
Deutsches
Forschungszentrum
für Künstliche
Intelligenz GmbH

Research
Report

RR-92-17

A Feature-based Constraint System
for Logic Programming with Entailment

Hassan Aı̈t-Kaci, Andreas Podelski, Gert Smolka

March 1992

Deutsches Forschungszentrum für Künstliche Intelligenz
GmbH

Postfach 20 80
67608 Kaiserslautern, FRG
Tel.: + 49 (631) 205-3211
Fax: + 49 (631) 205-3210

Stuhlsatzenhausweg 3
66123 Saarbrücken, FRG
Tel.: + 49 (681) 302-5252
Fax: + 49 (681) 302-5341

Appeared in Theoretical Computer Science, vol. 122 (1994), pp.
263–283.

Also in the Proceedings of the International Conference on Fifth Gen-
eration Computer Systems, June 1-5 1992, pp. 1012–1021, Tokio,
Japan.

This work has been supported by a grant from The Federal Ministry
for Research and Technology (FKZ ITWM-9105).

c Deutsches Forschungszentrum für Künstliche Intelligenz 1992

This work may not be copied or reproduced in whole of part for any commercial purpose.
Permission to copy in whole or part without payment of fee is granted for nonprofit edu-
cational and research purposes provided that all such whole or partial copies include the
following: a notice that such copying is by permission of the Deutsche Forschungszentrum
für Künstliche Intelligenz, Kaiserslautern, Federal Republic of Germany; an acknowledge-
ment of the authors and individual contributors to the work; all applicable portions of this
copyright notice. Copying, reproducing, or republishing for any other purpose shall require
a licence with payment of fee to Deutsches Forschungszentrum für Künstliche Intelligenz.

A Feature-based Constraint Systemfor Logic Programming with EntailmentHassan A��t-Kaci� Andreas Podelski� Gert SmolkayAbstractThis paper presents the constraint system FT, which we feel is an in-triguing alternative to Herbrand both theoretically and practically. Asdoes Herbrand, FT provides a universal data structure based on trees.However, the trees of FT (called feature trees) are more general thanthe trees of Herbrand (called constructor trees), and the constraintsof FT are �ner grained and of di�erent expressivity. The basic no-tion of FT are functional attributes called features, which provide forrecord-like descriptions of data avoiding the overspeci�cation intrinsicin Herbrand's constructor-based descriptions. The feature tree struc-ture �xes an algebraic semantics for FT. We will also establish a logicalsemantics, which is given by three axiom schemes �xing the �rst-ordertheory FT.FT is a constraint system for logic programming, providing a testfor unsatis�ability, and a test for entailment between constraints, whichis needed for advanced control mechanisms.The two major technical contributions of this paper are (1) anincremental entailment simpli�cation system that is proved to be soundand complete, and (2) a proof showing that FT satis�es the so-called\independence of negative constraints".
�Digital Equipment Corporation, Paris Research Laboratory (PRL), 85 avenue VictorHugo, 92500 Rueil-Malmaison, France (email: fhak,podelskig@prl.dec.com).yGerman Research Center for Arti�cial Intelligence (DFKI) and Universit�atdes Saarlandes, Stuhlsatzenhausweg 3, 6600 Saarbr�ucken 11, Germany (email:smolka@dfki.uni-sb.de). Supported in part by the Bundesminister f�ur Forschung undTechnologie under contract ITW 9105. 1

Contents1 Introduction 32 Feature Trees and Constraints 63 Basic Simpli�cation 94 Entailment, Independence and Negation 125 Entailment Simpli�cation 146 Conclusion 20

2

1 IntroductionAn important structural property of many logic programming systems is thefact that they factorize into a constraint system and an extension facility.Colmerauer's Prolog II [8] is an early language design making explicit useof this property. CLP (Constraint Logic Programming [10]), ALPS [16],CCP (Concurrent Constraint Programming [21]), and KAP (Kernel Andor-ra Prolog [9]) are recent logic programming frameworks that exploit thisproperty to its full extent by being parameterized with respect to an ab-stract class of constraint systems. The basic operation these frameworksrequire of a constraint system is a test for unsatis�ability. ALPS, CCP, andKAP in addition require a test for entailment between constraints, whichis needed for advanced control mechanisms such as delaying, coroutining,synchronisation, committed choice, and deep constraint propagation. Giv-en this situation, constraint systems are a central issue in research on logicprogramming.The constraint systems of most existing logic programming languages arevariations and extensions of Herbrand [14], the constraint system underly-ing Prolog. The individuals of Herbrand are trees corresponding to groundterms, and the atomic constraints are equations between terms. Seen fromthe perspective of programming, Herbrand provides a universal data struc-ture as a logical system.This paper presents a constraint system FT, which we feel is an intriguingalternative to Herbrand both theoretically and practically. As does Her-brand, FT provides a universal data structure based on trees. However, thetrees of FT (called feature trees) are more general than the trees of Herbrand(called constructor trees), and the constraints of FT are �ner grained andof di�erent expressivity. The basic notion of FT are functional attributescalled features, which provide for record-like descriptions of data avoidingthe overspeci�cation intrinsic in Herbrand's constructor-based descriptions.For the special case of constructor trees, features amount to argument se-lectors for constructors.Suppose we want to say that x is a wine whose grape is riesling and whosecolor is white. To do this in Herbrand, one may write the equationx = wine(riesling;white; y1; : : : ; yn)with the implicit assumption that the �rst argument of the constructor winecarries the \feature" grape, the second argument carries the \feature" color,and the remaining arguments y1; : : : ; yn carry the remaining \features" of thechosen representation of wines. The obvious di�culty with this descriptionis that it says more than we want to say, namely, that the constructor wine3

@@@@���� whitecolorgraperiesling wine graperieslingwine @@@@���� redcolorgraperiesling wine
QQQQQQAAAA���� 1988yearcolorwhitegraperiesling wine @@@@����alsaceorigin whitecolorgraperiesling wine
Figure 1: Examples of Feature Trees.has n+2 arguments and that the \features" grape and color are representedas the �rst and the second argument.The constraint system FT avoids this overspeci�cation by allowing the de-scription x:wine[grape) riesling; color) white] (1)saying that x has sort wine, its feature grape is riesling, and its feature coloris white. Nothing is said about other features of x, which may or may notexist.The individuals of FT are so-called feature trees, examples of which areshown in Figure 1. A feature tree is a possibly in�nite tree whose nodes arelabeled with symbols called sorts, and whose edges are labeled with symbolscalled features. The labeling with features is deterministic in that all edgesdeparting from a node must be labeled with distinct features. Thus, everydirect subtree of a feature tree can be identi�ed by the feature labeling theedge leading to it. The constructor trees of Herbrand can be represented asfeature trees whose edges are labeled with natural numbers indicating thecorresponding argument positions.All but the second and third feature tree in Figure 1 satisfy the descrip-tion (1).The constraints of FT are ordinary �rst-order formulae taken over a signa-ture that accommodates sorts as unary and features as binary predicates.4

Thus the description (1) is actually syntactic sugar for the formulawine(x) ^ 9y(grape(x; y)^ riesling(y)) ^9y(color(x; y)^ white(y)):The set of all rational feature trees is made into a corresponding logicalstructure T by letting A(x) hold i� the root of x is labeled with the sort A,and letting f(x; y) hold i� x has y as direct subtree via the feature f . Thefeature tree structure T �xes an algebraic semantics for FT.We will also establish a logical semantics, which is given by three axiomschemes �xing a �rst-order theory FT. Backofen and Smolka [6] show thatT is a model of FT and that FT is in fact a complete theory, which meansthat FT is exactly the theory induced by T . However, we will not use thecompleteness result in the present paper, but show explicitly that entailmentwith respect to T is the same as entailment with respect to FT.The two major technical contributions of this paper are (1) an incrementalentailment simpli�cation system that is proved to be sound and complete,and (2) a proof showing that FT satis�es the so-called \independence ofnegative constraints" [7, 14, 15]. The incremental entailment simpli�cationsystem is the prerequisite for FT's use with either of the constraint program-ming frameworks ALPS, CCP or KAP mentioned at the beginning of thissection. The indepence property means among other things that negativeconstraints can essentially be handled through entailment simpli�cation.One origin of FT is A��t-Kaci's -term calculus [1], which is at the heart ofthe programming language LOGIN [3] and further extended in the languageLIFE [5] with functions over feature structures thanks to a generalization ofthe concept of residuation of Le Fun [4]. Other precursors of FT are the fea-ture descriptions found in so-called uni�cation grammars [13, 12] developedfor natural language processing, and also the formalisms of Mukai [17, 18].These early feature structure formalism were presented in a nonlogical form.Major steps in the process of their understanding and logical reformulationare the articles [20, 23, 11, 22]. Feature trees, the feature tree structure T ,and the axiomatization of T were �rst given in [6].The paper is organized as follows. Section 2 de�nes the basic notions anddiscusses the di�erences in expressivity between Herbrand and FT. Section 3gives a basic simpli�cation system that decides satis�ability of positive con-straints. Section 4 is not committed to FT but discusses the notion of incre-mental entailment checking and its connection with the indepence propertyand negation. Section 5 gives the entailment simpli�cation system, provesit sound, complete and terminating, and also proves that FT satis�es theindependence property. 5

2 Feature Trees and ConstraintsTo give a rigorous formalization of feature trees, we �rst �x two disjointalphabets S and F , whose symbols are called sorts and features, respec-tively. The letters A, B, C will always denote sorts, and the letters f , g, hwill always denote features. Words over F are called paths. The concate-nation of two paths v and w results in the path vw. The symbol " denotesthe empty path, v" = "v = v, and F? denotes the set of all paths.A tree domain is a nonempty set D � F? that is pre�x-closed, that is, ifvw 2 D, then v 2 D. Thus, it always contains the empty path.A feature tree is a mapping t : D ! S from a tree domain D into the setof sorts. The paths in the domain of a feature tree represent the nodes ofthe tree; the empty path represents its root. The letters s and t are useddenote feature trees.If convenient, we consider a feature tree t as a relation, i.e., t � F? � S,and write (w;A) 2 t instead of t(w) = A. As relations, i.e., as subsets ofF? � S, feature trees are partially ordered by set inclusion. We say that sis smaller than t if s � t.The subtree wt of a feature tree t at one of its nodes w is the feature treede�ned by (as a relation):wt := f(v; A) j (wv;A) 2 tg:If D is the domain of t, then the domain of wt is the set w�1D = fv j wv 2Dg. Thus, wt is given as the mapping wt : w�1D ! S de�ned on its domainby wt(v) = t(wv). A feature tree s is called a subtree of a feature tree t ifit is a subtree s = wt at one of its nodes w, and a direct subtree if w 2 F .A feature tree t with domain D is called rational if (1) t has only �nitelymany subtrees and (2) t is �nitely branching, which is: for every w 2 D,wF \ D = fwf 2 D j f 2 Fg is �nite. Assuming (1), (2) is equivalentto saying that there exist �nitely many features f1; : : : ; fn such that D �ff1; : : : ; fng?.Constraints over feature trees will be de�ned as �rst-order formulae. We�rst �x a �rst-order signature S]F by taking sorts as unary and features asbinary relation symbols. Moreover, we �x an in�nite alphabet of variablesand adopt the convention that x, y, z always denote variables. Under thissignature, every term is a variable and an atomic formula is either afeature constraint xfy (f(x; y) in standard notation), a sort constraints Ax(A(x) in standard notation), an equation x := y, ? (\false"), or > (\true").Compound formulae are obtained as usual by the connectives ^, _, !, $,6

: and the quanti�ers 9 and 8. We use ~9� and ~8� to denote the existentialand universal closure of a formula �, respectively. Moreover, V(�) is takento denote the set of all variables that occur free in a formula �. The letters� and will always denote formulae. In the following we won't make adistinction between formulae and constraints, that is, a constraint is aformula as de�ned above.S]F-structures and validity of formulae in S]F -structures are de�nedas usual. Since we consider only S] F -structures in the following, we willsimply speak of structures. A theory is a set of closed formulae. A modelof a theory is a structure that satis�es every formulae of the theory. Aformula � is a consequence of a theory T (T j= �) if ~8� is valid in everymodel of T . A formula � is satis�able in a structure A if ~9� is valid in A.Two formulae �, are equivalent in a structure A if ~8(�$) is valid inA. We say that a formula � entails a formula in a structure A [theoryT] and write � j=A [� j=T] if ~8(� !) is valid in A [is a consequenceof T]. A theory T is complete if for every closed formula � either � or :�is a consequence of T .The feature tree structure T is the S] F -structure de�ned as follows:� the domain of T is the set of all rational feature trees;� t 2 AT i� t(") = A (t's root is labeled with A);� (s; t) 2 fT i� f 2 Ds and t = fs (t is the subtree of s at f).Next we discuss the expressivity of our constraints with respect to featuretrees (that is, with respect to the feature tree structure T) by means ofexamples. The constraint :9y(xfy)says that x has no subtree at f , that is, that there is no edge departing fromx's root that is labeled with f . To say that x has subtree y at path f1 � � �fn,we can use the constraint9z1 � � � 9zn�1(xf1z1 ^ z1f2z2 ^ : : :^ zn�1fny):Now let's look at statements we cannot express (more precisely, statementsof whom the authors believe they cannot be expressed). One simple un-expressible statement is \y is a subtree of x" (that is, \9w: y = wx").Moreover, we cannot express that x is smaller than y. Finally, if we assumethat the alphabet F of features is in�nite, we cannot say that x has subtreesat features f1; : : : ; fn but no subtree at any other feature. In particular, wethen cannot say that x is a primitive feature tree, that is, has no propersubtree.The theory FT0 is given by the following two axiom schemes:7

(Ax1) 8x 8y 8z (xfy ^ xfz ! y := z)(for every feature f)(Ax2) 8x (Ax ^Bx! ?)(for every two distinct sorts A and B).The �rst axiom scheme says that features are functional and the secondscheme says that sorts are mutually disjoint. Clearly, T is a model of FT0.Moreover, FT0 is incomplete (for instance, 9x(Ax) is valid in T but invalidin other models of FT0). We will see in the next section that FT0 plays animportant role with respect to basic constraint simpli�cation.Next we introduce some additional notation needed in the rest of the paper.This notation will also allow us to state a third axiom scheme that, as shownin [6], extends FT0 to a complete axiomatization of T .Throughout the paper we assume that the conjunction of formulae is anassociative and commutative operator that has > as neutral element. Thismeans that we identify � ^ (^ �) with � ^ (^ �), and � ^ > with � (butnot, for example, xfy ^ xfy with xfy). A conjunction of atomic formulaecan thus be seen as the �nite multiset of these formulae, where conjunctionis multiset union, and > (the \empty conjunction") is the empty multiset.We will write � � (or 2 �, if is an atomic formula) if there exists aformula 0 such that ^ 0 = �.We will use an additional atomic formula xf" (\f unde�ned on x") that istaken to be equivalent to :9y (xfy), for some variable y (other than x).Only for the formulation of the third axiom we introduce the notion of asolved-clause, which is either > or a conjunction � of atomic formulae ofthe form xfy, Ax or xf" such that the following conditions are satis�ed:1. if Ax 2 � and Bx 2 �, then A = B;2. if xfy 2 � and xfz 2 �, then y = z;3. if xfy 2 �, then xf" =2 �.Given a solved-clause �, we say that a variable x is dependent in � if �contains a constraint of the form Ax, xfy or xf", and use DV(�) to denotethe set of all variables that are dependent in �.The theory FT is obtained from FT0 by adding the axiom scheme:(Ax3) ~89X�(for every solved-clause � and X = DV(�)).8

Theorem 2.1 The feature tree structure T is a model of the theory FT.Proof. We will only show that FT is a model of the third axiom. Let Xbe the set of dependent variables of the solved-clause �, X = DV(�). Let �be any T -valuation de�ned on V(�)�X ; we write the tree �(y) as ty . Wewill extend � on X such that T ; � j= �.Given x 2 X , we de�ne the \punctual" tree tx = f("; A)g, where A 2 Sis the sort such that Ax 2 �, if it exists, and arbitrary, otherwise. Nowwe are going to use the notion of tree sum of Nivat [19], where w�1t =f(wv;A) j (v; A) 2 tg (\the tree t translated by w"), and we de�ne:�(x) =]fw�1ty j x w; y for somey 2 V(�); w 2 F?g:Here the \leads-to" relation w; is given by: x "; x, and x wf; y if x w; y0 andy0fy 2 �, for some y0 2 V(�) and some f 2 F . Since�(x) =[fw�1�(y) j : : : gand w�(x) = �(y), it follows that �(x) is a rational tree and that T ; � j= �.23 Basic Simpli�cationA basic constraint is either ? or a possibly empty conjunction of atomicformulae of the form Ax, xfy, and x := y. The following �ve basic simpli�-cation rules constitute a simpli�cation system for basic constraints, which,as we will see, decides whether a basic constraint is satis�able in T .1. xfy ^ xfz ^ �xfz ^ y := z ^ �2. Ax ^Bx ^ �? A 6= B3. Ax ^Ax ^ �Ax ^ �4. x := y ^ �x := y ^ �[x y] x 2 V(�) and x 6= y9

5. x := x ^ ��The notation �[x y] is used to denote the formula that is obtained from� by replacing every occurrence of x with y. We say that a constraint �simpli�es to a constraint by a simpli�cation rule � if � is an instance of�. We say that a constraint � simpli�es to a constraint if either � = or � simpli�es to in �nitely many steps each licensed by one of the �vesimpli�cation rules given above.Example 3.1 We have the following basic simpli�cation chain, leading toa solved constraint:xfu ^ yfv ^Au ^Av ^ z := x ^ y := z) xfu ^ yfv ^Au ^Av ^ z := x ^ y := x) xfu ^ xfv ^Au ^Av ^ z := x ^ y := x) xfv ^ Au ^Av ^ u := v ^ z := x ^ y := x) xfv ^ Av ^Av ^ u := v ^ z := x ^ y := x) xfv ^ Av ^ u := v ^ z := x ^ y := xUsing the same steps up to the last one, the constraint xfu ^ yfv ^ Au ^Bv ^ z := x^ y := z simpli�es to ? (in the last step, Rule 2 instead of Rule 3is applied). 2Proposition 3.2 If the basic constraint � simpli�es to , then FT0 j= �$.Proof. The rules 3, 4 and 5 perform equivalence transformations withrespect to every structure. The rules 1 and 2 correspond exactly to thetwo axiom schemes of FT0 and perform equivalence transformations withrespect to every model of FT0. 2We say that a basic constraint � binds a variable x to y if x := y 2 � and xoccurs only once in �. At this point it is important to note that we considerequations as ordered, that is, assume that x := y is di�erent from y := x ifx 6= y. We say that a variable x is eliminated, or bound by �, if � bindsx to some variable y.Proposition 3.3 The basic simpli�cation rules are terminating.10

Proof. First observe that the simpli�cation rules don't add new variablesand preserve eliminated variables. Furthermore, rule 4 increases the numberof eliminated variables by one. Hence we know that if an in�nite simpli�-cation chain exists, we can assume without loss of generality that it onlyemploys the rules 1, 3 and 5. Since rule 1 decreases the number of featureconstraints \xfy", which is not increased by rules 3 and 5, we know that ifan in�nite simpli�cation chain exists, we can assume without loss of gener-ality that it only employs the rules 3 and 5. Since this is clearly impossible,an in�nite simpli�cation chain cannot exist. 2A basic constraint is called normal if none of the �ve simpli�cation rulesapplies to it. A constraint is called a normal form of a basic constraint� if � can be simpli�ed to and is normal. A solved constraint is anormal constraint that is di�erent from ?.So far we know that we can compute for any basic constraint � a normalform by applying the simpli�cation rules as long as they are applicable.Although the normal form may not be unique for �, we know that � and are equivalent in every model of FT0. It remains to show that every solvedconstraint is satis�able in T .Every basic constraint � has a unique decomposition � = �N ^�G such that�N is a possibly empty conjunction of equations \x := y" and and �G is apossibly empty conjunction of feature constraints \xfy" and sort constraints\Ax". We call �N the normalizer and and �G the graph of �.Proposition 3.4 A basic constraint � 6= ? is solved i� the following con-ditions hold:1. an equation x := y appears in � only if x is eliminated in �;2. the graph of � is a solved clause;3. no primitive constraint appears more than once in �.Proposition 3.5 Every solved constraint is satis�able in every model ofFT.Proof. Let � be a solved constraint and A be a model of FT. Then we knowby axiom scheme Ax3 that the graph �G of a solved constraint � is satis�ablein an FT-model A. A variable valuation � into A such that A; � j= �G canbe extended on all eliminated variables simply by �(x) = �(y) if x := y 2 �,such that A; � j= �. 211

Theorem 3.6 Let be a normal form of a basic constraint �. Then � issatis�able in T if and only if 6= ?.Proof. Since � and are equivalent in every model of FT0 and T is a modelof FT0, it su�ces to show that is satis�able in T if and only if 6= ?.To show the nontrivial direction, suppose 6= ?. Then is solved and weknow by the preceding proposition that is satis�able in every model ofFT. Since T is a model of FT, we know that is satis�able in T . 2Theorem 3.7 For every basic constraint � the following statements areequivalent:T j= ~9� , 9 model A of FT0 : A j= ~9� , FT j= ~9�:Proof. The implication 1) 2 holds since T is a model of FT0. Theimplication 3) 1 follows from the fact that T is a model of FT. It remainsto show that 2) 3.Let � be satis�able in some model of FT0. Then we can apply the sim-pli�cation rules to � and compute a normal form such that � and areequivalent in every model of FT0. Hence is satis�able in some model ofFT0. Thus 6= ?, which means that is solved. Hence we know by thepreceding proposition that is satis�able in every model of FT. Since � and are equivalent in every model of FT0�FT, we have that � is satis�able inevery model of FT. 24 Entailment, Independence and NegationIn this section we discuss some general properties of constraint entailment.This prepares the ground for the next section, which is concerned withentailment simpli�cation in the feature tree constraint system.Throughout this section we assume that A is a structure, and � are for-mulae that can be interpreted in A, and that X is a �nite set of variables.We say that disentails � in A if entails :� in A. If is satis�ablein A, then cannot both entail and disentail 9X� in A. We say that determines � in A if either entails or disentails � in A.Given , � andX , we want to determine in an incrementalmanner whether entails or disentails 9X�. Typically, will not determine 9X� when 9X�is considered �rst, but this may change when is strengthened to ^ 0.The basic idea leading to an incremental entailment checker is to simplify �12

with respect to the context and the local variables X . Given , X and�, simpli�cation must yield a formula such that j=A 9X�$ 9X :The following facts provide some evidence that this is the right invariant forentailment simpli�cation.Proposition 4.1 Let j=A 9X�$ 9X . Then:1. j=A 9X� i� j=A 9X ;2. j=A :9X� i� j=A :9X ;3. if = ?, then j=A :9X�;4. if 9X is valid in A, then j=A 9X�.Statements 1 and 2 say that it doesn't matter whether entailment and dis-entailment are decided for � or . Statement 3 gives a local condition fordisentailment, and Statement 4 gives a local condition for entailment. Theentailment simpli�cation system for feature trees given in the next sectionwill in fact decide entailment and disentailment by simplifying such thatthe condition of Statement 4 is met in the case of entailment, and that thecondition of Statement 3 is met in the case of disentailment.In practice, one can ensure by variable renaming that no variable ofX occursin . The next fact says that then it su�ces if entailment simpli�cationrespects the more convenient invariantA j= ^ �$ ^ :This is the invariant respected by our system (cf. Proposition 5.4).Proposition 4.2 Let X \ V() = ;. Then:1. if A j= ^ �$ ^ , then j=A 9X�$ 9X ;2. j=A :9X� i� ^ � is unsatis�able in A.That is, the conjunction ^ � is satis�able if and only if either entails9X�, or it does not determine 9X�.The so-called independence of negative constraints [7, 14, 15] is an importantproperty of constraint systems. If it holds, simpli�cation of conjunctions of13

positive and negative constraints can be reduced to entailment simpli�cationof conjunctions of positive constraints.To de�ne the independence property, we assume that a constraint systemis a pair consisting of a structure A and a set of so-called basic constraints.From basic constraints one can build more complex constraints using theconnectives and quanti�ers of predicate logic. We say that a constraintsystem satis�es the independence property if j=A 9X1�1 _ : : :_ 9Xn�n i� 9i: j=A 9Xi�ifor all basic constraints , �1; : : : ; �n and all �nite sets of variablesX1; : : : ; Xn.Proposition 4.3 If a constraint system satis�es the independence proper-ty, then the following statements hold (, � and �1; : : : ; �n are basic con-straints):1. ^:9X1�1 ^ : : :^:9Xn�n unsatis�able in A i� 9i: j=A 9Xi�i;2. if ^:9X1�1 ^ : : :^:9Xn�n is satis�able in A, then ^:9X1�1 ^: : :^ :9Xn�n j=A 9X� i� j=A 9X�.5 Entailment Simpli�cationWe now return to the feature tree constraint system. Throughout this sec-tion we assume that is a solved constraint and X is a �nite set of variablesnot occurring in . We will call the context, the variables in X local,and all other variables global.If T is a theory and � and are possibly open formulae, we write � j=T (read: � entails in T) if ~8(�!) is valid in T .Theorem 5.1 For every basic constraint �, the following equivalences hold: j=T :9X� i� j=FT0 :9X� i� j=FT :9X�:Proof. Implication \2) 3" holds since FT0 �FT. Implication \3) 1"holds since T is a model of FT. To show implication \1) 2", suppose j=T :9X�. Then we know by Proposition 4.2 that ^� is unsatis�able inT . Thus we know by Theorem 3.7 that ^� is unsatis�able in every modelof FT0. Hence we know by Proposition 4.2 that j=FT0 :9X�. 214

For every basic constraint � and every variable x we de�ne�x := � y if x := y 2 � and x is eliminated;x otherwise.A basic constraint � is X-oriented if x := y 2 � always implies x 2 Xor y 62 X . A basic constraint � is pivoted if x := y 2 � implies that x iseliminated in � (and then y is a \pivot").The following entailment simpli�cation rules simplify basic constraintsto basic constraints with respect to a context and local variables X .1. xfu ^ �u := v ^ � yfv 2 ^ �; �y = x2. ��u := �v ^ � 8><>: xfu ^ yfv � ;�x = �y; �u 6= �v;� X-oriented and pivoted3. �? Ax ^By � ^ �; �x = �y; A 6= B4. Ax ^ �� Ay 2 ^ �; �y = x5. x := y ^ �x := y ^ �[x y] (x 6= y; x 2 V(�);(x 2 X or y =2 X)6. x := y ^ �y := x ^ � x =2 X; y 2 X7. ��[x y] x := y 2 ; x 2 V(�)8. x := x ^ ��We say that a basic constraint � simpli�es to a constraint � with respectto and X if � = or � simpli�es to in �nitely many steps each licensedby one of the eight simpli�cation rules given above. The notions of normaland normal form with respect to are de�ned accordingly.15

Example 5.2 Let = xfu ^ yfv ^Au ^ Bv and X = fzg. Then we havethe following simpli�cation chain with respect to and X :x := z ^ y := z);X z := x ^ y := z by Rule E6);X z := x ^ y := x by Rule E5);X u := v ^ z := x ^ y := x by Rule E2);X ? by Rule E3.Let us now take as context ~ = xfu ^ yfv ^ Au. Then ~� = u := v ^ z :=x^ y := x is normal with respect to ~ and X . We shall see that this normalform tells us that ~ does not determine ~�. If ~ gets strengthened eitherto ~ ^ Bv (as above), or to ~ ^ x := y, then the strengthened context doesdetermine: it disentails in the �rst and entails in the second case. The basicnormal form of ~ ^ x := y is yfu ^Au ^ v := u ^ x := y; with respect to thiscontext ~� simpli�es to z := y. 2In the previous example, � = z := x ^ y := x simpli�es to �1 = u := v ^ z :=x ^ y := x with respect to = xfu ^ yfv ^ Au ^ Bv and X = fzg. Thiscorresponds to a basic simpli�cation as follows: ^ � =xfu ^ yfv ^ Au ^Bv ^ z := x ^ y := x) xfu ^ xfv ^ Au ^Bv ^ z := x ^ y := x) xfv ^ Au ^Bv ^ u := v ^ z := x ^ y := x= 0 ^ �01We observe that ^ �1 is equal to 0 ^ �01, modulo renaming y by �1y = xand u by �1u = v, and modulo the repetition of xfv.Lemma 5.3 Let � simplify to �1 with respect to and X, not using Rule E6(in an entailment simpli�cation step). Then ^� simpli�es to some 0^�01which is equal to ^�1 up to variable renaming and repetition of conjuncts.Proof. Clearly, each entailment simpli�cation rule, except for E6, corre-sponds directly to a basic simpli�cation rule (namely, E1 and E2 to B1, E3to B2, E4 to B3, E5 and E7 to B4, and E8 to B5).If the application of the entailment simpli�cation rule to � relies on a con-dition of the form �x = y or �x = �y where x 6= �x or y 6= �y, thenx := �x 2 � or y := �y 2 �, and Rule B4 is �rst applied to ^�, eliminatingx by �x (y by �y).When comparing ^�1 and 0^�01, renamings take account of these variableeliminations. Note that, if the rule applied to � is E2, then 0 has one featureconstraint xfv less than | which, after renaming, has a repetition ofexactly this constraint. 216

Proposition 5.4 If � simpli�es to with respect to and X, then ^ �and ^ are equivalent in every model of FT0.Proof. Follows from Lemma 5.3 and Proposition 3.2. 2Proposition 5.5 The entailment simpli�cation rules are terminating, pro-vided and X are �xed.Proof. First we strengthen the statement by weakening the applicabilityconditions �y = x in Rules E1 and E4 to �y = �x. Then from Lemma 5.3follows: (*) Each entailment simpli�cation rule applies to �1 with respectto and X if and only if it applies to �01 with respect to 0 and X |except possibly for E5, when the corresponding variable has already beeneliminated in an \extra" basic simpli�cation step.If 0 has one conjunct of the form xfu less than , then (*) still holds;regarding a new application of E2 this is ensured by its (therefore socomplicated: : :) applicability condition.With condition (*), it is possible to prove by induction on n: For everyentailment simpli�cation chain �; �1; : : : ; �n with respect to and X , thereexists a `basic plus Rule E6' simpli�cation chain ^ �; 1 ^ �01; : : : ; n+k ^�0n+k , where k � 0 is the number of \extra" variable elimination steps.Since, according to Proposition 3.3, basic simpli�cation chains are �nite, soare entailment simpli�cation chains. 2So far we know that we can compute for any basic constraint � a normalform with respect to and X by applying the simpli�cation rules as longas they are applicable. Although the normal form may not be unique, weknow that ^ � and ^ are equivalent in every model of FT0.Proposition 5.6 For every basic constraint � one can compute a normalform with respect to and X. Every such normal form satis�es: j=T9X� i� j=T 9X , and j=FT 9X� i� j=FT 9X .Proof. Follows from Propositions 5.4, 5.5, 4.2 and 4.1. 2In the following we will show that from the entailment normal form of �with respect to it is easy to tell whether we have entailment, disentailmentor neither. Moreover, the basic normal form of ^ � is exactly ^ in the�rst case (and in the second, where ^ ? = ?), and \almost" in the thirdcase (cf. Lemma 5.3). 17

Proposition 5.7 A basic constraint � 6= ? is normal with respect to andX if and only if the following conditions are satis�ed:1. � is solved, X-oriented, and contains no variable that is bound by ;2. if �x = y and xfu 2 , then yfv 62 � for every v;3. if �x = �y and xfu 2 and yfv 2 , then �u = �v;4. if �x = y and Ax 2 , then By 62 � for every B;5. if �x = �y and Ax 2 and By 2 , then A = B.Lemma 5.8 If � 6= ? is normal with respect to and X, then ^ � issatis�able in every model of FT.Proof. Let � 6= ? be normal with respect to and X . Furthermore, let = N ^ G and � = �N ^ �G be the unique decompositions in normalizerand graph. Since the variables bound by N occur neither in G nor in �,it su�ces to show that G ^ �N ^ �G is satis�able in every model of FT.Let �N (G) be the basic constraint that is obtained from G by applying allbindings of �N . Then G^�N ^�G is equivalent to �N ^�N (G)^�G and novariable bound by �N occurs in �N(G)^�G. Hence it su�ces to show that�N (G) ^ �G is satis�able in every model of FT. With the conditions 2{5of the preceding proposition it is easy to see that �N (G) ^ �G is a solvedclause. Hence we know by axiom scheme Ax3 that �N(G)^�G is satis�ablein every model of FT. 2Theorem 5.9 (Disentailment) Let be a normal form of � with respectto and X. Then j=T :9X� i� = ?.Proof. Suppose = ?. Then j=T :9X and hence j=T :9X� byProposition 5.6.To show the other direction, suppose j=T :9X�. Then j=T :9X byProposition 5.6 and hence ^ unsatis�able in T by Proposition 4.2. SinceT is a model of FT (Theorem 2.1), we know by the preceding lemma that = ? (since is assumed to be normal). 2We say that a variable x is dependent in a solved constraint � if � contains aconstraint of the form Ax, xfy or x := y. (Recall that equations are ordered;thus y is not dependent in the constraint x := y.) We use DV(�) to denotethe set of all variables that are dependent in a solved constraint �.18

In the following we will assume that the underlying signature S] F has atleast one sort and at least one feature that does not occur in the constraintsunder consideration. This assumption is certainly satis�ed if the signaturehas in�nitely many sorts and in�nitely many features.Lemma 5.10 (Spiting) Let �1; : : : ; �n be basic constraints di�erent from?, and X1; : : : ; Xn be �nite sets of variables disjoint from V(). Moreover,for every i = 1; : : : ; n, let �i be normal with respect to and Xi, and let �ihave a dependent variable that is not in Xi. Then ^:9X1�1^: : :^:9Xn�nis satis�able in every model of FT.Proof. Let = N ^ G be the unique decomposition of into normalizerand graph. Since the variables bound by N occur neither in G nor in any�i, it su�ces to show that G^:9X1�1^ : : :^:9Xn�n is satis�able in everymodel of FT. Thus it su�ces to exhibit a solved clause � such that G � �and, for every i = 1; : : : ; n, V(�) is disjoint with Xi and �^�i is unsatis�ablein every model of FT.Without loss of generality we can assume that every Xi is disjoint with V()and V(�j)�Xj for all j. Hence we can pick in every �i a dependent variablexi such that xi =2 Xj for any j.Let z1; : : : ; zk be all variables that occur on either side of equation xi := y 2�i, i = 1; : : : ; n (recall that xi is �xed for i). None of these variables occursin any Xj since every �i is Xi-oriented. Next we �x a feature g and a sortB such that neither occurs in or any �i.Now � is obtained from by adding constraints as follows: if Axi 2 �i, thenadd Bxi; if xify 2 �i, then add xif"; to enforce that the variables z1; : : : ; zkare pairwise distinct, addzkgzk�1 ^ : : : ^ z2gz1 ^ z1g" :It is straightforward to verify that these additions to yield a solved clause� as required. 2Proposition 5.11 If � is solved and DV(�) � X, then FT j= ~89X�.Proof. Let � = �N^�G be the decomposition of � in normalizer and graph.Since every variable bound by � is in X , it su�ces to show that ~89X�G is aconsequence of FT. This follows immediately from axiom scheme Ax3 since�G is a solved clause. 2Theorem 5.12 (Entailment) Let be a normal form of � with respect to and X. Then j=T 9X� i� 6= ? and DV() � X.19

Proof. Suppose j=T 9X�. Then we know j=T 9X by Proposition 5.6,and thus ^ :9X is unsatis�able in T . Since is solved, we know that is satis�able in T and hence that ^ 9X is satis�able in T . Thus 6= ?.Since ^ :9X is unsatis�able in T and T is a model of FT, we know byLemma 5.10 that DV() � X .To show the other direction, suppose 6= ? and DV() � X . Then FT j=~89X by Proposition 5.11, and hence T j= ~89X . Thus j=T 9X , andhence j=T 9X� by Proposition 5.6. 2Theorem 5.13 Let � be a basic constraint. Then j=T 9X� i� j=FT9X�.Proof. One direction holds since T is a model of FT. To show the otherdirection, suppose j=T 9X�. Without loss of generality we can assumethat � is normal with respect to and X . Hence we know by Theorem 5.12that � 6= ? and DV() � X . Thus FT j= ~89X� by Proposition 5.11 andhence j=FT 9X�. 2Theorem 5.14 (Independence) Let �1; : : : ; �n be basic constraints, andX1; : : : ; Xn be �nite sets of variables. Then j=T 9X1�1 _ : : :_ 9Xn�n i� 9i: j=T 9Xi�i:Proof. To show the nontrivial direction, suppose j=T 9X1�1_: : :_9Xn�n.Without loss of generality we can assume that, for all i = 1; : : : ; n, Xi isdisjoint from V(), �i is normal with respect to and X1, and �i 6= ?. Since^:9X1�1^ : : :^:9Xn�n is unsatis�able in T and T is a model of FT, weknow by Lemma 5.10 that DV(�k) � Xk for some k. Hence j=T 9Xk�kby Theorem 5.12. 26 ConclusionWe have presented a constraint system FT for logic programming providing auniversal data structure based on rational feature trees. FT accommodatesrecord-like descriptions, which we think are superior to the constructor-based descriptions of Herbrand.The declarative semantics of FT is speci�ed both algebraicly (the featuretree structure T) and logically (the �rst-order theory FT given by threeaxiom schemes). 20

The operational semantics for FT is given by an incremental constraint sim-pli�cation system, which can check satis�ability of and entailment betweenconstraints. Since FT satis�es the independence property, the simpli�cationsystem can also check satis�ability of conjunctions of positive and negativeconstraints.We see four directions for further research.First, FT should be strengthened such that it subsumes the expressivity ofrational constructor trees [7, 8]. As is, FT cannot express that x is a treehaving direct subtrees at exactly the features f1; : : : ; fn. It turns out thatthe system CFT [24] obtained from FT by adding the primitive constraintxff1; : : : ; fng(x has direct subtrees at exactly the features f1; : : : ; fn) has the same niceproperties as FT. In contrast to FT, CFT can express constructor con-straints; for instance, the constructor constraint x := A(y; z) can be ex-pressed equivalently as Ax ^ xf1; 2g ^ x1y ^ x2z, if we assume that A is asort and the numbers 1; 2 are features.Second, it seems attractive to extend FT such that it can accommodate asort lattice as used in [1, 3, 4, 5, 23]. One possibility to do this is to assumea partial order � on sorts and replace sort constraints Ax with quasi-sortconstraints [A]x whose declarative semantics is given as[A]x � _B�ABx:Given the assumption that the sort ordering � has greatest lower bounds iflower bounds exist, it seems that the results and the simpli�cation systemgiven for FT carry over with minor changes.Third, the worst-case complexity of entailment checking in FT should beestablished. We conjecture it to be quasi-linear in the size of and �,provided the available features are �xed a priory.Fourth, implementation techniques forFT at the level of the Warren abstractmachine [2] need to be developed.References[1] H. A��t-Kaci. An algebraic semantics approach to the e�ective resolutionof type equations. Theoretical Computer Science, 45:293{351, 1986.[2] H. A��t-Kaci. Warren's Abstract Machine: A Tutorial Reconstruction.The MIT Press, Cambridge, MA, 1991.21

[3] H. A��t-Kaci and R. Nasr. LOGIN: A logic programming language withbuilt-in inheritance. The Journal of Logic Programming, 3:185{215,1986.[4] H. A��t-Kaci and R. Nasr. Integrating logic and functional programming.Lisp and Symbolic Computation, 2:51{89, 1989.[5] H. A��t-Kaci and A. Podelski. Towards a Meaning of LIFE. Proceedingsof the 3rd International Symposium on Programming Language Imple-mentation and Logic Programming (Passau, Germany), J. Maluszy�nskiand M. Wirsing, editors. LNCS 528, pages 255{274, Springer-Verlag,1991.[6] R. Backofen and G. Smolka. A complete and decidable feature theo-ry. Draft, German Research Center for Arti�cial Intelligence (DFKI),Stuhlsatzenhausweg 3, 6600 Saarbr�ucken 11, Germany, 1991. To ap-pear.[7] A. Colmerauer. Equations and inequations on �nite and in�nite trees.In Proceedings of the 2nd International Conference on Fifth GenerationComputer Systems, pages 85{99, 1984.[8] A. Colmerauer, H. Kanoui, and M. V. Caneghem. Prolog, theoreticalprinciples and current trends. Technology and Science of Informatics,2(4):255{292, 1983.[9] S. Haridi and S. Janson. Kernel Andorra Prolog and its computationmodel. In D. Warren and P. Szeredi, editors, Logic Programming, Pro-ceedings of the 7th International Conference, pages 31{48, Cambridge,MA, June 1990. The MIT Press.[10] J. Ja�ar and J.-L. Lassez. Constraint logic programming. In Proceedingsof the 14th ACM Symposium on Principles of Programming Languages,pages 111{119, Munich, Germany, Jan. 1987.[11] M. Johnson. Attribute-Value Logic and the Theory of Grammar. CSLILecture Notes 16. Center for the Study of Language and Information,Stanford University, CA, 1988.[12] R. M. Kaplan and J. Bresnan. Lexical-Functional Grammar: A for-mal system for grammatical representation. In J. Bresnan, editor, TheMental Representation of Grammatical Relations, pages 173{381. TheMIT Press, Cambridge, MA, 1982.[13] M. Kay. Functional grammar. In Proceedings of the Fifth Annual Meet-ing of the Berkeley Linguistics Society, Berkeley, CA, 1979. BerkeleyLinguistics Society. 22

[14] J.-L. Lassez, M. Maher, and K. Marriot. Uni�cation revisited. InJ. Minker, editor, Foundations of Deductive Databases and Logic Pro-gramming. Morgan Kaufmann, Los Altos, CA, 1988.[15] J. L. Lassez and K. McAloon. A constraint sequent calculus. In FifthAnnual IEEE Symposium on Logic in Computer Science, pages 52{61,June 1990.[16] M. J. Maher. Logic semantics for a class of committed-choice programs.In J.-L. Lassez, editor, Logic Programming, Proceedings of the FourthInternational Conference, pages 858{876, Cambridge, MA, 1987. TheMIT Press.[17] K. Mukai. Partially speci�ed terms in logic programming for linguisticanalysis. In Proceedings of the 6th International Conference on FifthGeneration Computer Systems, 1988.[18] K. Mukai. Constraint Logic Programming and the Uni�cation of In-formation. PhD thesis, Tokyo Institute of Technology, Tokyo, Japan,1991.[19] M. Nivat. Elements of a theory of tree codes. In M. Nivat, A. Podelski,editors, Tree Automata (Advances and Open Problems), Amsterdam,NE, 1992. Elsevier Publishers.[20] W. C. Rounds and R. T. Kasper. A complete logical calculus for recordstructures representing linguistic information. In Proceedings of the 1stIEEE Symposium on Logic in Computer Science, pages 38{43, Boston,MA, 1986.[21] V. Saraswat and M. Rinard. Concurrent constraint programming. InProceedings of the 7th Annual ACM Symposium on Principles of Pro-gramming Languages, pages 232{245, San Francisco, CA, January 1990.[22] G. Smolka. Feature constraint logics for uni�cation grammars. TheJournal of Logic Programming, 12:51{87, 1992.[23] G. Smolka and H. A��t-Kaci. Inheritance hierarchies: Semantics anduni�cation. Journal of Symbolic Computation, 7:343{370, 1989.[24] G. Smolka and R. Treinen. Relative simpli�cation for and independenceof CFT. Draft, German Research Center for Arti�cial Intelligence (DF-KI), Stuhlsatzenhausweg 3, 6600 Saarbr�ucken 11, Germany, 1992. Toappear. 23

