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Abstract. The system FT of ordering constraints over feature trees has been
introduced as an extension of the system FT of equality caing$ over feature
trees. We investigate decidability and complexity questifor fragments of the
first-order theory of FE. It is well-known that the first-order theory of FT is
decidable and that several of its fragments can be decidgddsi-linear time,
including the satisfiability problem of FT and its entailmgmoblem with ex-
istential quantificatiorp |=3x; ...3x,¢’. Much less is known on the first-order
theory of F<. The satisfiability problem of FJ can be decided in cubic time,
as well as its entailment problem without existential gifevattion. Our main
result is that the entailment problem of k£ With existential quantifiers is decid-
able but Bpacehard. Our decidability proof is based on a new techniquergrhe
feature constraints are expressed in second-order moluagiicwith countably
many successorsu$s. We thereby reduce the entailment problem ok RAlith
existential quantification to Rabin’s famous theorem or tratomata.

Keywords Feature logic, tree orderings, entailment, decidabilitymplexity,
second-order monadic logic.

1 Introduction

Feature constraints have been used for describing records in constagjrarmpming
[1, 23, 22] and record like structures in computational linguisti& 11, 21, 17, 19].
Following [2, 4, 3], we consider feature constraints as predicate fogiulae inter-
preted in the structure of feature trees. We consider the systemmoFdrdering con-
straints over feature trees [16, 13] which is as an extension of the siFtarhequality
constraints over feature trees. Ordering constraints in &E interpreted with respect
to the weak subsumption ordering [7] on feature trees. Here, we inatstigcidability
and complexity questions for fragments of the first-order theoryTof.F

A feature tree is a tree with unordered edges labeled by features and withlpdessi
beled nodes. Features are functional in thatthe .« wine
features labeling the edges departing from the color year
same node must be pairwise different. A featirecolor < / \

treet; is smaller than a the feature treein the red red 1997
weak subsumption orderingif has fewer edges
and node labels tham. In this case we writg; < T2. An example is given in the picture.

The results in this paper hold for a countably infinite set of feat@irasd a finite set of




node labelsa. We focus on the case of possibly infinite trees but we also consider the
case of finite trees. The particular choice will be made explicit whenever seges

The constraint$ of FT< are defined by the following abstract syntax whe@ndx’
are variables.

d u= x<x | XX | &) | 9AY

The semantics of FJ is given by the interpretation over feature trees where the sym-
bol < is interpreted as weak subsumption ordering. The constraints of F& thav
same syntax as those of Ebut with equalitiesx=y instead of ordering constraints
x<y. Equalities are expressible in ETsincex=Yy «» X<y Ay<x holds. The semantics
of selectionx|f]y and labeling constrain&(x) is the same in FT and in KT For in-
stance, both trees in the picture above are possible denotationsfeolutions of the
constraintine(x) A x[color]xX A red(X').

It is well-known that the first-order theory of FT is decidable [4] ahattseveral of its
fragments can be decided in quasi-linear time [1], including the satifygtrioblem of
FT and its entailment problem with existential quantificatioe 3x; ...3xn¢’. Much
less is known on the first-order theory of ETThe entailment problemp = ¢’ of FT<
has been shown to have cubic time complexity in [16]. It is howeveknawn whether
more expressive fragments of the first-order theory of ffe decidable.

We consider the entailment problem= 3x; ...3x,$’'of FT< with existential quanti-
fiers. In the case of infinite trees, we show that this problem is at lesstd®=hard. We
prove this result by encoding the inclusion problem between reguled isaguages.
Our proof makes essential use of infinite trees for encoding the Kleen®4tan inter-
preted over the structure of finite trees, the entailment problem ofWilh existential
quantifiers is at least coNP-hard. We prove this result by encoding thpleorant

of the SAT-Problem of Boolean formulas. Here, we adapt a proof ideaduated by
Henglein and Rehof [9].

We prove that the entailment problem of ETwith existential quantifiersh =
Ix1... 3% ¢’ is decidable, both in the case of finite trees and in the case of infinite
trees. In the case of finite trees, we give a reduction to the weak secoadraodadic
logic WSwS with countably many successors [24] and in the case of infinite trees to th
full second-order monadic logic$ with countably many successors [18]. The idea to
encode trees as sets of words is well-known, for instance from [5]. Feeedmstraints,
however, have not yet been encoded 0SS The reason is that it is impossible imS

to express prefix closedness of tree domains and direct subtree re(didrsimulta-
neously. In this paper, we avoid the need to express prefix closednessans rof a
semantics change (which we prove correct independently of our encoding).

Plan of the Paper. Section 2 introduces the syntax and semantics of the constraint
system FL. Section 3 illustrates the expressiveness of entailment with existenti
quantification and gives the lower bound complexity results. Secticefidels second-
order monadic logic and gives our reduction of entailment inc k@ validity in SwS

resp. WSS. Section 5 contains the correctness proof of our reduction. Section-6 sum
marizes. The full paper [15] extends the conference version with two ajgesnithat
contain all omitted proofs.



2 Syntax and Semantics of FE

The constraint system KTis defined by a set of constraints together with an interpre-
tation over feature trees. We assume an infinite seagéblesranged over by,y,z, a
countably infinite seff of featuresranged over byf, g and a non-empty finite set of
labelsranged over b, b.

Feature Trees. A pathTtis a word over features. Thampty paths denoted by and
the free-monoid concatenation of pathandm astut; we haveent = e = 1. Given
pathsmtandTt, 1 is called aprefix of tif t= n'n’ for some patht’. A tree domain
is a non-empty prefix closed set of pathsfeature treet is a pair(D, L) consisting
of a tree domairD and a partial functioh : D — £ that we calllabeling functionof

T. Given a feature tree, we write D; for its tree domain andl; for its
labeling function. For instanceg = ({€, f}, {f,a}) is a feature tree with
domainDy, = {¢&,f} andL., = {(f,a)}. The set of features occuring i
some feature treeis denoted with (1), i.e. (1) = {f | tf’ € D}. A

feature tree iginiteif its tree domain is finite, anahfinite otherwise. Anode oft is an
element ofD;. A leaf of T is a maximal node of. A nodeTt of T is labeled with aif
(T, @) € Ly. A node oft is unlabeled if it is not labeled by arg Theroot of 1 is the
nodee. For exampleTg as defined above is a finite feature tree with a single fethfat
is labeled witha. The root oftg is unlabeded.

Syntax and Semantics. An FT< constraint is defined by the abstract syntax

¢ = x<y | a) [ Xfly [ ¢1A¢2

An FT< constraint is a conjunction dfasic constraintsvhich are eitheinclusion con-
straints X<y, labeling constraints &), or selection constraints[X]y.

We next define the structure ETover feature trees in which we interpret ETon-
straints. The signature of ETcontains the binary relation symbats for every label
a a unary relation symbda(), and for every featuré a binary relation symbdlf]. In
FT< these relation symbols are interpreted such:

T]_STZ |ﬁ: D'[l g DTZ andLTl g LTZ
T1[f]to iff Dy, ={p| fte Dy }andlL,, ={(ma)|(fm a) € Ly, }
a(t) iff (ga) €l

First-Order Formulas. Let ® and®' be first-order formulas built from FI con-
straints with the usual first-order connectives. We dedlatisfiable(valid) if ® is satis-
fiable (valid) in the structure FI. We say thatb entails®’, written® |= @', if & — @’

is valid, and thatb is equivalento @' if ®; <+ ®, is valid. We denote with/(®) the
set of variables occurring free fh and with 7 (®) the set of features occurring .

We use the notatior~a as an abbreviation for the formuly(x<yAa(y)). The for-
mulax=ameans that denotes the trege}, {(€, @) }) and is defined as a short hand for
the first-order formula(x) A Vy(a(y) — x<y). We writex for a possibly empty word
of variables«; ... xn. In this case we also writéx¢ instead ofx; ... 3xn .

As additional notation, we define extended constraints for non-imatedubtree rela-
tions. Generalizingf], we introduce a binary relation symbai for every pathrt. We



also defineextended constrain{®]y for everytt, x,y. We interpret extended constraints
over feature trees such that the following equations hold:

X[ely & x<yAy<x and Xmumly + 3z(X[u|zA ZmRly)

The relatiort[rjt’ holds whenever for ak, y every variable assingmeatwith a(x) =1
anda(y) =T is a solution ofx[m]y. We will make use of the notationgmly, X[1]>Y,
X[Ti<y, andx[1]>a, which we consider as abbreviations for the following first-order
formulas over extended constraints:

XMy  3z(X[MzAy<z) and X[M<y < Jz(X[jzA z<Y)
x[rf>a < Jy(x[rf>yAaly))

Alternative Definitions of Feature Trees. In the literature, there are two alternative
definitions of feature trees [2, 3] distinct from ours. According th §Zery node must
be labeled, and [3] requires exactly the leaves to be labeled. In contrastllow f
previous work of ours [16] andllow labels at all nodes but dwot requireany.

For equality constraints as in FT, the particular definition of featerestdoes not mat-
ter. The reason is that the first-order theory of FT is completely axiaatale [4]. Each

definition of feature trees yields a model of the axiomatization of FTthAdse models
are distinct but their first-order theories coincide due to completeraatiaation.

With respect to ordering constraints as inFthe particular definition of feature trees
does matter. For example, lets consider the form@aand®, wherea; # ap:

P = X~ag AX~ap and @®y = IXVY Xy

The formulad®; says that the label at the root of the denotatior isf compatible both
with a; anday. Sincea; # ay, this is equivalent to saying that the root node of the
denotation ofx is unlabeled. Thugp; is satisfiable in FT, but not in a structure of
feature trees where every node has to be labeled. The foxdndays that there exists

a smallest feature tree with respect to the weak subsumption ordertga$uee exists

in FT<, namely the treé{€}, 0). In contrast, there is no smallest tree in structures over
feature trees that require all nodes or all leaves to be labeled. ®Phukstinguishes the
structure FT from those proposed for FT in [2, 3, 4].

3 Expressiveness of Entailment irFT<

We investigate the expressiveness of the entailment problem ofviith existential
quantification |= Ix¢’. Without existential quantifiers, the expressiveness is quite low.

Theorem 1. The entailment problem |= ¢’ of FT< can be tested in cubic time (both
over finite and over infinite trees).

This result is proved in [16]. There, it is also shown that orderingstraimts of Fk
(without existential quantification) have the independence progédiy= ¢1V ...V dn
then there exists ¥ i < n such thatp = ¢;. Independence fails in the presence of
existential quantifiers since certain disjunctions can now be expressaddntailment
problem. For instance, #; # ap thenx~a; |= x~a v a1(X) but neithemx~a; |= x~a
norx~az = ai(x).



3.1 Finite Trees

We show that the entailment problem of EWith existential quantifiers over finite trees
is coNP-hard by reducing the complement of the propositional satigffapioblem
SAT [6] to it. Our encoding is based on an idea by Henglein’'s and Rehof8]in
They have considered entailment between ordering constraints over cooistraes
(atomic subtyping) without existential quantification. The preoidationship between
Henglein’s and Rehof’s result and ours is interesting and not obvious.

We assume an infinite set of boolean variables ranged over Ayclause Cis a finite
disjunction of literalai or —u. We writefalsefor the empty clause. A solution of a finite
conjunction of clause@\[_;Ci is a functionf that assigns boolean values to boolean
variables such that each of tl evaluates tdrue underf. The clause satisfiability
problem(SAT) is whether a given conjunctiofji_; Ci has a solution. Without loss of
generality we assume that no clause contains both a literal and its negation

Proposition 2. Fix a constraint variable x. There exists a mapphig from clauses to
existentialF T< formulas such that

1. for all clauses C the size #«(C) is linear in the size of C, and
2. for all SAT problemsA[L; G it holds that

n n
/\ Wx(Ci) = Wx(false) iff A G is unsatisfiable.
i=1 i=1

The proof is given in Appendix A of the full paper. Here we illustrétie main ideas
by an example. Consider the clau§gs= —u; V uz, C; = —uz V —ugz, andCgz = u; over
three propositional variables, up, andus, and observe th& A C; is satisfiable, while
C1 A Cy AC3 is non-satisfiable. Fix a variable Proposition 2 claims the existence of
formulasW(Cy, x) throughW(Cs,x) andW¥(false x) such that

Wi(Cr) A Wx(C2) £ Wy(false
Wy(C1) AWK(Co) AWK(C3) [= Wi(false)

The formulaWx(Ci1) and the denotation af in its least solution are depicted be-
low. Wy(C;) forces the denotation aof to have at least the paths in the tree on

the right. The paths of length 3 cof- 3 1

respond exactly to the boolean valua- y X1y '\1
tions ofu; throughus under whichCy | 3o | Y[0lYo Az<Yo X s 0/'\1
evaluates to false [9] (the features 13yr | Y[ly1 Az<y1 o."0 >
and 0 correspond to the truth valuggz 37 70)Z ./ ./

trueandfalse resp.). While the tree
of depth 3 may have exponentially many paths, we use the orderingtessxsharing
(i.e, common lower bounds of different subtrees) and thus retain linear (spaoe) co
plexity. Similarly, the formula¥,(false) forces the denotation ofto haveall paths in
{0,1}3, and a conjunctiof\]_, Ci is non-satisfiable if\[._; Wx(Ci) entails thak has all
paths in{0,1}°.




Corollary 3. Over finite trees, the entailment problemFdi< with existential quantifi-
cation is coNP-hard.

3.2 Infinite Trees

We show how to linearly reduce the inclusion problem between regulaneygs over
finite words to the entailment problegn= 3x¢’ over FT<. Since this problem is well-
known to be BPACEcomplete [10, 20], we obtaindPAcEhardness of entailment.

Theorem 4. Over infinite trees, the entailment problemFof< with existential quan-
tification ¢ = Ix¢’ is PSPACE-hard.

Proof. Follows from Proposition 5 below. |

The idea of the proof of Theorem 4 is to encode regular sets of words f@atures) as
feature trees. For instance, the §&t111} can be described by the feature trewith
D, ={1,11,111} and L;={(1,a),(1114a)}

in that {1,111} is equal to the set of nodes ofthat are labeled witla. We consider
regular expressions over a finite subSaif 7 defined as usual.

S:=0|e|f|S|SUS|SS wheref € F

Each regular expressidhdefines a ser (S) of finite words over=. Without loss of
generality, we assume that every non-trivial regular expres$igif) does not contain
the symbob at all. Hence, we can assumgS) # 0if S# 0.

Proposition 5. Let x be an arbitrary variable. For every pair of regular expressich
and $ there exist existential formula(x, S;) and@(x, ) with size linear in the size
of § and S, respectively, such that

OXS) FO(xS) ifandonlyif L(S)C L(S).

The proof is given below after the necessary definitions and two auxiliamyrhas. We
define the formul®(x, S) inductively over the form o8.!

O(x,9) = JyIz(y<xAO'(y,S.2) Aa(2))
O’(x@y) = true
O'(x.e.y) = y<x
o(x 1Y) = J2(x[flzry<2)
OXSUSY) = O(XS,Y)AO (X S,Y)
O'(x,S",y) = 3I73Z(y<zAO' (2, S Z)AZ=zAZLX)
OxSSy) = FO(xS.2AO(2SY))

1 Franz Baader pointed out that one can obtain the coNP-hesdesult of the previous section
by the encoding discussed here applied to star-free relgmignages. whose inclusion problem
is known to be coNP-complete.g, see problem set AL9 in [8]). We nonetheless think that our
proof is an interesting variation on Henglein and Rehofs id&ich is worth being presented.



Lemma 6. The formula®(x, S) has size linear in the size of S.

Lemma7. Let Xx# Yy, a be a variable assignment, and S be a regular expression.

1. ais a solution 0of®'(x,Sy) if and only ifvrte £(S) : a(X)[T]>a(y).

2. a is a solution ofd(x,S) if and only ifvrie L(S) : (Tt @) € Lyy)-
Proof. Structural induction ove®. For the proof see Appendix A of the full papera

Proof of Proposition 5Assume that’(S) Z £(S1). Then there exista € £(S) such
thatt¢g £(S;). By Lemma 26 there exists a solutionof ©(x,S;) such that(r, a) ¢

La(x- By Lemma 70 is not a solution oB(x,S;). Henced(x, ;) [~ O(X, ).

For the converse, assumg ;) C L(S1). Then apparently for alt the following
property holds:vVrie L(S)) : (Th @) € Ly(y implies VITe L(S) : (L @) € Ly(y - By

Lemma 7, this is equivalent to saying that every a solutio®{, S;) is a solution of
O(X, ), i.e, 0(x,S) EO(X,S). a

4 Deciding Entailment with Existential Quantifiers

In this Section we prove the decidability of the entailment problem™f By reduc-
tion to Rabin’s decidability result for second-order monadic logicthis proof, our
particular choice of a definition of feature trees will turn out crucial.

Second-Order Monadic Logic SwS and WSwS).  We recall the definitions of
second-order monadic logic with countably many succesSarS [18] and ofweak

second-order monadic logic with countably many succes$é®oS [24]. Syntacti-

cally, SwS and WS coincide. We assume an additional infinite sgtath variables
denoted byp that is disjoint from the variables denoted yFormulasp of SwS and

WSwS are built from variables and p and featureg.

wi=p| e fw
Pu=wex | w=w [ AW | @ | Vg | VX

The semantics of &S is defined as follows. A path variabteis interpreted as a path
(a word over features) and a variaBlas a set of words over features. The denotation
of € is the empty path and the denotationfef is the path obtained by concatenatibn

in front of the denotation ofv. The membership constrawe x holds if the denotation

of wis a member of the denotation ®f The equality constraint=w holds if the de-
notations ofw andw are equal. The semantics of WS coincides with the semantics
of SwS except that in WS a variablex denotes dinite set of paths.

As derived forms we will use the following formulas with their asgemantics:
Apy, XY, Y=Y Yoy

Theorem 8 (Rabin, Thatcher,Wright [18, 24]). The satisfiability problems oV SwS
and SwS are decidable.



Theorem 9. The entailment problem &fT < with existential quantificatiof |= 3x¢’ is
decidable, both when interpreted over finite feature trees or over infarttelfe trees.

The proof is developed in this section and given at its end. The detaitsegbroof
cover the rest of the paper. The underlying idea is quite simple. lgwere labels then
a feature tree coincides with its domain which is a set of paths. Therefaterinng
constraints over trees can be translated into monadic second-order loigicdd# is
well known for constructor trees [5]. The pitfall here is that only prefosed sets of
paths correspond to a feature tree. Prefix-closedness can be expresalbnt$hot
simultaneously with the direct subtree relatijfit’. The reason is thatcSS allows for
concatenation to the leftf but not for concatenation to the rightt (or vice versa).

We avoid the need to express prefix closedness by first changing semamiics (S
tion 4.1). We define the structure ETof sufficiently labeled feature trees and reduce
the entailment problem of KTto the entailment problem of ET In a second step
(Section 4.2), we encode entailment relative to_Fifito formulas of second-order
monadic logic with countably many successors (&Sfor finite trees and &S for
infinite trees).

4.1 Changing Semantics

Definition 10. We call a feature tree sufficiently labeledf for every 1t e D; there
exists a patht and a labeh such(mt, a) € L.

Note that a finite feature tree is sufficiently labeled if and only if alll@éaves are
labeled. Every sufficiently labeled feature tree can be identified with a umidqugele

of non-empty sets of paths, and vice versa i§ the number of labels iri. For every
labela we define a function, from feature trees to non-empty sets of paths:

Ya(T) = {Tt| Le () = @}
For £L={ay,...,an} we definey(t) as the followingn-tuple of sets of paths:

Y(T) = (Yags-- - Yan)

Proposition11. The mappingy from sufficiently labeled feature trees to n-tuples of
pairwise disjoint sets of words with non-empty union is onerie-and onto. Further-
more,T is a finite tree if and only if every componentyf) is finite.

The proof is given in Appendix B.1 of the full paper. Note that we neetiraquire
prefix closedness for the sets in the domairy,afince the domain of a sufficiently la-
beled feature treeis uniquely determined by its labeling functibn This observation
is crucial for our reduction to second-order monadic logic. Note alsothigahotion
of sufficient labeling does not make sense for the alternative notiofesatire trees
mentioned above [2, 3].

Definition 12. The structure FT is the restriction of the structure ETto the domain
of sufficiently labeled feature trees.



We may interpret FT either over finite trees or over possibly infinite trees. Whenever
this choice matters, we will made it explicit.

The first-order theories of FTand FT_ differ. For instance, consider the following
existential formulabs (or alternatively the formulé, from above):

P3 = Ix(X<x1 AXL<X2)

@3 requires for all; andt, that there exists such that <11 andt<ty. @3 is valid over
FT< but not valid over FT. In FT< one may always choge= (g, 0). This is impossi-

ble in FTZ since(e, 0) is not sufficiently labeled. Even worseif = ({e}, {(¢, a1)}),

T2 = ({€}, {(g, a2)}), anday # a, then we cannot find any appropriate treie FT_.

We need distinct notations for entailment with respect ta.Fahd FT_. For this pur-
pose, we writed |=FT§ @' and® \=FT2 @'. The next proposition claims that, in some
sense, this distinction is not necessary for the formulas of interest.

We fix a labelb € £ for the rest of the paper. Given some featgre ¥ we define a
functionng that maps a constraiftto a first-order formula over constraints as follows:

ng(d)=dA A 3y (yaly Ay=b)

YEV(9)

The use of the featuttein the definition ofng(¢) is left implicit in our notation. This is
because it does not really matter (and could even be circumvented technically).

Proposition13. Let ¢ and ¢’ be constraints such that/(¢’) C V(¢), X a sequence
of variables, and g a feature. If g # (¢ A¢’) then¢ |=rr. IXP’ is equivalent to
Ng(9) |:FT; 3xe’, both over finite trees and over infinite trees.

Proof. This proof of this proposition is technically involved. It is givenSection 5,
the two implications being subject of Propositions 20 and 24. |

Note that Proposition 13 fails whery(¢) is replaced by. This can also illustrated by
formula®s. As argued aboveps is valid over Fc but not over FT. In order to relate
this fact to Proposition 13, ldts be the tautological constrair{<x; A Xo< X, such that
V(d3) C V(d3). Now,d3 [=r1. P3 butds l;aré,:T2 ®3. Howeverng(¢s) =gr- ®3where

Ng(93) = 3x (xe[g]X) A X4 =D) A 3% (x2[g]X; A Xy=b).

4.2 Reduction toSwS or WSwS

We next define a mapping from first-order formulas over ordering caings (inter-
preted over FT) to formulas of second-order monadic logic with countably many suc-
cessors. We will make use of the following abbreviations:

XNy=0 = —~Ip(PEXA pey)

For every variable and labeh let x; be a fresh variable. Suppose thiat {ay, ... ,an}.
Here comes the definition of the mapping | :



[aX)] = eexa

IXflyl = AL1Vp(fpexa < pPEYa)

[x<y] = AlL1XCYa

[0~ T = [oIA['T

-] = -[¢]

[3x0] = IXay.. I, (( ?.i;:jlxamxaj=®>A3p<vi“:1pexa)A[[cb]])

Proposition 14. A first-order formula® is valid overFTZ interpreted over finite (resp.
infinite) trees if and only if its translatidf ] is valid overwSwS (resp.SwS).

Proof. If a is a solution ofd thena’ with o’ (xa) = ya(a(x)) is a solution of ®]}. If Bis
a solution of @] then the mappin@’ with B'(x) = Yy 1(B(Xa,),- - -, B(Xa,)) is a solution
of ®. The existence of the inverse mapping of yis proved by Proposition 11.

Note that this proposition implies that the first-order theory of Fs decidablé

Proof of Theorem 9We wish to decide an entailment problem of the farfsrr. IX¢’.
We choose a featurgnot occurring ind or ¢’ (this exists since the set of all features
F is infinite). By Proposition 13 it is sufficient to decide the entailtngropositions
Ng(¢) |:FT; Ix¢’ over FT_. By Proposition 14n4(¢) \:FT; 3Ix¢’ holds if and only if
the translation[ng(¢) — 3x¢'] is a valid formula of WSS in the case of finite trees
and of oS in the case of infinite trees. The validity of these formulas is decdapl
Rabin’s Theorem 8. O

5 Changing Semantics is Correct

We prove that the semantics change fromcRd@ FT_ is correct in the sense of Propo-
sition 13. All omitted proofs can be found in Appendix B of the fodlper.

5.1 Entailmentin FTZ Implies Entailmentin FT<

Throughout this Section we are interested in entailment proposii¢asix$’ where
g¢ F(dA') for afixed feature.

Adding Labels. We define a mappind, from feature trees to feature trees. Intuitively,
8gy(T) is obtained by adding a led@ftg, b) to every nodetof 1. Formally, we assume a
feature trea such thag ¢ 7 (7).

DEQ(T) = DTU{T[g ‘ e DT}
Loyr) = LeU{(mg, b) | t€ Di}

2 This seems to be in contrast to the first-order theory of Which, as current joint work with
Ralf Treinen indicates, is undecidable in the case of irditries.
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Lemma 15. If T is a feature tree such thatg  (t) for all tthendy(1) is a feature tree
that is sufficiently labeled.

Proof. The assumptiog ¢ 7 (1) implies thatls ) is a partial function such tha(t)
is indeed a feature tree. m|

Lemma16. Assume @ 7 (a(x)) for x and g¢ 7 (). If a is a solution ofp in FT<
thendgo o is a solution ofp in FTZ.

Deleting Labels. There exists a left-invers; * of the functiondy on all feature trees
T such thag ¢ 7 (1). For arbitraryt, we define a feature tréigl(r) as follows:

Dyt = De\{momt | et e 77}
'—551(1) =L\ {(ma) | t=mgn’, ac L}

Lemmal7.Ifg ¢ 7 (1) thend;*(84(1)) =T.

Lemma1l8. Letg¢ 7 (). If a is a solution ofp in FTZ thenESal o0 is a solution ofp
in FTS B

Lemma 19 Correctness.Let ¢ be a constraint with @ (), X a sequence of vari-
ables, anda a variable assignment such thatfg¥ (a(y)) for ally € V(¢ A 3xd’).
Thena is a solution ofdx¢ over FT< if and only ifdgo a is a solution ofgx$ over
FT..

Proof. Leta be a solution oEx¢ over F<. There exists a sequence of tr&esich that
a[T/X] is a solution ofp over FT<. Sinceg ¢ 7 (¢), the mappingSalo (a[t/¥]) isalsoa
solution of¢ by Lemma 18. The latter variable assignment coincides u{lﬂgl(f)/x]

since we have assumedt 7 (a(y)) for all y. Thusdgo (0([651(?)/7(]) is a solution of
¢ over FT_ (Lemma 16), which implies thdiy o a is a solution ox¢ over FT_.

For the converse, assume tligto a is a solution ofdx¢ over FT_. There exists a
sequence of treessuch that(dq o a)[T/X] is a solution of¢ over Fjlg. Hence,?Sg1 o
((8goa)[T/x]) is a solution ofp over FT<(Lemma 18). Alsoéalo dgoa = a due to
Lemma 17 and) ¢ a(y) for all y. Thus:

85" o ((Bgoa)[T/X]) = (85" 0 8go a)[83*(T) /X = a[8™ (%) /X]
This proves thatt is a solution oBx¢ over F1<. |

Proposition20. Let g¢ 7 (¢ A ') and V(3x¢') C V(). If ng(d) |=FT2 Ix¢’ then
¢ F=Fr. XY )

Proof. Letg¢ F (¢ A'), V(3Ix$') C V($), andng(d) |:FT; 3Ix¢’. We have to show
that every solutiom of ¢ in FT< is also a solution 08x¢’. Since the number of features
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in 7 is infinite, we only need to consider solutiom®f ¢ such thag ¢ 7 (a(x)) for all
x € V(). The proof of this fact is delegated to Lemma 29 in Appendix B.2.
Sincea is a solution ofp, andg ¢ ¥ (a(x)) forallx e V(¢ A3x$'), dgo a is a solution
of ¢ (Lemma 19). From the definition @ it follows thatdg o a is also a solution of
Nyeve) Y (YIAly AY'=Db), i.e, dgoa is a solution ofg(¢) over FT. Entailment as
assumed implies tha o a is a solution of3x¢’ over FT_. Thusa is also a solution of
Ix¢’ over FT< (Lemma 19). |

5.2 Least Solutions

We will exploit the completeness of the satisfiability test for ondggonstraints over
feature trees given in [16]. This test also computes the least solutesatfsfiable con-
straint. The form of these least solutions can be interpreted as a ariterientailment.

We call a constraing F1F2-closed if it satisfies the following properties:

F1.1 x<xing if xe V(o)
F1.2 x<zind if x<yin¢ andy<zin¢
F2 X<yin¢ if X[f]Xin¢, x<yin¢ andy[f]y in ¢

Lemma21. There exists a cubic time algorithm that given a constrgirdither de-
tects the unsatisfiability af, or proves its satisfiability and returns dfiLF2-closed
constraint equivalent t@.

Proof. We first consider an extended set of rules that defines a satisfiability &st. L
falseandx~y be auxiliary constraints wheffalse denotes inconsistency and the se-
mantics ofx~y is given by the equivalencg~x, +» 3Ix(x1 <xXA x2<x). We call a con-
straint$ F-closedif it satisfies all propertieB1-F5 where:

F3.1 x~ying if x<yin¢

F3.2 x~zing if x<yin$ andy~zin¢

F3.3 x~ying if y~x

Fa X~y ind if x[f]X ind, x~yind andy[f]y in ¢
F5 falseing if x(a) Ax~yAy(d)in¢ and a#ad

For every constrain an equivalenE-closed constrainy’ can be computed in cubic
time applying the rules ifr exhaustively. Furthermoreé,is satisfiable if and only i’
does not contaifalse Deleting the auxiliary constrainig~x, from ¢’ transformsp’
into an equivalenE1F2-closed constraint in linear time. |

We will use a syntactic description of the least solution of a satigfiamstraintin order
to derive properties of entailment in E{see [16]). We defineyntactic entailment
judgements of the fornp - x[1]>y and¢ F x[1]>a as follows.

¢ - Xelsy if y<xing
o EX[floy if X[flyin¢g

¢ F X[ruty]>y if existszsuch thath - x[tu]>zand ¢ - ZTp]>y
¢ - x[m>a if existszsuch thaty - x[r]>zanda(z) in ¢

12



Proposition 22 Least Solutions.Let$ be satisfiable an#1F2-closed. For every vari-
able xe V(¢), and all a1,z the following two equivalences hold:

¢ [EFr. 3z Xm>z iff  exists zsuch thatp + X117
¢ Frr. Xm>a iff ¢ FXm>a

Proof. The implications from the right to the left hold because syntactic k¢t is
correct with respect to semantic entailment ind=For the converse implication, we
define the least solutidmasty of ¢ such that for alk € V(¢).

Dieasty(x) = {m| existsz such thath - x[1]>z}

Lleast¢(x) = {(T[, a) | ¢ F X[T[]Za}

Without loss of generality, we can assume thas F-complete. First note that com-
pletion with F1-F5 does never derivéalse since¢ is satisfiable. Second, sindeis
F1F2-closed, completion may only add auxiliary constraixatsg/, which does not af-
fect the validity of judgements - x[17>zand¢ - x[1]>a. In [16] it is proved thateasty
is a solution ofp whenevew is F1-F5-closed.

Since syntactic entailment is correct with respect to semantic entailmentdntRS
clear thdeasty is smaller than every solution ¢f i.e,, least is the least solution aff: If
¢ i X[1]>Z for all Z thenTt¢ Dicasey () i-€4 ¢ EFT. F2X1>2. In analogy, ifp i X[1f>a
then(m, a) ¢ Lleast¢(x)- e, ¢ I#F'rg X[>a. =

5.3 Entailmentin FT< Implies Entailmentin FT_

For every constrainp let —¢ be the constraint that is obtained franby inverting all
its ordering constraints.e., by replacingc<y with y<x. We define:

o - xm<y iff —¢F x>y

Lemma 23 Mountain Chains. Let a be a solution of

¢ and assume variableszZ, pathst, T, ™ and a m Z_Tomm Y
label a. If¢ = 37 (4Tp)<Z AY[TH]>Z) and (ThTe, a) € / H\Z'/
La(z) then(TuT, @) € Ly TEZ/ /2/

Proof. By induction on the length ofy we can show| a a

that(Ty, @) € Lg(z) such tha(tyTy, @) € Ly O

Proposition 24. Supposel/(3x¢’) C V(¢) and g¢ F (¢ A ¢"). If ¢ =Fr. 3X¢’ then
rlg(q)) |:FT; 3)_((':’,-

Proof. Supposel/(¢) N ¥/(x) = 0 and leta be a solution ofjg(¢) over FT.. Note that
V(") C Y(X)U V(). We have to construct a solutiari of ¢ A ¢’ over FTZ which
coincides witha on the variables if/(¢). N
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We definea’ (y) for all y € 7/(X). Sincea’(y) must be sufficiently labeled, it suffices to
define its labeling function. Leli and¢’ be F1F2 closed. Foy € 7/(X) we define

L1 (TL a) € L(:(’(y) if q), F y[T[]Za
L2 (Tg, b) € Ly(y) if existszsuch thaty’ - y[ri>z
13 (Tamb.a) € Ly, if {existsze 7(¢) and Z such that
’ a'(y) ¢’ Fy[m]>Z, ¢’ F ZTo]<Z and(ToT, @) € Lq(y

(Compare conditio.3 with the mountain situation depicted above.) Foryadl 7 (%),
we defineDy(y) = {1t | Ttis a prefix ofit and(17, a) € Ly }. For ally ¢ 7(X) we set
a'(y) = a(y). Itis clear that’ (y) is sufficiently labeled because b2. It is also clear
thata' is a solution ofp sincea’ coincides witha on V(). It remains to show that’
is a solution off’, i.e., thata’ satisfies all basic constraintsg¢h Here, we only consider
a single case. The complete case distinction is three pages long and gikerpimoof
of Lemma 30 in Appendix B.4. Consider the casfly in ¢, x € V(¢),y € (%), and
(T, @) € Ly(y) because of2 or L3. We show(fTt, &) € Ly

L2 existst andz such that’ + y[1t]>z, m= Mg anda = b. Sincex[fly € ¢/, ¢' -
X[f1]>z such thatp =pr. Fz(X[f1T]>2) sincex € V(). Proposition 22 implies
the existence o € V(¢) such thath - x[f1]>Z and thusyq(¢) - X[ fg] > b. Since
a is a solution ofng(¢), we have(f1g, b) € Ly(y),i.€. (fTL @) € Ly (y.

L3 Let (T a) € Ly (y) Since there existse V(¢), Z, To, Ty, andrp with ¢' - y[my ] Z,
¢' - Zmo)<Z, (ToTp, @) € Ly, andt= TuTe. Sincex[fly we also havep’ -
x[fmu]>Z. Sincex,ze ¥ (¢) this implies¢ |=er. IZ (ZTo]<Z AX[fTT]>Z). Now,
Lemma 23 andToTh, @) € Lq(y imply (fTum. @) € Ly(x), i-€, (fTL @) € Ly(y. O

6 Conclusion and Future Work

We have investigated decidability and complexity questions for fra¢gredrthe first-
order theory of ordering constraints over feature trees<)FWe have proved that the
entailment problem of FI with existential quantifiers is coNP-hard over finite trees,
PSPACE-hard over infinite trees, and decidable in both cases. We have felated

the monadic second-order logic with multiple successors. At leasgjtiestions on the
first-order theory of FT have been left for further research. Is its full first-order theory
of FT< decidable? And, how does it relate to monadic second-order logic?
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A Proofs on Expressiveness

A.1 Finite Trees

Proposition 2. Fix a constraint variablg There exists a mappingy from clauses to
existential Fk formulas such that

1. for all clause£ the size of¥x(C) is linear in the size of, and
2. for all SAT problems\{_, G; it holds that

n n
/\ Wx(C) =Wy(false) iff /\ G is unsatisfiable.
i=1 i=1

Proof. Assume thaf\l_; Ci contains the variablas, ..., ux. The idea of [9] is to rep-
resent every boolean variable assignnfean {us, ..., ux} as a pathg:

T =B(uy)...B(u)  where frue= 1 andfalse=0.

A set of boolean variable assignmdbttan be represented as feature that we define
next. We say that

Bint if Tge Dy
and we encode a sBtof boolean variable assignments as the smallest feature(®¢e
with

BetB) if PeB.
Let T% be the complete unlabeled feature tree of déptiver feature§0,1}. We now
define the formula®¥y(C;) such that

n n

o is a solution of A\ Wy(C) iff 1(Sol(— A G))<a(x) (1)
i=1 i=1
a is a solution oW, (falsex) iff T*<a(x) (2)

whereSol(-= AL, G)) = {B | Bis a solution of=A{_,Ci)}). Before doing so, we ver-
ify that the above two properties justify Proposition 2:

/\inzl Wy (Gi) = Wx(false x) iff  Va,a= /\in:1 Wx(Gi) 1 a | Wx(false x)
iff  VYo:ae=AL W(G) = ™<a(x)
iff  T*<T(Sol=AL.C))) )
iff  AiL,Ciis unsatisfiable

The step marke(k) exploits that, by (1)1(Sol(= A, Ci)) is a solution ofA\[._; Wx(Ci).
We define the existential formul&g (C) as follows. For every £i<k and every clause
C over variables i{uy, ... uc} let

6i(C)=1if -y inC, 6i(C) =0ifuy inC, 0i(C) = 2 otherwise.
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Without loss of generality we assume that there exists no claasel boolean variable
u; such that bothy; in C and—u; in C. Every claus€ corresponds to a path(C) given
by p(C) = &(C)...d1(C). The formula¥,(C) is defined by recursion ovex(C).

Wy(e,y) = true
Wx(1p,y) = Y (YUY A¥(pY))
Wx(Op,y) = 3y (OY AWx(p.Y))

Wx(2p,y) = 3yoIyrIya(y[1]yr AY[0]Yo AY2<Y1 AY2<Yo A Wk(P.Y2))
Since every step of this definition introduces at most three new varjab&egormula
®,(C) has sizeD(k) if C is a clause ovek variables, and hencéx(C) has size linear
in the size ofC. Itis easy to verify that every solutianof Wy(false x) satisfies (2)i.e.,
™<a(x). The fact thap\"_, Wy(G) satisfies (1) is proved by induction over the number
of variables. For more details see the report [14]. |

A.2 Infinite Trees

Proposition 5. Let x be an arbitrary variable. For every pair of regular expressins
and$; there exist existential formula8(x, S;) and®(x, S) with size linear in the size
of § and$;, respectively, such that

O(x,S1) = O(x,S) if and only if £(Sp) € L(Sy).

Proof. =: Assume that.(S$) € £(S1). Then there existst € £L(S) such thatr ¢
L(S1). By Lemma 26 there exists ansuch thatn = O(x, S;) but (Tt @) & Lgy)-
By Lemma 7.20 [~ O(X, ). Hence®(x, S1) [~ O(x, ).

<: AssumeL(S) C L(S1). Then apparently for atk
(Ve L(S) : (T @) € Ly(y) implies (VTTe L(S) 1 (TL @) € Lyy)
holds. By Lemma 7.2, this is equivalent to saying that foaltx |= ©(x,S;) im-
pliesa E O(x, ), i.e, O(X,S) = O(X, ). ad

Lemma25. Let S be a regular expression and’ trees. IfvYme £(S") : T[n]>T, then
there exists” such that <1<t andt”[r]>1" forall me L(S").

Proof. We definet” as the greatest tree which is smaller than the subtregsabft for
all me L(S"). This is well-defined as we can set

Do = ({Dy, | U[MsTh M L(S)} Ly = MLy, | U[Ms Ty TE L(S)}
where the intersection of partial functions is defined as the partial fumctirrespond-

ing to the intersection of their graphs.

It is clear thatt<t” (sinceVmeL(S") : U[r]>T and1” is the greatest tree with this
property), andt”<t’ (since L(S) # 0 and hencee € £L(S")). Now pick an arbitrary
e L(SY). Itis clear thatt € Dyv. Hence there exists; such that”[m]> 1. We have to
show thatt"[r]>1", i.e, Dy C Dy andLyr C Ly
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Dy C Dy Letmy € Dy and assumey ¢ Dy By definition oft” we know that
-V € L(S) I, 1 T[> T, ATh € DT%Z
— 3 € L(S") Iy, TV[T0G]> T, ATU Drpr,
This is a contradiction since for arbitrary it holds thatri € £(S").
Ly C Lyt Similar. i

Lemma 7. Letx #y, a be a variable assignment, aBthe a regular expression.

1. ais a solution 0f@'(x,Sy) if and only if Vrte £(S) : a(x)[T]>a(y).
2. ais a solution 0ofd(x, S) if and only if vite L(S) : (Tt @) € Lyy-

Proof. 1. By structural induction ove®. ASsumex # y.

a =0 (x¢y) iff a Ey<xiff a(y)<a(x).e = a(x).

a =0 (x0,y) iff a=trueiff a(x)[m>a(y) forall e L(0) = 0.
a =0 (xay) iff a=3z(x[azAy<z) iff a(y)<a(x).a
a=0(x,Sy) iff a 337 (y<zAO'(2,S,Z) Az=Z A 2LX) iff

IVTE L(S): a(Y)STATT>TzAT<X
This immediately yields
I vme L(S) 1 a(y) ST A>T ATEX

and this implies/rte L£(S") : a(x)[r]>a(y).

For the inverse direction assurier € £(S*) : a(x)[r]>a(y). By Lemma 25

there exists a feature treesuch that

(i)a(y) <1 <0a(x) and (i) Ve L(S) : T[m>T.

Leta’ =a,z—1,Z — 1. Then, by(i), o' Ey<zAz=Z Az< x, and, by(ii) and

induction assumptiomy’ = ©(z S,Z). In combination this ist = O(x,S",y).
-0 FOXSUSY) iff o F O'(XSLy) AO(XSy) iff Ve L(S) :

a(x) [T a(y), VT € L(S) :a(x)[]saly) iff vite L(SLUS) : a(x)[a(y).
-0 E XSSy iff a =32(0'(x,5,2 A0 (2zS,y)) iff 3T:0,z— 1=

O'(x,S1,2) AO'(z2,S,y). By induction assumption this is equivalent to

Jvme L(S)VI € L(S) : a(x)[r]>T andt[t]>a(y)
But since£(S;) # 0 and £L(S) # 0 this in turn is equivalent to
V€ L(S)VTR € L(S) ra(X)[TuTp]>a(Y) & Ve L(SS) : a(x)[T]>a(y).

In this equivalence, the implication from left to right is again easy. Rer t
inverse assume(x)[Tume]>a(y) forall Ty € L(S1), T € L(S), definet by

D:=% Ly = {(r, b) | (17, b) € Lg(y). TTE L(S)}

and note that, by construction, satisfiegm]>a(y) anda(x)[m]>t for all
™ € L(S) andTk € L(S).
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2. =: Assumea |= ©(x,S). Then existty andt;, such thatt,y — Ty, z— T, = y<XA
@' (y,S 2) Aa(z). By case(1) of this Lemma this implies for alite £(S) that
Ty[1]> Tz andty<a(x). Hence, for allme L(S), (T, @) € Lyy)-

< Assume that for altte £(S) : (Tt ) € Lq(x and defined = a,y — a(x),z+—
(e, {(g,@)}). Thenp trivially satisfiesy<xA a(z), and furthermore for alit¢
L(9): B(y)[]>B(2). Hence, by casfl) of this Lemmap | y<xA©'(y,S,2) A
a(z) and thusx = ©(x, ). a

Lemma 26. For all x and S there exista such thata = ©(x,S) and {1t | (Tt a) €
La(x)} = L(S)-

Proof. The valuationa, which mapsx to T whereDy is the smallest prefixed-closed
domain containing’(S) and(T, a) € L, iff me £(S), is a well-formed FT valuation
and satisfies the right hand side of Lemma 7.2.

B Proofs on Semantics Change

B.1 Suffiently Labeled Feature Trees

Proposition 11The mapping from sufficiently labeled feature treesnguples of pair-
wise disjoint sets of words with non-empty union is one-to-oree@mto. Furthermore,
T is afinite tree if and only if every componentyift) is finite.

Proof. Let T be a sufficiently labeled feature tree. Sirece D; there exists a patit

and a labeh such that(er, a) € L;. HenceU]l ;yx (T) is nonempty. The setg, (1) are
pairwise disjoint sincé; has to be a partial function. It is also clear thélt,y, (1) is
finite if T is finite. The converse follows from the fact that a sufficiently labeléidite

tree has infinitely many labeled nodes.

In order to prove thay is one-to-one and onto, we define the inverse mappingasf
follows. Let (M4,...,My) be pairwise disjoint sets of words over features that have a
nonempty union. We defing1(My,...,M,) as follows:

Dy-1ny....n) = {m | mtis a prefix of some word irJ;!_; N}
n — {(ma) | 1<i<n e}

assumed pairwise disjoint. Henge'(My,...,My) is a feature tree, which clearly is
sufficiently labeled.

It is quite obvious thay~? is in fact the inverse function of i.e., thaty=*(y(t)) =1 for
all sufficiently complete and thay(y(My,...,My)) = (Mq,...,M,) forall My, ..., M,
that are pairwise disjoint and have a non-empty union. |
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B.2 Fresh Features

LemmaZ27. Let ge ¥ and a finite set FC # such that g¢ F. Then there exists a
mappingd : F — 7, which is one-to-one, does not map onto g, such dastricted
to F is the identity function on F.

Proof. Since ¥ is countably infinite there exists an enumeratiorffobay ¥ = {f; |

i > 1} is such an enumeration. Lebe the maximal index of a featurefJ {g} in this
enumerationi.e., n=max{i | fi € Fu{g}}, which exists sincé& is finite. We define
0 by the following equation:

The function® is well defined becausg¢ F and becaus# is infinite. It is obvious
that8 is one-to-one, does not map omfoand leave$ invariant. |

Lemma 28. Let @ be a first-order formula over ordering constraintsa variable as-
signment into an® : 7 — ¥ a function that is one to one and leayg ®) invariant.
Thena is a solution of®d if and only if6o a is a solution ofd.

Proof. It is obvious thatx is a solution of if and only if 8o a is a solution ofo(P).
Sinceb leaves the features i invariant we hav®(®) = @. a

Lemma 29 Fresh Features.Letg¢ (¢ Ad') and V(Ixd’' C V(¢). If every solution
a of ¢ with g¢ 7 (a(x)) for all x € V(¢) is a solution 0% thend f=rr. IX¢’ holds.

Proof. LetB®: # — F be a mapping that is one-to-one, does not map grand leaves
F(¢) invariant (Lemma 27). Suppose tteais a solution ofp over FT<. Henceoa
is a solution ofp over FT< (Lemma 28) that satisfies¢ 7 (a(x)) for all x e V(¢).
By assumptionfo a is a solution o8x¢’ over FT_. Thus,a is a solution o8x¢’ over
FT< (Lemma 28). - O

B.3 Entailmentin FTZ Implies Entailment in FT<

Lemma 16 Assumeg ¢ 7 (a(x)) for xandg ¢ F(¢). If a is a solution ofp in FT<
thendg o o is a solution ofp in FT_.

Proof. We have to show that every basic constrainpiis satisfied bydg o a.

1. Case(fly in$ wheref # gdue tog ¢ 7 (¢). We have to verify for alitthat frte
Dagy(a(x)) is equivalent tat€ D oq(y)- This is proved by the following sequence of
equivalences:

frte Dég(a(x)) iff fre Da(x) u{mg| e Da(x)}
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Note thatfrt=1'g and f # g implies the existence aft’ such thatm= n''g and
f’ = 1. Hence

frie Dég(a(x)) iff 1€ Da(y) U {Tl”g | fr' e Da(x)}
iff 1€ Da(y) U {Tl”g | e Dc((y)}
iff 1€ Day(ary))
The reasoning for the labeling function is similar.
2. Casex<y in¢. We have to verify the domain inclusidd,a(x))  Da,(a(y))-
Dsy(a(x)) = Dapy U{Tg | U € Doy }
C Dq(y) U{Tg | T € Dy(y) }
= Day(a(y)
The reasoning for the labeling function is again similar.
3. The cas@(x) in ¢ is simple, since no label is deleted frdmgyy . |

Lemma 171f g ¢ 7 (1) thend;*(34(1)) =T.

Proof. Sinceg ¢ ¥ (1), the treedy(1) is well-defined and hena%l(ég(r)) is.

Dagtag(n) = D, \ {mor | L € F*}
= (Dru{mg | e D}) \{mgm | w1 € 7}
= D,

The last equality holds, since we have reqajké ¥ (1). The argument for the labeling
function is symmetric.

Lagi(agm) = Loy \ {( @) | T=mg’, a€ L}
Z(LTU{(T[g7 b) ‘ e DT})\{T[ngI ‘ T[-,T(Ef*}
=L

d

Lemma 18Letg ¢ F(¢). If a is a solution ofp in FT_ thenéalo o is a solution ofp
in FTS B

Proof. We have to show that every basic constraing iis satisfied b)5§1 od.

1. Casex[flyin$ wheref # g due tog ¢ F(¢). We have to verify for allrt that
frte Déal(a(x)) is equivalent tort € Déal(a(y)). This is proved by the following

equivalences:
fe Dg1q ) iff frie Doy \ {frgrt | € F*}
iff e Doy \ {mom | it e 7°}

The reasoning for the labeling function is similar.
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2. Casex<yin¢. We have to verify the incIusion@Bal(a(X)) cbD and

Lag—l(a(x)) C Léal(a(y)), which is both obvious.

3. The casa(x) in ¢ is simple, since no label is deleted at the root of somed(ag
O

8 (a(y)

B.4 The Final Case Distinction

Lemma 30. Suppose/(3x¢’) C V(0), V(d) NV (X) =0 and g¢ F(dA Q). If ais
a solution ofng(¢) over FT_ thena’ (as defined in the proof of Proposition 24) is a
solution of¢’ over FT_ which coincides witfu on the variables int/(¢).

1. Casex<yin¢'. We have to show thait, a) € Ly(y) implies (1, a) € Lq/(y)-
(a) Caseqy€ V(X).

L1 If (Tt @) € Ly (x has been added becausepof- xm>a thend’ - y[ri>a
such tha(m, a) € Ly(y).

L2 If (m a) € Ly has been added becauserot 1tg, a= b, ¢’ - X[1(]>2z
then alsap’ F y[1(]>z such tha(rtg, b) = (T, @) € Lq/(y)-

L3 Let (1 @) € Lq/(x because there existse V(¢), z and 1o, Ty, T such
thatt =, ¢' - X[mu]>7Z, ¢' - Zmo]<Z, and (ToT, @) € Ly(y). Since
x<yin ¢’ we also have' - y[ry]>Z and hencgmp, a) € Lyr(y).

(b) Casexe ¥(X) andy € V(d).

L1 Let(m a) € o’(x) becaus®’ - x[1>a. In this case$’ - y[rj>a. The cor-
rectness of this relation implidg =e7. y[1]>a. Our assumption of entail-
ment with respect to FTandy € 7/(¢) yield:

¢ Frr. 3¢’ = y[m>a

Sincea is a solution ofng(¢) it is also a solution ofp such that(r, a) €
Lagy) = Lar(y)- . :

L2 Let (mg, b) € o/(x) becaused’ - x[1]>z. Symmetrically to the previous
case we can show th@t =rr. 3z(y[1]>2). Proposition 22 implies the
existence ofZ € V(¢) such thatp F y[r]>Z. SinceZ[gb inng(¢), we
concludeng(¢) = y[rg]>b. Finally, a is a solution ofng(¢) such that
(Mg, b) € Lay) = Largy)-

L3 Let (Tt @) € Ly(y because there exigte V(¢), Z, To, T, T such that
=Ty, ¢’ FX[m]>Z, ¢’ F Zm)<Z, and(Tpm, a) € La(z- In this case,
¢' Fy[ru]>zand thush’ [=rr. 37 (ZTo]<Z AY[Tu]>Z). Sincey,z€ V(¢),
we have:

¢ Err. X' Frr. 37 (ZM0]<Z AY[T]>7)
Lemma 23, assumptioffoTy, @) € Ly, and thata is a solution of¢
imply (TuTe, @) € Lyy), i-e, (Tt @) = Lyy).
(c) Casexe V(¢) andy € V(X). If (Tr, @) € Ly (x) then(Tt @) € Lg(y. Sinced’ -
y[e]>x, ¢' - x[e]<xandx € V(¢) L3 implies (e a) € Ly (y).
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(d) If x,y € V(9) thend =rr. X<y such thatl 4 C Lg(y) and hence gy C

Lar(y)-

2. Case<[(f])y in¢'. We have to show th&f 1t, @) € Ly if and only if (11, @) € Lyr(y)-
We first assumef Tt a) € Lgi(x) and prove(Tt a) € Lgy(y)-
(a) Casex,y€ V(X).

L1 Let (Tt @) € Ly(y because)’ - y[r]>a. Hence,¢’' F x[f1]>a such that
(fra) € o'(x).

L2 Let (T, @) € Ly/(x because there existandz such thatt= g, a=b
and¢' - y[r]>z Hence,¢' - x[f1]>z such that(fr'g, b) € Ly(x), i.€.,
(fT[, a) € LC(’(X)-

L3 Let (1 &) € Ly because there existsc V(9), Z, Tp, T4, andTy such
that¢' F y[mu)>Z, ¢' - Zmo)<Z, (ump, @) € Loz, andm= mp. Since
x[fly we also have’ - X[fmy]<Z which yields(fmTp, a) € Lor(x, 1-€.
(fT[, a) € LC(’(X)-

(b) Casexe V(X) andy € V(¢). If (T, @) € Lyr(y) then(m, a) € Ly(y). By applying

L3withz=7Z =y, o =¢, Ty = f, andrp = 11, we obtain( f1t, a) € Lyr(x).

(c) Casexe V(¢) andy € V(X). Let (Tt @) € Lyy).

L1 If ¢'+y[m>athend’ + x[fr]>a. Sincexe V(¢) this yieldsp =r7. X[T]>a
such tha( f1t, @) € Ly, i.e., (fT, a) € Ly (y- B

L2 Let (T @) € Ly(x because there exists andz such that¢’ + y[17]>z,
n=T1'g anda = b. Henced’ - X[f1']>z such thath =pr. Fz(X[f1]>2)
sincex € V(¢). Proposition 22 implies the existencezb& 9/(¢) such that
¢ - x[fr]>Z and thusg(¢) - X[ frg]>b. Sincea is a solution ofng(¢),
we have(f1g, b) € Ly, i-€, (fT1 a) € Ly (y-

L3 Let (T a) € Lyy(y because there existse V(9), Z, T, T, and T,
such thaty' F y[m]>Z, ¢' + Zmo)<Z, (ThTR, @) € Loz, and = mqTo.
Sincex[f]y we also havep’ - x[fm]>Z. Sincex,z€ ¥(¢) this implies
¢ =rr. 37 (4o]<Z AX[fTy]>Z). Now, Lemma 23 androTy, @) € Lg(,
|mp|y (fT[]_T[z, a) S La(x), ie., (fT[, a) € LC(’(X)-

(d) Casex,y € V(¢). In this cased =rr. X[f]y such that if(Tt, @) € Ly then

(fT[7 a) € LC((X)'

For the converse of the caséfly € ¢, we assumgfr a) € Ly(y and prove
(T[, a) € La’(y)-
(a) Case,ye V().

L1 Let(fm a) € Loy because and’ - x[f1']>a. Since¢’ is F1F2 closed,
this implies¢’ - y[1]>a such tha{, a) € a’(y).

L2 Let(fm a) € Ly (y becausdm=1tg, a=bandd’ - x[']>z Our assump-
tiong ¢ F(¢') implies f # g such that there exists’ with m= m’g and
W = fr’. Since¢’ is F1F2 closed,¢’' - x[fr’']>z andx[f]y in ¢’ imply
¢' Fy[n’]>z Hence(1t'g, b) € Ly(y), i€, (T4 @) € Lyi(y).

L3 Let (fr a) € Ly(y because there exigtc 1/(¢), Z, andTp, Ty, T such
thatfri=mm, ¢’ F x[mu]>z ¢' F Zm]<Z, and(ToTp, @) € Ly(y).

A. If m =¢ethenfi=m andZ<xin¢’. Henced' - Zmf]>y andd’ -
Zmfri>a. Trivially ¢’ - y[e]<y, sincey € V(¢’) C V(¢) such that 3
implies (11, @) € Lyy)-
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B. Otherwiseju = fm; andm= 1 for somer'. TheF1F2 closedness
of ¢" implies thatd’ - y[14]<Z. Hence,L3 yields (T4 T, @) € Ly(y),
ie., (T[, a) € La’(y)'

(b) Casexe ¥(X) andy € V(d).

L1 Let (frma) € Ly (x becausep’ - x[fr]-a. The F1F2 closedness ob
implies ¢' - y[rj>a and hencep Err. y[M>a sincey € V(¢). For a
being a solution ofp this implies (T, a) € La(y) Which is equivalent to
(T[., a) S Lar(y).

L2 Let(frt a) € Ly (x becausd = 1g, a=band¢’ - x[1']>z Sincef # g
there exists there exists’ such thatit= ''g and f’ = 7. By F1F2
closedness we obtaifil - y[n']>z. Henced =rr. 3z(y[n']>2). Sinced
is F1F2 closed, Proposition 22 implies the existencezof 9/(¢) such
that¢’ - y[r']>Z. The definition ofng(¢) implies ¢ F y[r'g]>b. Hence,
(1'g, b) € Ly which is equivalent tr, a) € Ly y).

L3 Let (fr a) € Ly (x because there exigte 1/(¢), Z and o, Ty, T2 such
that fri=mum, ¢’ F X(m]>7, ¢’ F Zm]<Z, and(ToTy, @) € Ly(,).

A. Casem = €. Henceft=m andZ<xin¢’. In this case&p’ - Zmp f]<y
such thatz,y € 7(¢) implies

¢ =Fr. %Y’ [=Fr. Zoflcy

Sincea is a solution ofp and (Mo f, a) € Ly(,. Lemma 23 implies
(TL a) € L(:((y)1 ie., (T[, a) S Lar(y).

B. Otherwise there exists, such thaty = f1 andn= 1 ™. TheF1F2
closedness of’ and¢’ - x[f14]>Z imply ¢’ - y[}]>Z. Sincey,z €
V() we know that

¢ =rr. 3%’ =Fr. 32 (4M0)>Z AY[TG]<Z)

Hence, our assumptiofimomp, a) € L and Lemma 23 imply
(Mo, a) € a(y), i.e, (TLa) € a'(y).
(c) Casexe V(¢) andy € V(). If (f11, @) € Lgi( then(frt, @) € Ly L3,y ¢
V(¢), andx € V(¢) imply (Tt @) € Lor(y).
(d) Casex,y € V(¢). In this casap |=rr. X[f]y such that if(f, @) € Lq( then
(TL a) € L(:((y)'
3. Casa(x) in¢’.
(@) Ifxe V() then¢’ - x[g]>asuch that, a) € Ly (conditionL1).
(b) If xe V() thend Err. IXd' =F7. a(X). Hence(e, a) € a(x), i.e, (g,a) €
a’(x). O
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