a->())*('a->'b)*(()->'b)->'b
onditionalFigure 2.3: Extensions.Type Des
riptionT topre
 re
ordint integerfun fun
tionref
elllit literal (name or atom)atom atomname name() singletonbool boolean valuefea feature (lit or int)'a list list of 'a
intrec fun

T

ref

lit

atomname

bool ()Figure 2.4: Type names and the type hierar
hy of L.

16 CHAPTER 2. THE LANGUAGE LThread . . . ThreadStoreFigure 2.5: A
omputation spa
e.A thread is the sequential
ontrol for the evaluation of
losures. A
losure
onsistsof an expression of the language and an environment. The environment de�neshow the free identi�ers of expressions are bound to nodes in the store.Threads are the only a
tive entities in the
omputation model. The exe
ution ofa thread happens in steps. A step is de�ned by an evaluation rule for a
losure.The evaluation rules for expressions and operators of the
ore language follow theStandard ML semanti
s and they are summarized in Se
tion 2.4.Threads
ommuni
ate only via shared nodes in the store. Threads
an read fromand write into the store and they
an syn
hronize on
ertain
onditions of nodes.The
omputation is interleaved and fair. Interleaved means that the exe
utionsteps are atomi
 and do not overlap. Fairness requires that a possible exe
utionstep of a thread will eventually happen.2.3 The language graphThe semanti
s of our language is de�ned as a graph rewriting engine. The datastru
tures of the language are modeled as nodes in a dire
ted graph with labellednodes and labelled dire
ted links. This graph is
alled the language graph.The language graph is built from units. A unit is a labelled node with a �nitenumber of links. Figure 2.6 shows all units of our language.A unit
an be added to a graph by
onne
ting its open links to already existingnodes in the graph. When a unit is added to a graph no dangling referen
esremain. Figure 2.7 shows an example of a graph.In our language it is not possible to
reate a
y
le in the graph by adding newunits. Cy
les
an be
reated through expli
it graph rewriting steps, whi
h are
ell assignment (see Se
tion 2.8) and variable binding (see Se
tion 2.6).

2.3. THE LANGUAGE GRAPH 17
...f1 fn

Record

...

x/e

x1 xn

Function Cell

Variable Open Record

fnf1

w: m

345 ’a’ N

Integer Atom Name

Future

fut

By-need future

x/e

Figure 2.6: Units of L.

con N;
val y = lvar ();
val z = 1::2::nil
val x = {‘a‘ = (y, ref (z)), 1 = z, N = fn x => z};

x:
N

Nil2

z

x/z

’a’
1

1 2

y:

z:
Head Tail

Head Tail

1

Figure 2.7: An example of a language graph.

18 CHAPTER 2. THE LANGUAGE L2.3.1 ValuesThe graph represents values. Values are stateless mathemati
al entities. Thevalues of L are primitive values (numbers and symbols), and (in�nite) trees withlabelled dire
ted edges. The leaves of these trees are the primitive values.Primitive values Numeri
 values and symboli
 values are primitive values ofL. For every primitive value a unit exists whi
h is labelled with this value. Withthese units leaf nodes of trees with no departing link are
reated.The numeri
 values of L are integers 0; 1;�1; 2;�2; : : : of arbitrary size, with theusual mathemati
al meaning.The symboli
 values are atoms and names. Atoms are �nite strings over a �niteset of
hara
ters. Names are an in�nite set of distin
t values with no furtherstru
ture.An essential property of names is that they are only available through a generator.Whenever a name unit is added to the store it obtains a fresh name, whi
h isdistin
t from all existing names in the store.We
onsider in many aspe
ts
ells and fun
tions (whi
h are introdu
ed later) alsoas primitive values similar to names, e.g.
ells and fun
tions
an be leafs of trees.Re
ords Compound trees are represented in the store using re
ord units. Are
ord is a node with a �nite number of departing links. These links are labelledwith pairwise distin
t features. A feature is an integer, an atom, or a name.The set of features is
alled the arity of the re
ord. The number of features is
alled the width of the re
ord.The pair of a feature and the node at the end of the link labelled with this featureis
alled a �eld. The feature is then
alled the �eld name and the node is the�eld value. The operation to traverse a link from a re
ord is
alled �eld sele
tionor �eld a

ess.Re
ords in our language are
exible re
ords, whi
h are very di�erent from stati
re
ords of Standard ML. In L features are �rst-
lass values and it is possible tosele
t a �eld without knowing all the other features of the re
ord. It is furthermorepossible to
reate re
ords whose feature are not known at
ompile time, e.g.feature passed as arguments to fun
tions.Figure 2.8 shows how a tree
an be
onstru
ted from units.

2.4. SEQUENTIAL EXECUTION 19
1 a

N M

ba c

1

1 a MN

2a b c

1 2

Figure 2.8: Re
ords and trees.2.3.2 Invariants for graph rewritingExa
tly three graph rewriting operations are performed during the exe
ution ofthreads:node
reation New nodes
an be
reated and added to the graph.binding Transient nodes
an be bound to other nodes. In the graph modelthis operation superimposes the new node onto the transient nodes. Thismakes the transient node transparent. The transient node disappears fromthe graph and all in
oming links are redire
ted to the new node. Anothermetaphor for binding a node v to a node n is that all edges to v are redi-re
ted to n (see Se
tion 2.6).assignment Cells
an assigned to new values. In this
ase the
ontent link ofthe
ell is redire
ted to a new node.These strong invariants on graph rewriting simplify the reasoning about L pro-grams. They are also very useful for building parallel and distributed implemen-tations, but in our sequential and imperative implementation of the LVM theseinvariants are not exploited.2.4 Sequential exe
utionIn this se
tion we explain the exe
ution of a single thread. A thread is thesequential
ontrol for the evaluation of
losures.

20 CHAPTER 2. THE LANGUAGE LA
losure of an expression e is a pair of an environment u and the expression ewritten as hu,ei. The environment is a mapping of every free identi�er x in theexpression e to a node n in the store. In the following we use the notation x alsofor the node bound to x in the environment u. Furthermore we use the notationx also for the value of the node if it represents a primitive value. The
ontextallows usually to disambiguate the di�erent meanings easily.An exe
ution step
an side e�e
t the store and evaluates a
losure. The evaluationof a
losure has one of the following out
omes:� It evaluates to a node in the store.� It redu
es to one or more new
losures.� It raises an ex
eption.In the following we use formulations like \if x is a node of type ..." then thismeans that� The thread has to syn
hronize on x until it is no variable and no future.Syn
hronization is explained in se
tion 2.8 where threads are introdu
ed.� If the node x is of a di�erent type an ex
eption is raised. The ex
eptionme
hanism of L is introdu
ed in se
tion 2.5.2.4.1 Data stru
turesIdenti�ers The
losure hu,yi evaluates to the node bound to y in u.Atoms The
losure hu,ai adds an atom node with label a to the store andevaluates to this node.Integers The
losure hu,ii adds an integer node with label i to the store andevaluates to this node.Re
ord
onstru
tion The evaluation of hu,{
1 = y1, ...,
n = yn} i tests�rst if
1; : : : ;
n are pairwise distin
t features.If the test su

eeds a re
ord node with the arity f
1; : : : ;
ng is added to the store.For all i 2 f1; : : : ; ng the link labelled with the feature
i is
onne
ted to the nodeyi. The re
ord
onstru
tion evaluates to this node.If y1; : : : ; yn are not pairwise distin
t features the re
ord
onstru
tion raises anex
eption.

2.4. SEQUENTIAL EXECUTION 212.4.2 Fun
tionsA fun
tion is a
losure of a fun
tion de�nition expression fn x => e. We useabstra
tions �x=e as
ompa
t notation for the fun
tion de�nition.Fun
tions are represented with fun
tion units. A fun
tion unit is a node labelledwith a fun
tion de�nition and labelled links for the free identi�ers in the fun
tionde�nition.Fun
tion de�nition The evaluation of the fun
tion de�nition hu,fn x => eiadds a fun
tion unit to the store whi
h labelled with the fun
tion de�nition. Thelinks for the free identi�ers of the abstra
tion are
onne
ted to their binding inu. The fun
tion de�nition evaluates to the just added fun
tion node.Appli
ation The evaluation of the appli
ation hu,e e0i �rst evaluates hu,ei toy and then hu,ei to y0. Then it tests if the y is a fun
tion.If y is a fun
tion labelled with an abstra
tion �x=e00 the appli
ation evaluatesto the
losure hu0,e00i. The new environment u0
ontains the bindings of the freeidenti�ers of the abstra
tion and the binding of the formal argument x to thea
tual argument y0.2.4.3 Pattern mat
hingThe evaluation of hu,case y of r1|...| rni sequentially tests if y mat
hes oneof the patterns p1; : : : ; pn in the mat
h rules r1; : : : ; rn.The re
ord pattern {
1 = p1, ...,
n = pn} => e mat
hes if y is a re
ord withthe arity f
1; : : : ;
ng. Then the �eld values are sequentially mat
hed againstthe patterns p1; : : : ; pn. If all these mat
hes are su

essful the
ase expressionevaluates to the
losure hu0,ei, where u0 is derived from u by adding the bindingsfor the binding identi�ers in the patterns.The
onstant pattern
 => e mat
hes if the value of y is equal to the primitivevalue
. Then the
ase expression evaluates to the
losure hu,ei.The variable pattern x => e mat
hes always and evaluates to the
losure hu0,ei,where u0 is derived from u by adding the binding of the identi�er x to the nodey.

22 CHAPTER 2. THE LANGUAGE L2.4.4 De
larationsThe evaluation of the value de
larations hu,let val x = e in e0 endi
reatestwo new
losures: the expression hu,ei and the abstra
tion hu,�x=e0i. The ex-pression hu,ei is evaluated �rst and then the abstra
tion hu,�x=e0i is applied toresult of this evaluation.Sequential exe
ution of
losures
an be explained su
h that the thread has a sta
kof
losures to exe
ute and the value de
laration pushes the abstra
tion hu,�x=e0ion this sta
k and evaluates �rst the expression hu,ei. Only when this has �nished,the
losure found on the sta
k is exe
uted.The evaluation of the name de
larations hu,let name N in e endi adds a newname node to the store and evaluates to the expression hu0,ei, where u0 is derivedfrom u by adding the binding of N to the new name.2.4.5 Core operatorsThe arithmeti
 operators +, �, �, div, mod, <, <= evaluate with their usualmathemati
al semanti
s. We use the in�x notation for these operators.The select operator takes two arguments a re
ord and a feature and evaluatesto the �eld value of the re
ord sele
ted by the feature.The record operator allows to
reate re
ords dynami
ally. It takes a list of pairs
ontaining �eld names and �eld values as argument an
reates a re
ord.2.4.6 Synta
ti

onvenien
eSequen
es A sequen
es of de
larations
an be
ombined into one de
larationusing a semi
olon as separator.
let d; d0 in e end is an abbreviation for let d in let d in e end end.A de
laration let val x = e in e0 end
an be simpli�ed into the sequen
ee; e0 if the identi�er x does not o

ur free in e0Tuples A re
ord with an arity of f1; : : : ; ng is
alled a tuple. Tuples are em-inent, be
ause they are optimized in the LVM. A tuple { 1 = y1,..., n = yn}(n > 1)
an be written as (y1,..., yn) . A tuple with two �elds is
alled a pair.

2.5. EXCEPTIONS 23Names We assume that the following identi�ers are bound to distin
t namesin every exe
ution environment and
annot be rede
lared:� true and false for boolean values.� () for the singleton value.� Head, Tail, and Nil for
onstru
ting lists.Lists As a
onvenient syntax for lists the notation x::y is used for the re
ordwritten as fHead:x, Tail:y g. The empty list Nil
an be written as [] . A listwith a �xed number of elements x1; : : : ; xn
an be written as [x1; : : : ; xn℄.The tuples and list syntax is also allowed in patterns and expands to the
orre-sponding re
ord pattern.Fun
tions The
ore syntax has only single argument fun
tions. Multiple ar-guments are passed as tuples. For
onvenien
e the syntax
fn p1 => e1 j ... j pn => enis an abbreviation for
fn x => case x of p1 => e1 j ... j pn => enThis allows for example to write a fun
tion with two arguments as
fn (x,y) = > ...Boolean
onditional if y then e else e0 is an abbreviation for case y
of true => e| x => e0, where x is an identi�er not o

urring free in e0.2.5 Ex
eptionsEx
eptions are a powerful
on
ept to handle errors and to built non-standard
on-trol stru
tures [28, 29℄. In this se
tion we explain the semanti
s of the ex
eptionme
hanism in L.An ex
eption is a
ondition dete
ted during the evaluation of an expression whi
h
annot be handled lo
ally. In su
h a situation an ex
eption is raised.An ex
eption handler
an be installed for an expression. When an ex
eptionis raised during the evaluation of the expression it is
aught by the ex
eptionhandler. When an ex
eption is
aught the
ontrol is transfered to the handler.

24 CHAPTER 2. THE LANGUAGE LInformation
an be passed from the point where an ex
eption is raised to thehandler of the ex
eption. This information is
alled the ex
eption value, whi
h isusually abbreviated to \the ex
eption". In L the ex
eption value is an arbitrarynode in the store. The handler is a fun
tion in L and when the ex
eption is
aught this fun
tion is applied to ex
eption value.Ex
eption handlers
an be nested. In this
ase the innermost handler
at
hesthe ex
eption and
alls its handler. The ex
eption handler is deinstalled when it
at
hes an ex
eption, i.e. further ex
eptions are
aught by the next handler.Threads install a default ex
eption handler before evaluating an expression, su
hthat ex
eptions
annot es
ape their thread. The default ex
eption handler typi-
ally prints a message3.2.5.1 Ex
eption handlersThe catch operator is applied to a pair of two fun
tions (x; y). The appli
ationof the handle operator installs the ex
eption handler y during the evaluation ofthe fun
tion x applied to the singleton value ().When the evaluation of x returns a node n, the ex
eption handler is removed andthe catch operator also evaluates to the node n.When an ex
eption is raised during the evaluation of x the ex
eption handleris removed and the catch operator evaluates to the appli
ation of the handlerfun
tion y to the ex
eption value.2.5.2 Raising an ex
eptionThe throw operator has an ex
eption value as argument. The evaluation ofthis operators never returns, but transfers
ontrol and the ex
eption value to theinnermost installed ex
eption handler.Ex
eptions are raised impli
itly, when an error o

urs, e.g. re
ord
onstru
tionraises an error if its features are not pairwise disjoint and the appli
ation raisesan ex
eption if the �rst argument is no fun
tion.2.5.3 Dis
ussionThe main problems and the design spa
e for ex
eption handling have been knownsin
e a long time [28, 29℄. The ex
eption me
hanism of L is similar to the onede�ned in Standard ML.3Failure ex
eptions in spa
es are handled spe
ially (see Se
tion 2.10).

2.6. LOGIC VARIABLES 25Typed ex
eptions Many languages like Standard ML [63℄, C++ [16, 53℄ andJava [30℄ use typed ex
eptions and the ex
eption me
hanism is extended su
hthat an ex
eption handler is only used if it mat
hes the type of the ex
eptionvalue.In L this
an be expressed by writing ex
eption handlers su
h that they analyzethe ex
eption value. In the
ase that they
annot handle an ex
eption they simplyre-raise it.Finally A �nally expression allows to prote
t the evaluation of an expressionsu
h that independent of the su

ess or failure of this evaluation a
leanup ex-pression is evaluated. This
an for example be used to ensure that allo
atedresour
es are released.In L �nally
an be implement with the following fun
tion:
val finally = fn (body, final) = >
let

name Suc; name Exc;
val result = catch (fn () = > (Suc, body ()),

fn exc = > (Exc, exc))
in

final ();
case result
of (Suc, value) = > valuej (Exc, exc) = > throw exc

endThe �nally fun
tion is applied to a pair of two fun
tions. The �rst fun
tion isthe body whi
h is exe
uted and might raise an ex
eption. The se
ond fun
tion isthe �nal
leanup whi
h is applied regardless of the su

ess or failure of the �rstfun
tion.2.6 Logi
 variablesA logi
 variable is a pla
e holder for a not yet known value. Logi
 variables wereintrodu
ed as a language primitive with the language Prolog [55, 56, 71℄ as thefoundation for logi
 programming. Logi
 variables have been also re
ognized aspowerful
on
ept for syn
hronization in
on
urrent languages [94℄. For
onstraintlogi
 programming logi
 variables have been extended with attributes to representdomain information.A logi
 variable is represented with a variable unit in the store. A variable unitis a node with no departing links. The lvar operator adds a variable node tothe store and evaluates to it.

26 CHAPTER 2. THE LANGUAGE L2.6.1 Uni�
ationThe graph rewriting operation on variables is binding. A variable
an be boundto another node of the store. Binding a variable makes it transparent, i.e. thevariable node disappears and all in
oming edges are redire
ted to the node it isbound to.Binding is not a primitive operation in L, but it is impli
itly performed by uni-�
ation. Uni�
ation is a
omplex graph rewriting operation to make two nodesequivalent wrt. to the equivalen
e relation de�ned below. If it is possible theuni�
ation performs a minimal number of variable bindings until two nodes areequal. If this is not possible the uni�
ation fails.We �rst de�ne an equivalen
e relation on nodes. Then we present an uni�
ationalgorithm.Equivalen
e of nodes The equivalen
e relation of nodes is de�ned as thegreatest relation, whi
h sati�es the following
onditions:� Every node is equivalent to itself.� Two primitive nodes are equivalent i� they represent the same value.� Two re
ord nodes are equivalent i� they have the same arity and if theequivalen
e relation holds for every pair of
orresponding �eld values.The uni�
ation algorithm The uni�
ation algorithm implemented in theLVM is a variation of the uni�
ation algorithm for rational trees resp.
y
li
stru
tures [18, 98, 38℄. An overview of the algorithm is given in Figure 2.9.The uni�
ation algorithm maintains a todo sta
k and an explored set. The todosta
k
ontains pairs of nodes whi
h must be uni�ed. The explored set
ontainspairs of already uni�ed re
ords. Initially the explored set is empty and the todosta
k
ontains the pair of the two nodes to unify. In every step of the uni�
ationalgorithm a pair of nodes is popped from the todo sta
k and pro
essed. Thealgorithm terminates if the todo sta
k is empty and returns a termination status,whi
h is either su

eed or fail.Two nodes are pro
essed in the following ways� If both nodes or their values are the same, or if they are in the explored setthe pro
essing step su

eeds and nothing needs to be done.� If both nodes are re
ords with the same label and arity, then they are addedto the explored set and
orresponding pairs of �elds are pushed on the todosta
k.

2.6. LOGIC VARIABLES 27
INPUT:

node n1;
node n2;

OUTPUT:
enum fSUCCEED, FAILg status;

INIT:
todo = new stack();
todo.push(n1, n2);
explored = new set();
status = SUCCEED;

LOOP:
while (!todo.isEmpty())

(a, b) = todo.pop();

if (a != b)
if (isVar(a))

bind(a,b)
else if (isVar(b))

bind(b,a)
else if (member(fa,b g,explored))

// nothing
else if (isRecord(a) &&

isRecord(b) &&
arity(a) == arity(b))

explored.add(fa, b g);
for (f in arity(a))

todo.push(select(a,f), select(b,f))
else

explored.add(fa, b g);
status = FAILFigure 2.9: A graph uni�
ation algorithm

28 CHAPTER 2. THE LANGUAGE L
val x = lvar ();
val y = (1, x, 2);

1
2 3

1 2

1
2 3

1 2

y

x

y
unif (x,y)

Figure 2.10: Binding variables.� If a node is a variable it is bound to the other node.� In all other
ases the nodes are put into the explored set and the uni�
ationstatus is set to failed.The algorithm terminates be
ause in every step1. the open set be
omes smaller or2. an element is added to the explored set or3. a variable is bound.The graph is �nite and no new nodes are added during the uni�
ation. Thereforethe number of elements in the explored set must be �nite and only �nitely manybindings of variables
an be done. This means that eventually the open set mustbe empty.Note that the uni�
ation
ontinues even in the
ase that failure is dete
ted. Wedo this to ensure that the uni�
ation algorithm is independ of the order in withthe �elds of re
ords are explored.The unif operator The unif operator is applied to a pair of nodes andperforms their uni�
ation. If the uni�
ation fails the evaluation of the unifoperator raises an ex
eption, else it evaluates to the singleton value.The ex
eption raised by the unif operator is spe
ially marked, be
ause in nested
omputation spa
es it is treated in as disentailment
ondition (see Se
tion 2.10).The ex
eption is
alled a failure ex
eption.Binding variables
an introdu
es
y
les into the graph. Figure 2.10 shows anexample of a re
ord y with a variable x under feature 2 and the
y
le introdu
edby the uni�
ation of x and y.

2.7. FUTURES 29
f x

f x f’

fut

f’

fut

f x

fut
unif (x,f’)

f x f xy

f x

1

unif (x,1)
fut

y

fut fut
unif (x,y)

Figure 2.11: Uni�
ation with futures2.7 FuturesFutures are read-only views of logi
 variables. With futures the s
ope where avariable
an be bound
an be stati
ally limited.When the variable is bound to a non-variable a future of this variable is boundsimultaneously to the same node as the variable. Futures are represented in thestore as a future unit and variables are extended with a link to their future.Figure 2.11 shows some interesting
ases for binding variables with futures. In the�rst
ase when the variable is bound to a determined node both the variable andits future are superimposed by this node. The se
ond
ase show what happenswhen a variable is bound to another variable: only the variable is bound thefuture is un
hanged ex
ept that it is now a future for a di�erent variable. Thethird
ase shows that if the variable is bound to another future f 0 this future issuperimposed on the variable x and its future f .The future operator takes one argument. If this argument is a variable whi
hdoes not yet have a future, a future node is
reated. The future operatorevaluates to this future of the variable. If the argument is no variable the futureoperator evaluates to its argument.Extending uni�
ation Futures require to extend the uni�
ation algorithm.When a future and a determined node are uni�ed it is not allowed to bind thefuture. In this
ase it is not yet de
idable, if the future and the determined nodeare equivalent or not. Therefore the uni�
ation has a termination status to signalthis
ase, whi
h is
alled suspend.

30 CHAPTER 2. THE LANGUAGE LA se
ond aspe
t of futures is the extension of the equivalen
e relation su
h thata future is equivalent to its variable, i.e. unif (x, future (x)) must su

eed.To avoid that the semanti
s of uni�
ation depends on the order how the nodes arepro
essed the uni�
ation algorithm
ontinues after dete
ting the suspend status.Thus it is possible that later on failure is dete
ted.The pairs of nodes whi
h
ould not be uni�ed due to futures are
olle
ted andwhen the uni�
ation does not fail they are saved to restart the uni�
ation, whenone of the futures is bound. The next se
tion on threads explains how threadsare suspended and resumed.An interesting
ase is unif ((f,x),(1,1)) , where f is the future of x . In this
ase the uni�
ation algorithm �rst dis
overs that the equivalen
e of f and 1 isnot de
idable, but later x and simultaneously f is bound to 1. In this
ase theuni�
ation is restarted and in this se
ond run it returns su

essfully.Transients and determined nodes We
all variable and future nodes in thestore transients, be
ause they are only temporarily visible and disappear whenthey are bound. Non-transient nodes are
alled determined.Dis
ussion Futures are useful for example to implement ports [49℄ with safestreams. A safe stream is a stream, where the open tail is a future, whi
h
annotbe
orrupted by readers. Only the writer has a

ess to the variable behind thisfuture.Note that the name future is used with various meanings in the literature. Ourfutures are only
on
erned with the read-only aspe
t of logi
 variables. Futuresin the style of Multilisp [34℄ are related to futures with by-need syn
hronizationand they are dis
ussed below.2.8 Con
urren
yIn this se
tion we explain how
on
urren
y is integrated in L.2.8.1 ThreadsMultiple threads of
ontrol
an be
reated with the spawn operator. The spawnoperator is applied to a fun
tion as only argument and
reates a new threadwhi
h has as the initial
losure the appli
ation of this fun
tion to the singletonvalue.

2.8. CONCURRENCY 31After the
reation of the new thread the spawn operator evaluates to the single-ton value without any syn
hronization on the new thread. Communi
ation andsyn
hronization only happens through nodes shared with the spawned fun
tion.A thread
an for example
ommuni
ate with other threads through the bindingof variables and
ell ex
hanges.Threads are exe
uted
on
urrently, they are independent, and they are s
heduledfairly. Con
urren
y in L means that the evaluation steps are interleaved, but donot overlap. The threads are independent in the sense that the only
onne
tionbetween them is through shared nodes in the store. Fairness requires that if anevaluation step on a thread is possible it will eventually happen.2.8.2 Syn
hronization and suspensionThreads syn
hronize on the determination of transients. We explain the syn
hro-nization te
hnique with the waitOr operator. The waitOr operator is applied totwo arguments and evaluates to the singleton value, if at least one of its argumentsis a determined node.When both arguments are transients the waitOr operator
annot be evaluatedand blo
ks the further exe
ution of its thread. The thread is said to suspendon the transient arguments. The waitOr operator and the suspended threadsbe
omes exe
utable if one of the transients is bound to a determined node.The syn
hronization on transients is a monotoni

ondition. If an evaluation ofan expression is possible at a
ertain moment, it
an be evaluated also after any
hange in the store. This holds be
ause the binding of a transient is a monotoni
operation4.The waitOr operator allows for example to express timeouts. For example bywaiting
on
urrently on a thread produ
ing a result and another thread produ
inga timeout
ondition.Wait The fun
tion wait de�ned below is a simpli�
ation of the waitOr oper-ator whi
h suspends on a single argument.
fun wait x = waitOr (x, lvar ());Other suspensions Any operator whi
h expe
ts a determined value suspendswhen it is applied to a transient, e.g. arithmeti
 operators suspend until botharguments are determined and the appli
ation e e0 suspends until e is determined.4In spa
es bindings are retra
ted and the monotoni
ity might be violated, but it makes onlya di�eren
e when the spa
e fails anyway (see Se
tion 2.10).

32 CHAPTER 2. THE LANGUAGE LIn our language we use a very simple syn
hronization
ondition for pattern mat
h-ing. Pattern mat
hing in our language is
attened out and suspends if one ofthe sequential simple mat
hes is not de
ideable. S
heidhauer [87℄ analyses more
omplex syn
hronization
onditions, where for example the mat
h
case (x,x)
of (1,2) = > e1j y => e2redu
es to e2 even when x is not determined. In our language this example isequivalent to
case (x,x)
of (x1,x2) = >
case x1
of 1 =>
case x2
of 2 => e1j y => e2j y => e2j y => e22.8.3 By-need syn
hronizationA di�erent kind of syn
hronization is by-need syn
hronization, whi
h essentiallyallows for lazy programming.To explain it we �rst de�ne the notion of a requested transient. A transient isrequested if a thread is suspended and waits until this transient is bound. Forexample if x is a variable and a thread tries to evaluate x+ 1 then x is requested.By-need syn
hronization is introdu
ed with the byNeed operator. The byNeedoperator is applied to a fun
tion f and evaluates to a future for a newly
reatedvariable x. When this future is requested a new thread is spawned whi
h uni�esthe variable x with the result of the appli
ation of the fun
tion f to the singletonvalue. Figure 2.12 shows how a by-need future is bound when it is requested.Dis
ussion The by-need syn
hronization in L is similar to the
on
ept of fu-tures in Multilisp [34, 26℄. Multilisp distinguishes two operators for futures.(future E) returns a future and starts the
omputation to evaluate E in a
on-
urrent resp. parallel thread. With (delay E) the evaluation of E only startswhen the value of the future is requested.Futures are proposed as extensions for C++ and Java [57, 85℄. In these proposalfutures are not de�ned as transparent data types, but expli
it operations arerequired to
ast a future into a determined value. A major problem of this

2.8. CONCURRENCY 33
f

f requested unif (x, 2)
f

x x

f

2
y/unif(x,1+1)

Figure 2.12: By-need sy
hronization.approa
h is that for every fun
tion a de
ision has to be made if futures areallowed or not. This espe
ially requires to redesign all libraries.By-need syn
hronization allows to easily express the lazy fun
tional programmingstyle as promoted by lazy fun
tional languages, e.g. Haskell [75℄. In Se
tion 2.11the lazy
reation of hamming numbers is shown as an example.2.8.4 CellsCells are the only stateful data stru
tures of L. In
onne
tion with
on
urren
ystateful nodes must be handled
arefully, e.g.
on
urrent a

ess and assign oper-ations must be properly syn
hronized.The exchange operator is a generalization of the assignment operator := ofStandard ML. exchange assigns a new node to the
ell and returns the old
ontent of the
ell in a single atomi
 step. This extension is essential be
ause itprovides a powerful syn
hronization primitive.Lo
ks The exchange operator with logi
 variables allows to express lo
ks formutual ex
lusion. A lo
k is implemented as a
ell where the
ontent indi
ates ifthe lo
k is free or not. The usage of the
ell is de�ned su
h that the operation toa
quire the lo
k ex
hanges the
ontent of the
ell with a fresh variable and waitsuntil the old
ontent is determined. When the lo
k is released the just
reatedvariable is bound to the singleton value.
(� create a new lock �)
fun newLock () = ref ();

(� aquire lock, execute body, release lock �)
fun sync (lock,body) =

let val new = lvar ();
val old = exchange (lock, new)

in
case old of () = >

34 CHAPTER 2. THE LANGUAGE L
let val result = body ()
in

unif (new, ());
result

end
end;The fun
tion newLock
reates a
ell with the singleton value as initial
ontent.The fun
tion sync takes a lo
k and a pro
edure as arguments. It ex
hangesthe
ontent of the
ell with a fresh variable and waits until the old
ontent isdetermined. The the body is exe
uted and with the uni�
ation of the freshvariable with the singleton value the lo
k is released.Without logi
 variables the ex
hange primitive is already expressive enough toimplement lo
ks, but the implementation does not have the following propertiesof our implementation� The implementation is simple.� The thread whi
h must wait for a lo
k needs no busy waiting.� No starvation
an happen. Every thread
ompeting for the lo
k will even-tually obtain it, when it is released properly.Cell a

ess With logi
 variables access
an be expressed with the exchangeoperation.

fun access cell =
let val new = lvar ();

val old = exchange (cell, new)
in

unif (new, old);
new

endIn L access is a primitive operator, be
ause it has a di�erent semanti
s wrt.multiple
omputation spa
es. The
ontent of a
ell
an be a

essed, but not
hanged when the
ell is global in a spa
e (see Se
tion 2.10).Abstra
t data types We
onsider
ells in this thesis be
ause we want toexplain how the VM supports built-in abstra
t data types, whi
h are a gener-alization of re
ords and
ells. The built-in abstra
t data types are for examplethe data-stru
tures on whi
h the obje
t implementation of Oz is built. Henz [42℄dis
usses how an obje
t system
an be build on top of a
on
urrent
onstraintlanguage with
ells.

2.8. CONCURRENCY 35An example of an su
h an abstra
t data type is a bit array. A naive implemen-tation whi
h represents a bit array as a list of
ells with
ontent 0 or 1 is givenbelow.
let

name BitArray;
fun unbox (b, i) =

nth (select (b, BitArray), i);
fun box (id, l) =f id = (), BitArray = l g;
fun new1 size =

if size >0
then ref 0::new1 (size �1)
else [];

fun new size =
let con Id
in

box (Id, new1 size);
end

fun set (b,i) = exchange (unbox (b,i), 1);
fun clear (b,i) = exchange (unbox (b,i), 0);
fun get (b,i) = ! (unbox (b,i));

in f’new’=new, ’set’=set,
’clear’=clear, ’get’=get g

endIn Chapter 4 we show how eÆ
ient native C/C++ implementations of su
h ab-stra
t data-types
an be easily integrated into the LVM with a generi
 extensionme
hanism.2.8.5 Dis
ussionJava/POSIX threads Threads in L are very di�erent from threads in Java [30℄.The semanti
s of threads in Java is driven by the available te
hnology in mod-ern operating system. These are typi
ally based on the POSIX 1003.1 stan-dard [15, 43℄.The POSIX standard
ares a lot about memory
a
he e�e
ts and makes expli
itthat only when using sy
hronization primitives the (possibly
a
hed) memoryis updated. In L no
a
hing e�e
ts are visible at the language level. If animplementation uses memory
a
hes it has to guarantee that the illusion of aunique store is not violated.

36 CHAPTER 2. THE LANGUAGE LPOSIX does not spe
ify a s
heduling poli
y. The standard allows but does notrequire that
onforming implementations support di�erent s
heduling methods.This means that for example preemptive s
heduling is platform dependent andan appli
ation
annot rely on fairness assumptions.Parallelism Con
urren
y does not prevent parallelism, but a parallel imple-mentation has to preserve the invariant that overlapping evaluation steps are notvisible [80℄.2.9 Feature
onstraintsIn this se
tion we extend re
ords su
h that it be
omes possible to representin
omplete partial information about bran
hes in trees.With re
ords and logi
 variables it is already possible to des
ribe partial trees,where some of the nodes are not yet known. Feature
onstraints extend thismodel and allow to des
ribe re
ord nodes where the features are partially known.Feature
onstraints allow to represent for example information about paths in atree without knowing the whole shape of tree, i.e. the arities of some re
ord nodesare underspe
i�ed. Feature stru
tures in natural-language pro
essing systems arean example where this is useful.Re
ords and feature
onstraints in L are based on re
ords for logi
 program-ming [98℄ and on the work done on -terms in LIFE [3, 78℄. The implementationof eÆ
ient re
ord
onstraints for
on
urrent
onstraint programming in the Ozsystem was des
ribed in [108℄In the following se
tions we �rst des
ribe a generi
 set of
onstraints over treesand show then how re
ords and feature
onstraints of L �t into this model.2.9.1 Constraints over treesThe stru
ture underlying the tree
onstraint system [98℄ of L
ontains in�nite setsof features, integers, and rational trees. Rational trees are possibly in�nite treeswith dire
ted links labelled with features. The
onstraint system is
losed under
onjun
tion and existential quanti�
ation of domain variables. The
onstraintsystem has the following basi

onstraints.� The feature
onstraint feature(t; f; t0) states that t is a rational tree witha link to the tree t0 whi
h is labelled with the feature f .

2.9. FEATURE CONSTRAINTS 37
1

‘b‘‘a‘

x w:10

featureC(x,’a’,1)

widthC(x,10)
featureC(x,’b’,x)

Figure 2.13: An example of an open re
ord.� The width
onstraint width(t; n) (n 2 f1; 2; :::g) states that t is a rationaltree with exa
tly n outgoing links.� The equality
onstraint t = t0 states that the trees t and t0 are equal.In full generality this
onstraint system is not analyzed yet [102, 103, 10℄. In thefollowing we explain the implemented sub
lass of L.2.9.2 Open re
ordsRe
ords as introdu
ed in Se
tion 2.3 above are an instan
e of the tree
onstraintwhi
h is restri
ted to
onstraints of the form:9t; t1; : : : ; tnwidth(t; n) ^ 8i 2 f1; : : : ; ng feature(t; fi; ti):The features fi and the number n in this
onstraint are
onstants and the featuresmust be pairwise distin
t.Open re
ords are re
ords where not all features are known. Open re
ords aredes
ribed by the
onstraints width(t; n) resp. feature(t; f; t0), where the width nand the feature f are
onstants.In the store open re
ords are represented as variables with attributes. Attributesallow to atta
h information to a variable. The semanti
s of some operations, e.g.uni�
ation, is extended for variables with attributes.Variables representing open re
ords have the attributes width and �elds. Thewidth attribute if de�ned
ontains a number and the �elds attribute
ontains aset of pairs of a feature and a node (see Figure 2.13).The
onstraints on the attributes of a variable are� Every feature o

urs at most on
e in the �elds attribute.

38 CHAPTER 2. THE LANGUAGE L
1

‘b‘‘a‘

x w:-

featureC(x,’a’,1)
featureC(x,’b’,x)

widthC(x,2)

1

‘b‘‘a‘

x

Figure 2.14: Closing an open re
ord.� The number of elements in �elds attribute is less than the value of the widthattribute.An open re
ord is automati
ally
losed, when its width attribute be
omes equalto the number of elements in the �elds attribute. Closing means that the variableis bound to a re
ord, where the �elds of the re
ords are exa
tly the elements ofthe �elds attribute (see Figure 2.14).The featureC and widthC operator implement the feature resp. width
on-straints and the uni�
ation is extended to support the equality
onstraint onopen re
ords.The featureC operator The featureC operator is applied to three argu-ments (x; f; y) and suspends until f is a feature and x is not a future. Thefollowing
ases o

urCondition A
tionx is a variable whi
h does not
ontainthe feature f in its �eld attribute. The feature f and the �eld value y areadded. Impli
itly the open re
ord maybe
losed.x is a variable with the feature f and�eld value y0 in its �eld attribute or xa re
ord with a feature f and the �eldvalue y0. Then the featureC operator redu
esto the uni�
ation of y and y0.Otherwise. A failure ex
eption is raised.The widthC operator The widthC operator is applied to two arguments (x; n)and suspends until the �rst argument is no future and the se
ond argument is apositive integer.

2.10. SPACES 39Condition A
tionx is a variable whi
h does not have thewidth attribute and not more than nentries in the �eld attribute. The width attribute with value n isadded to the variable. Impli
itly theopen re
ord may be
losed.x is a variable with width attributeequal to n or x is a re
ord with widthn. Nothing needs to be done.Otherwise. A failure ex
eption is raised.Extending the uni�
ation algorithm The uni�
ation algorithm must beextended to support open re
ords. If an open re
ord x is uni�ed with anothernode y , then it bound as usual and its attributes are imposed to the new binding.Imposing means that the attributes of x are added to the node y as if the widthCand featureC operators for these attributes are applied.� If x has a width attribute n, then widthC (y, n) is exe
uted.� For all features fi with �eld values zi in the �elds attribute of x theoperator featureC (y, fi, zi) is exe
uted.2.10 Spa
esMultiple
omputation spa
es are the basis for building
exible sear
h enginesin the
on
urrent
onstraint programming paradigm [90, 91, 88, 89℄. In thisthesis we fo
us on the implementation of entailment, disentailment and mergingof spa
es. Therefore we de�ne one operator, namely the deep guard
onditional,whi
h requires exa
tly the abilities to dete
t entailment and disentailment andto merge spa
es.We �rst de�ne a multiple store graph model with introdu
es situated nodes. Afterthat we explain the deep guard
onditional operator.2.10.1 The multiple store graph modelA
omputation spa
e is a number of threads exe
ution over a shared store. Theexe
ution of a thread
an
reate new subordinated
omputation spa
es. The new
omputation spa
e is initialized with a
opy of the
urrent store and an initialthread.

40 CHAPTER 2. THE LANGUAGE L
Space 1

Space 2 Space 3

x’ x’’

x

Figure 2.15: A tree of
omputation spa
es.Every node in the
opy is linked to its original. This is essential to de�ne prop-agation and merging. The basi
 invariant between spa
es is that the graph in asubordinated spa
e is a extension of the graph in the store of its parent spa
e. Theintuition should be that subordinated spa
es see every
hange in their parent'sstore, but not vi
e versa.With this
onstru
tion a tree of
omputation spa
es
an be build (see Figure 2.15).The �gure shows how a graph and its
opy in a subordinated spa
e are linkedtogether. The top-most spa
e is
alled root or toplevel spa
e.When a spa
e is
reated a new variable is
reated in this spa
e, whi
h is
alledthe root variable. The root variable is used to
ommuni
ate
omputation resultsbetween a spa
e and its parent spa
e. The initial thread exe
utes a fun
tionwhi
h is applied to this root variable.Situated nodes The theoreti
al foundation [95℄ of
omputation spa
es is basedon a de
larative semanti
s where the store is modeled as a
onstraint with existen-

2.10. SPACES 41tially quanti�ed variables. In the graph model we repla
e the notion of existentialquanti�
ation with the notion of situated nodes.Transients and
ells are situated nodes. The spa
e where a situated node is
reated is
alled the home spa
e of a node. A situated node is
alled a lo
al nodein its home spa
e and a global node in subordinated spa
es. Figure 2.15 shows aglobal variable x0 in the
opy and its
orresponding lo
al variable x in the originalspa
e.In the following we restri
t situated nodes to logi
 variables. Other types ofsituated nodes are introdu
ed later.Store invariant The store invariant ensures the
onsisten
y of stores in a treeof
omputation spa
es. It is de�ned su
h that the graph in a subordinated spa
eis an extension of the graph in its parent:� A subordinated graph
ontains all nodes and links of the graph of its parent.When new nodes are added then these nodes are
opied to subordinatedspa
es. The
opies preserve the
onne
tion to their original nodes.� A subordinated graph
an
ontain additional units and links.� Global variables in spa
es
an be bound. Su
h a binding is
alled spe
ula-tive. A spe
ulative bindinge
an be retra
ted.Binding and propagation When a variable is bound this binding is propa-gated to all subordinated spa
es. Propagation ensures that the �rst requirementof the store invariant holds.Propagating a binding retra
ts already existing spe
ulative bindings in subordi-nated spa
es and repla
es these spe
ulative bindings with the new binding.Retra
ting a binding means that an assumption made during a previous uni�
a-tion is invalidated. To ensure that no information is lost a new thread is
reatedin the subordinated spa
e whi
h uni�es the old and the new binding.Figure 2.16 shows how a binding is propagated to a subordinated spa
e.Binding order When two variables must be bound and one is global and theother is lo
al, the lo
al variable is bound to the global variable. This ensures thata minimal number of spe
ulative bindings are done per spa
e.

42 CHAPTER 2. THE LANGUAGE L

1

x
2

2

2

2

unif (x,2)

unif (1,2)

FAILEDFigure 2.16: Propagation of a binding.2.10.2 EntailmentThe distin
tion of lo
al and global variables is essential to de
ide entailment of aspa
e. A spa
e is entailed if� all threads are terminated and� the
onstraint represented in a store is entailed by the
onstraint of itsparent store.The se
ond part of the entailment
ondition expressed in terms of our graphmodel means that no global variable is spe
ulatively bound in the store.Figure 2.17 shows a simple example how entailment is dete
ted after propagation.In step (1) the uni�
ation of a lo
al variable z with a global variable x binds thelo
al variable. In step (2) a spe
ulative binding of x to 1 is added. In step (3) xis bound in its home spa
e to y. This binding is propagated to the subordinatespa
e. This requires a uni�
ation step, whi
h leads to the spe
ulative binding ofy to 1. In step (4) y is bound in its home spa
e to 1. After the propagation ofthis binding the subordinated spa
e is entailed.2.10.3 DisentailmentThe dete
tion of disentailment is build on top of the ex
eption me
hanism of L.When the unif or another
onstraint operator dete
ts failure they raise a spe
ialex
eption,
alled a failure ex
eption.

2.10. SPACES 43

Space 2

Space 1

Space 2

Space 1

x: y:

z z

x: y:

unif (x, z)
z = lvar ()

unif (x, 1)

x: y: x: y:x: y:

x: y:
1

z

x/y:

z

x/y:

unif (x, y)

x/y:

unif (x, 1)

z

x/y:

x/y:

z

x/y: 1

z

x/y: 1

unif (1, 1)

unif (x, 1)

x/y: 1

val y = lvar ();
val t = (x, y);

val x = lvar (); 1 2 3

4

Figure 2.17: Entailment after propagation.

44 CHAPTER 2. THE LANGUAGE LWhen su
h a failure ex
eption rea
hes the default ex
eption handler of a thread,the spa
e is marked as failed. A spa
e marked as failed is disentailed. All sub-ordinated spa
es of a failed spa
e are marked as
an
eled. The threads in failedand
an
eled spa
es are not further exe
uted.In L we use re
ords with the single feature name Failure as indi
ation for failureexe
utions. The �eld value of this ex
eptions
an
ontain an arbitrary value whi
h
an be used for debugging purposes.2.10.4 MergingA spa
e
an be merged into its parent spa
e. The purpose of merging is to makethe
omputation of a subordinated spa
e available in its parent.Merging involves the following operations� New nodes and links are
opied from the merged spa
e to its parent. Lo
alnodes of the merged spa
e be
ome lo
al nodes of their parent.� The node of the root variable is typi
ally made available (see
onditionalbelow).� All threads of the merged spa
e are moved to its parent.� All subordinated spa
es of the merged spa
e are merged to its parent.� Spe
ulative bindings in the merged spa
e are turned into uni�
ation oper-ations in the parent spa
e.For the deep guard
onditional only the �rst two operations are relevant. Whena spa
e is entailed it has no threads, no subordinated spa
es, and no spe
ulativebindings.2.10.5 Deep guard
onditionalsThe deep guard
onditional cond is an operator whi
h takes three fun
tions
(guardF, thenF, elseF) as arguments. The evaluation of cond happens intwo steps.In step one a new spa
e is
reated as de�ned above. The new spa
e has aninitial thread
ontaining the appli
ation of the fun
tion guardF to the root vari-able. The se
ond step of the evaluation happens when the spa
e is entailed ordisentailed.

2.10. SPACES 45If the spa
e is entailed it is merged with its parent and the cond operator evaluatesto the appli
ation of the thenF fun
tion to the root variable.If the spa
e is disentailed the cond operator evaluates to the appli
ation of the
elseF fun
tion to the singleton value.2.10.6 Other situated nodesCells in spa
es Cells are situated nodes. When the
ontent of a lo
al
ell is
hanged this
hange is propagated to all subordinated spa
es.The
ontent of a global
ell
an be a

essed, but it
annot be modi�ed. This isthe reason why L has two built-in operators for
ells.The exchange operator applied to a global
ell raises an ex
eption. An alterna-tive design de
ision would be to suspend the ex
hange operation on global
ells.In L we have
hoose ex
eption, be
ause it is easy to implement. Suspending thethread does not seem really useful and would add an unne
essary
omplexity tothe implementation.Futures in spa
es Global futures loose the read-only prote
tion and are treatedas logi
 variables. Spe
ulative binding of global futures in spa
es is allowed.Only when a spa
e is merged the spe
ulative binding is redone in the parent spa
eusing uni�
ation, whi
h will suspend if the future is lo
al. Note, that in L thissituation does not o

ur, be
ause only entailed spa
es are merged.Treating global futures in the same way as lo
al futures, i.e. every binding attemptsuspends has an unwanted e�e
t. The problem whi
h o

urs is the following: as-sume an expression unif (x, 1); if x = 1 then ... is exe
uted in a spa
ewhere x is a global variable. Later an expression unif (x, f) , where f is afuture is exe
uted in the home spa
e of x. In this situation the spe
ulative bind-ing of x must be retra
ted and a thread unifying f and 1 must be exe
uted inthe subordinated spa
e. This thread will of
ourse
orre
tly suspend, but thede
ision based on spe
ulative binding
annot be retra
ted.A spe
ulative binding for
es the lazy
omputation of futures introdu
ed with the
byNeed operator.Feature
onstraints in spa
es Feature
onstraints are represented as vari-ables with attributes. These attributes play a similar role as variable bindingswrt. to spa
es.Variables with attributes preserve the invariant that attributes in subordinatedspa
es inherit all attributes from their parent. Global variables may have addi-tional attributes not available in parent spa
es.

46 CHAPTER 2. THE LANGUAGE LPropagation of attributes is similar to the propagation of bindings. If an attribute
on
i
t o

urs during propagation the attribute is repla
ed by the new one. Theold attributes are restated with the widthC resp. featureC operator as in theuni�
ation
ase.A spa
e is not entailed if the attributes of a global variable are stronger than theattributes of the variable in the parent spa
e.2.10.7 Dis
ussionStability,
loning and inje
ting With the deep guard
onditional it is possi-ble to syn
hronize on entailment or disentailment of a spa
e. To express
onstraintprogramming and
exible sear
h engines spa
es must support stability,
loning,and inje
tion.Stability is the property that a spa
e is neither entailed, nor disentailed, but ithas no threads whi
h
an exe
ute and no
hange in the store of a parent spa
e
an ever
hange this situation.Inje
tion allows to add a thread to a subordinate spa
e. The inje
ted threadexe
utes a user-de�ned fun
tion applied to the root variable. With inje
tion it ispossible to add for example new
onstraints into a spa
e.Cloning of a spa
e
reates an independent
opy. In a
lone global nodes are stilllinked to the
orresponding nodes in the parent, but all lo
al nodes are fresh.For example a
lone of a lo
al
ell is a new
ell independent of it original. The
lone of a global
ell on the other side is
onne
ted to the
orresponding
ell inthe parent spa
e.In this work we will not explain how stability,
loning, and inje
ting is imple-mented. These
on
epts are dis
ussed further in [90, 91, 89℄.Pattern mat
hing Pattern mat
hing
an be explained as an instan
e of the
onditional. The
ase expression
case y of fc1=x1,...,cn=xn g => e
an be expressed with the deep guard
onditional as
cond (fn x => let val ... xi = lvar () ... in

unif(x, (x1, ..., xn)),
unif(y, fc1 = x1, ..., cn = xn g)

end,
fn x => let val ... xi = lvar () ... in

unif(x, (x1, ..., xn));
e

end,
fn x => throw ...)

2.11. EXAMPLES 47The
ase statement is well suited as a primitive of the
ore language. The
asestatement
an be explained without introdu
ing spa
es. Its implementation ismu
h simpler and mu
h faster then with spa
es.Semanti
ally it is
onvenient to de�ne pattern mat
hing with the deep guard
onditionals to have a single semanti
 foundation instead of two slightly di�erentmodels. Espe
ially when using elaborated syn
hronization
onditions for
asestatements the semanti
s with deep guards has advantages. The major disadvan-tage of this semanti
s is that a lot of e�ort has to but into the optimization ofthe simple
ase [87, 14, 78℄.In [87℄ an extension of pattern mat
hing is dis
ussed whi
h allows
oreferen
esin patterns and reje
ts mat
hes of re
ords with
oreferen
es early, e.g. the eval-uation of the expression val x = lvar (); case (x,x) of (a,b) = > ...would suspend in our language forever. This mat
hing rule would be reje
tedimmediately in the extension of the
ase statement dis
ussed in [87℄.2.11 ExamplesTo show the usefulness of the language L a few simple examples in di�erentprogramming paradigms are shown.2.11.1 Fun
tional programming: AppendAs a language based on Standard ML it is trivial in L to write fun
tions like appfor
on
atenating lists or map for applying a fun
tion to all elements of a list.Note that these fun
tion do not require any expli
it
ode to syn
hronize on tran-sients. The exe
ution of the pattern mat
hing on the input arguments blo
ksautomati
ally if an in
omplete list is provided and resumes its exe
ution if thelist is further instatiated. Furthermore the map fun
tion does not blo
k, if thelist elements are transients.
(� Functional append �)
fun appF (nil, ys) = ysj appF (x::xr, ys) = x::appF (xr,ys);

(� Functional map �)
fun map (nil, f) = nilj map (x::xr, f) = f x :: map (xr,f);A major extension of L are logi
 variables and futures. Beside their usage aspowerful
ommuni
ation primitives they allow to write an eÆ
ient tail-re
ursiveversion of the list
on
atenation.

48 CHAPTER 2. THE LANGUAGE L
(� Tail�recursive append with futures�)
fun appFut (nil, ys, zs) = unif (zs, ys)j appFut (x::xr, ys, zs) =

let val zr = lvar () in
unif (zs, x :: future (zr));
appFut (xr, ys, zr)

end;This implementation is eÆ
ient be
ause the tail-re
ursion does not need memoryfor
reating and unwinding the re
ursion sta
k. This approa
h of
reating re-
ursive data stru
tures top-down,
an be also used in language with destru
tiveoperations. It is un
lear if a
ompiler
an automati
ally transform a fun
tion like
appF into an equivalent fun
tion using destru
tive operations internally, whi
hare not visible. E.g. the following transformation of appFut to appD is safe,be
ause no intermediate unde�ned values are ever visible outside of the fun
tion:
fun appHelp (nil, ys, zs) =

replaceTail (zs, ys)j appHelp (x::xr, ys, zs) =
let val zr= x::Undefined
in

replaceTail (zs, zr);
appHelp (xr, ys, zr)

end;
fun appD (nil, ys) = ysj appD (x::xr, ys) =

let val zs= x::Undefined in
appHelp (xr,ys,zs);
zs

end;An advantage of appFut as opposed to appD is that it
an be used as an agentin a
on
urrent appli
ation whi
h
onsumes a stream xs and produ
es a stream
zs even in the
ase that xs is not fully determined and has an open end.In this s
enario appFut is furthermore safe, be
ause the reader of the outputstream
annot
orrupt the open tail, be
ause it is always a future, whi
h
annotbe bound.2.11.2 Con
urrent lazy programming: HammingThe lazy generation of hamming numbers is a small example whi
h shows howby-need futures support lazy fun
tional programming.
(� Hamming numbers �)

2.11. EXAMPLES 49
(� A lazy stream merger �)
fun m (xs, ys) =

byNeed (fn () = >
case xs of x::xr = >

case ys of y::yr = >
if x<y then x::m (xr, ys)
else

if x>y then y::m (xs, yr)
else x::m (xr, yr));

(� A lazy n times generator �)
fun t (xs, n) =

byNeed (fn () = >
case xs of x::xr = >

n�x :: t (xr, n));

(� hs is a lazy stream of Hamming numbers �)
val hs = lvar ();
unif (hs, 1 :: m (m (t (hs, 2),

t (hs, 3)),
t (hs ,5)));

(� h is the 10000th hamming number:� 288325195312500000 �)
val h = nth (hs, 10000);The example is also useful as a ben
hmark for threads in L, be
ause for everyrequest of a by-need future a new thread is spawned.2.11.3 Feature
onstraints: PathsAs an example for feature
onstraints we de�ne a fun
tion to impose path
on-straints on trees. A path
onstraint de�nes that a
ertain path exists in a treeand returns the node at the end of this path.
fun path (rs, p::pr) =

let
val rr = lvar ()

in
featureC (rs, p, rr);
path (rr, pr)

endj path (rs,[]) = rs;

(� example �)
val r = lvar ();

50 CHAPTER 2. THE LANGUAGE L
val p = path (r, [1,2,3,4]);
unif (p,5);The path equality used in a deep guard
onditional tests if the node at the endof two path starting at the same node are the same.
fun pathEq (n,p1,p2) =

cond (fn m =>
(unif (m, path (n,p1));

unif (m, path (n,p2))),
fn n => n,
fn () = > false);The following examples shows how the path
onstraint and the path equality test
an be used.

(� entailment of records �)
val z = lvar ();
val y = ((1, (z, z), 3), 1);
val v = pathEq (y, [1,2,1], [1,2,2]);

(� returns z �)
(� entailment of open records �)
val y = lvar ();
val z = path (y,[1,2,1]);
unif (z, path (y,[1,2,2]));
val v = pathEq (y, [1,2,1], [1,2,2]);

(� returns z �)
(� disentailment �)
val z = lvar ();
val y = ((1, (1, 2), 3), 1);
val v = pathEq (y, [1,2,1], [1,2,2]);

(� returns false �)

Chapter 3The virtual ma
hine LVM
In this
hapter we des
ribe a virtual ma
hine (LVM) for L.3.1 OverviewThe virtual ma
hine is a re�nement of the language model de�ned in the previous
hapter.� The graph model of the store is re�ned to make essential aspe
ts of therepresentation expli
it.� The language of the LVM is de�ned as an imperative low-level ma
hinelanguage, whi
h is well suited for an emulator based approa
h.� The ma
hine language allows to integrate stateless data stru
tures, i.e.re
ords and pro
edures, into the byte
odes of ma
hine programs. An ex-ternal format,
alled pi
kles, is de�ned to represent ma
hine programs andstateless data stru
tures.� The
ontrol for the exe
ution of ma
hine programs is de�ned as a singlethreaded engine.� The ma
hine language supports pro
edures with multiple arguments. Fun
-tions are implemented with a new variable as output argument.� A
ompa
t representation of multiple
omputation spa
es is de�ned us-ing the s
ript te
hnique for maintaining multiple bindings of variables indi�erent spa
es. As an alternate te
hnique for this binding windows aredis
ussed. 51

52 CHAPTER 3. THE VIRTUAL MACHINE LVM
Store

Constraints Objects

Distribution

Library

Engine SpacesPickle

Figure 3.1: The modules of the LVM.3.1.1 Modules of the LVMThe LVM is modularized as follows (see also Figure 3.1):store The store of the LVM is a high level abstra
tion for storing dynami
allytyped values. It is at a high level
ompared to the linear storage model ofstandard hardware, but it provides a good intermediate model for explain-ing the design de
ision for representing data stru
tures (see Se
tion 3.3).engine The engine is the sequential
ontrol for the exe
ution of programs. Theengine has ma
hine registers and sta
ks, and exe
utes an imperative ma-
hine language. This part of the LVM ar
hite
ture maps very well to
om-mon hardware ar
hite
tures (see Se
tion 3.4).pi
kling Exe
utable programs are stored in an external format,
alled a pi
kle.A loader is responsible to transform a pi
kle into an internal representation,whi
h
onsists of a graph in the store and of the program
ode as threaded
ode suited for emulation. Pi
kles
an be
reated from the internal repre-sentation of a graph (see Se
tion 3.2).spa
es For the maintenan
e of multiple
omputation hooks are supplied in theengine and store modules, e.g. when a thread terminates entailment mustbe
he
ked and when a global variable is bound the spa
e management mustbe involved (see Se
tion 3.6).
onstraints Other
onstraint systems are integrated into the LVM as extensionsof logi
 variables with attributes to represent domain information. For theeÆ
ient implementation of
onstraint propagation a re�nement of threads,
alled propagators, is used, whi
h allows to implement spe
ialized threadsin C++.

3.1. OVERVIEW 53
Worker EmulatorScheduler

emulate

suspend
idle

run

terminate,preempt

next

pop,push,raise

Figure 3.2: The engine of the LVM.In this work we only
onsider the representation of open re
ords. Otheraspe
ts of the
onstraint extensions of Oz are dis
ussed in [70, 69, 118℄.distribution The LVM supports the transparent distribution of the store amongmultiple sites. In this thesis we des
ribe only the
entralized system withoutdistribution. Aspe
ts of distribution in Oz is explained in [40, 107, 39℄.obje
ts The support for obje
ts in the LVM is only partially tou
hed in our workwhen we explain how to integrate new built-in abstra
t data-types. Otherparts e.g. the support for eÆ
ient �rst-
lass messages, the maintenan
e ofthe self register, and the eÆ
ient a

ess to attributes and obje
t features isnot part of our work. Obje
ts in Oz are dis
ussed in [42℄.library Other parts of the LVM are
ommon libraries and fun
tions, e.g. forsta
ks, queues,
hara
ters, and strings, and an interfa
e to the operatingsystem, e.g. for I/O and memory management.The des
ription of the LVM in this thesis is an idealization of the
on
rete im-plementation Mozart [66℄. The LVM is explained at su
h a level that the maindesign de
isions and design alternatives are made expli
it. The des
ription isdetailed enough to understand the Mozart implementation and it allows for there
onstru
tion of the Mozart VM.3.1.2 The engineThe engine is the sequential
ontrol for the exe
ution of
on
urrent threads. Themain parts of the engine are the s
heduler, the worker, and the emulator.

54 CHAPTER 3. THE VIRTUAL MACHINE LVMA high-level obje
t model of the engine, where the s
heduler, the worker, and theemulator are obje
ts sending messages to ea
h other, is shown in Figure 3.2. Theobje
ts and messages are explained in the following paragraphs.The LVM is a single threaded operating system pro
ess. The light-weight threadsof the language are implemented as user-level threads with a round robin s
hedul-ing poli
y. The s
heduler is responsible for the fair and preemptive s
hedulingof
on
urrent threads. When bi runnable thread exists the s
heduler runs in theidle loop, typi
ally waiting for I/O. When one or more threads are runnable thes
heduler sele
ts one using a fair strategy and invokes the worker to run thisthread.The worker exe
utes a single thread until it is �nished or until the preemption
ondition is rea
hed. In the �rst
ase the worker sents the terminate message tothe s
heduler and in the se
ond the preempt message.A thread
ontains tasks, whi
h are exe
uted sequentially following a sta
k dis-
ipline. A task is a
losure
ontaining the byte
ode, a pro
edure environment,and a lo
al environment. The environments are mappings from indi
es to nodesin the store. The pro
edure environment is allo
ated per pro
edure and is a

es-sible through the G registers. The lo
al environment is allo
ated per pro
edurea
tivation and is a

essible through the Y registers.The worker exe
utes the tasks and sents the emulate message to the emulatorto exe
ute the ma
hine
ode of a task. The emulator interprets instru
tion perinstru
tion of the byte
ode indi
ated with the next message, until it rea
hes theend of the instru
tion sequen
e (pop), until a new task is
reated (push), or untilan ex
eption is raised (raise). In these
ases
ontrol is passed ba
k to the worker.Control is passed to the s
heduler with the suspend message, when the exe
utionof an instru
tions must blo
k, e.g. when a determined node is expe
ted, but atransient node is found.The main parts
omprising the state of the engine are shown in Figure 3.3 andan overview of their role is given in the following paragraphs.Store The graph store, the atom and arity table, and the operations on thegraph are dis
ussed in Se
tion 3.3. For the introdu
tion of the LVM it is suÆ
ientto understand that the graph has labelled nodes, with dire
ted labelled links. Thenodes in the store are referen
ed through ma
hine registers and from the ma
hine
ode.Instru
tions and built-in pro
edures The operations performed by the en-gine are de�ned by the instru
tion set and by a number of prede�ned pro
edures,
alled built-ins. The instru
tions have the advantage that they are part of theworker with full a

ess to the state of the LVM and with an eÆ
ient dispat
h.

3.1. OVERVIEW 55

GPC Y

Running

GPC Y

SR

Status

...

definition(...)
callX(1)

putConst(n,1)

Runnable

Suspension

Thread

1

’bill’

N

env

1 2

M

x/e

’a’ ’b’

Task

1: flower

4: f
...

2: a
3: bill

...

2: {1,2}
1: {’a’,’b’,1}

3: {N}
4: {Hd,Tl}

Arity table

Program store

Atom table

Graph store

... X

Global registersFigure 3.3: The state of the LVM.

56 CHAPTER 3. THE VIRTUAL MACHINE LVMBuilt-in pro
edures on the other side allow to fa
tor out parts of the engine tomake the emulator lean. The overhead for built-in pro
edures is a fun
tion
allwith the preparation of its arguments and the test of the return status.X and SP A worker maintains the state for the exe
ution of a single thread.The worker has a �xed number of global registers X to store temporary referen
esto nodes and to pass arguments to pro
edures.The register SP is the stru
ture pointer whi
h is used to read or write the �eldsof re
ord in
rementally (see Se
tion 3.4).Threads and tasks A thread has a sta
k of tasks. A task
onsists of a triple(PC; Y;G), where PC is the address of the next instru
tion in the program store,Y is a lo
al environment with a number of registers, and G is a referen
e to the
urrent pro
edure. The tasks of the LVM are similar to sta
k frame in imperativelanguages. The worker exe
utes the tasks on the sta
k sequentially. A task isexe
uted by emulating the instru
tion at the PC using the lo
al environmentand the environment de�ned by the
urrent pro
edure. The lo
al environment isimplemented as a node in the store with a �xed number of modi�able �elds.Program store The program store
ontains ma
hine programs. A ma
hineprogram is a sequen
e of ma
hine instru
tions. A ma
hine instru
tion
onsistsif a byte
ode and arguments. Every instru
tion has an address. The program
ounter, whi
h is stored in the PC register,
ontains the address of the
urrentlyexe
uted instru
tion.The internal representation of the program store uses threaded
ode for an ef-�
ient emulation. This internal representation is not relevant for this overviewof the design of the LVM. In the following we use a readable assembler syntaxfor instru
tions, whi
h is summarized in Figure 3.8 on page 62 and Figure 3.9 onpage 63.Implementation Implementing the model presented above dire
tly in C++,where the s
heduler, worker, and emulator are obje
ts sending messages to ea
hother, is not possible. It would
reate deeply nested re
ursion sta
ks, be
ause theC++ standard does not require tail-
all optimization and only very few C/C++
ompiler implement it.The implementation is therefore broken down into a single pro
edure with la-bels and gotos as outlined in Figure 3.5. The main registers of the engine aresummarized in Figure 3.4.

3.2. THE MACHINE LANGUAGE 57type register name des
ription
Space� space
urrent spa
e
Thread � running running thread
ThreadQueue runnable runnable threads
ProgramCounter PC program
ounter
Tagged[] X global registers
Tagged � Y lo
al environment
Procedure � G pro
edure environment
volatile unsigned SR status register
union f

Tagged exception; raised ex
eption
Tagged suspendVarList; transients listg retInfo return infoFigure 3.4: The registers of the engine.The s
heduler is implemented with the entry points Schedule , Suspend , Terminate ,and Preempt (see Se
tion 3.5). The worker is implemented with the entry points

Raise , Pop and Run. The push method to
reate a new task is dire
tly imple-mented in the
orresponding instru
tions (see Se
tion 3.4). The emulator usesthe threaded
ode te
hnique [11, 21, 54℄ as an eÆ
ient method to dispat
h on theinstru
tion1.3.2 The ma
hine languageThe ma
hine language of the LVM is an imperative language with instru
tionsand built-in pro
edures. A
ompiler translates the high-level language L into thisma
hine language.3.2.1 Pi
klesA pi
kle is a
losed representation of a graph spawned by a node in the store.Pi
kles
ontain stateless repli
able nodes and
ode. Repli
able nodes are nodeswhi
h have no state. Re
ords and pro
edures are repli
able and
ells and tran-sients are non-repli
able. If a graph spawned by a node
ontains a non-repli
ablenode it
annot be represented as a pi
kle.1The GNU C++
ompiler supports the nonstandard feature of
omputed labels, whi
his need for threaded
ode generation. The implementation provides a
ompilation swit
h todisable threaded
ode.

58 CHAPTER 3. THE VIRTUAL MACHINE LVM
engine() f

runnable = ... // initialize

Schedule:
if (SR) handleEvents();
while (runnable �>empty()) idle();
running = runnable �>get();
startTimer(TimeSlice);
goto Run;

Suspend:
running �>saveX(X);
goto Schedule;

Terminate:
goto Schedule;

Preempt:
running �>saveX(X);
runnable �>add(running);
goto Schedule;

Raise:
running �>raise(retInfo.exception);
goto Run;

Pop:
goto Run;

Run:
if (statusReg) goto Preempt;
if (running �>empty()) goto Terminate;
(PC,Y,G) = running �>popTask();
goto �PC; // threaded code emulator

MOVEX X: ...
PC+=3;
goto �PC;

CALLX: ...
running �>push(...);
goto Run;

RETURN:
goto Run;

... g Figure 3.5: The main pro
edure of the engine.

3.2. THE MACHINE LANGUAGE 59e ::= int(s) integerj atom(s) atomj name(s) global namej re
(n; e1; e01; : : : ; en; e0n) re
ordj tup(n; e1; : : : ; en) tuplej
ons(e; e0) list elementj pro
(s; [e1; : : : ; en℄; lbl; :::) pro
edurej bi(s) built-in pro
edurej v : e labelled expressionj ref(v) referen
ev ::= an identi�er label of a nodes ::= a stringlbl ::= an identi�er
ode labelFigure 3.6: The pi
kle format.Pi
kles allow to
reate persistent representation of nodes and
ode. The
reationof su
h a representation is
alled pi
kling and the operation to internalize a pi
kleis
alled loading. Pi
kling takes a node and
reates the pi
kle representation ofthe graph spawned by the node. The load operation reads the pi
kle des
rip-tion,
reates an internal representation, and returns the node whi
h was used forpi
kling.A pi
kle
onsists of two major parts: the representation of the nodes and therepresentation of the byte
ode. Figure 3.6 shows an overview of the representationof the nodes v. The byte
odes are summarized in Figure 3.8 and Figure 3.9.Integers, atoms, and re
ords The representation of a node starts with a tag,e.g. int, atom, followed by a number of arguments. Integers int(s) and atomsatom(s) are represented using a string representation for their numeri
 resp.symboli
 value. Re
ords are represented as re
(n; e1; e01; : : : ; en; e0n) with theirwidth n, their features e1; : : : ; en and the
orresponding �eld values e01; : : : ; e0n.Tuples tup(n; e1; : : : ; en) are represented as
ompa
t re
ords without the featuresand list elements
ons(e; e0) also without the features and the width.Names For the representation of names as name(s) the LVM generates aunique string s. This string s is build of several
omponents: a unique iden-ti�er for the LVM pro
ess and a unique
ounter value whi
h is
hoosen when anew name is
reated.The unique identi�er for a LVM pro
ess is
reated from the internet address of
omputer (ip address), the time when the LVM was started (timestamp), the

60 CHAPTER 3. THE VIRTUAL MACHINE LVM
Source Compiler Pickle Loader Engine

Store

Program
Machine-Figure 3.7: From Oz sour
e to the LVM.pro
ess id (pid), and a random number. Under the assumption that all hostshave a unique internet address this ip address, the timestamp, and the pid wouldalready give a unique identi�
ation of an LVM pro
ess, but many hosts do nothave a unique ip address therefor some form of randomness is added.Referen
es Cy
les in the graph are represented using labelled nodes v : e. A la-belled node is referred by a referen
e ref(v). For example v : tup(2; ref(v); ref(v))is the representation of the tree generated by the expression

let val x = lvar () in unif (x, (x,x)); x end.Pro
edures The representation of a pro
edure pro
(s; [e1; : : : ; en℄; lbl; :::) hasas �rst argument a globally unique string as de�ned above for names. The fol-lowing argument
ontains the nodes e1; : : : ; en stored in the G registers. Thelast argument lbl is the
ode label of the start of byte
ode for the pro
edurebody. A pro
edure has further arguments, e.g. a print name and other debugginginformation, whi
h are irrelevant here.Built-in pro
edures are represented as bi(s), where s is a unique name of a built-inpro
edure, e.g. 're
ord' or 'newName'.Compiling and loading Pi
kles are
reated by the Oz
ompiler. The Oz
ompiler translates an Oz sour
e �les using a given environment into a pi
kle(see Figure 3.7). The pi
kles
reated by the
ompiler are fun
tors. A fun
tor2is a data stru
ture whi
h
onsists of a spe
i�
ation of its dependen
y (importedmodules), a pro
edure, and a spe
i�
ation of the resulting module. When thepi
kle is loaded into the LVM the import dependen
ies are resolved. Then thepro
edure of the fun
tor is applied to the nodes obtained by this resolution. Theappli
ation returns a module.The loader
onverts the pi
kle format of the byte
ode to the internal formatexe
uting the following steps:2We do not explain the details of fun
tors here (see [22℄ for more information).

3.2. THE MACHINE LANGUAGE 61� Create the graph representation.� Internalize strings to atoms, stati
 names, and integers.� Internalize feature lists to arities.� Convert the byte
ode into threaded
ode [11, 21, 54℄.� Initialize the inline
a
hes of
ertain instru
tions.� Internalize built-in names to built-in pro
edures.� Internalize swit
h tables for the indexing instru
tions.� Resolve optimized
alls.� Platform dependent byte order
onversion.3.2.2 Instru
tionsThe instru
tions of the LVM are summarized in Figure 3.8 and Figure 3.9. Thenumber of instru
tion is less than 150, whi
h is an indi
ation that the byte
ode ofthe LVM is very
ompa
t. In this se
tion we give only an overview of the existinginstru
tions. In the following se
tions we introdu
e them step by step.The instru
tions are stru
tured into the following
ategoriesStore operations The
reation and a

ess of symboli
 data stru
tures is an es-sential property of the LVM and it has a number of instru
tions to eÆ
ientlymaintain them.The LVM does some optimizations for numeri
 data by implementing someof the arithmeti
 operators as instru
tions, but we have not spent mu
he�ort to
ompete with other languages wrt. numeri

al
ulations.Control The LVM has extensive support for simple tests and pattern mat
hingon re
ords. Furthermore instru
tions for threads, ex
eptions, lo
ks, anddeep guards are available.Pro
edures Pro
edures are at the heart of the LVM. Many instru
tions supportthe de�nition and appli
ation of pro
edures and the maintenan
e of thelo
al environment.Uni�
ation The LVM has a number of instru
tions to support the eÆ
ient
ompilation of uni�
ation. The major reason for optimized uni�
ation isthat the LVM uses variables to pass output arguments.

62 CHAPTER 3. THE VIRTUAL MACHINE LVMStore operations (28)
moveXX(i; j) [/XY/YX/GX℄ register move
moveMoveXYXY(i; j; i0; j0) [/YXYX/YXXY℄ multiple register move
putRecordX (ar; i) [/Y℄
reate re
ord node
putListX (i) [/Y℄
reate list node
putConstant (v
; i) load node in register
setVariableX (i) [/Y℄ put new var in �eld
setVoid (n) put n new vars in �elds
setValueX (i) [/Y℄ put value in �eld
setConstant (v
) put
onstant in �eld
select (i; v
; j;
key;
ind) �eld sele
tion with
a
hing
createVariableX (i) [/Y℄
reate new variable
createVariableMove (i; j) . . .
ombined with move
inlinePlus (i; j; k) addition
inlinePlus1 (i; j) add one
inlineMinus (i; j; k) subtra
tion
inlineMinus1 (i; j) subtra
t one
testLT (i; j; l) less than test
testLE (i; j; l) less or equal testControl (23)
matchX (i; ht) [/Y℄ indexing
getVariableX (i) [/Y℄ get value from �eld
getVarVarXX (i; j) [/XY/YX/YY℄ . . . double value
getVoid (n) skip �elds
testConstantX (i; v
; l) [/Y℄ equality test
testRecordX (i; ar; l) [/Y℄ test arity
testListX (i; l) [/Y℄ test list element
testBoolX (i; l; l) [/Y℄ test boolean
testBI (bi; lo
; l) built-in appli
ation and test
try (l) install ex
eption handler
popEx deinstall ex
eption handler
lock (l, i) require lo
k
cond (l; l0)
onditional
branch (l) forward jumpPro
edures (35)
definition (i; pro
Body) pro
edure de�nition
definitionCopy (i; pro
Body; v
opy) . . . optimized
endDefinition (l) marker
callX (i; n) [/Y/G℄ �rst-
lass appli
ation
tailCallX (i; n) [/Y/G℄ . . . tail-re
ursive
directCall (v; n) �rst-order appli
ation
directTailCall (v; n) . . . tail-re
ursive
callBI (v; lo
) built-in appli
ation
return end of task
allocateL (i) environment allo
ation
allocateL1 [/2/3/4/5/6/7/8/9/10℄ . . . with �xed size
deallocateL (i) environment deallo
ation
deallocateL1 [/2/3/4/5/6/7/8/9/10℄ . . . with �xed sizeFigure 3.8: Instru
tions (Part I)

3.2. THE MACHINE LANGUAGE 63
Uni�
ation (17)

unifyXX (i; j) [/XY℄ uni�
ation
getRecordX (ar; i) [/Y℄ . . . with re
ord
getListX (i) [/Y℄ . . . with list
getListValVar (i; j; k) . . .
ombined
getConstantX (v
; i) [/Y℄ uni�
ation with
onstant
unifyVariableX (i) [/Y℄ read/write variable in �eld
unifyVoid (n) read/write variables in �elds
unifyValueX (i) [/Y℄ read/write value in �eld
unifyValVarX (i; j) [/Y℄ . . .
ombined
unifyConstant (v
) read/write
onstant in �eldObje
ts (14)
getSelf (i) read self register
setSelf (i) write self register
inlineAt (v
; i;
key;
ind) attribute a

ess
inlineAssign (v
; i; j;
key;
ind) attribute assignment
sendMsgX(v; i; ar;
key;
val) [/Y℄ message sending
tailSendMsgX (v; i; ar;
key;
val) [/Y℄ . . . tail-re
ursive
applMethX (ami; v
) [/Y/G℄ method appli
ation
tailApplMethX (ami; v
) [/Y/G℄ . . . tail-re
ursiveDebugging (9)
skip no operation
raiseError (v; v0; v00; v000) raise error ex
eption
debugEntry (: : :) enter pro
edure
debugExit (: : :) exit pro
edure
globalVarname (v
) print name of G register
localVarname (v
) print name of Y register
clearY (i) mark register unused
profileProc start pro�ling
endOfFile markerFigure 3.9: Instru
tions (Part II)

64 CHAPTER 3. THE VIRTUAL MACHINE LVMi; j; k register indi
esn positive numberv a label of a nodev
 label of a
onstant nodel
ode labelar re
ord aritypri pro
edure infod
i dire
t
all infoami appli
ation method infoht hash table

a
heFigure 3.10: Instru
tion arguments.Obje
ts We will not explain the instru
tions whi
h support obje
ts. They arelisted here just to give an impression how mu
h support is given for obje
tsin the LVM.Debugging The
ompiler
an generate extra
ode, whi
h allows a debugger torelate the byte
ode to the sour
e
ode and to pro�le the
ode.The identi�ers used for arguments are summarized in Figure 3.10. We explainthem when we introdu
e the instru
tions.Dire
t nodes An unusal aspe
t of the Oz byte
ode is the dire
t referen
e tonodes in the store from the byte
ode. In the instru
tion tables the arguments
ontaining su
h dire
t nodes are indi
ated with a v pre�x.Dire
t nodes in instru
tions provide for
ertain optimizations:� Nodes
an be a

essed dire
tly without an indire
tion through registers.� Nodes need not to be stored in pro
edure environments.� It be
omes possible to use unboxed representation of some data stru
tures.The optimized �rst-order appli
ation is for example transformed at run-time into an internal instru
tion using an unboxed representation of thepro
edure.� Some data stru
tures, e.g. strings, atoms, and names,
an be
reated atload time and need no resour
es at run time.Dire
t nodes are inserted by the
ompiler. The
ompiler
an
reate these nodesat
ompile time, e.g. strings, atoms, and names. Dire
t nodes may be also taken

3.2. THE MACHINE LANGUAGE 65void* CodeLabelint32 Arg1. . .int32 ArgNFigure 3.11: Instru
tion formatfrom the
ompiler environment, e.g. referen
es to already loaded pro
edures for�rst-order appli
ations. When the
ompiler
reates a pi
kle all nodes referred tofrom the byte
ode are pi
kled too.The possibilities opened by using dire
t nodes in the
ompiler-VM interfa
e arenot fully explored yet, but the
urrent usage shows already that they are veryuseful.Internal format The program store is represented as an array of 32-bit words.An instru
tion starts with a pointer to the native
ode implementing the instru
-tion (threaded
ode). The following words are the arguments of the instru
tionand their number depends on the type of instru
tion (see Figure 3.11). Thenumber of words needed for an instru
tion is
alled the size of the instru
tion.In the internal format more instru
tions are supported than listed above. In thefollowing we will explain these extensions to the byte
ode when they are needed.3.2.3 Addressing modesThe instru
tions of the virtual ma
hine
an use three di�erent addressing modesfor refering nodes in the graph store:� The X addressing mode uses the global X registers, whi
h are allo
atedper thread.� The Y addressing mode uses the lo
al environment, whi
h is allo
ated perpro
edure invokation.� The G addressing mode uses the pro
edure environment, whi
h is allo
atedper pro
edure de�nition.In the assembler notation the symbol Ri represents one of these modes plus anindex. Register indi
es start with zero. For example the register G5 refers to thesixth entry in the
urrent pro
edure environment.

66 CHAPTER 3. THE VIRTUAL MACHINE LVMSupporting all addressing modes for all instru
tions makes the instru
tion set veryregular, but a drawba
k is that too many op
odes are needed. Three op
odesare for example ne
essary for instru
tions with one register argument and nineop
odes are required for instru
tions with two register arguments.The LVM instru
tion set is designed su
h that frequently used addressing modesare dire
tly supported, e.g. the call instru
tion supports all three addressingmode. When an addressing mode is used infrequently at least the X addressingmode is supported, be
ause it is always possible to load any register into an Xregister with additional moves.3.2.4 Dis
ussionThreaded
ode Threaded
ode [11, 21, 54℄ is the state of the art method for avery eÆ
ient dispat
h on the byte
odes of instru
tions. Threaded
ode requiresthat the implementation language supports
omputed jumps. In our
ase theC++ language does not support
omputed jumps, but the GNU C++
ompilerhas an extension whi
h supports them.A drawba
k of threaded
ode is that the emulator is one huge C++ pro
edure,whi
h makes it hard for the C++
ompiler to generate highly optimized
ode.An alternative whi
h was re
ently proposed by Magnusson, et al. [61℄ is based onthe assumption that a C++
ompiler does the tail
all optimization and manyma
hine registers are available. In this
ase every instru
tion
an be implementedas a fun
tion whi
h does a tail-
all to the next instru
tion. The state of theemulator is passed in the arguments of these fun
tions.Sta
k ma
hines Many virtual ma
hines use an operand sta
k instead of globalregisters, e.g. the JVM [60℄. A major advantage of a sta
k ma
hine is that noregister allo
ation is ne
essary in the
ompiler. For these ma
hines advan
edruntime optimizations resp. optimizations when translating the ma
hine
ode tonative
ode are ne
essary [23, 24℄.Closure
onversion The G addressing mode
an be removed using a
ompi-lation te
hnique
alled
losure
onversion [7℄. The
losure
onversion adds addi-tional arguments to every pro
edure through whi
h the free variables are passedwhen the pro
edure is applied. A drawba
k of
losure
onversion is that it maybe ne
essary to save the free variables from the additional arguments in the lo
alenvironment. This is not ne
essary in our approa
h, be
ause the free variablesare stored in the global environment.

3.3. A REFINED GRAPH MODEL 67Closure
onversion
ould also be applied to our language. It would redu
e thenumber of instru
tions, but it would not give any speed up, be
ause the G ad-dressing mode does not in
ur an overhead in our emulator-based LVM.3.3 A re�ned graph modelThis part of the thesis des
ribes a re�ned graph model for the store of the LVM.The store is a module of the LVM whi
h is independent of the exe
ution model.It provides hooks to support multiple
omputation spa
es whi
h are explained inSe
tion 3.6.The level of detail exposed in the re�ned graph model is su
h that the key de-sign de
isions and optimizations of the implementation
an be dis
ussed, e.g.optimized representation of variables in stru
tures, usage of registers, storage
onsumption, and memory management.The re�nements of the graph model whi
h are explained below
an be summarizedas followstagged nodes Units are represented as tagged nodes.three-level tagging s
heme A unit is either represented as a single taggednode, a tagged node with a heap node, or a tagged node with a generi
node.referen
e nodes Binding of variables is implemented with referen
e nodes.eÆ
ient
y
le
he
k The
y
le
he
k in the uni�
ation algorithm is imple-mented with a destru
tive operation on the graph.3.3.1 Node
lassi�
ationFigure 3.12 shows a
lassi�
ation of nodes in the LVM. In the following paragraphsthe properties of the di�erent node types are de�ned.The nodes in the LVM store
an be
lassi�ed into tagged nodes and heap nodes,whi
h are de�ned below.Tagged nodes are small nodes. Tagged nodes have a label,
alled the tag. Thetag dis
riminates di�erent kinds of units. Tagged nodes are small nodes,be
ause they must �t into one ma
hine word of the real ma
hine. All datastru
tures represented in the graph are referred to through a tagged node.

68 CHAPTER 3. THE VIRTUAL MACHINE LVM
Direct

Tagged

Node

Heap

GenericLabelledUnlabelledPointerFigure 3.12: Classi�
ation of nodes.Dire
t nodes are tagged nodes with an additional label. The tag and thislabel is suÆ
ient to represent a unit dire
tly.Pointer nodes are tagged nodes with have a single link to a heap node.Pointer nodes store only the type information of a unit dire
tly. Otherparts of the representation are stored in the heap node.Heap nodes are nodes of arbitrary size. Heap nodes are only referred to throughpointer nodes. They represent those parts of a unit whi
h does not �t inthe tagged node.Unlabelled heap nodes are heap nodes with do no have a se
ondary tag.The primary tag in the pointer node is suÆ
ient to dis
riminate thetype of the unit.Labelled heap nodes are heap nodes with a se
ondary tag . The and these
ondary tag together dis
riminate the type of the unit.Generi
 heap nodes are heap nodes whi
h hide the details of their rep-resentation. These nodes are only a

essible through a number ofinterfa
e fun
tions.A unit is either represented as a dire
t node or as a pointer node and a heap node(see Figure 3.13).Figure 3.14 shows an overview of the tags in the LVM. The
on
ept of taggednodes is essential for the design, be
ause:1. Every tagged nodes needs the same amount of memory. This means amemory
ell storing su
h a node
an be used and maybe updated to storedi�erent nodes of this
lass. Espe
ially for a dynami
ally typed languagethis property is needed, be
ause nodes of arbitrary types
an for examplebe passed as arguments and stored in �elds.

3.3. A REFINED GRAPH MODEL 69
CONS

REC

GEN

tagged node

pointer node generic heap node

vt: gc, type, ...

pointer node unlabelled heap node

Hd Tl

pointer node labelled heap node

TUP

1
INT

Figure 3.13: Examples of node representations.
Tag Dire
t pointer toREF tagged referen
eWREF tagged write referen
eVAR spa
e optimized variableFUT spa
e optimized futureTRANS labelled gen. transientCONS unlabelled list elementREC labelled re
ord or tupleLIT labelled atom or nameINT int value small integerFLOAT unlabelled
oat valueEXT labelled labelled extensionGEN generi
 generi
 extensionFigure 3.14: Tagged nodes.

70 CHAPTER 3. THE VIRTUAL MACHINE LVM
Graph view

Tagged Heap

Implementation view

Tagged Heap

Figure 3.15: Fields are glued with their heap node.2. The word size of tagged nodes is the natural size for operations of pro
es-sors, e.g. load, store, and arithmeti
 instru
tions typi
ally operate mosteÆ
iently on words.Fields Heap nodes in the LVM have a regular stru
ture. They
an have multiplelabels, e.g. a se
ondary tag or an arity, and a number of �elds. The number of�elds is
alled the �eld width. The �elds are ordered and they are a

essed bynumbers f1; : : : ; ng.A �eld has a �eld value, whi
h is a tagged node. In the LVM all �eld values
anbe modi�ed. When new heap nodes are
reated all �eld values are initialized tothe tagged zero, whi
h is a spe
ial tagged node, with tag zero and pointer �eldzero, used to indi
ate an ex
eptional value. The initialization of the heap nodesupdates this tagged zeros to useful values.An essential aspe
t of �elds is that a heap node with n �elds has enough storageto represent the n tagged nodes in the �elds. When we draw a graph (see Fig-ure 3.15) we use arrows between the heap node and its �elds values, but thesearrows are spe
ial be
ause they do not need any memory. A pi
ture whi
h givesa better intuition is that of a heap node with dire
tly glued tagged nodes.Changes to the graph invariants A
onsequen
e of storing tagged nodes in�elds and registers is that these nodes
an be overwritten and thus destroyed.This is a major
hange with respe
t to the language graph, be
ause in the re�nedgraph one has to be very
areful when
reating links to tagged nodes, that thislink is not broken unintentionally by overwriting the �eld resp. register.To alleviate this problem no links to nodes in registers
an be
reated and onlylinks to nodes in �elds whi
h are not modi�ed are
reated in the LVM.

3.3. A REFINED GRAPH MODEL 71Register nodes Register nodes are a sub
lass of tagged nodes whi
h
an bestored in registers of the LVM. The unique property of register nodes is thatthey
an be repli
ated without
hanging the meaning of the unit they represent.Ex
ept for transients (TRANS, VAR, FUT) all tagged nodes of the LVM havethis property.This property is for example needed to make the register allo
ation independentof the store. The
ompiler
an move and
opy nodes between registers freely.Another example is the initialization of �elds in new heap nodes. They
an beinitialized by
opying register nodes into the �elds values.3.3.2 Re
ordsThe LVM supports di�erent representations for re
ords: as names and atoms, aslist elements, as tuples, and as other re
ords.Literals Literals are names and atoms. They are represented as tagged pointerswith the tag LIT. Their heap node has a se
ondary tag to distinguish atoms andnames.The heap node of an atom is labelled with the string of
hara
ters for the atom.A string is internalized into the LVM through an atom table whi
h guaranteethat every atom is represented with an unique node. The atom table maps astring uniquely to an atom node in the store.The heap node of a name is labelled with a number and its home spa
e. Thenumber is used for generating a hash value for the eÆ
ient implementation of thearity (see below). A se
ond reason for a number is that names must be orderedto simplify the
reation of new arities. Names are situated in spa
es and needtherefore a home spa
e (see Se
tion 3.6).Non-primitive re
ords List elements are represented as tagged pointers (CONS)with an unlabelled heap node with �elds for the head and tail of the list. Listelements obtain spe
ial optimizations be
ause they are the most frequently usedkinds of re
ords.The representation of tuples and other re
ords is not really di�erent. Only therepresentation of the arity (see below) is optimized in the
ase of tuples. Re
ordsare represented as tagged pointers with the tag REC. The heap node has thearity as label and �elds. The number of �elds of the heap node is equal to thewidth of the re
ord.Re
ords are always represented in a
anoni
al form. This means that everyoperation produ
ing a re
ord needs to normalize it, if it is a list element or a

72 CHAPTER 3. THE VIRTUAL MACHINE LVMtuple. The reason for this is that the equivalen
e test in the uni�
ation algorithmbe
omes simple. Two re
ords are only equal if at least the tags in the taggednodes are the same and also the arities in the
ase of non-list re
ords.Arities A re
ord arity is a partial fun
tion from the set of features to a integer.The features f
1; : : : ;
ng are mapped to the numbers f1; : : : ; ng.The arity has the additional fun
tionality to eÆ
iently implement the memberfun
tion to test if a feature is in the domain of the arity fun
tion. The arityfun
tion is therefore extended to a total fun
tion mapping the features not in thedomain to the index 0.Arities are uniquely represented in the LVM. For every set of features a uniqueentry in the arity table is used. The
osts for
reating resp. �nding a unique arityhave to be paid when new re
ords are
reated. In many
ases the arity
an be
reated at
ompile resp. load time. Only when arities are
reated dynami
allythe
osts for
reating a unique arity must be paid at run-time.Unique arities allow to test the equality of two arities very eÆ
iently. This isfor example ne
essary for inline-
a
hing of �eld sele
tions and for the eÆ
ientuni�
ation and mat
hing of re
ords.For the eÆ
ient
ompilation of re
ord
onstru
tion and re
ord mat
h (see Se
-tion 3.4) a global order on all features must exist. This order must be
onsistentwith the mapping of the arities: if f < f 0 wrt. to the global order then in everyarity
ontaining f and f 0 the mapping of f must be less than the mapping of f 0.3.3.3 TransientsAn essential
hange in the re�ned graph model is the representation of transients.In the language graph the binding of transients was explained as superimpositionof a new node on the transient. It is pra
ti
ally not possible to implement thisoperation dire
tly, be
ause all links to the transient
annot be redire
ted to itsbinding.Referen
es Transients in the LVM use a variation of the representation intro-du
ed in the WAM for logi
 variables. A transient is only a

essible through anindire
tion,
alled a referen
e. A referen
e is tagged pointer with the tag REFwhere the pointer refers to another tagged node.Transients are represented as tagged pointers with tag TRANS and a labelledheap node, whi
h
ontains a se
ondary tag for the di�erent kinds of transients,the home spa
e, the suspensions, and possibly attributes.

3.3. A REFINED GRAPH MODEL 73
REFREF REF

TRANS

VAR

x:

unif (y, z)

VAR

REF REF

TRANS

REF

TRANS

FUT

y: z:

unif (x, 1)

REFREF REF

INT1

REF REF REF REF

TRANS

FUT

z:

REF

Figure 3.16: Binding transients with multiple referen
es.Binding A transient is bound by overwriting its tagged node with a new taggednode. Figure 3.16 shows a variable x with multiple referen
es whi
h is bound tothe number 1 and a uni�
ation of a variable y with a future z .Dereferen
ing The referen
e nodes are not
hanged when a variable is boundand remain in the graph. When binding a transient to another transient a
hainof referen
es is
reated. A referen
e node
an therefor refer to a transient node,another referen
e node, or a determined node.The LVM handles these
ases by transparently dereferen
ing tagged nodes, beforeusing them. The dereferen
e operation follows a
hain of referen
e nodes untilthe end. The dereferen
e operation is performed whenever the type of a node isneeded.Van Roy [104, 105, 106℄ uses an alternative design for dereferen
ing for high-performan
e Prolog implementations. In this approa
h referen
es are not deref-eren
ed transparently, but an expli
it operation to dereferen
e a node is used.This s
heme is espe
ially useful if the
ompiler �nds out, e.g. with global analysiste
hniques, where no referen
es ever o

ur.

74 CHAPTER 3. THE VIRTUAL MACHINE LVMIn most
ases the dereferen
e operation is needless, be
ause only very few ref-eren
e nodes exist in typi
al programs. The LVM
an
ir
umvent the problemof useless dereferen
e operation, be
ause it is dynami
ally typed. Whenever anode of a
ertain type is expe
ted, e.g. an integer in an arithmeti
 operation, atype test has to be performed anyway to ensure that the node is of the expe
tedtype. In the LVM the test for the expe
ted type is done before the dereferen
eoperation. Only if the node is not of the expe
ted type a dereferen
e operationis performed and the type test is repeated.The following program fragment shows the example of an operation to add oneto a node, whi
h is expe
ted to be an integer.
Tagged plus1(Tagged a) f
if (!isInteger(a)) f

a=deref(a);
if (!isInteger(a)) error;g

// perform operation on integer node
...gSafe dereferen
ing As already pointed out transient nodes are no registernodes and they
annot be dupli
ated. A problem whi
h o

urred frequently dur-ing the implementation was the repli
ation of transients after using dereferen
ing.One has to be very
areful that the node obtained by the dereferen
e operator isonly stored in registers if it is no transient.To
ir
umvent this kind of bugs an alternative to the dereferen
ing until the endof a referen
e
hain is the safe dereferen
ing whi
h guarantees that only registernodes are returned. A referen
e node is only returned if it is the last referen
e ina
hain whi
h points to a transient.Shorten referen
e
hains The virtual ma
hine guarantees that no
y
li
 ref-eren
e
hain
an be
reated, but referen
e
hains
an be arbitrary long. Possiblemeans to shorten referen
e
hains3 are:� A heuristi
s whi
h binds newer to older transients is useful for the fun
tionalprogramming style, where two types of variables o

ur frequently: shortlived temporary variables whi
h are bound qui
kly after their
reation andlong lived variables whi
h are for example bound at the end of a re
ursion.3With spa
es using the s
ripting te
hnique the shortening of
hains needs spe
ial
are,be
ause it must be possible to undo bindings of transients.

3.3. A REFINED GRAPH MODEL 75� When the garbage
olle
tor traverses the graph store it shortens the refer-en
e
hains, su
h that only referen
es to transient nodes remain.� Nodes
an be dereferen
ed before they are stored in a �eld. Under theassumption that referen
es are rare and most nodes are a

essible withouta referen
es the overhead for this te
hnique is to high for a little gain andis not used in the LVM.� Similar is the te
hnique to shorten referen
e
hains when a

essing a �eld,whi
h is also not performed in the LVM.Transients in �elds Transient nodes are not stored in the registers of theLVM dire
tly. They
an be stored only on the heap and have to be referen
edindire
tly with referen
e nodes in registers.It is however possible to store transients dire
tly in �elds. This is useful to savememory. Espe
ially with the optimized representation explained below somevariables need no memory at all. Transients in �elds are
alled dire
t transients.When a transient in a �eld is a

essed, e.g. to store it in another �eld or ama
hine register, a
ompli
ation o

urs, be
ause transients
annot be repli
ated.The a

ess to su
h a �eld needs to
reate a referen
e to this �eld whi
h
an thenbe stored in registers and other �elds.To avoid that every �eld a

ess introdu
es a sometimes super
uous referen
e nodea test is performed for every �eld a

ess if the �eld
ontains a dire
t transient ornot. Allo
ating transients in �elds requires spe
ial
are in the
opying garbage
olle
tor to ensure that dire
t transients are not
opied out from their �elds (seeChapter 4).In the WAM representation of variables no su
h problem o

urs be
ause variablesare represented as self referen
es and an a

ess resp.
opy of su
h a self referen
ingpointer automati
ally turns it into a referen
e to the variable.Transients
annot be stored dire
tly in �elds of
ells, be
ause these are overwrittenand potentially
reated referen
es to this transient will refer to a wrong value afteran ex
hange.Optimized variables The LVM supports an optimized representation of vari-ables, with a single tagged pointer node with tag VAR. The pointer �eld of thisnode refers to the home spa
e of the variable (see Se
tion 3.6).The optimized variable is a variable with no suspensions and no attributes. When-ever a suspension or attributes are added to this variables its representation istransformed into the unoptimized transient representation.

76 CHAPTER 3. THE VIRTUAL MACHINE LVMThe major reason for the introdu
tion of optimized variables is that the LVMuses pro
edures with variables as
all-by-referen
e parameters for returning out-put and has no support for fun
tions with a return value. Variables are thus
reated frequently whi
h are only introdu
ed for the output argument and theiroptimization has a real in
uen
e on the performan
e of almost every program.The se
ond e�e
t of optimized variables is that they
an be dire
tly stored in�elds of re
ords without requiring additional memory. In
onne
tion with the
all-by-referen
e ability this means that stru
tures
an be eÆ
iently
onstru
tedtop-down with tail-re
ursive pro
edures.In the following example of the append pro
edure app to
on
atenate two liststhe output list zs is
onstru
ted top-down. The temporary variable zr needs nomemory, be
ause it
an be dire
tly allo
ated in the tail �eld of the list x::xr .The re
ursive appli
ation of app then gets a referen
e node to the tail �eld asthird argument.
fun app (nil, ys, zs) = unif (zs, ys)j app (x::xr, ys, zs) =

let val zr = lvar () in
unif (zs, x :: zr);
app (xr, ys, zr)

end;Optimized futures It is often useful to use futures instead of variables instru
tures whi
h are visible to
on
urrent threads to prote
t them. For examplein a
onsumer-produ
er appli
ation where the
ommuni
ation
hannel is imple-mented as a stream it is usually desirable that only the
onsumer is able to writeto the stream. In this
ase the
onsumer would
reate a stream where the tailis a future. The
orresponding variable would be only visible to the
onsumer.With the implementation of futures des
ribed above memory for a variable anda future would be needed besides the memory for the stream.The pro
edure appFut shows an append pro
edure with futures. The tail of thelist is the future of zr to avoid that a
on
urrent reader
an write on the outputstream.
fun appFut (nil, ys, zs) = unif (zs, ys)j appFut (x::xr, ys, zs) =

let val zr = lvar () in
unif (zs, x :: future zr);
appFut (xr, ys, zr)

end;A variable with a future
an be represented similarly to the optimized variablesdes
ribed before. An optimized future is a tagged node with tag FUT and a

3.3. A REFINED GRAPH MODEL 77pointer to the spa
e. Similar to the optimized variable it is turned into thetransient representation when a thread suspends on it.To represent the variable of this future we introdu
e a se
ond kind of referen
es,namely write referen
es, with the tag WREF. The variable of a future is thenrepresented as a write referen
e to the optimized future. When this variableshould be bound the dereferen
e operation dis
overs that the referen
e is a writereferen
e to a future and the binding operations repla
es the future with the newbinding.A variable
an be assigned only when the
hain of referen
es to the future
ontainsonly write referen
es. When a usual referen
e is found in the
hain this meansthat the variable represented with the write referen
e was already bound. Onlyin the
ase that a transient must be bound the dereferen
ing operation has to beextended to test that only write referen
es are found.When a �eld with an optimized future is a

essed a usual referen
e is
reated.When a �eld with an optimized variable is a

essed a read-write referen
e isgenerated.3.3.4 Uni�
ationThe basi
 idea of a pra
ti
al implementation of the uni�
ation algorithm is toimplement the equivalen
e
lasses by binding one stru
ture to the other and
reating a referen
e similar to binding variables.This algorithm has quadrati

omplexity, be
ause the referen
e
hains
an growto the size of the tree, but for pra
ti
al programs this does not o

ur and theoverhead for this implementation is mu
h smaller
ompared to overhead for main-taining the equivalen
e set.This implementation of uni�
ation
reates sharing of
ommon stru
tures. Insome
ases this is a desired feature to redu
e the memory
onsumption and italso is a kind of memorization. To avoid problems with spa
es the sharing mustbe retra
table. Therefore the uni�
ation algorithm trails every stru
ture bindingand undoes all binding when the uni�
ation terminates (su

essfully or not).The destru
tive uni�
ation is only possible be
ause the LVM has a single workerand uni�
ation is a non-interruptible atomi
 operation.For an optimized implementation of uni�
ation it is essential to try the frequentlyused
ases �rst. Be
ause the LVM implements output arguments of fun
tions as
all-by-referen
es parameters, it o

urs very frequently that a variable is
reatedbefore a fun
tion appli
ation with is bound to a value inside the fun
tion. Theunify instru
tion therefore �rst tests for this very
ommon
ase.

78 CHAPTER 3. THE VIRTUAL MACHINE LVM3.3.5 Dis
ussionThree-layered representation s
heme The LVM supports many built-indata types, e.g. small integers, big integers, atoms, names, re
ords, logi
 variables,futures,
ells, and pro
edures, and it is extensible to support even more types.This is possible be
ause it uses a s
heme with three layers: tagged nodes, taggedextensions, and generi
 extension.The bottom layer are tagged nodes. Tagged nodes allow to implement frequentlyused data types like small integers, lists, literals, variables and futures, eÆ
iently.Tagged extensions are not as eÆ
ient as tagged nodes, but there overhead isvery small
ompared to the
ost of operations on the data they represent, e.g.arithmeti
 on big numbers (see Chapter 4).Generi
 extensions allow through a small set of interfa
e fun
tion the integrationof arbitrary new data types. This interfa
e is very
onvenient to experimentwith no types and to add data types where unbox, box, and type tests are notperforman
e
riti
al (see Chapter 4).The same layered approa
h is also used for transients, with optimized represen-tations as tagged nodes for variables and futures, and a generi
 representationas transient heap nodes. In Chapter 4 we show the virtual fun
tion interfa
e fortransients whi
h allows to integrate other types of transient values.Other transient representations The representation of variables in the mostpopular ma
hine for Prolog, the WAM [110, 111, 1℄, inspired mu
h of the represen-tation of transients in the LVM. The representation of variables as self-referen
esfrom the WAM whi
h is extremely useful for making the allo
ation of variablesin �elds and their a

ess eÆ
ient
annot be used in the LVM, be
ause we supportmultiple
omputation spa
es and a variable needs to represent its home spa
e.The WAM allo
ates variables also in the registers of the environments. Theseunsafe variables have to be treated
arefully su
h that they are moved to the heap,if they extend the lifetime of their a
tivation re
ord. In the LVM variables arenever allo
ated in registers, but it should be possible to integrate this te
hniqueinto the LVM. It is questionable what the gain of this optimization
ould be underour assumption of an infrequent use of logi
 variables.Return value pla
ement Van Roy [105℄ proposes an optimized representationof uninitialized variable for high-performan
e Prolog implementations. In theLVM we do not use this te
hnique be
ause the number of variables used foroutput arguments of fun
tions whi
h are not allo
ated in �elds is very small. Itis furthermore un
lear how to integrate spa
es and uninitialized variables.

3.4. SEQUENTIAL EXECUTION 79In logi
 programming and in the LVM return values are passed in memory usinglogi
 variables as
all-by value parameters. Fun
tional languages typi
ally usema
hine registers to pla
e return values. Both approa
hes have advantages anddisadvantages, e.g. the logi
 approa
h works very well for the tail-re
ursive top-down
onstru
tion of stru
tures and the fun
tional approa
h works very well fornumeri
 problems.Bigot and Debray [13℄ dis
uss how to
ombine the pla
ement of return valuesin logi
 programming and fun
tional programming and how to provide
ompilersupport for an optimal pla
ement poli
y.S
heidhauer [87℄ analyses the di�eren
e between the two pla
ement poli
ies forOz.Taylor's s
heme Taylor [101℄ proposed a s
heme to represent variables su
hthat no referen
es remain after a variable is bound. This s
heme was analyzed in[59℄ and the authors
ame to the
on
lusion that for Prolog the gain is doubtful.Taylors s
heme is not
ompatible with the idea of tagged register nodes in theLVM, be
ause their essential property is that they are repli
able and keepingtra
k of all valid repli
as in
urs to mu
h overhead.In the fun
tional programming style referen
es o

ur very infrequently and asexplained above the possibility of referen
e
hains does not have an e�e
t on theeÆ
ien
y of programs whi
h do not have referen
es.3.4 Sequential exe
utionIn this se
tion we explain how a single thread is exe
uted by the worker. We ex-plain the instru
tions to
reate and a

ess nodes, pro
edure de�nitions, pro
edureappli
ations, and pre-de�ned built-in pro
edures.3.4.1 WorkerThe worker exe
utes the tasks of a thread in sequential order. The tasks on thethread are of di�erent types, namely
ontinuations, save tasks, and handler tasks(see Figure 3.17).A
ontinuation task (PC;G; Y) is a
losure of a ma
hine program starting atthe
ode address PC. G and Y are the environment for the exe
ution of theinstru
tions. G is the referen
e to the pro
edure node in the store and Y is areferen
e to the lo
al environment.

80 CHAPTER 3. THE VIRTUAL MACHINE LVMtask type task
ontent
ontinuation (PC;G; Y)save task save(X1; : : : ; Xn)handler task ex(PC;G; Y)Figure 3.17: Tasks.The worker exe
utes
ontinuations by loading them into the
orresponding taskregisters PC, G, and Y . A
ontinuation is then exe
uted by an emulator in thea fet
h-de
ode-exe
ute
y
le. Instru
tions are fet
hed from the program store atthe address PC and exe
uted using the G, Y and X registers to address nodesin the store.In the literature a
ontinuation task is sometimes
alled pro
edure invo
ation ora
tivation re
ord of pro
edures.Saving X registers The worker maintains a single set of global registers X,but it provides the illusion that every thread has its private set of X registers. Theillusion is preserved by saving all valid X registers when a thread is preemptedor suspended and restoring them when the thread is restarted.A save task
ontains all
urrently valid nodes in the X registers. When theworker restarts the exe
ution of this thread the �rst task to exe
ute is the savetask, whi
h restores the values of the X registers.The valid X registers are only approximated when a save task is
reated. TheLVM saves all X registers from zero to maxX, where maxX is the maximal num-ber of X registers used in a pro
edure. This number is
al
ulated by the
ompilerand stored in the pro
edure de�nition instru
tion. During garbage
olle
tion theexa
t number of used X registers is
al
ulated using a liveness analysis algorithm(see Chapter 4).Ex
eption handler task A handler task is
reated for ex
eption handling.They are never exe
uted dire
tly, but they are used as a marker on the sta
k ofa thread, when an ex
eption is raised (see Se
tion 3.4.7 below).3.4.2 Store operationsIn this se
tion we give a brief overview of the instru
tions for
reating and a
-
essing nodes. An example for
reating a re
ord node is the fun
tion f as follows
fun f z =
let val x=lvar ();

3.4. SEQUENTIAL EXECUTION 81
val y=f’a’=1, ’b’=x, ’c’=zg

in
...

endIt
ompiles into the following snippet of a pi
kle
v0: proc(s,[],lbl,...)
v1: int(1)
...
% X[0] contains z
% X[1] contains x
% X[2] contains y
lbl:
createVariableX(1)
putRecordX(ar(’a’, ’b’, ’c’),2)
setConstant(v1)
setValueX(1)
setValueX(0)
...The createVariableX(1) instru
tion adds a variable node to the store andputs a referen
e to it into the register X1. The putRecordX instru
tion adds are
ord node with arity fa; b;
g to the store and stores it into register X2.The �elds of the re
ord are not yet initialized. The stru
ture pointer SP is setto the �rst �eld of the re
ord su
h that the following instru
tions
an initializethe �elds of the re
ord.The instru
tion setConstant(v1) writes the node represented at the pi
klelabel v1 (the integer one) into the �rst �eld and in
rements the stru
ture pointer(SP). setValueX(1) resp. setValueX(0) write x stored in X1 resp. z stored inX0 into the remaining �elds of the re
ord.The stru
ture pointer (SP) is a generalization of the te
hnique known from theWAM to a

ess the �elds of tuples. In the LVM it allows to a

ess the �eldsof re
ords. The insight here is that if the arity of a re
ord is known at
ompiletime then the
ompiler
an already
ompute the mapping of features to indi
es.This mapping de�nes the order of the set instru
tions su
h that the �elds
anbe
onse
utively written.Similar to the WAM the uni�
ation of re
ords is optimized using get and unifyinstru
tions. For example the fun
tion
fn x =>
let val y=lvar()
in

unif(x, f’a’:y ’b’:y g)
end

82 CHAPTER 3. THE VIRTUAL MACHINE LVMis
ompiled into the byte
ode
% X[0] contains x
% X[1] contains y
getRecordX(ar(’a’, ’b’),0)
unifyVariableX(1)
unifyValueX(1)3.4.3 ControlIn this se
tion we brie
y explain the basi
 ideas for
ompiling pattern mat
hing.In detail the
ontrol aspe
ts of the
ore language are dis
ussed in [87℄.A
ase statement is
ompiled into a match (i; ht) instru
tion, whi
h
ontains ahash table ht whi
h maps primitive values and re
ord arities to
ode labels. Weuse the notation ht(
1 : l1; : : : ;
n : ln; : : : ; ar1 : l01; : : : ; arm : l0m; else : le) for ahashtable whi
h maps the
onstants
i to the labels li and the arities ari to thelabels l0i. The mat
h instru
tion has the else label le, whi
h is used if no othermat
h is found in the hash table. The instru
tion suspends if the register Xi isa transient value4.The following
ase expression
case x of f’a’=x1, ’b’=x2g => unif(o,x1+x2)j 1 => 2j x => 3is
ompiled to
v2: int(2)
v3: int(3)
...
% X[0] contains x
% X[1] contains o
matchX(0,ht(1:l1,ar(’a’, ’b’):l2,else:l3))
l1:

getConstant(v2,1)
return

l2:
getVarVar(0,2)
inlinePlus(0,2,0)
unifyXX(0,1)
return

l3:
getConstant(v3,1)
return4In mozart the mat
h instru
tion is extended to support early failure for attributed variables.

3.4. SEQUENTIAL EXECUTION 83To eÆ
iently de
ompose re
ords the match instru
tions initializes the stru
turepointer (SP) su
h that getVariableX instru
tions
an be used to read the �eldvalues of re
ords. The instru
tion getVarVar (i; j) is a
ombination of two get-

VariableX instru
tions and reads the next two �elds into the registers Xi andXj.As optimization of the match instru
tion with a single
ase the test instru
-tions are provided, e.g. testConstantX (i; v
; l) is equivalent to the instru
tion
matchX (i; ht(v
 : l1; else : l)), where l1 is a label added to the dire
tly followinginstru
tion.3.4.4 Pro
eduresFun
tions of the language L are represented as pro
edures in the LVM. Fun
-tions are
onverted to pro
edures by adding an impli
it argument, whi
h is usedas
all-by-referen
e argument for the result value. This means every fun
tion
fn x => e is transformed into a pro
edure with two arguments. In the oursyntax the resulting fun
tion would be fn (x, y) = > unif (y, e) .In the LVM pro
edures with many arguments are allowed. The te
hnique howsingle argument fun
tions
an take advantage of the multiple argument
alling
onvention of the LVM is not dis
ussed in detail here. Brie
y every pro
edureand every pro
edure appli
ation knows the expe
ted resp. supplied arity andduring the appli
ation the proper
onversions are done. When a pro
edure whi
hexpe
ts a single argument is
alled with multiple arguments these are pa
kagedinto a single re
ord. When a pro
edure whi
h expe
ts multiple arguments is
alled with a single argument this is unpa
ked during the appli
ation.Pro
edures are �rst
lass values and they are dynami
ally
reated. First
lassvalue means that pro
edures are nodes in the graph store, whi
h
an for examplebe passed as parameters to pro
edures and stored in other stru
tures.Dynami

reation means that pro
edures not only have a stati
 part, the
ode,but also a dynami
 part, the pro
edure environment. The pro
edure environmenten
apsulates the values of the free variables of a pro
edure at the moment of thepro
edure de�nition.To store temporary values during a pro
edure invo
ation a lo
al environment
anbe allo
ated (see below).Pro
edure de�nition Pro
edures are
reated dynami
ally with the instru
-tion definition (i; pro
Body). The pro
edure body pro
Body
ontains thestati
 information about the pro
edure. We use the notation pb(
ode : lbl; arity :n; g : pe(r0 : i0; : : : ; rm : im); maxX : k; : : :) for the pro
edure body. The �elds ofthe pro
edure body are

84 CHAPTER 3. THE VIRTUAL MACHINE LVM� A
ode label lbl for the start of the byte
ode of the pro
edure.� The arity n of the pro
edure whi
h de�nes the number of arguments.� The pro
edure environment pe(r0 : i0; : : : ; rm : im), where rl 2 f0x0;0 y0;0 g0gand il is an index. rl : il means that the lth entry of the pro
edure envi-ronment is in register Ril , where R is X resp. Y resp. Z) if rl is 'x' resp. 'y'resp. 'z'. The node in Ril
an be addressed with the G-addressing mode asGl in body of the pro
edure.� The maximal number (maxX) of X registers used in the pro
edure. Thisnumber is used for saving the X registers for
ontext swit
hes.� Further stati
 information, e.g. debug information like the pro
edure name,the �le, and line number.The instru
tion definition (i; pb) where pb is pb(
ode : lbl; arity : n; g : pe;maxX :k; : : :) and pe is pe(r1 : i1; : : : ; rm : im)
reates a new pro
edure node in the graphstore with m �elds, whi
h are initialized with the nodes stored in Ri1 ; : : : ; Rim .The pro
edure node is labelled with the pro
edure body pb. A referen
e to thepro
edure node is written into the register Xi.As an example we show the
ompilation of the fun
tion f with argument x anda free o

urren
e of c .
val c=1;
fun f x = x+c;It is
ompiled to the pi
kle
v1: int(1)
...
% X[0] = c
% X[1] = f
putConstant(v1,0)
definition(1,pb(code:lbl, arity:2,

g:pe(x:0), maxX=2,...))
...
lbl:

moveGX(0,2)
inlinePlus(0,2,0)
unifyXX(0,1)
returnPro
edure appli
ation The pro
edure appli
ation callX (i; n) waits until Xiis a determined node. If Xi is no pro
edure or the number of a
tual arguments ndoes not mat
h the expe
ted number of formal arguments an ex
eption is raised.

3.4. SEQUENTIAL EXECUTION 85If Ri is a pro
edure node with label pb(
ode : lbl; arity : n; g : pe;maxX :k; : : :) then a
ontinuation (lbl;�; Ri) is
reated. The lo
al environment in this
ontinuation is initially empty.The worker saves the
urrent
ontinuation from the task registers on the tasksta
k and starts with the exe
ution of this new
ontinuation.Return The
ode of a pro
edure is terminated with the return instru
tion.The exe
ution of this instru
tion informs the worker to exe
ute the next taskfrom the thread.Tail-
all Tail-
all optimization is essential in languages without loop
onstru
ts.The
ompiler inserts the instru
tion tailCallX (i; n) for a sequen
e callX (i; n);
return of an appli
ation and a return instru
tion. When the worker exe
utes
tailCallX (i; n) it
reates a new
ontinuation task as for the callX (i; n) instru
-tion, but does not save the
urrent
ontinuation from the task registers onto thesta
k.For tail-
alls the task sta
k does not grow and therefore arbitrary deep re
ur-sions are possible. Tail-
all optimization is trivial in LVM, be
ause there are nointer-task referen
es. In other words
ommuni
ation between tasks is done onlythrough the global X registers and the graph store. This is in
ontrast to manyother imperative languages, where referen
es to lo
al sta
k frames
an be passedas arguments or where sta
k frames are linked together.Calling
onvention The LVM has a single
alling
onvention for user-de�nedpro
edures. A pro
edure has a �xed number of input arguments and no outputarguments. The arguments
an be seen as
all-by-referen
e parameters, be
auseonly referen
es to nodes in the store are passed as arguments.The parameter are passed in the X registers, where X0; : : : ; Xn
ontain the a
tualarguments. The
ontent of the other X registers is unde�ned.We use a
aller-save model for registers whi
h means that the
aller is responsiblefor saving X registers into the lo
al environment before an appli
ation. After anappli
ation the
ontent of the X registers is unde�ned.Optimized appli
ation The instru
tion directCall (v; n) is an instan
e ofthe
all-instru
tion where the
ompiler stati
ally knows that the pro
edure is a�xed value and will not
hange.The virtual ma
hine optimizes this
ase by using an unboxed representation forthe pro
edure. Furthermore the test if the number of a
tual and formal arguments

86 CHAPTER 3. THE VIRTUAL MACHINE LVMmat
h is performed only on
e. The details of these optimized
alls are explainedin [87℄.The performan
e di�eren
e between the optimized and the non-optimized appli-
ation is approximately a fa
tor of two. A dire
t
all is almost as eÆ
ient as ajump. A small overhead has to be paid for the preemption test.Lo
al environment Lo
al environments allow to store temporary values dur-ing a pro
edure a
tivation. A lo
al environment whi
h allows to store n referen
esto nodes is
reated with the instru
tion allocate (n). Lo
al environments areaddressed with the Y addressing mode.In the virtual ma
hine the allo
ation of the lo
al environment is separated fromthe
reation of pro
edure tasks to allow for optimized allo
ations in di�erentbran
hes of the
omputation, e.g. in many pro
edures no lo
al environment isneeded in one of the bran
hes of the
omputation.Lo
al environments have the property that they are single referen
ed, whi
h is animportant invariant for memory management. After the deallo
ation the storageof lo
al environments
an be immediately reused. This reuse provides for lo
alityof memory usage whi
h maximizes the use of
a
hes.Lo
al environments are expli
itly deallo
ated with the deallocate (n) instru
-tion. The expli
it deallo
ation allows to reuse memory as soon as possible. Analternate design would be the impli
it deallo
ation when the task terminates.This design would limit the possibilities of a
ompiler to allo
ate and deallo
atemany di�erent environments on one paths of a pro
edure, e.g. to trim the envi-ronment to the
urrent need, and it would in
ur an overhead even for pro
edureswhi
h do not need an environment.Example As a very small example we show the byte
ode generated for theappend fun
tion to
on
atenate two lists
fun app (nil, ys, zs) = unif (zs, ys)j app (x::xr, ys, zs) =

let val zr = lvar () in
unif (zs, x :: zr);
app (xr, ys, zr)

end;The fun
tion app is
ompiled into the following pi
kle
vApp:

proc(s,[],lbl)

...
definition(0,pb(code:lbl, arity:3, g;[],maxX:3,...))

3.4. SEQUENTIAL EXECUTION 87Name/In/Out des
riptionre
ord/1/1 dynami
 re
ord
onstru
tionsele
t/2/1 �eld sele
tionnewCell/1/1
ell
reation
ellA

ess/1/1
ell a

ess
ellEx
hange/2/1
ell ex
hangenewName/0/1 name generation�,div,mod/2/1 arithmeti
future/1/1 futurewaitOr/2/0 syn
hronizationbyNeed/1/1 by-need syn
hronizationfeatureC/3/0 feature
onstraintwidthC/2/0 width
onstraintraise/1/0 raise an ex
eptionspawn/1/0 fork a threadFigure 3.18: Built-ins of the LVM.
...
lbl:

matchX(0,ht(nil:l1, cons:l2 else:l3))
l1:

unifyXX(1,2)
return

l2:
getVarVar(3,0)
getListValVar(2,3,2)
directTailCall(vApp,3)

l3:
raiseError(...)3.4.5 Built-in pro
eduresSimilar to the usage of operators in the language de�nition the virtual ma
hinehas built-ins. Built-ins implement
ore fun
tionality of the LVM whi
h is notdire
tly available through instru
tions. The built-ins of the LVM are summarizedin Figure 3.18.Built-in pro
edures are a
exible extension me
hanism for adding new fun
tion-ality to the engine of the LVM.The designer of the VM has the
hoi
e to implement operations as ma
hineinstru
tions or as built-in pro
edures. The trade-o� between these possibilities

88 CHAPTER 3. THE VIRTUAL MACHINE LVMReturn
ode Explanation
PROCEED su

essful termination
SUSPEND blo
k the thread
RAISE raise an ex
eption. . . other spe
ial purpose
odesFigure 3.19: Return
odes.is that the dispat
h for instru
tions is mu
h faster than the appli
ation of abuilt-in. The number of instru
tions should be small to redu
e the
omplexityof the emulator. The overhead for
alling a built-in pro
edure
an, for example,be tolerated if it is mu
h smaller than the time spend for the operation itself,e.g. dynami

reation of an arity. Built-in pro
edures are also well suited if thefun
tionality they provide is not time
riti
al at all. They are very useful forexperimentation.The instru
tion callBI (vbi; lo
) implements the appli
ation of built-in pro
e-dures, where vbi is a referen
e to a node representing the built-in pro
edure andlo
 is the mapping of the X registers to the input and output arguments. Thebuilt-in pro
edure is
alled with the mapping as argument.Return
odes The result of the appli
ation of a buil-in fun
tion
an be su
-
essful, it may require to suspend the thread, or it raises an ex
eption. These
onditions are signalled with a return
ode. The return
odes are listed in Fig-ure 3.19.When a built-in pro
edure returns PROCEEDit was su

essful and the next in-stru
tion is exe
uted.When a built-in pro
edure suspends, signaled with the SUSPENDreturn
ode, itreturns a list of transients in the �eld suspendVarList in the register retInfo .In this
ase the worker saves the
urrent task (PC; Y;G) and the X registers.Then it
reates a suspension to res
hedule the thread when any of the transientsin the register retInfo.suspendVarList is bound. The appli
ation of the built-in pro
edure is retried when the thread is woken up. The suspension me
hanismis explained in Se
tion 3.5.When a built-in pro
edure raises an ex
eption then the ex
eption value is putinto the retInfo.exceptionValue register. The worker is then responsible tosear
h for an ex
eption handler as des
ribed in Se
tion 3.4.7.The callBI instru
tion is a spe
ial
ase of the call instru
tion whi
h is ex-plained in Se
tion 3.4. The
ompiler generates the optimized built-in
all if itstati
ally known that a built-in pro
edure is applied.

3.4. SEQUENTIAL EXECUTION 89The main di�eren
e between the generi
 appli
ation and the built-in appli
ationis that the later is an inlined appli
ation. For inlined appli
ations the
ompilerdoes not generate
ode to save the global registers Xi into the lo
al environment,be
ause the built-in pro
edure only modi�es the registers marked as output valuesin the lo
ation mapping lo
 and leaves all other registers un
hanged.For example the
ompilation of the following two fun
tions shows the di�eren
ebetween the inlined
ompilation of sele
t in f1 and the non-inlined
ompilationof a user-de�ned fun
tion in f2 .
fun f1 (x,y) =
let val z = select(x,y)
in

(x,z)
end

fun f2 (x,y) =
let val z = g(x,y)
in

(x,z)
endThe
ompilation of f1 is short and straightforward.

% function f1
% X[0]=x
% X[1]=y and z
% X[2]=output
l f1:

callBI(vselect,loc([0,1],[1])
getRecordX(ar(1,2),2)
unifyValueX(0)
unifyValueX(1)
returnIn the byte
ode for f2 a lo
al environment is needed to save three registers beforethe appli
ation of the fun
tion g.

% function f2
% Y[0]=x
% Y[1]=output
% Y[2]=z
l f2:

allocateL3
moveXY(0,0)
moveXY(2,1)
createVariableX(2)
moveXY(2,2)
callG(0,2)

90 CHAPTER 3. THE VIRTUAL MACHINE LVMBit 0 1 2 3 4 : : : 31Flag NeedGC PreemptThread IOReady Timer unusedNeedGC Trigger a garbage
olle
tion. (see Chapter 4)PreemptThread The time sli
e for a thread is expired.IOReady An I/O
hannel is ready for new data. (see Chapter 4)Timer The user timer is expired. (see also
hapter Chapter 4)Figure 3.20: The status register.
getRecordY(ar(1,2),1)
unifyValueY(0)
unifyValueY(2)
deallocateL3
return3.4.6 Status registerBefore exe
uting a task the worker
he
ks if a bit in the status register is set(see Figure 3.20). The status register signals events that have to be handledsyn
hronously to guarantee mutual ex
lusion for the store. These events areasyn
hronously dete
ted, e.g. in the memory management layer during the allo-
ation of new memory, when the operating system delivers Unix signals, whenpreemption or user-de�ned timers expire, or when I/O
hannels are ready.The worker preempts the exe
ution of a thread when any bit in the status registeris set. The
ost of the syn
hronization is: reading the status register, a test if itis zero, and a
onditional bran
h.Dis
ussion Various methods for the eÆ
ient integration of I/O are dis
ussedin [81, 5℄. For an emulator-based approa
h our method seems to be well-suited.One possible optimization is to lower the frequen
y of syn
hronization points byusing a
ounter stored in a native register. The
ounter is de
remented at everysyn
hronization point, but the status register is only
he
ked when the
ounteris expired.In an implementation of the LVM whi
h supports multiple workers the statusregister is obsolete. The te
hniques to syn
hronize the
on
urrent workers
an bealso used to syn
hronize the asyn
hronous events.Another alternative would be to give up fairness of threads and provide primitivesat the user level to preempt and yield a thread. This approa
h is for example
hosen for Java: the s
heduling poli
y and fairness assumptions are not spe
i�ed,

3.4. SEQUENTIAL EXECUTION 91but these are implementation and platform spe
i�
. Oz is designed as a languagewhi
h supports eÆ
ient
on
urren
y, whi
h is s
alable to thousands of threads.Leaving fairness unspe
i�ed would lead to nonportable designs, whi
h depend on
ertain implementations resp. platforms.3.4.7 Ex
eptionsEx
eption handling is implemented in the LVM with the instru
tion sequen
e asfollows
try (L). . . body . . .
popExThe try instru
tions installs the ex
eption handler during the exe
ution of thebody and the popEx instru
tion removes the handler.The try instru
tion �rst
reates a handler task ex(L;G; Y 0), where Y 0 is a
opyof the
urrent lo
al environment Y , and pushes this handler as a marker on thetask sta
k.After the installation of the handler the following instru
tions are exe
uted untilan ex
eption is raised or the popEx instru
tion is exe
uted. When no ex
eptionis raised during the exe
ution of the ex
eption body the handler task is removedfrom the top of the sta
k by the popEx instru
tion.The generi

ompilation of catch (body, handler) operator does not takeadvantage of the lo
al and pro
edure environment. Only if the
ompiler knowsthe de�nition of the body resp. handler pro
edure it
an generate more eÆ
ient
ode to reuse the environments.Ex
eptions are �rst-
lass values and the built-in pro
edure raise (i) raises theex
eption with value Xi. When a built-in pro
edure returns the ex
eption status
ode the worker sear
hes for the topmost handler task on the task sta
k. If su
ha task ex(PC;G; Y) is found all tasks in
luding the handler task are removedfrom the sta
k. Then the ex
eption value is moved to X0 and the handler task isexe
uted. If no handler is found on the task sta
k a default handler is exe
uted,whi
h usually prints the ex
eption and terminates the thread.The main
ost fa
tors of the LVM ex
eption handling are� Two instru
tions must be exe
uted to install and deinstall the handler ifno ex
eption is ever raised.� For the
ompiler the ex
eption handler, and the
ode following return aredi�erent tasks, i.e. nothing about the
ontent of the X registers, ex
ept forX0 in the ex
eption body,
an be assumed.

92 CHAPTER 3. THE VIRTUAL MACHINE LVM� Optimizations whi
h reorder instru
tions have to be very
areful to respe
tthe ex
eption semanti
s, e.g. moving
onstant expressions out of a pro
edureis not allowed when this expression
ould possibly raise an ex
eption.Handler register A simple optimization of the me
hanism to �nd an ex
eptionhandler is the introdu
tion of a handler register per thread, whi
h
ontains areferen
e to the topmost ex
eption handler task. To allow the eÆ
ient update ofthe handler register all handler tasks are then linked together.Tail-
all optimization Ex
eption handling prevents tail-
all optimization forthe ex
eption body, be
ause the ex
eption handler has to be expli
itly deinstalledwith the instru
tion popEx .It is possible to impli
itly dis
ard the ex
eption handler whenever the worker seessu
h a task at the top of the thread. This would allow to repla
e the sequen
e
popEx ;return by a single return . A small drawba
k of this solution is thatthe lo
al environment
annot be shared between the ex
eption body and theex
eption handler, but it has to be expli
itly
opied.Dis
ussion The LVM ex
eption me
hanism is similar to the Standard ML ofNew Jersey (SML/NJ) implementation of ex
eption handling [7℄. In SML/NJan expli
it ex
eption sta
k of handlers is maintained, whi
h is updated wheneverthe
omputation enters and exists the ex
eption body. In the LVM the ex
eptionsta
k and the task sta
k are integrated, whi
h allows for the tail-
all optimization.In imperative languages, e.g. GNU C++ [99℄ and the JVM [60℄, ex
eption han-dling is implemented with tables, whi
h map a range of program
ode to anex
eption handler. When an ex
eption is raised for ea
h sta
k frame a lookup inthe ex
eption table has to be performed. The advantage of ex
eption tables isthat no instru
tion is exe
uted at runtime when no ex
eption is raised.The LVM design does not use ex
eption tables, be
ause a design goal was thatraising an ex
eption should be eÆ
ient and enables the use of ex
eptions as apowerful programming
onstru
t for non lo
al exits of re
ursive fun
tions andblo
ks.3.5 Threads3.5.1 Thread modelThe LVM exe
utes at most one thread at a time. A thread
an be in one of threestates: runnable, running, or blo
ked (see Figure 3.21).

3.5. THREADS 93
runnable running

blocked

terminatecreate schedule

preempt

wakeup suspend

Figure 3.21: Thread states.A new thread is
reated with the spawn built-in applied to a pro
edure. Theinitial task on this thread is the appli
ation of the pro
edure. The new thread isinitially in the runnable state, whi
h means that it has the potential to exe
uteits next task.When a thread is sele
ted for exe
ution its state
hanges from runnable to runningand the worker starts its exe
ution. In the LVM exa
tly one thread is in the staterunning, be
ause it has a singe worker.An exe
ution of a running thread
an be preempted to guarantee fairness withother runnable threads. In this
ase the status of the thread is
hanged fromrunning to runnable.When the running thread suspends on one or more transients it be
omes blo
ked.A blo
ked thread is woken up when a transient on whi
h it suspends is bound.A running thread terminates when its task sta
k is empty.3.5.2 S
hedulerThe s
heduler is responsible for maintaining the runnable threads and assignsa thread to the worker for exe
ution. The s
heduler
ontrols the preemptionof the thread exe
uted by the worker to guarantees fairness among all runnablethreads. The runnable threads are stored in a queue and the s
heduler uses asimple round-robin poli
y to sele
t a thread for the worker.A preemption timer is started and the worker exe
utes the thread. When thepreemption timer expires the time sli
e for the running thread is over and itis preempted. Preemption of a running thread only happens when the workeris a
tive. During the emulation of instru
tions the preemption is ignored anddelayed until the next syn
hronization point.

94 CHAPTER 3. THE VIRTUAL MACHINE LVMPreemptive s
heduling The worker be
omes a
tive during the emulation at
ertain syn
hronization points. The syn
hronization points are
hosen su
h thatthey are met frequently, but not too frequently.Æ(t) << d The time between to syn
hronization points Æ(t) should be mu
hsmaller then the duration of the time sli
e d.o << Æ(t) The overhead at the syn
hronization points to
he
k if the s
hedulerrequests preemption o should be mu
h smaller than the time between twosyn
hronization points.The LVM has two syn
hronization points. The �rst is the
reation of new tasks,e.g. when applying a pro
edure. The se
ond is when a task is popped fromthe sta
k. This s
heme guarantees fairness, be
ause unbound
omputations areonly possible through the
reation of new tasks5. The syn
hronization pointwhen popping a task is ne
essary to avoid that the unwinding of a deeply nestedre
ursion does not impose an arbitrary delay on preemption.Light-weight threads Threads in Oz are extremely light-weight, i.e. thou-sands of threads
an be
reated and s
heduled. The major reasons for the ef-�
ien
y of LVM threads are that no random preemption takes pla
e and thatthreads are implemented at the user level and not at the operating system level.Fixed syn
hronization points for preemption ensure that the state of the enginewhi
h has to be saved and restored when s
heduling a thread is very small, i.e. theX register, the self register, and the
urrent task have to be saved and restored.The overhead for testing the preemption
ondition at the syn
hronization pointis small.Fairness The s
heduler guarantees fairness for the exe
ution of all runnablethread by preempting the worker. The preemption
ondition
an be a timeouton a timer provided by the operating system or a timeout on the number ofinstru
tions (or tasks) exe
uted by the worker.Preempting the worker means that the worker returns the thread to the s
heduler.It does so only after the exe
ution of the
urrent task is stopped. The fairness
ondition is ful�lled, be
ause the exe
ution of every task is bound by an upperlimit.One reason for delaying the preemption is that this gives a strong invariant foratomi
ity: the exe
ution of a task is never interrupted. While exe
uting a task the5Ex
ept for naive pro
edures implemented through the LVM native API. The time for thesepro
edures is potentially unbound.

3.5. THREADS 95virtual ma
hine
an be in an in
onsistent state, e.g. unde�ned values in registersand in the store, as long as it is
onsistent again when the exe
ution of the taskstops.The se
ond reason is that the global X registers are shared among all threads.To make this feasible a thread has ex
lusive a

ess to them during the exe
utionof a task. Whenever a task stops the X registers are saved on the thread by
reating a save task, whi
h restores the X registers when the thread is exe
utedagain.Dis
ussion The s
heduler is an orthogonal unit in the virtual ma
hine. There-fore it
an be extended easily to support sophisti
ated s
heduling te
hniques, e.g.priorities or resour
e-based s
heduling.A disadvantage of this user-level thread pa
kage is that it
annot take advantageof multiples pro
essors. Two models are proposed to use multi-pro
essors. Onemodel is a parallel implementation of the LVM [80℄ and the se
ond model is adistributed implementation of the LVM whi
h uses shared memory as an eÆ
ient
ommuni
ation layer [39℄.3.5.3 SuspensionsThreads
an suspend on transients. This means that the thread is removed fromthe runnable queue of the s
heduler until the transient is bound.Suspending a thread on a transient involves the following steps� A suspension is
reated, whi
h
ontains a referen
e to the thread.� This suspension is hooked onto the transient.� The worker is informed that the
urrent task is suspended.A suspension is woken up when a transient is bound. Waking up a suspensioninforms the s
heduler that the thread is runnable.Using suspensions as indire
tion between transients and threads is ne
essary be-
ause it is possible that a suspension is hooked to many transients. To explainthis we use the built-in waitOr (x; x0), whi
h suspends the thread if both x andx0 are transients. If one of these transients is bound the thread is woken up. Inthis
ase the suspension has to be unhooked from the other transient to avoidfurther wakeups.To optimize the wakeup operation the unhook operation is done lazily. Thesuspension is marked when the wakeup is done. It is not unhooked from theother transients suspending on the disjun
tive
ondition. Suspensions marked asdone are skipped during the wakeup.

96 CHAPTER 3. THE VIRTUAL MACHINE LVM3.5.4 EventsThe alarm me
hanism of the operating system allows to trigger a signal handlerafter a
ertain time. In the engine this alarm signal is used to exe
ute a
he
kfun
tion at regular time intervals. This fun
tion serves di�erent purposes:� PreemptThread The expiration of the time sli
e of a thread is
he
ked.� IOReady I/O
hannels are wat
hed for data.� Timer User-de�ned timer events are handled.The
he
k fun
tion is triggered every 10 ms and sets the
orresponding bits in thestatus register. As explained above the engine eventually preempts the exe
utionof instru
tions and handles the events dete
ted in the
he
k fun
tion.Threads are preempted at every 5th
lo
k ti
k, whi
h means that the time sli
eof a thread is 50 millise
onds. This is implemented with an alarm timer whi
h isinitialized when a new thread is s
heduled.In the LVM it is possible to blo
k a thread on the ability to read resp. writean I/O
hannel. The implementation maintains a list of all threads waiting forI/O and their resp. I/O
hannels. During exe
ution of the
he
k fun
tion theoperating system is polled if one of these I/O
hannels is ready for read resp.write.An alternative approa
h to polling I/O would be asyn
hronous I/O, whi
h hasthe advantage that the operating system informs the engine when I/O is available.The drawba
k of asyn
hronous I/O is that it is not portable between di�erentplatforms.The LVM supports soft real-time
ontrol with timers. A thread
an be delayedfor a
ertain amount of time with the primitive delay t where t is the time todelay in millise
onds. This is implemented with a list of threads. This list issorted a

ording to the time after the delay. During the exe
ution of the
he
kfun
tion only the time after the �rst delay is tested for expiration.3.5.5 Dis
ussionThe thread model of L has the property that threads are expli
itly
reated.Before rea
hing this model we investigated two other approa
hes: the �ne-grained
on
urren
y and jobs as an intermediate granularity.In the �ne-grained model the
omposition of two expressions is
on
urrent. Se-quential exe
ution
an only be spe
i�ed using data
ow syn
hronization. In

3.6. SPACES 97AKL [47℄ this
on
urren
y model was used. It has the advantage that it supportsvery well the de
larative
onstraint programming style.The �ne-grained model introdu
es a huge burden on the implementation, be
ausemany optimizations possible in a sequential environment are not possible, e.g.the lifetime of X registers is mu
h shorter. A major disadvantage of �ne-grained
on
urren
y wrt. the language de�nition is that it is very diÆ
ult to
ombinestateful programming with data
ow-only syn
hronization.A hybrid job model was designed, where a job is a sequen
e of expressions witha sequential exe
ution strategy. A program is a sequen
e of jobs, whi
h arealso exe
uted sequentially, but when an expression suspends a new
on
urrentthread is
reated for the suspended job. This model was designed as a
ompro-mise between the �ne-grained
on
urrent
onstraint approa
h and the expli
it
on
urren
y approa
h.At the LVM level this job model has some ni
e properties, e.g. in most
asesthe thread
reation and s
heduling overhead was saved, be
ause jobs did notsuspend frequently. On the other side the maintenan
e of the jobs in
urred anoverhead, be
ause the tasks on the task sta
k had to be grouped into jobs. Itturned out that the impli
it thread
reation in the job model was to
ompli
atedas a programming
on
ept.The
ompromise
hosen in Oz is now su
h that threads must be expli
itly
reatedand for
onstraint programming built-in light-weight threads
alled propagatorsare used.3.6 Spa
esIn this se
tion we introdu
e the extension of the virtual ma
hine, whi
h areneeded to support multiple
omputation spa
es.The basi
 servi
es provided by the virtual ma
hine are the exe
ution of threadssituated in spa
es and the dete
tion of entailment and disentailed. The virtualma
hine is extended with an additional storage area for spa
es, with a trail, andwith a spa
e register. A single instru
tion for the deep guard
onditional is addedto
reate a new spa
e and to syn
hronize on entailment or disentailment of thisspa
e.The main re�nement of the spa
e model introdu
ed at the LVM layer is therepresentation of multiple
omputation spa
es multiplexed into a single store.We introdu
e the s
ript te
hnique for maintaining multiple transient bindingsand
ompare it to the binding window te
hnique.

98 CHAPTER 3. THE VIRTUAL MACHINE LVM
Scheduler Worker Emulatorinstall

fail

suspend

exit

except

emulate

terminate

idle

push,pop

suspend

preempt

raise

next

failed?

ok?

other?

failure?

discarded?

Figure 3.22: The extension of the engine for spa
es.3.6.1 Overview of the extended engineThe engine model is extended for spa
es with hooks for the installation, termi-nation, and suspension of threads and for the dete
tion of failure ex
eptions asoutlined in Figure 3.22.The hooks are drawn as boxes and have the following fun
tions:install When a thread is sele
ted for exe
ution its spa
e is installed, i.e. thes
ript is exe
uted.exit When a thread is terminated the entailment and stability
ondition aretested.ex
ept The ex
eption me
hanism is extended to dete
t failure ex
eptions.fail If a failure ex
eption is raised and not handled by an ex
eption handler orthe installation of the s
ript fails, then the spa
e is marked as failed and
onsidered as disentailed.

3.6. SPACES 99
counter
flags
script
root
thread

SpaceTrail

���
���
���
���

���
���
���
���

�
�
�
�

��

������������
��������
��������
��������
��������
��������
��������

��������
��������
��������
��������
��������
��������
�����������������

���������
���������
����������

�
�
�

�
�
�
�

����
����
����
����

����
����
����
����

Home

Spaces

Suspension

1

’a’ ’b’

Graph store

Thread

Home

Figure 3.23: Engine state with spa
es.suspend When a thread is suspended a hook is needed for dete
ting stability,whi
h is not further explained in this thesis.A new
ompartment of the engine is the store of spa
es. Figure 3.23 shows astore, where situated nodes and threads are labelled with their home spa
e.The LVM is extended with a spa
e register space whi
h
ontains the
urrentspa
e. The trail keeps tra
k of the installed spe
ulative bindings.A spa
e has a referen
e to its parent spa
e, a
ounter for the number of non-terminated threads, a s
ript
ontaining the spe
ulative bindings, a number of
ags, a referen
e to the root node, and a referen
e to the thread
ontaining the
onditional whi
h waits until entailment or disentailment of the spa
e is dete
ted.3.6.2 Threads and spa
esThreads are situated in spa
es. This is implemented in the virtual ma
hine by areferen
es from the thread to its spa
e. This means that the thread \knows" itsspa
e. No referen
es from the spa
e to its threads are needed. The number of

100 CHAPTER 3. THE VIRTUAL MACHINE LVMnon-terminated threads is
ounted per spa
e to de
ide one part of the entailment
ondition.When new threads are
reated they inherit the spa
e from the
urrent thread. Inthis spa
e the thread
ounter is in
remented. A new spa
e is equipped with aninitial thread.Be
ause the engine refers to the spa
e of the
urrent thread very often, this isstore in a space register. The spa
e register is initialized from the thread whenits exe
ution starts.In the LVM all runnable threads are maintained by the s
heduler in a globalthread queue. An alternate design to a global queue would be an organization ofthe runnable threads per spa
e. These lo
al queues are used in AKL and havethe advantage that the lo
ality of exe
ution is exploited6.When a spa
e is failed all threads belonging to this spa
e must be terminated.To avoid referen
es from a spa
e to all its threads this is done lazily. Lazy meansthat when a thread situated in a failed spa
e or below is s
heduled for exe
utionit is dis
arded during the installation, when the failed spa
e is dis
overed.3.6.3 The s
ript te
hniqueThe basi
 problem of deeps guards is to eÆ
iently represent spe
ulative bindings.In this se
tion we des
ribe the s
ript te
hnique for maintaining multiple bindingsof transients in di�erent spa
es.Every spa
e has a s
ript. The s
ript
ontains all spe
ulative bindings of globaltransients of a spa
e. The s
ript
ontains pairs of nodes: a global transient nodeand its spe
ulative binding.To eÆ
iently a

ess the
urrent binding of transients the spa
e of a thread isinstalled. A spa
e is installed by installing its s
ript. The installation of the s
riptmakes all the spe
ulative bindings a
tive by exe
uting the uni�
ation algorithmwith every pair of nodes in the s
ript.The spe
ulative bindings have to be undone when the worker exe
utes anotherthread in a di�erent spa
e. For this purpose the spe
ulative bindings are pushedonto a sta
k,
alled the trail. Spe
ulative bindings may be
reated during theinstallation of the s
ript and during the exe
ution of a thread in a spa
e.The entries on the trail are pairs of a referen
e to the tagged node whi
h wasspe
ulatively bound and its old
ontent, e.g. its old tag and pointer.6This approa
h is taken for propagators, whi
h implement built-in threads for
onstraintpropagation.

3.6. SPACES 101

deinstall

11

���
���
���
���

z:

u:
1

1 2 1 2

Store Script Trail

...

...

...
y:

x:
21

u, 2

mark

install

z:

u:
1

1 2 1 2

Store Script Trail

...

...

...
y:

x:
21

REF u:

z:

u:
1 2 1 2

Store Script

x, 1
y, z

Trail

...

...

...
y:

x:
2

Figure 3.24: Installation and deinstallation.When the worker leaves a spa
e it is deinstalled. Deinstallation writes all spe
u-lative bindings from the trail into the s
ript and retra
ts the spe
ulative bindingsin the store.Bindings of lo
al transients are not trailed and
orrespondingly never written intothe s
ript. These bindings need not to be deinstalled, be
ause the lo
al transientsare not visible in the parent spa
e.Figure 3.24 shows the installation and deinstallation of a spa
e. During theinstallation the unif
ations of x with 1 and of y with z are performed. Weassume that x was already bound globally and therefore the �rst uni�
ation is ano op. The se
ond uni�
ation spe
ulatively binds u, whi
h is trailed and duringthe deinstallation this spe
ulative binding is written to the s
ript.

102 CHAPTER 3. THE VIRTUAL MACHINE LVMInstallation and deinstallation of paths L allows arbitrarily nested spa
esand the worker has to install the s
ripts in all spa
es from the root of the
om-putation tree to the spa
e of the thread.The algorithm to install a path from the root spa
e to a target spa
e has twophases: a
olle
t phase and an a
tivate phase. The
olle
t phase starts from thetarget spa
e and
olle
ts all spa
es on the path to the root of
omputation treeon a sta
k. For this purpose every spa
e needs a referen
es to its parent spa
e.In the a
tivate phase the spa
es on the sta
k are installed.The deinstallation of a path simply starts from the
urrent spa
e and deinstallsall spa
es up to the root spa
e.If the worker deinstalls a spa
e and installs another spa
e this
an be optimizedby performing the deinstallation only until a
ommon an
estor of both spa
es isrea
hed. The installation of the path
an started from this
ommon an
estor. ToeÆ
iently �nd the
ommon an
estor spa
es are marked when they are installed.The
olle
tion phase starts as usual at the target spa
e, but it stops when a spa
eis found whi
h is marked as installed. This spa
e is the
ommon an
estor andthe deinstallation and installation pro
edure
an pro
eed from there.To write the lo
al bindings into the s
ript of the
orre
t spa
e during the dein-stallation the trail has to be segmented with one segment per spa
e on the path.When the worker starts to install a spa
e a new segment is allo
ated on the trail.When a spa
e is deinstalled the transients in the top segment are deinstalled andthis segment is removed from the trail.The trail/s
ript te
hnique outlined above requires that the binding of a tran-sient in the store
an be undone. This implies that the virtual ma
hine is notallowed to shrink existing referen
e
hains, while spe
ulative bindings of tran-sients are stored on the trail. This requires for example spe
ial
are when doinga garbage
olle
tion. In the LVM garbage
olle
tion is performed when all spa
esare deinstalled and no spe
ulative binding is a
tive.Propagation The
onsisten
y
ondition for bindings in a tree of
omputationspa
es is that every transient is bound at most on
e on every path from its hometo any des
endant spa
e. To preserve this
ondition a binding is propagated toall
hild spa
es. Propagation removes the spe
ulative bindings and reexe
utesthe uni�
ation algorithm with the new and the old binding in the subordinatedspa
es.To �nd all spe
ulative bindings the suspensions are extended for spa
es. When aspa
e is deinstalled whi
h has spe
ulative bindings a suspension is
reated whi
hhas a referen
e to the spa
e. This suspension is hooked to every transient whi
his spe
ulatively bound in the spa
e.

3.6. SPACES 103The propagation of bindings is not done immediately when a new binding isadded, but it is done lazily. A wakeup thread is
reated in all spa
es
ontaininglo
al bindings. A wakeup thread has an empty task sta
k. The purpose ofthe wakeup thread is to install its spa
e and thereby performing the impli
itpropagation of bindings.The propagation happens impli
itly during the exe
ution of the s
ript. As ex-plained above the s
ript
ontains pairs of nodes, whi
h are uni�ed during theinstallation of the s
ript. In the
ase of propagation both nodes are possiblydetermined values. The appli
ation of the uni�
ation algorithm guarantees thatthe equality of the two nodes is preserved or that the spa
e is failed.An interesting property of the installation te
hnique is that
onstraint propaga-tion is done lazily. Whenever a thread is exe
uted in a spa
e it is ensured thatall
onstraints are propagated to this spa
e, be
ause the s
ript is installed beforethe exe
ution starts.A little optimization is implemented in the LVM whi
h ensures that for everyspa
e a wakeup thread is only
reated if needed. When a thread enters therunning state its spa
e is marked as propagated. If this mark is already set the
reation of the wakeup thread is omitted, be
ause a runnable thread situated inthis spa
e exists whi
h ensures that the propagation takes pla
e. The mark isdeleted when the spa
e is installed.Failure A spa
e is failed when a failure ex
eption is raised and not handled. Thefailed spa
e is deinstalled7 and marked as failed to allow for the lazy terminationof its threads and the threads in
hild spa
es.Entailment The entailment
ondition for a spa
e has two parts: it
ontains nospe
ulative bindings and and all threads are terminated. For the LVM the �rst
ondition is equivalent to the test if the trail resp. s
ript is empty.The test that all threads are terminated
an be implemented with a
ounter,whi
h is in
remented for every new thread and de
remented for every terminatedthread.It is suÆ
ient to
he
k for entailment when a thread terminates. Both
onditionsare only ful�lled together if the last thread terminates.Merging The merge operation for entailed spa
es
onsists of three parts: mak-ing the merged spa
e transparent, merging the s
ript, and merging the thread
ounter. Merging the thread
ounter simply adds the
ounter of the merged spa
eto the
urrent spa
e.7Creating the s
ript is not ne
essary, be
ause the spa
e will never be installed again.

104 CHAPTER 3. THE VIRTUAL MACHINE LVMA merged spa
e is marked as transparent, whi
h means that all operations ontransparent spa
es are redire
ted to the parent spa
e. Spa
es are made trans-parent to avoid a
omplex ma
hinery for updating all referen
es from transients,suspensions, and threads to the spa
e. This is similar to the te
hnique for bindingtransients and has the same overhead for dereferen
ing.The spe
ulative bindings stored in the s
ript of the merged spa
e are added tothe
urrent spa
e through uni�
ation and thereby propagated to the subordinatedspa
es.Transient - transient bindings Bindings of transients to transients have tobe treated spe
ially. The main reason for potential problems is that transientsare not ordered and the uni�
ation of two variables may bind them in any order.For example when exe
uting the following
ode fragment it may happen that inthe
onditional (1) the transient x is bound to y and at position (2) y is boundto x .
val x=lvar();
val y=lvar();

spawn fn () = >
cond (fn () = > unif (x, y), ..., ...); (� 1 �)

unif (y, x); (� 2 �)In this situation the wakeup me
hanism would not trigger propagation, be
ausein (1) a suspension is only added to x and in (2) only the suspensions of y arewoken.Two possible symmetri
 solutions to �x this problem are:1. Suspensions are added to both nodes if a transients is spe
ulative bound toanother transient.2. The suspensions of both transients are woken, when a transient is boundto another transient.The �rst solution is realized in the LVM. It has the advantage that, in the
aseof binding a lo
al transients to a value, it is not ne
essary to test that the boundvalue is a transient. In this
ase work has to be done only when a spe
ulativebinding is written into the s
ript8.Both solution have the problem that too many unne
essary wakeups may beperformed. Therefore we did an experimental implementation of spe
ial kinds8A se
ond reason for this approa
h is that stability
an be dete
ted easily

3.6. SPACES 105of suspensions for this
ase. These suspension allowed to perform the wakeupexa
tly when needed. It turned out that the
ase of spe
ulative bindings betweentwo transients o

urs very infrequently and no optimization of this
ase is needed.3.6.4 Binding windows and relative simpli�
ationMany te
hniques are proposed in the literature to provide multiple views ontrees of
onstraint stores with shared variables. Espe
ially in the
ontext of OR-parallel Prolog implementations sophisti
ated te
hniques are developed. Guptaand Jayaraman [33℄ give an overview of the known te
hniques and
lassify thesea

ording to three eÆ
ien
y
riteria:
onstant time a

ess to the
urrent bindingin a spa
e,
onstant time thread
reation, and
onstant time thread swit
hing.They show that at most two of these
riteria
an be simultaneously satis�ed.Beside of these three eÆ
ien
y problems a virtual ma
hine with deep guard op-erators like the LVM must also implement the entailment test and the mergeoperation of two spa
es, whi
h are not needed in Prolog implementations.In the following paragraph we present two other te
hniques to represent multiplebindings.Binding arrays The binding array method was introdu
ed in the
ontext ofProlog implementations by D. S. Warren [113℄. The motivation for the bindingarrays was to allow for an exploration of the sear
h tree using other strategiesthan the built-in depth-�rst order of Prolog, but keeping the same performan
eas ba
ktra
king. The te
hnique was independently developed for OR-parallelexe
ution of Prolog by D. H. D. Warren [112℄.The basi
 idea of the method is to allo
ate forwarder lists in every spa
e. Theseforwarder lists maintains the spe
ulative bindings. When a global variable isbound in a spa
e an entry is added to the forwarder list, instead of modifyingthe variable node and trailing it. To a

ess the value of a variable a lookup inall forwarder lists up to the home of the variable is exe
uted, until a binding isfound or the home spa
e is rea
hed.The lookup is optimized with a binding array. This is a stru
ture allo
ated perworker whi
h
ontains all forwarders on the path from the
urrent spa
e of theworker to the root spa
e. The binding array allows to a

ess variable values in
onstant time9.The
omplexity of this s
heme for a single worker traversing the sear
h spa
edepth-�rst is the same as for ba
ktra
king, be
ause the overhead for dereferen
ing,binding, and unbinding is
onstant.9The binding array
an be implemented as an array be
ause in ea
h path of the
omputationtree the variables
an be numbered
onse
utively.

106 CHAPTER 3. THE VIRTUAL MACHINE LVMThe overhead for swit
hing the
ontext is linear in the number of spe
ulative bind-ings whi
h is a

eptable be
ause
ontext swit
hes are assumed to be infrequent
ompared to the amount of work done in one spa
e.The binding s
heme of Penny The binding s
heme of the parallel AKL sys-tem, Penny [65, 64℄, uses a simple forwarder list without binding arrays. Theauthors argue that this simple s
heme is very good for typi
al appli
ations, be-
ause
ontext swit
hing
an be done in
onstant time and the forwarder lists aretypi
ally very short. Furthermore the trees of
omputation spa
es are typi
ally
at and bushy and not deeply nested.To eÆ
iently �nd the suspended binding the forwarder list
ontains, beside spe
-ulative bindings, also lo
al suspensions. The suspension for a binding is added tothe forwarder list in the parent spa
e. If the parent is the home spa
e suspensionsare added to the suspension list of the variable itself.If a global variable is bound the forwarder list of the
urrent spa
e is sear
hed forsuspensions. If a lo
al variable is bound the suspension list of the variable arewoken up.The beauty and the beast The beauty and the beast algorithm [78℄ is atrue in
remental algorithm for de
iding entailment for
at guards with feature
onstraints. The basi
 idea is to avoid any kind of unne
essary re
omputation by
reating a so-
alled beast storing all the work already done.This algorithm was only studied in theory but a pra
ti
al implementation is stilloutstanding. Under the assumptions that spe
ulative bindings are very infrequentit is questionable if this approa
h leads to an improved algorithm.Situated simpli�
ation A formalization of the entailment and disentailmenttests and proof of its
orre
tness for rational tree
onstraints for deep guards isgiven in [77℄.The authors de�ne the situated simpli�
ation as an extension of the uni�
ationalgorithm, whi
h propagates bindings immediately. When the uni�
ation termi-nates the path
onsisten
y
ondition holds, whi
h states that at most one bindingfor every variable on every path exists.In the situated simpli�
ation and the beauty and the beast algorithm the equiv-alen
e sets of stru
tures dis
overed during the uni�
ation are re
orded to avoidtheir re
omputation.

3.7. OTHER VIRTUAL MACHINES 107Comparison The s
ript te
hnique as implemented in the LVM is a simplebinding method if the virtual ma
hine has a single worker. It is also used in thesequential implementation of AKL [47℄. AKL only supports Prolog stru
turesand the extension of the s
ript te
hnique to re
ords is de�ned in [98℄.The reason for using the s
ript te
hnique for implementing multiple in LVM
anbe summarized as follows:� The virtual ma
hine has a single worker. This implies that at every momentonly a single view on the bindings has to be eÆ
iently supported.� Spa
es are used primarily for en
apsulating
omputations for
onstraintprogramming and sear
h, where the vast amount of time is spent in prop-agators and for
loning.� The overhead for
ontext swit
hes for the worker, i.e. moving from one spa
eto another, is small
ompared to the exe
ution time within a
ontext. Thetime sli
e for the exe
ution of a thread is mu
h longer then time needed toswit
h the
ontext. In
onstraint solving problems many threads run in thesame
ontext.� Only very few global variables are spe
ulatively bound. The overwhelmingmajority of bindings are for lo
al variables. The overhead for implementinga truly in
remental algorithm is therefore not related to its bene�ts.In our implementation a suspension is
reated for ea
h deinstallation of the s
ript.This
an be optimized by
reating a single thread per spa
e whi
h has the roleof the wakeup thread and whi
h is responsible for propagating bindings into thisspa
e.The s
ript te
hnique in the LVM has quadrati

omplexity for examples within
remental bindings, be
ause� All bindings in the s
ript are exe
uted, even if a single binding must bepropagated.� Stru
ture-stru
ture bindings are not stored in the s
ript and must be reex-e
uted for every installation of the s
ript.3.7 Other virtual ma
hines3.7.1 Prolog Abstra
t Ma
hinesThe design of LVM was in
uen
ed to a great extend by Warren's design of theabstra
t ma
hine for Prolog,
alled WAM [110, 111, 1℄.

108 CHAPTER 3. THE VIRTUAL MACHINE LVMThe LVM uses the basi
 te
hniques developed for the WAM to represent symboli
stru
tures on a heap. This representation was adapted for re
ords. The LVM usesthe same optimized representation of lists as found in many Prolog implementa-tions. The optimizations for
ompiling uni�
ation into low level instru
tions
anbe dire
tly applied.The LVM supports logi
 variables, but their representation
ould not be optimizedinto self-referen
es, be
ause variables are situated in spa
es and need to representtheir home pointer.In the LVM variables are never allo
ated on the sta
k resp. in Y registers, butonly on the heap. Therefore no
on
ept of unsafe variables is needed.L does not support ba
ktra
king as primitive sear
h strategy, but �rst
lassspa
es, whi
h allow to eÆ
iently program di�erent sear
h strategies [89℄. Themajor di�eren
e for the virtual ma
hine is that many environments resp. spa
esare a
tive simultaneously. Instead of generating
hoi
e points and trailing
hangesthe virtual ma
hine supports
loning, i.e.
opying, of spa
es.Like the WAM the virtual ma
hine of L has global resp. temporary registers Xand lo
al resp. permanent registers Y. Arguments are passed through X registersin both ma
hines. To support �rst-
lass pro
edures the LVM has an additionalregister G for addressing the pro
edure environment.The design of the LVM is targeted for an emulator-based approa
h and not fora high-performan
e native implementation. It is expe
ted that the te
hniquesdeveloped for high-performan
e Prolog implementation, e.g. Van Roy's [105℄, orTaylor's [101℄,
an be adapted.3.7.2 The abstra
t ma
hine of AKLThe Agents system [47℄ is the �rst implementation of AKL [27, 37℄ a deep guardprogramming language. Many implementation te
hniques for deep guards werepioneered in the Agents system.L radi
ally di�ers from AKL in its
ontrol strategy. Con
urren
y in AKL is �negrained as opposed to L, whi
h supports
ourse grained
on
urren
y. The im-plementation
on
urren
y for L requires to support preemption of
omputationsto guarantee fairness among threads and rea
tivity. Ex
eption handling is notsupported in AKL, be
ause it is only useful in the paradigm of threads.Sear
h in AKL is built-in and impli
itly triggered. In L sear
h is �rst-
lass [89℄.The LVM supports a ri
her set of data types than AKL, e.g. names, re
ords, and�rst
lass pro
edures are essential parts requiring new implementation te
hniques.The basi
 data type for stateful programming in AKL is a port. Compared to
ells in L the implementation of ports is of a similar
omplexity.

3.7. OTHER VIRTUAL MACHINES 1093.7.3 LIFEThe tree data stru
tures realized in the LVM are based on the foundational workon re
ords [98℄ and features [4℄. As part of the work on LIFE [2, 3, 78, 79℄re
ord-like stru
tures were analysed and implemented in a
on
urrent
onstraintframework.3.7.4 The Java Virtual Ma
hine (JVM)The Java Virtual Ma
hine (JVM) [60℄ is a ma
hine designed for the implemen-tation of Java. Java is an imperative
on
urrent programming language usingthe obje
t-oriented imperative programming paradigm with automati
 memorymanagement.The JVM is designed to support a wide range of platforms in
luding embeddedsystems. The language requirements wrt. fairness and unsyn
hronized update anda

ess in Java are very weak. This weakness simpli�es the implementation of theJVM
ompared to the burden on the LVM to respe
t the interleaved semanti
sof L.The JVM is a sta
k based ma
hine, i.e. it has no general purpose ma
hine regis-ters, but operands and arguments are passed through a data sta
k. This approa
h
ompared to the register-based approa
h of LVM simpli�es the
ompiler and theimplementation of the virtual ma
hines in some aspe
ts, but many optimizations,e.g. using ma
hine registers for passing arguments, requires non-trivial runtimeoptimizations [23, 24℄.The design of the ex
eption me
hanism in the JVM is optimized for the
ase thatex
eptions are raised only in rare
ir
umstan
es. An ex
eption handler in
ursno overhead at runtime if no ex
eption is raised. When an ex
eption is raisedall sta
k frames are s
anned to test if its PC refers to a region prote
ted by anex
eption handler. Using ex
eptions for non-standard
ontrol primitives is notfeasible with this approa
h.The JVM does not support tail-
all optimization, instead the usual loop
on-stru
ts of imperative languages, e.g. while and for, are supported. The designof the JVM does not prevent tail-
all optimization, but it seems that tail-
alloptimization has no priority for JVM developers.3.7.5 Fun
tional languagesMany ideas from the implementation of fun
tional languages [7, 76℄ apply verywell to the LVM. First-
lass pro
edures in L are very similar to �rst-
lass fun
tions

110 CHAPTER 3. THE VIRTUAL MACHINE LVMand
ompilation te
hniques like
losure
onversion and
ontinuation passing
ouldbe easily adapted to the LVM.Closure
onversion transform pro
edures su
h that its free variables be
ome addi-tional formal arguments. To su
h a
onverted pro
edure the values of the
losureare passed as additional a
tual arguments. This te
hnique makes the G address-ing mode obsolete and is espe
ially useful for native implementations and forelaborated
ompiler optimizations.The
ontinuation passing style is an alternative implementation to a sta
k basedimplementation of threads. In this approa
h every pro
edure is
onverted intoa pro
edure with a
ontinuation as additional argument. The
ontinuation istail-
alled at the end of the pro
edure instead of returning from the pro
edure.The
ontinuation passed when
alling a pro
edure is a
losure representing the
ode whi
h follows the pro
edure
all.Using
ontinuation passing style for the a virtual ma
hine simpli�es the repre-sentation of threads, but requires to
reate a lot of
losures. It pays o� if the
ompiler aggressively optimizes the
reation of
losures.The
onvention for returning values di�ers between L and fun
tional languages.In L logi
 variables are used to pass values ba
k to the
aller of a pro
edure. Inthe LVM this is optimized for
reating symboli
 data stru
tures. In the imple-mentation of fun
tional languages values are usually returned through registers.This typi
ally avoids the overhead of
reating and binding variables and oftenleads to a better register usage. On the other side it
an hinder the tail re
ursionoptimization, e.g. the L pro
edure for
on
atenation app is tail re
ursive, whereasthe fun
tional version is not.Many fun
tional languages have single argument fun
tions. Multiple argumentsare realized with pairing. To get the same eÆ
ien
y as possible with multiplearguments a te
hnique
alled deforestation [109℄
an be used. The basi
 idea ofdeforestation is to delay the pairing as far as possible. If a pair for example ispassed as an argument to a pro
edure its �elds are passed separately and theyare never
ombined into the stru
ture if the pro
edure dire
tly de
omposes itsargument. In the LVM we use a similar te
hnique for the implementation of�rst-
lass messages in the obje
t system.A major di�eren
e between L and many fun
tional language is the type system. InL everything is dynami
ally typed, whereas fun
tional languages, like StandardML and Haskell, have a strong type system. The dynami
 type system of Lhinders many optimizations whi
h take advantage of stati
 type information, e.g.avoiding dereferen
ing and dynami
 type tests and representing values as unboxand untagged data stru
tures.Reppy [81, 82, 83, 84℄ des
ribes a
on
urrent extension (CML) of Standard ML.The
ommuni
ation primitive of CML is a �rst-
lass
hannel with two syn-
hronous operations. a

ept reads from and send writes to a
hannel. Both

3.7. OTHER VIRTUAL MACHINES 111operations blo
k until a pair of threads meet at a
hannel where one performs ana

ept and the other a send operation.The implementation of CML is build on top of Standard ML using its primitivesfor �rst-
lass
ontinuations and asyn
hronous signals to implement light-weightthreads. When a signal o

urs the
urrent
ontinuation is grabbed and passed toa signal handler. This allows to preempt a thread with its state
aptured in the
urrent
ontinuation.3.7.6 Erlang's virtual ma
hines (JAM, TEAM/BEAM)Erlang [9℄ is a
on
urrent fun
tional language designed for telephony appli
ations.Two aspe
ts of the language design are di�erent
ompared to L: threads (whi
hare
alled pro
esses in Erlang) have no shared memory and the language doesnot support stateful data types.As a fun
tional language Erlang requires proper tail-
all optimization. The
om-muni
ation is based on a message queue per pro
ess and a wait primitive tosyn
hronize on messages in queue.For Erlang two sequential virtual ma
hines were designed: JAM [8℄ an emulator-based sta
k ma
hine and TEAM/BEAM [41℄ a high-performan
e native imple-mentation with a register based intermediate language.Both implementation use separate sta
ks and heaps for every thread. The Erlangimplementation is also in
uen
ed by the WAM, e.g. for the representation of datastru
tures they use tagged pointers and pattern mat
hing is implemented withindexing. Environments are allo
ated per pattern rule, whi
h is similar to theWAM where the environment is allo
ated per
lause.Similar to the LVM Erlang has light-weight pro
esses with a well-de�ned seman-ti
s. The implementation is a single threaded OS pro
ess with a round robins
heduler and possible preemption when exe
uting
alls.The memory management of Erlang is based on a
opying garbage
olle
tor.Garbage
olle
tion is performed on a per-thread basis, be
ause every thread hasits own heap. A ni
e property of Erlang is that no
y
li
 data stru
tures
an be
reated, whi
h simpli�es the garbage
olle
tion algorithm.The overhead for garbage
olle
tion in Erlang is very high for examples withmany threads and a lot of
ommuni
ation. The problem o

urs be
ause threadshave no shared memory and the messages must be
opied between the threads.The problem is further enlarged by the fa
t that obje
t oriented programming issupported as a
tive obje
ts with a thread per obje
t. Erlang has no stateful datastru
tures and hen
e no possibility to express obje
ts without thread.

112 CHAPTER 3. THE VIRTUAL MACHINE LVMAs a summary the shared store for threads in the LVM has the advantage that nodata stru
tures must be
opied during the
ommuni
ation among threads. Onthe other side the te
hnique to allo
ate memory per thread in Erlang has theadvantage that independent and
on
urrent garbage
olle
tion for ea
h threadis possible. Furthermore the distribution of threads among many sites and themapping of threads to multiple pro
essors be
omes simpler.3.8 Summary of the design prin
iplesIntermediate level of abstra
tion The virtual ma
hine hides irrelevant de-tails of
on
rete ma
hines. It provides suÆ
ient high-level abstra
tions to avoidunne
essarily
ompli
ated
ompilers. It provides enough low-level abstra
tionsto allow the
ompiler to generate
ode whi
h
an be eÆ
iently emulated.A virtual ma
hine is a good implementation
ompromise for a new programminglanguage, whi
h
hanges frequently and where experiments with new ideas areperformed. A virtual ma
hine is not as
exible, wrt.
hanges, as an interpreter,but its performan
e is mu
h better.Another advantage of a virtual ma
hine is portability. The Mozart implementa-tion, whi
h is written in C/C++, has been adapted to many platforms.Emulator-based implementation The ma
hine language is designed for anemulator-based implementation. This means that the emulation overhead shouldbe minimized. Therefor the instru
tion set is
oarse-grained: many mi
ro in-stru
tions are
ombined into one LVM instru
tion.An intermediate language as target for native
ompilation has to be designed verydi�erently. The work of Van Roy [105℄ and Taylor [101℄ on high-performan
e
ompilation of Prolog indi
ates that the intermediate language has to be at avery low-level and
lose to the hardware to rea
h the speed of C/C++. Thisis de�nitely not the
ase for the LVM, whi
h has for example high-level graphrewriting and syn
hronization instru
tions.Using a simple ma
ro expansion of the LVM ma
hine
ode to native
ode willsurely give some speedup, but it is not the right tra
k to rea
h a high-performan
eimplementation.Single worker The virtual ma
hine is designed to run on single pro
essor ma-
hines. A simple s
heduler for
on
urrent threads is built into the virtual ma
hine.The single pro
essor model gives strong invariants for atomi
ity and simpli�es theimplementation of the interleaved semanti
s of L.

3.8. SUMMARY OF THE DESIGN PRINCIPLES 113Multiple worker ar
hite
tures for
on
urrent
onstraint languages are studiedin [80℄ and [64℄. In [80℄ the
oarse-grained parallelism on the thread level ofL is exploited. [64℄ exploits �ne grained parallelism in the language AKL. Bothproje
ts show that a sequential virtual ma
hine is a good starting point to exploreparallelism.Shared memory ar
hite
ture The graph store of the LVM is shared betweenall threads. This di�ers from message passing ar
hite
tures, where all threadshave their own memory and
ommuni
ation between threads is done by messagepassing. The only means to
ommuni
ate between threads in the LVM is throughshared nodes. The LVM has no message passing primitives built-in, but they
anbe expressed eÆ
iently using re
ords, transients and
ells.A shared memory ar
hite
ture has the advantage that data stru
tures need notto be
opied when
ommuni
ating between threads. Only a referen
e to a nodein the graph has to be a
tually sent from one thread to another.For parallel and distributed implementations shared data stru
tures require moree�ort in the syn
hronization
ode of the implementation, but for programmersshared data stru
tures are very powerful.Memory management in shared ar
hite
tures is also more ambitious: to re
laimthe memory of nodes potentially many threads are involved and have to be syn-
hronized. In Erlang implementations [41, 8℄ every thread (
alled pro
ess there)has its own memory management. Non-shared memory ar
hite
tures allow for abetter real-time
ontrol, be
ause threads are better de
oupled. In the LVM (see
hapter Se
tion 4.6) we use a stop and
opy
olle
tor, whi
h stops the exe
utionof all threads, re
laims the memory and after that restarts the exe
ution of thethreads.Automati
 memory management The LVM provides automati
 memorymanagement. Automati
 memory management is well-understood and standardin modern high-level languages [114, 115℄.The basi
 garbage
olle
tion rule for the LVM is that only the nodes rea
hablefrom the runnable threads and threads pending on I/O or the timer are live data.In Se
tion 4.6 the implementation issues for the automati
 memory managementin the LVM is dis
ussed.First-
lass pro
edures The LVM has dire
t support for pro
edures with lex-i
al s
ope and in�nite extend, so
alled �rst-
lass pro
edures. Basi
ally thismeans that the pro
edure appli
ation installs the environment
aptured at thepro
edure de�nition. The virtual ma
hine has an additional addressing mode for

114 CHAPTER 3. THE VIRTUAL MACHINE LVMthis environment. In an emulator-based implementation the support of �rst-
lasspro
edures
omes almost for free.An alternative approa
h to
ompile �rst-
lass pro
edures is
losure
onversion [7℄.This te
hnique
onverts �rst-
lass pro
edures into pro
edures with an additionalargument
ontaining the
aptured
losure. The advantage of this te
hnique is thatno additional addressing mode is needed. A disadvantage of
losure
onversionis that it adds a level of indire
tion to address a node.Tail
all optimization The virtual ma
hine has no loop
onstru
ts, but im-plements tail
all optimization, i.e. if the last instru
tion of a pro
edure is anappli
ation, the sta
k frame of the
aller is removed before the appli
ation. Tail
all optimization allows to implement loop
onstru
ts eÆ
iently. It has additionalexpressiveness, be
ause any tail
all is optimized and for example mutually tailre
ursive pro
edures don't need spa
e on the sta
k of the thread.In an emulator-based implementation tail
alls
an be implemented almost aseÆ
iently as jumps. Therefore it is not ne
essary to
ompli
ate the
ompiler andengine with loop
onstru
ts.Graph abstra
tion The graph abstra
tion is the
anoni
al representation ofdata-stru
tures in high-level languages with automati
 memory management. Aunit with links to other nodes is the single primitive abstra
tion for the repre-sentation of a value. The unit itself
ontains type spe
i�
 s
alar information andthe links are dire
ted and ordered
onne
tions to other nodes.With this single
on
ept all primitive language data types
an be implementedeÆ
iently. The graph abstra
tion maps very well to imperative data stru
turesand automati
 memory management is straightforward.The store of the LVM is designed su
h that it provides for eÆ
ient representationsof dynami
ally typed values for an emulator based VM. The underlying assump-tion is that the
ompiler does not
ompute stati
 type information, e.g. an a
tualargument of a pro
edure (user-de�ned or built-in)
an be of an arbitrary typeand the VM has to handle it dynami
ally.The store has to represent many di�erent types of values. We use a layered ap-proa
h. The
ore layer
ontains a few main data types, whi
h are implementedhighly eÆ
ient using tagged pointers. The basi
 layer, whi
h
ontains the ma-jority of types, is implemented with tagged obje
ts. The extension layer, whi
hopens the system to add new data types, uses obje
ts with late binding.The layered approa
h has the advantage that eÆ
ien
y
an be traded with sim-pli
ity, e.g. experimental data-types
an be added easily and the essential data-types, e.g. integers, referen
es, and transients,
an be optimized.

3.8. SUMMARY OF THE DESIGN PRINCIPLES 115Transient values are basi
ally used for
onstraint programming and syn
hroniza-tion of threads. The store is designed su
h that transient values are almostgra
efully degrading. If transient values do not o

ur in programs there shouldbe no penalty. The major reason why this
ould be a
hieved in the LVM is,that all values are represented with dynami
 type information and the test fordetermination
an be integrated at no
ost with the type test.Another design goal is modularity and orthogonality of data stru
tures. Datatypes are implemented in the LVM independently. The glue is the tagging s
hemeat the
ore layer, the tagged obje
ts at the basi
 layer, and a virtual fun
tioninterfa
e at the extension layer.I/O as orthogonal
on
ept Input and output is not integrated into the vir-tual ma
hine. I/O is modeled with ports as endpoints for
ommuni
ation withthe outside world. A port [49℄ is an abstra
tion for many many-to-one
ommu-ni
ation with a stream for the reader and a send pro
edure for the writer. Ports
an be easily expressed in L (see [96℄).Output is modeled as a port to whi
h messages
an be sent from MyOz and whi
hhave some impa
t on the outside. Input is modeled as a port on whi
h messagesarrive from the outside.No limitations The virtual ma
hine imposes no arti�
ial limitations: the num-ber of lo
al registers Y is unlimited, arbitrary many threads
an be
reated ands
heduled, the graph store is unlimited, arities and the number of subtrees
an bearbitrary large, an in�nite number of new names
an be generated, integers arenot limited. These requirements simplify the
ompilation of the high-level lan-guage into the ma
hine language, but they require some e�ort when implementingthe virtual ma
hine.Control-sta
k and data heap The sta
k of tasks in threads is solely a
ontrolsta
k and the data stru
tures of the language are stored on the heap. This setup
learly separates
ontrol from data. This separation guarantees for example thatthe tail-
all optimization
an be applied for every tail re
ursive appli
ation.Built-in pro
edures Some of fun
tionality of the LVM is implemented asbuilt-in pro
edures, where performan
e is not an issue. This allows to keep thenumber of ma
hine instru
tions small and fo
ussed on the performan
e
riti
alaspe
ts.Built-in pro
edures
an also be used as a
exible me
hanism to extend the virtualma
hine.

116 CHAPTER 3. THE VIRTUAL MACHINE LVMWith respe
t to
ompiler optimizations built-in pro
edures
an be handled likeother ma
hine instru
tions, e.g. an appli
ation of a built-in does not invalidatethe
ontents of X registers.

Chapter 4Implementation aspe
ts
In this
hapter some aspe
ts of the implementation of the LVM in C++ aredis
ussed. The main fo
us is on the representation of the data-stru
tures in thestore.4.1 Storage representationsIn the LVM the type of every unit is available at runtime and the implementationhas to dynami
ally represent these types of units.The main te
hniques for representing dynami
 type information are tagged ob-je
ts and tagged pointers. Typi
ally an implementation has to �nd a
ompromiseusing a hybrid mix to trade the simpli
ity of tagged obje
ts vs. the eÆ
ien
y oftagged pointers.The virtual ma
hine supports more types than the language, be
ause varioussubtypes have optimized representations, e.g. lists and tuples. The LVM tags
heme uses a representation, whi
h allows for speed and memory optimizationsof frequently used data types.The operations on dynami
ally typed values are type tests, boxing, and unboxing.Types tests require the type of a unit and test if this unit is of a
ertain requiredtype. Boxing
reates a dynami
ally typed unit. Unboxing extra
ts the rawinformation from a dynami
ally typed unit.In a language where virtually all units are dynami
ally typed, these operationsare exe
uted most frequently and therefore every optimization
ontributes signif-i
antly to the performan
e of the whole system.

117

118 CHAPTER 4. IMPLEMENTATION ASPECTS4.1.1 Tagged obje
tsTagged obje
ts are simple data stru
tures whi
h have a type �eld and additional�elds depending on the type. Tagged obje
ts of a
ertain type
an be implementedas sub
lasses of the
lass TaggedObject .
class TaggedObject f
protected:
int type;
TaggedObject(int t) : type(t) fg

public:
int getType() f return type; ggA list element Cons for example
an be implemented trivially as a tagged obje
twith two additional �elds for the head and the tail of the list.

class Cons : public TaggedObject f
protected:

TaggedObject �head;
TaggedObject �tail;

public:
Cons(TaggedObject �h,TaggedObject �t)

: TaggedObject(CONS), head(h), tail(t) fg
TaggedObject �head() f return head; g
TaggedObject �tail() f return tail; ggSimilarly integers
an be implemented as tagged obje
t with an additional integervalued �eld.

class Int : public TaggedObject f
protected:
int val;

public:
Int(int v)

: TaggedObject(INT), val(v) fg
int getInt() f return val; ggThe main advantage of the tagged obje
t implementation is its simpli
ity and reg-ularity, e.g. the memory management
an use the invariant that all data stru
tureson the heap start with the type �eld.In a system using only tagged obje
ts the ma
hine registers and the �elds of stru
-tures, e.g. the head and tail in the
lass Cons,
ontain pointers to tagged obje
ts.This means that tagged obje
ts are always referen
ed through an indire
tion.

4.1. STORAGE REPRESENTATIONS 119The type test therefore requires not only a
omparison but additionally a memorya

ess for the indire
t a

ess to the tagged obje
t. Boxing and unboxing are trivial
asts with no runtime
osts.4.1.2 Tagged pointersTagged pointers are a data stru
ture whi
h �ts into a word of the target ar
hite
-ture (typi
ally 32 bits). The word is split into the tag (4 bits) and data �eld (28bits). The tag
ontains the type informations. And the data �eld
ontains thevalue. If the value does not �t in the data, then additional storage is allo
atedand the data �eld
ontains a pointer to this additional storage.Pointers Pointers are en
oded into the 28 data bits of a tagged pointer
ombin-ing two te
hniques. First, every heap node is aligned to word size. This ensuresthat the least signi�
ant two bits of a pointer are always zero, hen
e only 30 bitsmust be stored. Se
ond, only 230 bytes (1 GB) of the available virtual memory isused. These two te
hniques allow to represent a pointer in 28 bits. The overheadfor tagging and untagging pointers is signi�
ant.The
lass Tagged shown below is an implementation of tagged pointers. It hasinitialization (Tagged
onstru
tors), update (set), and a

ess (get) methods.
class Taggedf
private:
static const mask=15;
static const bits=4;
unsigned int tagged;
void checkTag(int tag) f

Assert(tag >= 0 && tag <= mask);g
void checkVal(int val) f

Assert((val & (mask <<(32 �bits))) == 0);g
void checkPtr(void� ptr) f
unsigned int val=(unsigned int) ptr;
Assert((val&3)==0);
Assert((val&(3 <<30))==mallocBase);g

public:
Tagged() f tagged = 0; g
Tagged(void� ptr, int tag) f set(ptr,tag); g
Tagged(unsigned int val, int tag) f set(val,tag); g

120 CHAPTER 4. IMPLEMENTATION ASPECTS
void set(void� ptr, int tag) f

checkPtr(ptr);
checkTag(tag);
tagged = (((unsigned int)ptr) <<(bits �2)) j tag;g

void set(unsigned int val, int tag) f
checkTag(tag);
checkVal(val);
tagged = (val <<bits) j tag;g

unsigned int� getRef() f return &tagged; g
int tag() f return (tagged&mask); g
unsigned int getData() f return tagged >>bits; g
void� getPtr() f
return (void�)(mallocBase j((tagged >>(bits �2))&˜3));gg;Boxing The set methods implement boxing. They need one shift and onelogi
al OR operation. For the zero tag1 boxing redu
es to a single shift. Thisoptimization
omes for free, when using an optimizing C++
ompiler.Unboxing The get methods implement unboxing. They need a single shift fornon pointer values. Pointers require a shift by two and a AND operation to putzeros in the two least signi�
ant bits. Unboxing pointers
an be
ompiled into asingle shift if the tag has the bit pattern xx00 .On some ar
hite
tures, where the heap segment
annot be allo
ated at the bot-tom of the memory, i.e. the two most signi�
ant bits of pointers are not zero,an additional operation to add the segment start is required when unboxing apointer.Type tests Type tests are done by masking out the bits of the tag and
om-paring this tag with the required tag. The zero tag is optimized by the C++
ompiler, be
ause the result of mask operation is already the negated result ofthe type test: false (zero in C++), if the tagged pointer has the zero tag andtrue (non-zero in C++) otherwise. When the result is immediately used in a
onditional the C++
ompiler
an remove the otherwise required negation andnormalization.1The zero tag is used for representing referen
es in the LVM tag s
heme.

4.1. STORAGE REPRESENTATIONS 121The check methods show how we implement method
ontra
ts in C++ as amixture of
omments and runtime
he
ks: the Assert ma
ro expands to theempty statement in the produ
tion system and to an expli
it test with an errormessage in the development system.The following
ode shows examples of a tagged pointer representation of listelements and integers.
class ConsData f
friend class Cons;

Tagged head;
Tagged tail;g;

class Cons : public Tagged f
public:

Cons(Tagged h, Tagged t) : Tagged() f
set(CONS, new ConsData(h,t));g

Tagged getHead() f return (�(ConsData �) getPtr()).head; g
Tagged getTail() f return (�(ConsData �) getPtr()).tail; gg;The list element does not �t into the tagged pointer and requires to allo
ateadditional data class ConsData for the head and tail �elds.

class SmallInt : public Tagged f
public:

Int(int i) : Tagged(INT,i) f g
int getInt() f return getData(); gg;The integer type implementation is a straight-forward re�nement of the Tagged
lass with the limitation that only 28 bit integers
an be stored.The advantage of the tagged pointer s
heme is the smaller memory footprint anda better performan
e espe
ially for type tests. Tagged pointers
an be storedin the �elds of stru
tures and in ma
hine registers. For some values,e.g. smallintegers, everything �ts into the tagged pointer and does not need additionalmemory. Compared to the tagged obje
ts the type tests for tagged pointersrequire no memory a

ess, be
ause the type information is stored dire
tly in thepointer.The main drawba
k of tagged pointers is that they impose several restri
tions.Pointers must �t into the remaining bits of the data �eld. For integers the im-plementation limits their range to [�227;+227� 1℄. The eÆ
ient implementationof the arithmeti
 operators requires additional e�orts [87℄.

122 CHAPTER 4. IMPLEMENTATION ASPECTSNum Bits Tag Data Explanation0 0000 REF Tagged � referen
e4 0100 WREF Tagged � read-write referen
e8 1000 REF3 reserved12 1100 REF4 reserved1 0001 TRANS TransBody � transient5 0101 UVAR spa
e optimized variable9 1001 FUT spa
e optimized future13 1101 GC Tagged � garbage
olle
tion2 0010 CONS ConsData � list element3 0011 REC Structure � re
ord or tuple6 0110 INT dire
t value small integer7 0111 EXT Extension � extension10 1010 VEXT ExtBody � generi
/virtual extension11 1011 FLOAT Float �
oating point value14 1110 unused15 1111 LIT Literal � literalFigure 4.1: The LVM tag s
heme.Furthermore the number of available tag bits limits the number of possible repre-sentations for data-types. Instead of a �xed number of tag bits an implementationwith varying numbers bits is possible.Another variant of tagged pointers used in the LVM is an en
oding where two bitsare used for tagging and 30 bits are available for data. This allows to representarbitrary pointers to word aligned data. It is for example used for the se
ondarytag to distinguish re
ords and tuples.4.1.3 The LVM tag s
hemeFigure 4.1 shows the tag s
heme of the LVM. The di�erent types are explainedin the following se
tions. Pointer values are marked with a star, e.g. Tagged* isa pointer to a tagged pointer.The LVM uses a hybrid s
heme of tagged pointers and tagged obje
ts: as mu
has needed is en
oded as tagged pointer (see Figure 4.1). One tag EXT is reservedfor tagged obje
ts whi
h have se
ondary tags as listed in Figure 4.2. Another tag
VEXTis reserved for virtual obje
ts, whi
h uses late binding instead of an expli
ittag. These virtual obje
ts are explained in Se
tion 4.5.The tagged pointer with all bits zero, the TaggedNULL, is reserved for spe
ialproposes, e.g. for signalling errors and ex
eptions.

4.1. STORAGE REPRESENTATIONS 123Tag ExplanationPROC user-de�ned pro
edureBUILTIN built-in pro
edureCLASS
lassOBJECT obje
tTHREAD �rst
lass threadCELL
ellSPACE �rst
lass spa
ePORT portCHUNK
hunkARRAY arrayDICT di
tionaryLOCK lo
kFigure 4.2: Se
ondary tags.Integers Integers in the interval [�227 + 1;+227 � 1℄ are represented dire
tlyin the data part of the tagged pointer using the INT tag. Operations on theseintegers are optimized su
h that no unboxing is needed.Integers outside this interval are represented as extension with a se
ondary tag(see Se
tion 4.5). These integers use an external pa
kage, namely the GNU multipre
ision library, version 2 to implement big integers and their operations.Floats Floats are represented as tagged pointers using the FLOAT tag. Theyrefer to a heap node
ontaining a IEEE
oating point with double pre
isionrepresentation of
oat values. These heap nodes are aligned to double wordboundaries on the heap, be
ause
oating point arithmeti
 requires it. It is thenpossible that for every
oat a word is vasted on the heap for alignment.4.1.4 Dis
ussionGudeman [32℄ gives a good overview of te
hniques to represent values in dynam-i
ally typed languages and de�nes basi
 notions.The LVM tag s
heme is a
ompromise whi
h optimizes the
ase that dereferen
ingand test for determination must be done at runtime. As explained above the zerotag (REF in the LVM tag s
heme) allows for optimized type tests, boxing andunboxing operations.We have also analyzed an alternative tag s
heme, where no boxing and unboxingis needed for the REF tag. In this s
heme all tags (0,4,8, and 12) with the

124 CHAPTER 4. IMPLEMENTATION ASPECTStwo least signi�
ant bits of zero are used as REF tags. For small ben
hmarks(tak, nrev) boxing and unboxing of REF tags, espe
ially in
onjun
tion with theallo
ation of transients in stru
tures (see Se
tion 4.2), are done so frequently thatthis optimization implies a performan
e di�eren
e of approximately ten per
ent.In other appli
ations, e.g. the
ompiler or the s
heduler, the di�eren
e is notsigni�
ant.The en
oding of transients is su
h that if a tagged pointer is known to be noreferen
e then the test if it is a transient is very
heap: t is a transient if t&2==0 ,whi
h is similar to the test for a referen
e.Another optimization is the en
oding of the CONStag for the representation oflists. The CONStag is espe
ially optimized, be
ause lists are a
onvenient methodfor representing dynami
 data stru
tures and list iteration o

urs frequently inappli
ations. If it is known that a tagged pointer is no referen
e and no transientthen the test if t is CONSis a single AND operation t&13==0 .Using tagged pointers has a drawba
k with respe
t to moving and
opying values.A tagged pointer representing transients
an never be
opied, be
ause the identityof a transient is represented by its lo
ation in memory. Therefore transients storedin registers and re
ord �elds must be handled
arefully.In the LVM transients are never stored in registers. Registers
an only
ontainreferen
es to transients on the heap. This allows to
opy and move nodes betweenregisters without danger of o

asionally
reating
opies of transients by movingtagged pointers. Furthermore this restri
tion of the implementation avoids theproblem of unsafe variables known from the WAM [1℄.Oz has integers of in�nite pre
ision and in the implementation a subset
alledsmall integers are represented eÆ
iently. Lisp [100℄ optimize integers even more.They use two tags: 0000 for positive and 1111 for negative values. Therefore notagging and untagging is needed and the over
ow test simply
he
ks if the resultof an operation has a valid integer tag.The tag s
heme of the LVM is optimized for a
ompiler whi
h does no aggressivestati
 analysis to dedu
e stati
 type information. Other tag s
hemes are neededfor a highly optimizing
ompiler. For example if it does stati
 analysis to dete
tdetermined and dereferen
ed values [12℄, then the optimization for referen
es andvariables would loose their prominent role.Other languages whi
h have stati
 type systems or where the
ompiler
an extra
tstati
 type information
an often avoid using run-time tags. Untagged values
anthen for example be stored dire
tly in registers. Dynami
 types are still needed,e.g. for doing garbage
olle
tion [6℄, but there overhead during the exe
ution
anbe often avoided. Possible type systems and type inferen
e for Oz are analyzedin [67℄

4.2. TRANSIENTS 125In the LVM pro
edures are represented as unboxed values when they are used in�rst-
lass pro
edure appli
ations, i.e. at
ompile time it is known that a appli-
ation is always applied to the same pro
edure. Another example of a unboxedrepresentation is the referen
e to self during the exe
ution of methods, whi
h isstored as unboxed value in a LVM register.4.2 Transients4.2.1 Referen
esA referen
e in the LVM is a tagged pointer with the REF tag and a pointer to atagged pointer.
class Ref : public Tagged f
public:

Ref(Tagged �vPtr) : Tagged() f set(REF,vPtr); g
Tagged �getRef() f return (Tagged �)getPtr(); gg;

Bool isRef(Tagged v) f return v.tag()==REF; g4.2.2 Representation of TransientsThe LVM supports three levels of representations for transients. At the bot-tom layer a highly optimized representation for storing variables in the �elds ofstru
tures is implemented. The medium layer with a se
ondary tag is used toimplement the built-in transient types, i.e. free variables, futures, and kindedvariables. The medium layer uses a se
ondary tag to distinguish the di�erenttypes of transients. For experiments new transient types
an be added (dynami-
ally) using a virtual layer, whi
h uses late binding of a small number of interfa
efun
tions.
enum TransType f

FREE,
FUTURE,
KINDED FD,
KINDED FS,
KINDED OR,
...g;

class SuspList f
Thread � thread;
SuspList � next;g;

126 CHAPTER 4. IMPLEMENTATION ASPECTS
class TransBody f

TransType type;
SuspList � suspList;
Space � home;
TransBody(TransType t,Space � s)
: type(t), suspList(0), home(s) fgg;

class Trans : public Tagged f
Trans(TransBody � tb) : Tagged(tb,TRANS) fg
TransBody � getBody() f return (TransBody �) getPtr(); gg;

Bool isTrans(Tagged v) f return v.tag() & 2 == 0; gThe standard representation of transients is a tagged pointer with the tag TRANSand a pointer to a transient node. A transient node (TransBody) is a labelledheap node whi
h is labelled with the type, e.g. free, future, or kinded variable,a spa
e and a suspension list. The suspension list
ontains threads whi
h aresuspended until the transient is bound.4.2.3 VariablesA new variable is
reated with newVar() . newVar() returns a referen
e to thevariable.
class FreeBody : public TransBody f

FreeBody(Space � s) : TransBody(FREE,s) fgg;
Tagged newVar(Space � s) f
return Ref(new Trans(new FreeBody(s)));g

Bool isFree(Tagged t) f
return t.tag()==TRANS &&

((Trans)t).getBody() �>type==FREE;gNote that the memory needed for a new variable is the memory for the body andthe memory for the tagged pointer. The referen
e does not use heap memory,be
ause the C++
ompiler
an store it in registers and �elds.4.2.4 FuturesA future is a read-only view on a transient. Futures are implemented as transientnodes where the assignment operation blo
ks and suspends its thread until theprote
ted transient is bound. A future of a transient is
reated with futureOf .

4.2. TRANSIENTS 127
class FutureBody : public TransBody f

FutureBody(Space � s) : TransBody(FUTURE,s) fgg;
Tagged futureOf(Tagged v) f

Tagged tmp=deref(v);
if (!isTrans(tmp)) return tmp;
Space � s=((Trans)tmp).getBody().home;
TransBody � tb= new FutureBody(s);
Trans �t = new Trans(tb);
addPropagator(tmp,Ref(t));
return Ref(t);gThis fun
tion �rst tests if the argument is a transient. If it is not the argumentis dire
tly returned. If the argument is a transient a new future is
reated and apropagator is installed to propagate the binding of the transient to the future.4.2.5 By-need FuturesBy-need futures are a spe
ialization of futures. Additionally to the read-onlyaspe
t, is has an asso
iated fun
tion. The by-need future is impli
itly assigned tothe result of the
on
urrent exe
ution of the fun
tion, when its value is requested.A by-need future is requested when a threads blo
ks on it.The LVM supports an optimized by-need future for the
ase that the fun
tion isa simple �eld sele
tion of a re
ord. When the by-need future is requested this�eld sele
tion is tried without spawning a
on
urrent thread. This optimizationis needed for the lazy loading of modules in Oz [22℄.4.2.6 BindingWhen a transient is bound the threads stored in the suspensions must be resumedand then the transient node is destru
tively updated to the new value.

void bind(Tagged v1, Tagged v2)f
Tagged � vPtr=derefPtr(v1);
TransBody �tb=((Trans)v1).getBody();
wakeup(tb �>suspList);�vPtr = v2;
free tb;gThe memory used for the transient body
an be safely released, be
ause after thebinding no referen
e to it exists any more.

128 CHAPTER 4. IMPLEMENTATION ASPECTSIn the LVM binding is more
ompli
ated, be
ause hooks for handling spa
es areneeded, e.g. bind has to de
ide if a transient is lo
al or not and eventually trailthe binding (s
ript model) or store the binding in a lo
al binding frame (situatedmodel).4.2.7 SuspensionsOperations expe
ting a determined value suspend if they are applied to tran-sients. Suspending means that the thread exe
uting the operation is stopped anda suspension is hooked to the transient. A thread hooked onto a transient isrestarted when this transient is bound. More than one thread
an suspend on asingle transient, i.e. a transient
an be hooked with many threads. The stru
tureto store the threads is
alled suspension list.The primitive operation to suspend on the determination of a single value is
void wait(Tagged) . It simply tests if its argument is determined, if not itblo
ks and suspends the
urrent thread. When the transient is bound the threadis resumed and the wait operation is restarted and
he
ks again if the new valueis now determined.A thread
an suspend on more than one transient. The primitive operationfor this
ase is void waitOr(Tagged,Tagged) . It suspends if both argumentsare transients. In this
ase the thread is added to the suspension list of bothtransients.In the LVM threads are never removed from a suspension list. This
an leadto spurious wakeup and memory leak. If a thread suspends on more than onevariable after a wakeup it potentially remains in the suspensions of the othervariable.A spurious wakeup o

urs for example in the following
ode
spawn fn () = >

(waitOr (x, y);
wait z)The thread starts running and suspends on x and y . When x is bound and y isnot bound waitOr su

eeds and the thread suspends on z . If y is now boundthe thread is woken up without need and retries wait z , whi
h suspends again.An example of a memory leak is shown in the following example

spawn fn () = >
(waitOr (x, y);

wait)When x is bound the thread
annot be garbage
olle
ted, be
ause a referen
e toit remains in the suspension list of y .

4.2. TRANSIENTS 129Both problems
an be solved using a shared suspension stru
ture in the suspen-sion lists. This suspension stru
ture has a referen
e to the suspended thread andis stored in both suspension lists. After a wakeup it
an be marked, su
h thatfurther wakeups are inhibited [87℄.4.2.8 Usage patternsThe major design goal for the implementation of transients is that they are gra
e-fully degrading wrt. to determined values. Every operation has to be preparedto handle transients, but if no transients are used no performan
e penalty shouldbe payed. This is only possible in the
urrent design of the LVM be
ause alloperations have to test the type of the node dynami
ally and transients are of adistinguished type.Therefore spe
ial attention has been payed to an optimized implementation ofreferen
es (REF) and transients (UVAR, FUT, TRANS). Every operation has to testsits arguments at least for the following
ases:referen
e If the argument is a referen
e it has to be dereferen
ed.transient If the argument is a transient the operation has to suspend until thetransient is bound.Several variants of the dereferen
e operation are useful. The simple deref fun
-tion follows the referen
e
hain until the end.
Tagged deref(Tagged v) f
while (isRef(v)) f

v = �((Ref)v).getRef();g
return v;gThis fun
tion is
onsidered dangerous. Several hard to tra
k bugs o

ured duringthe implementation of Mozart. The problem is that this fun
tion makes it easy todupli
ate a transient by mistake. When the node returned by deref is a transientand it is stored into a register or �eld the transient is dupli
ated (see Figure 4.3).A variant of this fun
tion is safeDeref whi
h guarantees that a register nodeis returned, i.e. no transient is ever returned by safeDeref . The result of

safeDeref
an be stored safely into registers and �elds.
Tagged safeDeref(Tagged v) f

while (isRef(v)) f
Tagged tmp = �((Ref)v).getRef();
if (!isRef(tmp) && isTrans(tmp)) f

130 CHAPTER 4. IMPLEMENTATION ASPECTS

CONS

INT1

x:

VAR �
�
�

�
�
�

�
�
�

�
�
�

CONS
y:

??????

CONS

INT1

x:

VAR �
�
�
�

CONS
y:

???VAR

y.field[0]=deref(x.field[0]) // BAD

CONS

INT1

x:

VAR ��
��
��
��

CONS
y:

???

y.field[0]=Ref(&x.field[0]) // OK

REFFigure 4.3: A possible dereferen
e bug.

4.2. TRANSIENTS 131
return v;g

v = tmp;g
return v;gThe last variant is derefPtr , whi
h returns a pointer to the last tagged pointer, ifthe input is a referen
e. Furthermore it side-e�e
ts its
all by referen
e argumentand leaves the dereferen
ed value there.

Tagged �derefPtr(Tagged &v) f
Tagged �ptr=0;
while (isRef(v)) f

ptr = ((Ref)v).getRef();
v = �ptr;g

return ptr;gIn the following we present some implementation patterns for handling dynami-
ally typed values and dis
uss their usage.Optimisti
 pattern The optimisti
 pattern �rst tests if value is of the requiredtype. Only if it is not dereferen
ing and the transient
ase are handled.
if !is <T>(v)

v=safeDeref(v);
if isRef(v) suspend;
else if !is <T>(v) error;

doit;This pattern is very good if transients and referen
e
hains o

ur infrequently.The LVM is optimized towards this
ase, be
ause in the
on
urrent fun
tionalprogramming style transients and referen
es o

ur only for the syn
hronizationof
on
urrent a
tivities.Deref pattern The deref pattern ensures that the value is dereferen
ed beforeany type tests are performed.
v=safeDeref(v)
if is <T>(v) doit
else if isRef(v) suspend
else errorThis pattern was used in the LVM before we had the insight that L
an be seenas a fun
tional language with extensions from logi
 programming rather than the

132 CHAPTER 4. IMPLEMENTATION ASPECTSother way round. In the relational style of logi
 programming many referen
eso

ur only, be
ause return values are passed as referen
es to variables used as
ontainers for return values.Optimized deref pattern The optimized deref pattern allows to slightly opti-mize the deref pattern su
h that the transient
ase is more eÆ
ient. An invariantof the LVM is that transients are never a

essed dire
tly but always through theindire
tion of a referen
e. This
an be used to test the transient
ase only whendereferen
ing is needed.
if (isRef(v))

v=safeDeref(v);
if isRef(v) suspend;

if is <T>(v) doit
else errorCaller responsible pattern The
aller responsible pattern only tests if theargument is of required type. No dereferen
ing and transient test is done. Ifthe required type is no supplied an error is signalled to the
aller. The
aller isresponsible for dereferen
ing and suspending in the
ase of a transient. The
aller
an ensure that dereferen
ing and the transient tests are performed before theappli
ation or it
an do it lazily, i.e. after the operation has signalled an error.Non-monotoni
 pattern The non-monotoni
 pattern is used for non-monotoni
operations on transients, e.g. binding.

Tagged �vPtr=deref(v)
if isTrans(v) f�vPtr = ...
else errorWhen the dereferen
ed node is a transient the pointer vPtr refers to the transientwhi
h
an be bound to a new value.4.2.9 Uni�
ationThe store abstra
tions allow to implement the WAM-like instru
tions for an op-timized uni�
ation. As an example we show the
ompilation of the followingprogram
let Y=lvar() in

unif (X, fa=Y, b=a g);
unif (Z, fa=Yg);
...

end

4.2. TRANSIENTS 133into the following WAM-like
ode
get record [a b], X
unify variable Y
unify constant a
get record [a], Z
unify value YThe implementation of the instru
tions
an be outlined as follows:
get record(ar,R) f
if (isTrans(R)) f

mode = WRITE;
node n = newRecord(ar);
status = bind(R,n);g else f
mode = READ;
if (arity(R) != ar) status = FAIL;g

sPointer = getArgRef(R);g
unify variable(R) f
if (mode == READ) f

R = �sPointer++;g else f
R = newVar(currentSpace);�sPointer++ = R;gg

unify value(R) f
if (mode == READ) f

status = unify(R, �sPointer++);g else f�sPointer++ = R;gg
unify constant(c) f
if (mode == READ) f

node n = �sPointer++;
if (isTrans(n)) f

status = bind(n,c);g else if (n != c) f
status = FAIL;g

134 CHAPTER 4. IMPLEMENTATION ASPECTSg else f�sPointer++ = c;ggNote, that the
ompiler knows the mapping of the arity from the features tothe index and s
hedules the unify instru
tions for reading resp. writing thearguments in the
orre
t order.The get record implementation shows that re
ord
onstraints
an be imple-mented as eÆ
iently as prolog stru
tures, if the arity is known at
ompile time.4.2.10 Extending transientsIn this se
tion we explain a minimal and
onvenient interfa
e to add new transienttypes to the LVM.The interfa
e for adding new transient types is de�ned by the
lass ExtBody .
class ExtBody : public TransBody f
public:

ExtBody(Space �s) : TransBody(EXTVAR,s) fg
virtual int getIdV();

virtual TransBody � gcV();
virtual void gcRecurseV();
virtual void disposeV();

virtual ReturnCode bindV(Tagged �, Tagged);
virtual ReturnCode unifyV(Tagged �, Tagged �);
virtual ReturnCode addSuspV(Tagged �, Thread �);

virtual Tagged statusV();g;Every transient has a type. The type is en
oded as a unique id returned by themethod getIdV . A new unique id may be obtained from a generator.The methods gcV, gcRecurseV , and disposeV are used for memory manage-ment. In the stop and
opy garbage
olle
tor gcV is used to
opy a variable and
gcRecurseV is used to update the referen
e after
opying. These two methodsare separated to allow the garbage
olle
tor to dete
t and break
y
les.The method bindV is
alled when the LVM wants to bind a transient to a value.This method su

eeds if the binding is possible, fails if it is impossible, or suspendsif the binding is neither possible nor impossible.

4.2. TRANSIENTS 135The LVM
alls the method unifyV if the value is a transient. The method
unifyV
alls its own bindV method or the bindV method of the argument.With this te
hnique it is possible to in
rementally add new types, where only thenewer types need to know how to unify themselves with the transients of oldertypes. The uni�
ation of two variables unifyV(x, y)
alls bindV(x, y) if x\knows" how to unify with y else it
alls bindV(x, y) .When a thread needs to suspend until a transient is bound the method addSuspVis
alled to hook the thread to the fun
tion. For experimental purposes thisfun
tion
an fail, e.g. to enfor
e a programming style where only suspensions onfutures are allowed.The last fun
tion statusV() allows to distinguish the status of a transient. Thestatus distinguishes variables,
onstraint variables, and futures.As an example we show the by-need future implemented with the extension in-terfa
e.
class ByNeed: public ExtBody f
private:

Tagged fun;
public:

ByNeed(Space � s,Tagged fun) : ExtBody(s), fun(fun) fg
virtual int getIdV() f return TRANSBY NEED; g
// memory management
ExtBody � gcV() f return new ByNeed(�this); g
void gcRecurseV() f if (fun) collect(fun,fun); g
void disposeV(void) f delete this; g
// always suspend binding
ReturnCode bindV(Tagged � vPtr,Tagged t) f

return SUSPENDg;

// allow unification with variables, otherwise suspend
ReturnCode unifyV(Tagged � vPtr,Tagged � tPtr) f
if (isFree(�tPtr))
return ((Trans) �tPtr).getBody() �>bindV(Ref(vPtr));

return bindV(Ref(tPtr));g
// kick the by need computation once
ReturnCode addSuspV(Tagged �, Thread t) f
if (fun) kick(fun);
fun=0;

136 CHAPTER 4. IMPLEMENTATION ASPECTS
suspList= new SuspList(t,suspList);
return SUSPEND;g

// a by need transient is a future
Tagged statusV() f return atom("future"); gg;

Tagged byNeed(Tagged fun) f
return Ref(new Trans(new ByNeed(current space,fun)));g

Bool isByNeed(Tagged t) f
return t.tag()==TRANS &&

((Trans)t).getBody() �>type==EXTVAR &&
((ExtBody �)((Trans)t).getBody())�>getIdV==TRANS BY NEED;g4.3 Re
ordsIn this se
tion we explain the implementation of literals, re
ords, and arities.4.3.1 LiteralsLiterals are tagged pointers using the LIT tag. The pointer refers to a node witha se
ondary tag of an atom ATOMor a name NAME.Atoms are allo
ated and stored in the atom table. The atom table2 is anothermemory area beside registers and the heap. Atoms have �elds for the ATOMtag, a print name, and the length of the print name.New strings are internalized to atoms using hashing. The fun
tion newAtom(char�)�nds or allo
ates an entry in the atom table, by
al
ulating a hash value over all
hara
ters in the argument string. For every atom in a L sour
e program this isdone at
ompile or load time.The hash value of atoms for sele
ting �elds in re
ords (see se
tion 4.3.2) is doneby the fun
tion hashAtom(Tagged) . It uses the �xed memory address of theatom in the atom table to eÆ
iently generate a hash value.Names are represented in the LVM either as named names or as free names.Named names
an be
reated stati
ally. The
ompiler
an optimize the usage ofnamed names similar to atoms.2In other systems the atom table is also
alled symbol table.

4.3. RECORDS 137Named name are further
lassi�ed into unique names,
opyable names, and opti-mized names. Unique names are true, false and () whi
h are unique in everyVM3. Optimized names are all other stati
ally
reated names.Named names are allo
ated and stored in the name table. The name table issimilar to the atom table. Named name are labelled with a hash value, a printname, and their type, i.e. unique,
opyable, or optimized.Free names are dynami
ally
reated heap nodes whi
h are labelled with a hashvalue and a spa
e. The hash value is needed for the eÆ
ient representationof re
ord arities (see Se
tion 4.3.2) and
an be extra
ted with the fun
tion
int hashName(Tagged) .Names are situated in spa
es to be
onsistent with pro
edures and obje
ts whi
hmust be situated4. The representation of a name thus
ontains a pointer to itsspa
e.The implementation of free names needs two words. The �rst word representsthe kind of literal, and the hash value. The se
ond word
ontains the spa
e.The fun
tion Tagged newName()
reates a new free name. It
hooses a newhash value by in
rementing a global
ounter, allo
ates an obje
t of class Nameon the heap, initializes it, and
reates a tagged pointer to this obje
t with thetag LIT .A basi
 property distinguishing atoms and names is s
alability. The number ofatoms is �xed at
ompile time5. In
ontrast free names are
reated at run timeand the number of names is unlimited. Therefore names are allo
ated from theheap and they are subje
t to garbage
olle
tion.HashingFor implementing re
ord arities (see below) a hash fun
tion mapping a featureto a positive integer must be implemented for all types of features. For hashingon small integers their absolute value is used. Big integers are not hashed in the
urrent implementation: all big integers are mapped to the same value.The hash value of atoms is the unique address of their entry in the atom table.It is very eÆ
ient to use the address be
ause it avoids the
al
ulation of a hashvalue depending on the
hara
ters in the string.A random hash value for names is
omputed when a name is
reated and it isstored in the data stru
ture representing the name.3Unique names are needed for serialization and pi
kling.4Situated names are required to simplify the de
ision if pro
edures and obje
ts must be
opied when a spa
e is
loned.5Creating atoms dynami
ally is possible in full Oz, but it is depre
iated. Strings or virtualstrings
an be used instead of dynami
ally
reated atoms.

138 CHAPTER 4. IMPLEMENTATION ASPECTSAnother implementation te
hniques for getting a hash value for names is theallo
ation of names in a separate memory area, where their address is �xed.Using this �xed address as hash value redu
es the memory
onsumption of namesdramati
ally: for a name generated in the top level spa
e only one bit is needed.The garbage
olle
tor has to be adapted to use a non-
opying, e.g. mark andsweep,
olle
tor for the new memory area instead of the implemented
opying
olle
tor for the heap.To eÆ
iently implement the arity table it should be possible to order names.Using the �xed memory address a total order on names is trivially indu
ed. Oth-erwise the random hash values must be all distin
t. In the
urrent implementationthe distin
tness is guaranteed by using a
ounter instead of a random numbergenerator6.4.3.2 Re
ord representationsThe LVM uses four di�erent representations for re
ords with varying eÆ
ien
y:list elements, tuples, simple re
ords, and open re
ords. The representation of are
ord is always normalized to its
anoni
al representation. A re
ord with thefeatures Head and Tail is represented as list element. Re
ords with
onse
utivenumeri
 features from 1 to n are represented as tuples. Other determined re
ordsare represented as standard re
ords. We use the name re
ord also for the standardrepresentation if it is
lear from the
ontext what we mean.Tuples and (standard) re
ords The representation of tuples and (standard)re
ords are tagged pointers with tag RECwhere the pointer refers to a labelledheap node. The label of the heap nodes
ontains a se
ondary tag for distinguish-ing tuples and re
ords. Furthermore the heap node is labelled with the tuplewidth resp. the re
ord arity (see below). The heap node has a �eld for everyfeature.
class Structure f

ArityOrWidth arity;
Tagged field[n];gThe �eld ArityOrWidth is a tagged pointer with an RECORDresp. TUPLE tagand the arity of the re
ord resp. the width of the tuple.The only reason to support an optimized representation for tuples in the LVMis that the dynami

reation of tuples is signi�
antly (approximately a fa
tor of�ve) faster than the dynami

reation of re
ords, be
ause no lookup in the aritytable is needed.6The implementation uses a 32 bit
ounter and e�e
ts related to
ounter over
ow are nothandled.

4.3. RECORDS 139List elements List elements are represented as tagged pointers (CONS) wherethe pointer refers to an unlabelled heap node with one �eld for the head and onefor the tail of the list.The operations on list elements are the
reation of new lists and the �eld sele
tion.The
lass Cons implementing list elements was already shown in Se
tion 4.1.This representation saves a word, i.e. �fty per
ent, per list element, be
ause thearity required for re
ords is represented in the tag. The test for a non-empty list ismore eÆ
ient then the test for a re
ord with a
ertain label and arity, be
ause onlythe tag bits must be
he
ked and additionally the CONStag is
hosen su
h thatthe test for CONSneeds only two native ma
hine instru
tions (see Se
tion 4.1.3).A small issue with the list optimization is that the forwarding pointer has tobe stored in the �eld of the head or the tail, whi
h are also subje
t to garbage
olle
tion (see Se
tion 4.6).4.3.3 ArityEÆ
ient lookup The representation of an arity
ontains the hash table andthe hash mask.
class KeyAndIndex f

Tagged key;
int index;g

class Arity f
Tagged featureList;
int width;
int hashMask;
KeyAndIndex table[hashMask+1];gFor an eÆ
ient a

ess to the re
ord width and the list of features both are storedin the arity. An alternate design would be to
ompute them from the
ontent ofthe hash table on demand.The size of the hash table is the next power of two whi
h is greater than 1:5 timesthe width of the arity. The hash mask is the size of the table minus one. Thesize and hash mask are
hosen su
h that the
al
ulation of an index modulo thetable size is a bitwise AND with the hash mask.The table is
reated as hash table with the open addressing s
heme from Knuth [52℄.The table
ontains pairs of features and indi
es (KeyAndIndex). The featuresare stored as tagged pointer (Tagged key) and the indi
es (int index) are uniqueindi
es of the �eld at the
orresponding feature. The lookup fun
tion returns a�eld index or �1 if the feature is not in the arity.

140 CHAPTER 4. IMPLEMENTATION ASPECTS
int Arity::lookup(Tagged feature)f
int i = featureHash(feature) & hashMask;
int step = (i%7) �2+1;
while (1) f
if (table[i].key == feature)

return table[i].index;
if (!table[i].key)

return �1;
i = (i + step) & hashMask;ggThe size of the table is at least 1:5 times the width to have enough empty entriesto make the member test also eÆ
ient for the
ase that a feature is not found.The fun
tion featureHash
omputes a hash value for a literal or an integer.An implementation of arities using bu
ket lists instead of the open addressings
heme would have fewer
ollisions, but the size required per arity would be larger.For bu
kets 3+3�width+size words are needed in a linked list implementation.This is larger than 3+2�size words for the open addressing s
heme if we assumethat the size is between 1:5 � width and 2 � width.Furthermore the a

ess of the key resp. value of an entry requires one morememory a

ess if the bu
ket list is represented as a linked list.The arity table The arity table is a hash table using hashing with bu
ket liststo store all arities. The key used to a

ess the arity table is the list of featuresof an arity. The hash value of a feature list is the sum of the hash values of itselements.To
ompare a feature list with an entry of the arity table in linear time thelist of features should be sorted. A problem when sorting a list of features arenames, be
ause they are not ordered in the Oz programming model. In the LVMnames are ordered using the hash value. The order of names is not a total order,be
ause the hash value is derived from a
ounter modulo the C++ word size. If
onse
utive names in the feature list have the same
ounter value it is thereforene
essary to
ompare all there permutations7.A better heuristi
s to
ompute a hash value for a list of features
ould
ompute ahash value based only on the �rst k features. This optimization has no pra
ti
alrelevan
e, be
ause dynami
 re
ord and hen
e arity
reation o

urs too infre-quently. Furthermore dynami
ally
reated arities are in many
ase new, i.e. not7With the te
hnique of allo
ating names in a separate memory area the ordering problemof names disappears.

4.3. RECORDS 141yet in the arity table, and the
ost of their
reation dominates the
omputationof the hash value.4.3.4 The re
ord interfa
eThe basi
 operations on re
ords are the
reation of new re
ords, the sele
tion of�elds, and pattern mat
hing. The fun
tions for
reating and a

essing tuples andre
ords are summarized in the following table
Structure � newTuple(int) allo
ate a new tuple
Structure � newRecord(Arity �) allo
ate a new re
ord
Tagged Structure::setArg(int,Tagged) initialize a �eld
Tagged Structure::makeRecord()
reate a tagged pointer
Arity �Structure::getArity() a

ess the arity
int width(Tagged) a

ess the width
Arity � arity(Tagged) a

ess the arity
Tagged arg(Tagged, int) sele
t a �eld by index
Tagged field(Tagged,Tagged) sele
t a �eld by feature
Bool isTuple(Tagged) test if is tuple or re
ordRe
ord
reation Two kinds of re
ord
reations are distinguished stati
 anddynami

reation.Stati
 re
ord
reation is used when the arity is known at
ompile time. In this
ase the arity is looked up and added to the arity table when the ma
hine
odeis loaded. This is similar to internalizing string into the atom table.Stati
 re
ord
reation allo
ates the memory for the re
ord stru
ture on the heap,writes the label and arity into the re
ord stru
ture. The �eld values are writteninto the �eld array without hashing. This
an be done be
ause the arity is knownat
ompile time and hen
e the index is also known at
ompile time. Of
oursethe
ompiler and LVM must agree on mapping of feature to index.We present one example of a dynami
 re
ord
reation whi
h allows to adjoin onefeature and its �eld value to an existing re
ord. This adjoin operation
reatesa new re
ord, whi
h has the same �elds and �eld values as the original re
ord,ex
ept that the new feature is added or that is value repla
es an existing �eld.� The new re
ord has the same arity if the adjoined feature is already in itsarity.� If the adjoined feature is not yet in the re
ord arity then a lookup in thearity table is performed with the new feature inserted into the feature list.

142 CHAPTER 4. IMPLEMENTATION ASPECTS
Tagged adjoinAt(Tagged rec, Tagged fea, Tagged val)f
// find arity
Arity �newArity;
Arity �oldArity = arity(rec);
if (oldArity �>lookup(fea)) f

newArity = oldArity;g else f
Tagged newList = insert(fea, oldArity �>featureList);
newArity = arityTable.find(newList);g

// create record
Structure �newRecord = newRecord(newArity);

// copy fields
Tagged l=oldArity �>featureList;
while (isCons(l)) f

f = head(l);
newRecord �>setArg(newArity �>lookup(f),field(rec,f));
l = tail(l);g

// new field
newRecord �>setArg(newArity �>lookup(fea),val);
return newRecord �>normalize();gThe
ost of this adjoin operation has two parts: the test if the feature is alreadyin the arity and eventually the dynami
 lookup of the new arity. The �rst part isvery eÆ
ient, be
ause it uses the arity lookup fun
tion. The se
ond parts requireshashing a feature list in the arity table and eventually
reation of a new arity.Additional optimized adjoin fun
tions are provided by the implementation toadjoin more than one new feature at on
e and to
reate a new re
ord from a listof features.Field sele
tion Sele
ting the �eld at feature of a re
ord �rst
alls the lookupfun
tion of the arity and if this is su

essful reads the
orresponding entry of the�eld array.

Tagged arg(Tagged rec, int i) f
Structure �str = getStructure(rec);
Tagged val = str �>field[i];
return isDirectVariable(val) ? makeRef(&str �>field[i]) : val;g

4.3. RECORDS 143
Tagged field(Tagged rec, TaggedRef fea) f
int i = arity(record) �>lookup(fea);
if (i <0) return 0; // not found
return arg(rec,i);gThe value stored in the �eld array
annot be used un
onditionally. The problemis the memory eÆ
ient representation of variables (see
hapter Se
tion 4.2). If avariable is allo
ated dire
tly in the array and not on the heap a referen
e to thisvariable has to be returned by the �eld sele
tion fun
tion. This means that anadditional test is required for every �eld a

ess.To optimize the �eld sele
tion inline
a
hing [20, 108, 87℄ is used. The instru
tion

fieldCached
a
hes the triple of last feature, arity, and index. If the samefeature is sele
ted using the same arity then the index is dire
tly taken from the
a
he.
Tagged fieldCached(Tagged rec, Tagged fea,

Arity �&cachedArity, Tagged &cachedFea,
int &cachedIndex)f

int i;
if (arity(rec) == cachedArity && fea == cachedFeature) f

i = cachedIndex;g else f
i = arity(rec) �>lookup(feature);
cachedArity = arity(rec);
cachedFeature = fea;
cachedIndex = i;g

if (i <0) return 0; // not found
return arg(rec,i);gPattern mat
hing: tests and indexing Pattern mat
hing deals with eÆ-
iently de
omposing re
ords. The main te
hniques used to implement patternmat
hing are tests and indexing. A test
ompares a re
ord with one pattern andindexing sele
ts a mat
hing pattern from a set of patterns.The eÆ
ient
ompilation is based on the fa
t that the arity of the patterns areknown at
ompile time. When the test resp. indexing
ode dis
overs that apattern mat
hes then the �elds
an be sele
ted without hashing, be
ause the
ompiler
an pre
ompute the lookup of the index.The fun
tion testRecord
he
ks if a node is a re
ord with a given arity. Besidethe type test the testRecord fun
tion redu
es to exa
tly one
omparison for the

144 CHAPTER 4. IMPLEMENTATION ASPECTSarity. This is exa
tly the same number of
omparisons as required for tuples. Fortuples only the width is
ompared instead of the arity.
ReturnCode testRecord(Tagged rec, Arity �ar)f

Assert(ar != ArityEmpty);

loop:
if (isRecord(rec)) f
return arity(rec) == ar ? PROCEED : FAILED;g

if (isCons(rec)) f
return ArityCons == ar ? PROCEED : FAILED;g

// deref and test for variable
if (isRef(rec)) f

rec = deref(rec);
if (isTrans(rec)) return SUSPEND;
goto loop;g

return FAILED;gIndexing
onsists of two parts. The arity is hashed into the indexing table (usingopen addressing). The entries of the bu
ket list are then
ompared using thesame
omparison te
hnique as testRecord .4.3.5 Dis
ussionFlexible �eld sele
tion Subtrees of re
ords
an be sele
ted with de
reasingeÆ
ien
y numeri
ally by an index if the feature and arity are stati
ally known,with a stati
ally known feature, or with a built-in pro
edure.Sele
tion by index is supported well on standard hardware and is therefore fast.The virtual ma
hine has no instru
tion to support this sele
t method for re
ords,be
ause in an emulator-based approa
h the performan
e di�eren
e to the sele
tionby a stati
ally known feature with inlining
a
hing is negligible. The sele
tion byindex is useful in optimized built-in pro
edures, e.g. for sele
ting �elds of re
ordswith known arities like tuples.Arity The arity abstra
tion allows to separate the issues of �eld sele
tion andof mapping of features to the �elds. This provides a uniform model of the graphand an eÆ
ient mapping of the graph to standard hardware.

4.4. FEATURE CONSTRAINTS 145To support the equality test of arities an arity table is maintained in the runtimesystem whi
h guarantees that every arity is represented exa
tly on
e.Features The feature abstra
tion en
apsulates two eÆ
ien
y problems: theequality test of two features and the mapping of features to indi
es througharities.Equality of features is implemented by the identity of nodes. Strings of
hara
tersare made unique with an atom table, whi
h guarantees that two equal strings aremapped to the same atom. For names the runtime system maintains the invariantthat they are never dupli
ated, whi
h makes the equality test trivial.The eÆ
ient mapping of features to indi
es is done through hashing. Useful hashfun
tions are dis
ussed in Se
tion 4.3.2.Representations Supporting three representations for determined re
ords re-quires in the implementation additional
ode, be
ause
ode dealing with re
ordsmust be written su
h that all the representations are
orre
tly handled. In
aseswhere eÆ
ien
y is not the major
on
ern it is possible
ir
umvent this problem by
onverting any re
ord into the standard re
ord representation and operate onlyon this representation.Furthermore the dynami

reation of re
ords has the overhead that the repre-sentation must be normalized. This basi
ally means that list elements must bedete
ted and turned into their optimized representation.4.4 Feature
onstraintsRepresentation Feature
onstraints are implemented as transients with a �eldfor the width attribute and a hash table for the �elds attribute, whi
h
ontainspairs of features and �eld values.
class OFVar : public TransBody f
private:
int width;
DT �dt;

public:
OFVar(Space �s, int n)
: TransBody(OFVAR,s) f

width= �1;
dt = DT::allocate(n);g

...g;

146 CHAPTER 4. IMPLEMENTATION ASPECTS
Tagged newOF(int n) f

TransBody � tb= new OFVar(space);
Trans �t = new Trans(tb);
return Ref(t);gThe hash table class DT,
alled dynami
 table,
ontains an array of pairs

DTE table[] , the size of this array int size , and the number of elementsin the array int num. The size of the array is a power of two to simplify openhashing. When the array is �lled up to 75 per
ent the array size is doubled.
// dynamic table entry
class DTE f

Tagged ident;
Tagged value;g;

// dynamic table
class DT f
static:

DT �allocate(int n);
private:

int num;
int size;
DTE table[N];g;Feature
onstraints The feature
onstraint is implemented su
h that �rst atest if the feature is already in the hash table is performed. If this is the
ase theold and new feature are uni�ed.

ReturnCode OFVar::featureC
(Tagged �vPtr, Tagged fea, Tagged val)f
Tagged oldVal=dt �>get(fea);
if (oldVal) return unify(oldVal,val);

if (dt �>isFull()) dt=DT::resize(dt);
dt �>add(fea,val);
if (width==dt �>num) return this�>toRecord(vPtr);
return PROCEED;gIf a new feature is added then a test is performed if the table is up to 75 per
ent�lled and must be resized. Then the feature with the
orresponding value isadded to the hash table.

4.4. FEATURE CONSTRAINTS 147Finally a test has to be performed if the number of elements is equal to thewidth attribute. In this
ase the open re
ord is
losed as shown in the method
toRecord .
Return OFVar::toRecord(Tagged �vPtr)f

Tagged alist=dt �>getArityList();
Arity �arity=aritytable.find(alist);
Structure �newrec = newRecord(arity);
newrec �>initArgs();
return this�>bindRecord(vPtr,newrec);gClosing an open re
ord means to dynami
ally lookup resp.
reate an arity inthe arity table. To simplify the implementation the �elds of the new re
ord areinitialized with variables and the generi
 fun
tion to bind an open re
ord to a
losed re
ord is
alled.

Return OFVar::bindRecord(Tagged �vPtr, Structure �str)f
PairList � pairs = dt �>check(str);
if (!pairs) return FAILED;

Tagged saved= �vPtr;�vPtr = str �>normalize());

Return ret = unifyPairs(pairs);

if (ret == PROCEED) f
this�>checkSuspension();g else f�vPtr = saved;g

return ret;gBinding an open re
ord to a
losed re
ord �rst
he
ks if every feature of the openre
ord is in the
losed re
ord. The check method returns the mat
hing pairs of�eld values in the open and
losed re
ord.
Pairs �DT::check(Structure �str)f

Pairs �pairs= new PairList();

for (int i=size; i ��;) f
if (table[i].value) f

Tagged val=str �>field(table[i].ident);

148 CHAPTER 4. IMPLEMENTATION ASPECTS
if (!val) f

pairs �>free();
return 0;g

pairs �>addpair(val, table[i].value);gg
return pairs;gIf check was su

essful the se
ond step in bindRecord is to bind the open re
ordtransient to the new re
ord. This is ne
essary at this point to break a possible
y
le when unifying the �elds. Then
orresponding �elds in the pair list areuni�ed. If all pairs are uni�ed su

essful the suspensions are woken up.Uni�
ation The merge method is the main part of the uni�
ation of two openre
ords. It merges the features of one dynami
 table into the other table.

PairList �DT::merge(DT � &dt)f
PairList �pairs= new PairList();

for (int i=0; i <size; i++) f
if (table[i].value) f

Tagged val = dt �>get(table[i].ident);
if (val) f

pairs �>addpair(val, table[i].value);g else f
if (dt �>isFull()) dt=DT::resize(dt);
dt �>add(table[i].ident, table[i].value);ggg

return pairs;gThe merge method merges the features of the
urrent table into its argument.Merging means that a feature is added if it is not yet in the table. The �eldvalues of features whi
h are already in both tables are
olle
ted in a pair list forlater uni�
ation with the unifyPairs fun
tion.
Return unifyPairs(PairList �pairs)f

PairList � p = pairs;
TaggedRef t1, t2;
Return ret = PROCEED;
while (p �>getpair(t1, t2)) f

4.5. EXTENSIONS 149
Assert(!p �>isempty());
ret = oz unify(t1, t2);
if (ret != PROCEED) break;
p�>nextpair();g

pairs �>free();
return ret;gDuring the uni�
ation of two open re
ords the following
ases must be distin-guished� If both are lo
al the largest dynami
 table is used to merge in the smallerone.� If one is lo
al and the other is global, then the lo
al variable is bound tothe global one and the table of the global one is merged into the table ofthe lo
al variable.� If both are global then a
opy of the largest table is
reated and the othertable is merged into the
opy.4.5 ExtensionsIn this se
tion we des
ribe two methods to add new datatypes to the LVM. Bothte
hniques use more memory for representing the type information and are slowerfor type tests. They are used for datatypes whi
h need more memory anyway,e.g. arrays or for datatypes whi
h are not frequently used.4.5.1 Standard extensionsStandard extension nodes, have the head tag EXTand a se
ondary tag. Figure 4.4lists the se
ondary tags.The additional
osts for these extension types are moderate. The type test hasto test the primary tag, unbox the extension and then test the se
ondary tag. Inthe
ase of a su

essful test the already unboxed extension
an be simply
astedto the proper type for applying an operation. The
osts of su

essful type testsis therefore amortized by the following operation on the datatype.To
reate a new node a small overhead o

urs only for storing the se
ondary tag.The LVM knows all these types and
an do some optimizations, e.g. inlining themethods of the
orresponding implementation
lasses. For gaining eÆ
ien
y this

150 CHAPTER 4. IMPLEMENTATION ASPECTSBigInt big integersUserPro
 user-de�ned pro
eduresBuiltin built-in pro
eduresCell
ellsSpa
e �rst
lass referen
e to a spa
esObje
t user-de�ned obje
tsPort portsArray multiple
ellsDi
tionary hash table of
ellsLo
k lo
kClass user-de�ned
lassChunk non-mutable obje
tFigure 4.4: Se
ondary tags.is needed, but from a design point it would be ni
er to have a small interfa
e,as provided by the virtual extension explained below. For every data-type aperforman
e analysis
an be made and a design de
ision
an be made on whi
hlevel to support it.Pro
edures and obje
ts are further optimized in the LVM. In the byte
ode toplevel pro
edures are represented dire
tly. During a method appli
ation the un-boxed representation of the
urrent obje
t,
alled self, is stored in a expli
itma
hine registers the LVM for immediate a

ess.In the following we des
ribe some of the extensions.Big integers The tag BigInt allows to represent integers, whi
h do not �tinto the small integer representation des
ribe in Se
tion 4.1.2. In the LVM theGNU Multiple Pre
ision Arithmeti
 Library (GMP) is used. The representationand the operations are taken from the library. Only the memory managementis hooked to allo
ate big integers on the heap of the LVM using the free listte
hnique (see Se
tion 4.6).Pro
edures Pro
edures are represented as built-in pro
edures or user de�nedpro
edures. Built-in pro
edures are native pro
edures typi
ally written in C orC++. User de�ned pro
edures are written in L and
ompiled into LVM byte
ode.Obje
ts and
lasses Obje
ts and
lasses allow for an eÆ
ient representationof the obje
t-oriented extension of Oz.

4.5. EXTENSIONS 151Spa
es Spa
es allow for �rst
lass referen
es to
omputation spa
es. First
lass spa
e nodes are labelled with a referen
e to the internal representation of a
omputation spa
e.Cells Cells have a modi�able �eld for the
ontent of the
ell. To allow for themodi�
ation of the �eld only register nodes
an be stored in it. The register noderestri
tion guarantees that there are no referen
e from other nodes dire
tly to the�eld. Cells are heap nodes whi
h are labelled with their spa
e.A
ell needs in addition to the se
ondary tag two words on heap. They are notoptimized, be
ause they are rarely used. Their primary usage is to serve as atheoreti
al foundation for obje
ts. Obje
ts are built into the LVM as optimizeddatatypes. The representation of obje
ts is
onverted to a
ell based representa-tion to simplify the distribution proto
ols.Ports Ports are represented in the same way as
ells. The only di�eren
e is thatthe
ell is not dire
tly a

essible. The update of the
ontent is restri
ted to theport send operation, whi
h
reates puts another element on a stream asso
iatedwith the port [49℄.Lo
ks Lo
ks are another variant of
ells, with a proto
ol to implement mutualex
lusion.Arrays Arrays are a straightforward extension of
ells to multiple
ells indexedby integers.Di
tionaries Di
tionaries are more elaborate extension of multiple
ells usinga hash table mapping features (integers and literals) to
ells. The hash tableimplementation of di
tionaries is shared with the dynami
 tables of the openre
ords implementation.4.5.2 Virtual extensionsThe major di�eren
e between the standard extensions des
ribed before and vir-tual extensions is the usage of late binding for virtual extensions.A virtual fun
tion interfa
e de�nes all the hooks needed in the LVM to add newdata-types. It allows to add arbitrary many new built-in data types in a modularway. It de�nes a small and simple interfa
e for adding new types.

152 CHAPTER 4. IMPLEMENTATION ASPECTSA drawba
k of virtual extensions is that a performan
e penalty has to be payed.Late binding implies that no inlining optimizations
an be performed, i.e.
allinga virtual method always needs a table a

ess and a fun
tion
all, whi
h
annotbe inlined.
class VExtension f
public:
virtual ˜VExtension();
VExtension() fg
virtual int getIdV();
virtual VExtension � gcV();
virtual void gcRecurseV() fg
virtual Tagged printV(int = 10);
virtual Tagged typeV();
virtual Bool isChunkV()
virtual Tagged accessV(Tagged);
virtual ReturnCode eqV(Tagged);
virtual Bool marshalV(void �);
Bool isLocal();g;The virtual extension has virtual methods for typing (getIdV), garbage
olle
tion(gcV and gcRecurseV), inspe
ting (printV, typeV), �eld sele
tion (accessV),equality test (eqV), and marshaling (marshalV). The minimal e�ort to add anextension is to implement the garbage
olle
tion and the getIdV() method.The virtual methods are
alled by hooks in the memory management, printing,uni�
ation resp. equality test, the select operator, and the marshaling andunmarshaling routines of the LVM.Two kinds of virtual extension are possible: situated and non-situated. Situatedextensions are labelled with a spa
e. They are handled
orre
tly when spa
esare
loned, by
alling the garbage
olle
tion methods if needed. Non-situatedextensions are never
opied when spa
es are
loned. New extensions need onlyto spe
ify if they are situated or not.To di�erentiate extensions a unique id is used. Every type of extension
hoosesa di�erent id. New ids
an be generated using a built-in id generator or ids
anbe pre-registered in LVM.The type test for a virtual extension involves the following steps: test the pri-mary tag, unbox the virtual extension,
all the virtual fun
tion to get the id and
ompare it with the required id.For operations on virtual extension the same argument as above holds: after typetest the unboxed value
an be
asted to the required type without additional
osts.To
reate a new node the storage must be allo
ated, the method table must beinitialized, if needed additional �elds and labels must be initialized and �nally

4.6. MEMORY MANAGEMENT 153the extension must be boxed. The only di�eren
e between virtual extensions andstandard extensions is the initialization of the method table instead of storingthe se
ondary tag.4.6 Memory ManagementAs usual for high-level languages L requires automati
 memory management.The mapping of the language graph to the memory is done transparently, withno expli
it requests to free or allo
ate memory at the language level.4.6.1 Prin
iplesThe design goals of the memory management are similar to the design goals formost other parts of LVM: simpli
ity,
exibility, extensibility, and eÆ
ien
y.Simpli
ity Simpli
ity is required be
ause the resour
es for our resear
h proje
tare limited and dis
overing elaborated memory management te
hniques wasnot in the fo
us of our resear
h. The system should be stable and pra
ti
allyuseful without too mu
h e�ort for maintenan
e.Flexibility For an explorative development, where new te
hniques and
on
eptsare tried out and often repla
ed by new and better ideas the primitives haveto be designed su
h that its easy to adapt them.Extensibility The integration of new data-types must be simple.EÆ
ien
y The performan
e of the system should, of
ourse, not be degradingbe
ause of a bad memory management.Generi
 prin
iples of automati
 memory management are� Find garbage as soon as possible and make it available for reuse. The LVMsupports free lists for data-stru
tures whi
h
an be reused, e.g. the body oftransients
an be reused when transients are bound.� Follow the prin
iple of lo
ality of memory a

ess. The memory hierar
hiesof modern pro
essors really pay o� if the working set of the memory is nots
attered all over the available memory. In the LVM we use therefor sta
kdis
iplines wherever possible.� If none of the previous prin
iples apply the graph representing the store hasto be s
anned and partitioned into the used and unused nodes. The unusednodes must then be made available.

154 CHAPTER 4. IMPLEMENTATION ASPECTSIn the LVM a stop and
opy
olle
tor is used. All
on
urrent a
tivities are �rststopped, su
h that the memory management has ex
lusive a

ess to the memory.The living parts of the graph are traversed and
opied into new segments of thememory. Finally the old segments are released for future use.A stop and
opy
olle
tor has the advantage that it is simple be
ause it has ex
lu-sive a

ess to the memory. It behaves very well if the amount of living memory issmall
ompared to the garbage. The memory is
ompa
ted automati
ally, whi
hprovides better lo
ality. The node representation in the store
an be very irreg-ular, be
ause their stru
ture must be only known when a link is followed, e.g. norun-time type information is needed if a link is stati
ally typed.A stop and
opy
olle
tor has the disadvantage that it is not
on
urrent andarbitrary delays of
on
urrent a
tivities
an o

ur during the exe
ution of the
olle
tor. The
olle
tor needs (temporary) mu
h more memory as required forthe representation of the living graph.4.6.2 PrimitivesIn this se
tion we des
ribe the primitives supplied in the LVM for maintainingmemory. C++ supports to overwrite the memory management fun
tions per
lass. In the LVM we use this to repla
e the operators new and delete withimplementation to use heap resp. free list memory.Heap memoryThe heap memory is allo
ated from the operating system in
hunks of memory
alled segments. The LVM maintains a
hain of allo
ated segments. When a seg-ment is full a new segment is allo
ated. The size of the segments is
on�gurable.When the garbage
olle
tion starts a new
hain of segments is allo
ated andthe living nodes are
opied into the new
hain. When the garbage
olle
tion is�nished the old
hain is released to the operating system.The memory in a segment is allo
ated in a sta
k fashion starting from the top-most address down to the bottom. The LVM has two pointers for maintainingthe available memory in a segment: the segments
urrent top and the segmentbottom. When new memory is requested the segments
urrent top is de
re-mented until the segment bottom is rea
hed. When it is rea
hed a new segmentis allo
ated from the operating system.Free list memoryA frequent
ase is that memory allo
ated for a stru
ture
an be released aftera
ertain operation was performed, but that some of these stru
tures
an be

4.6. MEMORY MANAGEMENT 155released too be
ause they are not longer rea
hable in the graph. For this
ase theLVM supports free lists on top of the heap memory.A typi
al
ase where a free list is useful are the body of transient values. Whena transient is bound the body
an be safely released. Using only this
onditionto release this memory is not suÆ
ient: in the
ase of an unrea
hable transientin the graph its body should be released too. Therefore it is essential to
ombinethe free lists with garbage
olle
tion.Whenever a stru
ture whi
h was allo
ated from the heap
an be safely releasedit is put into a free list. A request for a new stru
ture then
he
ks if memoryis available from the free list. New memory is allo
ated from the heap when nomemory is available from the free list.Te
hni
ally it is a useful optimization to have di�erent free lists for di�erentsizes of memory. This avoid problems with fragmentation and the release andallo
ation
an be done eÆ
iently in
onstant time.Sta
k memorySta
k memory is used for maintaining the tasks on threads. The problem whi
harises here is that multiple
on
urrent threads exists and therefore multiple sta
ksmust be maintained. Another
ompli
ation is that the size of these sta
ks shouldbe dynami
ally adaptable. Furthermore the
onditions for deallo
ating the sta
kdepends on the rea
hability of transient nodes in the graph.All these problems are solved by allo
ating the sta
ks of threads on the heap.When a sta
k over
ows a new sta
k is allo
ated and the old one it is
opied tothe new one and released to the free list.4.6.3 The implementation of the garbage
olle
torThe garbage
olle
tor of the LVM starts traversing the graph of the store from theroots. The roots for garbage
olle
tion are the threads in the runnable queue andsome global data-stru
tures, e.g. global properties, the default ex
eption handler,et
.For every living referen
e to a node the garbage
olle
tor performs the followingsteps
opy The node is
opied to the new
hain and the referen
e to the node isupdated.mark The original node is marked and a forward pointer is stored there. Whenthe node is visited again this is dete
ted and the forward pointer is used toupdate the referen
e to the new lo
ation.

156 CHAPTER 4. IMPLEMENTATION ASPECTS
olle
t The additional entry points rea
hable from the just
olle
ted node are
olle
ted after
opying and marking. The order of the mark and
olle
tsteps is essential to avoid in�nite re
ursion in the
ase of
y
li
 stru
tures.To avoid deep re
ursion on the runtime sta
k an expli
it sta
k, the update sta
k,is used to maintain the not yet
olle
ted entry points. The update sta
k
ontainsthe type of the node and a pointer to the node. The LVM use the tagged pointerte
hnique for the entries on the update sta
k.The LVM does not use pointer reversal [25℄ and Cheney's breadth-�rst [17℄ te
h-niques to make the update sta
k obsolete. These te
hniques
an be adapted easilyfor the LVM.Be
ause many stru
tures and nodes on the heap are implemented as C++
lassesit is straight-forward to implement the
olle
tion algorithm with the followingmethods
class Node f

Bool gcTestMark() test if node is marked
Node� gcGetForward() get the forward pointer if node is marked
void gcPutMark() mark the node
void gcPutForward() put the forward pointer
Node� gcCopy()
opy an unmarked node
void gcCollect()
olle
t the entry points

... g;The implementation of the methods maintaining the mark and the forward pointeris trivial. E.g. for tagged nodes one tag is reserved as garbage
olle
tion markand the data part is used as forward pointer.The gcCopy method
an simply use the C++
opy
onstru
tor, be
ause thememory management
onstru
tor new is overwritten to use the heap of the LVM:
Node� Node::gcCopy() f return new Node(�this); gFor nodes with an expli
it tag the
opy
onstru
tor depends on the tag:
TransBody � TransBody::gcCopy() f
switch (this.type) f
case FREE: return new FreeBody(�(FreeBody �) this);
case FUTURE: return new FutureBody(�(FutureBody �) this);
...ggThe mark, forward, and
opy methods are usually
ombined into one method

Node �gc() , whi
h returns the forward pointer if the node is already
olle
ted,else the node is
opied and the new node is pushed onto the update sta
k for thefurther
olle
tion of entry points.The gcCollect method then simply updates its �elds using the gc method.

4.6. MEMORY MANAGEMENT 157
void Node::gcCollect() f
this.n1 = this.n1 �>gc();
this.n2 = this.n2 �>gc();
...gThe main g
 pro
edure �rst
opies the roots, and pushes additional entry pointsto the update sta
k. Then it loops until the update sta
k is empty to
olle
t allentries.

void gcMain() f
runnable=runnable �>gc();
...

while (!updateStack.isEmpty()) f
GcNode n = updateStack.pop();
switch (n.tag()) f
case GCTRANS: ((Trans �)n.getPtr()) �>gcCollect();
case GCTHREAD: ((Thread �)n.getPtr()) �>gcCollect();
...ggg4.6.4 Optimized transientsTo avoid that optimized transients allo
ated in �elds of re
ords are
opied intothe heap, the
olle
tion of referen
es to optimized transients is delayed untilthe end of the garbage
olle
tion. When an optimized transient is found duringthe
olle
tion of a re
ord it is dire
tly
opied with this re
ord. The
olle
tionof transients found through a referen
e node is delayed be
ause it may be thatthis transient is allo
ated in a �eld of some re
ord rea
hed later in the garbage
olle
tion.The delayed updates are pushed onto an additional sta
k,
alled the var �x sta
k.When the regular update sta
k is empty the var �x sta
k is pro
essed. If thereferen
e is found to be marked as already
olle
ted, then the variable was ina �eld and the forward pointer is used for the update. If the referen
e is notmarked the variable is
opied to the new
hain.4.6.5 Liveness analysisThe X registers are allo
ated per thread, but in the implementation only oneshared register array is used. When a thread is preempted or suspended the living

158 CHAPTER 4. IMPLEMENTATION ASPECTSX registers are saved in the thread and when the thread is s
heduled again they arerestored. The number of X registers saved and restored is only an approximationof the exa
t number of living X registers, i.e. the
ompiler
al
ulates the maximalnumber of registers used per pro
edure.During the garbage
olle
tion an exa
t analysis of the liveness of the X registersis performed to avoid that unrea
hable data in X registers is
olle
ted.The base of the liveness analysis is the
ontrol
ow graph of the byte
ode. The
ontrol
ow graph of a
ode segment has a node for every instru
tion in the
odesegment. The graph has a dire
ted link from node A to node B if it is possiblethat the instru
tion B is exe
uted dire
tly after the instru
tion A. The
ontrol
ow graph has no
y
les.The liveness analysis s
ans the
ontrol
ow graph starting from the instru
tionwhi
h is exe
uted when the thread is res
heduled. It �nds out whi
h X registersare never used. The algorithm works su
h that all possible paths in the
ontrol
ow graph are examined.For every path in the data
ow graph the liveness maintains a map of the
urrentregister usage. The status of a register
an bewritten The �rst usage of the register in the path was an assignment operation.In this
ase the register
an be assumed to be dead.read The �rst usage of the register was an a

ess operation. In this
ase theregister must be saved.unknown The register is neither assigned nor a

essed. This is the initial statusof every register.When two paths join at an instru
tion the maps of these paths have to be joined.For every register the state of the two maps are
ompared and the result statusis
omputed as follows� If both stati are the same the result status is also the same.� If one status is unknown the other status is the result status.� If one status is written and the other status is read the result status is read.Two invariants of the LVM byte
ode allow for an eÆ
ient implementation ofliveness:� Bran
hes are always forward bran
hes to higher addresses. No ba
kwardbran
hes are allowed. This makes it easy to ensure that no instru
tion iss
anned more than on
e.

4.6. MEMORY MANAGEMENT 159� For two paths starting at the same instru
tion no register is marked aswritten on one path and marked as read on the other path. This allows tomaintain one status map for the whole liveness analysis, be
ause two pathsnever disagree on the status of a register.Besides a register usage map the algorithm maintains an ordered list of addresses,the todo list, and the address of the
urrently s
anned instru
tion. The todo list
ontains a list of in
reasing addresses.For the
urrent instru
tion one or more of the following a
tions are performed:write If the instru
tion writes into a register and its status is unknown, thestatus is
hanged to written.read If the instru
tion reads a register and its status is unknown, the status is
hanged to read.bran
h If the instru
tion
an bran
h the target address of the bran
h is insertedinto the todo list.The main pro
edure for the liveness analysis has two loops: the outer loop it-erates over the ordered todo list and the inner loop iterates over a sequen
e ofinstru
tions until a break point is rea
hed. Break points are instru
tions afterwhi
h no assumption about the liveness of X registers
an be made, e.g. the
return instru
tion at end of a pro
edure or a non-inlined appli
ation.Addresses on the todo list are skipped if they are less or equal than the
urrentaddress, be
ause its guaranteed that the instru
tion at this address was alreadys
anned.
RegMap liveness(ByteCode �startAddr)f

RegMap regMap[] = UNKNOWN;
Todo todo = nil;
ByteCode � PC = 0;

todo.add(startAddr);

outerloop:
while (!todo.isEmpty()) f

ByteCode �newPC = todo.pop();
// already scanned?
if (newPC <= PC) goto outerloop;
PC=newPC;

innerloop:

160 CHAPTER 4. IMPLEMENTATION ASPECTS
while (true) f
switch (getOP(PC)) f
case MOVEXX(i,j):
if (regMap[i] == UNKNOWN)

regMap[i] = READ;
if (regMap[j] == UNKNOWN)

regMap[i] = WRITE;
break;

case TEST�(...,addr1,addr2):
...
todo.add(addr1);
todo.add(addr2);
break;

case RETURN:
goto outerloop;

...g
PC=PC+1;
goto innerloop;gg

return regMap;gY registers The liveness analysis is only performed for X registers, be
auseone array of X registers is saved per thread. This means for every thread foundduring a garbage
olle
tion the liveness analysis has to be performed on
e.No liveness analysis is performed for Y registers, be
ause Y registers are usuallyallo
ated per pro
edure appli
ation, i.e. per task. A liveness analysis for Y regis-ters would be too expensive, be
ause the number of tasks is under the assumptionthat in the average ten tasks per thread are a
tive an order of magnitude largerthan the number of threads. Furthermore non-inlined pro
edure appli
ations areno longer break-points for stopping the liveness analysis of Y registers.4.6.6 ListsLists are frequently used data stru
tures. With the generi

olle
tion algorithmoutlined above an entry is pushed onto the update sta
k and popped immediatelyafterwards for every list element.The solution is to use an iterative algorithm for
olle
ting list elements. Duringthe
olle
tion phase the head is
opied and eventually pushed onto the update

4.6. MEMORY MANAGEMENT 161sta
k as usual, but the
olle
tion dire
tly
ontinues with the
opying and
olle
-tion of the tail while it is a list element.The memory eÆ
ient representation of list elements has the
onsequen
e that theforward pointer for the list element and its �rst element are shared. Coin
iden-tially this does no harm, be
ause both forward pointers are equal.

162 CHAPTER 4. IMPLEMENTATION ASPECTS

Chapter 5Con
lusion
5.1 SummaryWe have presented an eÆ
ient mapping of a
on
urrent fun
tional programminglanguage L with logi
 variables, futures, re
ord
onstraints, and deep guards toan imperative virtual ma
hine LVM.The virtual ma
hine is
onstru
ted using a modular and open design. The mod-ules
orrespond
losely to the language primitives and
an be to a large extenddeveloped and explained independently. The open design allows for simpli�edmodi�
ations and for an easy integration of extensions into the LVM.The implementation of data stru
tures uses a layered ar
hite
ture with a highlyoptimized tagged pointer s
heme at the bottom, a medium level tagged obje
ts
heme for many datatypes, and an extensible and open layer based on latebinding for experiments and easy integration of new data types.We have shown that many well known ideas from di�erent resear
h
ommunities
an be integrated into a single system. For example �rst-
lass pro
edures, logi
variables, deep guards,
on
urren
y, re
ords and feature
onstraints, and state-full programming
ould be smoothly
ombined in the LVM.Personal remarks Many parts of the implementation have an extremely minorimpa
t on the performan
e of the systems. If these parts
an be integrated inan orthogonal manner, then the lesson learned is: don't invest too mu
h time in
lever algorithms and design, but simply do it in the naive way qui
kly.A lot of time during the work on the LVM went into the engineering of a stableand useful system for users. Typi
ally bugs found by users were
orre
ted in lessthan a day. New features
ould often be implemented before their spe
i�
ationwas �nished due to the
exible design.163

164 CHAPTER 5. CONCLUSIONThe development of the LVM was highly explorative. New ideas for languageprimitives
ame up frequently. As implementors we are eager to in
orporatethem qui
kly to �nd out if they
an be eÆ
iently implemented and what aretheir
osts.After some time of programming experien
e these ideas were typi
ally re�ned andsometimes repla
ed by more powerful
on
epts. One example of su
h a devel-opment are threads. At the beginning we started with �ne-grained
on
urren
yand we tuned and optimized the LVM to support them very well. Then we sawthat this �ne-grained
on
urren
y is not really wanted and needed. After an in-termezzo based on jobs, whi
h allowed for a semi-grained
on
urren
y, we arrivedat the thread model.Performing all these frequent
hanges throughout the LVM was a
hallengingtask. A major e�ort was to identify orthogonal pie
es and to design interfa
esbetween them, su
h that further
hanges only e�e
t small parts of the wholesystem.5.2 Engineering
onsiderationsIn this se
tion we summarize some of our engineering experien
es with respe
tto the implementation language and hardware platforms.5.2.1 C++ vs. C as implementation languageAt the beginning of the proje
t C++ was
hosen as implementation language.The main reason was that C++ has a lot of features whi
h simpli�ed the �rstimplementation and it allowed us to make many experiments.En
apsulation of data stru
tures using
lasses and methods was useful be
ausethe implementation
ould be
hanged frequently, without too mu
h in
uen
e onthe rest of the system.During the development performan
e be
ame an issue and it turned out thatbe
ause of the number of features supported by C++ it was diÆ
ult to predi
tthe performan
e dire
tly from the sour
e
ode.One useful feature for high-performan
e implementations are inlined fun
tions.The
ompiler usually repla
es the
all of su
h a fun
tion during
ompile timeby its de�nition. This optimization avoids a fun
tion
all and typi
ally
reateslarger basi
 blo
ks for other optimizations. The drawba
k of inlining is that it isnot a language requirement of C++ and the
ompiler
an also de
ide not to doit. This means that as an implementor one has to
he
k what the
ompiler hasdone.

5.2. ENGINEERING CONSIDERATIONS 165C does not support inline fun
tions and the basi

on
ept for a
hieving a similarresult is to use ma
ros. Ma
ros are not as safe as inline fun
tions, e.g. the
om-piler does not
he
k the types of arguments, but there expansion is predi
tableand does not depend on the
ompiler. A major trap of ma
ros is that the pro-grammer must be
areful to that arguments are not evaluated twi
e.Another sour
e of optimization are virtual fun
tions: in our implementation weavoid virtual fun
tions in many
lasses and implemented the dispat
h to di�erentimplementation in sub
lasses using expli
it tags. Together with inlining this wasfaster and less memory was needed per obje
t. Only a small number of bits arerequired for the tag bits to distinguish di�erent subtypes and the memory for thepointer to a virtual fun
tion table is saved.In the
urrent implementation we only use a small amount of features whi
h arenot available in C. For optimizing the emulator it would be helpful to rewrite itin C, be
ause the optimizations done by the C
ompiler are better predi
table.The shear amount of features in C++ makes it extremely diÆ
ult to predi
tif the
ompiler
an optimize them. An example to illustrate this: re
ently wefound out that GCC 2.7.2
annot optimize
onditions if the se
ond
ondition ofa
onjun
tion (&&)
ontains a
all to an inline fun
tion.Another problem whi
h o

urs with C++ is that the size of header �les is hugeand the dependen
y among them be
omes quite
omplex for su
h a large proje
tas the LVM.5.2.2 The role of the target platformImplementing the emulator in C++ makes it easy to port it to di�erent platforms,be
ause
ompilers for C++ are available on every platform and
ompilers arealmost
ompatible. The main e�ort when porting the Mozart system to a newplatform are the operating system dependent fun
tions.Porting the OS spe
i�
 parts is not the only problem. A se
ond problem is thatdi�erent hardware ar
hite
tures require di�erent kinds of optimizations at thelevel of the C++ sour
e
ode to gain maximal eÆ
ien
y. This problem is notspe
i�
 to the implementation of virtual ma
hines, but the performan
e of theLVM depends to a large extended on the exa
t understanding of the mapping toreal hardware.Dispat
h One performan
e bottlene
k is the threaded-
ode interpretation, whi
hneeds to dispat
h to the next instru
tion. RISC ar
hite
tures have one or moredelay slots whi
h
an be exe
uted in parallel with a jump. To use this slot thein
rement of the program
ounter must be de
oupled from the jump:

166 CHAPTER 5. CONCLUSION#define DISPATCH_OPT(n)void *lbl = *(PC+n);PC += n;goto *lbl;This
ode allows the
ompiler to in
rement the PC in parallel to the jump, byusing the delay slot for the in
rement.The following naive dispat
h#define DISPATCH_NAIVE(n)PC += n;goto *PC;will stall the jump until the PC is in
remented and if no other instru
tions
ouldbe s
heduled the delay slot remains empty.When the emulator was ported to the INTEL x86 ar
hite
tures we noti
ed thatthe DISPATCH OPT did not generate optimal
ode. For this ar
hite
ture thenaive DISPATCH was better, be
ause x86 pro
essors have fewer registers and ithas an indire
t jump instru
tion whi
h
an read an address dire
tly from memory.Ma
hine registers A typi
al di�eren
e between CISC and RISC ar
hite
turesis the number of available assembler registers and the addressing modes. RISChave many general purpose registers and CISC have few and some spe
ial purposeregisters. RISC only supports a limited number of addressing modes whi
h aretypi
ally based on registers. CISC supports a ri
h number of addressing modes.As an example we analyzed the usage of the X registers in the LVM. The LVMhas a single set of the global X registers at a �xed address in memory.For RISC ar
hite
tures it is good to load this address into a lo
al ma
hine registerof the workers main pro
edure, be
ause this address is frequently used and RISCpro
essors need two instru
tions to load an address.CISC ar
hite
tures support the dire
t addressing of every memory lo
ation andit is better to use this dire
t addressing mode instead of storing the address inone of the few available registers.As an example a

essing X[i℄ needs two RISC instru
tions if X is not in a register
ompared to one if it is. On CISC pro
essors the situation is swapped. CISCneeds two instru
tions if X is in a temporary variable and only one if the �xedaddress is used.

5.3. FUTURE WORK 1675.3 Future work5.3.1 Improve
ompilationA disadvantage wrt. a high-performan
e implementation is that every data stru
-ture is dynami
ally typed and type tests, unbox, and box operations have to beperformed frequently at runtime. If more type information would be availableat
ompile-time a better interfa
e between the
ompiler and the LVM allows touse unboxed representations for values, e.g. storing
oating point values in
oatregisters for numeri

al
ulations.Another aspe
t of this problem are referen
es and transients. It would be useful ifthe
ompiler
ould derive information about referen
e
hains and determinationof values. Impli
it dereferen
e operations and syn
hronization
ode all over theLVM
ould then be repla
ed by expli
it byte
ode instru
tions.5.3.2 Reuse existing te
hnologyThe Mozart system is self
ontained, whi
h means that it has only few depen-den
ies on third-party tools and software. The development model was
exible,be
ause only few people had to
oordinate their
hanges and no lega
y problemso

ur. A disadvantage of su
h a model is that new te
hniques, libraries, and toolsdeveloped in other proje
ts
ould not be easily reused.Often it is possible to design and implement interfa
es to third-party software,e.g. for GUI programming we use an interfa
e to T
l/Tk. Typi
ally su
h aninterfa
e is not trivial and requires a lot of e�ort. Sometimes the wheel has tobe invented again for designing useful libraries, e.g. for OS servi
es like so
kets,pipes, and �les, database interfa
es, et
.For the future of Oz/Mozart I think it would be useful to investigate the pos-sibility to add our ideas to existing systems and to reuse their te
hnology andinfrastru
ture.One promising
andidate is Java and the Java Virtual Ma
hine as a platform for
ompiling Oz programs. The JVM is nowadays available on virtually all plat-forms, in
luding
o�ee ma
hines and libraries and API for all kinds of appli
ationsexist. It would be ne
essary to analyze the limitations of the JVM and how resp.if it
an be a target language for Oz.Another option is to in
orporate the Oz ideas into fun
tional languages, likeObje
tive Caml, Standard ML, and S
heme. These languages are
loser to thelanguage model of Oz than the imperative language Java. These languages havenot the
ommer
ial impa
t and the library base of Java, but they are well-knownin the a
ademi

ommunity. Another advantage of this dire
tion is that software

168 CHAPTER 5. CONCLUSIONdeveloped in a
ademi
 institutions is typi
ally available freely and
an thus beadapted to the spe
i�
 needs.5.3.3 Fun
tional
oreThe original design of the LVM was based on the relational model inherited fromlogi
 programming. In many parts the
urrent design des
ribed in this thesisis based on the fun
tional programming model. In the design some parts areleft over from the relational model. The LVM has only pro
edures and returnparameters are passed using logi
 variables as
all-by-referen
e parameters. Inthis design logi
 variables are at the
ore of the system.An alternate design
ould be a VM based on fun
tions, where logi
 variables andother transient types
an be introdu
ed as fully orthogonal primitives.5.3.4 DistributionThe LVM is implemented as a single-threaded operating system pro
ess with asingle worker for the exe
ution of threads. It is useful to investigate how to takeadvantage of the emerging multi-pro
essor te
hnology.The dire
tions
urrently investigated are parallelism and distribution. Paral-lelism [80℄ starts with the idea of a single LVM and investigates whi
h syn
hro-nization is needed to allow for multiple workers in a single address spa
e. Distri-bution [39℄ starts with multiple LVMs and analyzes how to give the illusion of atransparent distributed store, based on distributed a

ess stru
tures to nodes inthe store and proto
ols to implement graph rewriting steps.It seems that the distributed approa
h dominates parallelism. Distribution allowsalso to take advantage of multiple pro
essors by starting two LVM on one
om-puter and it allows also to explore the
omputation power of
omputer
lusters.It seems that the amount of
ommuni
ation ne
essary for interesting parallel ap-pli
ations is small
ompared to the amount of
omputation. In this
ase a parallelimplementation has no advantage over a distributed implementation.

Bibliography[1℄ Hassan A��t-Ka
i. Warren's Abstra
t Ma
hine - A Tutorial Re
onstru
tion.The MIT Press, 1991.[2℄ Hassan A��t-Ka
i and Roger Nasr. Integrating logi
 and fun
tional program-ming. Lisp and Symboli
 Computation, 2:51{89, 1989.[3℄ Hassan A��t-Ka
i and Andreas Podelski. Towards a meaning of LIFE. Jour-nal of Logi
 Programming, 16(3 and 4):195{234, August 1993.[4℄ Hassan A��t-Ka
i, Andreas Podelski, and Gert Smolka. A feature-based
on-straint system for logi
 programming with entailment. Theoreti
al Com-puter S
ien
e, 122(1{2):263{283, January 1994.[5℄ Andrew W. Appel. A runtime system. Te
hni
al Report CS-TR-220-89,Prin
eton University, May 1989.[6℄ Andrew W. Appel. Runtime tags aren't ne
essary. Lisp and Symboli
Computation, 19(7):703{705, July 1989.[7℄ Andrew W. Appel. Compiling with Continuations. Cambridge UniversityPress, 1992.[8℄ Joe L. Armstrong, Bjarne O. D�a
ker, Robert Virding, and Mike C.Williams. Implementing a fun
tional language for highly parallel real timeappli
ations. In Software Engineering for Tele
ommuni
ation Systems andServi
es, Mar
h 1992.[9℄ Joe L. Armstrong, Robert Virding, Claes Wikstr�om, and Mike Williams.Con
urrent Progamming in ERLANG (2nd Edition). Prenti
e Hall, 1996.[10℄ Rolf Ba
kofen and Ralf Treinen. How to win a game with features. Infor-mation and Computation, 142(1):76{101, April 1998.[11℄ James R. Bell. Threaded
ode. Communi
ations of the ACM, 16(6):370{372, 1973. 169

170 BIBLIOGRAPHY[12℄ Peter A. Bigot and Saumya K. Debray. A simple approa
h to supportinguntagged obje
ts in dynami
ally typed languages. The Journal of Logi
Programming, 32(1):25{47, July 1997.[13℄ Peter A. Bigot and Saumya K. Debray. Return value pla
ement and tail
alloptimization in high level languages. The Journal of Logi
 Programming,38(1):1{29, January 1999.[14℄ Per Brand. A de
ision graph algorithm for

p languages. In Logi
 Pro-gramming, Pro
eedings of the Twelfth International Conferen
e on Logi
Programming, pages 433{447, Tokyo, Japan, June 1995. The MIT Press.[15℄ David R. Butenhof. Programming with POSIX Threads. Addison-Wesley,1997.[16℄ International Standard ISO/IEC 14882:1998, Programming Language -C++, 1998.[17℄ C. J. Cheney. A non-re
ursive list
ompa
ting algorithm. Communi
ationsof the ACM, 13(11):677{678, November 1970.[18℄ Alain Colmerauer. Prolog and in�nite trees. In K. Clark and S. Tarnlund,editors, Logi
 Programming, pages 231{251. A
ademi
 Press, New York,1982.[19℄ Alain Colmerauer. An Introdu
tion to Prolog III. Communi
ations of theACM, pages 70{90, July 1990.[20℄ L. Peter Deuts
h and Alan M. S
hi�man. EÆ
ient implementation of theSmalltalk-80 system. In 11thACM SIGPLAN-SIGACT Symposium on Prin-
iples of Programming Languages, pages 297{302. ACM Press, January1984.[21℄ Robert B. K. Dewar. Indire
t threaded
ode. Communi
ations of the ACM,18(6):330{331, June 1975.[22℄ Denys Du
hier, Leif Kornstaedt, Christian S
hulte, and Gert Smolka. Ahigher-order module dis
ipline with separate
ompilation, dynami
 linking,and pi
kling. Te
hni
al report, Programming Systems Lab, DFKI andUniversit�at des Saarlandes, 1998. DRAFT.[23℄ M. Anton Ertl. Sta
k
a
hing for interpreters. In SIGPLAN '95 Confer-en
e on Programming Language Design and Implementation, pages 315{327, 1995.[24℄ M. Anton Ertl. Implementation of Sta
k-Based Languages on Register Ma-
hines. PhD thesis, Te
hnis
he Universit�at Wien, Austria, 1996.

BIBLIOGRAPHY 171[25℄ Robert R. Feni
hel and Jerome C. Yo
helson. A Lisp garbage
olle
tor forvirtual memory
omputer systems. CACM, 12:611{612, 1969.[26℄ Alessandro Forin. Futures. In Lee [58℄,
hapter 9.[27℄ Torkel Franz�en, Seif Haridi, and Sverker Janson. An overview of the An-dorra Kernel Language. In Pro
eedings of the 2nd Workshop on Extensionsto Logi
 Programming. Springer-Verlag, 1992.[28℄ John B. Goodenough. Ex
eption handling: Issues and a proposed notation.Communi
ations of the ACM, 18(12):683{696, De
ember 1975.[29℄ John B. Goodenough. Stru
tured ex
eption handling. In 2nd ACMSIGPLAN-SIGACT Symposium on Prin
iples of Programming Languages,pages 204{224, Palo Alto, California, January 1975.[30℄ James Gosling, Bill Joy, and Guy Steele. The Java language spe
i�
ation.Addison-Wesley, 1997.[31℄ Paul Graham. ANSI Common Lisp. Prenti
e Hall, 1997.[32℄ David Gudeman. Representing type information in dynami
ally typed lan-guages. Te
hni
al Report TR 93-27, Department of Computer S
ien
e,University of Arizona, Tu
son, AZ 85721, USA, O
tober 1993.[33℄ Gopal Gupta and Bharat Jayaraman. Analysis of Or-parallel exe
utionmodels. ACM Transa
tions on Programming Languages and Systems,15(4):659{680, 1993.[34℄ Robert H. Halstaed. Multilisp: A language for
on
urrent symboli

om-putation. ACM Transa
tions on Programming Languages and Systems,7(4):501{538, O
tober 1985.[35℄ Seif Haridi. A tutorial of Oz 2.0, 1997. Available from the web athttp://www.si
s.se/~seif/oz.html.[36℄ Seif Haridi. Tutorial of Oz, 1999. http://www.mozart-oz.org/.[37℄ Seif Haridi and Sverker Janson. Kernel Andorra Prolog and its Compu-tation Model. In David H. D. Warren and Peter Szeredi, editors, Logi
Programming, Pro
eedings of the 7th International Conferen
e, pages 31{48, Cambridge, MA, June 1990. The MIT Press.[38℄ Seif Haridi and Dan Sahlin. EÆ
ient implementation of uni�
ation of
y
li
stru
tures. In J. A. Campbell, editor, Implementations of Prolog, pages234{249. John Wiley & Sons, Ltd., 1984.

172 BIBLIOGRAPHY[39℄ Seif Haridi, Peter Van Roy, Per Brand, and Christian S
hulte. Program-ming languages for distributed appli
ations. New Generation Computing,1998.[40℄ Seif Haridi, Peter Van Roy, and Gert Smolka. An overview of the designof Distributed Oz. In Pro
eedings of the Se
ond International Symposiumon Parallel Symboli
 Computation (PASCO '97), pages 176{187, Maui,Hawaii, USA, July 1997. ACM Press.[41℄ Bogumil Hausman. Turbo Erlang: Approa
hing the speed of C. In EvanTi
k and Gian
arlo Su

i, editors, Implementations of Logi
 ProgrammingSystems, pages 119{135. Kluwer A
ademi
 Publishers, 1994.[42℄ Martin Henz. Obje
ts for Con
urrent Constraint Programming, volume 426of the Kluwer international series in engineering and
omputer s
ien
e.Kluwer A
ademi
 Press, O
tober 1997.[43℄ IEEE. 9945-1:1996 (ISO/IEC) [IEEE/ANSI Std 1003.1 1996 Edition℄ In-formation Te
hnology - Portable Operating System Interfa
e (POSIX) -Part 1: System Appli
ation: Program Interfa
e (API), 1996.[44℄ Joxan Ja�ar and Jean-Louis Lassez. Constraint logi
 programming. Te
hni-
al report, Department of Computer S
ien
e, Monash University, Australia,June 1986.[45℄ Joxan Ja�ar and Jean-Louis Lassez. Constraint logi
 programming. In14thACM SIGPLAN-SIGACT Symposium on Prin
iples of ProgrammingLanguages, pages 111{119. ACM Press, 1987.[46℄ Joxan Ja�ar and Mi
hael J. Maher. Constraint logi
 programming: Asurvey. Journal of Logi
 Programming, 19/20:503{582, May-July 1994.[47℄ Sverker Janson. AKL | A Multiparadigm Programming Language. PhDthesis, Computer S
ien
e Department, Uppsala University, Sweden, 1994.[48℄ Sverker Janson and Seif Haridi. Programming paradigms of the AndorraKernel Language. In Saraswat and Ueda, editors, Logi
 Programming: Pro-
eedings of the 1991 International Symposium. The MIT Press, 1991. Avail-able as SICS RR R91:08.[49℄ Sverker Janson, Johan Montelius, and Seif Haridi. Ports for obje
ts in
on
urrent logi
 programming. In Gul Agha, Peter Wegner, and AkinoriYonezawa, editors, Resear
h Dire
tions in Con
urrent Obje
t-Oriented Pro-gramming. The MIT Press, 1993.[50℄ Guy L. Steele Jr. Common Lisp: the language (2nd ed). Digital Press,1990.

BIBLIOGRAPHY 173[51℄ Ri
hard Kelsey, William Clinger, and Jonathan Rees. Revised5 Report onthe Algorithmi
 Language S
heme, 1998.[52℄ Donald Knuth. The Art of Computer Programming: Sorting and Sear
hing(Vol 3, 2nd Ed). Addison-Wesley, 1998.[53℄ Andrew R. Koenig and Bjarne Stroustrup. Ex
eption handling for C++(revised). In Pro
 USENIX C++ Conferen
e, April 1990. Also in TheEvolution of C++: Language Design in the Marketpla
e of Ideas, Journalof Obje
t Oriented Programming, 3(2), July/Aug 1990.[54℄ Peter M. Kogge. An ar
hite
tural trail to threaded-
ode systems. Com-puter, pages 22{32, Mar
h 1982.[55℄ Robert A. Kowalski. Predi
ate logi
 as a programming language. InIFIP 74, pages 569{574, O
tober 1974.[56℄ Robert A. Kowalski. Algorithm = Logi
 + Control. Communi
ations ofthe ACM, 22(7):424{436, 1979.[57℄ R. Greg Lavender and Dennis G. Kafum. A polymorphi
 future and �rst-
lass fun
tion type for
on
urrent obje
t-oriented programming. The Uni-versity of Texas at Austin, 1992.[58℄ Peter Lee, editor. Topi
s in advan
ed language implementation. The MITPress, 1991.[59℄ Thomas Lindgren, Per Mildner, and Johan Bevemyr. On Taylor's s
hemefor unbound variables. Te
hni
al Report UPMAIL TR No. 116, ComputingS
ien
e Department, Uppsala University, O
tober 1995.[60℄ Tim Lindholm and Frank Yellin. The Java Virtual Ma
hine Spe
i�
ation.Addison Wesley, 1996.[61℄ Peter S. Magnusson, Fredrik Dahlgren, Hkan Grahn, Magnus Karlsson,Fredrik Larsson, Fredrik Lundholm, Andreas Moestedt, Jim Nilsson, PerStenstrm, and Bengt Werner. Simi
s/sun4m: A virtual workstation. InUsenix Annual Te
hni
al Conferen
e, New Orleans, Lousiana, June 1998.[62℄ Mi
hael Mehl, Ralf S
heidhauer, and Christian S
hulte. An Abstra
t Ma-
hine for Oz. Resear
h Report RR-95-08, Deuts
hes Fors
hungszentrum f�urK�unstli
he Intelligenz, Stuhlsatzenhausweg 3, D66123 Saarbr�u
ken, Ger-many, June 1995. Also in: Pro
eedings of PLILP'95 , Springer-Verlag,LNCS, Utre
ht, The Netherlands.[63℄ Robin Milner, Mads Tofte, Robert Harper, and David Ma
Queen. TheDe�nition of Standard ML (Revised). MIT Press, 1997.

174 BIBLIOGRAPHY[64℄ Johan Montelius. Exploiting Fine-grain Parallism in Con
urent ConstraintLanguages. PhD thesis, Computer S
ien
e Department, Uppsala University,Sweden, 1997.[65℄ Johan Montelius and Khayri A. M. Ali. An And/Or-parallel implementa-tion of AKL. New Generation Computing, Spe
ial issue on the Workshopon Parallel Logi
 Programming, 14(1), 1996.[66℄ The Mozart Programming System. http://www.mozart-oz.org/, 1998.[67℄ Martin M�uller. Set-based Failure Diagnosis for Con
urrent Constraint Pro-gramming. Dissertation, Universit�at des Saarlandes, Fa
hberei
h Infor-matik, Saarbr�u
ken, Germany, January 1998.[68℄ Tobias M�uller. Solving set partitioning problems with
onstraint program-ming. In Pro
eedings of the Sixth International Conferen
e on the Pra
ti
alAppli
ation of Prolog and the Forth International Conferen
e on the Pra
-ti
al Appli
ation of Constraint Te
hnology, pages 313{332, London, UK,Mar
h 1998. The Pra
ti
al Appli
ation Company Ltd.[69℄ Tobias M�uller and Martin M�uller. Finite set
onstraints in Oz. In 13.Workshop Logis
he Programmierung, Te
hnis
he Universit�at M�un
hen, 17{19 September 1997.[70℄ Tobias M�uller and J�org W�urtz. Extending a
on
urrent
onstraint languageby propagators. In Jan Ma luszy�nski, editor, Pro
eedings of the InternationalLogi
 Programming Symposium, pages 149{163. The MIT Press, 1997.[71℄ Ri
hard A. O'Keefe. The Craft of Prolog. The MIT Press, 1990.[72℄ The DFKI Oz Programming System. http://www.ps.uni-sb.de/oz1/,1995.[73℄ The DFKI Oz Programming System (version 2). Available from the webat http://www.ps.uni-sb.de/oz2/, 1997.[74℄ Larry Paulson. ML for the Working Programmer (Se
ond Edition). Cam-bridge University Press, 1996.[75℄ John Peterson and Kevin Hammond. Report on the Programming LanguageHaskell, Version 1.4, April 1997.[76℄ Simon L. Peyton-Jones. The Implementation of Fun
tional ProgrammingLanguages. Prenti
e Hall International, 1987.[77℄ Andreas Podelski and Gert Smolka. Situated simpli�
ation. Theoreti
alComputer S
ien
e, 173:209{233, February 1997.

BIBLIOGRAPHY 175[78℄ Andreas Podelski and Peter Van Roy. The beauty and the beast algorithm:Quasi-linear in
remental tests of entailment and disentailment over trees.In Pro
eedings of the International Logi
 Programming Symposium, pages359 { 374, Itha
a, New York, November 1994. The MIT Press.[79℄ Andreas Podelski and Peter Van Roy. A detailed algorithm testing guardsover feature trees. In Manfred Meyer, editor, Constraint Pro
essing, Se-le
ted Papers, volume 923 of Le
ture Notes in Computer S
ien
e, pages11{38. Springer, 1995.[80℄ Kostja Popov. A parallel abstra
t ma
hine for the thread-based
on
ur-rent language Oz. In Inês de Castro Dutra, V��tor Santos Costa, FernandoSilva, Enri
o Pontelli, and Gopal Gupta, editors, Workshop on Parallismand Implementation Te
hnology for (Constraint) Logi
 Programming Lan-guages, 1997.[81℄ John H. Reppy. Asyn
hronous signals in Standard ML. Te
hni
al ReportTR 90-1144, Department of Computer S
ien
e, Cornell University, Itha
a,NY 14853, August 1990.[82℄ John H. Reppy. CML: A higher-order
on
urrent language. In SIGPLANConferen
e on Programming Language Design and Implementation, 1991.(revised 1993).[83℄ John H. Reppy. Higher-order Con
urren
y. PhD thesis, Cornell University,1992.[84℄ John H. Reppy. Con
urrent Programming with Events - The Con
urrentML Manual. Bell Labs, 1993.[85℄ Clay Roa
h. Polymorphi
 futures in Java. The University of Texas atAustin, May 1998.[86℄ Vijay A. Saraswat. Con
urrent Constraint Programming. ACM Do
toralDissertation Awards: Logi
 Programming. MIT Press, 1993.[87℄ Ralf S
heidhauer. Design, Implementierung und Evaluierung einervirtuellen Mas
hine f�ur Oz. Dissertation, Te
hnis
he Fakult�at der Uni-versit�at des Saarlandes, 1999. Submitted.[88℄ Christian S
hulte. Programming
onstraint inferen
e engines. In GertSmolka, editor, Pro
eedings of the Third International Conferen
e on Prin-
iples and Pra
ti
e of Constraint Programming, Le
ture Notes in ComputerS
ien
e, S
hloss Hagenberg, Linz, Austria, O
tober 1997. Springer-Verlag.[89℄ Christian S
hulte. Constraint Inferen
e Engines. Dissertation, Te
hnis
heFakult�at der Universit�at des Saarlandes, 1999. To appear, preliminary title.

176 BIBLIOGRAPHY[90℄ Christian S
hulte and Gert Smolka. En
apsulated sear
h in higher-order
on
urrent
onstraint programming. In Mauri
e Bruynooghe, editor, Logi
Programming: Pro
eedings of the 1994 International Symposium, pages505{520, Itha
a, New York, USA, November 1994. The MIT Press.[91℄ Christian S
hulte, Gert Smolka, and J�org W�urtz. En
apsulated sear
h and
onstraint programming in Oz. In Alan H. Borning, editor, Se
ond Work-shop on Prin
iples and Pra
ti
e of Constraint Programming, Le
ture Notesin Computer S
ien
e, vol. 874, pages 134{150, Or
as Island, Washington,USA, May 1994. Springer-Verlag.[92℄ Ehud Shapiro. The family of
on
urrent logi
 programming languages.ACM Computing Surveys, 21(3):412{510, September 1989.[93℄ Gert Smolka. A
al
ulus for higher-order
on
urrent
onstraint pro-gramming with deep guards. Resear
h Report RR-94-03, Deuts
hesFors
hungszentrum f�ur K�unstli
he Intelligenz (DFKI), February 1994.[94℄ Gert Smolka. A foundation for higher-order
on
urrent
onstraint program-ming. In Jean-Pierre Jouannaud, editor, 1st International Conferen
e onConstraints in Computational Logi
s, Le
ture Notes in Computer S
ien
e,vol. 845, pages 50{72, M�un
hen, Germany, 7{9 September 1994. Springer-Verlag.[95℄ Gert Smolka. The de�nition of Kernel Oz. In Andreas Podelski, editor,Constraints: Basi
s and Trends, Le
ture Notes in Computer S
ien
e, vol.910, pages 251{292. Springer-Verlag, 1995.[96℄ Gert Smolka. The Oz programming model. In Jan van Leeuwen, editor,Computer S
ien
e Today, Le
ture Notes in Computer S
ien
e, vol. 1000,pages 324{343. Springer-Verlag, 1995.[97℄ Gert Smolka. Con
urrent
onstraint programming based on fun
tional pro-gramming. In Chris Hankin, editor, Programming Languages and Systems,Le
ture Notes in Computer S
ien
e, vol. 1381, pages 1{11, Lisbon, Portu-gal, 1998. Springer-Verlag.[98℄ Gert Smolka and Ralf Treinen. Re
ords for logi
 programming. Journal ofLogi
 Programming, 18(3):229{258, April 1994.[99℄ Ri
hard M. Stallmann. Using and Porting GNU CC. Free Software Foun-dation, Cambridge, MA, 1988{1998.[100℄ Peter A. Steenkiste. The implementation of tags and run-time type
he
k-ing. In Lee [58℄,
hapter 1.

BIBLIOGRAPHY 177[101℄ Andrew Taylor. High Performan
e Prolog Implementation. PhD thesis,Basser Department of Computer S
ien
e, University of Sydney, June 1991.[102℄ Ralf Treinen. Feature
onstraints with �rst-
lass features. In Andrzej M.Borzyszkowski and Stefan Soko lowski, editors, Mathemati
al Foundationsof Computer S
ien
e, Le
ture Notes in Arti�
ial Intelligen
e, vol. 711, pages734{743, Gda�nsk, Poland, 30 August{3 September 1993. Springer-Verlag.[103℄ Ralf Treinen. Feature trees over arbitrary stru
tures. In Patri
k Bla
kburnand Maarten de Rijke, editors, Spe
ifying Synta
ti
 Stru
tures,
hapter 7,pages 185{211. CSLI Publi
ations and FoLLI, 1997.[104℄ Peter Van Roy. An Intermediate Language to Support Prolog's Uni�
ation.In Ewing L. Lusk and Ross A. Overbeek, editors, Pro
eedings of the NorthAmeri
an Conferen
e on Logi
 Programming, pages 1148{1164, Cleveland,Ohio, USA, 1989.[105℄ Peter Van Roy. Can Logi
 Programming Exe
ute as Fast as ImperativeProgramming. PhD thesis, Computer S
ien
e Division (EECS), Universityof California, Berkeley, De
ember 1990.[106℄ Peter Van Roy and Alvin M. Despain. High-performan
e logi
 programmingwith the aquarius prolog
ompiler. COMPUTER, January 1992.[107℄ Peter Van Roy, Seif Haridi, Per Brand, Gert Smolka, Mi
hael Mehl, andRalf S
heidhauer. Mobile obje
ts in Distributed Oz. ACM Transa
tions onProgramming Languages and Systems, 19(5):804{851, September 1997.[108℄ Peter Van Roy, Mi
hael Mehl, and Ralf S
heidhauer. Integrating eÆ
ientre
ords into
on
urrent
onstraint programming. In International Sympo-sium on Programming Languages, Implementations, Logi
s, and Programs,Aa
hen, Germany, September 1996. Springer-Verlag.[109℄ Philip Wadler. Deforestation: transforming programs to eliminate trees.Theoreti
al Computer S
ien
e, 73:231 { 248, 1990.[110℄ David H. D. Warren. Applied Logi
 { Its Use and Implementation as asProgramming Tool. PhD thesis, University of Edinburgh, 1977. Availableas Te
hni
al Note 290, SRI International.[111℄ David H. D. Warren. An abstra
t Prolog instru
tion set. Te
hni
al Report309, Arti�
al Intelligen
e Center, SRI International, 1983.[112℄ David H. D. Warren. The SRI model for Or-parallel exe
ution of Prolog:Abstra
t design and implementation issues. In Pro
eedings of the 1987International Symposium on Logi
 Programming, pages 92{102, 1987.

178 BIBLIOGRAPHY[113℄ David S. Warren. EÆ
ient prolog memory management for
exible
ontrolstrategies. New Generation Computing, 2(4):361{369, 1984.[114℄ Paul R. Wilson. Unipro
essor garbage
olle
tion te
hniques. In Interna-tional Workshop on Memory Management, St. Malo, Fran
e, September1992.[115℄ Paul R. Wilson, Mark S. Johnstone, Mi
hael Neely, and David Boles. Dy-nami
 storage allo
ation: A survey and
riti
al review. In In InternationalWorkshop on Memory Management, Kinros, S
otland, UKs, September1995.[116℄ J�org W�urtz. Oz S
heduler: A workben
h for s
heduling problems. In Pro-
eedings of the 8th IEEE International Conferen
e on Tools with Arti�
ialIntelligen
e, pages 132{139, Toulouse, Fran
e, November 1996. IEEE Com-puter So
iety Press.[117℄ J�org W�urtz. Constraint-based s
heduling in Oz. In Symposium on Opera-tions Resear
h, Brauns
hweig, Germany, 1997. Springer-Verlag.[118℄ J�org W�urtz. L�osen von kombinatoris
hen Problemen dur
h Constraintpro-grammierung in Oz. Dissertation, Universit�at des Saarlandes, Fa
hberei
hInformatik, Postfa
h 1150, D-66041 Saarbr�u
ken, Germany, 1998.

Indexa

ess,! �eld, a

ess
access , 34a
tivation re
ord, 80addressing, 56mode, 65Agents, 108AKL, 5, 108
allocate , 86
allocateL , 62
allocateL1 , 62appli
ation, 12, 84
applMethX , 63arity, 18, 72table, 54assign, 19atom, 11, 18, 71, 136table, 54atom table, 136attribute,! variable, attributeBEAM, 111binding, 14, 19, 26, 73, 127order, 41spe
ulative, 41, 100binding window, 97blo
k,! thread, blo
kboxing, 117
branch , 62built-in pro
edure,! pro
edure, built-inby-need future,! future, by-needby-need syn
hronization,

! syn
hronization, by-need
byNeed , 32, 45byte
ode, 54
call , 66, 88
callBI , 62, 88
callX , 62, 84, 85
at
h,! ex
eption,
at
h
catch , 24
ell, 4, 14, 33, 45
clearY , 63
lone,! spa
e,
lone
lose,! re
ord,
lose
losure, 14
ommuni
ation, 16
omputation model, 14
omputation spa
e,! spa
e
on
urren
y, 30, 53�ne-grained, 96
cond , 44, 45, 62
onditionaldeep guard, 4, 44, 97
ons, 71
onstraint,! equality
onstraint,! feature
onstraint,! width
onstraint
ontinuation,! task,
ontinuation
ontrol, 53, 82
opyable name,! name,
opyable179

180 INDEX
ore language, 11
createVariableMove , 62
createVariableX , 62
y
le, 16, 28
deallocate , 86
deallocateL , 62
deallocateL1 , 62
debugEntry , 63
debugExit , 63de
laration, 12name, 12value, 12deep guard,!
onditional, deep guardde�nition, 12, 83
definition , 62, 83, 84
definitionCopy , 62deinstall, 100deref, 129dereferen
e, 73, 129derefPtr, 131determination, 30dire
t node,! node, dire
tdire
t transient,! transient, dire
t
directCall , 62, 85
directTailCall , 62disentailment, 42, 97emulator, 54
endDefinition , 62
endOfFile , 63engine, 53state, 54entailment, 42, 97, 103environment, 14lo
al, 54, 56, 79, 86pro
edure, 54equality
onstraint, 36equivalen
e,! node, equivalen
e

Erlang, 111ex
eption, 3, 23, 42, 80, 91
at
h, 23failure, 42�nally, 25handler, 23raise, 23, 54value, 23
exchange , 33, 34, 45exe
utionstep, 16expression, 12failure, 103fairness, 16, 31, 54, 93, 94, 100feature, 14, 18feature
onstraint, 4, 36, 45
featureC , 38, 39, 46�eld, 18, 70a

ess, 18name, 18sele
t, 12, 18value, 18
fieldCached , 143�nally,! ex
eption, �nally�ne-grained
on
urren
y,!
on
urren
y, �ne-grained�rst-
lass fun
tion, 3frame,! sta
k, framefree identi�er, 14free name,! name, freefun
tion appli
ation,! appli
ationfun
tion de�nition,! de�nitionfuture, 3, 29, 45, 126by-need, 32, 127
future , 29
getConstantX , 63

INDEX 181
getListValVar , 63
getListX , 63
getRecordX , 63
getSelf , 63
getVariableX , 62, 83
getVarVar , 83
getVarVarXX , 62
getVoid , 62global node,! node, globalglobal register,! register, global
globalVarname , 63graph, 54, 67,! language graphgraph rewriting, 16, 19handler,! ex
eption, handlerhandler task,! task, handlerHaskell, 3, 4, 33heap node,! node, heaphome spa
e,! spa
e, homeidenti�er, 12name, 12idle loop, 54independen
e, 31inje
t,! spa
e, inje
t
inlineAssign , 63
inlineAt , 63
inlineMinus , 62
inlineMinus1 , 62
inlinePlus , 62
inlinePlus1 , 62install, 100instru
tion, 54integer, 18interleaving, 16

JAM, 111Java, 3, 35, 109job, 97JVM, 109language graph, 16lazy, 4, 32, 48leak,! memory leaklight-weight thread,! thread, light-weightLisp, 3list, 71literal, 71, 136load, 57, 60lo
al environment,! environment, lo
allo
al node,! node, lo
al
localVarname , 63lo
k, 33
lock , 62logi
 variable,! variable
lvar , 25ma
hine program, 56
match , 82, 83mat
hing,! pattern mat
hing
matchX , 62, 83memory leak, 128merging, 44, 103ML,! Standard MLmodulesof the VM, 52
moveMoveXYXY, 62
moveXX, 62Mozart, 1, 53Multilisp, 3, 30, 32name, 11, 18, 71, 136,! �eld, name

182 INDEX
opyable, 136free, 137named, 136optimized, 136unique, 136name de
laration,! de
laration, namename identi�er,! identi�er, namenamed name,! name, namednode
lassi�
ation, 67dire
t, 64, 68equivalen
e, 26, 29global, 41heap, 68lo
al, 41pointer, 68register, 71situated, 40tagged, 67numeri
 value,! value, numeri
open re
ord,! re
ord, openoperator, 14
ore, 12optimized name,! name, optimizedparallel, 36pattern mat
hing, 12, 31, 46PC register,! register, PCpersistent, 57pi
kle, 57pointer node,! node, pointer
popEx , 62, 91, 92port, 30POSIX thread,

! thread, POSIXpreemption, 54, 93primary tag,! tag, primaryprimitive value,! value, primitivepro
edurea
tivation, 54built-in, 54, 87invo
ation, 80pro
edure appli
ation,! appli
ationpro
edure de�nition,! de�nitionpro
edure environment,! environment, pro
edure
profileProc , 63program
ounter,! register, PCprogram store,! store, programProlog, 3, 4, 25, 73, 78, 79, 107propagation, 41, 102
putConstant , 62
putListX , 62
putRecordX , 62raise, 24,! ex
eption, raise
raise , 91
raiseError , 63rational tree,! tree, rationalrea
tivity, 100re
ord, 4, 14, 18, 71, 71
lose, 38
onstru
tion, 12open, 37
record , 14, 22re
ord arity,! arityre
ord width,! width

INDEX 183referen
e, 14, 72, 125write, 77referen
e
hain, 73register, 56global, 56PC, 56SP, 56, 81spa
e, 99status, 90task, 79X, 56register node,! node, registerrepli
ation, 57, 71request, 32, 127resume ex
eption,! ex
eption, resume
return , 62, 85, 91, 92, 159return
ode, 88rewriting,! graph rewritingroot spa
e,! spa
e, rootroot variable, 40round-robin, 93runnable thread,! thread, runnablerunning thread,! thread, runningsafeDeref, 129save task,! task, saves
heduling, 54, 93s
ope, 14s
ript, 97, 100se
ondary tag,! tag, se
ondarysele
t,! �eld, sele
t
select , 14, 22, 62, 152
sendMsgX, 63
setConstant , 62

setSelf , 63
setValueX , 62
setVariableX , 62
setVoid , 62situated node,! node, situatedsituated thread,! thread, situated
skip , 63SP register,! register, SPspa
e, 4, 14, 39, 97
lone, 46home, 41inje
t, 46root, 40stable, 46toplevel, 40transparent, 103
space , 99, 100spa
e register,! register, spa
e
spawn , 30, 31, 93spe
ulative binding,! binding, spe
ulativespurious,! wakeup, spuriousstable,! spa
e, stablesta
k frame, 56Standard ML, 3, 11state, 4, 33,! engine, statestatus register,! register, statusstore, 14, 54, 67invariant, 41program, 56stru
ture pointer,! register, SPsubordinated, 39suspension, 31, 93, 95, 102, 128list, 102

184 INDEXwakeup, 95symboli
 value,! value, symboli
syn
hronization, 16, 31, 94, 97by-need, 3, 32synta
ti
 sugar, 11tag, 67primary, 68se
ondary, 68tag s
heme, 122taggedobje
t, 117, 118pointer, 117, 119tagged node,! node, tagged
tailApplMethX , 63
tailCallX , 62, 85
tailSendMsgX , 63task, 54, 79
ontinuation, 79handler, 80id, 56pop, 54push, 54save, 80task register,! register, taskTEAM, 111terminate ex
eption,! ex
eption, terminatetermination, 93,! thread, terminationtermination status, 26, 29
testBI , 62
testBoolX , 62
testConstantX , 62, 83
testLE , 62
testListX , 62
testLT , 62
testRecordX , 62thread, 3, 14, 30, 53, 54, 92blo
k, 31, 54, 92

id, 56in spa
e, 99light-weight, 3light-weigth, 94POSIX, 3queue, 100runnable, 92running, 92situated, 99termination, 54
throw , 24toplevel spa
e,! spa
e, topleveltrail, 100
trail , 99transient, 3, 30, 72, 125dire
t, 75transparent, 26,! spa
e, transparenttreerational, 4
try , 62, 91tuple, 71type, 14type test, 117unboxing, 117
unif , 28, 42uni�
ation, 26algorithm, 26, 29, 39
unifyConstant , 63
unifyValueX , 63
unifyValVarX , 63
unifyVariableX , 63
unifyVoid , 63
unifyXX , 63unique name,! name, uniqueunit, 16value, 18,! �eld, valuenumeri
, 18

INDEX 185primitive, 18symboli
, 18value de
laration,! de
laration, valuevariable, 25, 126attribute, 37logi
, 3virtual ma
hine, 51
waitOr , 31, 95wake up, 93wakeup,! suspension, wakeupspurious, 128thread, 102WAM, 107width, 18width
onstraint, 36
widthC , 38, 39, 46worker, 54, 79write referen
e,! referen
e, writeX register,! register, X

186 INDEX

This do
ument was typeset with LATEX at 12 point using the times font. The Land C++ listings where pro
essed with the listings pa
kage from Carsten Heinz.

