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Abstract. The system FT� of ordering constraints over feature trees has been
introduced as an extension of the system FT of equality constraints over feature
trees. We investigate decidability and complexity questions for fragments of the
first-order theory of FT�. It is well-known that the first-order theory of FT is
decidable and that several of its fragments can be decided inquasi-linear time,
including the satisfiability problem of FT and its entailment problem with ex-
istential quantificationϕ j=9x1 : : :9xnϕ0. Much less is known on the first-order
theory of FT�. The satisfiability problem of FT� can be decided in cubic time,
as well as its entailment problem without existential quantification. Our main
result is that the entailment problem of FT� with existential quantifiers is decid-
able but PSPACE-hard. Our decidability proof is based on a new technique where
feature constraints are expressed in second-order monadiclogic with countably
many successors SωS. We thereby reduce the entailment problem of FT� with
existential quantification to Rabin’s famous theorem on tree automata.
Keywords Feature logic, tree orderings, entailment, decidability,complexity,
second-order monadic logic.

1 Introduction

Feature constraints have been used for describing records in constraint programming
[1, 23, 22] and record like structures in computational linguistics [12, 11, 21, 17, 19].
Following [2, 4, 3], we consider feature constraints as predicate logicformulae inter-
preted in the structure of feature trees. We consider the system FT� of ordering con-
straints over feature trees [16, 13] which is as an extension of the systemFT of equality
constraints over feature trees. Ordering constraints in FT� are interpreted with respect
to the weak subsumption ordering [7] on feature trees. Here, we investigate decidability
and complexity questions for fragments of the first-order theory of FT�.

A feature tree is a tree with unordered edges labeled by features and with possibly la-
beled nodes. Features are functional in that the
features labeling the edges departing from the
same node must be pairwise different. A feature
treeτ1 is smaller than a the feature treeτ2 in the
weak subsumption ordering ifτ1 has fewer edges
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and node labels thanτ2. In this case we writeτ1� τ2. An example is given in the picture.

The results in this paper hold for a countably infinite set of featuresf and a finite set of



node labelsa. We focus on the case of possibly infinite trees but we also consider the
case of finite trees. The particular choice will be made explicit whenever necessary.

The constraintsϕ of FT� are defined by the following abstract syntax wherex andx0
are variables.

ϕ ::= x�x0 j x[ f ]x0 j a(x) j ϕ^ϕ0
The semantics of FT� is given by the interpretation over feature trees where the sym-
bol� is interpreted as weak subsumption ordering. The constraints of FT have the
same syntax as those of FT� but with equalitiesx=y instead of ordering constraints
x�y. Equalities are expressible in FT� sincex=y$ x�y^ y�x holds. The semantics
of selectionx[ f ]y and labeling constraintsa(x) is the same in FT and in FT�. For in-
stance, both trees in the picture above are possible denotations forx in solutions of the
constraintwine(x)^x[color]x0^ red(x0).
It is well-known that the first-order theory of FT is decidable [4] and that several of its
fragments can be decided in quasi-linear time [1], including the satisfiability problem of
FT and its entailment problem with existential quantificationϕ j=9x1 : : :9xnϕ0. Much
less is known on the first-order theory of FT�. The entailment problemϕ j= ϕ0 of FT�
has been shown to have cubic time complexity in [16]. It is however not known whether
more expressive fragments of the first-order theory of FT� are decidable.

We consider the entailment problemϕ j= 9x1 : : :9xnϕ0of FT� with existential quanti-
fiers. In the case of infinite trees, we show that this problem is at least PSPACE-hard. We
prove this result by encoding the inclusion problem between regular word languages.
Our proof makes essential use of infinite trees for encoding the Kleene star. When inter-
preted over the structure of finite trees, the entailment problem of FT� with existential
quantifiers is at least coNP-hard. We prove this result by encoding the complement
of the SAT-Problem of Boolean formulas. Here, we adapt a proof idea introduced by
Henglein and Rehof [9].

We prove that the entailment problem of FT� with existential quantifiersϕ j=9x1 : : :9xnϕ0 is decidable, both in the case of finite trees and in the case of infinite
trees. In the case of finite trees, we give a reduction to the weak second-order monadic
logic WSωS with countably many successors [24] and in the case of infinite trees to the
full second-order monadic logic SωS with countably many successors [18]. The idea to
encode trees as sets of words is well-known, for instance from [5]. Feature constraints,
however, have not yet been encoded in SωS. The reason is that it is impossible in SωS
to express prefix closedness of tree domains and direct subtree relationτ[ f ]τ0 simulta-
neously. In this paper, we avoid the need to express prefix closedness by means of a
semantics change (which we prove correct independently of our encoding).

Plan of the Paper. Section 2 introduces the syntax and semantics of the constraint
system FT�. Section 3 illustrates the expressiveness of entailment with existential
quantification and gives the lower bound complexity results. Section 4 defines second-
order monadic logic and gives our reduction of entailment in FT� to validity in SωS
resp. WSωS. Section 5 contains the correctness proof of our reduction. Section 6 sum-
marizes. The full paper [15] extends the conference version with two appendices that
contain all omitted proofs.
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2 Syntax and Semantics of FT�
The constraint system FT� is defined by a set of constraints together with an interpre-
tation over feature trees. We assume an infinite set ofvariablesranged over byx;y;z, a
countably infinite setF of featuresranged over byf ;g and a non-empty finite setL of
labelsranged over bya;b.

Feature Trees. A pathπ is a word over features. Theempty pathis denoted byε and
the free-monoid concatenation of pathsπ andπ0 asππ0; we haveεπ = πε = π. Given
pathsπ andπ0, π0 is called aprefix ofπ if π = π0π00 for some pathπ00. A tree domain
is a non-empty prefix closed set of paths. Afeature treeτ is a pair(D; L) consisting
of a tree domainD and a partial functionL : D * L that we calllabeling functionof
τ. Given a feature treeτ, we write Dτ for its tree domain andLτ for its
labeling function. For instance,τ0 = (fε; fg; f f ;ag) is a feature tree with
domainDτ0 = fε; fg andLτ0 = f( f ; a)g. The set of features occuring in
some feature treeτ is denoted withF (τ), i.e. F (τ) = f f j π f π0 2 Dτg. A

τ0= �
a

f

feature tree isfinite if its tree domain is finite, andinfinite otherwise. Anode ofτ is an
element ofDτ. A leaf of τ is a maximal node ofτ. A nodeπ of τ is labeled with aif(π; a) 2 Lτ. A node ofτ is unlabeled if it is not labeled by anya. Theroot of τ is the
nodeε. For example,τ0 as defined above is a finite feature tree with a single leaff that
is labeled witha. The root ofτ0 is unlabeded.

Syntax and Semantics. An FT� constraintϕ is defined by the abstract syntax

ϕ ::= x�y j a(x) j x[ f ]y j ϕ1^ϕ2

An FT� constraint is a conjunction ofbasic constraintswhich are eitherinclusion con-
straints x�y, labeling constraints a(x), or selection constraints x[ f ]y.

We next define the structure FT� over feature trees in which we interpret FT� con-
straints. The signature of FT� contains the binary relation symbols�, for every label
a a unary relation symbola(), and for every featuref a binary relation symbol[ f ]. In
FT� these relation symbols are interpreted such:

τ1�τ2 iff Dτ1 �Dτ2 andLτ1 � Lτ2

τ1[ f ]τ2 iff Dτ2 = fp j f π 2 Dτ1g andLτ2 = f(π; a) j ( f π; a) 2 Lτ1g
a(τ) iff (ε; a) 2 Lτ

First-Order Formulas. Let Φ andΦ0 be first-order formulas built from FT� con-
straints with the usual first-order connectives. We callΦ satisfiable(valid) if Φ is satis-
fiable (valid) in the structure FT�. We say thatΦ entailsΦ0, writtenΦ j= Φ0, if Φ!Φ0
is valid, and thatΦ is equivalentto Φ0 if Φ1 $Φ2 is valid. We denote withV (Φ) the
set of variables occurring free inΦ and withF (Φ) the set of features occurring inΦ.

We use the notationx�a as an abbreviation for the formula9y(x�y^a(y)). The for-
mulax=a means thatx denotes the tree(fεg; f(ε; a)g) and is defined as a short hand for
the first-order formulaa(x)^8y(a(y)! x�y). We writex for a possibly empty word
of variablesx1 : : :xn. In this case we also write9xϕ instead of9x1 : : :9xnϕ.

As additional notation, we define extended constraints for non-immediate subtree rela-
tions. Generalizing[ f ], we introduce a binary relation symbol[π] for every pathπ. We

3



also defineextended constraint x[π]y for everyπ;x;y. We interpret extended constraints
over feature trees such that the following equations hold:

x[ε]y$ x�y^y�x and x[π1π2]y$ 9z(x[π1]z^z[π2]y)
The relationτ[π]τ0 holds whenever for allx;y every variable assingmentα with α(x) = τ
andα(y) = τ0 is a solution ofx[π]y. We will make use of the notationsx[π]y, x[π]�y,
x[π]�y, andx[π]�a, which we consider as abbreviations for the following first-order
formulas over extended constraints:

x[π]�y$ 9z(x[π]z^y�z) and x[π]�y$ 9z(x[π]z^z�y)
x[π]�a$ 9y(x[π]�y^a(y))

Alternative Definitions of Feature Trees. In the literature, there are two alternative
definitions of feature trees [2, 3] distinct from ours. According to [2], every node must
be labeled, and [3] requires exactly the leaves to be labeled. In contrast, we follow
previous work of ours [16] andallow labels at all nodes but donot requireany.

For equality constraints as in FT, the particular definition of feature trees does not mat-
ter. The reason is that the first-order theory of FT is completely axiomatizable [4]. Each
definition of feature trees yields a model of the axiomatization of FT. Allthese models
are distinct but their first-order theories coincide due to complete axiomatization.

With respect to ordering constraints as in FT� the particular definition of feature trees
does matter. For example, lets consider the formulasΦ1 andΦ2 wherea1 6= a2:

Φ1 = x�a1^x�a2 and Φ2 = 9x8y x�y

The formulaΦ1 says that the label at the root of the denotation ofx is compatible both
with a1 anda2. Sincea1 6= a2, this is equivalent to saying that the root node of the
denotation ofx is unlabeled. Thus,Φ1 is satisfiable in FT�, but not in a structure of
feature trees where every node has to be labeled. The formulaΦ2 says that there exists
a smallest feature tree with respect to the weak subsumption ordering. Such a tree exists
in FT�, namely the tree(fεg; /0). In contrast, there is no smallest tree in structures over
feature trees that require all nodes or all leaves to be labeled. Thus,Φ2 distinguishes the
structure FT� from those proposed for FT in [2, 3, 4].

3 Expressiveness of Entailment inFT�
We investigate the expressiveness of the entailment problem of FT� with existential
quantificationϕ j= 9xϕ0. Without existential quantifiers, the expressiveness is quite low.

Theorem 1. The entailment problemϕ j= ϕ0 of FT� can be tested in cubic time (both
over finite and over infinite trees).

This result is proved in [16]. There, it is also shown that ordering constraints of FT�
(without existential quantification) have the independence property:If ϕ j=ϕ1_ : : :_ϕn

then there exists 1� i � n such thatϕ j= ϕi . Independence fails in the presence of
existential quantifiers since certain disjunctions can now be expressed byan entailment
problem. For instance, ifa1 6= a2 thenx�a1 j= x�a2_a1(x) but neitherx�a1 j= x�a2

norx�a1 j= a1(x).
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3.1 Finite Trees

We show that the entailment problem of FT� with existential quantifiers over finite trees
is coNP-hard by reducing the complement of the propositional satisfiability problem
SAT [6] to it. Our encoding is based on an idea by Henglein’s and Rehof’s in[9].
They have considered entailment between ordering constraints over constructor trees
(atomic subtyping) without existential quantification. The preciserelationship between
Henglein’s and Rehof’s result and ours is interesting and not obvious.

We assume an infinite set of boolean variables ranged over byu. A clause Cis a finite
disjunction of literalsu or:u. We writefalsefor the empty clause. A solution of a finite
conjunction of clauses

Vn
i=1Ci is a functionβ that assigns boolean values to boolean

variables such that each of theCi evaluates totrue underβ. The clause satisfiability
problem(SAT) is whether a given conjunction

Vn
i=1Ci has a solution. Without loss of

generality we assume that no clause contains both a literal and its negation.

Proposition 2. Fix a constraint variable x. There exists a mappingΨx from clauses to
existentialFT� formulas such that

1. for all clauses C the size ofΨx(C) is linear in the size of C, and

2. for all SAT problems
Vn

i=1Ci it holds that

n̂

i=1

Ψx(Ci) j= Ψx(false) iff
n̂

i=1

Ci is unsatisfiable.

The proof is given in Appendix A of the full paper. Here we illustratethe main ideas
by an example. Consider the clausesC1 = :u1_u3, C2 = :u1_:u3, andC3 = u1 over
three propositional variablesu1;u2; andu3, and observe thatC1^C2 is satisfiable, while
C1^C2^C3 is non-satisfiable. Fix a variablex. Proposition 2 claims the existence of
formulasΨ(C1;x) throughΨ(C3;x) andΨ(false;x) such that

Ψx(C1)^Ψx(C2) 6j= Ψx(false)
Ψx(C1)^Ψx(C2)^Ψx(C3) j= Ψx(false)

The formulaΨx(C1) and the denotation ofx in its least solution are depicted be-
low. Ψx(C1) forces the denotation ofx to have at least the paths in the tree on
the right. The paths of length 3 cor-
respond exactly to the boolean valua-
tions ofu1 throughu3 under whichC1

evaluates to false [9] (the features 1
and 0 correspond to the truth values
trueand f alse, resp.). While the trees

9y9y09y19z9z0 0BBB@x[1]y
y[0]y0 ^z�y0

y[1]y1 ^z�y1

z[0]z0 1CCCA x 7! � �� �� �10 1

0 0

of depth 3 may have exponentially many paths, we use the ordering to express sharing
(i.e., common lower bounds of different subtrees) and thus retain linear (space) com-
plexity. Similarly, the formulaΨx(false) forces the denotation ofx to haveall paths inf0;1g3, and a conjunction

Vn
i=1Ci is non-satisfiable if

Vn
i=1Ψx(Ci) entails thatx has all

paths inf0;1g3.
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Corollary3. Over finite trees, the entailment problem ofFT� with existential quantifi-
cation is coNP-hard.

3.2 Infinite Trees

We show how to linearly reduce the inclusion problem between regular languages over
finite words to the entailment problemϕ j= 9xϕ0 over FT�. Since this problem is well-
known to be PSPACE-complete [10, 20], we obtain PSPACE-hardness of entailment.

Theorem 4. Over infinite trees, the entailment problem ofFT� with existential quan-
tificationϕ j= 9xϕ0 is PSPACE-hard.

Proof. Follows from Proposition 5 below. 2
The idea of the proof of Theorem 4 is to encode regular sets of words (over features) as
feature trees. For instance, the setf1;111g can be described by the feature treeτ with

Dτ = f1;11;111g and Lτ = f(1;a);(111;a)g
in that f1;111g is equal to the set of nodes ofτ that are labeled witha. We consider
regular expressions over a finite subsetF of F defined as usual.

S ::= /0 j ε j f j S� j S1[S2 j S1S2 where f 2 F

Each regular expressionS defines a setL(S) of finite words overF. Without loss of
generality, we assume that every non-trivial regular expressionS 6= /0 does not contain
the symbol/0 at all. Hence, we can assumeL(S) 6= /0 if S 6= /0.

Proposition 5. Let x be an arbitrary variable. For every pair of regular expressions S1

and S2 there exist existential formulasΘ(x;S1) andΘ(x;S2) with size linear in the size
of S1 and S2, respectively, such that

Θ(x;S1) j= Θ(x;S2) if and only if L(S2)� L(S1).
The proof is given below after the necessary definitions and two auxiliary Lemmas. We
define the formulaΘ(x;S) inductively over the form ofS.1

Θ(x;S) = 9y9z(y�x^Θ0(y;S;z)^a(z))
Θ0(x; /0;y) = true
Θ0(x;ε;y) = y�x
Θ0(x; f ;y) = 9z(x[ f ]z^y�z)
Θ0(x;S1[S2;y) = Θ0(x;S1;y)^Θ0(x;S2;y)
Θ0(x;S�;y) = 9z9z0 (y�z^Θ0(z;S;z0)^z0=z^z�x)
Θ0(x;S1S2;y) = 9z(Θ0(x;S1;z)^Θ0(z;S2;y))

1 Franz Baader pointed out that one can obtain the coNP-hardness result of the previous section
by the encoding discussed here applied to star-free regularlanguages. whose inclusion problem
is known to be coNP-complete (e.g., see problem set AL9 in [8]). We nonetheless think that our
proof is an interesting variation on Henglein and Rehofs idea which is worth being presented.
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Lemma 6. The formulaΘ(x;S) has size linear in the size of S.

Lemma 7. Let x 6= y, α be a variable assignment, and S be a regular expression.

1. α is a solution ofΘ0(x;S;y) if and only if8π 2 L(S) : α(x)[π]�α(y).
2. α is a solution ofΘ(x;S) if and only if8π 2 L(S) : (π; a) 2 Lα(x).

Proof. Structural induction overS. For the proof see Appendix A of the full paper.2
Proof of Proposition 5.Assume thatL(S2) 6� L(S1). Then there existsπ 2 L(S2) such
that π 62 L(S1). By Lemma 26 there exists a solutionα of Θ(x;S1) such that(π; a) 62
Lα(x). By Lemma 7,α is not a solution ofΘ(x;S1). HenceΘ(x;S1) 6j= Θ(x;S2).
For the converse, assumeL(S2) � L(S1). Then apparently for allα the following
property holds:8π 2 L(S1) : (π; a) 2 Lα(x) implies 8π 2 L(S2) : (π; a) 2 Lα(x) : By
Lemma 7, this is equivalent to saying that every a solution ofΘ(x;S1) is a solution of
Θ(x;S2), i.e., Θ(x;S1) j= Θ(x;S2). 2
4 Deciding Entailment with Existential Quantifiers

In this Section we prove the decidability of the entailment problem of FT� by reduc-
tion to Rabin’s decidability result for second-order monadic logic. Inthis proof, our
particular choice of a definition of feature trees will turn out crucial.

Second-Order Monadic Logic (SωS and WSωS). We recall the definitions of
second-order monadic logic with countably many successorsSωS [18] and ofweak
second-order monadic logic with countably many successorsWSωS [24]. Syntacti-
cally, SωS and WSωS coincide. We assume an additional infinite set ofpath variables
denoted byp that is disjoint from the variables denoted byx. Formulasψ of SωS and
WSωS are built from variablesx andp and featuresf .

w ::= p j ε j f w
ψ ::= w2x j w=w0 j ψ^ψ0 j :ψ j 8pψ j 8xψ

The semantics of SωS is defined as follows. A path variablep is interpreted as a path
(a word over features) and a variablex as a set of words over features. The denotation
of ε is the empty path and the denotation off w is the path obtained by concatenationf
in front of the denotation ofw. The membership constraintw2x holds if the denotation
of w is a member of the denotation ofx. The equality constraintw=w0 holds if the de-
notations ofw andw0 are equal. The semantics of WSωS coincides with the semantics
of SωS except that in WSωS a variablex denotes afiniteset of paths.

As derived forms we will use the following formulas with their usual semantics:9pψ; 9xψ; ψ! ψ0 ψ$ ψ0
Theorem 8 (Rabin,Thatcher,Wright [18, 24]). The satisfiability problems ofWSωS
andSωS are decidable.
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Theorem 9. The entailment problem ofFT� with existential quantificationϕ j= 9xϕ0 is
decidable, both when interpreted over finite feature trees or over infinite feature trees.

The proof is developed in this section and given at its end. The details ofthe proof
cover the rest of the paper. The underlying idea is quite simple. If we ignore labels then
a feature tree coincides with its domain which is a set of paths. Therefore, ordering
constraints over trees can be translated into monadic second-order logic. This idea is
well known for constructor trees [5]. The pitfall here is that only prefix closed sets of
paths correspond to a feature tree. Prefix-closedness can be expressed in SωS but not
simultaneously with the direct subtree relationτ[ f ]τ0. The reason is that SωS allows for
concatenation to the leftπ f but not for concatenation to the rightf π (or vice versa).

We avoid the need to express prefix closedness by first changing semantics (Sec-
tion 4.1). We define the structure FT�� of sufficiently labeled feature trees and reduce
the entailment problem of FT� to the entailment problem of FT��. In a second step
(Section 4.2), we encode entailment relative to FT�� into formulas of second-order
monadic logic with countably many successors (WSωS for finite trees and SωS for
infinite trees).

4.1 Changing Semantics

Definition 10. We call a feature treeτ sufficiently labeledif for every π 2 Dτ there
exists a pathπ0 and a labela such(ππ0; a) 2 Lτ.

Note that a finite feature tree is sufficiently labeled if and only if all itsleaves are
labeled. Every sufficiently labeled feature tree can be identified with a uniquen-tuple
of non-empty sets of paths, and vice versa, ifn is the number of labels inL. For every
labela we define a functionγa from feature trees to non-empty sets of paths:

γa(τ) = fπ j Lτ(π) = ag
For L=fa1; : : : ;ang we defineγ(τ) as the followingn-tuple of sets of paths:

γ(τ) = (γa1; : : : ;γan)
Proposition 11. The mappingγ from sufficiently labeled feature trees to n-tuples of
pairwise disjoint sets of words with non-empty union is one-to-one and onto. Further-
more,τ is a finite tree if and only if every component ofγ(τ) is finite.

The proof is given in Appendix B.1 of the full paper. Note that we need not require
prefix closedness for the sets in the domain ofγ, since the domain of a sufficiently la-
beled feature treeτ is uniquely determined by its labeling functionLτ. This observation
is crucial for our reduction to second-order monadic logic. Note also thatthe notion
of sufficient labeling does not make sense for the alternative notions offeature trees
mentioned above [2, 3].

Definition 12. The structure FT�� is the restriction of the structure FT� to the domain
of sufficiently labeled feature trees.
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We may interpret FT�� either over finite trees or over possibly infinite trees. Whenever
this choice matters, we will made it explicit.

The first-order theories of FT� and FT�� differ. For instance, consider the following
existential formulaΦ3 (or alternatively the formulaΦ2 from above):

Φ3 = 9x(x�x1^x�x2)
Φ3 requires for allτ1 andτ2 that there existsτ such thatτ�τ1 andτ�τ2. Φ3 is valid over
FT� but not valid over FT��. In FT� one may always choseτ = (ε; /0). This is impossi-
ble in FT�� since(ε; /0) is not sufficiently labeled. Even worse, ifτ1 = (fεg; f(ε; a1)g),
τ2 = (fεg; f(ε; a2)g), anda1 6= a2 then we cannot find any appropriate treeτ in FT��.

We need distinct notations for entailment with respect to FT� and FT��. For this pur-
pose, we writeΦ j=FT� Φ0 andΦ j=FT�� Φ0. The next proposition claims that, in some

sense, this distinction is not necessary for the formulas of interest.

We fix a labelb 2 L for the rest of the paper. Given some featureg 2 F we define a
functionηg that maps a constraintϕ to a first-order formula over constraints as follows:

ηg(ϕ) = ϕ^ ^
y2V (ϕ)9y0(y[g]y0^y0=b)

The use of the featureb in the definition ofηg(ϕ) is left implicit in our notation. This is
because it does not really matter (and could even be circumvented technically).

Proposition 13. Let ϕ and ϕ0 be constraints such thatV (ϕ0) � V (ϕ), x a sequence
of variables, and g a feature. If g=2 F (ϕ ^ ϕ0) then ϕ j=FT� 9xϕ0 is equivalent to
ηg(ϕ) j=FT�� 9xϕ0, both over finite trees and over infinite trees.

Proof. This proof of this proposition is technically involved. It is givenin Section 5,
the two implications being subject of Propositions 20 and 24. 2
Note that Proposition 13 fails whenηg(ϕ) is replaced byϕ. This can also illustrated by
formulaΦ3. As argued above,Φ3 is valid over FT� but not over FT��. In order to relate
this fact to Proposition 13, letϕ3 be the tautological constraintx1�x1^x2�x2 such that
V (ϕ3)�V (ϕ3). Now,ϕ3 j=FT� Φ3 butϕ3 6j=FT�� Φ3. However,ηg(ϕ3) j=FT�� Φ3 where

ηg(ϕ3) = 9x01(x1[g]x01^x01=b)^9x02(x2[g]x02^x02=b).
4.2 Reduction toSωS or WSωS

We next define a mapping from first-order formulas over ordering constraints (inter-
preted over FT��) to formulas of second-order monadic logic with countably many suc-
cessors. We will make use of the following abbreviations:

x\y= /0 = :9p(p2x^ p2y)
For every variablex and labela let xa be a fresh variable. Suppose thatL = fa1; : : : ;ang.
Here comes the definition of the mapping[[ ]] :
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[[ a(x) ]] = ε2xa[[ x[ f ]y ]] = Vn
i=18p( f p2xai $ p2yai )[[ x�y ]] = Vn
i=1xai�yai[[ ϕ^ϕ0 ]] = [[ ϕ ]]^ [[ ϕ0 ]][[ :ϕ ]] = : [[ ϕ ]][[ 9xϕ ]] = 9xa1 : : :9xan ((Vn

i; j=1
i 6= j

xai\xa j= /0 )^9p(Wn
i=1 p2xai ) ^ [[ ϕ ]])

Proposition 14. A first-order formulaΦ is valid overFT�� interpreted over finite (resp.
infinite) trees if and only if its translation[[ ϕ ]] is valid overWSωS (resp.SωS).

Proof. If α is a solution ofΦ thenα0 with α0(xa) = γa(α(x)) is a solution of[[ Φ ]]. If β is
a solution of[[ Φ ]] then the mappingβ0 with β0(x) = γ�1(β(xa1); : : : ;β(xa1)) is a solution
of Φ. The existence of the inverse mappingγ�1 of γ is proved by Proposition 11.

Note that this proposition implies that the first-order theory of FT�� is decidable.2

Proof of Theorem 9.We wish to decide an entailment problem of the formϕ j=FT� 9xϕ0.
We choose a featureg not occurring inϕ or ϕ0 (this exists since the set of all features
F is infinite). By Proposition 13 it is sufficient to decide the entailment propositions
ηg(ϕ) j=FT�� 9xϕ0 over FT��. By Proposition 14,ηg(ϕ) j=FT�� 9xϕ0 holds if and only if

the translation[[ ηg(ϕ)!9xϕ0 ]] is a valid formula of WSωS in the case of finite trees
and of SωS in the case of infinite trees. The validity of these formulas is decidable by
Rabin’s Theorem 8. 2
5 Changing Semantics is Correct

We prove that the semantics change from FT� to FT�� is correct in the sense of Propo-
sition 13. All omitted proofs can be found in Appendix B of the fullpaper.

5.1 Entailment in FT�� Implies Entailment in FT�
Throughout this Section we are interested in entailment propositionsϕ j= 9xϕ0 where
g =2 F (ϕ^ϕ0) for a fixed featureg.

Adding Labels. We define a mappingδg from feature trees to feature trees. Intuitively,
δg(τ) is obtained by adding a leaf(πg; b) to every nodeπ of τ. Formally, we assume a
feature treeτ such thatg =2 F (τ).

Dδg(τ) = Dτ[fπg j π 2 Dτg
Lδg(τ) = Lτ[f(πg; b) j π 2 Dτg

2 This seems to be in contrast to the first-order theory of FT� which, as current joint work with
Ralf Treinen indicates, is undecidable in the case of infinite trees.
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Lemma 15. If τ is a feature tree such that g=2 F (τ) for all π thenδg(τ) is a feature tree
that is sufficiently labeled.

Proof. The assumptiong =2 F (τ) implies thatLδg(τ) is a partial function such thatδg(τ)
is indeed a feature tree. 2
Lemma 16. Assume g=2 F (α(x)) for x and g=2 F (ϕ). If α is a solution ofϕ in FT�
thenδg�α is a solution ofϕ in FT��.

Deleting Labels. There exists a left-inverseδ�1
g of the functionδg on all feature trees

τ such thatg =2 F (τ). For arbitraryτ, we define a feature treeδ�1
g (τ) as follows:

Dδ�1
g (τ) = Dτ nfπgπ0 j π;π0 2 F �g

Lδ�1
g (τ) = Lτ nf(π; a) j π = π0gπ00; a2 Lg

Lemma 17. If g =2 F (τ) thenδ�1
g (δg(τ)) = τ.

Lemma 18. Let g =2 F (ϕ). If α is a solution ofϕ in FT�� thenδ�1
g �α is a solution ofϕ

in FT�.

Lemma 19 Correctness.Let ϕ be a constraint with g=2 F (ϕ), x a sequence of vari-
ables, andα a variable assignment such that g=2 F (α(y)) for all y 2 V (ϕ^9xϕ0).
Thenα is a solution of9xϕ over FT� if and only if δg �α is a solution of9xϕ over
FT��.

Proof. Let α be a solution of9xϕ over FT�. There exists a sequence of treesτ such that
α[τ=x] is a solution ofϕ over FT�. Sinceg =2F (ϕ), the mappingδ�1

g �(α[τ=x]) is also a
solution ofϕ by Lemma 18. The latter variable assignment coincides withα[δ�1

g (τ)=x]
since we have assumedg =2 F (α(y)) for all y. Thusδg � (α[δ�1

g (τ)=x]) is a solution of
ϕ over FT�� (Lemma 16), which implies thatδg �α is a solution of9xϕ over FT��.

For the converse, assume thatδg �α is a solution of9xϕ over FT��. There exists a
sequence of treesτ such that(δg �α)[τ=x] is a solution ofϕ over FT��. Hence,δ�1

g �((δg �α)[τ=x]) is a solution ofϕ over FT�(Lemma 18). Also,δ�1
g � δg �α = α due to

Lemma 17 andg =2 α(y) for all y. Thus:

δ�1
g � ((δg�α)[τ=x]) = (δ�1

g �δg�α)[δ�1
g (τ)=x] = α[δ�1

g (τ)=x]
This proves thatα is a solution of9xϕ over FT�. 2
Proposition 20. Let g =2 F (ϕ^ϕ0) and V (9xϕ0) � V (ϕ). If ηg(ϕ) j=FT�� 9xϕ0 then

ϕ j=FT� 9xϕ0.
Proof. Let g =2 F (ϕ^ϕ0), V (9xϕ0) � V (ϕ), andηg(ϕ) j=FT�� 9xϕ0. We have to show

that every solutionα of ϕ in FT� is also a solution of9xϕ0. Since the number of features
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in F is infinite, we only need to consider solutionsα of ϕ such thatg =2 F (α(x)) for all
x2 V (ϕ). The proof of this fact is delegated to Lemma 29 in Appendix B.2.

Sinceα is a solution ofϕ, andg =2 F (α(x)) for all x2 V (ϕ^9xϕ0), δg�α is a solution
of ϕ (Lemma 19). From the definition ofδg it follows thatδg �α is also a solution ofV

y2V (ϕ)9y0(y[g]y0^y0=b), i.e., δg �α is a solution ofηg(ϕ) over FT��. Entailment as
assumed implies thatδg�α is a solution of9xϕ0 over FT��. Thusα is also a solution of9xϕ0 over FT� (Lemma 19). 2
5.2 Least Solutions

We will exploit the completeness of the satisfiability test for ordering constraints over
feature trees given in [16]. This test also computes the least solution ofa satisfiable con-
straint. The form of these least solutions can be interpreted as a criterion for entailment.

We call a constraintϕ F1F2-closed if it satisfies the following properties:F1:1 x�x in ϕ if x2 V (ϕ)F1:2 x�z in ϕ if x�y in ϕ andy�z in ϕF2 x0�y0 in ϕ if x[ f ]x0 in ϕ; x�y in ϕ andy[ f ]y0 in ϕ

Lemma 21. There exists a cubic time algorithm that given a constraintϕ either de-
tects the unsatisfiability ofϕ, or proves its satisfiability and returns anF1F2-closed
constraint equivalent toϕ.

Proof. We first consider an extended set of rules that defines a satisfiability test. Let
falseandx�y be auxiliary constraints wherefalsedenotes inconsistency and the se-
mantics ofx�y is given by the equivalencex1�x2 $9x(x1�x^x2�x). We call a con-
straintϕ F-closedif it satisfies all propertiesF1–F5 where:F3:1 x�y in ϕ if x�y in ϕF3:2 x�z in ϕ if x�y in ϕ andy�z in ϕF3:3 x�y in ϕ if y�xF4 x0�y0 in ϕ if x[ f ]x0 in ϕ; x�y in ϕ andy[ f ]y0 in ϕF5 false inϕ if x(a)^x�y^y(a0) in ϕ and a 6= a0
For every constraintϕ an equivalentF-closed constraintϕ0 can be computed in cubic
time applying the rules inF exhaustively. Furthermore,ϕ is satisfiable if and only ifϕ0
does not containfalse. Deleting the auxiliary constraintsx1�x2 from ϕ0 transformsϕ0
into an equivalentF1F2-closed constraint in linear time. 2
We will use a syntactic description of the least solution of a satisfiable constraint in order
to derive properties of entailment in FT�(see [16]). We definesyntactic entailment
judgements of the formϕ ` x[π]�y andϕ ` x[π]�a as follows.

ϕ ` x[ε]�y if y�x in ϕ
ϕ ` x[ f ]�y if x[ f ]y in ϕ

ϕ ` x[π1π2]�y if existszsuch thatϕ ` x[π1]�zand ϕ ` z[π2]�y
ϕ ` x[π]�a if existszsuch thatϕ ` x[π]�zanda(z) in ϕ

12



Proposition 22 Least Solutions.Letϕ be satisfiable andF1F2-closed. For every vari-
able x2 V (ϕ), and all a;π;z the following two equivalences hold:

ϕ j=FT� 9z x[π]�z iff exists z0 such thatϕ ` x[π]�z0
ϕ j=FT� x[π]�a iff ϕ ` x[π]�a

Proof. The implications from the right to the left hold because syntactic entailment is
correct with respect to semantic entailment in FT�. For the converse implication, we
define the least solutionleastϕ of ϕ such that for allx2 V (ϕ).

Dleastϕ(x) = fπ j existszsuch thatϕ ` x[π]�zg
Lleastϕ(x) = f(π; a) j ϕ ` x[π]�ag

Without loss of generality, we can assume thatϕ is F-complete. First note that com-
pletion with F1–F5 does never derivefalsesinceϕ is satisfiable. Second, sinceϕ is
F1F2-closed, completion may only add auxiliary constraintsx�y, which does not af-
fect the validity of judgementsϕ ` x[π]�zandϕ ` x[π]�a. In [16] it is proved thatleastϕ
is a solution ofϕ wheneverϕ is F1-F5-closed.

Since syntactic entailment is correct with respect to semantic entailment in FT� it is
clear theleastϕ is smaller than every solution ofϕ, i.e., leastϕ is the least solution ofϕ: If
ϕ 6` x[π]�z0 for all z0 thenπ =2Dleastϕ(x), i.e., ϕ 6j=FT� 9zx[π]�z. In analogy, ifϕ 6` x[π]�a
then(π; a) =2 Lleastϕ(x), i.e., ϕ 6j=FT� x[π]�a. 2
5.3 Entailment in FT� Implies Entailment in FT��
For every constraintϕ let�ϕ be the constraint that is obtained fromϕ by inverting all
its ordering constraints,i.e., by replacingx�y with y�x. We define:

ϕ ` x[π]�y iff �ϕ ` x[π]�y

Lemma 23 Mountain Chains. Let α be a solution of
ϕ and assume variables y;z;z0, pathsπ0;π1;π2 and a
label a. Ifϕ j= 9z0 (z[π0]�z0^y[π1]�z0) and(π0π2; a) 2
Lα(z) then(π1π2; a) 2 Lα(y).
Proof. By induction on the length ofπ0 we can show

z y� z0
a a

π0

π2

π0 π1

π2

that(π2; a) 2 Lα(z0) such that(π1π2; a) 2 Lα(y). 2
Proposition 24. SupposeV (9xϕ0) � V (ϕ) and g =2 F (ϕ^ϕ0). If ϕ j=FT� 9xϕ0 then
ηg(ϕ) j=FT�� 9xϕ0.
Proof. SupposeV (ϕ)\V (x) = /0 and letα be a solution ofηg(ϕ) over FT��. Note that
V (ϕ0) � V (x)[V (ϕ). We have to construct a solutionα0 of ϕ^ϕ0 over FT�� which
coincides withα on the variables inV (ϕ).
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We defineα0(y) for all y2 V (x). Sinceα0(y) must be sufficiently labeled, it suffices to
define its labeling function. Letϕ andϕ0 beF1F2 closed. Fory2 V (x) we defineL1 (π; a) 2 Lα0(y) if ϕ0 ` y[π]�aL2 (πg; b) 2 Lα0(y) if existszsuch thatϕ0 ` y[π]�zL3 (π1π2; a) 2 Lα0(y) if

�
existsz2 V (ϕ) and z0 such that
ϕ0 ` y[π1]�z0; ϕ0 ` z[π0]�z0 and(π0π2; a) 2 Lα(z)

(Compare conditionL3 with the mountain situation depicted above.) For ally2 V (x),
we defineDα0(y) = fπ j π is a prefix ofπ0 and(π0; a) 2 Lα(y)g. For ally =2 V (x) we set
α0(y) = α(y). It is clear thatα0(y) is sufficiently labeled because ofL2. It is also clear
thatα0 is a solution ofϕ sinceα0 coincides withα on V (ϕ). It remains to show thatα0
is a solution ofϕ0, i.e., thatα0 satisfies all basic constraints inϕ0. Here, we only consider
a single case. The complete case distinction is three pages long and given inthe proof
of Lemma 30 in Appendix B.4. Consider the casex[ f ]y in ϕ0, x2 V (ϕ), y2 V (x), and(π; a) 2 Lα0(y) because ofL2 or L3. We show( f π; a) 2 Lα0(x).
L2 existsπ0 andz such thatϕ0 ` y[π0]�z, π = π0g anda = b. Sincex[ f ]y 2 ϕ0, ϕ0 `

x[ f π0]�z such thatϕ j=FT� 9z(x[ f π0]�z) sincex 2 V (ϕ). Proposition 22 implies
the existence ofz0 2V (ϕ) such thatϕ ` x[ f π]�z0 and thusηg(ϕ) ` x[ f πg]�b. Since
α is a solution ofηg(ϕ), we have( f π0g; b) 2 Lα(x), i.e., ( f π; a) 2 Lα0(x).

L3 Let (π; a) 2 Lα0(y) since there existsz2V (ϕ), z0, π0, π1, andπ2 with ϕ0 ` y[π1]�z0,
ϕ0 ` z[π0]�z0, (π0π2; a) 2 Lα(z), and π = π1π2. Sincex[ f ]y we also haveϕ0 `
x[ f π1]�z0. Sincex;z2 V (ϕ) this impliesϕ j=FT� 9z0 (z[π0]�z0^x[ f π1]�z0). Now,
Lemma 23 and(π0π2; a) 2 Lα(z) imply ( f π1π2; a) 2 Lα(x), i.e., ( f π; a) 2 Lα0(x). 2

6 Conclusion and Future Work

We have investigated decidability and complexity questions for fragments of the first-
order theory of ordering constraints over feature trees (FT�). We have proved that the
entailment problem of FT� with existential quantifiers is coNP-hard over finite trees,
PSPACE-hard over infinite trees, and decidable in both cases. We have relatedFT� to
the monadic second-order logic with multiple successors. At least twoquestions on the
first-order theory of FT� have been left for further research. Is its full first-order theory
of FT� decidable? And, how does it relate to monadic second-order logic?
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A Proofs on Expressiveness

A.1 Finite Trees

Proposition 2. Fix a constraint variablex. There exists a mappingΨx from clauses to
existential FT� formulas such that

1. for all clausesC the size ofΨx(C) is linear in the size ofC, and
2. for all SAT problems

Vn
i=1Ci it holds that

n̂

i=1

Ψx(Ci) j= Ψx(false) iff
n̂

i=1

Ci is unsatisfiable.

Proof. Assume that
Vn

i=1Ci contains the variablesu1; : : : ;uk. The idea of [9] is to rep-
resent every boolean variable assignmentβ onfu1; : : : ;ukg as a pathπβ:

πβ = β(uk) : : :β(u1) where true= 1 andfalse= 0:
A set of boolean variable assignmentB can be represented as feature that we define
next. We say that

β in τ if πβ 2 Dτ

and we encode a setB of boolean variable assignments as the smallest feature treeτ(B)
with

β 2 τ(B) if β 2 B :
Let τk be the complete unlabeled feature tree of depthk over featuresf0;1g. We now
define the formulasΨx(Ci) such that

α is a solution of
n̂

i=1

Ψx(Ci) iff τ(Sol(: n̂

i=1

Ci))�α(x) (1)

α is a solution ofΨx(false;x) iff τk�α(x) (2)

whereSol(:Vn
i=1Ci)) = fβ j β is a solution of:Vn

i=1Ci)g). Before doing so, we ver-
ify that the above two properties justify Proposition 2:Vn

i=1 Ψx(Ci) j= Ψx(false;x) iff 8α;α j=Vn
i=1 Ψx(Ci) : α j= Ψx(false;x)

iff 8α : α j=Vn
i=1 Ψx(Ci) ! τk�α(x)

iff τk�τ(Sol(:Vn
i=1Ci))) (*)

iff
Vn

i=1Ci is unsatisfiable

The step marked(�) exploits that, by (1),τ(Sol(:Vn
i=1Ci)) is a solution of

Vn
i=1Ψx(Ci).

We define the existential formulaeΨx(C) as follows. For every 1�i�k and every clause
C over variables infu1; : : :ukg let

δi(C) = 1 if :ui in C; δi(C) = 0 if ui in C; δi(C) = 2 otherwise.
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Without loss of generality we assume that there exists no clauseC and boolean variable
ui such that bothui in C and:ui in C. Every clauseC corresponds to a pathp(C) given
by p(C) = δk(C) : : :δ1(C). The formulaΨx(C) is defined by recursion overp(C).

Ψx(ε;y) = true
Ψx(1p;y) = 9y0 (y[1]y0^Ψx(p;y0))
Ψx(0p;y) = 9y0 (y[0]y0^Ψx(p;y0))
Ψx(2p;y) = 9y09y19y2(y[1]y1^y[0]y0^y2�y1^y2�y0^Ψx(p;y2))

Since every step of this definition introduces at most three new variables, the formula
Φx(C) has sizeO(k) if C is a clause overk variables, and henceΦx(C) has size linear
in the size ofC. It is easy to verify that every solutionα of Ψx(false;x) satisfies (2),i.e.,
τk�α(x). The fact that

Vn
i=1 Ψx(Ci) satisfies (1) is proved by induction over the number

of variables. For more details see the report [14]. 2
A.2 Infinite Trees

Proposition 5. Let x be an arbitrary variable. For every pair of regular expressionsS1

andS2 there exist existential formulasΘ(x;S1) andΘ(x;S2) with size linear in the size
of S1 andS2, respectively, such that

Θ(x;S1) j= Θ(x;S2) if and only if L(S2)� L(S1).
Proof. ): Assume thatL(S2) 6� L(S1). Then there existsπ 2 L(S2) such thatπ 62

L(S1). By Lemma 26 there exists anα such thatα j= Θ(x;S1) but (π; a) 62 Lα(x).
By Lemma 7.2,α 6j= Θ(x;S2). HenceΘ(x;S1) 6j= Θ(x;S2).(: AssumeL(S2)� L(S1). Then apparently for allα(8π 2 L(S1) : (π; a) 2 Lα(x)) implies (8π 2 L(S2) : (π; a) 2 Lα(x))
holds. By Lemma 7.2, this is equivalent to saying that for allα: α j= Θ(x;S1) im-
pliesα j= Θ(x;S2), i.e., Θ(x;S1) j= Θ(x;S2). 2

Lemma 25. Let S be a regular expression andτ;τ0 trees. If8π2L(S�) : τ0[π]�τ, then
there existsτ00 such thatτ�τ00�τ0 andτ00[π]�τ00 for all π 2 L(S�).
Proof. We defineτ00 as the greatest tree which is smaller than the subtrees ofτ0 atπ for
all π 2 L(S�). This is well-defined as we can set

Dτ00 = TfDτ0π j τ0[π]�τ0π; π 2 L(S�)g Lτ00 = TfLτ0π j τ0[π]�τ0π; π 2 L(S�)g
where the intersection of partial functions is defined as the partial function correspond-
ing to the intersection of their graphs.

It is clear thatτ�τ00 (since8π2L(S�) : τ0[π]�τ and τ00 is the greatest tree with this
property), andτ00�τ0 (sinceL(S) 6= /0 and henceε 2 L(S�)). Now pick an arbitrary
π 2 L(S�). It is clear thatπ 2Dτ00 . Hence there existsτ00π such thatτ00[π]�τ00π. We have to
show thatτ00[π]�τ00, i.e., Dτ00 �Dτ00π andLτ00 � Lτ00π .
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Dτ00 �Dτ00π : Let π1 2 Dτ00 and assumeπ1 62Dτ00π . By definition ofτ00 we know that

– 8π2 2 L(S�) 9τ0π2
: τ0[π2]�τ0π2

^π1 2 Dτ0π2

– 9π3 2 L(S�) 9τ0ππ3
: τ0[ππ3]�τ0ππ3

^π1 62 Dτ0ππ3

This is a contradiction since for arbitraryπ3 it holds thatππ3 2 L(S�).
Lτ00 � Lτ00π : Similar. 2
Lemma 7. Let x 6= y, α be a variable assignment, andSbe a regular expression.

1. α is a solution ofΘ0(x;S;y) if and only if 8π 2 L(S) : α(x)[π]�α(y).
2. α is a solution ofΘ(x;S) if and only if 8π 2 L(S) : (π; a) 2 Lα(x).

Proof. 1. By structural induction overS. Assumex 6= y.

– α j= Θ0(x;ε;y) iff α j= y�x iff α(y)�α(x):ε = α(x).
– α j= Θ0(x; /0;y) iff α j= true iff α(x)[π]�α(y) for all π 2 L( /0) = /0.

– α j= Θ0(x;a;y) iff α j= 9z(x[a]z^y�z) iff α(y)�α(x):a
– α j= Θ0(x;S�;y) iff α j= 9z9z0 (y�z^Θ0(z;S;z0)^z=z0^z�x) iff9τz8π 2 L(S) : α(y)�τz^ τz[π]�τz^ τz�x

This immediately yields9τz8π 2 L(S�) : α(y)�τz^ τz[π]�τz^ τz�x

and this implies8π 2 L(S�) : α(x)[π]�α(y).
For the inverse direction assume8π 2 L(S�) : α(x)[π]�α(y). By Lemma 25
there exists a feature treeτ such that(i) α(y)� τ� α(x) and (ii) 8π 2 L(S�) : τ[π]�τ.

Let α0=α;z 7! τ;z0 7! τ. Then, by(i), α0 j= y�z^z= z0^z� x, and, by(ii) and
induction assumption,α0 j= Θ(z;S;z0). In combination this isα j= Θ(x;S�;y).

– α j= Θ0(x;S1 [ S2;y) iff α j= Θ0(x;S1;y) ^ Θ0(x;S2;y) iff 8π 2 L(S1) :
α(x)[π]�α(y), 8π0 2 L(S2) : α(x)[π0]�α(y) iff 8π2 L(S1[S2) : α(x)[π]�α(y).

– α j= Θ0(x;S1S2;y) iff α j= 9z(Θ0(x;S1;z)^Θ0(z;S2;y)) iff 9τ : α;z 7! τ j=
Θ0(x;S1;z)^Θ0(z;S2;y). By induction assumption this is equivalent to9τ8π 2 L(S1)8π0 2 L(S2) : α(x)[π]�τ andτ[π0]�α(y)
But sinceL(S1) 6= /0 andL(S2) 6= /0 this in turn is equivalent to8π12L(S1)8π22 L(S2) : α(x)[π1π2]�α(y) , 8π2L(S1S2) : α(x)[π]�α(y) :
In this equivalence, the implication from left to right is again easy. For the
inverse assumeα(x)[π1π2]�α(y) for all π1 2 L(S1);π2 2 L(S2), defineτ by

Dτ = Ŝ2 Lτ = f(ππ0; b) j (π0; b) 2 Lα(y);π 2 L(S2)g
and note thatτ, by construction, satisfiesτ[π2]�α(y) and α(x)[π1]�τ for all
π1 2 L(S1) andπ2 2 L(S2).
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2. ): Assumeα j= Θ(x;S). Then existτy andτz such thatα;y 7! τy;z 7! τz j= y�x^
Θ0(y;S;z)^a(z). By case(1) of this Lemma this implies for allπ 2 L(S) that
τy[π]�τz andτy�α(x). Hence, for allπ 2 L(S), (π; a) 2 Lα(x).(: Assume that for allπ 2 L(S) : (π; a) 2 Lα(x) and defineβ = α;y 7! α(x);z 7!(ε; f(ε; a)g). Thenβ trivially satisfiesy�x^a(z), and furthermore for allπ 2
L(S) : β(y)[π]�β(z). Hence, by case(1) of this Lemma,β j= y�x^Θ0(y;S;z)^
a(z) and thusα j= Θ(x;S). 2

Lemma 26. For all x and S there existsα such thatα j= Θ(x;S) and fπ j (π; a) 2
Lα(x)g= L(S).
Proof. The valuationα, which mapsx to τ whereDτ is the smallest prefixed-closed
domain containingL(S) and(π; a) 2 Lτ iff π 2 L(S), is a well-formed FT� valuation
and satisfies the right hand side of Lemma 7.2.

B Proofs on Semantics Change

B.1 Suffiently Labeled Feature Trees

Proposition 11The mappingγ from sufficiently labeled feature trees ton-tuples of pair-
wise disjoint sets of words with non-empty union is one-to-one and onto. Furthermore,
τ is a finite tree if and only if every component ofγ(τ) is finite.

Proof. Let τ be a sufficiently labeled feature tree. Sinceε 2 Dτ there exists a pathπ
and a labela such that(επ; a) 2 Lτ. Hence[n

i=1γai (τ) is nonempty. The setsγai (τ) are
pairwise disjoint sinceLτ has to be a partial function. It is also clear that[n

i=1γai (τ) is
finite if τ is finite. The converse follows from the fact that a sufficiently labeled infinite
tree has infinitely many labeled nodes.

In order to prove thatγ is one-to-one and onto, we define the inverse mapping ofγ as
follows. Let (Π1; : : : ;Πn) be pairwise disjoint sets of words over features that have a
nonempty union. We defineγ�1(Π1; : : : ;Πn) as follows:

Dγ�1(Π1;:::;Πn) = fπ j π is a prefix of some word in[n
i=1 Πig

Lγ�1(Π1;:::;Πn) = f(π; ai) j 1� i � n; π 2Πig
Since[n

i=1Πi is assumed non-empty, we haveε 2 Dγ�1(Π1;:::;Πn), which is also prefix
closed by construction. The relationLγ�1(Π1;:::;Πn) is a partial function since allΠi are

assumed pairwise disjoint. Henceγ�1(Π1; : : : ;Πn) is a feature tree, which clearly is
sufficiently labeled.

It is quite obvious thatγ�1 is in fact the inverse function ofγ, i.e., thatγ�1(γ(τ)) = τ for
all sufficiently completeτ and thatγ(γ�1(Π1; : : : ;Πn)) = (Π1; : : : ;Πn) for all Π1; : : : ;Πn

that are pairwise disjoint and have a non-empty union. 2
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B.2 Fresh Features

Lemma 27. Let g2 F and a finite set F� F such that g=2 F. Then there exists a
mappingθ : F ! F , which is one-to-one, does not map onto g, such thatδ restricted
to F is the identity function on F.

Proof. SinceF is countably infinite there exists an enumeration ofF sayF = f fi j
i � 1g is such an enumeration. Letn be the maximal index of a feature inF[fgg in this
enumeration,i.e., n= maxfi j fi 2 F [fggg, which exists sinceF is finite. We define
θ by the following equation:

θ( f ) =8<: fn+1 if f = g
f if f = fi ; 1� i � n; and f 6= g:
fn+i+1 if f = fi andi � n+1

The functionθ is well defined becauseg =2 F and becauseF is infinite. It is obvious
thatθ is one-to-one, does not map ontog, and leavesF invariant. 2
Lemma 28. Let Φ be a first-order formula over ordering constraints,α a variable as-
signment into andθ : F ! F a function that is one to one and leaveF (Φ) invariant.
Thenα is a solution ofΦ if and only ifθ�α is a solution ofΦ.

Proof. It is obvious thatα is a solution ofΦ if and only if θ�α is a solution ofθ(Φ).
Sinceθ leaves the features inΦ invariant we haveθ(Φ) = Φ. 2
Lemma 29 Fresh Features.Let g =2 F (ϕ^ϕ0) andV (9xϕ0 � V (ϕ). If every solution
α of ϕ with g =2 F (α(x)) for all x 2 V (ϕ) is a solution of9xϕ thenϕ j=FT� 9xϕ0 holds.

Proof. Let θ : F !F be a mapping that is one-to-one, does not map ontog, and leaves
F (ϕ) invariant (Lemma 27). Suppose thatα is a solution ofϕ over FT�. Hence,θ�α
is a solution ofϕ over FT� (Lemma 28) that satisfiesg =2 F (α(x)) for all x2 V (ϕ).
By assumption,θ�α is a solution of9xϕ0 over FT��. Thus,α is a solution of9xϕ0 over
FT� (Lemma 28). 2
B.3 Entailment in FT�� Implies Entailment in FT�
Lemma 16Assumeg =2 F (α(x)) for x andg =2 F (ϕ). If α is a solution ofϕ in FT�
thenδg �α is a solution ofϕ in FT��.

Proof. We have to show that every basic constraint inϕ is satisfied byδg�α.

1. Casex[ f ]y in ϕ where f 6= g due tog =2 F (ϕ). We have to verify for allπ that f π 2
Dδg(α(x)) is equivalent toπ 2 Dδg�α(y). This is proved by the following sequence of
equivalences:

f π 2Dδg(α(x)) iff f π 2 Dα(x)[fπ0g j π0 2 Dα(x)g
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Note that f π = π0g and f 6= g implies the existence ofπ00 such thatπ = π00g and
f π00 = π0. Hence

f π 2 Dδg(α(x)) iff π 2 Dα(y)[fπ00g j f π00 2 Dα(x)g
iff π 2 Dα(y)[fπ00g j π00 2 Dα(y)g
iff π 2 Dδg(α(y))

The reasoning for the labeling function is similar.

2. Casex�y in ϕ. We have to verify the domain inclusionDδg(α(x)) �Dδg(α(y)).
Dδg(α(x)) = Dα(x)[fπ0g j π0 2Dα(x)g� Dα(y)[fπ0g j π0 2 Dα(y)g= Dδg(α(y))

The reasoning for the labeling function is again similar.

3. The casea(x) in ϕ is simple, since no label is deleted fromLα(x). 2
Lemma 17If g =2 F (τ) thenδ�1

g (δg(τ)) = τ.

Proof. Sinceg =2 F (τ), the treeδg(τ) is well-defined and henceδ�1
g (δg(τ)) is.

Dδ�1
g (δg(τ)) = Dδg nfπgπ0 j π;π0 2 F �g= (Dτ[fπg j π 2 Dτg)nfπgπ0 j π;π0 2 F �g= Dτ

The last equality holds, since we have requireg =2 F (τ). The argument for the labeling
function is symmetric.

Lδ�1
g (δg(τ)) = Lδg(τ) nf(π; a) j π = π0gπ00; a2 Lg= (Lτ[f(πg; b) j π 2 Dτg)nfπgπ0 j π;π0 2 F �g= Lτ 2

Lemma 18Let g =2 F (ϕ). If α is a solution ofϕ in FT�� thenδ�1
g �α is a solution ofϕ

in FT�.

Proof. We have to show that every basic constraint inϕ is satisfied byδ�1
g �α.

1. Casex[ f ]y in ϕ where f 6= g due tog =2 F (ϕ). We have to verify for allπ that
f π 2 Dδ�1

g (α(x)) is equivalent toπ 2 Dδ�1
g (α(y)). This is proved by the following

equivalences:

f π 2Dδ�1
g (α(x)) iff f π 2 Dα(x) nf f πgπ0 j π;π0 2 F �g

iff π 2 Dα(y) nfπgπ0 j π;π0 2 F �g
iff π 2 Dδ�1

g (α(y))
The reasoning for the labeling function is similar.
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2. Casex�y in ϕ. We have to verify the inclusionsDδ�1
g (α(x)) � Dδ�1

g (α(y)) and
Lδ�1

g (α(x)) � Lδ�1
g (α(y)), which is both obvious.

3. The casea(x) in ϕ is simple, since no label is deleted at the root of some treeα(x).2
B.4 The Final Case Distinction

Lemma 30. SupposeV (9xϕ0) � V (ϕ), V (ϕ)\V (x) = /0 and g=2 F (ϕ^ϕ0). If α is
a solution ofηg(ϕ) over FT�� thenα0 (as defined in the proof of Proposition 24) is a
solution ofϕ0 overFT�� which coincides withα on the variables inV (ϕ).
1. Casex�y in ϕ0. We have to show that(π; a) 2 Lα0(x) implies(π; a) 2 Lα0(y).

(a) Casex;y2 V (x).
L1 If (π; a) 2 Lα0(x) has been added because ofϕ0 ` x[π]�a thenϕ0 ` y[π]�a

such that(π; a) 2 Lα0(y).
L2 If (π; a) 2 Lα0(x) has been added because ofπ = π0g, a = b, ϕ0 ` x[π0]�z

then alsoϕ0 ` y[π0]�zsuch that(π0g; b) = (π; a) 2 Lα0(y).
L3 Let (π; a) 2 Lα0(x) because there existsz2 V (ϕ), z and π0;π1;π2 such

that π = π1π2, ϕ0 ` x[π1]�z0, ϕ0 ` z[π0]�z0, and(π0π2; a) 2 Lα(z). Since
x�y in ϕ0 we also haveϕ0 ` y[π1]�z0 and hence(π1π2; a) 2 Lα0(y).

(b) Casex2 V (x) andy2 V (ϕ).
L1 Let (π; a) 2 α0(x) becauseϕ0 ` x[π]�a. In this case,ϕ0 ` y[π]�a. The cor-

rectness of this relation impliesϕ0 j=FT� y[π]�a. Our assumption of entail-
ment with respect to FT� andy2 V (ϕ) yield:

ϕ j=FT� 9xϕ0 j=FT� y[π]�a

Sinceα is a solution ofηg(ϕ) it is also a solution ofϕ such that(π; a) 2
Lα(y) = Lα0(y).

L2 Let (πg; b) 2 α0(x) becauseϕ0 ` x[π]�z. Symmetrically to the previous
case we can show thatϕ j=FT� 9z(y[π]�z). Proposition 22 implies the
existence ofz0 2 V (ϕ) such thatϕ ` y[π]�z0. Sincez0[g]b in ηg(ϕ), we
concludeηg(ϕ) j= y[πg]�b. Finally, α is a solution ofηg(ϕ) such that(πg; b) 2 Lα(y) = Lα0(y).

L3 Let (π; a) 2 Lα0(x) because there existz2 V (ϕ), z0, π0;π1;π2 such that
π = π1π2, ϕ0 ` x[π1]�z0, ϕ0 ` z[π0]�z0, and(π0π2; a) 2 Lα(z). In this case,
ϕ0 ` y[π1]�zand thusϕ0 j=FT� 9z0 (z[π0]�z0^y[π1]�z0). Sincey;z2 V (ϕ),
we have:

ϕ j=FT� 9xϕ0 j=FT� 9z0 (z[π0]�z0^y[π1]�z0)
Lemma 23, assumption(π0π2; a) 2 Lα(z), and thatα is a solution ofϕ
imply (π1π2; a) 2 Lα(y), i.e., (π; a) = Lα0(y).

(c) Casex2 V (ϕ) andy2 V (x). If (π; a) 2 Lα0(x) then(π; a) 2 Lα(x). Sinceϕ0 `
y[ε]�x, ϕ0 ` x[ε]�x andx2 V (ϕ) L3 implies(επ; a) 2 Lα0(y).
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(d) If x;y 2 V (ϕ) thenϕ j=FT� x�y such thatLα(x) � Lα(y) and henceLα0(x) �
Lα0(y).

2. Casex[ f ]y in ϕ0. We have to show that( f π; a) 2 Lα0(x) if and only if (π; a) 2 Lα0(y).
We first assume( f π; a) 2 Lα0(x) and prove(π; a) 2 Lα0(y).
(a) Casex;y2 V (x).

L1 Let (π; a) 2 Lα0(y) becauseϕ0 ` y[π0]�a. Hence,ϕ0 ` x[ f π]�a such that( f π; a) 2 α0(x).
L2 Let (π; a) 2 Lα0(x) because there existπ andz such thatπ = π0g, a = b

and ϕ0 ` y[π0]�z. Hence,ϕ0 ` x[ f π0]�z such that( f π0g; b) 2 Lα0(x), i.e.,( f π; a) 2 Lα0(x).
L3 Let (π; a) 2 Lα0(y) because there existsz2 V (ϕ), z0, π0, π1, andπ2 such

that ϕ0 ` y[π1]�z0, ϕ0 ` z[π0]�z0, (π1π2; a) 2 Lα(z), andπ = π1π2. Since
x[ f ]y we also haveϕ0 ` x[ f π1]�z0 which yields( f π1π2; a) 2 Lα0(x), i.e.,( f π; a) 2 Lα0(x).

(b) Casex2V (x) andy2V (ϕ). If (π; a)2 Lα0(y) then(π; a)2 Lα(y). By applying
L3 with z= z0 = y, π0 = ε, π1 = f , andπ2 = π, we obtain( f π; a) 2 Lα0(x).

(c) Casex2 V (ϕ) andy2 V (x). Let (π; a) 2 Lα0(y).
L1 If ϕ0 ` y[π]�a thenϕ0 ` x[ f π]�a. Sincex2V (ϕ) this yieldsϕ j=FT� x[π]�a

such that( f π; a) 2 Lα(x), i.e., ( f π; a) 2 Lα0(x).
L2 Let (π; a) 2 Lα0(x) because there existsπ0 and z such thatϕ0 ` y[π0]�z,

π = π0g anda = b. Henceϕ0 ` x[ f π0]�z such thatϕ j=FT� 9z(x[ f π0]�z)
sincex2V (ϕ). Proposition 22 implies the existence ofz0 2V (ϕ) such that
ϕ ` x[ f π]�z0 and thusηg(ϕ) ` x[ f πg]�b. Sinceα is a solution ofηg(ϕ),
we have( f π0g; b) 2 Lα(x), i.e., ( f π; a) 2 Lα0(x).

L3 Let (π; a) 2 Lα0(y) because there existsz 2 V (ϕ), z0, π0, π1, and π2

such thatϕ0 ` y[π1]�z0, ϕ0 ` z[π0]�z0, (π0π2; a) 2 Lα(z), and π = π1π2.
Sincex[ f ]y we also haveϕ0 ` x[ f π1]�z0. Sincex;z2 V (ϕ) this implies
ϕ j=FT� 9z0 (z[π0]�z0^x[ f π1]�z0). Now, Lemma 23 and(π0π2; a) 2 Lα(z)
imply ( f π1π2; a) 2 Lα(x), i.e., ( f π; a) 2 Lα0(x).

(d) Casex;y 2 V (ϕ). In this caseϕ j=FT� x[ f ]y such that if(π; a) 2 Lα(y) then( f π; a) 2 Lα(x).
For the converse of the casex[ f ]y 2 ϕ0, we assume( f π; a) 2 Lα0(x) and prove(π; a) 2 Lα0(y).
(a) Casex;y2 V (x).

L1 Let ( f π; a) 2 Lα0(x) because andϕ0 ` x[ f π0]�a. Sinceϕ0 is F1F2 closed,
this impliesϕ0 ` y[π]�a such that(π; a) 2 α0(y).

L2 Let ( f π; a)2 Lα0(x) becausef π = π0g, a= b andϕ0 ` x[π0]�z. Our assump-
tion g =2 F (ϕ0) implies f 6= g such that there existsπ00 with π = π00g and
π0 = f π00. Sinceϕ0 is F1F2 closed,ϕ0 ` x[ f π00]�z andx[ f ]y in ϕ0 imply
ϕ0 ` y[π00]�z. Hence,(π00g; b) 2 Lα0(y), i.e., (π; a) 2 Lα0(y).

L3 Let ( f π; a) 2 Lα0(x) because there existz2 V (ϕ), z0, andπ0;π1;π2 such
that f π = π1π2, ϕ0 ` x[π1]�z, ϕ0 ` z[π1]�z0, and(π0π2; a) 2 Lα(z).
A. If π1 = ε then f π = π2 andz0�x in ϕ0. Henceϕ0 ` z[π0 f ]�y andϕ0 `

z[π0 f π]�a. Trivially ϕ0 ` y[ε]�y, sincey2V (ϕ0)�V (ϕ) such thatL3
implies(επ; a) 2 Lα(y).
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B. Otherwise,π1 = f π01 andπ = π01π2 for someπ0. TheF1F2 closedness
of ϕ0 implies thatϕ0 ` y[π01]�z0. Hence,L3 yields (π01π2; a) 2 Lα0(y),
i.e., (π; a) 2 Lα0(y).

(b) Casex2 V (x) andy2 V (ϕ).
L1 Let ( f π; a) 2 Lα0(x) becauseϕ0 ` x[ f π]�a. The F1F2 closedness ofϕ

implies ϕ0 ` y[π]�a and henceϕ j=FT� y[π]�a since y 2 V (ϕ). For α
being a solution ofϕ this implies(π; a) 2 Lα(y) which is equivalent to(π; a) 2 Lα0(y).

L2 Let ( f π; a) 2 Lα0(x) becausef π = π0g, a= b andϕ0 ` x[π0]�z. Sincef 6= g
there exists there existsπ00 such thatπ = π00g and f π00 = π0. By F1F2
closedness we obtainϕ0 ` y[π00]�z. Henceϕ j=FT� 9z(y[π00]�z). Sinceϕ
is F1F2 closed, Proposition 22 implies the existence ofz0 2 V (ϕ) such
that ϕ0 ` y[π00]�z0. The definition ofηg(ϕ) implies ϕ ` y[π0g]�b. Hence,(π00g; b) 2 Lα(y) which is equivalent to(π; a) 2 Lα0(y).

L3 Let ( f π; a) 2 Lα0(x) because there existz2 V (ϕ), z0 andπ0;π1;π2 such
that f π = π1π2, ϕ0 ` x[π1]�z0, ϕ0 ` z[π0]�z0, and(π0π2; a) 2 Lα(z).
A. Caseπ1 = ε. Hencef π = π2 andz0�x in ϕ0. In this caseϕ0 ` z[π0 f ]�y

such thatz;y2 V (ϕ) implies

ϕ j=FT� 9xϕ0 j=FT� z[π0 f ]�y

Sinceα is a solution ofϕ and(π0 f π; a) 2 Lα(z). Lemma 23 implies(π; a) 2 Lα(y), i.e., (π; a) 2 Lα0(y).
B. Otherwise there existsπ01 such thatπ1 = f π01 andπ = π01π2. TheF1F2

closedness ofϕ0 andϕ0 ` x[ f π01]�z0 imply ϕ0 ` y[π01]�z0. Sincey;z2
V (ϕ) we know that

ϕ j=FT� 9xϕ0 j=FT� 9z0 (z[π0]�z0^y[π01]�z0)
Hence, our assumption(π0π2; a) 2 Lα(z) and Lemma 23 imply(π01π2; a) 2 α(y), i.e., (π; a) 2 α0(y).

(c) Casex2 V (ϕ) andy2 V (x). If ( f π; a) 2 Lα0(x) then( f π; a) 2 Lα(x). L3, y =2
V (ϕ), andx2 V (ϕ) imply (π; a) 2 Lα0(y).

(d) Casex;y 2 V (ϕ). In this caseϕ j=FT� x[ f ]y such that if( f π; a) 2 Lα(x) then(π; a) 2 Lα(y).
3. Casea(x) in ϕ0.

(a) If x2 V (x) thenϕ0 ` x[ε]�a such that(ε; a) 2 Lα0(x) (conditionL1).
(b) If x 2 V (ϕ) thenϕ j=FT� 9xϕ0 j=FT� a(x). Hence(ε; a) 2 α(x), i.e., (ε; a) 2

α0(x). 2
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