
Off-Line Scheduling of a Real-Time System

Klaus Schild
Daimler-Benz AG

Research & Technology
Alt-Moabit 96a, D-10559 Berlin, Germany

e-mail: schild@DBresearch-berlin.de

Jörg Würtz
Programming Systems Lab, DFKI

Stuhlsatzenhausweg 3, D-66123 Saarbrücken
Germany

e-mail: wuertz@dfki.de

Keywords
Constraint Programming, Time-triggered real-time sys-
tems, Scheduling.

ABSTRACT

This paper shows how a recently introduced class of ap-
plications can be solved by constraint programming. This
new type of application is due to the emergence of special
real-time systems, enjoying increasing popularity in such
diverse areas as automotive electronics and aerospace in-
dustry. These real-time systems are time triggered in the
sense that their overall behavior is globally controlled bya
recurring clock tick. For this off-line scheduling problema
potentially indefinite, periodic processing has to be mapped
onto a single time window of a fixed length. We make this
new class of applications amenable to constraint program-
ming. We describe which traditional scheduling and real-
time computing techniques led to success and which failed
when confronted with a large-scale application of this type.
Global constraints were used to reduce memory consump-
tion and to speed up computation. An elaborate heuristic,
borrowed from Operations Research, was employed to solve
the problem. Furthermore, we show that mere serialization
is sufficient to find a valid schedule. The actual implemen-
tation was done in the concurrent constraint programming
language Oz.

Introduction

There is a growing number of distributed real-time applica-
tions whose processing must obey a strictly regular pattern,
and so must the communication involved. Exactly for this
type of application, a particular class of architectures has
been devised, the so-calledtime-triggered architecture[12].
The termtime triggeredrefers to the fact that the overall be-
havior of the system is controlled by a recurring clock tick,
the only event which may invoke any action. Time-triggered
architectures fit especially the needs of safety-critical appli-
cations. This special type of architecture proved to be suc-
cessful in such diverse areas as automotive electronics and
aerospace industry.

Being able to compute an appropriate pre-runtime sched-
ule automatically is the major challenge for a time-triggered
architecture. What makes this specific off-line scheduling
problem somewhat untypical is that a potentially indefinite,
periodic processing has to be mapped onto a single time
window. This time window determines the overall behavior
of the system. Take a thermostat processT10, transmitting at
a frequency of 10Hz the particular temperature chosen to a
controllerC10. Let this controller respond with exactly the
same frequency, reporting potential malfunctioning. This
induces a cyclic dependency which is explicitly allowed. If
two application processes are allocated to different proces-
sors, then the only way for them to communicate with each
other is a common data bus. All inter-processor messages
must therefore be broadcasted through this data bus. A fur-
ther restriction is that this bus is not able to transmit more
than one message at a time.

Let us furthermore assume that there is a second controller,
call it C20, which gets at a frequency of 20Hz fresh data
from a certain sensorS20. In this case, however, the com-
munication is one-way only. We assume thatS20 andC20
are hosted by different processors. In particular, letS20 re-
side on the same processor asT10, whileC20 shares its host
with C10. The off-line scheduling problem then consists in

mapping these quite different communication patterns onto
a single time window, with no preemption being allowed.
When repeated indefinitely, this time window should pro-
duce the intended overall behavior. Fig. 1 depicts a proper
time window which does achieve this.

processor 1

data bus

processor 26 � latency

fixed time window 0.1s

@@RT10 ��� ���C10 @@R @@RS20 ��� ���C20S20 ��� ���C20���
Figure 1: A sample repetition window

There may also be relative timing constraints between pro-
cesses allocated to different resources. Constraints of this
sort are calledlatencies. Fig. 1 includes such a latency be-
tweenS20 andC20. This latency is an admissible upper
time bound on the time which may pass between the start
of S20 and the termination ofC20, with the actual message
passing in between. This is to guarantee that the relevant
information processing is completed within the time bound
specified.

These uncommon characteristics make this off-line schedul-
ing problem a challenging new application domain. Only
a few approaches exist to tackle similar problems. For an
overview, especially on applications in the automotive in-
dustry, see [6]. The real-time applications tackled by con-
straint techniques are usually small on-linescheduling prob-
lems rather than off-line problems; see e.g. [19].

To the authors’ knowledge, however, it is the first time that
constraint techniques are applied to a time-triggered archi-
tecture. We modeled the relevant off-line scheduling prob-
lem with the help of the constraint programming language
Oz, developed at the DFKI [18]. The actual problem that
we solved was part of a large-scale industrial application.It
involves a finite domain of 6 million different starting times,
over 2,000 processes and messages, and more than one mil-
lion constraints created during the solution search.

The contributions of this paper are as follows. We compare
different techniques to solve traditional scheduling prob-
lems and real-time applications and show for the present
case which techniques lead to success and which fail. We
make use of global constraints in form of a single computa-
tional agent that constrain up to more than a thousand vari-
ables simultaneously. These global constraints significantly
reduce the number of constraints that are active at a time.
Search strategies coming from traditional real-time appli-

cations and Operations Research are tested. Only a recent
strategy from Operations Research proves to be successful
in solving the actual application. We show that it is suffi-
cient to find a total ordering of the processes and messages
to construct a valid schedule. We furthermore show that
the usual criterion of utilization (or load) is insufficientfor
a bottleneck analysis for the application at hand. To solve
problems of that size, it is important that redundant con-
straints are garbage collected as soon as possible.

The paper is organized as follows. The following section
gives the details of the specific off-line scheduling prob-
lem to be tackled. The third section then briefly intro-
duces the basics of constraint programming. The fourth sec-
tion shows how the scheduling problem can be captured by
finite-domain constraints. An elaborate search heuristic is
included as well. The fifth section demonstrates that this
heuristic enables us to solve even large-scale industrial ap-
plications. The paper closes with a brief discussion of the
results obtained.

The Scheduling Problem

This section gives a description of the scheduling problem
that we solved. Due to space limitations we completely ig-
nore the possibilityof asynchronous communication. Asyn-
chronousness refers to all those cases where the sender’s
frequency is different from that of the receiver. An in-depth
treatment of this topic can be found in the full version of
this paper, which will be published as a technical report.

The whole problem is about off-line scheduling of a special
class of multi-processor systems with only a single data bus.
For the present purpose, it suffices to treat amulti-processor
systemjust as a finite number of processors—the data bus
will be considered later on. Allocated to each processor
there is a finite number of differentapplication processes
(orprocessesfor short). Each process is allocated to exactly
one processor, called thehost of the process. A process
can be executed on its host only. It may, of course, be exe-
cuted more than once. A particular execution of a process,P , is denoted byPi, for an indexi � 1. Every such pro-
cess execution has a non-negativestarting time, start(Pi).
The duration of different executions of a particular process
is always the same. Thus each particular processP has al-
located to it a specific non-negative numberdur (P), its ex-
ecution time. The execution times of two processes may, of
course, differ. Thecompletion timeof an execution,Pi, is
then uniquely determined by a simple calculation:compl (Pi) = start(Pi) + dur (P): (1)

We thereby implicitly assume that no execution of a process
may ever be preempted.

A specific process,P , can either beperiodicor aperiodic.
If it is periodic, it must be invoked with a certain frequency.

The reciprocal value of this frequency is called theperiod
of P , or simplyperiod(P). A frequency of 10Hz, for in-
stance, results in a period of exactly 0.1 seconds. The dis-
tance in time between the starting points of two consecutive
executions of a particular process must always agree with
the period of that process. Therefore, we have the following
isochronousness condition:start(Pi) = start(Pi�1) + period (P); for i � 2: (2)

This condition, however, does make sense only whenperiod(P) � dur(P): (3)

In practice, the period of a process is not only expected to be
always greater than its execution time, but it is even much
more greater.

We assume that the overall control of a multi-processor sys-
tem is organizeda priori as a fixed time window. It is ex-
actly this time window which, when invoked indefinitely,
will deterministically control the behavior of the overallsys-
tem. This time window is called therepetition window. The
length of the repetition window is called thecycle timeCT .
This length should, of course, be chosen such that every pe-
riodic process fits into the repetition window without run-
ning out of phase. Not only the isochronousness condition
(2) has to be metwithin the repetition window itself, but
the unraveled version of the repetition window must obey a
similar condition as well (see Fig. 2). There is a simple way
to accomplish this: just identify the cycle time with the least
common multiple of all periods used. This is not an unusual
approach to off-line scheduling of periodic processes, see
e.g. [5]. The approach works as follows. A periodic pro-
cess,P , has to be executed exactlyn = CTperiod(P) times
within the repetition window. Let the relevant executions beP1; :::; Pn. If all these executions meet the isochronousness
condition (2), then the distance in time betweenstart(P1)
andstart(Pn) is exactly(n� 1) � period(P). But then, the
distance in time betweenstart(Pn)within the current repe-
tition window andstart(P1) within the subsequent cycle isCT � (n�1) �period(P). This yields exactlyperiod(P) ifn = CTperiod(P) . This proves that also the unraveled version
of the repetition window satisfies the isochronousness con-
dition if only, within the repetition window itself, (2) holds
and there is a number of CTperiod(P) executions ofP .

An aperiodic process,P , is treated as if it had a period ofperiod(P) = CT . This means that during every invoca-
tion of the repetition window an aperiodic process gets the
opportunity to work exactly once.

We require all executions of a process, whether periodic
or aperiodic, to be scheduled within the repetition window.
This is what we have implicitly assumed so far. We thus
impose the following general upper time bound:compl(Pi) � CT: (4)

If two processes share a common host, none of their exe-
cutions may overlap in time. This means that two process
executions may work in parallel only if they are hosted by
different processors. A single processor, however, does al-
low only sequential executions, all executions running on it
must therefore be serialized in the following way:compl (Pi) � start(Qj) or compl(Qj) � start(Pi) (5)

wheneverP andQ (P 6= Q) have the same host:
Note that for a single process serialization is already guaran-
teed by the isochronousness condition (2). The disjunctive
constraint above, therefore, does not include the case whereP andQ are identical.

Perhaps it is worthwhilenoting that this type of serialization
constraint is not as harmless as one might think. This is be-
cause the number of constraints (5) increases quadratically
in the number of application processes.

Inter-Processor Communication

If two processes have different hosts, the only way for them
to communicate with each other is to broadcast amessage
through a common data bus. There is only one such data
bus available and all processors are connected to it. Two
processes sharing the same host are able to communicate
directly with each other.

Any message has exactly onesender, but may have multiple
receivers. In each particular case, the sender is a process,
just like all the receivers. If at least one of the receivers has
another host than the sender, then the relevant message is an
inter-processor message; otherwise it is anintra-processor
message.

Associated with each messageM , there is a non-negative
numberdur (M), thetransfer timeof M . If M is an intra-
processor message, thendur (M) is always 0.

There is a special type of inter-processor message which has
neither any sender nor a particular receiver. It is a broadcast
message to adjust the local clocks of the processors, called
a resynchronization message. For convenience, we assume
a dummy sender and a dummy receiver for this special kind
of message. Both the sender and the receiver can be hosted
by any processor if only they are not hosted by the same
processor. Their relevant execution times are set to 0. The
transfer time of this special broadcast message is very short,
while its frequency—that is, the frequency of its dummy
sender—is very high, typically some 1.000Hz.

An actual transmission of a single message,M , is denoted
by Mi, for an indexi � 1. Each such transmission has
a particular starting time and a completion time,start(Mi)
andcompl (Mi) for short. Similar as for process executions,
the completion time of a message transmission depends on

CTperiod(P) period(P) period(P) period(P)P1 P2 P3 Pn CTP1 P2 P3 Pn
Figure 2: The wrapping over the repetition window

its starting time and the relevant transfer time:compl(Mi) = start(Mi) + dur (M): (6)

If S is the sender ofM , then there must be a sequence of
transmissionsM1; :::;Mn with n = #S, no matter whether
it is an inter-processor or an intra-processor message. This,
of course, applies to the synchronous case only. In this case,
a message is always transferred with exactly the same fre-
quency as its sender is executed. For asynchronous com-
munications, this is not necessarily the case. In the syn-
chronous case, however, the frequency of the message does
always coincide with that of its sender:start(Mi) = start(Mi�1) + period(S); for i � 2: (7)

Any message transmission, of course, must obey the general
upper time bound, too:compl(Mi) � CT: (8)

It is not necessary for a message to be transferredimmedi-
ately after the sender terminated; rather, a single message
can be buffered as long as no fresh version of this mes-
sage arives. However, whatis necessary is that a message is
never transferred before the relevant execution of the sender
terminated: compl(Si) � start(Mi): (9)

There is no similar precedence constraint between the mes-
sage transmission and its actual receiver. That is to say, ifRj is one of the actual receivers ofMi, then no constraint
of the formcompl(Mi) � start(Rj) is imposed. This is
becauseRj may be postponed until the subsequent invoca-
tion of the repetition window, in which caseRj would typ-
ically occur at the beginning of the repetition window. In
a cyclic communication pattern this is even necessarily so.
Take the particular cyclic communication pattern depicted
in Fig. 3. Here,P sends a message toQ, which in turn
sends a second message back toP . If the two processes
have the same frequency, then the actual receiver of the sec-
ond messagecannotbe scheduled after the message trans-
mission, at least within the current cycle of the repetition
window. In this case,P would occur twice within the repeti-
tion window and, therefore, would have twice the frequency
of Q. This is why the second message will be received only
within the subsequent cycle of the repetition window. As
a matter of fact, there is no precedence relation between

data bus

processor 1

processor 2CT@@R P1 ��� M1��� Q1 @@R N1 @@R
Figure 3: Postponing the receiver of a message

a message transmission and potential receivers. They may
even overlap in time, in which case theactualreceivers are
again postponed until the subsequent repetition cycle.

Whatis required is that a transmission of a message must be
scheduled before the next execution of its sender (if there is
any): compl(Mi) � start(Si+1):
However, there is no need to impose this condition explic-
itly. This is because it already follows from (7)–(9), together
with the fact that there are always as many transmissions ofM as there are executions ofS.

The data bus can always transfer only one message at a time.
Thus all transmissions through the data bus have to be seri-
alized:compl (Mi) � start(Nj) or compl(Nj) � start(Mi) (10)(M andN (M 6= N) are inter-processor messages)
For intra-process messages, it is not necessary to explicitly
rule out any mutual overlapping in time. This is because
their transfer time is always 0.

Latencies

For a real-time system it is important that critical informa-
tion is guaranteed to be processed within certain time limits.
If a process sends a message to a second process, then it may
be important to guarantee that the overall information pro-
cessing never exceeds a certain period of time. In particular,
it is convenient to specify an upper bound for the admissi-
ble period of time which may pass between the generation
of the information by the sender and its full processing by
the receiver, with the actual exchange of the information in

data bus

processor 1

processor 2CT� latency(M;Q)compl(P1) CT � start(Q1)@@R P1 ��� M1��� Q1 @@R N1 @@R
Figure 4: Latencies

between. We call an upper bound on exactly this period of
time a latency. The specific value of a latency depends not
only on the message itself, but also on the particular receiver
of that message. This is because the receivers might differ
in their criticality as well. The particular value of such a la-
tency is henceforth denoted bylatency(M;R), whereR is
one of the receivers ofM . If S is the sender of that message,
we have the following relative timing constraint:compl(Ri)� start(Si) � latency(M;R):
Fig. 4 shows a sample latency, constraining the admissible
distance in time betweenstart(P1) andcompl (Q1).
Notice that this type of latency condition presupposes that
theith transmission ofM is actually received by theith exe-
cution ofR. This can only be guaranteed for a synchronous
communication, for which the frequency of the sender does
not differ from that of the receiver.

The latency condition above, however, does not cover all
relevant situations, even with only the synchronous case
taken into consideration. To see this, consider again Fig. 4.
Not only doesP send the messageM to Q, butQ sends
alsoN back toP . The actual receiver ofM1 is Q1. Here,
the latency constraint form above works perfectly well. The
actual receiver ofN1 is P1. P1 does not occur afterN1 be-
cause the actual receiver ofN1 is postponed until the sub-
sequent repetition cycle, a case which is not covered by the
latency condition above. In this case, a proper latency con-
dition should be thatCT � start(Q1) + compl (P1) must
not exceedlatency(N;Q) (see also Fig. 4). In the general
case, a proper latency condition has to take into account
both cases. This looks as follows. LetS be the sender of
a messageM . For every receiver,R, of this message, we
have:

If start(Ri) � compl(Mi)
then compl(Ri)� start(Si) � latency(M;R)
else CT � start(Si) + compl(R1) � latency(M;R):(11)

Such a latency constraint is, of course, only imposed if the
transferred information is critical.

These are all the constraints we are considering. Now, sup-
pose we are given a particular multi-processor system. The

scheduling problemthen consists in finding for each sin-
gle process execution and message transmission a particular
starting time such that the constraints introduced above are
simultaneously satisfied. In a time-triggered architecture,
the time scale is a discrete one, dictated by the recurring
global clock tick. The frequency of the global clock coin-
cides with that of the common data bus.

Constraint Programming

The problem under investigation was solved with the help of
finite-domain constraints. The specific constraint language
we used is Oz [18].

A finite-domain constraintis a first-order formula over a
number of variables, each of which may take a specific
value out of a finite set of non-negative integers, called a
finite domain. In Oz, a distinction is made between con-
straints which arebasicand those which are not. Only basic
constraints may reside in the globalconstraint store. This
is to guarantee that the satisfiability of the entire constraint
store can always be decided efficiently, just like the ques-
tion whether an arbitrary basic constraint is entailed by the
current store or not [16]. The simplest form of a basic con-
straint isx 2 D, whereD can be an arbitrary finite domain.
A basic constraint of this type is also referred to as ado-
main constraint. In this paper, we consider only two other
types of basic constraints. These are of the formx = y andx = n, wheren can be an arbitrary non-negative integer.

As is well-known, deciding the satisfiability of nonbasic
constraints such asx+ y = z is computationally intractable
(because graph-coloring problems can be encoded, for ex-
ample). This is why in Oz such nonbasic constraints do
not reside in the global constraint store. Instead, a non-
basic constraint is imposed by what is called apropaga-
tor. This propagator implements the effects of the rele-
vant constraint. It is a computational agent that tries to
narrow down the domains of variables by adding appro-
priate basic constraints to the constraint storeS. Take a
propagator for a nonbasic constraint,�. This propagator
may impose a basic constraint not yet entailed byS, say�, if � is entailed byS [f�g. In addition, of course,S [f�g has to be satisfiable. If, for example,S consists
of the basic constraintsx 2 f1; :::; 10g; y 2 f1; :::; 10g andz 2 f1; :::; 10g, then a propagator forx+ y = z might addx 2 f1; :::; 9g; y 2 f1; :::; 9g, as well asz 2 f2; :::; 10g to
the current constraint store. The termconstraint propaga-
tion refers to advancing the constraint store in this manner.
A propagator for a constraint,�, signals inconsistency as
soon as it is realized that� is inconsistent with the con-
straint store.

A finite-domain problemis a finite set of finite-domain con-
straints such that for each variable occurring in a constraint
there exists at least one domain constraint. Asolutionto a

finite-domain problem is a specific mapping which assigns
a single non-negative integer to each variable such that all
constraints are satisfied simultaneously.

Constraint propagation alone is often not sufficient for de-
termining a solution. A solution for a finite-domain prob-
lem,�, can be obtained, anyway, if a list of (not necessarily
basic) constraints�1; : : : ; �n is chosen. Instead of solving
the original problem, it is then tried to solve at least one
of the stronger problems� [f�1g; : : : ;� [f�ng. In this
case, we say thatwe branch with�i in �. Examples for�i might bex = 1 andx > 1. Such a modification of
the original problem is perfectly admissible, in that a solu-
tion for � [f�ig is always a solution for� as well. The
sequence of problems� [f�ig can simply be examined
one after the other, so that� [f�ig is touched only if all
preceding alternatives lead to an inconsistency. In general,
the choice of the constraints to branch with, including the
specific ordering in which they are examined, is called a
branching strategy. To maximize the available information
for any strategy, branching does not take place before con-
straint propagation has reached a fixed point. Solving a con-
straint problem thus consists in a sequence of interleaving
propagation and branching steps.

In Oz, a propagator for a constraint� ceases to exist as soon
as it is realized that� is entailed by the constraint store. The
propagator is then automatically garbage collected by the
system itself. This will turn out to be an important feature
for being able to cope with the present problem.

A Solution to the Problem

This section explains how constraint programming can be
used to solve the scheduling problem at hand. Such a solu-
tion always has two parts to it. The starting point is to recast
the relevant problem in terms of formal constraints. This is
not too difficult in the present case, but we have to con-
sider efficiency and memory consumption. The next step is
to choose a particular branching strategy, whichis difficult
in the present case. We shall not only describe the branch-
ing strategy which ultimately led to success, but also men-
tion some of those that failed. It is difficult to say whether
these results are specific to the actual constraint language
that we used. Anyway, we hope that the results will give
other programmers some helpful hints how to tackle similar
problems.

The Constraints

The starting time of a process execution,Pi, can well be
captured by a finite-domain variable and so can the starting
time of a message transmission,Mj. For convenience, these
variables are also denoted bystart(Pi) andstart(Mj) re-
spectively. Because the cycle timeCT is typically only a

fraction of a second, the initial domains should be chosen
carefully. The smallest relevant time unit is the reciprocal
of the frequency� of the global clock. This is exactly the
general time unit that we use. The starting times are then
initialized as follows:start(Pi) 2 f0; : : : ; CT � dur(P)g;start(Mj) 2 f0; : : : ; CT � dur(M)g:
The completion times are not introduced explicitly; rather,
terms of the formstart(Pi) + dur(P) or start(Mj) +dur(M) are used to replace them. This is to reduce the
overall number of finite-domain variables.

The specific domains that we associated withstart(Pi)
and start(Mj) clearly guarantee that neithercompl(Pi)
nor compl (Mj) may ever exceedCT , thus satisfying con-
straints (4) and (8). The remaining constraints of the second
section then form ordinary finite-domain constraints. The
only exceptions are latency and serialization constraints.

Serialization Constraints

The constraint (5), pairwise serializing all process execu-
tions on a specific host, is adisjunctive constraint. It in-
volves two possible alternatives. Of exactly the same nature
is (10), serializing the communication through the data bus.
Constraints of this sort can be handled, anyway, if the con-
straint language allows to reflect the truth value of a con-
straint into a 0/1 variable, see e.g. [15, 11, 10]. In Oz this
kind of reflection is calledreification. Take (5). A proper
reification is as follows. First define two 0/1 variables,
never taking the value 1 at the same time:B1 2 f0; 1g,B2 2 f0; 1g, andB1 + B2 = 1. Then state the following
nested constraint.(B1 = 1) $ �start(Pi) + dur(P) � start(Qj)�;(B2 = 1) $ �start(Qj) + dur(Q) � start(Pi)�:
This reification captures exactly the meaning of (5). To see
this, assume that one of the alternatives, say,start(Pi) +dur(P) � start(Qj) becomes inconsistent with the current
constraint store.B1 is then set to 0 and, therefore,B2 to 1.
But then, the second alternative is immediately invoked.

In Oz this reification can also be phrased somewhat more
succinctly:�start(Pi) + dur (P) � start(Qj)� +�start(Qj) + dur (Q) � start(Pi)� = 1
But even with this succinct form used, we need altogethern�(n�1)2 reified constraints to serializen process executions,
and similar for message transmissions. Such a naive ap-
proach works well as long asn is comparatively small. With
a number of about 1,800 message transmissions, a number
we were faced with, this is no longer feasible. It is true that,

in the course of the computation, many of these reified con-
straints can eventually be garbage collected; a large number
of them will nevertheless exist for quite a long time.

Such an excessive memory consumption can be avoided by
a special type of constraint, reasoning on a large set of vari-
ables simultaneously. A constraint of this kind is called
global. In some cases, global constraints do not only save
memory, but improve also the overall run-time. This might
even happen when a global constraint does nothing more
than mimicking the propagation of a host of non-global con-
straints like the reified ones from above. Instead of main-
tainingO(n2) propagators only a single (global) propaga-
tor needs to be maintained by the underlying runtime sys-
tem. We dealt with the constraints (5) and (10) in exactly
this way. Given an arbitrary number of items, the relevant
global propagator mimics the pairwise serialization of these
items, without the full computational burden of the orig-
inal pairwise serialization. The global propagator essen-
tially considers successively each pair of items and checks
whether any clause of the corresponding disjunction is dis-
entailed. In this case it imposes the right basic constraints
implied by the remaining clause. The propagator was cre-
ated with the help of a special interface, the so-called con-
straint propagator interface of Oz [14] and is available as
FD.schedule.serializedDisj. This interface makes it
possible to create new propagators efficiently.

This serialization propagator does not employ any domain-
specific information other than that of a linear time scale.
Global constraints, however, may also employ more elab-
orate propagation techniques for domain-specific purposes.
Applegate and Cook [1] proposed such a technique, called
edge finding, see also [3]. Variants of this technique en-
joy a run-time which essentially grows quadratically in the
number of items to be serialized. In computational terms,
even these more efficient variants are yet more expensive
than the global constraint described above. For certain prob-
lems, however, edge finding may lead to a drastic reduction
of the search space, outweighing the additional computa-
tional costs. No such effect can be observed for the present
problem. This is due to the fact that the domains of the
starting time variables are rather huge in comparison to the
item’s duration. But one premise of edge finding to enable
strong reasoning are narrow domains. While the data bus is
the real bottleneck of the current scheduling problem (see
also below), this is not mirrored in the domains of the vari-
ables immediately. Compared with the global constraints
that we employed, edge finding does not shorten the search
for a solution at all. Edge finding even increased the overall
run-time by a factor of five.

Latency Constraints

The latency condition (11) distinguishes between communi-
cation patterns which are wrapped over the repetition win-

dow and those which are not. These two possibilities might
be captured with the help of a reified constraint, too; how-
ever, this would lead to weak constraint propagation. An
experiment showed that such an approach does not allow to
solve the present problem in one day of computation time.
Propagation, however, can be improved by a specific pre-
processing phase. If, for example,Pi sends a message toQj, it can be determined before whetherQj is to be post-
poned until the subsequent repetition window or not. This
works as follows. If the relevant communication is not in-
volved in a cycle, then it is assumed thatQj is not post-
poned. In this case,start(Qj) � compl (Pi) is imposed.
As a consequence, the following version of a latency condi-
tion is sufficient.start(Qj) + dur (Q)� start(Pi) � latency(M;Q):
If, on the other hand, the communication betweenPi andQj is part of a cycle, then an ordering betweenPi andQj
can be chosen arbitrarily. Ifstart(Qj) � compl(Pi) is cho-
sen, then again the latency condition just given is sufficient.
If, otherwise,start(Pi) � compl(Qj) is chosen, then the
following condition must be met:CT � start(Pi)+ start(Qj)+ dur (Q) � latency(M;Q):
In this way, we can dispense with the disjunction of (11),
at least for all those processes which are not involved in
a cyclic communication pattern. This guarantees adequate
propagation. In principle, it might happen that this prepro-
cessing phase cuts off the only admissible solution to the
problem. This, however, seems to be very unlikely. At least
it never happened in any of our experiments.

A Branching Strategy from Real-Time Appli-
cations

Branching strategies off the shelf (like first-fail) turnedout
to be too simple for the present problem. Branching strate-
gies can be divided into two categories. The first class of
strategies branches with basic constraints such asx = c.
The second type of strategies branches with non-basic con-
straints such asx+ c � y. In this case, new propagators are
created during run time. We experimented with strategies
from either category.

The first branching strategy that we investigated was moti-
vated by Liu and Layland’s [13] work on scheduling algo-
rithms for hard real-time applications. This strategy works
as follows. The finite domain which models the starting
time of a process execution or a message transmission de-
notes the set of possible integer values for the starting time.
Let lct(Pi) and lct(Mi) be the latest possible completion
time ofPi andMi, respectively. The valuelct(Pi), for ex-
ample, is thus the maximal value of the domain ofPi plus
the execution time ofPi. Exactly this pair(Pi;Mi) is then

selected for which(lct(Pi); lct(Mi)) is minimal with re-
spect to lexicographic order. In addition, a pair may be se-
lected only if eitherstart(Pi) or start(Mi) is not already
fixed to a single value. Ifstart(Pi) stays unfixed, it is
branched with basic constraints of the formstart(Pi) = c,
beginning the enumeration of possible candidates forcwith
the smallest possible starting time ofPi. As soon as a con-
sistent value forstart(Pi) is found, the starting time ofMi
is fixed by a similar procedure. As a result, the process with
minimal latest possible completion time (usually a process
with a high frequency) determines which starting time is
fixed first. While this strategy works well if no latency con-
straints are considered, no solution is obtained in one day of
computation time with latencies included.

Branching Strategies from Operations Re-
search

As an alternative, we investigated several strategies of the
second category. These strategies were motivated by similar
strategies from Operations Research, which have recently
been used also in the field of constraint programming [2, 4].
Let us first explain what the key idea of this strategy is. Con-
sider a set,S, of items. The task is to schedule all elements
of S in a mutually non-overlapping manner. The branch-
ing strategy is divided into two phases, the determination of
an appropriate serialization and the assignment of concrete
starting times.Serializationin this case means that for alls; s0 2 S such thats 6= s0, it has to be determined whethers is scheduled befores0 or vice versa. An appropriate total
ordering ofS can be obtained by branching with one of the
following propagators at run-time:start(s) + dur (s) � start(s0)

orstart(s0) + dur (s0) � start(s):
In the best case, a number ofjSj�jS�1j2 branching steps is
needed to serializeS completely. This number may be re-
duced if some ordering decisions can be decided determin-
istically. For example, the strategy proposed in [4] avoids
some branching steps by detecting orderings which must
necessarily hold. The assignment of concrete starting times
could then be done with a branching strategy of the first cat-
egory. But a number of branching steps which can grow
quadratically inS might be, of course, not feasible for a
large-scale problem. Nevertheless, we have tried the strate-
gies suggested in [4] and [17]. These strategies employ one
pairwise ordering decision at each branching step and have
been shown to yield good results in the area of job-shop
scheduling [7]. Unfortunately, both strategies failed even
after several hours of computation time for a small test prob-
lem. This means that the strategies using local pairwise or-
dering decisions are too weak for the considered problem.
Both strategies [4, 17] consider the size of the domains of

starting time variables to make branching decisions. But be-
cause these domains are rather wide compared to the item’s
duration (especially in the beginning of the search), this
heuristic might guide the search in a wrong direction. Due
to the size of the considered problems these wrong decisions
cannot be recovered by simple backtracking.

Instead of ordering only a single pair of items at a time,
many pairs can be ordered in a single branching step. The
number of branching steps can thus be significantly reduced
by considering a whole number of propagators at a time.
This proceeds as follows. First, select an items 2 S. Then
it is branched with a number of constraints, altogether stat-
ing thats precedes each item inS, except fors itself:start(s) + dur(s) � start(s0);
for all s0 2 S such thats0 6= s. If this leads to an incon-
sistency, then the entire procedure is retried with anothers 2 S; otherwises is deleted fromS. As soon as the subse-
quent constraint propagation has reached a fixed point, the
overall procedure is invoked again, a process which contin-
ues until all items are serialized. In the best case, no more
thanjSj � 1 branching steps are needed to serializeS com-
pletely. Of course, we still have a quadratic number of pair-
wise ordering decisions, but the depth of the search tree may
be reduced.

The question remains which of the potential candidates fors 2 S should be considered first. For this purpose, informa-
tion on the possible starting times can be exploited. In par-
ticular, it is possible to extract those items amongS which
may precede all others, see e.g. [3, 2, 20]. This subset ofS
can be computed in timeO(jSj). Let F be this set of items
which may precede all others inS. If F is empty, there
clearly exists no serialization at all. IfjF j = 1, no branch-
ing step is necessary becauseF ’s single element is the only
candidate fors. If otherwisejF j > 1, those elements ofF
are tried first whose earliest possible starting time is mini-
mal. This guarantees that for the remaining items there is
as much free space on the time scale left as possible. This
strategy is available in Oz asFD.schedule.firstsDist.

Order of Branchings

Now we have to decide which resource should be serialized
first. It is common practice to schedule the resource first
which can be seen as the bottleneck of the problem. As an
obvious criterion we have chosen first the utilization (load)
values. Because the utilization of the processors is up to
92%, whereas the utilization of the data bus is only about
11%, we have tried to serialize the processes first. Surpris-
ingly, we could only solve a few problems (only two out
of seven). Analyzing the problem more carefully, we found
out that the primary source of complexity are the different
periods at which processes may be executed. What makes
the scheduling of the data bus so hard is the fact that it is the

only resource commonly used by all inter-processor com-
munications. Through the common data bus processes on
different processors with different periods interact in a non-
trivial way. Thus, the kind of branching described before is
first applied to the messages sent through the data bus. The
serialization of the messages automatically narrows down
the possible starting times of the sending processes. The
process executions are then serialized by the same strategy.
Currently it is not necessary to impose a certain order which
processor to serialize first.

Assignment of Concrete Starting Times

The second phase is the assignment of concrete starting
times. It turns out that a valid schedule can be obtained
just by simply assigning the starting times to theminimal
value of those still remaining. This means that no further
search is needed. This observation can be gathered from a
similar theorem of Van Hentenryck [8]. This theorem es-
sentially states that mere constraint propagation is indeed
sufficient for detecting any inconsistency if there are only
constraints of the formx+ c � y andx+ c = y such thatc is an arbitrary integer. The theorem moreover states that
a solution can be obtained in a way very similar to the one
described in this section. Van Hentenryck’s theorem, how-
ever, does not include disjunctive constraints of the shapex + c1 � y _ y + c2 � x. On the other hand, the kind
of serialization that we described above leaves only one of
the two disjuncts of each disjunctive constraint, so that Van
Hentenryck’s theorem still applies.

Empirical Results

The constraint program described has been applied to sev-
eral large-scale problems of the Daimler-Benz holding.
Currently, we have the data of seven such problems avail-
able. A typical problem of this particular class looks as fol-
lows. The frequency of the global clock leads to possible
starting times ranging from 0 to 6 million. There are 20
processors, hosting altogether about 170 processes. Taking
the executions of periodic processes into account, there are
about 350 process executions to be scheduled. The process
executions transfer a number of about 1,200 inter-processor
messages. With additional 600 resynchronization messages,
there are about 1,800 messages to be transferred through the
common data bus. This is also the largest number of argu-
ments with which the global serialization constraint is in-
voked. Among these 1,800 message transmissions there are
1,200 that are transferred with a frequency higher than that
of the repetition window. The overall utilization of the data
bus is about 11%, the maximal utilization of a processor is
about 92%.

An appropriate program is implemented in Oz [14]. Run-

ning the program on a Pentium Pro 200 MHz will bring
about a first solution within 10 minutes with 7.5 MB ac-
tive data on the heap. In the course of the computation,
more than 1.6 million propagators are created, thereof about
23,000 before the first branching step takes place. The num-
ber of backtracking steps ranges from 0 to 40. The overall
number of branching steps is about 2,200 in the best case.
The number of propagators created is conformable to the
reported memory consumption. Many of those propagators
which are imposed during the branching are entailed very
early and, thus, are garbage collected. It is important that
the entailment detection is not delayed until the constrained
variables are determined. This would be insufficient be-
cause of the branching strategy used (only after all process
executions and the messages are serialized the starting times
are fixed).

Recomputation was used to keep the memory consumption
as low as possible. This means that whenever an inconsis-
tency occurs, previous computation states are reconstructed
by recomputation. Copying (trailing in other systems) of
earlier computation states is thereby avoided [9].

Conclusions

We presented a new potential application domain for con-
straint programming with industrial strength. The very heart
of this class of problems was described in full detail. We did
so in order to make this new class of applications amenable
to constraint programming.

With the help of the concurrent constraint language Oz, we
were able to solve several large-scale problems from this
class. The specific problems that we solved involved finite
domains ranging from 0 to 6 million and more than 1,800
message transmissions to be scheduled in a mutually non-
overlapping manner. Up to 3.9 million propagators were
created in the course of computing a valid schedule.

We also described which techniques ultimately led to suc-
cess and which failed. Global constraints and an elabo-
rate search heuristic, borrowed from Operations Research,
turned out to be a pre-requisite for any successful so-
lution. More sophisticated global constraints like edge-
finding were not able to improve the scheduling. This might
be due to a quite small load of the data bus, leaving the rel-
evant finite domains rather unconstrained.

The data bus yet turned out to be the bottleneck of the prob-
lem. This is certainlynot what one would expect of a typ-
ically 11% load of the data bus and a processor load of up
to 92%. What makes the scheduling of the data bus so hard
is the fact that it is the only resource commonly used by
all inter-processor communications. None of the common
branching strategies was capable of cracking this bottle-
neck. We experimented with one well-known strategy from
real-time applications and several others from constraint-

based scheduling. One strategy was the serialization of a
number of items by considering one pair after the other.
What ultimately led to success was a new strategy, mini-
mizing the overall number of branching steps. This special
branching strategy was implemented with the help of the
constraint propagator interface of Oz, exactly as the global
constraint for serializing an arbitrary number of items.

Another important observation was that after a complete se-
rialization, no further search is needed in order to assign
concrete starting times. It actually suffices to take in each
case just the smallest value among those still remaining.
This is due to a special characteristic of the problem un-
der consideration. Another observation was that excessive
memory consumption can be avoided by garbage collecting
redundant propagators as early as possible, a characteristic
that Oz enjoys.

Currently we are validating our approach by tackling even
more complicated problems with up to 3,000 message trans-
missions and about 500 process executions. These problems
can also be solved in the presented framework.

Acknowledgements

The authors would like to thank Denys Duchier and the
anonymous referees for their invaluable comments on a
draft version of this paper. The second author was
partly supported by the Bundesminister für Bildung, Wis-
senschaft, Forschung und Technologie (FKZ ITW 9601),
and the Esprit Working Group CCL-II (EP 22457).

References

[1] A PPLEGATE, D., AND COOK, W. A computational study
of the job-shop scheduling problem.Operations Research
Society of America, Journal on Computing 3, 2 (1991), 149–
156.

[2] BAPTISTE, P., PAPE, C. L., AND NUIJTEN, W. Constraint-
based optimization and approximation for job-shop schedul-
ing. In Proceedings of the AAAI-SIGMAN Workshop on In-
telligent Manufacturing Systems(1995).

[3] CARLIER, J., AND PINSON, E. An algorithm for solving
the job-shop problem.Management Science 35, 2 (1989),
164–176.

[4] CASEAU, Y., AND LABURTHE, F. Disjunctive scheduling
with task intervals. LIENS Technical Report 95–25, Labo-
ratoire d’Informatique de l’Ecole Normale Superieure, Paris,
France, 1995.

[5] CHENG, S., AND AGRAWALA , A. Allocation and schedul-
ing of real-time periodic tasks with realative timing con-
straints. InProceedings of the Second International Work-
shop on Real-Time Computing Systems and Applications
(1995).

[6] ERIKSSON, C. A framework for the design of distributed
real-time systems. ISRN KTH/MMK/R–97/2-SE, Royal In-
stitute of Technology, KTH, Stockholm, Sweden, 1997.

[7] GAREY, M., AND JOHNSON, D. Computers and
Intractability—A Guide to the Theory of NP-Completeness.
Freeman, 1979.

[8] HENTENRYCK, P. V., AND DEVILLE , Y. Operational se-
mantics of constraint logic programming over finite domains.
In Proceedings of the AAAI Spring Symposium Series(1991),
pp. 128–146.

[9] HENZ, M., MÜLLER, M., SCHULTE, C., AND WÜRTZ, J.
The Oz standard modules. DFKI Oz documentation series,
German Research Center for Artificial Intelligence (DFKI),
Saarbrücken, Germany, 1997.

[10] HENZ, M., AND WÜRTZ, J. Using Oz for college
timetabling. InProceedings of the First International Con-
ference on Practice and Theory of Automated Timetabling
(1996), vol. 1153 ofLecture Notes in Computer Science,
Springer-Verlag, Berlin, Germany, pp. 162–178.

[11] ILOG. ILOG SOLVER 3.2, User Manual. URL:
http://www.ilog.com, 1996.

[12] KOPETZ, H. Event-triggered versus time-triggered real-time
systems. InProceedings of International Workshop on Op-
erating Systems of the 90s and Beyond, vol. 563 ofLecture
Notes in Computer Science. Springer-Verlag, Berlin, Ger-
many, 1991, pp. 87–101.

[13] L IU , C., AND LAYLAND , J. Scheduling algorithms for mul-
tiprogramming in a hard real-time environment.Journal of
the ACM 20, 1 (1973), 46–61.

[14] M ÜLLER, T., AND WÜRTZ, J. The constraint propaga-
tor interface of DFKI Oz. DFKI Oz documentation series,
German Research Center for Artificial Intelligence (DFKI),
Saarbrücken, Germany, 1997.

[15] OLDER, W., AND BENHAMOU, F. Programming in
CLP(BNR). In Position Papers for the First Workshop on
Principles and Practice of Constraint Programming(1993),
pp. 239–249.

[16] SCHULTE, C., SMOLKA , G.,AND WÜRTZ, J. Encapsulated
search and constraint programming in Oz. InProceedings of
Principles and Practice of Constraint Programming(1994),
vol. 874 of Lecture Notes in Computer Science, Springer-
Verlag, pp. 134–150.

[17] SMITH , S., AND CHENG, C.-C. Slack-based heuristics for
constraint satisfaction scheduling. InProceedings of the 11th
National Conference of the American Association for Artifi-
cial Intelligence(1993), pp. 139–144.

[18] SMOLKA , G. The Oz programming model. InComputer Sci-
ence Today, Lecture Notes in Computer Science, vol. 1000.
Springer-Verlag, 1995, pp. 324–343.

[19] WALLACE , M. Practical applications of constraint program-
ming. Constraints 1, 1&2 (1996), 139–168.

[20] WÜRTZ, J. Oz Scheduler: A workbench for scheduling
problems. InProceedings of the Eighth International Con-
ference on Tools with Artificial Intelligence(1996), pp. 149–
156.

