Chapter 22 in: Constraint Logic Programming: Selected Research,
Frédéric Benhamou and Alain Colmerauer, eds., The MIT Press, 1993,
pp. 405--419. Previous version as DFKI Research Report RR-91-13

Residuation and Guarded Rules for

Constraint Logic Programming

Gert Smolka

German Research Center for Artificial Intelligence (DFKI)
and
Universitat des Saarlandes
Stuhlsatzenhausweg 3, 6600 Saarbrucken 11, Germany
smolka@dfki.uni-sb.de

Abstract

Current constraint logic programming languages provide simplification
for built-in constraints (e.g., arithmetic or boolean), but do not offer con-
straint propagation for user-defined predicates. We present two concepts,
residuation and guarded rules, for obtaining user-defined constraint prop-
agation.

Residuation is a nonsequential control strategy similar to the so-called
Andorra Principle giving priority to the reduction of atoms to which at
most one clause applies. It achieves an interesting form of constraint
propagation for user-defined predicates, thus reducing the need for back-
tracking.

Residuation, of course, does not extract all useful constraint propaga-
tion rules from the clausal definitions of user-defined predicates. Hence
we propose so-called guarded rules as a means by which the programmer
can explicitly specify additional constraint propagation rules. Guarded
rules are similar to guarded clauses in committed-choice languages, but in
contrast to these languages our guarded rules run concurrently with the
ordinary clausal definition of a predicate. Our framework can in fact be
seen as a combination of constraint logic programming with concurrent
committed-choice programming.

The second part of the paper offers a semantical model for the pro-
posed family of languages, where goal reduction amounts to equivalence



transformation and guarded rules appear as logical consequences of the
clausal definitions of predicates.

1 Introduction

A major difficulty with logic programming is combinatorial explosion: since
goals are solved with possibly indeterminate (i.e., branching) reductions, the
resulting search trees may grow wildly. Constraint logic programming systems
[5, 12, 7] try to avoid combinatorial explosion by building in strong determi-
nate (i.e., non-branching) reduction in the form of constraint simplification. In
this paper we present two concepts, residuation and guarded rules, for further
strengthening determinate reduction. Both concepts apply to constraint logic
programming in general and yield an operational semantics that coincides with
the declarative semantics.

1.1 Residuation

Residuation! is a control strategy for constraint logic programming meant to
replace the rigid depth first strategy of Prolog, which amounts to eager gener-
ation of usually wrong assumptions. Residuation makes determinate reduction
the rule and indeterminate reduction the exception that must be requested ex-
plicitly by declaring relations as generating. Given a goal, an atom is called
determinate if reduction with all but possibly one clause defining the atom im-
mediately fails due to constraint simplification. Residuation is now the following
control strategy:

e given a goal that contains determinate atoms, a determinate atom must

be reduced

e given a goal that contains no determinate atoms, an atom whose relation
is declared as generating must be reduced.

Thus the user controls which atoms can reduce indeterminately by declaring
relations as generating. If no relation is declared generating, indeterminate re-
duction cannot occur. Even with generating relations, indeterminate reduction
can only occur if determinate reduction is not possible. A relation is called
residuating if it is not declared generating. Given a goal, an atom is called
residuated if it 1s not determinate and its relation is residuating. An important
feature of the residuation strategy is that goals whose atoms are all residuated
are taken as answers. Often such complex answers are fine as they are. For
instance, if length 1s a length predicate for lists, the goal

AN (length(L,N) AN < 47)

IThe term residuation was coined by Hassan Ait-Kaci [1] for delaying control schemes.



(“L is a list with at most 47 elements”) is a perfect answer. If the user is not
satisfied with a complex answer, he can request indeterminate reduction of a
residuated atom.

Residuation is similar to the control strategy of the Andorra model [8; 9],
with the difference that residuation performs indeterminate reduction only on
atoms whose relation is explicitly declared as generating. The philosophy behind
residuation 1s that for most relations indeterminate reduction simply does not
make sense, and that complex answers are often appropriate.

In the examples of this paper we will assume a constraint system with trees
and linear integer arithmetic.

A length relation for lists can be defined as follows (constraints are written
in italic font):

length(L,N) & L=nilAN=0
V. IHRM(L=HRAN>OAM=N—-1
A length(R, M)).

Instead of the conventional definite clause syntax we use definite equivalences,
which make more explicit that the relation on the left hand side is in fact defined
(we are committed to least model semantics).?

Now, given a goal whose constraint is ¢, an atom length(L, N) in this goal
is determinate if either the constraint ¢ A L = ndd A N = 0 simplifies to —, or
the constraint ¢ AJH, R (L= H.RAN > 0) simplifies to —, where — is the
canonical unsatisfiable constraint. Assuming a sufficiently powerful constraint
simplifier, the goal length(X,N) AN > 2 reduces in two steps determinately to
the goal

AY,Z, UM (X =Y.ZUAM=N—2AM > 0Alength(U, M)),

which 1s an answer if the relation length is residuating. In any case, it would
not make sense to reduce this goal further.

Residuation is a simple and powerful alternative to delay primitives such as
the delay annotations of IC-Prolog [4], the freeze construct of Prolog IT [6], or
the wait declarations of MU-Prolog [15]. Major advantages of residuation over
these delay primitives are:

e residuation applies to every constraint system (rather than to tree systems
only)

e no annotations in clauses are needed—the programmer only decides which
relations should be generating

2For the special case of Horn clause programming, the translation from the conventional
definite clause syntax to definite equivalences is given by Clark’s completion [2].



e residuation is much more flexible—even if all relations are declared gener-
ating the search space is considerably pruned since determinate reductions
are performed first.

An idealized method for solving problems with residuation splits the problem
solver in a propagating and a generating part:

e a predicate propagate(S) that holds if and only if S is a solution of the
problem, and that depends only on residuating relations

e a predicate generate(S) that defines candidates for (partial) solutions and
depends on generating relations.

A problem instance is then given as a query
¢ A propagate(S) A generate(S),

where the constraint ¢ describes the particular problem instance. With resid-
uation ¢ A propagate(S) will reduce determinately to a constraint propagation
network consisting of residuated atoms and a shared constraint. In general, the
constraint propagation network alone is too weak to exhibit solutions. Thus
generate(S) is needed to incrementally generate assumptions about the value of
the variable S. As soon as an assumption is made, the constraint propagation
network will become active since atoms that where residuated before can now
fire. Typically, most of the generated assumptions will be invalidated immedi-
ately by constraint propagation leading to a failure. To obtain a feasible search
space, two things are essential: careful design of the propagation and generation
component, and an expressive underlying constraint system.

1.2 Guarded Rules

Guarded rules are logical consequences of the program introducing additional
determinate reduction rules. We will see that guarded rules can significantly
strengthen the propagation component of a problem solver.

Consider the following definition of list concatenation:

app(X,Y,Z) & X=nlAY=1Z
| X=HRAZ=HUAapp(R,Y,U).

It is written in sugared syntax (indicated by writing | rather than V), which
suppresses existential quantification of auxiliary variables and allows nesting of
constraint terms.

With this definition the goal app(X,Y,Y) does not reduce determinately
although it is equivalent to X = nil. In fact, the relation app satisfies the
formula

Y =27 = (app(X,Y,Z) & X =nil),



which validates the determinate reduction of the atom app(X,Y,Z) to the con-
straint X = nil if the constraint of the goal entails the “guard” Y = Z.
A guarded rule is a formula

¢ = (A eG),

for convenience written as

o0 AD> G,

where ¢ is a constraint (called the guard), A is an atom, and G is a goal. A
guarded rule is admissibleif it 1s valid in every model of the declarative semantics
(we are committed to least model semantics). Thus admissible guarded rules
are redundant as far as the declarative semantics i1s concerned.
The operational semantics of guarded rules is defined as follows. Given a
goal G
X (¢ ANAAR)

and a guarded rule

YvOAD> G

the goal G can reduce determinately to
IX(¢ AG' AR)

if the constraint ¢ entails the constraint ¢, that is, the implication ¢ — ¢ is valid
in every model of the constraint system. Note that 3X (¢ A G’ A R) is logically
equivalent to GG in all models of the declarative semantics if the guarded rule is
admissible. Moreover, 3X (¢ A G’ A R) is a goal up to constraint simplification
and minor syntactic rearrangement.

Two further admissible guarded rules for app are

Y =nil O app(X,Y,Z) > X=7ZAlist(X)
X=7Z0 app(X,Y,Z) > Y = nil Alist(X),

where the relation list is defined as follows:
list(L) < L=nil |L=HRAIst(R).

Admissible guarded rules are a new concept that must not be confused with
the guarded clauses of committed-choice languages such as Concurrent Pro-
log [16] or Parlog [3]. In these languages guarded clauses are used to define
agents, while in our framework relations are defined by definite equivalences
and admissible guarded rules are logical consequences of the definitions. More-
over, committed-choice languages usually do not have a declarative semantics.
Maher [14] has given a declarative semantics for a strongly restricted class of
committed-choice languages, where guards must be mutually exclusive. This is



usually not the case for guarded rules, as can be seen in the list concatenation
example.

Guarded rules have some similarity with the demon predicates of CHIP [7],
but are much more general. First, demon predicates in CHIP are defined by
guarded rules only, while in our approach the relation is defined independently
by clauses. Second, in CHIP guards are restricted to positive tree patterns.
Third, in our approach guarded rules can be given for generating relations,
while in CHIP demon predicates are residuating by definition. And last not
least, CHIP does not even outline a declarative semantics for demon predicates.

In the presence of guarded rules, an atom in a goal is called determinate if it
either is determinate as defined before, or if it can reduce with a guarded rule.
Residuation is defined as before, except that it now relies on the stronger notion
of determinate atoms.

Residuation with guarded rules yields a surprisingly strong constraint prop-
agation mechanism, which we will illustrate with two further examples.

Consider the following relational definition of the Boolean “and” function:

and(X,Y,Z) & X=1AY =ZAbool(Y)
| X=0AZ=0Abool(Y)

bool(X) & X=1 |X=0.

First note that the definition of and in the presence of residuation already realizes
four implicit guarded rules:

X#10 and(X,Y,Z) > X=0AZ =0 Abool(Y)
Y#ZO and(X,Y,Z) > X=0AZ =0Abool(Y)
X#£00O and(X,Y,Z) b X=1AY =Z Abool(Y)
Z#£00 and(X,Y,Z) > X=1AY =Z Abool(Y).

The second and fourth rule could be optimized since under their guards we have
Y =1, but residuation will reduce bool(Y) anyway to Y = 1. By exploiting the
symmetry of and with respect to its first two arguments we obtain the admissible
guarded rules

Y#10O and(X,Y,Z) > Y=0AZ =0 A bool(X)

X#Z0O and(X,Y,Z) > X=1AY=0AZ=0

Y#0O and(X,Y,Z) > X=ZAY =1Abool(X).
By adding two further admissible guarded rules

X=Y 0O and(X,Y,Z) > X =ZAbool(X)

X#£Y O and(X,Y,Z) > Z =0 Abool(X) Abool(Y),

we obtain optimal constraint propagation.



For our next example assume that we want to solve a crossword puzzle. For
this task a predicate s(l, U, J, V) is useful that holds if and only if the I’s letter
of the word U is identical with the J’s letter of the word V. This predicate is
defined by

s(LU,J,V) & 1=1AU=HRAat(J,V,H)
| 1>1AU=HRAs(I—1,R,J,V)

at(LU,X) & I=1AU=XR
| I>1AU=HRAat(l-1,R X).

Now the goal s(2,U, J, V) reduces to
XY, W (U=XYWAaat(J,V,Y)),

which makes explicit that the word U consists of at least two characters. How-
ever, the symmetric goal s(l,U,2,V) does not reduce determinately. This can
be fixed by making the symmetry explicit with the admissible guarded rules

J<10 s(LU,J,V) > FH,R(J=1AV =HRAat(l,U,H))
J#10 s(LU,J,V) > GHR(J>1AV=HRAs(l,U,J—1,R))
~3H,R(V=HR) O s(,U,J,V) > —.

1.3 Nondeclarative Use of Guarded Rules

So far we have only seen admissible guarded rules, that is, guarded rules that
were logical consequences of the declarative semantics and whose operational
effect was compatible with the declarative semantics. However, the operational
semantics obtained by residuation and nonadmissible guarded rules is signifi-
cantly stronger than what can be captured by classical declarative semantics.
In fact, the object-oriented programming techniques developed for Concurrent
Prolog [16] become available if determinate atoms are selected for reduction
with a fair strategy.

For instance, an agent that reads two input streams X, Y and merges them
into one output stream Z can be defined by four nonadmissible guarded rules:

X,Y,Z
X,Y,Z
X,Y,Z
X,Y,Z

> Y=17
> 3U (Z = H.U A merge(R,Y, U))
> X=Z7
> 3U (Z = H.U A merge(X, R, U)).

X =nil O merge
X=H.RO merge
Y =nil O merge
Y =HRO merge

AA/_\/_\
— — e e

Operationally this merge agent will behave just right: as soon as a message
appears on one of the two input streams, it can fire and put the message on the
output stream.



It is easy to see that there is no relation merge such that the given guarded
rules are admissible. For merge this could be cured by modeling streams as bags
(i.e., lists whose order does not matter) rather than lists, but this would destroy
the declarative semantics of most stream consumers.

1.4 Rest of the Paper

The rest of the paper presents a simple and general framework for declarative
constraint logic programming with residuation and admissible guarded rules.
The complications of Jaffar and Lassez’s framework [11] are avoided by not
providing for negation as failure.

2 Reduction Systems

The abstract notion of a well-founded reduction system captures important
properties of logic programming. It builds on predicate logic in that 1t takes
for granted first-order structures and formulae with the usual connectives and
quantifiers. We assume that — (“falsity”) is a variable-free formula that is
invalid in every structure.

A reduction system consists of the following:

e a set of formulae called goals containing the trivial goal —
e a set of structures called models in which the goals are interpreted
e a set of equivalences G < G1 V...V G, called reductions such that:

— G and G4,..., G, are goals, and G # —
— G & GV VG, s valid in every model.

A reduction G & GG1 V...V G, applies to the goal G and no other goal. Typ-
ically, a reduction system contains many reductions with the same left hand
side, that is, more than one reduction applies to a goal. A reduction system can
be seen as a rewrite system, which allows to rewrite a disjunction of goals into
an equivalent disjunction of goals by replacing a goal according to a reduction.
The idea is to rewrite until no further reduction applies. The reduction systems
corresponding to logic programs are in general nonterminating, that is, there
are goals from which infinite rewrite derivations issue.

A reduction system can be separated into a declarative component given
by its goals and models, and an operational component given by its goals
and reductions.

We say that a goal G reduces in one step to GG/ and write G = G’ if
there exists a reduction G < Gy V...V G, such that G' = G; for some i. We
say that a goal G reduces to G' if G =* G’, where =* is the reflexive and
transitive closure of =.



An interpretation is a pair consisting of a model A and a variable valuation
« into A. A solution of a goal (i is an interpretation (A, ) such that G is
valid in A under a. A goal is satisfiable if it has at least one solution.

An answer is a goal to which no reduction applies. Note that — is always
an answer (the trivial answer). An answer for a goal (G is an answer G’
such that G =* G’. A set of answers for a goal (G is complete if it contains for
every solution o of G an answer G’ such that ¢ is a solution of G’.

The computational service to be provided by a reduction system is solv-
ing of goals, that is, enumeration of a complete set of answers for a given goal.
The declarative component of a reduction system specifies a class of problems,
where every goal corresponds to a particular problem instance, and the solutions
of the goal are the solutions of the problem instance. The operational compo-
nent of a reduction system specifies a method for solving problem instances,
where solving means to enumerate a complete set of answers.

A reduction system 1s well-founded if there exists a well-founded or-
dering on pairs of goals and interpretations such that for every reduction
G+ G V...V, and every solution o of GG there exist an 7 = 1,...,n such
that (G, ) > (G4, 0) and o is a solution of GG;. A well-founded reduction system
has two important properties:

e every goal has a complete set of answers

o a complete set of answers for a goal G can be enumerated as follows: if no
reduction applies to GG, then {G} is a complete set of answers; otherwise,
choose don’t care any reduction G < G1V ...V G, and solve the goals
G1,...,G, in parallel.

We will see that every Horn clause program yields a well-founded reduction
system.

A reduction is determinate if its right hand side is a single goal. We say
that G reduces determinately to G’ if G reduces to G’ using only determi-
nate reductions. If G reduces determinately to G’, then G and G’ have exactly
the same solutions. A reduction system is determinate if it has only determi-
nate reductions. Note that in well-founded and determinate reduction systems
there exist no infinite reduction chains G = (G; = G2 = G5 - - issuing from a
satisfiable goal G

A reduction system is terminating if there exists no infinite chain
G = G1 = Gy = G3= - of reduction steps. Note that a terminating reduc-
tion system is always well-founded, but not vice versa. Even a well-founded and
determinate reduction system may not terminate on unsatisfiable goals.

3 Constraint Systems

A constraint system is a terminating and determinate reduction system whose
goals are closed under conjunction, existential quantification, and variable re-



naming. In a constraint system we call the goals constraints, the answers
simplified constraints, and the process of reducing a constraint to a simpli-
fied constraint comstraint simplification. Note that in a constraint system
one can compute for every constraint a simplified constraint. Moreover, if a
constraint simplifies to the trivial constraint —, it must be unsatisfiable. A con-
straint system is called complete if a constraint is unsatisfiable if and only if it
simplifies to —. Thus constraint simplification in a complete constraint system
is a decision algorithm for satisfiability of constraints.

The operational component of a constraint system is called a constraint
simplifier, and the operational component of a complete constraint system is
called a constraint solver. Our framework for constraint logic programming
does not require that the underlying constraint system is complete. Given a
set of constraints with the corresponding models, one may prefer in practice
an incomplete constraint simplifier since a (tractable) constraint solver may not
exist.

Our notion of a constraint system is deliberately very general: every set
of formulae with a corresponding class of models can be seen as a constraint
system if we provide no reductions and close the formulae under conjunction,
existential quantification and variable renaming. Such trivial constraint systems
providing no computational service are of course not what we want in practice.

4 Definite Construction

We now introduce definite construction, which is the principle underlying con-
straint logic programming. We obtain a very simple framework for constraint
logic programming with residuation. The two theorems given in this section are
consequences of the results in [10].

We assume that a constraint system and a set of definite relation symbols
are given, where the definite relation symbols take a fixed number of arguments
and do not occur in the constraint system.

An atom takes the form r(zy, ..., 2,), where r is a definite relation symbol
taking n arguments and z1, ..., x, are pairwise distinct variables. A definite
goal takes the form

3X (6 AR),

where X 1s a possibly empty set of existentially quantified variables, ¢ is a con-
straint, and R is a possibly empty conjunction of atoms. Note that the definite
goals containing no atoms are exactly the constraints. A definite equivalence
takes the form

AHGl\/...\/Gn,

where A is an atom and G4, ..., G, are definite goals called the clauses of A.
A definite specification is a set of definite equivalences containing for every

10



definite relation symbol r exactly one equivalence with r appearing at the left
hand side.

In the following we assume that a definite specification is given. Moreover,
we assume that ¢ and ¢ range over constraints, A over atoms, R over possibly
empty conjunctions of atoms, and G over definite goals. We will construct a
reduction system for definite goals by defining definite models (the declarative
semantics) and definite reductions (the operational semantics).

For convenience, we will often refer to definite goals simply as goals.

A definite structure is a structure that can be obtained from a model of
the constraint system by adding interpretations for the definite relation sym-
bols. Definite structures are partially ordered as follows: A < B iff A and
B extend the same constraint model and 74 C B for every definite relation
symbol r. A definite quasi-model is a definite structure that is a model of
the definite specification. A definite model is a minimal definite quasi-model.
The following theorem validates our declarative semantics.

Theorem 4.1 For every model of the constraint system there exists exactly one
definite model extending 1it.

Next we define the operational semantics. We assume that the order in
which atoms are written in a definite goal does not matter.

An equivalence G < D is a definite reduction iff the following conditions
are satisfied:

e G =3X(¢ AN AA R) is a definite goal

o A« VI3V (¢; A R;) is obtained from a definite equivalence of the
definite specification by variable renaming such that only the variables in

A are shared with ¢

e obtain for every clause 3Y; (¢; A R;) of the definite equivalence the goal

G:=1_ if ¢ A ¢; simplifies to —
T AX VY (i AR AR) I ¢ A ¢y simplifies to iy #£ —

e D is the disjunction of all G; # —; if all G;’s are —, then D = —.

Note that our definition of definite reductions corresponds exactly to SLD-
resolution [13] for the special case of Horn clauses.

Given a constraint system C and a definite specification D over C, we define
R(C,D) as the reduction system whose goals are the corresponding definite
goals, whose models are the corresponding definite models, and whose reductions
are the corresponding definite reductions together with the reductions of the
constraint system C. It is easy to verify that R(C,D) is in fact a reduction
system.

11



Theorem 4.2 R(C,D) is a well-founded reduction system whose answers are
exactly the simplified constraints.

It is now straightforward to build in residuation. We only have to discard
unnecessary indeterminate reductions:

e discard all indeterminate reductions for goals that do have determinate
reductions

e discard all indeterminate reductions obtained by reduction upon a resid-
uating atom (an atom whose relation is not declared generating).

Let us call the thus obtained reduction system R*(C, D, G), where G is the set of
generating relation symbols. Clearly, R*(C, D, G) is still a well-founded reduc-
tion system. Moreover, let R*(C, D) be the reduction system R*(C, D, G) where
all definite relations are declared generating. Then R*(C,D) is well-founded
and has again exactly the simplified constraints as answers (follows immediate-
ly from the above theorem). The important difference between R(C,D) and
R*(C,D) is that R*(C, D) has significantly smaller search spaces (even for the
case of Horn clauses), a fact that has only been realized recently in the Andorra

model [8, 9].

5 Guarded Rules

Let a constraint system C and a definite specification D over C be given. A
guarded rule is a formula

¢ = (A eG),

where ¢ is a constraint (called the guard), A is an atom, and G is a definite
goal. A guarded rule is admissible if it is valid in every definite model.

Let F be a set of admissible guarded rules. Then G <+ G is called a forward
reduction iff the following conditions are satisfied:

e G =3X(¢ AN AA R) is a definite goal

e = (A & 3Y (¢ AR)) is obtained from a guarded rule in F by variable
renaming such that only the variables in the atom A are shared with G

e & A - is a constraint that simplifies to —

e (=17 if ¢ A ¢' simplifies to —
T 3AXUY (¢ AR AR) if ¢ A ¢ simplifies to ¢ # —.

If ¢ A=ty simplifies to —, then ¢ entails ¢, that is, the implication ¢ — 1 1s valid
in every model of the constraint system. Moreover, if the constraint system is
complete, then ¢ A =) simplifies to — if and only if ¢ entails 1.

12



The reduction system R(C,D,F) is obtained from R(C,D) by adding the
forward reductions defined by the admissible guarded rules in F. It is easy
to verify that R(C, D, F) is in fact a reduction system, and that every goal of
R(C,D,F) has a complete set of answers.

In general, R(C, D, F) is not well-founded; consider, for instance, the admis-
sible guarded rule -— — (A & A). It is the responsibility of the programmer
to design the guarded rules in F such that R(C, D, F) is well-founded. Further
research is necessary to find good sufficient conditions for the well-foundedness
of R(C, D, F).

Residuation for R(C, D, F) is defined as before.

6 Conclusions

Residuation is a control strategy for CLP meant to replace the rigid depth first
strategy of Prolog, which amounts to eager generation of usually wrong assump-
tions. Residuation makes determinate reduction the rule and indeterminate re-
duction the exception that must be requested explicitly by declaring relations as
generating. Consequently, residuation may produce complex answers containing
residuated atoms.

Guarded rules are logical consequences of programs adding otherwise un-
available determinate reductions. Together with residuation guarded rules yield
a general and powerful constraint propagation mechanism resulting in drasti-
cally smaller search spaces.

Residuation overcomes the strictly sequential computation strategy of Pro-
log. With residuation every determinate atom can be reduced next, which
amounts to multiple threads of computation if a fair selection strategy is used.

The operational semantics of residuation and nonadmissible guarded rules is
more expressive than what can be captured by classical declarative semantics.
In fact, the object-oriented programming techniques developed for Concurrent
Prolog [16] can be expressed.

Topics for further research include: investigation of abstract incrementality
properties ensuring efficient implementation if satisfied by constraint simplifiers;
design of an abstract machine separating control from constraint simplification;
and investigation of parallel reduction strategies.

Acknowledgments. The research reported in this paper was
inspired by my collaboration with Hassan Ait-Kaci and Andreas
Podelski on the semantics of LIFE. I'm also thankful to Ralf
Scheidhauer who contributed to the examples.

13



References

(1]

[2]

[3]

[4]

[5]

[6]

[7]

[13]

H. Ait-Kaci and R. Nasr. Integrating logic and functional programming.
Lisp and Symbolic Computation, 2:51-89, 1989.

K. Clark. Negation as failure. In H. Gallaire and J. Minker, editors, Logic
and Databases, pages 293-322. Plenum Press, New York, NY, 1978.

K. Clark and S. Gregory. PARLOG: Parallel programming in logic. ACM
Transactions on Programming Languages and Systems, 8(1):1-49, 1986.

K. L. Clark and F. G. McCabe. The control facilities of IC-PROLOG. In
D. Mitchie, editor, Expert Systems in the Micro-Electronic Age. Edinburgh
University Press, Edinburgh, Scotland, 1979.

A. Colmerauer. An introduction to PROLOG IIl. Communications of the
ACM, pages 70-90, July 1990.

A. Colmerauer, H. Kanoui, and M. V. Caneghem. Prolog, theoretical prin-
ciples and current trends. Technology and Science of Informatics, 2(4):255—

292, 1983.

M. Dincbas, P. Van Hentenryck, H. Simonis, A. Aggoun, T. Graf, and
F. Berthier. The constraint logic programming language CHIP. In Pro-
ceedings of the International Conference on Fifth Generation Computer

Systems FGCS-88, pages 693-702, Tokyo, Japan, Dec. 1988.

S. Haridi. A logic programming language based on the Andorra model.
New Generation Computing, 7:109-125, 1990.

S. Haridi and S. Janson. Kernel Andorra Prolog and its computation model.
In D. Warren and P. Szeredi, editors, Logic Programming, Proceedings of
the 7th International Conference, pages 31-48, Cambridge, MA | June 1990.
The MIT Press.

M. Hohfeld and G. Smolka. Definite relations over constraint languages.
LILOG Report 53, TIWBS, IBM Deutschland, Postfach 80 08 80, 7000
Stuttgart 80, Germany, Oct. 1988.

J. Jaffar and J.-L. Lassez. Constraint logic programming. In Proceedings
of the 14th ACM Symposium on Principles of Programming Languages,
pages 111-119, Munich, Germany, Jan. 1987.

J. Jaffar and S. Michaylov. Methodology and implementation of a CLP
system. In J.-L. Lassez, editor, Proceedings of the 4th International Con-
ference on Logic Programming, Cambridge, MA | 1987. The MIT Press.

J. W. Lloyd. Foundations of Logic Programming. Symbolic Computation.
Springer-Verlag, Berlin, Germany, 1984.

14



[14] M. J. Maher. Logic semantics for a class of committed-choice programs.
In J.-L. Lassez, editor, Logic Programming, Proceedings of the Fourth
International Conference, pages 858-876, Cambridge, MA, 1987. The MIT
Press.

[15] L. Naish. Automating control for logic programs. Journal of Logic Pro-
gramming, 3:167-183, 1985.

[16] E. Shapiro and A. Takeuchi. Object oriented programming in Concurrent
Prolog. New Generation Computing, 1:24-48, 1983.

15



