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strategy with the aim of maximizing the number ofsatis�ed constraints. However, as is usual with hill-climbing, we are liable to get stuck on local maxima.There are two standard ways to overcome this prob-lem: \noise" can be introduced (Selman, Kautz, &Cohen 1994); or, with a frequency controlled by a cut-o� parameter Max
ips we can just give up on localmoves and restart with some new assignment. Typ-ically both of these techniques are used together buttheir use raises several interesting issues:1. What value should we assign to Max
ips? There areno known fundamental rules for how to set it, yet itcan have a signi�cant impact on performance anddeserves optimization. Also, empirical comparisonof di�erent procedures should be done fairly, whichinvolves �rst optimizing parameters.2. If we cannot make an optimal choice then how muchwill performance su�er?3. How does the performance scale with the problemsize? This is especially important when comparinglocal search to other algorithm classes.4. Local search routines can fail to �nd a solution evenwhen the problem instance is actually satis�able.We might like an idea of how often this happens,i. e. the false failure rate under the relevant timeand problem size restrictions.At present, resolving these issues requires extensiveempirical analysis because the random noise impliesthat di�erent runs can require very di�erent runtimeseven on the same problem instance. Meaningful resultswill require an average over many runs. In this paperwe give a probabilistic method to reduce the computa-tional cost involved in Max
ips optimization and alsopresent scaling results obtained with its help.The paper is organized as follows: Firstly, we discussa generic form of a local search procedure, and presentdetails of two speci�c cases of the Wsat algorithm(Selman, Kautz, & Cohen 1994). Then we describethe optimization method, which we call \retrospectiveparameter variation" (rpv), and show how it allowsdata collected at one value of Max
ips to be reusedto produce runtime results for a range of values. We



note that the same concept of rpv can also be usedto study the e�ects of introducing varying amounts ofparallelization into local search by simulating multiplethreads (Walser 1995).Finally, we present the results of experiments tostudy the performance of the two versions of Wsaton Random 3SAT at the crossover point (Cheese-man, Kanefsky, & Taylor 1991; Mitchell, Selman, &Levesque 1992; Crawford & Auton 1996). By mak-ing extensive use of rpv, and fast multi-processor ma-chines, we are able to give results up to 400 variables.We �nd that the optimal Max
ips setting scales as asimple monomial, and the mean runtime scales subex-ponentially, but faster than a simple power-law.LOCAL SEARCH IN SATFigure 1 gives the outline of a typical local search rou-tine (Selman, Levesque, & Mitchell 1992) to �nd a sat-isfying assignment for a set of clauses �1.proc Local-Search-SATInput clauses �;Max
ips; and Maxtriesfor i := 1 to Maxtries doA := new total truth assignmentfor j := 1 to Max
ips doif A satis�es � then return AP := select{variable(�;A)A := A with P 
ippedendendreturn \No satisfying assignment found"endFigure 1: A generic local search procedure for SAT.Here, local moves are \
ips" of variables that arechosen by select-variable, usually according to a ran-domized greedy strategy. We refer to the sequence of
ips between restarts (new total truth assignments) asa \try", and a sequence of tries �nishing with a suc-cessful try as a \run". The parameter Maxtries can beused to ensure termination (though in our experimentswe always set it to in�nity). We also assume that thenew assignments are all chosen randomly, though othermethods have been considered (Gent & Walsh 1993).Two Wsat ProceduresIn our experiments, we used two variants of the Wsat{ \walk" satis�ability class of local search procedures.This class was introduced by Selman et. al. (Selman,Kautz, & Cohen 1994) as \Wsat makes 
ips by �rstrandomly picking a clause that is not satis�ed by thecurrent assignment, and then picking (either at randomor according to a greedy heuristic) a variable withinthat clause to 
ip." Thus Wsat is a restricted versionof Figure 1 but there remains substantial freedom in1A clause is a disjunction of literals. A literal is a propo-sitional variable or its negation.

the choice of heuristic. In this paper we focus on thetwo selection strategies, as given in Figure 2. Here, fPdenotes the number of clauses that are �xed (becomesatis�ed) if variable P is 
ipped. Similarly, bP is thenumber that break (become unsatis�ed) if P is 
ipped.Hence, fP �bP is simply the net increase in the numberof satis�ed clauses. Wsat/Gproc select{variable(�;A)C := a random unsatis�ed clausewith probability p :S := random variable in Cprobability 1� p :S := variable in C with maximal fP � bPendreturn Send Wsat/SKCproc select{variable(�;A)C := a random unsatis�ed clauseu := minS2C bSif u = 0 thenS := a variable P 2 C with bP = 0elsewith probability p :S := random variable in Cprobability 1� p :S := variable P 2 C with minimal bPendreturn SendFigure 2: TwoWsat variable selection strategies. Tiesfor the best variable are broken at random.The �rst strategy2 Wsat/G is simple hillclimb-ing on the net number of satis�ed clauses, but per-turbed by noise because with probability p, a variableis picked randomly from the clause. The second pro-cedure Wsat/SKC is that of a version of Wsat byCohen, Kautz, and Selman.3 We give the details herebecause they were not present in the published paper(Selman, Kautz, & Cohen 1994), but are none-the-lessrather interesting. In particular, Wsat/SKC uses aless obvious, though very e�ective, selection strategy.Firstly, hill-climbing is done solely on the number ofclauses that break if a variable is 
ipped, and the num-ber of clauses that get �xed is ignored. Secondly, a ran-dom move is never made if it is possible to do a movein which no previously satis�ed clauses become bro-ken. In all it exhibits a sort of \minimal greediness", inthat it de�nitely �xes the one randomly selected clausebut otherwise merely tries to minimize the damage tothe already satis�ed clauses. In contrast, Wsat/G isgreedier and will blithely cause lots of damage if it canget paid back by other clauses.2Andrew Baker, personal communication.3Publically available, ftp://ftp.research.att.com/dist/ai



RETROSPECTIVE VARIATION OFMAXFLIPSWe now describe a simple probabilistic method for ef-�ciently determining the Max
ips dependence of themean runtime of a randomized local search proceduresuch as Wsat. We use the term \retrospective" be-cause the parameter is varied after the actual experi-ment is over.As discussed earlier, a side-e�ect of the randomnessintroduced into local search procedures is that the run-time now varies between runs. It is often the case thatthis \inter-run" variation is large and to give meaning-ful runtime results we need an average over many runs.Furthermore, we will need to determine the mean run-time over a range of values of Max
ips. The naive wayto proceed is to do totally independent sets of runs atmany di�erent Max
ips values. However, this is ratherwasteful of data because the successful try on a runoften uses many fewer 
ips than the current Max
ips,and so we should be able to re-use it (together with thenumber of failed tries) to produce results for smallervalues of Max
ips.Suppose we take a single problem instance � andmake many runs of a local search procedure withMax
ips=mD , resulting in a sample with a total of Ntries. The goal is to make predictions for Max
ips =m < mD . Label the successful tries by i, and let xi bethe number of 
ips it took i to succeed. Write the bagof all successful tries as S0 = fx1; : : : ; xlg and de�nea reduced bag Sm0 by removing tries that took longerthan m Sm0 := fxi 2 S0 j xi � mg: (1)We are asssuming there is randomness in each try andno learning between tries so we can consider the triesto be independent. From this it follows that the newbag provides us with information on the distributionof 
ips for successful tries with Max
ips=m. Also,an estimate for the probability that a try will succeedwithin m 
ips is simplypm � jSm0 jN (2)Together Sm0 and pm allow us to make predictions forthe behaviour at Max
ips=m.In this paper we are concerned with the expected(mean) number of 
ips E�;m for the instance � underconsideration. Let Sm0 be the mean of the elements inthe bag Sm0 . With probability pm, the solution will befound on the �rst try, in which case we expect Sm0 
ips.With probability (1 � pm) pm, the �rst try will fail,but the second will succeed, in which case we expectm + Sm0 
ips, and so on. Hence,E�;m = 1Xk=0(1� pm)k pm (km + Sm0 ) (3)which simpli�es to give the main result of this sectionE�;m = (1=pm � 1) m+ Sm0 (4)

with pm and Sm0 estimated from the reduced bag asde�ned above. This is as to be expected since 1=pmis the expected number of tries. It is clearly easy toimplement a system to take single data-set obtainedat Max
ips=mD , and estimate the expected numberof 
ips for many di�erent smaller values of m.Note that it might seem that a more direct and obvi-ous method would be to take the bag of all runs ratherthan tries, and then simply discard runs in which the�nal try took longer than m. However, such a methodwould discard the information that the associated triesall took longer than m. In contrast, our method cap-tures this information: the entire population of tries isused.Instance Collections To deal with a collection, C,of instances we apply rpv to each instance individuallyand then proceed exactly as if this retrospectively sim-ulated data had been obtained directly. For example,the expected mean number of 
ips for C isEm = 1jCjX�2CE�;m: (5)Note that this rpv approach is not restricted to means,but also allows the investigation of other statisticalmeasures such as standard deviation or percentiles.Practical Application of RPV The primary limiton the use of rpv arises from the need to ensure thatthe bag of successful tries does not get too small andinvalidate the estimate for pm. Since the bag size de-creases as we decrease m it follows that there will be ane�ective lower bound on the range over which we cansafely apply rpv from a given mD. This can be o�setby collecting more runs per instance. However, there isa tradeo� to be made: If trying to make predictions attoo small a value of m it becomes more e�cient to giveup on trying to use the data from Max
ips=mD andinstead make a new data collection at smallerMax
ips.This problem with the bag size is exacerbated by thefact that di�erent instances can have very di�erent be-haviours and hence di�erent ranges over which rpv isvalid. It would certainly be possible to do some analy-sis of the errors arising from the rpv. The data collec-tion system could even do such an analysis to monitorcurrent progress and then concentrate new runs on theinstances and values of Max
ips for which the resultsare most needed. In practice, we followed a simplerroute: we made a �xed number of runs per instanceand then accepted the rpv results only down to valuesof m for some �xed large fraction of instances still hada large enough bagsize.Hence, rpv does not always remove the need to con-sider data collection at various values of Max
ips, how-ever, it does allow us to collect data at more widelyseparated Max
ips values and then interpolate be-tween the resulting \direct" data points: This saves atime-consuming �ne-grained data-collection, or binarysearch through Max
ips values.



EXPERIMENTAL RESULTSTo evaluate performance of satis�ability procedures,a class of randomized benchmark problems, Random3SAT, has been studied extensively (Mitchell, Selman,& Levesque 1992; Mitchell 1993; Crawford & Auton1996). Random 3SAT provides a ready source of hardscalable problems. Problems in random k-SAT withn variables and l clauses are generated as follows: arandom subset of size k of the n variables is selected foreach clause, and each variable negated with probability1=2. If instances are taken from near the crossoverpoint (where 50% of the randomly generated problemsare satis�able) then the fastest systematic algorithms,such as Tableau (Crawford & Auton 1996), show awell-behaved increase in hardness: time required scalesas a simple exponential in n.In the following we present results for the perfor-mance of both variants ofWsat on satis�able Random3SAT problems at the crossover point. We put par-ticular emphasis on �nding the Max
ips value m� atwhich the mean runtime averaged over all instances isa minimum. Note that the clause/variable ratio is notquite constant at the crossover point but tends to beslightly higher for small n. Hence, to avoid \falling o�the hardness peak", we used the experimental results(Crawford & Auton 1996) for the number of clausesat crossover, rather than using a constant value suchas 4:3n. To guarantee a fair sample of satis�able in-stances we used Tableau to �lter out the unsatis�ableinstances. At n=400 this took about 2-4 hours per in-stance, and so even this part was computationally non-trivial, and in fact turned out to be the limiting factorfor the maximum problem size.For Wsat/SKC, the setting of the noise parameterp has been reported to be optimal between 0.5 and 0.6(Selman, Kautz, & Cohen 1994). We found evidencethat such values are also close to optimal forWsat/G,hence we have produced all results here with p = 0:5for both Wsat variants, but will discuss this furtherin the next section.We present the experiments in three parts. Firstly,we compare the two variants of Wsat using a smallnumber of problem instances but over a wide range ofMax
ips values to show the usage of rpv to determinetheir Max
ips dependencies. We then concentrate onthe more e�cient Wsat/SKC, using a medium num-ber of instances, and investigate the scaling propertiesover the range n = 25; : : : ; 400 variables. This partrepresents the bulk of the data collection, and heavilyrelied on rpv. Finally, we look at a large data sampleat n = 200 to check for outliers.Overall Max
ips DependenceOur aim here is to show the usage of rpv and alsogive a broad picture of how the mean runtime Emvaries with m for the two di�erent Wsat variants. Wetook a �xed, but randomly selected, sample of 103 in-stances at (n; l) = (200; 854), for which we made 200
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ips). Finally, the error on Em� isthe 95% con�dence level as obtained from the standarddeviation of the E�;m sample (inter-instance). The er-ror from the limited number of runs was negligible incomparison. In the next section we interpret this datawith respect to how m� and Em� vary with n. We didnot convert 
ips to times because the actual 
ips ratevaries remarkably little (from about 70k-
ips/sec downto about 60k-
ips/sec).Scaling of Optimal Max
ipsIn Figure 4 we can see how m� and m5� vary with n.In order to interpret this data we �tted the functionanb against m5� because the Em curves are rather 
atand so m� is relatively ill-de�ned. However, they seemto have the same scaling and also m� > m5� by de�ni-
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Vars Cls m� m5� Em� 95%-cnf. Median 99-perc.25 113 70 37 116 2 94 39850 218 375 190 591 12 414 2,876100 430 2,100 1,025 3,817 111 2,123 27,367150 641 6,100 2,925 13,403 486 5,891 120,597200 854 11,900 5,600 36,973 2,139 12,915 406,966250 1066 15,875 8,800 92,915 8,128 25,575 1,050,104300 1279 23,200 13,100 171,991 15,455 43,314 2,121,809350 1491 32,000 19,300 334,361 69,850 65,574 4,258,904400 1704 43,500 27,200 528,545 114,899 96,048 11,439,288Table 1: Experimental results for Wsat/SKC with p = 0:5 on Random 3SAT at crossover. The results are basedon 10k instances (25{250 variables), 6k instances (300 vars), 3k instances (350 vars) and 1k instances (400 vars).criminating power of such attempts at empirical �ts.We certainly do not claim that these are asymptoticcomplexities! However, we include them as indica-tive. The fact that f3 > 0 indicates a scaling whichis similar to a simple power law except that the expo-nent is slowly growing. Alternatively, the fact that wefound g2 � 0:4, can be regarded as a further indicationthat scaling is slower than a simple exponential (whichwould have g2 = 1).Testing for OutliersOne immediate concern is whether the average run-times quoted above are truly meaningful for the prob-lem class Random 3SAT. It could easily be that the ef-fect of outliers, instances thatWsat takes much longerto solve, eventually dominates. That is, as the sam-ple size increases then we could get su�ciently hardinstances and with su�cient frequency such that themean would drift upwards (Mitchell 1993).To check for this e�ect we decided to concentrate on(n; l) = (200; 854) and took 105 instances. Since weonly wanted to check for outliers, we did not need highaccuracy estimates and it was su�cient to do just 20runs/instance ofWsat/SKC at Max
ips=80k, not us-ing rpv. We directly calculated the mean for each seed:in Figure 6 we plot the distribution of the lg(E�;m).
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If the tail of the distribution were too long, or ifthere were signs of a bimodal distribution with a smallsecondary peak but at a very large Em� then we wouldbe concerned about the validity of the means quotedabove. However we see no signs of any such e�ects.On the contrary the distribution seems to be quitesmooth, and its mean is consistent with the previousdata. However, we do note that the distribution tail issu�ciently large that a signi�cant fraction of total run-time is spent on relatively few instances. This meansthat sample sizes are e�ectively reduced, and is the rea-son for our use of 10k samples for the scaling resultswhere computationally feasible.RELATED WORKOptimal parameter setting of Max
ips and scaling re-sults have been examined before by Gent and Walsh(Gent & Walsh 1993; 1995). However, for each samplepoint (each n) Max
ips had to be optimized experi-mentally. Thus, the computational cost of a system-atic Max
ips optimization for randomized algorithmswas too high for problems larger than 100 variables.This experimental range was not su�cient to rule outa polynomial runtime dependence of about order 3(in the number of variables) for Gsat (Gent & Walsh1993).A sophisticated approach to the study of incompleterandomized algorithms is the framework of Las Ve-gas algorithms which has been used by Luby, Sinclair,and Zuckermann (Luby, Sinclair, & Zuckerman 1993)to examine optimal speedup. They have shown thatfor a single instance there is no advantage to havingMax
ips vary between tries and present optimal cuto�times based on the distribution of the runtimes. Theseresults, however, are not directly applicable to averageruntimes for a collection of instances.Local Search procedures also have close relations tosimulated annealing (Selman & Kautz 1993). Indeed,combinations of simulated annealing with Gsat havebeen tried for hard SAT problems (Spears 1995). Wecan even look upon the restart as being a short periodof very high temperature that will drive the variableassignment to a random value. In this case we �nd it



interesting that work in simulated annealing also hascases in which periodic reheating is useful (Boese &Kahng 1994). We intend to explore these connectionsfurther. CONCLUSIONSWe have tried to address the four issues in the intro-duction empirically. In order to allow for optimizingMax
ips, we presented retrospective parameter varia-tion (rpv), a simple resampling method that signi�-cantly reduces the amount of experimentation neededto optimize certain local search parameters.We then studied two di�erent variants of Wsat,which we label as Wsat/G and Wsat/SKC (thelatter due to Selman et al.). The application ofrpv revealed better performance of Wsat/SKC. Anopen question is whether the relative insensitivity ofWsat/SKC to restarts carries over to realistic prob-lem domains. We should note that for general SATproblems the Max
ips-scaling is of course not a simplefunction of the number of variables and p only, but isalso a�ected by other properties such as the problemconstrainedness.To study the scaling behaviour of local search, we ex-perimented with Wsat/SKC on hard Random 3SATproblems over a wide range of problem sizes, ap-plying rpv to optimize performance. Our experi-mental results strongly suggest subexponential scal-ing on Random 3SAT, and we can thus support pre-vious claims (Selman, Levesque, & Mitchell 1992;Gent & Walsh 1993) that local search scales signi�-cantly better than Davis-Putnam related procedures.Unfortunately rpv cannot be used to directly deter-mine the impact of the noise parameter p, however itis still useful since instead of varying two parameters,only p has to be varied experimentally, while di�erentMax
ips values can be simulated.We plan to extend this work in two further direc-tions. Firstly, we intend to move closer to real prob-lems. For example, investigations of binary encodingsof scheduling problems reveal a strong correlation be-tween the number of bottlenecks in the problems andoptimalMax
ips forWsat/G. Secondly, we would liketo understand the Max
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