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At the end, we had something complete
that made everything obvious, that made
us realize how we should have attacked
the problem. It takes a long time to realize
the right form.

John E. Hopcroft

From K. A. Frenkel, An Interview with the 1986 A.M. Turing Award Recipients—John E.
Hopecroft and Robert E. Tarjan. Communications of the ACM 30, 3, 1987, 214-222.



Abstract

This thesis presents the foundations for relational logic programming over polymorphically
order-sorted data types. This type discipline combines the notion of parametric polymor-
phism, which has been developed for higher-order functional programming, with the notion
of order-sorted typing, which has been developed for equational first-order specification
and programming. Polymorphically order-sorted types are obtained as canonical models of
a class of specifications in a suitable logic accommodating sort functions. Algorithms for
constraint solving, type checking and type inference are given and proven correct.
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Chapter 1

Introduction

1.1 The Problem Solved
1.2 Related Work

1.3 Overview

1.1 The Problem Solved

This thesis presents the foundations for relational logic programming over polymorphically
order-sorted data types (called POS-types, hereafter). This type discipline combines the
notion of parametric polymorphism [Mil78, DM82], which has been developed for higher-
order functional programming [HMMS&6], with the notion of order-sorted typing [Gog78,
GM87a, SNGMS9], which has been developed for equational first-order specification and
programming [FGJMS85]. Both notions are important for practical reasons. With paramet-
ric polymorphism one avoids the need for redefining lists and other parametric data types
for every type they are used with. Subsorts not only provide for more natural type spec-
ifications, but also yield more computational power: variables can be constrained to sorts
rather than to single values and typed unification computes directly with sort constraints,
thus reducing the need for expensive backtracking.

Figure 1.1 shows some examples of sort and relation definitions in our language. Sort con-
stants and sort functions are defined by equations, and relations are defined by a declaration
and a collection of definite clauses. The sort bool has two elements, which are given by the
value constants true and false. The sort int is defined as the union of its subsorts inat and
nat. The elements of the sort posint are obtained by applying the value function

s:nat — posint
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bool := true:[] U false: ]
int := inat U nat

inat := zero U negint
negint := p:inat

zero = o:]

nat := zero U posint
posint := s:nat

le: int X int X bool

p(1):p(J), B) < le(l,J, B)
5(1),5(J),B) « le(l,J,B)
o,l,true) « I:nat

— | :negint

o true) + |:inat

le(
le(
le(
le(o, I, false)
le(1,
le(l
)

list(T) := elist U nelist(T)
elist := nil:[]

nelist(T) := cons: T x list(T)

pair(S,T) = cp:SxT

difflist(T) := pair(list(T), list(T))
erroror_list(E, T) := errormsg(E) U list(T)
errormsg(E) := error: nat X list(pair(nat, E))
append: list(T) x list(T) X list(T)

append(nil, L, L)
append(cons(H, R), L, cons(H,RL)) <« append(R,L,RL)

Figure 1.1: A POS-program.
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to elements of nat. Since nat is defined as the union of its subsorts zero and posint, the
elements of nat are o, s(0), s(s(o)) and so forth.

The value functions of POS-types are free constructors: they are injective, and distinct value
functions never yield the same element. Defining sorts with free constructors is common
in functional programming languages and can be traced back to Landin [Lan64], Burstall
[Bur69] and Hoare [Hoa75]. Types defined with sorts and free constructors are a special
case of algebraic types [GTW78, NR85, EMS85], which are much more expressive since
they provide for equations between constructors. The POS-types investigated in this thesis
are restricted to free constructors and hence their specifications cannot employ equations
between value terms.

The relation le is a less or equal test on the elements of int. Some of the variables occurring
in the clauses defining le are explicitly constrained to sorts. For the variables that aren’t
explicitly constrained, most general sorts are automatically derived by a type inference
algorithm. This yields

I:inat, J:inat, B:bool

for the first clause of le and
[:nat, J:nat, B:bool

for the second clause of le.

Sort functions are defined analogously to sort constants, except that the defining equation
is parameterized with respect to sort variables (one for every argument of the sort function
to be defined), which range over the set of all sorts specified by the program. Programs
with sort functions specify infinitely many sorts, for instance, list(nat), list(list(nat)) and so

forth.

A sort is simply the set of its elements. Hence sorts are partially ordered by set inclusion.
Sort functions are monotone with respect to the inclusion order. Consequently, list(nat) is
a subset of list(int) since nat is a subset of int (recall that int is defined as the union of nat
and inat).

From the sort equations

list(T) := elist U nelist(T)

erroror_list(E, T) := errormsg(E) U list(T)
you can see that the types investigated in this thesis can be specified with sort equations
admitting the union of polymorphic sort terms.

The list concatenation relation append is defined with exactly the same clauses one would
use in untyped logic programming. The declaration for append is used for type checking
and type inference. The type inference algorithm completes the second clause of append to

append(cons(H, R), L, cons(H,RL)) «
H:T & R:list(T) & L:list(T) & RL:list(T) & append(R,L,RL).
A few words on the difference between sort and types (as used in this thesis): a sort is
just a set of values, while a type is an algebra specified by a collection of sort equations
and consists of sorts, sort functions and value functions. A POS-type is a type that can be

specified within the framework developed in this thesis. This use of the terms sort and type
is common in the theory of algebraic specifications [GTW78, NR&5, EMS&5]. In the context
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of programming languages, however, one usually just talks of types and would thus refer to,
for instance, bool as a type. Since the terms type discipline, well-typedness, type checking
and type inference are so familiar from programming languages, I will use them in this
thesis although it would be more appropriate to speak of sort discipline, well-sortedness,
sort checking and sort inference.

Two well-known advantages of typed programming languages, which apply to typed logic
programming in particular, are:

1. The data structures used by a program can be defined explicitly. This leads to clearer,
much easier to understand programs. The explicit definition of data structures is
particularly beneficial if they are complex, as it is typically the case in Artificial
Intelligence.

2. Type checking detects many programming errors at compile time, a feature whose
importance is proportional to the size of the program under development.

Well-known disadvantages of typed programming languages, whose weight has been signif-
icantly reduced by the invention of type inference and parametric polymorphism [Mil78],
are that the programmer is burdened with specifying redundant type information and that
typed programs tend to be unnecessarily complicated since the programmer is sometimes
forced to program around the type discipline. For pure logic programming, however, the
introduction of a type discipline actually amounts to a generalization rather than a re-
striction. By introducing only one sort and declaring every function as a constructor of
this sort, every untyped logic program becomes a well-typed program. Of course, for logic
programming to be practical, one needs extra-logical features. The programming language
TEL [Smo88b], which embodies the logical language presented in this thesis, demonstrates
that the necessary nonlogical features can be integrated such that they are type-safe and
still practical.

As mentioned before, typed unification adds expressive power by exploiting the inclusion
order on sorts. In untyped logic programming, one could express a sort as a unary predicate
holding for the elements of the sort. To express, say, that the variable X ranges over the
sort negint, one could write the atom negint(X). Now suppose that during the course of a
computation the additional constraint posint(X) is imposed. While typed unification would
immediately recognize that there is no value for X left, untyped logic programming cannot
recognize this conflict. All it can do is bind X successively to elements of either posint or
negint and find out each time anew that the other constraint is violated.

1.2 Related Work

The existing work on typed logic programming can be classified into a syntactic and a
semantic approach.

The syntactic approach sees types as a syntactic discipline that must not change the seman-
tics of a program. Since the semantics of the program is not changed, typed programs can
be executed in exactly the same way as untyped programs, where, however, the structure
imposed by the type discipline can be exploited for optimizations. Mycroft and O’Keefe
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[MOB84] show how Milner’s [Mil78] polymorphic type discipline can be adapted to Pure Pro-
log. Their system relies on type declarations given by the programmer but does not require
type declarations for the variables occurring in a clause. Dietrich and Hagl’s [DH88] extends
Mycroft and O’Keefe’s work to include subsorts. Since his approach is purely syntactic,
he has to restrict the class of well-typed programs severely by imposing a mode discipline.
Moreover, it is an open problem whether his type checking discipline is decidable. Another
direction of the syntactic approach investigates type inference for logic programs in the
complete absence of programmer-provided type declarations [Mis84, Zob87].

The semantic approach, to which this thesis contributes, bases logic programming with
types on logics that account for sorts. Consequently, the computational mechanisms may
change, which typically shows up in the unification procedure. One direction, which ap-
peared with Eqlog [GMS86], takes order-sorted logic as base and employs order-sorted uni-
fication [Gog78, GM87b, HV87, MGS89, SNGMS&9, SS85, SS89, Wal83, Wal85, Wal87,
Wal88]. This thesis generalizes this line of research by incorporating parametric polymor-
phism.

The distinctive difference between order-sorted types [Gog78, GM87a, SNGM89] and POS-
types is that POS-types can come with sort functions such as list or pair while order-sorted
types cannot. POS-types without sort functions are order-sorted types, but most order-
sorted types cannot be obtained as POS-types since the specifications of POS-types admit
neither multiple declarations of value functions nor equations between value terms.

Recent research of Hanus [Han88, Han89] develops a Horn logic with equality augmented
with a polymorphic sort structure (not accommodating subsorts). Hanus gives an opera-
tional semantics for relational programs computing on the polymorphic types specifiable
in his framework, where his programs need only satisfy a weak well-typedness condition
admitting ad hoc polymorphism. The difference between parametric and ad hoc polymor-
phism (discussed already in [Str67]) is that a parametrically polymorphic operator must
behave in exactly the same way for all parameter sorts while an ad hoc polymorphic opera-
tor is free to do different things for different sort parameters. Now, if there are no subsorts
(as in [Han88, Han89] and [MO84]) and the clauses of the program are well-typed under
a type discipline enforcing parametric polymorphism (as in this thesis and [MO84]), then
the standard unsorted operational semantics turns out to be sound and complete. Hence,
the sort-related operational methods of Hanus are orthogonal to the operational methods
developed in this thesis: Hanus needs to account for ad hoc polymorphism while I stick to
parametric polymorphism but need to account for subsorts.

There is a good reason why I insist on a type discipline enforcing parametric polymor-
phism: the operational methods developed in this thesis work only under this structural
assumption, which provides for crucial optimizations of the constraint solver, and I even
don’t know if a complete computable constraint solver exists for a type discipline admitting
ad hoc polymorphism in the presence of subsorts.

Another direction of the semantic approach was initiated by Ait-Kaci and Nasr’s [AKN&6]
language LOGIN, which replaces ordinary first-order terms with record structures and
employs a typed unification called -unification. Mukai’s [Muk87] language CIL is similar to
LOGIN but has no subsorts. Smolka and Ait-Kaci [SA89] show how LOGIN can be captured

in order-sorted logic and device a framework that combines order-sorted constructor types
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with LOGIN’s feature types. Feature Logic [Smo88a, Smo89] is a decidable logic that
generalizes Ait-Kaci’s formalism by adding negation and quantification. Feature Logic
makes explicit that Ait-Kaci’s ¥-terms, the feature descriptions developed by computational
linguists [KB82, RK86, Joh88], and the knowledge representation language KL-ONE [BS85,
LB87, Neb89, SSS91, NS90] are all closely related members of the same family of logics.
These logics offer attributive concept descriptions that are interpreted as sets and are built
from sorts and binary relations (called attributes, roles or features) using set operations
such as intersection, union and complement.

1.3 Overview

Chapter 2 presents a general framework for relational logic programming extending and
generalizing Jaffar and Lassez’s [J1.86, JL87] model of constraint logic programming (CLP,
for short). While CLP relies on many-sorted Predicate Logic as base language, our frame-
work is based on a general notion of constraint language that can be instantiated, for
instance, to Predicate Logic, Order-Sorted Logic, attributive concept description logics or
the logic underlying POS-types to be developed in Chapter 3. Like CLP our framework
gives a generic operational semantics. Our framework comes with a type discipline and
develops the notions of well-typedness, type checking and type inference in general without
commitment to a particular constraint language. An interesting question for future research
is whether polymorphic sort constructions such as lists and pairs can be provided already
within such a general framework.

The next four chapters develop the theory of POS-types. Chapter 3 presents the logic un-
derlying POS-types. Chapter 4 studies a class of rewriting systems used for the specification
of the inclusion orders of POS-types. The emphasis is on operational methods needed for
constraint solving and type inference. Chapter 5 defines the class of specifications from
whose initial models POS-types are obtained by a canonical quotient construction turning
sorts into the sets of their elements. Chapter 6, which is the heart of this thesis, develops
the constraint solver to be employed in the interpreter for POS-programs. The constraint
solver comes with several powerful optimizations avoiding redundant sort computations by
exploiting the structure imposed by a type discipline enforcing parametric polymorphism.
The optimizations rely on a compilation step replacing the sort terms in the program with
approximations just retaining the absolutely necessary information.

In Chapter 7 the general framework of Chapter 2 and the theory of POS-types developed in
Chapters 3-6 are put together. We define POS-programs and obtain a sound and complete
interpreter by integrating the constraint solver of Chapter 6 with the generic operational
semantics of Chapter 2. We show that type checking for POS-programs is decidable and
present an incomplete type inference algorithm.



Chapter 2

Logic Programming over
Constraint Languages

2.1 Constraint Languages
2.2 Canonical Extensions

2.3 Definite Clauses

2.4 Operational Semantics
2.5 A Type Discipline

2.6 Type Inference

In the last few years a new model of logic programming has emerged that views a logic
programming language as consisting of a constraint language on top of which relations can
be defined by means of definite clauses. Different logic programming languages can be
obtained by employing different constraint languages. Conventional logic programming is
obtained by employing equations that are interpreted in the algebra of first-order terms.
Prolog 11 [CKC83, Col84] employs as constraint language equations and disequations that
are interpreted in the algebra of rational trees. The constraint language of Prolog I11 [Col88]
is interpreted in an algebra providing rational trees and rational numbers and allows for
linear equations and inequations for numbers, boolean expressions for truth values, and
equations and disequations for general terms. Other recent examples of constraint logic

programming languages are CLP(R) [JM8&7], CIL [Muk87] and CHIP [DHS*88].

Jaffar and Lassez [JL86, JL87] were the first to identify the new model, coined the name
Constraint Logic Programming, and developed a general framework that is parameterized

®This Chapter is an adaptation of [HS8S].
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with respect to the constraint language being employed and yields soundness and com-
pleteness results for a generic operational semantics relying on a constraint solver for the
employed constraint language. A constraint solver is an algorithm deciding the satisfiabil-
ity of constraint systems. In conventional logic programming, the constraint solver solves
equations in the Herbrand universe, which is accomplished by term unification.

The original motivation for the research reported in this chapter was the development of
a semantic foundation for the knowledge representation language LOGIN [AKNS&6], where
relations are defined with definite clauses over a constraint language consisting of so-called

P-terms [AKS6].

The first step of this enterprise was to come up with a logical reformulation of Ait-Kaci’s
i-term calculus and led to the development of Feature Logic [Smo88a, Smo89], a decidable
logic that generalizes Ait-Kaci’s formalism by adding negation and quantification. Fea-
ture Logic makes explicit that ATt-Kaci’s i-terms, the feature descriptions developed by
computational linguists [KB82, RK86, Joh88], and the knowledge representation language
KL-ONE [BS85, LB87, Nebf89, SSS91, NS90] are all closely related members of the same
family of logics. These logics offer attributive concept descriptions that are interpreted as
sets and are built from sorts and binary relations (called attributes, roles or features) using
set operations such as intersection, union and complement. Given an attributive concept
description (', a constraint z: (' constrains the values of the variable x to elements of C.

Ideally, the second step of giving a semantic foundation to LOGIN should have consisted
in simply applying Jaffar and Lassez’s [JL.86, JL87] constraint logic programming scheme
(CLP, for short) to Feature Logic. However, this failed for three reasons:

1. CLP requires that the constraint language is interpreted in a single fixed domain. This
is in accordance with the data structure paradigm underlying current programming
languages, which views programs as computing with data structures that are, in most
applications, merely representations of the objects one is actually interested in. For
knowledge representation, however, data structures as representations of real objects
are not adequate. Instead, one talks directly about the objects of interest, as this
is accomplished, for instance, by the Tarski semantics of Predicate Logic. Since, in
general, we have only partial information about the world we want to reason about, we
need to take into account all worlds that are consistent with our partial knowledge.
Thus we have to generalize CLP such that the constraint language can come with
more than one interpretation and a constraint is considered satisfiable if there is at
least one interpretation in which it has a solution.

2. CLP requires that the interpretations of constraint languages be “solution compact”,
which implies that every element of an interpretation must be obtainable as the unique
solution of a possibly infinite set of constraints. While solution compactness is sensible
for “data structure” interpretations, it is not acceptable for “real world” interpreta-
tions. CLP needs solution compactness since it provides soundness and completeness
results for negation as failure. However, since the constraint language can provide for
logical negation (for instance, disequations in Prolog Il or set complements in Feature
Logic) I feel that for many applications there is no further need for the problematic
negation as failure.



3. CLP assumes that the constraint language is expressed in Predicate Logic: constraints
must be formulas of Predicate Logic and interpretations must be interpretations of
Predicate Logic. However, neither Feature Logic, KL-ONE, nor the logic we are
going to use for the specification of POS-types satisfy these assumptions. Although
these formalisms can be reduced to Predicate Logic in principle, providing customized
model theories and notations for them is crucial in keeping them technically simple
and in supporting the adequate intuitions. So what CLP is lacking is a sufficiently
abstract formalization of the notion of a constraint language.

This chapter presents a framework that generalizes CLP so that the shortcomings discussed
above are completely avoided. Our framework also extends CLP with a general type disci-
pline providing for an abstract treatment of notions like well-typedness, type checking and
type inference.

The framework presented in this chapter, which is designed as a foundation of Logic Pro-
gramming in general, will be just the right starting point for our theory of logic programming
over POS-types. Presenting our theory of logic programming over POS-types as an instance
of the general framework provides for a clear distinction of notions and results in those that
apply in general and in those that are specific to POS-types.

Section 2.1 gives a definition of constraint languages that is general enough to cover all
mentioned formalisms. In our analysis, a constraint is a piece of syntax constraining the
values the variables occurring in it can take. There is no need to know anything about the
internal structure of a constraint. Since we are not concerned with negation as failure, we
don’t need to impose any requirements on the interpretations of constraint languages. A
prominent example of a constraint language is Predicate Logic, where the formulas serve
as constraints. Furthermore, the notion of a constraint language will be exploited for
the development of POS-Logic in the next chapter and significantly reduce the notational
overhead.

In Section 2.2 we show that every constraint language can be extended conservatively
to a constraint language providing for relational atoms, the propositional connectives, and
quantification. By taking equations with their Tarski interpretations as constraint language,
this construction yields Predicate Logic.

In Section 2.3 we show that, for every set S of definite clauses in the extension of an arbitrary
constraint language £, every interpretation of £ can be extended to a minimal model of S.
This generalizes the key result of conventional logic programming to our framework, which
is not restricted to Horn theories.

In Section 2.4 we present an operational semantics for our general definite clause specifi-
cations that generalizes the SLD-resolution method [Llo84] employed in conventional logic
programming and prove its soundness and completeness.

In Section 2.5 we present a semantic type discipline for our generalized definite clause
specifications. The discipline exploits the idea that declarations of relation symbols in a
sorted language can be expressed as implications; for instance, to declare that the relation
plus takes integers as arguments, we can write the implication

plus(z,y,z) — x:int& y:int & z: int.
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If Feature Logic is used as underlying constraint language, we can constrain the arguments
of a relation with complex feature terms employing intersections, complements and feature
constraints. The idea even applies to conventional logic programming, where we can write
declarations like

p(w,y) - =z y:f($72’)-

We establish a weak notion of well-typedness by saying that a definite clause specification S
is implicitly well-typed with respect to a set D of declarations if every minimal model of S
is a model of D. Next we establish a strong notion of well-typedness by defining explicitly
well-typed clauses and show that explicitly well-typed specifications are implicitly well-
typed. Explicit well-typedness is decidable provided the underlying constraint language is
decidable. Furthermore, we show that our operational semantics is type safe, that is, the
reduction of an explicitly well-typed goal with an explicitly well-typed clause yields again
an explicitly well-typed goal.

Section 2.6 gives a type inference rule that can be used to compute a most general explicitly
well-typed weakening of a specification. We show that, if the explicitly well-typed specifi-
cation S’ is obtained from S by type inference, S’ and S have the same minimal models,
provided S is implicitly well-typed.

2.1 Constraint Languages

The basic idea is that a constraint is some piece of syntax constraining the values of the
variables occurring in it. Our notion of constraint language does not make any assumptions
about the syntax of constraints.

Technically, it is convenient to have more than one class of variables and values available.
For instance, POS-Logic will have two disjoint classes of variables, one ranging over sorts
and one ranging over the elements of sorts.

Let I be a set. An [-indexed set is a family M = (M;);c; of pairwise disjoint nonempty
sets. An I-indexed set M is decidable if there exists a computable function ¢:(J;c; M; — 1
such that ¢(a) = 7 if and only if @ € M;. An I-indexed mapping from an [-indexed set
M to an I-indexed set M’ is a mapping

UM =M
el el
such that f(a) € M/ if a € M,.

Let M be an I-indexed set. To obtain a smooth notation, we will abuse M to also denote
the union (J;c; M;. By an element of M we always mean an element of |J;c; M; and
a € M always stands for a € ;5 M.

Warning. Our definition of I-indexed sets is different from the notion of “many-sortedness”
used in the theory of algebraic specifications.

A constraint language is a tuple (I, VAR, CON, V,INT) such that

1. I is a decidable set
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2. VAR is a decidable [-indexed set such that VAR, is infinite for every ¢ € [I; the
elements of VAR are called variables

3. CON is a decidable set whose elements are called constraints

4.V is a computable function that assigns to every constraint ¢ a finite set V¢ of
variables, called the variables constrained by ¢

5. INT is a nonempty set of so-called interpretations, where every interpretation
T € INT consists of an I-indexed set D?, called the domain of 7, and a solution
mapping Z[-] such that:

(a) an Z-assignment is an [-indexed mapping VAR — D7, and ASS? is the set of
all Z-assignments

(b) T[] is a function mapping every constraint ¢ to a set Z[¢] C ASST, where the
T-assignments in Z[¢] are called the solutions of ¢ in 7

(c) a constraint ¢ constrains only the variables in V¢, that is, if & € Z[¢] and 5 is
an Z-assignment that agrees with a on V¢, then 3 € Z[¢].

Note that our definition of I-indexed sets makes sure that for every interpretation 7 there
exists at least one Z-assignment. Thus we won’t be plagued by the infamous “empty sort
problem” known in the theory of algebraic specifications.

Predicate logic is a prominent example of a constraint language: there is only one class of
variables, the well-formed formulas are the constraints, V¢ can be taken as the set of all
variables in ¢ that are free in ¢, and for every Tarski interpretation Z the solutions Z[¢] are
the Z-assignments satisfying ¢. Viewing predicate logic as a constraint language abstracts
away from the syntactic details of formulas.

The following definitions are all made with respect to some given constraint language £ =
(I, VAR, CON, V,INT). Most of the definitions generalize terminology that is well-known
for predicate logic.

A constraint is satisfiable if there exists at least one interpretation in which it has a
solution.

A constraint ¢ is valid in an interpretation Z if Z[¢] = ASS?, that is, every Z-assignment
is a solution of ¢ in 7. Conversely, we say that an interpretation 7 satisfies a constraint ¢
if ¢ is valid in Z. An interpretation is a model of a set ® of constraints if it satisfies every
constraint in ®. Conversely, we say that an interpretation 7 satisfies a set ® of constraints
if it satisfies every constraint in ®. A constraint ¢ is valid in a set ® of constraints if every
model of ® satisfies ¢.

A renaming is a bijective I-indexed mapping VAR — VAR that is the identity everywhere
except for finitely many exceptions. If p is a renaming, we call a constraint ¢’ a p-variant
of a constraint ¢ if

Ve =p(Vé) and I[o]=I[¢]p:={ap|acI[¢T}

for every interpretation Z. A constraint ¢ is called a variant of a constraint ¢ if there
exists a renaming p such that ¢’ is a p-variant of ¢.
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Proposition 2.1.1 A constraint is satisfiable if and only if each of its variants is satisfiable.
Furthermore, a constraint is valid in an interpretation Z if and only if each of its variants
is valid in T.

A constraint language is closed under renaming if every constraint ¢ has a p-variant for
every renaming p. A constraint language is closed under intersection if for every two
constraints ¢ and ¢’ there exists a constraint ¢ such that Z[¢] N Z[¢'] = Z[¢] for every
interpretation Z. A constraint language is decidable if the satisfiability of its constraints
is decidable.

Let @ be a set of constraints and Z be an interpretation. The solutions of ® in 7 are
defined as

7[e] = |J ZI9l,
PED

where Z[®] := ( if ® is empty. Note that this definition interprets a set of constraints dis-
junctively, while the above definition of a model interprets a set of constraints conjunctively.
To ease our notation, we often abbreviate a singleton {¢} to ¢.

Given a set V of variables, the V-solutions of a set ® of constraints in an interpretation
7 are defined as

7[®]" = {alv | a € Z[®]} = [ {alv | « € T[]}

HED

where o]y is the restriction of @ to V.. We say that a set of constraints ® is V-subsumed
by a set of constraints ® and write ® <y & if Z[®]V C Z[®']V for every interpretation
Z. Obviously, V-subsumption defines a preorder on sets of constraints. The corresponding
equivalence relation

(I)NV(I)/ RS (I)jvq)//\q)/jvq)

is called V-equivalence.

Proposition 2.1.2 Renaming is homomorphic with respect to V-subsumption, that is, if
p and p’ are renamings that agree on V, ¢' is a p-variant of a constraint ¢, ¢’ is a p'-variant
of a constraint ¥, and ¢ v 1, then ¢’ <,y ¢".

A constraint language is called compact if for every set V of variables, every constraint ¢,
and every set of constraints ®, ¢ is V-subsumed by ® if and only if ¢ is V-subsumed by
some finite subset of ®.

Predicate Logic is a compact and undecidable constraint language that is closed under
renaming and intersection.

Let A and B be interpretations of £L. An L-morphism A — B is an [-indexed mapping
v: DA — D5 such that

1. yASSA = ASSH
2. vA[¢] € B[¢]
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3. {o € ASS? | ya € B[¢]} C A[¢].

Proposition 2.1.3 Let v be an L-morphism A — B. Then ~ is surjective and

vAl¢] = B[¢]
{o e ASSA | ya € B[¢]} = A[¢].

Proposition 2.1.4 If v is an L-morphism A — B, then a constraint ¢ is valid [satisfiable]
in A if and only if it is valid [satisfiable] in B.

2.2 Canonical Extensions

Let £ be a constraint language. Then we can extend the constraints of £ according to the
abstract syntax rule:

F.G — ¢ basic constraint
| 0 empty conjunction
| F&G conjunction
| —F negation
| Ja.F existential quantification.

The variable mapping V of L can extended as follows:
VO:=0, V(F&G) :=VFUVGE, V(=F):=VF, V(32.F) :=VF - {a}.

Furthermore, if 7 is an interpretation of £, we extend the solution mapping Z[-] of Z as
follows to the new constraints:

I[0] = AsSs?
I[F & G] := I[F] N Z[C]
I[-F] = ASST — I[F]
I[32.F] = {a € ASST [T B € I[F]. Blyvr_(s) = alvr_(s)-

Now, leaving the index set I and the variables VAR of £ unchanged, we have arrived
at a new constraint language £* extending L conservatively. If A is an interpretation of
L, we will abuse A to also denote the extended interpretation, which is different only in
that its solution mapping is extended to the new constraints. As usual, we will use the
abbreviations

FIG = —(-F &-G) disjunction
F—G =G implication
Vo' = —~(Jx.—F) universal quantification.

Since L£* is a constraint language, all definitions we have made for constraint languages in
general apply to £* in particular. This shows that the notion of a constraint language can
be applied iteratively.
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Proposition 2.2.1 Let £ be a constraint language, p be an L-renaming, and F be an
L*-constraint. Then F' is a p-variant of F' if F' can be obtained from F by replacing every
variable x with p(z) and every L-constraint ¢ with a p-variant of ¢. Thus L* is closed
under renaming if L is closed under renaming. Furthermore, £* is always closed under
intersection.

Theorem 2.2.2 Let L be a constraint language, A and B be interpretations of L, and v
be an L-morphism A — B. Then v is an L*-morphism A — B.

Proof. We show simultaneously by induction on F that v A[F] C B[F] and {ow € ASS* |
Ja € BIF]} C ALF].

If F'is an L-constraint, then the claims hold since 7 is an £-morphism A — 5.

If =0, then yA[0] = yASSA = ASS® = B[] and {a € ASSA | ya € B[f]} C ASSA =
A[0].

Let F'=G & G'. Then we have

YALG & G'] = v(A[G] N A[G']) CYA[GT N v A[GT]
C B[G] N B[G"] = B[G & G']

using the induction hypothesis for the first claim twice. Furthermore, we have

{o € ASSA | ya € B[G &G}
= {a € ASS* | va € B[G]} N {o € ASSA | ya € B[G']}
C A[G] N A[G] = A[G & G']

using the induction hypothesis for the second claim twice.

Let I' = =G and a € A[=G]. Then o ¢ A[G] and hence, by the induction hypothesis for
the second claim, ya ¢ B[G]. Thus ya € B[-G].

Let F' = =G, a € ASS* and ya € B[-G]. Then ya ¢ B[G] and hence, by the induction
hypothesis for the first claim, o ¢ A[G]. Thus a € A[~G].

Let F' = J2.G and a € A[J2.G]. Then there exists an assignment 5 € A[G] that agrees
with & on VG — {z}. Hence v € B[G] by the induction hypothesis for the first claim.
Thus ya € B[Jz.(] since ya and 3 agree on VG — {z}.

Let F' = 32.G, @ € ASS?*, and ya € B[3z.G]. Then there exists an assignment 3 € B[G]
that agrees with ya on VG — {z}. Since vASSA = ASSE| there exists an assignment
§ € ASS# such that v6 = 8 € B[G] and § agrees with a on VG — {z}. Hence § € A[G] by

the induction hypothesis for the second claim. Thus a € A[Jz.G] since o and § agree on
VG — {z}. 0

From now on we assume that a set of relation symbols is given, where every relation
symbol comes with a natural number specifying the number of arguments it takes.

Let £ be a constraint language and R be a decidable set of relation symbols. An Lp-atom
has the form r(&), where the tuple & consists of pairwise distinct L-variables and has as
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many elements as r has arguments. We extend the constraints of £ by adding all Lr-atoms
and the variable mapping of £ by defining

Vr(Z) = VZ.

If 7 is an interpretation of £, we extend 7 to a new interpretation A by leaving the domain
of 7 unchanged, choosing for every relation symbol r € R a relation r* on D7 taking the
right number of arguments, and defining the solution mapping A[-] as follows

Al¢] :=Z[¢] if ¢ is an L-constraint
A[r(#)] = {o € ASST | () € ).

In this way we can obtain at least one extension for every interpretation of £. Now,
leaving the index set I and the variables VAR of £ unchanged and taking all possible
extensions of the interpretations of £, we obtain a new constraint language Lr that extends
L conservatively.

Proposition 2.2.3 Let L be a constraint language, R be a decidable set of relation sym-
bols, p be an L-renaming, and F be an Lpr-constraint. Then F' is a p-variant of F' if F’
can be obtained from I’ by replacing every variable x with p(z) and every L-constraint ¢
with a p-variant of ¢. Thus Lg is closed under renaming if L is closed under renaming.

If £ is a constraint language and R is a decidable set of relation symbols, then we de-
note (Lr)* with £5. This construction yields Predicate Logic if the constraints of £ are
the equations between first-order terms and the interpretations of £ are the usual Tarski
interpretations. In £} an atom r(sq,...,s,) takes the form

dzy... .32, (t1=s1& . & a, =5, & (2,0, 20)),

where xy,...,2, are pairwise distinct variables not occurring in the argument terms
S1yeeeySp.

2.3 Definite Clauses

Here and in the rest of this chapter we assume that £ is a constraint language and R is a
decidable set of relation symbols. The letters ¢ and 3 will always denote L-constraints, A
and B will always denote Lg-atoms, and /' and & will always denote L7},-constraints.

A definite clause is an L3-implication

A& . &ALk — B,
where n > 0, A1,..., A, and B are Lp-atoms, and ¢ is an L-constraint. If convenient, we
write a clause as B+ ¢ &G or B + G.

A definite clause specification is a set of definite clauses.

Conventional logic programs are definite clause specifications over £, where the constraints
of £ are conjunctions of equations between first-order terms and the corresponding ground
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term algebra is the only interpretation of £. To meet our definition of definite clauses, the
clause

app(H.R, L, H.RL) « app(R, L, RL),

for instance, is rewritten to the equivalent clause
app(X, L, Y) + (X=H.R & Y=H.RL) & app(R, L, RL)

having the conjunction X=H.R & Y=H.RL as &-constraint.

We will show that the nice properties of conventional logic programs extend to definite
clause specifications over arbitrary constraint languages.

The base of an Lj-interpretation A is the L-interpretation that A is extending. Two
h-interpretations are called base equivalent if they have the same base.

We define a partial ordering on the set of all L};-interpretations by:

ACB :<—  Aand B are base equivalent and V r € R. rA C B,

Proposition 2.3.1 Let A and B be two L}-interpretations and A be an Lpr-atom. Then
A[A] C B[A] if A C B.

The intersection (\;c;.A; of a family (A;);er of base equivalent Lh-interpretations is
obtained by intersecting the denotations of the relation symbols and is again an L3%-
interpretation. Analogously, the union (J;c;.A; of a family (A;);er of base equivalent

L-interpretations is obtained by joining the denotations of the relation symbols and is
again an Lj-interpretation.

Proposition 2.3.2 Let 7 be an L-interpretation. Then the set of all L}-interpretations
extending 7 is a complete lattice.

Proposition 2.3.3 The intersection of a family of base equivalent models of a definite
clause specification S is a model of S.

The following theorem generalizes the key result for conventional logic programs to general
definite clause specifications.

Theorem 2.3.4 [Definiteness] Let S be a definite clause specification in L} and I be
an L-interpretation. Then the equations

rAo =0, ri = {a(@) | (r(@) « G) €S A ae A[G]

define a chain Ay C Ay C .- of L}-interpretations whose base is I. Moreover, the union
Uiso A: is the least model of S extending T.

Proof. By induction on ¢ one easily verifies that A; C A;;;. Since every A; is an L}-
interpretation extending 7, the union A :=J;5q.4; is an Lh-interpretation extending 7.
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To show that A is a model of S, let A <~ G be a clause of S and o € A[G]. We have to
show that o € A[A]. By the iterative definition of A we know that there is some 7 such
that o € A;[G]. Hence o € A;11[A] C A[A].

To show that A is a minimal model of S, let B be a base equivalent model of S. By
induction on ¢ one verifies easily that A; C B for every ¢. Hence A =J;5q.4; C B. a

A set M of L}-constraints is called a definite specification if every L-interpretation can
be extended to a minimal model of M. The Definiteness Theorem says that every definite
clause specification is a definite specification. Many of the interesting properties of definite
clause specifications depend solely on their definiteness. If M is a definite specification
in L%, then M uniquely defines the relations of R, that is, for every L-interpretation M
defines unique minimal denotations for the relation symbols of R.

A goal is a possibly empty conjunction of L-constraints and L£p-atoms. To ease our nota-
tion, we identify a goal with the multiset consisting of its constraints.

An observation is an implication ¢ — G consisting of an L-constraint ¢ and a goal G.

Proposition 2.3.5 Let M be a definite specification. Then an observation is valid in every
model of M if and only if it is valid in every minimal model of M.

Let M be a definite specification. An M-answer of a goal (G is a satisfiable L-constraint ¢
such that the observation ¢ — G is valid in every model of M. The preceding proposition
says that the M-answers of a goal are completely characterized by the minimal models of

M. Thus we say that a set ® of M-answers of a goal G is complete if A[®]VE = A[G]V
for every minimal model A of M.

Proposition 2.3.6 Let M be a definite specification, G be a goal, ¢ be an M-answer of
G, and ® be a complete set of M-answers of G. Then:

1. I[#]V¢ C Z[®]YC for every L-interpretation T

2. if £ is compact, then there exists a finite subset ® C ® such that Z[¢]V" C Z[®]V¢
for every L-interpretation 7.

Proof. The second claim follows immediately from the first claim. To show the first
claim, suppose that Z is an L-interpretation. Since M is definite, there exists a minimal
model A of M whose base is 7. Hence

T[]V = A[¢]VC C A[G]VE = A[®]VC = I[®]V

since ¢ is an M-answer of G' and @ is a complete set of M-answers of G. a

2.4 Operational Semantics

In this section we show that one can obtain a complete interpreter for general definite clause
specifications by generalizing the SLD-resolution method [L.lo84] employed in conventional
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logic programming. Although our proofs are much more general than the proofs for con-
ventional logic programming given in [Llo84], they are clearer and simpler. In particular,
we give a new complexity measure based on a multiset ordering that provides for a strong
completeness result making a careful distinction between don’t care and don’t know choices.

In the following we assume that £ and R are given, S is a definite clause specification in
L}, and V is a finite set of variables.

We define (59, V)-goal reduction as the binary relation =gy on the set of goals given
by the rule:
A& G r—>57v F&dG
if A< Fis a variant of a clause of S

such that (VUVG)NVF C VA.

We say that a goal G’ is obtained from a goal G' by (S5, V)-goal reduction on A with v
if ¢ =gy G’ by reducing the atom A € G with a variant of the clause v € §.

Proposition 2.4.1 [Soundness of Goal Reduction] If ¢ “—gy I, then A[F] C A[G]
for every model A of S.

We will now show that goal reduction is a complete rule for inferring S-answers, provided
all necessary variants of the clauses of S exist, which is certainly the case if £ and hence

T, are closed under renaming. The most important ingredient of the completeness proof is
a well-founded complexity measure on goals that can be decreased by goal reduction. From
the Definiteness Theorem we know that every minimal model A of S can be obtained as
the union A = (J;5¢A; of a chain Ay C Ay C --- of L} -interpretations being uniquely
defined for A. This provides for the following definitions:

1. if A is a minimal model of S, A is an atom and a € A[A], then the complexity of
a for Ain A is
COMP(a, A, A) := min{i | o € A;[A]}

2. if A is a minimal model of S, G is a goal, and o € A[G], then the complex-
ity comp(a,G, A) of a for G in A is the multiset consisting of the complexities
coMP(a, A, A) of the atoms A in G.

On the multiset complexities, which are finite multisets of natural numbers, we define a
well-founded total ordering by
M < M' :+—= T multisets X C M and X’ C M’ such that
M=(M-XYUX and
VeeX 32 e X »<a,
where C, —, U, and € stand for the appropriate multiset operations (see [DM79] for details
on multiset orderings).

Now we are ready for the definition of the complexity measure we are actually going to use.
Let A be a minimal model of S, G be a goal and a € A[G]Y. Then the V-complexity of
a for G in A is

coMPy (o, Gy A) := min{comp (8, G, A) | B € A[G] N a=B|v},
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where the minimum is taken with respect to the multiset ordering.

Theorem 2.4.2 [Completeness of Goal Reduction] Let £ be closed under renaming,
A be a minimal model of S, G be a goal, A be an atom in G, and o € A[G]". Then there
exists a clause v € S such that

1. (S,V)-goal reduction of G on A using =y is possible

2. if GGy is obtained from G by (S, V)-goal reduction on A using v,
then o € A[G1]Y and compy (o, G, A) < compy (a, G, A).

Proof. Let G = A& G and g € A[A& G'] such that @ = S|y and compy (o, G, A) =
coMP(f3, G, A). Furthermore, let A = r(#) and i := comp(83, A, A). Then 3% € r*. Hence
there exists a clause r(¥) < F in S and an assignment v € A;_1[F] such that v§ = 5.

Now let p be a renaming and r(Z) <— H be a p-variant of r() < I such that & = p(¥) and
(VUVGE)NVH C Vr(Z). Such a variant always exists since £ and hence L}, are closed
under renaming, V is finite, and there are infinitely many variables for every index. Since
H & G’ can be obtained from G by an (S, V)-goal reduction on A, we have the first claim.

To show the second claim, we have to show that a € A[H & G']V and that compy (o, H &
G'; A) < compy (a,G, A).

We know that yp~! € A;_[H] and that vp~! and 3 agree on #. Hence there exists an
assignment § € ASS# that agrees with 8 on V U VG’ and with vp~" on VH. One verifies
easily that ¢ agrees with a on V, that 6 € A[G'], and that 6 € A;_1[H] C A[H]. Hence
o € A[H & G'TY and

compy (o, H& G', A) < comp(8, H & G, A)
= {comp(d, H, A)} Ucomp (4, G', A)
< {i}Ucomp(B,G, A)
= coMP(8,G, A) = comPy (o, G, A).
m

Corollary 2.4.3 [Weak Completeness of Goal Reduction] Let £ be closed under
renaming, A be a minimal model of S, G be a goal and a € A[G]Y. Then there exists an
S-answer ¢ of G such that G =%y ¢ and a € A[¢]".

Proof. By induction on compy (a, GG, A), using the Completeness and Soundness Theo-
rems. O

The Completeness Theorem is stronger than the corollary since it makes a careful distinction
between don’t care and don’t know choices: a complete interpreter can choose any atom in
the goal to be reduced, has to try all clauses defining the relation symbol of the atom, and
can reduce the goal with any suitable variant of the clause being tried.

In conventional logic programming the search space is significantly reduced by exploiting
the fact that only clauses whose head unifies with the atom to be reduced need to be tried.
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This crucial optimization generalizes nicely to our framework. To show this, we define an
additional inference rule, called V-constraint solving:

LG Sy &G
if ¢&¢’ ~vuye ¢ and

o, ¢, and ¢ are L-constraints.

Proposition 2.4.4 [Constraint Solving] Let G be a goal and G ==y G'. Then:

1. A[G]Y = A[G"Y for every interpretation A of L},

2. compy (o, G, A) = compy (a, G, A) for every minimal model A of S and every a €
AlGTY.

Next we can require that the underlying constraint language £ comes with a set of nor-
mal L-constraints such that every normal L-constraint is satisfiable, and that for every
satisfiable conjunction of L-constraints and every finite set V of variables there exists a
V-equivalent normal L-constraint. For conventional logic programming, the normal con-
straints are the equational representations of idempotent substitutions.

Finally, we can require that the goal to be reduced contains only one L-constraint that has
to be normal and that the constraints in the clauses of S be normal. Obviously, a definite
clause specification can be transformed to this format without changing its models.

The optimized interpreter works as follows: immediately after a goal reduction step, the
constraint solving rule is applied to the conjunction ¢ & ¢’ consisting of the normal con-
straint from the reduced goal and the normal constraint from the applied clause, where a
so-called constraint solver attempts to compute a normal constraint that is equivalent to
¢ & ¢'. If the constraint solver detects that ¢ & ¢’ is unsatisfiable, then the interpreter tries
immediately another clause since this part of the search space cannot contain any answers.
In conventional logic programming, the constraint solver is given by a term unification pro-
cedure, where unification succeeds if and only if the corresponding equations are satisfiable
in the ground term algebra.

We now give our final Completeness Theorem, which hides how the complexity measure
was obtained.

A complexity measure on a set M is a partial function from M to a set equiped with a
total well-founded ordering.

Theorem 2.4.5 [Completeness| Let £ be closed under renaming, A be a minimal model
of S, G be a goal, and « € A[G]V. Then there exists a complexity measure “||G||” on the
set of all goals such that

1. ||| is defined
2. if ||[H|| is defined, then o € A[H]V

3. if ||H|| is defined and H v H', then ||H'|| = ||H||
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4. if ||H|| is defined and A is an atom in H, then there exists a clause v € S such that

(a) (S,V)-goal reduction of H on A using =y is possible
(b) if H' is obtained from H by (S, V)-goal reduction on A using ~, then ||H'|| < ||H||.

Proof. By the Completeness Theorem for goal reduction and the Constraint Solving
Proposition we know that the complexity measure

|H|| = compy (o, H, A) if « € A[H]V

satisfies the claims of the theorem. O

2.5 A Type Discipline

A declaration is an Lx-implication of the form
A = Jyi... . Ty, o,

where A is an atom, ¢ is a satisfiable L-constraint, and y,...,¥, are the variables in
V¢ — VA. For convenience we use the abbreviation 4 —3 ¢.

Proposition 2.5.1 A declaration r(Z) —3 ¢ is valid in an Lj-interpretation A if and
only if rA C {a(%) | a € A[¢]}.

Declarations prescribe upper bounds for relations. If £ is a constraint language with sorts,
typical declarations might be:

plus(X,Y,Z) —3 X:int & Y:int & Z:int
likes(X,Y) —3 X:person & Y:person.

If Feature Logic [Smo88a, Smof9] is employed as the underlying constraint language, the
arguments of a relation can be constrained with feature terms employing intersections,
unions, complements and feature constraints. Similar declarations are possible using the
concept and role descriptions of KL-ONE [BS85, LLB87, Neb89, SSS91, NS90]. The idea

even applies to conventional logic programming, where we can write declarations like
plz,y) = Fz.y= f(z,2).

Giving declarations for the relation symbols of a definite clause specification makes it easier
to understand the specification since looking at the declarations alone already gives one a
rough understanding of the specified relations. Declarations are much easier to understand
than clauses since a declaration specifies an upper bound for a relation without recourse to
other relations.

We establish an undecidable notion of well-typedness by saying that a definite specification
M satisfies a set D of declarations if every minimal model of M is a model of D.



22 Chapter 2. Logic Programming over Constraint Languages

Proposition 2.5.2 Let M be a definite specification and D be a set of declarations. Then
the following conditions are equivalent:

1. M satisfies D
2. MU D is a definite specification

3. M and M U D have the same minimal models.

Furthermore, if the above conditions are satisfied, then an observation is valid in every
model of M if and only if it is valid in every model of M U D.

Proof. “(1) = (2)”. Let I be an L-interpretation. We have to show that Z can be
extended to a minimal model of M U D. Since M is a definite specification, Z can be
extended to a minimal model A of M. Hence we know by our assumption that A is a
model of M U D. To show that A is a minimal model of M U D, let 5 C A be a model
of M UD. Then B is in particular a model of M and hence B = A since A is a minimal
model of M.

“(2) = (3)”. Let A be a minimal model of M. Since M U D is a definite specification by
assumption, we know that M U D has a minimal model B such that A and B have the same
base. In particular, we know that B is a model of M. Since A is a minimal model of M,
we know that A C B. Since B is a model of D, we hence know that A is a model of M U D.
Since B is a minimal model of M U D, we thus know that A = 5. Hence A is a minimal
model of M U D.

Let A be a minimal model of M U D. Then A is a model of M and, since M is definite,
M has a minimal model B C A. Since A is a model of D, we know that B is a model of
D. Hence B is a model of M U D and, since A is a minimal model of M U D, we know that
A = B. Hence A is a minimal model of M.

“(3) = (1)”. Trivial.
The observational equivalence of M and M U D follows from (3) and Proposition 2.3.5. O

In practice, a major advantage of type disciplines is that one can detect specification errors
automatically by checking whether a specification is well-typed. This, of course, requires
that the well-typedness of a specification is decidable. Our current notion of well-typedness,
however, is undecidable even if the underlying constraint language is decidable. We will
now devise a stronger more syntactically oriented notion of well-typedness that is decidable
if the underlying constraint language is decidable.

An atom A is well-typed under an L-constraint ¢ with respect to a declaration ¢ if ¢ <y 4 @
for every variant A —3 @ of . Note that, if A and § have different relation symbols, then
A is well-typed under every L-constraint with respect to 4.

Proposition 2.5.3 Let ¢ be an L-constraint and A —3 1) be a variant of a declaration 4.
Then A is well-typed under ¢ with respect to ¢ if and only if ¢ <y 4 .

Proof. Follows from Proposition 2.1.2. a



2.6. Type Inference 23

Let D be a set of declarations. A definite clause v is well-typed with respect to D if every
atom of v is well-typed under the L-constraint of v with respect to every declaration of D.
(For technical convenience, we don’t require that the L-constraint of a well-typed clause
be satisfiable.) A definite clause specification S is well-typed with respect to D if every
clause of S is well-typed with respect to D.

Proposition 2.5.4 Let L be a constraint language such that, for every renaming p and
every finite set V' of variables, p-variants are computable and V -subsumption is decidable.
Then the well-typedness of finite definite clause specifications with respect to finite sets of
declarations is decidable.

Theorem 2.5.5 Let L be closed under renaming, S be a definite clause specification and
D be a set of declarations. Then S satisfies D if .S is well-typed with respect to D.

Proof. Let A be a minimal model of S, r(#) —3 ¢ be a declaration of D, and « be
an A-assignment such that o € r. We have to show that there exists an assignment
w € A[¢] that agrees with a on V.

Since L is closed under renaming, we can assume without loss of generality that & = i for
every clause r(7) < G in S.

Using the construction of the Definiteness Theorem, we know that aZ € rAi+1 for some i.
Hence there exists a clause r (%) < 1 & I and an assignment 3 € A[v] such that 57 = a7
Since S is well-typed, we know 1 <yz ¢. Hence there exists an assignment w € A[¢] such
that w agrees with 8 and hence with o on V. a

A goal G is well-typed with respect to D if every atom in G is well-typed under some
L-constraint in G' with respect to D.

Proposition 2.5.6 [Well-Typed Programs Don’t Go Wrong] Let S be a definite
clause specification that is well-typed with respect to a set D of declarations, and let GG be
a goal that is well-typed with respect to D. Then G’ is well-typed with respect to D if G’
is obtained from G by (S, V)-goal reduction or V-constraint solving.

2.6 Type Inference

In the following we assume that S is a definite clause specification and D is a set of
declarations.

We will show that, if S satisfies D, one can compute, by superposing the declarations of D
with the clauses of S, a definite clause specification S’ that is well-typed with respect to D
such that S and S’ have the same minimal models. Thus S and its well-typed version S’
are observationally equivalent. We will also show that, in general, S’ U D is semantically
weaker than S U D, that is, has more nonminimal models than SU D.

This result together with the results of the preceding section clarifies the relationship be-
tween our two notions of well-typedness. Type inference is also useful for practical applica-
tions since one can write an abbreviated definite clause specification S together with a set
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D of declarations and automatically infer the “intended” well-typed specification S’ satis-
fying D. If type inference is used for this purpose, it isn’t necessary that the abbreviated
specification S satisfies D.

We start by defining a quasi-ordering on definite clauses:
(A 0&G) 2 (A d&G) = ¢ Zvawe ¢

If v < 9/, we say that 7’ is a weakening of 7. Note that, if ' is a weakening of ~, the
clauses v and v are equal up to their L-constraints.

To render a clause well-typed with respect to D, we will replace it with a minimal weakening
that is well-typed with respect to D. The next propositions says that it doesn’t matter
which minimal well-typed weakening we choose.

Proposition 2.6.1 If ' is a weakening of 7, then every model of v is a model of +'.

To compute minimal well-typed weakenings, we define the following type inference rule for
definite clauses:

(A= o&G) “mp (A« &G)

if B is an atom in A& G and
B —3 % is a variant of a declaration of D such that

VN (VAUVeUVGE) C VB,

¢ <yp ¥ does not hold, and

¢ ~vaova ¢ &

Theorem 2.6.2 [Type Inference] Let L be closed under renaming and intersection and
let v be a definite clause. Then:

1. there are no infinite chains N, Y1 N, Y2 BN

2. if the type inference rule “—p cannot be applied to v, then ~ is well-typed with
respect to D

3. if v L5 p+/, then 4" is a weakening of v such that

(a) if v" is a weakening of v that is well-typed with respect to D, then " is a
weakening of v’

(b) if S satisfies D and S’ is obtained from S by replacing v with o', then S and S’
have the same minimal models.

Proof. 1. The clause v has finitely many pairs (B, §) such that B is an atom of v that
is not well-typed under the L-constraint of v with respect to the declaration § € D. An
application of the type inference rule reduces the number of these pairs.

2. The claim is easily verified using that £ is closed under renaming and intersection.

3. Lety=(A+ ¢& @),y = (A« ¢ &G), B be an atom in v, B —3 v be a variant of a
declaration of D such that VN (VAU Ve UVG) CVB, and ¢’ ~pauvg ¢ & 1. Then v is

obviously a weakening of ~.
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3.1. Let v = (A + ¢" & G) be well-typed with respect to D and let ¢" <yauva ¢. We
have to show that ¢" <y auyg @'. Since we know that ¢' ~ysuve ¢ & 1, it suffices to show
that ¢ <yauvg ¢ & . Let T be an L-interpretation and o € Z[¢"]. We have to show that
there exists an assignment 3 € Z[¢ & ¢] that agrees with & on VAU VG.

Since ¢" <pauye ¢, we know that there exists an assignment § € Z[¢] that agrees with
a on VAUVG. Since B is well-typed under ¢” with respect to B —3 v, we know that
¢" <yp ¥. Thus there exists an assignment w € Z[¢] that agrees with o and hence with
on VB. Since VyyN (VAUV¢UVGE) C VB, we can assume without loss of generality that
w agrees with § on VAUV UVG. Thus w € Z[¢ & o] and w agrees with @ on VAU VG.

3.2. Let S satisfy D and let S’ be obtained from S by replacing v with 4’. Furthermore, let
T be an L-interpretation and let Ag C A; C --- and A C A} C -+ be the chains defining
the extensions of Z to minimal models of S and S" as in the proof of the Definiteness
Theorem. We show by induction on ¢ that A; = A’ for every ¢ > 0. For i = 0 the claim is
trivial. To show A;1y = AL, ,, it suffices to show that A;[¢ & G]VA = A;[¢/ & G]VA.

3.2.1. Let @ € A;[¢' & G]. We show that there exists an assignment 5 € A;[¢ & G] that
agrees with o on VA. Since ¢ ~yauyg ¢ & ¢, we know that there exists an assignment

g € A;[#] that agrees with o on VAU VG. Hence 5 € A;[¢ & G].

3.2.2. Let a € A;[¢ & (] and B be an atom in G. We show that there exists an assignment
w € A;[¢' & G that agrees with o on VA. Since S satisfies D, we know that A; satisfies
B —3 1. Hence there exists an assignment 3 € A;[¢] that agrees with o on VB. Since
VN (VAUVeUVG) C VB, we can assume without loss of generality that § agrees with
aon VAUVoUVG. Hence § € Ao & & G]. Since ¢ ~yauvg ¢ & 1, there exists an
assignment w € A;[¢'] that agrees with § on VAUV, Hence w € A;[¢' & (] and w agrees
with « on VA.

3.2.3. Let a € A;Jo&G] and B = A. We show that there exists an assignment w €
Ai[¢' & (] that agrees with o on VA. Since S satisfies D, we know that A;;1 satisfies
A —3 1. Since o € A;11[A], there exists an assignment 8 € A;[¢)] = A;11[¢] that agrees
with @ on VA. Since Vip N (VoUVG) C VA, we can assume without loss of generality that
G agrees with @ on VAUV@OUVG. Hence € A;[¢ & 1 & G]. Since ¢’ ~yauva ¢ & 1, there
exists an assignment w € A;[¢'] that agrees with § on VAU VG. Hence w € Aif¢' & G]
and w agrees with « on VA. a

Corollary 2.6.3 Let S’ be obtained from S by replacing every clause of S by a minimal
weakening that is well-typed with respect to D. Then S’ is well-typed with respect to D
and, if S satisfies D, then S and S’ have the same minimal models.

One could expect that S and S’ not only have the same minimal models but have the same
models in general. By Proposition 2.6.1 we know that every model of S is a model of 5.
However, the following example shows that the other direction doesn’t hold. This means
that S’ is semantically weaker than S in that it allows for more nonminimal models than

S.

Example 2.6.4 Let £ be the constraint language whose constraints are conjunctions of
equations between first-order terms and let the ground term algebra be the only interpre-
tation of £. Furthermore, let a declaration ¢ and definite clauses v and 4’ be given as
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follows:
d: plz) w3z=0a

viople) < q(@)

v op(r) v =akqa).

The minimal model of + has empty denotations for p and ¢ and thus trivially satisfies
5. Note that 4" can be obtained from v with type inference modulo . Now let B be an
interpretation such that p® = {a} and ¢” is the set of all ground terms (assume that there

is more than one). Obviously, B is a model of 4" and § but is not a model of ~. O
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POS-Logic

3.1 The Category of POS-Algebras
3.2 POS-Constraints

3.3 The Substitution Theorem

3.4 Sort Rewriting

3.5 Quasi-Extensional Algebras
3.6 Simple Specifications

This chapter presents the logic we will use for the specification of POS-types. The logic
is interpreted over partial algebras whose carrier consists of values and sorts and whose
operators are either total functions from sorts to sorts or partial functions from values to
values. Sorts are partially ordered by an inclusion relation and values and sorts are related
by a membership relation. To accomplish that, for instance, lists of natural numbers are a
subsort of lists of integers, sort functions are required to be monotonic with respect to the
inclusion order.

In so-called extensional POS-algebras, sorts are sets of values and inclusion and membership
are set inclusion and set membership. The reason for considering nonextensional POS-
algebras is that the type specifications we are aiming at do not have extensional initial
models in general. Defining types as the initial models of their specifications is, however,
the key paradigm of the theory of abstract data types. Nevertheless, we will show that
POS-types can also be obtained in a natural way as extensional POS-algebras, where the
initial interpretation of a POS-specification will be very closely related to its extensional
interpretation. In fact, all operational methods that will be developed in this thesis will
work unchanged for both initial and extensional POS-types.

The syntax of POS-Logic distinguishes two kinds of terms denoting sorts and values, re-

27
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spectively. Primitive constraints are available for expressing inclusion between sort terms,
membership between value and sort terms, and equality between value terms. This is a
significant departure from Many-Sorted and Order-Sorted Logic, where only equality be-
tween value terms can be expressed within the logic. Furthermore, POS-Logic does not
impose a notion of well-typedness a priori. Instead, different notions of well-typedness can
be imposed yielding different specification disciplines. The consequence of not imposing a
notion of well-typedness a priory is that the partiality of value functions shows up in that
not every value term denotes in every algebra. Since for our purpose total homomorphisms
suffice, the presence of partiality doesn’t produce any complications.

Our development of POS-Logic goes only as far as is needed for our type specifications.
Since our type specifications don’t employ equational axioms, we don’t study congruences
and quotients. And since there exists a rather specialized deduction system for our type
specifications, we don’t give general deduction rules.

For so-called simple specifications we define a notion of well-typedness such that a ground
value term is well-typed in a simple specification 7' if and only if it denotes in every model
of T. As in Many- and Order-Sorted Logic, the well-typed terms of a simple specification
T yield term models of T and the ground term model of T is an initial model of T". Well-
typedness is established with deduction rules, which will turn out to be sound and complete
for simple specifications.

3.1 The Category of POS-Algebras

From now on we assume that two disjoint, decidable sets of function symbols are given whose
elements are called sort function symbols and value function symbols, respectively.
The letters &, n, ¢ will always denote sort function symbols and the letters f, g, h will
always denote value function symbols.

A POS-signature is a set of sort and value function symbols.

A POS-algebra A consists of

1. a POS-signature X4,
2. a set S whose elements are called the sorts of A
3. a partial order <4 on 84, called the inclusion order of A

4. a nonempty set VA whose elements are called the values of A, where S and V4
are disjoint

5. a relation A C VA x S4| called the membership relation of A, such that

(a) for every a € VA there exists an A € S# such that a 4 A
(b) if A A and A <* B, then a :* B

6. a denotation &4 for every sort function symbol € € 24, where €4 is a total function
SA x ... x SA — S# taking as many arguments as specified by the arity of ¢ and
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being monotonic with respect to the inclusion order of A, that is,
A<AB = ¢4A) <A eAB)

7. a denotation fA for every value function symbol f € ¥4, where f# is a partial
function VA x ... x VA — V4 taking as many arguments as specified by the arity
of f; we use D[fA] to denote the domain of fA.

The set D# := SAU VA is called the domain of A.

A POS-algebra A is called extensional if its sorts are sets, V4 = |JS#, its inclusion order
is set inclusion, and its membership relation is set membership. General POS-algebras are
more general than extensional POS-algebras in that they are not required to satisfy the
direction “=" of the equivalence

VaeVA aAA=a?B) = A<*B

Let A and B be two POS-algebras such that ¥4 C 5. A homomorphism A — B (read:
from A to B) is a mapping v: D4 — D5 such that

L y(<A) € <Band y(:A) C 5
2. if € € B4, then v(¢4) C €5
3. if f € ¥4, then v(f4) C 5.

Note that our definition of homomorphisms is completely natural. It relies on the fact that
functions and relations on the domain of a POS-algebra are sets of tuples over the domain
and that v can be extended component-wise to tuples and element-wise to sets. The usual
homomorphism equations for functions, for instance,

y(FA@) = fF (@),

are obviously implied by our definition. Furthermore, our definition treats partial functions
in the right way in that we have v(D[f4]) C D[f¥] for every value function. Moreover, the
first condition of our definition implies that v(S*) C S¥ and v(VA4) C V5.

Proposition 3.1.1 The POS-algebras together with their homomorphisms comprise a cat-
egory.

Proof. We must show two things: first, if A is a POS-algebra, then the identity mapping
of the domain of A is a homomorphism; and second, if A, B, C are POS-algebras, v is a
homomorphism A — B, and § is a homomorphism B — C, then the composition év is a
homomorphism A — C. It is straightforward to verify these requirements. a

A homomorphism v: 4 — B is called an isomorphism if there exists a homomorphism
v B — A such that vy’ = 14 and 'y = 3, where ¢4 and ¢z are the identity homomor-
phisms of A and B, respectively. Two POS-algebras are called isomorphic if there exists
an isomorphism from one to the other.
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Example 3.1.2 Not every bijective homomorphism is an isomorphism. To show this,
we define two POS-algebras A and B as follows: ¥4 = 25 = (), 84 = S8 = {4, B},
VA =VE = (b}, <A={(A, A), (B, B)}, <B=<AU{(A,B)}, and :A=:5= {(b, B)}. Then
the identity function of D is a bijective homomorphism A — B but not an isomorphism.
O

Intuitively, it would be most appealing to restrict our semantic theory to extensional POS-
algebras. However, insisting on this restriction would have the severe drawback that our
type specifications would not have initial models in general although they employ only
Horn-like axioms. This stems from the fact that the equivalence

VaeVA aAA=a?B) = A<*B

satisfied by extensional POS-algebras cannot be enforced by Horn-like axioms.

Order-Sorted Logic [GM87a, SNGMS89] interprets sorts as sets and still has initial models
for every Horn-like specification. This at first surprising difference to POS-Logic is caused
by the fact that in an order-sorted algebra every sort is the denotation of a sort symbol in
the signature, which allows for a weak noncanonical notion of homomorphism. Since POS-
algebras come with sort functions, the notion of an order-sorted homomorphism doesn’t
generalize to POS-Logic. (Example 3.6.13 will shed more light on this point.)

Giving the semantics of a type specification by the isomorphism class of its initial mod-
els is the key paradigm of the theory of abstract data types. Admitting nonextensional
POS-algebras will provide for an initial model semantics of our type specifications. Fur-
thermore, the initial models of our type specifications will have associated with them unique
extensional models yielding the same theories with respect to membership and equality.

3.2 POS-Constraints

In this section we define a family of constraint languages whose interpretations are POS-
algebras. Having the general framework of Chapter 2 available, it suffices to give just the
definitions that are specific to POS-Logic.

We employ two disjoint alphabets of variables, called sort variables and value variables.
If Ais a POS-algebra, an A-assignment is a mapping from the set of all sort and value
variables to the domain of A such that sort variables are mapped to sorts and value variables
are mapped to values. We use ASSA to denote the set of all A-assignments.

A sort term is a term that is built only from sort variables and sort function symbols. A
value term is a term that is built only from value variables and value function symbols.

Whenever we are in the context of POS-Logic, we will tacitly assume that z, y, z are value
variables, a, 3, v are sort variables, ¢, 7, i, and v are sort terms, and that s, ¢, u, and v
are value terms.

Let A be a POS-algebra and § be an A-assignment. The §-denotation A[-]s is the least
partial function from Y4-sort and value terms to the domain of A satisfying the following
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equations:

Alals = 6(a),  A[E(F)]s = €4 (A[E]s),

Alels = 8(x),  ALF(®)]s = fA(AL5Ds)-
If o is a X4-sort term, then the §-denotation of ¢ in A is always defined and A[o]s € SA.
If s is a Y4-value term and the d-denotation of o in A is defined, then A[s]; € VA
Denotation is strict, that is, a term denotes if and only if each of its subterms denotes.

Since the denotation of ground terms does not depend on the employed assignment, we
may write A[o] and A[s] rather than A[o]s and A[s]s if ¢ and s are ground.

There are three kinds of primitive POS-constraints, which are given below together with
their solutions in a POS-algebra A (o and 7 are ¥4-sort terms and s and ¢ are X4-value
terms):

1. inclusions: Afo C 7] = {6 € ASSA | A[o]s <A A[r]s}
2. memberships: A[s: 0] = {6 € ASSA | A[s]s -* A[o]s}
3. equations: A[s = t] = {5 € ASS* | A[s]5s = A[t]s}.

Note that Afo]s and A[s]s must be defined if ¢ and s are terms occurring in a primitive
POS-constraint A and § € A[A]. Thus our notion of equality is what is known as “exis-

tential equality” in the theory of partial algebras: an equation does only hold if both sides
are defined.

A primitive Y4-constraint is a primitive POS-constraint containing only Y*-sort and
value terms. If convenient, we write an inclusion ¢ C 7 as 7 O 0.

Proposition 3.2.1 Let ¥ be a POS-signature. Then the following defines a constraint
language L£(X) that is closed under renaming:

1. the variables of L(X) are the sort and value variables
2. the constraints of L(X) are the primitive ¥-constraints
3. if A is a constraint of L(X), then VA is the set of all variables occurring in A

4. the interpretations of L(X) are the POS-algebras whose signature contains ¥, where
the solution mappings are defined as above.

Given a POS-signature X, we call £(X)*-constraints for convenience just X-constraints.
Furthermore, A and B will always denote primitive Y-constraints and F’ and G will always
denote »-constraints.

Theorem 3.2.2 [Homomorphism] Let A and B be two POS-algebras, v be a homomor-
phism A — B and 6 be an A-assignment. Then:

1. if o is a YA-sort term, then v(A[o]s) = Blo]s

2. if s is a Y A-value term and A[s]s is defined, then v(A[s]s) = B[s]s
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3. if A is a primitive ©4-constraint, then v A[A] C B[A]

4. if v is an isomorphism A — B, then v is a £(X)- and L£(X)*-morphism A — B.

Proof. The first two claims can be shown by straightforward inductions over the term
structure of ¢ and s. The third claim follows immediately from the first two claims. The
last claim follows from the third claim and Theorem 2.2.2. a

Corollary 3.2.3 If A and B are isomorphic POS-algebras, then an Y*-constraint is valid
[satisfiable] in A if and only if it is valid [satisfiable] in B.

The next proposition states some obvious properties of POS-Logic:

Proposition 3.2.4 Let A be a POS-algebra. Then:
1. (Reflexivity) if o is a ¥A-sort term, then o C o is valid in A
2. (Transitivity) if o, 7 and p are YA-sort terms, then the implication
cCr7&r7Cp — oCp
is valid in A
3. (Monotonicity) if £(7) and () are XA-sort terms, then the implication
FTF o R e
is valid in A
4. (Compatibility) if s, o and T are YA-terms, then the implication
sso&ocC1T — si7

is valid in A.

3.3 The Substitution Theorem

General Assumption. In the context of POS-Logic we will always tacitly assume that
substitutions map sort terms to sort terms and value terms to value terms.

A sort substitution is a substitution that maps every value variable to itself. A value
substitution is a substitution that maps every sort variable to itself.

Substitutions are extended to quantifier-free POS-constraints as one would expect (homo-
morphically with respect to the syntactic structure).

Let ¥ be a POS-signature. A ¥-substitution is a substitution that maps ¥-sort terms to
Y-sort terms and Y-value terms to Y-value terms.
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Lemma 3.3.1 Let A be a POS-algebra, o be a YA-sort term, s be a ¥*-value term, and
6 be a YA-substitution. Furthermore, let § and §' be A-assignments such that

§(x) =Al0z]s ifz € Vs
& (o) =A[ba]s if o € Vo

Then Alfc]s = Alc]s and Albs]s = A[s]s .
Proof. By straightforward inductions on ¢ and s. a

Lemma 3.3.2 Let A be a POS-algebra, F be a quantifier-free Y*-constraint and 6 be a
YA_substitution. Furthermore, let § and &' be A-assignments such that

§'(z) =A[0z]s ifz € VF
§'(a) =Affa]s if a € VF.

Then § € A[OF] if and only if &' € A[F].

Proof. We prove the claim by induction on F.

Let F be the membership s: 0. Then & € A[fs: 0] < A[fs]s A A[bo]s = A[s]s 4
Alc]s < ¢ € A[s: o] using the preceding lemma.

If Fis an inclusion or an equation, the claim is proved analogously.

If ' is the empty conjunction, then the claim is trivial.

If Fis the conjunction G&G’, then § € A[@F] if and only if § € A[6G] and § € A[6G'],
and &' € A[F] if and only if &' € A[G] and 6§ € A[G']. Hence the claim follows by the
induction hypothesis.

If F is the negation =G, then 6 € A[0F] < 0§ € A[-0G] <= 0§ ¢ A[0G] <= ¢ ¢
A[G] < ¢ € A[-G] < ¢ € A[F] using the induction hypothesis. 0

Theorem 3.3.3 [Substitution] Let A be a POS-algebra, F be a conjunction of primitive
YA_constraints, G be a quantifier-free Y 4-constraint and 8 be a YA-substitution such that
fx = x for every value variable  not occurring in F'. Then 0F — 0G is valid in A if F — G

is valid in A.

Proof. Suppose F' — G is valid in A and § € A[#F]. We have to show that § € A[6G].
Since F' is a conjunction of primitive constraints and & € A[OF], A[6x];s is defined if z
occurs in F’. Hence

5(a) = {A[[Ooe]]g if  occurs in F — G

d(a) otherwise

and

5 (x) = {A[[Hw]]g if x occurs in F
v = 5(x) otherwise

define an A-assignment §'.

Since 6 € A[#F], we know by the preceding lemma that ' € A[F]. Since F' — G is valid
in A, we have ¢’ € A[G]. Hence we have § € A[8G] by the preceding lemma. |
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Corollary 3.3.4 [Instantiation of Sort Variables] Let A be a POS-algebra, F be a
quantifier-free YA-constraint, and 6 be a YA-sort substitution. Then 6F is valid in A if I
is valid in A.

Proof. Follows from the preceding theorem using the implication § — F'. a

Proposition 3.3.5 Let A be a POS-algebra and F be a conjunction of primitive Y4-
constraints. Then F is satisfiable in A if some instance 0F of F' is satisfiable in A.

Proof. Suppose § € A[AF]. Then A[-]s is defined on every sort and value term in
§F. Hence there exists an .A-assignment ¢’ such that ¢'(z) = A[#z]s if 2 € VF and
8 () = A[ba]s if o € VF. Now we know by the preceding lemma that &' € A[F] and
hence that F' is satisfiable in A. O

3.4 Sort Rewriting

An inclusion ¢ J 7 can be regarded as a rewrite rule ¢ — 7 if ¢ contains all variables
occurring in 7. In this section we will show that sort rewriting is sound, that is, if ¢ =%
7 and R is obtained from valid inclusions, then the inclusion ¢ 1 7 is valid. Sort rewriting
will be the cornerstone of the operational methods for POS-types to be developed in this
thesis.

Theorem 3.4.1 [Sort Rewriting] Let A be a POS-algebra and I be a set of ¥A-
inclusions. If for every inclusion ¢ 1 7 in I every variable occurring in T occurs in o,
then

Rhy={c—7|(cd1)€el}

is a rewrite system that rewrites YA-sort terms to Y*-sort terms. Furthermore, if every
inclusion in I is valid in A, then o O 7 is valid in A if ¢ _ﬁ%(l) 7 and ¢ is a YA-sort term.

Proof. Let o be a Y4-sort term and o —r(1) T- We show by induction on o that ¢ J 7
is valid in .A. This suffices since the transitivity property of inclusions yields the rest.

If ¢ O 7 is an instance of an inclusion in I, then ¢ J 7is a YA inclusion since o is a YA-sort
term and R([) is a YA rewrite system. Hence we know by the corollary to the Substitution
Theorem that ¢ I 7 is valid in A.

If ¢ J 7 is not an instance of an inclusion of I, then o = &(o1,...,04), T = &(T1,...,T0),
and, without loss of generality, o1 =gy and o; = 7; for © € 2..n. Now, using the
induction hypothesis for oy O 7, we know that o; J 7; is valid in A for ¢ € 1..n. Hence we
know by the monotonicity property of inclusions that &(oy,...,0,) J&(m1,...,T,) is valid
in A. O

3.5 Quasi-Extensional Algebras

A quasi-extensional POS-algebra A comes with a canonically associated extensional POS-
algebra A° such that A[F]Y = A°[F]" for every inclusion-free constraint F' and every set
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V of value variables. It will turn out that the initial algebras of the POS-type specifications
we are interested in are quasi-extensional.

Let A be a POS-algebra. Then the values of a sort A € 84 in A are defined as
VALA[A] == {a € VA | a:* A}

Obviously, VALA[A] C VALA[B] if A <A B. Furthermore, VALA[A] = A if A is a
extensional POS-algebra.

A POS-algebra A is called quasi-extensional if every sort function ¢4 of A satisfies
VALA[A] € VALA[B] = VALA[EA(A)] C VALAEA(B)]
for every two sort tuples A and B of the appropriate length.

Construction 3.5.1 [Extensional Algebra A°] Let A be a quasi-extensional algebra.
Then the following quotient construction defines a extensional POS-algebra A°:

1. 24 =4
2. SA° .= {VALA[A] | A € 84}

3. VA .= v4
4. 2% (VALA[A]) := VALA[¢A(A)]
5. fA = fA

Furthermore, k(a) := a if a € VA and k(A) := VALA[A] if A € S* defines a surjective
homomorphism k: A — A°.

If ¥ is a POS-signature, the constraint language £,(X) is obtained from £(X) by admitting
only memberships and equations as constraints.

Theorem 3.5.2 If A is a quasi-extensional POS-algebra, then A° is a extensional POS-
algebra and k is a surjective L,(S4)*-morphism A — A°.

Proof. It is straightforward to verify that A° is in fact a extensional POS-algebra and
that « is a surjective homomorphism A — A°.

To show that x is an ,CO(E““)*—1r1r101’phism7 it suffices by Theorem 2.2.2 to show that &
is an ,CO(EA)—morphism. Since x is surjective, we have kASS* = ASSA°. Since « is a
homomorphism, we have kK A[A] C A°[A] for every primitive ¥4-constraint. It remains to
show that {6 € ASS* | ké € A°[A]} C A[A] for every primitive Y4-constraint that isn’t
an inclusion.

Let § € ASS* and A°[s].s € A°[0] 5. Then A°[s].s = A[s]s since x doesn’t change values
and A and A° have the same values and value functions. Since x is a homomorphism, we
know by the Homomorphism Theorem that A°[c].; = wA[o]s = VALA[A[o];s]. Hence
Als]s :* A[o]s since A[s]s € VALALA[o]s5].

For equations the claim is obvious since k doesn’t change values and A and A° have the
same values and the same value functions. O
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Corollary 3.5.3 Let A be a quasi-extensional POS-algebra and F be an inclusion-free
YA_constraint. Then:

1. A°[F] = wA[F] and A[F] = {6 € ASS* | k6 € A°[F]}
2. if V is a set of value variables, then A[F]Y = A°[F]V
3. F is valid [satisfiable] in A if and only if F' is valid [satisfiable] in A°

4. if 0 C 7 is a SA-inclusion and F — o C 7 is valid in A, then ' — o C 7 is valid in
A°.

Proof. The first, second and third claim are immediate consequences of the fact that x
is a surjective £,(X)*-morphism.

To show the fourth claim, suppose F' — o C 7 is valid in A and let § € A°[F]. We have to
show that 6 € A°[o C 7]. Since & is an L,(X4)*-morphism and F' — o C 7 is valid in A,
there exists a A € AJo C 7] such that kA = . Since k is a homomorphism, we have by the
Homomorphism Theorem that § = kA € A°[o C 7]. |

3.6 Simple Specifications

We are now ready to define a class of specifications, called simple specifications, that do
have initial models. For simple specifications we define a notion of well-typedness such
that the the set of all well-typed ground terms yields an initial model. Well-typedness is
established with deduction rules that are sound and complete. Since simple specifications
don’t allow for equational axioms, there is only one natural notion of well-typedness: a
value term is well-typed if and only if it denotes in every model of the specification.

Simple specifications are still to permissive to enjoy a well-behaved operational semantics.
Furthermore, their initial models are in general not quasi-extensional. The subclass of
simple specifications that yields operationally well-behaved POS-types will be defined in
Chapter 5. In Chapter 4 we will study rewrite systems obtained from inclusional axioms,
whose properties are crucial for the operational semantics of POS-types.

A rank for a value function symbol f is an implication
rr:on & oL & agio, = fla, .o a)i0

such that n > 0 and z,,...,z, are pairwise distinct value variables. Since the validity of
a rank in a POS-algebra does not depend on the particular value variables employed, the
abbreviated notation

fio1- 0, = 0,

which can be abbreviated even further to f:5 — o, can be used. The tuple & is called the
domain of the rank and o is called the codomain of the rank. If the rank f:d — o is
used as an axiom, it requires that f is at least defined on &, and that f maps arguments
in & to elements of o.

A simple specification is a set 1" of inclusions and ranks such that
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1. T contains a least one value constant and at least one sort constant

2. the inclusions of 7" yield a rewrite system R(T") if every inclusion ¢ 1 7 is taken as a
rewrite rule ¢ — 7

2

3. the rewrite relation “o _ﬁ%(T) 77 is a partial order.

If T is a simple specification, we write ¢ >7 7 or 7 <p o if ¢ _ﬁ%(T) 7, and 6 >7 %
or ¢ <7 6 if 6 _ﬁ%(T) 1 and @ and v agree on all value variables. In anticipation of a
completeness result to be shown shortly, we call “c C 77 the inclusion order of 1. The
set of all sort and value functions occurring in T is called the signature of T and will be
denoted by X7,

General Assumption. In this section we assume that T is a simple specification and
that all terms and substitutions employ only function symbols in ©T. Furthermore, we
tacitly assume that all constraints and interpretations are taken from L(X7)*.

A prefix is a conjunction
& .. &r,iop,

such that n > 0 and zq,..., 2, are pairwise distinct value variables. The letters P and @
will always denote prefixes.

Prefixes will be used to qualify variables with sorts and are a central notion in our formalism.
Many-Sorted and Order-Sorted Logic can do without prefixes since they stipulate that every
variable has a fixed sort. This would be possible for POS-Logic as well, but it turns out that
this notational trick has some rather unpleasant consequences. First, it is responsible for
the annoying empty sort problem plaguing Many-Sorted and Order-Sorted Logic. Second,
built-in sorts for variables cause great notational inconvenience with order-sorted unification
[MGS89, SNGMS&9, Wal88], where they require the introduction of auxiliary variables in
order to change the sort qualification of a variable.

Let P = (21:01& ... &z, 0,) be a prefix. Then DP :={z1,...,z,} is called the domain
of P. Moreover, P defines a mapping Px; := o; from DP to the set of sort terms. If V is
a set of value variables, then the restriction of P to V is defined as

Ply :={a: Pz |2 € DPNV}.
The inclusion order is extended to prefixes as follows:
P<r@ <= DP=DQ ANVaeDP. Pz<ypQu.

Note that “P <7 )7 is a partial order on the set of all prefixes.

Let P be a prefix. The membership relation “P 7 s:0” of T' (read: “s is in o under
P7) is defined as follows:

1. PFpz:0if and only if Pz <7 o

2. Ptr f(§):0if and only if there exists an instance f: i — 7 of a rank in 7" such that
Prp §ijiand 7 <7 0.
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We say that a value term s is well-typed under a prefix P if there exists a sort term o
such that P by s:0. We write by s: o if 0 1 s: 0.

A membership system is a possibly empty conjunction of memberships. If M is a
membership system, we write P -7 M if P b7 s:0 for every membership s:o € M. Note
that every prefix is a membership system.

Proposition 3.6.1 The membership relation “P b s:¢” has the following properties:

1. (Freeness) if P C () and Vs C DP, then Plr s:o if and only if Q br s:0
2. (Compatibility) if PtFr s:o and 0 <7 7, then P bFr s:7

3. (Substitutability) if P b1 s:0 and Q F7 0P, then Q Fr 0s:00.

Proof. The first and second claim are obvious from the definition of “P bt s:0”. To
show the third claim, suppose P b7 s:¢ and @ Fr 8P. We show by induction on s that
QFrbs:bo.

Let s = . Then Pz <7 ¢ and hence Pz <7 fo. Since ) Fr 0P, we know in particular
that @ F7 0z:0Px. Hence (Q F7 Oz: 00 by the compatibility of “P 7 s:0”.

Let s = f(§). Then there exists an instance f: i — 7 of a rank in 7" such that 7 <7 ¢ and
Pt §:ji. By the induction hypothesis we know that @ b7 65:60fi. Hence Q 7 0f(5): o
since f:0f — 01 is an instance of a rank of T and 87 <7 fo. a

Proposition 3.6.2 [Soundness] If P b7 s:o, then the implication P — s: 0 is valid in
T. Furthermore, if 0 <p 7, then the inclusion ¢ C 7 is valid in T.

Proof. The soundness of sort rewriting has already been proven in general. To show the
soundness of “P 7 s:0”, suppose P b7 s: 0 and A is a model of T. We show by induction
on s that the implication P — s: 0 is valid in A.

If s = a, then Pz <7 ¢ and hence Pz C ¢ is valid in A. Since A[P] C Afz: Pz], we know
that P — x:0 is valid in A.

If s = f(§), then there exists an instance f:ji — 7 of a rank in 7" such that 7 <7 ¢ and
Pt §:[i. By the Substitution Theorem we know that §: i — f(§): 7 is valid in A, and by
the induction hypothesis we know that P — §: i is valid in A. Hence we know by Modus
Ponens that P — f(§): 7 is valid in A. Since 7 <7 o, the inclusion ¢ C 7 and hence the
implication P — f(5): 0 is valid in A. 0

Construction 3.6.3 [Term Algebra Z(T, P)] If P is a prefix, then the following defines
a POS-algebra Z(T', P):

1. ¥ITP) = 3T

2. STTP) js the set of all 27 -sort terms containing only sort variables that occur in P

3. o <ITWP) £ if and only if o <7 7 and 1 € ST(T:F)
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4. VTP js the set of all value terms that are well-typed in T under P

5. s ZTP) 5 if and only if PF7 s:0 and o € SZ(T.P)

Proposition 3.6.4 If P is a prefix, then Z(T', P) is a POS-algebra.

Proof. Since T contains a value constant ¢, T' contains a rank ¢:o. Since T contains a
sort constant there exists a ground instance c:7 of ¢:o. Hence P b7 ¢:7 and thus ¢ is a
value of Z(T, P). If P s:o and o contains sort variables that don’t occur in P, then we
know by the Substitutivity of “P ¢ s:¢” that these “superfluous” sort variables can be
replaced by a sort constant of T'. Furthermore, we have required in the definition of simple
specifications that “c <7 7”7 is a partial order. With that it is straightforward to verify
that Z(7, P) is a POS-algebra. o

Proposition 3.6.5 Lor every Z(T, P)-assignment § there exists a unique substitution 85
that extends Z(T, P)[-]s. Furthermore, Z(T, P)[s]s is defined if and only if ss is well-typed
under P.

Proof. The claims follow by straightforward inductions on s. a

Proposition 3.6.6 Let o and s be ground terms. Then Z(T, P)[o] = ¢ and, if Z(T, P)[s]
is defined, Z(T, P)[s] = s.

Proof. Let § be an Z(T, P)-assignment. The the claim follows from the preceding propo-
sition since Z(T, P)[o] = Z(T, P)[ols, Z(T, P)[s] = Z(T, P)[s]s, ¢ = 850 and s = 6ss.
O

Proposition 3.6.7 If 6() is ground and valid in Z(T, P), then there exists an assignment
0 € Z(T, P)[Q] that agrees with § on every variable occurring in Q).

Proof. Let #Q be ground and valid in Z(T, P). Then 82 € VIT:P)if 2 occurs in @ and
0c € STP) if o occurs in Q. Hence there exists an assignment & € Z(T, P)[Q] that agrees
with 8 on every variable occurring in ). a

Theorem 3.6.8 [Term Model] For every prefix P the term algebra Z(T, P) is a model
of T.

Proof. We have to show to show that Z(7', P) satisfies every inclusion and every rank of

T.

Let o C 7 be an inclusional axiom of 7" and let § be an Z (T, P)-assignment. Then 850 <7 057
and hence § € Z(7, P)[o C 7].

Let #:5 — f(Z): 7 be arank of T" and let § € Z(T, P)[%:&]. By the construction of Z(T', P)
we know that P b7 05%:056. Since f:056 — 657 is an instance of a rank of T', we thus
have P 7 f(05%):6s7. Hence 6 € Z(T, P)[f(Z): T]. ]
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Lemma 3.6.9 Let A be a POS-algebra, v be a homomorphism Z(T, P) — A, and § be an
A-assignment that agrees with v on every variable occurring in P. Then (o) = Afc]s if
Vo CVP and vy(s) = A[s]s if Ptr s:o.

Proof. We prove the second claim and omit the proof of the first claim, which is analogous
to the proof of the second claim.

Let P 7 s:o. Then sis a value of Z(7', P) and hence v is defined on s. Furthermore, every
variable occurring in s occurs in P. We prove by induction on s that v(s) = A[s]s.

If s =z, then v(z) = d(z) = Afz]s.

If s = f(5), then v(f(5)) = v(fFTP)(F)) = fA(v(5)). Since P b1 f(5): 0, we know by the
definition of 7 that there exists a tuple @ such that P 7 §:ji. Hence we know by the
induction hypothesis that v(5) = A[5]s. Thus v(f(5)) = fA(A[5]s) = A[f(5)]s- 0

Theorem 3.6.10 [Freeness] Let A be a model of T' and P be a prefix. Then:

1. if v is a homomorphism Z(T, P) — A, then there exists an A-assignment § € A[P]
that agrees with v on every variable occurring in P

2. if § € A[P], then the restriction of A[-]s to DTT"F) is a homomorphism Z(T', P) — A
and there exists no other homomorphism Z(1T, P) — A that agrees with § on every
variable occurring in P.

Proof. 1. Let v be a homomorphism Z(7, P) — A, a € VA and A € SA. Then
5(a) = {7(04) if @ occurs in P
a otherwise

and

5(z) = { (z) ifa occurs in P
A otherwise

define an A-assignment 9.

Let z:0 be a membership in P. Since Afz]s = §(z) = v(z) and Afo]s = v(o) by the
preceding lemma, it suffices to show that v (z) 4 y(o). Since P Fr z: 0, we know z :H(T"F) o
Thus we have v(z) :* v(¢) since v is a homomorphism Z(T, P) — A.

2. Let § € A[P]. We show that the restriction of A[-Js to DZ(T"F) is a homomorphism
I(T,P)— A.

Suppose ¢ <HT.P) . Then ¢ <p 7. Hence we know by the Soundness Proposition that
o C 7 is valid in A. Thus Afo]s <A A[r]s.

Suppose s Z(T"F) 5. Then P b s:0. Hence we know by the Soundness Proposition that
P — s:0is valid in A. Since § € A[P], we have A[s]s :* A[o]s.

It is straightforward to verify that A[¢Z(T-P)]s C €4 and A[fZ(T-F)]5 C fA for the sort and
value function symbols occurring in T, respectively.

The uniqueness follows from the preceding lemma. a

Theorem 3.6.11 [Initiality] Z(T) := Z(T,0) is an initial model of T'.
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Proof. We have shown that for every prefix P the term algebra Z(7', P) is a model of 7.
Hence Z(T) is a model of T'.

Let A be a model of T. We have to show that there exists a unique homomorphism
I(T) — A. Since there exists an assignment § € A[0], we know by the Freeness Theorem
that the restriction of A[-J5s to D) is a homomorphism Z(T) — A and that there exists
no other homomorphism Z(7') — A. 0

The following example shows that, in general, the initial models of simple specifications are
not quasi-extensional.

Example 3.6.12 Let T be the simple specification
b:F(B), ALB,

where b is a value constant, A and B are sort constants, and F is a unary sort func-
tion symbol. Then Z(T) is not quasi-extensional since VALT(M[A] = VALID[B] =
VALZD[F(A)] = 0 and VALZD[F(B)] = {b}. O

The next example shows that even in the absence of proper sort functions the catego-
ry of extensional models of a simple specification can fail to have initial objects. This
striking difference to Order-Sorted Logic [GM87a, SNGMB89] stems from the fact that
POS-homomorphisms are stronger than order-sorted homomorphisms, that is, every POS-
homomorphism is an order-sorted homomorphism, but not vice versa.

Example 3.6.13 Let T be the simple specification
a:A, ALCB,
where a is a value constant and A and B are sort constants. Then
at=a, AY={a}, B*={a}
and
a® =a, AP ={a}, B* ={ab}

define two extensional models of T". The initial model Z(7") of T is quasi-extensional since
T has just sort constants but no proper sort functions. It is easy to verify that A is the
extensional algebra associated with Z(7'). Thus one could hope that A is an initial element
in the category of the extensional models of T'. However, this is not the case since there
exists no POS-homomorphism A — B. On the other hand, there exists an order-sorted
homomorphism A — B and A is in fact an initial order-sorted model of T'. a

Theorem 3.6.14 [Soundness and Completeness] Let P be a prefix that contains all
variables occurring in the value terms s and t. Then:

l.oCrisvalidinT <= o<¢7
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2. P—soisvalidinT <+ Phlrs:o

3. Pos=tisvalidinT <= s=t and s is well-typed in T under P.

Proof. The soundness direction has been proven for the first and the second claim and
is obvious for the third claim. Thus only the completeness direction remains to be shown.
Let @ be a prefix such that P C ) and () contains all variables occurring in ¢ and 7.
Furthermore, let € be an Z(7', Q))-assignment such that ¢ maps every variable occurring in

Q to itself. Then € € Z(T, Q)[Q] € Z(T, Q)[ F].

1. Suppose o0 C 7 is valid in 7. Then ¢ C 7 is valid in Z(T,Q). Hence ¢ =
(T, Q)[o]. <FT9) (T, Q)[7]. = 7 and thus o <7 7.

2. Suppose P — s:o is valid in 7. Then P — s:0 is valid in Z(T,Q). Hence s =
(T, Q)[s]. I(TQ) Z(T,Q)[o]. = o since e € Z(T,Q)[P]. Thus Q F7 s:o and P 7 s:o by
Proposition 3.6.1.

3. Suppose P — s = t is valid in 7. Then P — s = t is valid in Z(7,(). Hence
s=Z(T,Q)[s]e = Z(T,Q)[t]. =t since e € Z(T,Q)[P]. Furthermore, there exists a sort
term o such that Q Fr s:o. Thus P b7 s: 0 by the freeness of the membership relation. O

Corollary 3.6.15 Let P be a prefix containing all variables that occur in s. Then s is not
well-typed in T under P if and only if there exist a model A of T and an A-assignment
0 € A[P] such that A[s]s is not defined.

Proof. From the Soundness and Completeness Theorem we know that P — s = s is valid
in T if and only if s is well-typed in T" under P. The claim is obtained by negating both
sides of this equivalence. a

Theorem 3.6.16 [Structural Induction] Validity in the initial model Z(T') of T can be
characterized as follows:

1. ¢ C 7 is valid in Z(T) if and only if §o <7 67 for every ground instance 8o C 01 of
cL T

2. if P contains every variable occurring in s:o, then P — s:0 is valid in Z(T) if and
only if ) -1 0s: 6o for every substitution 6 such that § 1 0P.

Proof. 1. Suppose o C 7is valid in Z(7') and #o C 67 is a ground instance of o C 7. Then
we know by the Substitution Theorem that 6o T 7 is valid in Z(T). Hence 87 <(7) g
and thus o <7 07.

Suppose #o <7 @7 for every ground instance 8o C 07 of 0 C 7. Let § be an Z(T)-
assignment. Then 850 C 057 is a ground instance of ¢ C 7 and hence 850 <7 s7. Thus
8 € Z(T)[o C 7] by Proposition 3.6.5.

2. Let P contain every variable occurring in s:o, P — s:0 be valid in Z(T), and let () b7
§P. Then we know by the Soundness Proposition that §P is valid in Z(7"). Hence there
exists an assignment 6 € Z(7T)[P] that agrees with 6 on every variable in P. Since P — s:o
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is valid in Z(T), we have 6 € Z(T)[s:o]. Hence 0 7 6s5s: 050 and thus 0 1 6s: o since 6
and s agree on every variable occurring in s: o.

Let () Fp 6s: 60 for every substitution 6 such that § b7 0P, and let § € Z(T)[P]. Then
07 65P and hence () b 85s:050. Thus & € Z(T)[s: o] by Proposition 3.6.5. a
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Chapter 4

Sort Rewriting Systems

4.1 Shallow Rewriting Systems
4.2 Upper Matchers and Suprema
4.3 Lower Matchers and Infima
4.4 Modes

In the last chapter we have seen that the sort inclusion order of a simple specification is
just the rewriting relation of the rewrite system given by the inclusional axioms of the
specification. This chapter is devoted to the study of rewrite systems generating well-
behaved inclusion orders.

From the study of order-sorted unification [MGS89, SNGMS&9, Wal88] we know that there
are two necessary conditions for the existence of principal unifiers, which is crucial for an
efficient operational semantics:

1. regularity, that is, every value term must have a least sort

2. lower completeness, that is, every two sorts that have a common subsort must have
a greatest common subsort.

If ¢ M1 7 is the greatest common subsort of ¢ and 7, then regularity is the necessary and
sufficient condition to render a constraint

zo&z:T

equivalent to
z:(oMT)

45
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in the initial algebra. The reduction of z:0& z:7 to z: (o M 7) is the basic sort related
operation of an order-sorted unification procedure.

Consider the following definition of lists:
nil: list(a), cons: v X list(a) — list(cv).

Obviously, the empty list nil has no least sort and hence the specification is not regular.
This problem can be solved as in Figure 1.1 by introducing a special sort for the empty list.
However, a nicer way to get rid of this difficulty is to always have a unique empty sort —,
which can be introduced by the inclusional axiom

—LC o

and will in fact be empty in the initial model if — occurs in no other axiom. With the
axiom — C « the least sort of nil is list(—).

Consider the polymorphic rank
[raxa—a.

Then a well-typed term f(s,t) will only have a least sort if the least sorts of s and ¢ have a
least common supersort. Hence, in order to get regularity, we also need upper completeness,
that is, every two sorts that have a common supersort must have a least common supersort.
As in the order-sorted case, upper completeness will come for free, that is, the necessary
conditions for lower completeness are already sufficient for upper completeness.

This shows that inclusion orders providing for a practical operational semantics must turn
the set of sort terms into a quasi-lattice with a least element. We will see that the demand
for greatest common subsorts necessarily requires that the inclusion order is well-founded,
that is, that the generating rewrite system is terminating. Since we are aiming at a pro-
gramming language, we can hence only admit relatively weak inclusional axioms for which
it is decidable whether the rewrite system they define is terminating. Furthermore, to be
practical, it is necessary that greatest common subsorts and least common supersorts are
computable with reasonable resources.

By what I’ve said it is clear that the theory of sort rewriting systems is of central importance
for the development of an operational semantics for relational programs computing over
POS-types. Fortunately, there is a nice theory and there are good algorithms.

4.1 Shallow Rewriting Systems

For convenience we will use in this chapter our notation for value terms although in the
rest of this thesis, of course, sort rewriting systems will rewrite sort terms to sort terms.

Let R be a rewrite system. Then we write s =g t if s — ¢ is an instance of a rule of R.
Furthermore, we write f =g ¢ if there exist § and £ such that f(5) — ¢(f) is an instance
of a rule of R.

In the following we assume that — is a constant symbol.

A shallow rewriting system is a finite rewrite system R such that
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1. R contains a rule x — —, no other rule of R contains —, and every other rule of R
has the form f(Z) — ¢(§), where & is a tuple of pairwise distinct variables

2. “f =R g” is terminating

3. if w is the left hand side of a rule of R, then
u=Rg(E) A u=hall) = g(3) =g(D)

Proposition 4.1.1 Every shallow rewriting system R allows for infinite ascending chains,
for instance,

=R f(A(f(2) =R F(f(=)) =R f(=) =R —

Example 4.1.2 Let R be the shallow rewriting system
x — —, list(x) — pair(x, list(x)).
Then R allows for infinite descending chains, for instance,
list(a) —g pair(a, list(a)) —pr pair(a, pair(a, list(a))) —pr - -.

a

Proposition 4.1.3 It is decidable whether a finite rewrite system is shallow. Furthermore,
if R is a shallow rewriting system, then “s =g t” is terminating and it is decidable whether
“s —p t” is terminating.

Proof. Let R be a finite rewrite system. Then requirement (1) of the definition of shallow

rewriting systems is certainly decidable. Now suppose R satisfies requirement (1). Then

there are only finitely many pairs such that f =r ¢ and ¢ # —, and these pairs can be

obtained directly from the rules of R. Now “f =g ¢” is terminating if and only if the finite

subrelation consisting of these pairs is terminating. Hence it is decidable whether “f =g
2

¢” is terminating. Now let R satisfy requirements (1) and (2). Then the relation “s =g t”
is terminating and hence requirement (3) is decidable since R has only finitely many rules.

Now suppose R is a shallow rewriting system. Then a rule f(Z) — ¢ € R applies to every
term f(§) (this is the most important property of shallow rewriting systems). Hence R is
terminating if and only if the finite relation

f—9g <= Jf(@) —teR. goccursint

is terminating. Thus the termination of R is decidable. O

The following two propositions give you the main properties of shallow rewriting systems.
There are many, and we will use them all in the rest of this thesis without explicitly referring
their stating propositions.

Proposition 4.1.4 Let R be a shallow rewriting system. Then:
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1. “f =% g7 is a decidable well-founded order on the set of all function symbols whose
least element is —

2. “s =% 17 is a decidable well-founded order on the set of all terms whose least element
is —

3. if s =R t, then 0s =% 0t

4. if s =% t and t # —, then either s is a variable and s = t or neither s nort is a
variable

5. if 0f(§) =% t, then there exists a unique term u such that f(§) =75 v and t = u
6. if s =% f(5) and s =%, f(1), then f(3) = f(I)

7. if f(5) is a term and f =% g, then there exists a unique term g(f) such that f(3) =%
g(t)

8. if f(5) =% h(@@) and f =% g =5 h, then there exists a unique term g(t) such that
F(5) =% 9() =% h(@).

Proof. 1. Follows from the fact that “f =7 ¢” is reflexive and transitive and “f =g g”
is terminating.

2. Follows from the fact that “s =% t” is reflexive and transitive and “s =g t” is termi-
nating.

3. and 4. Obvious.

5. Let §f(5) =% t. We show by induction on f(5) with respect to the well-founded order
“s =7, §'” that there exists a term u such that f(§) =% v and t = Qu. If 0f(5) = ¢, then
the claim is trivial. Otherwise, we have 0f(5) =g g(ii) =% t. Hence we have f(5) =g
g(V) and 8¢ (V) = g(&) =5 t. Thus we know by the induction hypothesis that there exists
a term u such that ¢(¢) =% w and ¢ = fu. Hence we have the claim since f(5) =g
9(v) =k u.

To show that u is unique, suppose f(5) =% u, f(5) =5 v and fu = v =¢.

If f(§) = u, then v = f(#5). Since v is no variable, the top symbol of v must be f. Hence
v = f(§) = u since otherwise f =g f, which is impossible since “g =g h” is terminating.

If f(3) # u, then R has a rule whose left hand side is f(Z). Since {Z/5}f(5) =% u and
{Z/3}f(§) =% v we know by the already proven existence claim that there exist u’ and
v' such that f(Z) =% o/, f(¥) =% v, v = {&/5} and v = {&/5}v’. Since neither
t, u, v, v’ nor v’ is a variable, all five terms must have the same top symbol. Hence we
know by requirement (3) of the definition of shallow rewriting systems that v’ = v’. Thus
u=AZ/stu' ={7/5}v = .

6. Let s =% f(5) and s =% f(f). If s is a variable, then f = — and hence f(5) = f({). If

s is no variable, then the claim follows from statement (5) using 6 = .

7. Let f(5) be a term and f =7% ¢g. Then one obtains by a straightforward induction on f
with respect to the well-founded order “h =% h'” that there exists a term g(#) such that

—

f(5) =% g(t). The uniqueness follows by statement (6).
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8. Follows immediately from statement (7). ]

Lemma 4.1.5 Let s —% f(f). Then there exists a term f(5) such that s =% f(5) and

—

§ —=pt.

Proof. We prove by induction on the length of a derivation s —% f(f) that there exists
a term f(3) such that s =% f(5) and § —% t.

If f=—ors= f(tﬂ)7 then the claim is trivial.

Let s —% g(@) —r f(t). Then we know by the induction hypothesis that there exists a
term ¢(¥) such that s =% ¢(¥) and @ —% @. If g = f, then we have the claim. Otherwise,

we know that there exists a rule g(#) — f(5) € R such that £ = {#/@}5. This yields the
claim since s =% ¢(7) =% {Z/T}f(5) and {7 /5}5 =5 {F/d}5 =1. 0

Proposition 4.1.6 Let R be a shallow rewriting system. Then:

1. (Uniqueness) if s —7% f(f), then there exists a unique term f(5) such that s =%
f(3)
if s =% f(t) and s =%, f(5), then 5§ =5 T

—

(Orthogonality) if s =5 t, s =% f(@) and t =% f(V), then ¥ —F| T

—

s o5 fl) = 35 s=25f3) A5 =5t

vk N

5§ wpT &= s=ux

Sl

s —T t is a decidable partial order on the set of all terms having — as its least element

7. 8 —} 1 is a partial order on the set of all substitutions having the substitution that
maps every variable to — as its least element.

Proof. 1. Let s =} f(f) Then we know by the preceding lemma that there exists a
term f(5) such that s =% f(5). The uniqueness of f(5) follows by statement (6) of the
preceding proposition.

2. Follows by the preceding lemma and statement (1).

—

3. Let s =1 t, s =5 f(@) and t =% f(¥). Then s =% f(¥) and s =% f(u). Hence we
know by statement (2) that @ —7, 0.

4. Follows from statements (1) and (2).
5. Obvious.

6. The decidability of s —7, ¢ follows from statements (4) and (5). Furthermore, its obvious
that — is the least element.

Since “s —} t7 is the reflexive and transitive closure of “s —g t”7, we know that “s —7%
t” is a quasi-order. To show that “s —7% ¢” is antisymmetric, suppose s =1t =% s. We
show by induction on s that s =¢. If s is a variable, then we know that s =¢t. If s = f(5),
then there exists ¢ such that t = f(f) since “f =% ¢" is a partial order. Hence § —7%
t —7% § and thus § = t by the induction hypothesis.
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7. Follows immediately from statement (6). ]

Let (M, <) be a partially ordered set. Then c¢ is called the infimum of ¢ and b if ¢ < a,b
and d < ¢ for every d < a,b. Furthermore, c is called the supremum of ¢ and bif a,b < ¢
and ¢ < d for every a,b < d. It is easy to verify that infima and suprema are unique
if they exist. Furthermore, the partial binary functions yielding infima and suprema are
associative and commutative.

Proposition 4.1.7 If R is a terminating shallow rewriting system such that the right hand
side of every rule is linear, then there exists a natural number k such that k|s| > |t| if s =%
t.

Proof. Let R be a terminating shallow rewriting system. Then there exists for every left
hand side f(Z) of a rule of R a natural number k; such that |s| < kf (recall, R has only
finitely many rules). Then the greatest ky is a constant as required. a

Recall that the purpose of a shallow rewriting system R is to define a partial order
s<pt <= t =% s

on the set of all terms. We denote the infimum [supremum] of s and ¢ with respect to <pg
with sMpt [sUgt] if it exists. The notations fMrg, fUrg, 0Mrt, and UR Y are defined
analogously.

A partially ordered set (M, <) is a lower quasi-lattice if a b exists whenever a and b
have a common lower bound. A partially ordered set (M, <) is an upper quasi-lattice if
a b exists whenever a and b have a common upper bound. A partially ordered set (M, <)
is a quasi-lattice if it is an upper and a lower quasi-lattice.

Proposition 4.1.8 Let (M, <) be a finite partially ordered set. Then (M, <) is a lower
quasi-lattice if and only if it is an upper quasi-lattice.

Proof. Let (M, <) be a lower quasi-lattice in which a and b have a common upper bound.
We have to show that the supremum a U b exists. Since {¢ € M | a,b < ¢} is nonempty and
finite and (M, <) is a lower quasi-lattice, we have a Ub =MN{c € M | a,b < ¢}. The other
direction is shown analogously. a

We call a shallow rewriting system R complete if the set of function symbols is a quasi-
lattice under the partial order “f =% ¢”.

In Section 4.2 we will show that the partial order defined by a complete shallow rewriting
system on the set of all terms is a upper quasi-lattice. The following example shows that
completeness does not suffice to obtain a lower quasi-lattice.

Example 4.1.9 Let R be the complete and nonterminating shallow rewriting system con-
sisting of the rules
r——, a— fla), b— f(b).
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Then aMgrb does not exist since

a,b =% - =R f(F(f(=) =k (=) =R F(=).

a

In Section 4.3 we will show that a terminating and complete shallow rewriting system
defines a quasi-lattice on the set of all terms.

We call a terminating and complete shallow rewriting system a sort rewriting system.
The POS-type specifications to be defined in the next chapter will only admit inclusional
axioms that form a sort rewriting system.

In Section 4.2 we will show that one can decide whether an inclusion system § J ¢ has an
upper matcher, that is, whether there exists a substitution ¢ such that 65 —7 t, provided
R is a complete shallow rewriting system. In Section 4.3 we will show that one can decide
whether an inclusion system § J¢ has a lower matcher, that is, whether there exists a
substitution # such that 5 —% 0t provided R is a sort rewriting system.

The natural generalization of these problems is the problem to decide whether an inclusion
system § J t is satisfiable, that is, whether there exists a substitution # such that 65 —%
0i. T don’t know whether this problem is decidable for sort rewriting systems. Fortunately,
there exist good type checking and good constraint solving algorithms that require only
the computation of lower and upper matchers but not the computation of satisfying sub-
stitutions. However, a perfect type inference algorithm would require the computation of
satisfying substitutions. Fortunately, the imperfect type inference algorithm given in Chap-
ter 7, which relies only on the computation of matchers, does work quite well for practical
applications.

4.2 Upper Matchers and Suprema

In this section we assume that R is a complete shallow rewriting system.

An inclusion system is a possibly empty conjunction of inclusions. As usual we identify
an inclusion system with the multiset of its inclusions. If convenient, we will use the vector
notation § C ¢ for inclusion systems. Furthermore, the letter I will always denote an
inclusion system.

An upper matcher of an inclusion system § 27 (in R) is a substitution # such that 5 —%
t. We use UMEg[/] to denote the set of all upper matchers of the inclusion system I in R.
Note that the upper matchers of an inclusion system are partially ordered by “0 —7% 7.

We call an inclusion system upwards solved if it has the form # J ¢, where 7 is a possibly
empty tuple of pairwise distinct variables and no component of the tuple 7 is —.

Proposition 4.2.1 Let [ = (z1 J t1 & ... &z, O t,) be an upwards solved inclusion
system. Then
O — {ti if x = x; for some i1 € 1.n
— otherwise

is the least upper matcher of I in every shallow rewriting system R.
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We will show that the following reduction rules for inclusion systems constitute an algorithm
that, given an inclusion system [, decides whether I has an upper matcher and, if I has an
upper matcher, computes the least upper matcher of I.

l.zdy&edy&kl g zdy&l

2. s d—-&I Ysp I

3. f(5) g &l Mg G IT&I if f(5) =5 g(i)
4. ¢ ds&a Jt&] —“p o3 flun,...,u,) &1

5. if neither s nor t is a variable or —,
f = TopPsyM[s]UrTOPSYM]t],

T, ..., T, are pairwise distinct variables,
flor, .., 2,) Ds& far,...,2,) Dt 51 I and I’ is upwards solved,
o ;
w=14 1f(x2;|'u)61 for ¢ € 1..n.
— otherwise

Example 4.2.2 Let R be the shallow rewriting system consisting of the rules
r——, f(z)—=a, flz)—>b

Then
tJa&aedb “>p ad f(-)
by rule (4) since
fly) ak fly) 2 “p fly) b =R 0
by applying rule (3) twice. Note that f(—) is the supremum of « and b.

Let ¥ 31 be an inclusion system. Then the lower variables of I are LV[§ Jt]:= Vi and
the upper variables of I are UV[5§ 1 {] := V3. O

Proposition 4.2.3 If I 25 I, then LV[I'] = LV[I] and UV[I'] CUV[I].
Proposition 4.2.4 Let V be a set of variables and ¥ be a signature such that every rule
of R consists of ¥-terms. Then I' is a (X, V)-inclusion system if I is a (X, V)-inclusion

system and [ 5 I'.

The U-complexity of inclusion systems is defined as follows:

0 if f=-—
1. |z|:==1and |f(s1,...,8.)| == 1‘|‘Z|5i| otherwise
=1
3t if t = — or s is a variable

2. |s3t] =
s 31 {3|t| — 2 otherwise

3. 1) = ( Z |s J¢t|, n), where n is the number of inclusions in [I.
(sdt)el
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The set of all U-complexities is a well-founded partially ordered set under the lexicographic
order induced by the canonical order on the natural numbers.

Lemma 4.2.5 [Termination] If I “=5 I’, then |I| > |I'|, and if [ “5r I', then |I| > |I'].

Proof. For the first three rules the second claim is easy to verify. The fourth rule is
recursive and thus forces us to first show the first claim by induction on the U-complexity
of the reduced inclusion system. Since | Js|+ [z 3 ¢| = 3|s| 4+ 3|t| > 3|s| + 3]t — 4 =
|f(z1,...,2,) 3 s| 4+ |f(z1,...,2,) T t|, we know by the induction hypothesis that the
first component |I’|; of the U-complexity of I’ satisfies |I'|; < 3|s| 4+ 3|t| — 4. Since I’
is upwards solved and |—| = 0, we have 3%, |u;| = |I'|s < 3|s| + 3|t|] — 4. Hence
le 3 flug,...,un)| =31+ 320 Jwil) <3|s|+ 3¢ —1 < |z T s|+ |z Tt O

Lemma 4.2.6 [Invariance] If I 55 ', then UMpg[I] = UMpg[I'].

Proof. Since rule (4) is recursive, we prove the claim by induction on the U-complexity
of I. If |[I| = (0,0) or I = I’, then the claim is trivial. Otherwise, it suffices to show that
the first reduction step leaves the upper matchers invariant. Rules (1) and (2) obviously
leave the upper matchers invariant.

1. To show that rule (3) leaves the upper matchers invariant, suppose that

t 3 f(s1y..y8) &0 —2p vy ds1& ... &u, Is, &1

and t =% f(uq,...,up,).
Let 6 be an upper matcher of the left-hand side. Then 8t —% f(s1,...,s,) and 0t =5
f(Ouy, ..., 0u,). Hence we know that fu; —% s; for 7 = 1,...,n. Thus 0 is an upper

matcher of the right-hand side.

Let 6 be an upper matcher of the right-hand side. Then 6u; —% s; for:=1,...,n. Hence
ot =% f(Ouy,...,0u,) =% f(s1,...,5,). Thus @ is an upper matcher of the left-hand side.

2. To show that rule (4) leaves the upper matchers invariant, suppose that
e ds&aJt&] —“—>p od flur,...,u,) &1,
f = TopsyM[s]UgrTOPSYM][t], 1,..., 2, are pairwise distinct variables,
flar, ... 2,) Ds& fzg,...,m,) 3t R T

I is upwards solved, and w; = u if (z; J u) € I’ and u; = — otherwise.

Let & be an upper matcher of the left-hand side. Then 6z —7% s and 6z —7% t. Hence
we know that there exist terms s1,...,s, such that 2 =% f(s1,...,s,) =% s,t. Thus
¥ = {z1/s1,...,2,/S,} is an upper matcher of f(zy,...,2,) J s& f(z1,...,2,) 2 t.
Now we know by the induction hypothesis that v is an upper matcher of I’. Hence we
have va; —% u; for ¢ = 1,...,n. Thus 02 =% f(s1,...,5,) = ¥f(z1,...,2,) =}
f(u1,...,u,). Hence 8 is an upper matcher of the right-hand side.

Let @ be an upper matcher of the right-hand side. Then 82 —7% f(ui,...,u,). Hence
there exist terms sy,...,s, such that 8z =% f(s1,...,5,) and s; = w; fori=1,... n.
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Since I’ is upwards solved and its right-hand sides can only be the variables xy,...,z,,
we know that ¢ := {xy/s1,...,2,/s,} is an upper matcher of I’. Hence we know by the
induction hypothesis that ¢ is an upper matcher of f(z1,...,2,) J s& f(21,...,2,) D t.
Thus 0z =% f(s1,...,5,) = ¥f(x1,...,2,) =5 s,t. Hence 1 is an upper matcher of the
left-hand side. a

Lemma 4.2.7 [Completeness] Let I be an inclusion system that has an upper matcher.
Then there exists an upwards solved inclusion system I’ such that I =5 I'.

Proof. We prove the claim by induction on the U-complexity of I. If |I| = (0,0) or [ is
upwards solved, the claim is trivial. Otherwise, since we know by the preceding lemma that
reduction with ——r maintains the existence of upper matchers, it suffices to show that
at least one rule applies to I. Since I has an upper matcher, at least one of the following
cases applies.

1. I contains an inclusion @ J y twice. Then rule (1) applies.

2. I contains an inclusion s J —. Then rule (2) applies.
3. I contains an inclusion f(s1,...,8,) 3 g(t1,...,t,). Since I has an upper matcher,
we have 6f(sy,...,5,) —% g(t1,...,t,). Hence there exist terms uj,...,u, such that

f(s15-.,8m) =5 g(u, ..., uy,). Thus rule (3) applies.

4. I contains two inclusions ¥ 1 s and x 1t such that neither s nort is a variable or —.
Since [ has an upper matcher, we have #2 —7} s,t. Hence TOPSYM[s] and ToPsYM[t] have
a common upper bound. Since R is complete, f := TOPsSYM[s]Ur TOPSYM][t] exists. Hence
there exist terms gy, ..., u, such that 8z —% f(u1,...,u,) —% s,t. Thus f(zy,...,2,) 3
s& f(x1,...,2,) 3¢ has an upper matcher if 21, ..., z, are pairwise distinct variables. Now
we know by the induction hypothesis that there exists an upwards solved inclusion system
I’ such that
fler, ..., 2,) Ds& flxg,...,,) Dt R T

Hence rule (4) is applicable. ]

Theorem 4.2.8 [Upper Matching] Let R be an complete shallow rewriting system.
Then it is decidable whether an inclusion system has an upper matcher. Furthermore, if |
has an upper matcher, one can compute an upwards solved inclusion system I' such that

UMg[I] = UMR[I].
Proof. The claims follow immediately from the preceding lemmas. a

Corollary 4.2.9 [Least Upper Matchers] Let R be a complete shallow rewriting system
and I be an inclusion system that has an upper matcher. Then there exists one and only
one upwards solved inclusion system

135 & ... &2, Jds,
having the same upper matchers as I. Furthermore,

O — {si if v = x; for some 1 € 1.n
’ — otherwise

is the least upper matcher of I.
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Proof. The existence of the upwards solved inclusion system follows from the preceding
theorem. Thus 6 is the least upper matcher of I. Since the least upper matcher of [ is
unique and the upwards solved system does not contain inclusions z; J — (by definition),
the upwards solved system must be unique. a

Corollary 4.2.10 [Suprema] Let R be an complete shallow rewriting system. Then every
two terms that have a common upper bound have a supremum and, if s # —,

sUpt=u <= 2 Jds&zdt 5 zJu.

4.3 Lower Matchers and Infima

In this section we assume that R is a sort rewriting system (that is, a terminating and
complete shallow rewriting system).

Lemma 4.3.1 If 0Nr exists, then OsMp1ps = (0Mp)s for every term s.

Proof. Let s be a term and let #Tr v exist. Since 8,79 —} 0Ny, we have 8s,19s =%
(MNR)s. Now let ¢ be a term such that #s,1s —% t. We show by induction on ¢ that
(MRt)s —% t. If t is a variable, then t = 65 = s = (Mg)s. If t = g(f), we distinguish
two cases.

1. s is a variable. Then OsMps exists and OsMpps = (AMNgR)s. Since we assumed
0s,1s —} t, we have the claim.

2. s = f(5). Since we assumed fs —% ¢(f) = t, we know that there exists « such that
s =% g(@). Hence s =% 0g(@) and s =% g(4). Since we assumed 0s, s =% g( f)
we have 0u, YU —7% t. Hence we know by the induction hypothesis that (HI_IR P)U —% t.

Thus (0|_|R¢)S =% (NrY)g(d) =% g(t) =t. ]
Lemma 4.3.2 Let f(5) =% (fMRrg) (@), g(f) =% (fMrg)(¥), and let “MNpT exist. Then
FE)NRrg(H) = (fNRrg)(@NRD).

Proof. Let f(5) —% w and g(f) —% u. We have to show that (fMrg)(@Mp?) —%
w. Since u cannot be a variable, we know that (fMrg) =5 TopsymMm[u]. Hence f(5) =5
(fMRg)(@) =% uwand g(f) =% (fNRrg)(T) —% u. By the preceding lemma we know that

(fMrRg)(@)NR(fMRY)(T) = ({Z/4}(fNrY)(Z))MREZ/TI(fNRY)(T))
= {Z/(@nr0)}(fMr9)(T) = (fNRY)(ENRT),

for some tuple & of pairwise distinct variables. Hence (fMprg)(4MNr¥) —% u. o

The R-complexity ||s||r of a term s is defined as the pair
Isllr = (k. 1),

where k is the maximal length of a chain s —p sy —pr s2 —p --- and [ is the number of
function symbol occurrences in s. The set of all R-complexities is a well-founded partially
ordered set under the lexicographic order induced by the canonical order on the natural
numbers.
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Theorem 4.3.3 (Infima) Let R be a sort rewriting system. Then sMgt exists for every
two terms s and t and can be computed as follows:

1. xMNpx =x

xNps=— ifa#s
sMpe=— ifa#s
FENrg(E) = (fNRrg)(ANRT)

if f(5) =% (frg) (@) and g(£) =% (fMrg)(D).

vk N

If the right-hand side of every rule of R is linear, then the infimum two terms can be
computed in linear time.

Proof. The first three claims are obvious. The last claim holds by the preceding lemma,
provided we can show that sMpt exists for every two terms s and t. We show this by
induction on |[|s||g. If s or ¢t is a variable, then sMgrt¢ exists by one of the first three
equations. If s = f(5) and t = g(f), then there exist terms # and @ such that s =%
(fORrg)(@) and t =% (fMrg)(V). Since ||s||r > ||ui||r for every component u; of @, we
know by the induction hypothesis that @ Mp @ exists. Hence we know by the preceding
lemma that sMpt exists.

The linear time complexity follows by Proposition 4.1.7. a

Corollary 4.3.4 Let R be a sort rewriting system. Then the set of all terms ordered by
“s =5 17 is a well-founded quasi-lattice having — as its least element.

Proof. Follows immediately from the Infima Theorem and the Suprema Corollary of the
last section. a

Example 4.3.5 Let R be the sort rewriting system
r——, f(z)—=a, flz)—>b

Then f(c)Nrf(d) = f(—) and @ and b are common lower bounds of f(c¢) and f(d). Note
that without the empty sort rule 2 — — the terms f(c) and f(d) would not have an infimum
although they still would have ¢ and b as common lower bounds. a

Example 4.3.6 In general, infima in a sort rewriting system R are not stable under in-
stantiation, that is, #sMr Ot = O(sMprt) does not hold. To see this, let R be the trivial sort
rewriting system just consisting of the rule x — —, 2 and y be two distinct variables, and
6 = {x/a,y/a}, where a is a constant symbol different from —. Then #(zMNry) = — and
AxMNply = a. a

We call the infimum of s and t stable if (sMrt) = §sMNprbt for every substitution 6.
Furthermore, the stable infimum function is the partial function defined by

sMpt := sMpt if the infimum of s and ¢ is stable.
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Theorem 4.3.7 [Stable Infima] Let R be a sort rewriting system. Then t| Mgty is stable
if t; and ty have a common upper bound, that is, there exists a term s such that s =% t;
and s =5 to.

Proof. Suppose s —% t; and s —5 t;. We prove by induction on ||s||r that ¢1 Mgty is
stable. If s = x, then either t{ =ty =z, 0rty =t = —,orty =z and t, = —, or t; = —
and tz = x. For all these cases t; Mgty is stable. Otherwise, let s = f(§). Furthermore, let
ti = g1(fh), ta = g2(l3), b = 1TRG2, f(5) =% M@), g1(T1) =% h(T1), and gs(2) =%
h(i@3). Then we know that @ —7} @y and @ —} @z. Hence we know by the induction
hypothesis that uy Mg us is stable. Hence we have

0(t1 MR ty) = 0h(ii1 NRrily) = h(0(iTy NRiiz)) = h(0T,NROTL) = 611 Mg 6L,

by the Infima Theorem since 6t; = fg,(f;) =% h(0d1) and 0ty = Ogo(fa) =% h(0ds).
Thus t; MRty is stable. a

A lower matcher of an inclusion system & 3¢ (in R) is a substitution 6 such that & —%
0t and DO C Vi. We use LMRg[I] to denote the set of all lower matchers of an inclusion
system [ in R. Note that the lower matchers of an inclusion system are partially ordered
by “0 —5 V7.

We call an inclusion system downwards solved if it has the form § J Z, where 7 is a
possibly empty tuple pairwise distinct variables.

Proposition 4.3.8 Let [ = (s; J a1 & ... & s, 3 ,) be a downwards solved inclusion
system. Then
O — {si if x = x; for some i1 € 1.n
x  otherwise

is the greatest lower matcher of I in every shallow rewriting system R.

We will show that the following reduction rules for inclusion systems constitute an algorithm
that, given an inclusion system I, decides whether I has a lower matcher and, if I has a
lower matcher, computes the greatest lower matcher of I.

1.82—&] I—>R 1
2. f(§) gl &I Lop @ 2T&T i f(5) =5 9(0)
3.50a&tJa& ]l Lop snptJa&l.

Proposition 4.3.9 If [ 155 I', then LV[I'] = £LV[I] and UV[I'] C UV[I].

Proposition 4.3.10 Let V be a set of variables and Y. be a signature such that every rule
of R consists of X-terms. Then I' is a (X, V)-inclusion system if I is a (X, V')-inclusion
system and T 155 ',

Proposition 4.3.11 [Termination] There are no infinite chains I S B S S
- - - issuing from an inclusion system I.
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Proof. Every 1yn -step reduces the sum of the sizes of the right hand sides. O
Lemma 4.3.12 [Invariance] If [ Y55 I, then LMg[I] = LMg[I"].

Proof. The claim is obvious for the first rule. The second rule leaves the lower matchers
invariant since

0f(5) =k g(f) = Og(il) 2 g(t) = 00 =Rt
if f(§) =% ¢g(@). The third rule leaves the lower matchers invariant since
s,t =g b0r <= sMpt —Fbz.

a

Lemma 4.3.13 [Completeness] Let I be an inclusion system that has a lower matcher
and is not downwards solved. Then there exists an inclusion system I’ such that I Ll

Proof. Since I has a lower matcher, at least one of the following cases applies.
1. I contains an inclusion s J —. Then rule (1) applies.

2. [ contains an inclusion f(5) 3 g(). Since I has a lower matcher, we have f(5) —%
fg(f). Hence there exists i such that f(5) =% ¢(@). Thus rule (2) applies.

3. I contains two inclusions s J @ and t J z. Since R is sort rewriting system, we know
that sMpt exists. Hence rule (3) is applicable. o

Theorem 4.3.14 [Lower Matching] Let R be a sort rewriting system. Then it is decid-
able whether an inclusion system has a lower matcher. Furthermore, if an inclusion system
I has a lower matcher, one can compute a downwards solved inclusion system I’ such that

LMpg[I] = LMg[I].
Proof. The claims follow immediately from the preceding lemmas. a

Corollary 4.3.15 [Greatest Lower Matcher| Let R be a sort rewriting system and
I be an inclusion system that has a lower matcher. Then there exists one and only one
downwards solved inclusion system

s1dx & ... &s, D,
having the same lower matchers as I. Furthermore,

O — {si if v = x; for some 1 € 1.n
' x  otherwise

is the greatest lower matcher of I.

Proof. The existence of the downwards solved inclusion system follows from the preceding
theorem. Thus @ is the greatest lower matcher of I. Since the greatest lower matcher of 1
is unique and D8 C LV[I] (by definition), the downwards solved system must be unique. O
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4.4 Modes

This section prepares material for Section 5.2 on inhabitation and I recommend to read it
together with Section 5.2.

We now generalize shallow term rewriting to shallow rewriting of term tuples. A tuple
rewriting rule is a pair s — §, where s is a term, § is a possibly empty tuple of terms,
and every variable occurring in the right-hand side § occurs in the left-hand side s. We use
) to denote the empty tuple. A tuple rewrite system is a set of tuple rewriting rules. A
tuple rewrite system R defines a binary relation “5 =g ¢” on the set of all term tuples as
follows:

1. (817 <o e 8i—1y 54y Sitls - - '7Sn) =R (817 ceey Sic1s by, e '7tm78i-|—17 .- '7Sn)

2. if and only if s; — (¢1,...,%) is an instance of a rule of R.

A shallow tuple rewrite system is a tuple rewrite system R such that every rule of R
has the form f(Z) — §, where & is a tuple of pairwise distinct variables. (These tuple
rewrite systems are called shallow because of the form of the left hand sides of their rules.
Unfortunately, I abused the name shallow in the definition of shallow rewriting systems
in Section 4.1 for systems that have to satisfy additional properties and also contain the
nonshallow rule # — — since I couldn’t come up with another nice name. 1 do apologize.)

In this section we assume that R is a shallow tuple rewrite system.

A term s is called weak in R if there exists a tuple & of variables such that s =% #'. We
will show in this section that one can compile a shallow tuple rewrite system R into an
algorithm that decides in linear time whether a term is weak in R. In Section 5.2 we will
show that a sort term denotes a nonempty set if and only if it is weak in a certain shallow
tuple rewrite system that can be obtained from the type specification.

Lemma 4.4.1 Let s =7}, @. Then there exists a tuple §j of variables such that s =% v
and 0y =51 T.

Proof. We prove the claim by induction on the length of the derivation 8s =73 7. If s
is a variable, then the claim is trivial. Otherwise, we have s = f(§) and there exists a rule
f(2) =t in Rsuch that s = 0f(5) =g 0{Z/5}t =% #. Hence we know by the induction
hypothesis that there exists a tuple 7 of variables such that {Z/5}i =% ¥ and 0y =% 7.
Furthermore, s =% {7/§}t =% ¥ since s — {7/&}t is an instance of f(Z) = € R. |

A mode of R is a pair f(Z) — V such that

1. & is a tuple of pairwise distinct variables

2. there exists a tuple i of variables such that f(Z) =75 ¢ and Vy = V.

Note that the right-hand side of a mode contains only variables that occur in the left-hand
side of the mode. Hence a finite shallow tuple rewrite system has only finitely many modes
up to consistent variable renaming.
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A set M of modes of R is complete for R if, for every pair f(Z) and ¥ such that f(Z) =75
7/, there exists a variant f(Z) — V of a mode in M such that V C Vy.

Proposition 4.4.2 For every finite shallow tuple rewrite system there exists a finite com-
plete set of modes.

By assuming a total order on variables, we can assume that every mode f(&') — V defines a
unique tuple rewriting rule f(Z) — ¥ such that Vi = V and the variables in § are pairwise
distinct. Thus every set of modes defines a unique shallow tuple rewrite system. We use
= to denote the rewriting relation defined by the shallow tuple rewrite system defined
by a set of modes M.

Lemma 4.4.3 Let M be a set of modes of R. Then:

1. there are no infinite chains 81 = §9 =p S3 =M - -
2. if § =3, ¥, there exists a tuple § of variables such that § =% § and Vyj = V&

3. M is complete for R if and only if, for every pair § and & such that 5 =7} ¥, there
exists a tuple § of variables such that § =%, ¥ and V§ C V.

Proof. 1. If { is obtained from § by applying a tuple rewrite rule obtained from a mode,
then the size of ¢ is strictly smaller than the size of § (although the length of t can be
greater than the length of §).

2. Let a derivation § =73; @ be given. We prove the claim by induction on on the length
of the derivation. If § = Z, then the claim is trivial. Otherwise, we have § = =M
Z. Thus we know by the induction hypothesis that there exists a tuple 7 of variables such
that ¢ =% ¥ and Vi = V. By the definition of modes we know that there exists a tuple @
containing exactly the same sort terms as t such that & =7 . Hence there exists a tuple
7 of variables such that 5 =% @ =5 7 and Vi =Vy = V7.

3. Suppose M is complete for R and s =% #. We show by induction on s that there exists
a tuple i of variables such that s =%, ¥ and Vi C V&. If s = z, then s = ¥ and the claim
is trivial.

If s = f(5), then we have s = {#/5}f(Z) =% & for some tuple 2 of variables. Hence we
know by Lemma 4.4.1 that there exists a tuple #; of variables such that f(Z) =% #; and
{#/5§}Z; =% &. Since M is complete, we know that there exists a tuple Z'; of variables
such that f(Z) = Z2 and VZ3 C V7. Furthermore, we know by the induction hypothesis
that there exists a tuple ¢ of variables such that {#/5}21 =%, ¥ and Vi C VZ. Hence we
have s = {Z/5}f(?) =m {Z/5}22: =4 ¥

To show the other direction of the equivalence, suppose that, for every pair § and & such
that § =7} &', there exists a tuple # of variables such that § =3, ¥ and Vy C Vi.
Furthermore, let f(Z) =% §. Then we know that there exists a tuple Z" of variables such
that f(Z) =3, § and VZ C V. Hence M contains a variant of the mode f(z) - VZ. O
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Theorem 4.4.4 Let M be a complete set of modes for R. Then

f(5) is weak in R <= [(5) is weak in M
— Jf(Z)-VeM
Vy e V. {&/5}y is weak in M.

Proof. The first equivalence follows immediately from the preceding lemma. Further-
more, the “<” direction of the second equivalence is obvious. To show the “=" direction
of the second equivalence, let f(5) =3, 1. Then we have by Lemma 4.4.1 that f(Z) =
y and {Z3/5}y =73, 1. Hence there exists a mode f(Z) — V € M such that for every
variable y € V' there exists a tuple 2" such that {¥/5}y =73, 7. 0

Corollary 4.4.5 Given a finite complete set of modes for R, one can decide in linear time
with respect to the size of a term s whether s is weak in R.

Proof. To decide whether f(si,...,s,) is weak in R, one first decides this property for
every subterm s; and checks afterwards whether there is an applicable mode in M. O

We will now give an algorithm for computing finite complete sets of modes for finite shallow
tuple rewrite systems. Since, in general, § =7 t is not terminating, such an algorithm is
not obvious.

In the following we assume without loss of generality that & = i if f(Z) — § and f(7) =t
are rules of R.

Given a finite shallow tuple rewrite system R, we define a descending chain
R=Ry2> Ry 2 Ry2

of finite tuple rewrite systems and an ascending chain
0 =My C M CM,;C

of finite sets of modes of R as follows:

Ropr ={f(@) = 5€R, | f(Z) =0 ¢ My}

Lemma 4.4.6 Let the chain My C My C --- be defined as above. Then, if s =%, ¥, there
exist a number n and a tuple § of variables such that s =3, y and Vy C VZ.

Proof. Let a derivation s =% & be given. We prove by induction on the length of the
derivation that there exist a number n and a tuple g of variables such that s =3, ¢ and
Vij CVZ. If s = &, then the claim is trivial. Otherwise, we have s =g ¢ =7 ©. Hence we
know by the induction hypothesis that there exist a number n and a tuple i of variables
such that ¢ =%, ¥ and Vi C V&, Since s can’t be a variable, we have s = f(5) and there
exists a rule f(Z) — @ in R such that

—

s=[(5) =r{7/5}0 =N, §.
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Hence we know by Lemma 4.4.1 that there exists a tuple 2 of variables such that u =7},
7y and {7/5}2) =5, ¥.
If f(Z) — @ is not in R, 41, then M, contains the mode f(Z) — (). Hence s = f(§) =wm,
(), which yields the claim.

If f(Z) —» @ is in R,41, then the mode f(Z) — VZy is in M, 1. Hence there exists a
tuple ¥ such that ¢ contains exactly the same sort terms as {Z/5}Z; and s = f(§) =um,

n+1
v. Since {#/5}Z1 =73, ¥, there exists a tuple i, of variables such that ¢ =73, 7, and
Vy, =Vy CVZ. Hence s =3, ¥, and Vij; C V. =

Theorem 4.4.7 [Computation of Complete Sets of Modes] Let R be a finite shallow
tuple rewrite system and let the chain My C My C --- be defined as above. Then:

1. (Termination) there exists a number n such that M, = M, +1
2. (Soundness) every M, is a set of modes of R

3. (Completeness) if M,, = M,,11, then M, is a complete set of modes for R.

Proof. 1. For every M, the left-hand side of every mode in M, is the left-hand side of
a rule in R. Since R is finite, there are only finitely many of such modes.

2. We show by induction on n that M, is a set of modes of R. Since My = 0, the claim is
trivial for n = 0. To show that M, 1 is a set of modes of R, suppose M,, is a set of modes
of R, f(¥) — §is a rule of R, and & =3, &. We have to show that f(¥) — V7 is a mode
of R. Since M, is a set of modes of R, we know by the preceding lemma that there exists a
tuple § of variables such that § =% ¥ and Vi = VZ. Hence f(Z) =% §. Thus f(¥) — V&
is a mode of R.

3. Let M,, = M,,+1. Then M; C M, for every i. Hence the claim follows by the preceding
lemma and Lemma 4.4.3. a

Corollary 4.4.8 If R is a finite shallow tuple rewrite system and every function symbol
of R is a constant, then a complete set of modes for R can be computed in quadratic time.

Proof. If R contains only constants, then every mode of R has the form ¢ — (. Hence
the iteration Mg, My, ... can take at most as many steps as there are constants occurring
in R. Furthermore, every iteration step can be performed in time linear with respect to the
size of R. a



Chapter 5

POS-Types

5.1 Type Specifications
5.2 Inhabitation
5.3 Unifiers and Solution Schemata

We are now ready to define POS-types. They are specified with simple specifications
whose inclusions yield a sort rewriting system, where every value function is specified with
exactly one rank of the form f: 7 — &(&). These specifications, which are just called type
specifications, have quasi-extensional initial models and hence we choose the extensional
model associated with the initial model as the POS-type specified.

Type specifications do have nice properties. If a value term s is well-typed under a prefix P,
then there is a computable least sort ¢ such that P F s:o. Together with the existence of
sort infima this implies that the sorts of a POS-type are closed under intersection. Moreover,
if s is in o for some prefix, then one can compute a greatest prefix P such that P s:o.

Most of this chapter is already devoted to constraint solving. The constraint solver for our
relational programs computing over POS-types will have to solve constraints of the form
FE & M, where F is a conjunction of equations and M is a conjunction of memberships. In
Section 5.2 we will attack the subproblem of deciding whether a constraint x: ¢ is satisfiable
in a POS-type and develop a linear-time decision algorithm for this problem. In Section
5.3 we will generalize the notion of a unifier to constraints of the form £ & M and work out
how the unifiers of a constraint relate to its solutions. Finally, we will define a notion of
solved form for the explicit representation of solutions and investigate its most important
properties.

63
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5.1 Type Specifications

From now on we assume that the symbol —, called the empty sort, is a nullary sort
function.

A type specification 7' is a finite set of inclusions and ranks such that

1. the inclusions of T' yield a sort rewriting system R(T') if every inclusion ¢ J 7 is taken
as a rewrite rule 0 — 7

2. every rank in 7" has the form f: 6 — £(&@), where & is a tuple of pairwise distinct sort

variables and V(&) C V(&)
3. no rank in T contains the empty sort —
4. for no function symbol T contains more than one rank

5. T contains at least one value constant.
Proposition 5.1.1 Every type specification is a simple specification.

The sort equations in Figure 1.1 define a typical type specification. The left hand side of a
sort equation has the form &(&), where & is a tuple of pairwise distinct sort variables, and
the right hand side of the sort equation gives all ranks that go to £(&) and all sort rewriting
rules whose left hand side if £(&). For instance,

error_or_list(E, T) := errormsg(E) U list(T)
translates into the inclusions
error_or_list(E, T) J errormsg(E), error_or_list(E, T) 3 list(T)

and

list(T) := nil:[] U cons: T X list(T)
translates into the ranks
nil: list(T), cons: T x list(T) — list(T).

Obviously, every type specification can be given by sort equations, and that’s the syntax
type specifications are presented in in TEL [Smo88b]. Sort equations are also commonly
used in functional programming languages such as ML [HMMS6], there, of course, without
the provision for subsorts. Sort equations already presume that type specifications specify
their initial models, which satisfy the equations in the obvious sense. If one has all models
of a type specification in mind one could still write sort inclusions £(a) 3 - --
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General Assumption. We assume in the rest of this thesis that T is a type specifi-
cation and that all terms and substitutions employ only function symbols occurring in T.
Furthermore, we assume that all constraints and all interpretations are taken from £(X7)*
(X7 is the set of all function symbols occurring in T). To obtain a smooth notation, we
will always drop the subscripts T" and R(T'). By this convention the notations

o<1, 02T,

0<v, v=>0,

P<Q, P>@ inclusion order, see Section 3.6

Pt s:o, P-M  membership relation, see Section 3.6

o="T top level sort rewriting, see Section 4.1

ofnr, oM°T [stable] infimum, see Section 4.3

are all well-defined.

We will use LUM[& C 7] to denote the least upper matcher of the inclusion system & C 7
(see Section 4.2), where we assume without loss of generality that upper matchers are sort
substitutions (that is, map every value variable to itself, see Section 3.3).

Let P be a prefix. Then the following two equations define a computable partial function
oP[] from value terms to sort terms:

1. oPlz] = P

2. oP[f(3)] = LUM[c"[5] C @]¢(a@) if and only if f: i — &(&) € T.
Theorem 5.1.2 [Least Sort] P F s:0 if and only if ¢7'[s] < 0.

Proof. 1. Suppose P s:0. We prove by induction on s that ¢7'[s] < 0. If s = z, then
of[z] = Pz < 0.

Let s = f(§). Then there exists a rank f:[i — 7 in T and a substitution § such that
67 < o0 and P F 5:0ji. By the induction hypothesis we know that ¢7'[5] < 6ji. Hence
Y := LUM[o"[5] C ji] < 6 and thus 0" [f(5)] = ¢vT < 67 < 0.

2. Suppose 67[s] < o. We prove by induction on s that P F s:o. If s = z, then
Pz = oP[s] < o and hence P F z:0.

Let s = f(3). Then & := o”[5] exists, f:ji — 7 is a rank in T, § := LUMI[& C ji] exists,
and 67 < o. Furthermore, we know by the induction hypothesis that P F §:5. Hence P |-
§:0fi since & < Ou. Thus P+ f(§):0 since f:0f — 67 is an instance of a rank in 7" and
or <o. a

If ¢7'[s] is defined, we say that o7'[s] is the least sort term of s under P. The existence of
least sort terms is crucial for the existence of good unification and type checking algorithms.

Corollary 5.1.3 The relation P & s: o is decidable.

Corollary 5.1.4 PFs:0 N PFsit1 <«<— Pl s:olr.
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Proposition 5.1.5 If ¢''[s] is defined, then V(o%[s]) = U,ev, V(Pz).

Proof. Let o'[s] be defined. We prove by induction on s that V(o'[s]) = U,cy, V(Pz).
If s = 2, then ¢”'[2] = Pz and the claim is trivial.

Let s = f(5). Then T contains a rank f:ji — 7, 8 := LUM[o"[5] C ji] exists, and
oF'[s] = 67. We know by the induction hypothesis that V(o”[3]) = Usev(s(sy) V(P2). Since
V(i) € V(7), we know by Proposition 4.2.3 that V(07) = V(07[5]) = U,ev(s(s) V(Pz). O

Proposition 5.1.6 If P — s:0 is valid in T, then Vs C VP.

Proof. Let P — s:o be valid in T, z4,...,2,, be the variables occurring in s but not in
P,and aq, ..., a, be the variables occurring in ¢ but not in P. Furthermore, let fy,..., 8,
be pairwise distinct sort variables not occurring in P — s:o and y,...,y, be pairwise
distinct value variables not occurring in P — s: 0. Then

Q =P &a:b&- &8 & i & - &yn:

is a prefix and P — s:0 is valid in Z(7,Q). Let € be an Z(T,Q)-assignment that maps
every variable occurring in @ to itself. Then € € Z(T,Q)[Q] € Z(T,Q)[P] and hence
€ € I(T,Q)[s: o]. Thus @ + s:0 and o > 09[s]. Hence {J, ¢y, Qz = V(c9[s]) C Vo.

Now suppose m > 0. Then 1 € Vo, which contradicts our assumptions. Thus Vs C VP.
O

The preceding proposition allows us to get rid of the variable condition in the Soundness
and Completeness Theorem for simple specifications:

Theorem 5.1.7 [Soundness and Completeness] For every type specification T the
following equivalences hold:

l.oCrisvalidinT <= o<1
2. P—sioisvalidinT «— Pltsio

3. Pos=tisvalidinT <= s=t and s is well-typed in T under P.

Proof. Follows by the preceding proposition from the Soundness Proposition and the
Soundness and Completeness Theorem for simple specifications. a

Using o7[-] we can decide P F s:0 by going bottom up through s. The next proposition
gives us a top down decision method for Pt s: 0.

Proposition 5.1.8 P F f(§):0 holds if and only if T' contains a rank f:ji — &(&) such
that 0 =* £(6) and P+ §:{a/d }[i.
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Proof. “=7. Let Pt f(§):0. Then T contains a rank f: i — £(&) and there exists a
substitution @ such that (&) < o and P F §:6fi. Hence there exists & such that o =*
£(6) and & > 6a. Thus {a/d}i > {a/8d}ti = 6fi and hence P+ §:{d /& }ji since P F
§:0fL.

“=” Let fifi »&(@)eT, 0 =*&(F) and P+ 5:{a/G}ji. Then f:{a/F}ii — £(F) is
an instance of a rank in 7. Hence Pt f(5):0. a

The following reduction rules for membership systems define a binary relation “AM d, M,
called membership decomposition:

L. M&f(3):o 4 M&s:{a/é}i
if f:i—&(@)eT and o =*(F)

2. M&zio&ka:r 4 M&a:(onT).

Proposition 5.1.9 The membership decomposition relation “M 4y M'” has the following
properties:

1. “M - M’ s terminating and confluent
2. it M4y M', then P+ M < Pt M’ for every prefix P

3. if P+ M and M is no prefix, then 4, applies to M.

Proof. The termination of -9 is obvious. Since the infima function “oM7” is associa-
tive, we know that 4y s locally confluent and hence confluent. The second and the third
claim follow with the preceding proposition. a

If there exists a prefix P such that M -457 P, then we call GP[M] := P the greatest
prefix supporting M.

Theorem 5.1.10 [Greatest Prefix] If P = M, then GP[M] exists, P|pcpp) < GP[M],
and GP[M]+ M.

Proof. Follows immediately from the preceding proposition. a

We now show that the initial model Z(7T') of a type specification 7" is quasi-extensional. The
extensional inclusion preorder <Z(T) is the preorder on ground sort terms satisfying

o jI(T) T i< Vs Fsio =tsrT.
We extend “o jI(T) 77 to substitutions as follows:

9 <TD 1= DI=DyY A YVaecDb fa=<"D pa.

Lemma 5.1.11 If 6 <) 4 and Vo C D8, then o <T(1) o7
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Proof. Let <) 4, Vo C DO and + s:00. Since s is ground, we know that s = f(3)
and T' contains a rank f: i — £(&). We prove by induction on s that i s:¢o.

Let 0 = a. Then o = e <T(T) ypa = 0. Hence F s: 1o since b s: fo.

Let ¢ = n(&). By the preceding proposition we know that 8o =* £(---). Hence there exists
v such that o =* £(7) and fo =* £(07). Thus we know by the preceding proposition that
F§:0({a/v}ji). Now we have - §:9({a@/7}ji) by the induction hypothesis, which yields
F f(§): o since Yo =* £(¢PP). O

Theorem 5.1.12 [Extensional Interpretation] The initial model Z(T') of a type speci-
fication T is quasi-extensional and the extensional algebra Z(T)° associated with Z(T') is a
model of T

Proof. Follows from the preceding lemma and statement (4) of Corollary 3.5.3. O

We are now ready to make the central definitions of this thesis (this took quite some
preparation, didn’t it?): the extensional algebra Z(T)° associated with the initial model
Z(T) of T is called the type specified by 7', and a POS-type is an extensional POS-
algebra that is isomorphic to the type specified by some type specification. For convenience,
we use simply 7 to denote Z(T)°.

As you just read, I prefer to take the extensional interpretation of a type specification as
the type it specifies. This is more or less a matter of taste. If you would prefer the initial
interpretation, you are free to do so since everything that follows holds unchanged both
for the extensional and the initial interpretation. This is due to the fact that inclusions
are only used for the specification of POS-types but won’t appear in the constraints we
will compute with in the following. Furthermore, we will only be interested in solutions for
value variables. Formally, the interchangeability of 7 and Z(7') is stated best as follows:

Proposition 5.1.13 If I' is an inclusion-free constraint and V is a set of value variables,

then T[F]V = Z(T)[F]V.
Proof. The claim just specializes Corollary 3.5.3. a

Proposition 5.1.14 If o is a ground sort term, then
Tle] = VALZ Do) = {s |  s: 0}.
Furthermore,

ST = {{s |+ s:0}| o is a ground sort term},
T[[_]] = ®7
Tlent]=Tle]lNT[r] ifo and T are ground sort terms,

and the sorts of T are closed under intersection.
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Proof. By the construction of 7 = Z(T)° (Construction 3.5.1) we know that & is a
homomorphism Z(T) — T such that x(¢) = VALT(D[g] for every ground sort term o.
Hence we have T[o] = VALTT)[0] by Lemma 3.6.9. Furthermore, VALZT)[0] = {s |
s:o} holds by the construction of Z(T"). Since & is surjective, we know that every sort of 7
can be obtained as k(o) = VALTD[o] = {s | I s: 5}.

Now suppose T[—] # @. Then we know by what we have just proved that there exists a
ground value term s such that - s: —. Since every rank of T has the form f:ji — &(&),
where £ # —, this is impossible.

The equation Ton7t] = T[o] N T[r] follows from Corollary 5.1.4 using To] = {s | I
sso}b, T[] ={s|Fs:t}and ToeN7] ={s| F s:onr}. |

5.2 Inhabitation

In this section we devise an algorithm that decides in linear time whether a membership
x:0 is valid in 7. This algorithm will be one of the cornerstones of the constraint solving
algorithm to be presented in Chapter 6. The algorithm is given as a confluent and termi-
nating rewriting system that rewrites a sort term leaving its denotation in 7 unchanged
such that z: ¢ is satisfiable in T if and only if the normal form of ¢ isn’t —.

A sort term o is called inhabited if there exists a ground value term s and a substitution
f such that F s:6o. A sort term is called void if it is not inhabited.

A prefix P is inhabited if Pz is inhabited for every # € DP. A substitution 6 is inhabited
if v is inhabited for every sort variable o € D6.

A type specification T is fully inhabited if every sort term of T’ that doesn’t contain — is
inhabited.

Proposition 5.2.1 In every type specification T the following holds:

1. — is void and every sort variable is inhabited
2. there exist a value constant ¢ and a ground sort term ¢ such that - c: o

3. a sort term o is inhabited if and only if x: ¢ is satisfiable in T .

Proposition 5.2.2 Let - s:00. Then there exist a prefix &:& and a linear term t such
that s is an instance of t and ©:d F t:o.

Proof. We prove the claim by induction on s.

If 0 = «, then choose some value variable # and let t := 2 and ©: & = z: a.

If o is not a sort variable, then s = f(§) and T" contains a rank f: 7 — &(3) such that o =~
£(6) and F §: 0{5/5’},&'. Hence we know by the induction hypothesis that there exists a
prefix #: @ and a linear tuple # such that § is an instance of # and #:@  i: {3 /&}ji. Thus
Z:a@F f(t):o, f(t) is linear and s is an instance of f(f). 0
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A type specification T" defines a finite shallow tuple rewrite system TR(7") as follows:
R(T):={§(@) » o |&{(@) ToeT} U {L(a) =[] f:i—&(@)eTh.

We will prove that o is inhabited if and only if o is weak in TR(T).

Proposition 5.2.3 If o =* 7 and 7 # —, then o :>”*rR(T) T

Lemma 5.2.4 Let Z:a - s:0 and V¥ = Vs. Then there exists a tuple 5 of sort variables
such that o :>”*FR(T) B and Va =Vpj.

Proof. We prove the claim by induction on s.

If s ==z, then ¥:& = z: and ¢ = « and thus the claim is trivial.

If s = f(§), then T contains arank f: i — f(ﬁ) such that o =* (&) and 7:d F §: {ﬁ/&'}ﬁ
Hence we have by the induction hypothesis that {3 /&) :>TR ﬁ nd Va = V3. Thus

9 :>’}R(T) () =TR(T) {E/E}ﬁ :>’}R(T) g O

Lemma 5.2.5 Let ¢ :>”*FR(T) &. Then there exist a prefix ¥:d and a linear term s such
that V¥ = Vs and Z:d F s:o.

Proof. We prove the claim by induction on the length of the derivation ¢ :>”*rR(T) a.
If ¢ = &, then the claim is trivial. Otherwise, there exists a rank f: i — f(ﬁ) such that
o =" &(G) =rr(m) {8/} =TR(T) a@. Hence we know by the induction hypothesis that

there exist a prefix #:@ and a linear tuple § such that V¥ = V3 and #:a + 3: {3 /3 }i.
Hence #:a F f(§): 0, which yields the claim.

Theorem 5.2.6 A sort term is inhabited if and only if it is weak in TR(T').

Proof. Suppose o is inhabited. Then there exist a value term s and a substitution 8 such
that - s: 8o. Hence we know by Proposition 5.2.2 that there exist a prefix ¥: & and a term
t such that #:a - t: 0 and V¥ = Vt. Thus we know by one of the preceding lemmas that
o :>”*rR(T) a

Suppose ¢ :>”*FR(T) &@. Then we know by the preceding lemma that there exist a prefix ©: &
and a term s such that : & F s: 0. Since there exists a ground membership that is valid in
T, there exists a substitution € such that F #s:8c. Hence o is inhabited. a

Corollary 5.2.7 Let M be a complete set of modes for TR(T"). Then a sort term £(&) is
inhabited if and only if there exists a mode {(d) — V € M such that every sort term in
{@/&}V is inhabited.

Proof. Follows from the preceding theorem and Theorem 4.4.4. a

Corollary 5.2.8 For a given type specification T, one can decide in linear time whether a
sort term is inhabited in T.
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Proof. Follows from the preceding theorem, Corollary 4.4.5 and Proposition 4.4.2. a

Corollary 5.2.9 Inhabited prefixes and substitutions have the following properties:

1. if @ is inhabited, then a sort term o is inhabited if and only if fo is inhabited
2. two substitutions 8 and v are inhabited if and only if their composition 61 is inhabited
3. if 0 is inhabited, then a prefix P is inhabited if and only if @ P is inhabited
4. a prefix P is inhabited if and only if P is satisfiable in T
5. if P is inhabited and P\ s: o, then o is inhabited.
Next we give simplification rules for sort terms such that a sort term is void if and only if

its normal form is —. The application of a simplification rule to a sort term ¢ won’t change
the denotation of ¢ in 7.

A sort term (&) is called top-level void if — € {@/d}V for every mode &(a@) — V of
TR(T).

Proposition 5.2.10 Top-level voidness has the following properties:

1. every sort term that is top-level void is void
2. every Instance of a top-level void sort term is top-level void

3. if & has no mode in TR(T'), the £(&) is top-level void; in particular, — is top-level
void

4. if M is a complete set of modes for TR(T'), then £(&) is top-level void if and only if
— € {a/a}V for every mode {(d) =V € M.

We write ¢ = 7 if 7 can be obtained from ¢ by replacing a top-level void subterm p # —
with —.

Proposition 5.2.11 The relation ¢ = 7 is terminating and confluent.

Proof. The termination follows from the fact that every reduction step reduces the num-
ber of occurrences of sort function symbols different from —. Since ¢ = 7 is locally con-
fluent, we hence know that o = 7 is confluent. a

A sort term is called normal if it is normal with respect to to — . We use NF[o] to
denote the normal form of o with respect to = .

We extend the normalization relation to prefixes as follows:

P2y Q 1= DP=DQ A VzcDP. Pz Qu.
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Note that “P 25" Q" is again terminating and confluent. We use NF[P] to denote the
normal form of P. We call a prefix normal if every sort term occurring in it is normal.

If 6 and v are substitutions, let § 2+" ¢ if and only if 8o -2=+™ fa for every sort variable a
and 6 and 1 agree on all value variables. If 6 is a substitution, then NF[6] is the substitution
satisfying (NF[f])z = 6z and (NF[f])aw = NF[fa] for every value variable z and every
sort variable «. Note that § =" NF[f] and “§ =" " is confluent but, in general, not
terminating.

Theorem 5.2.12 [Normalization] The normalization relation “c — 77 has the follow-
ing properties:

1. if o 25" 7 and § 2574, then 0o 2" o1 and 1 < fo

2. fo 25" NF[f]o, ONF[o] and NF[f]o, INF[o] 2= NF[0o]

3. (Orthogonality) if o =* £(&), T =* &(7) and ¢ =" 7, then ¢ =" 7
4. (Invariance) if ¢ 25" 1, then o is inhabited if and only if 7 is inhabited
5. (Completeness) if ¢ is normal, then o is void if and only if 0 = —

6. ois void < oc-" - <= NF[o]=—

7. NF[a] = a and

NF[¢(5)] = {f—(NF[E]) ;f"tigj‘i[si]) is top-level void

8. NF[o] can be computed in linear time

9. (Monotonicity) if o < 1, then NF[o] < NF[r]
10. if ¢ is normal, ¢ < 7 and 7 25" i, then ¢ <

11. if P is a normal and inhabited prefix and ¢ 2", then P & s: ¢ if and only if P -
s:T

12. (Invariance) if ¢ 25" 1, then T[o]s = T[r]s for every T-assignment §

13. if P is normal and inhabited and s is well-typed under P, then o [s] is normal and
inhabited.

Proof. 1. Let 0 25" 7 and 6§ 24" 4. We prove by induction on ¢ that o 2+~ ¥ and
Y1 < fo.

Let 0 = «. Then 7 = e and hence o = fa 2" o = . It remains to show that 1o < fa,
which follows by a straightforward induction on the length of a derivation fa 2= .

Let 0 = £(&) and 7 = —. Then — = ¢7 < o and it remains to show that §o 2" — which
follows by induction on the length of a derivation ¢ 2+" — exploiting the fact that every
instance of a top-level void sort term is top-level void.
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Let 0 = £(G) and 7 # —. Then 7 = £(7) and & 2" 7. Hence we know by the induction
hypothesis that 8¢ =" 7 < 65, which yields 6¢(7) =" &(T) < 05(F).

2. Follows from the first statement and the confluence of 2™
3. Let ¢ =* £(3), 7 =* £(7) and 0 25" 7. We show that & 25" 7.

If 7 = —, then — = {(7) = &(&) and hence the claim is trivial. Otherwise, o = 7(71),
7 = n(71) and &; =" 71. Furthermore, we have n(a@) =* &(i@), & = {a@/d1}i and
7 ={a&/71}ii. Hence ¢ ==~ 7 by statement (1) since {@/51} =" {a@/71}.
4. Let 0 =5 7. Then 7 < o by statement (1) and hence o is inhabited if 7 is inhabited.
Now suppose o is inhabited. We show by induction on ¢ that 7 is inhabited.

Since 0 == 7, we know that ¢ is no variable. Let o = £(&). Since o is inhabited, o is
not top-level void and hence 7 = ¢(7) and & =" 7. Since o is inhabited, there exists
a mode £(d@) — V of TR(T') such that every element of {&/&}V is inhabited. By the
induction hypothesis we know that every element of {&/7}V is inhabited. Hence 7 = &(T)
is inhabited.

5. Let o be a normal sort term different from —. We prove by induction on ¢ that o is
inhabited. If o is a variable, then the claim is trivial. Otherwise, let ¢ = £(&). Since &(&)
is not top-level void, there exists a mode &(@) — V of TR(T) such that — ¢ {&/a}V.
Since every sort term in {& /& }V is normal, we know by the induction hypothesis that ever
sort term in {&/d}V is inhabited. Hence we know by Corollary 5.2.9 that o = £(&) is
inhabited.

6. Follows immediately from statement (5).
7. Obvious.
8. Follows immediately from statement (7).

9. Let ¢ < 7. We prove by induction on o that NF[o] < NF[7]. If 0 = «, then 0 = 7
and hence NF[o] = NF[r]. Otherwise, let o = £(&). Then we have 7 = n(7), n(d@) ="
&(ji), where & is linear, and & < {&@/7}ji. Hence we know by the induction hypothesis that
NF[&] < NF[{&/7}ii]. Thus NF[&] < {&/NF[7]}ji@ by statement (2). If NF[o] = —, then
the claim is trivial. Otherwise, NF[o] = £&(NF[F]) and ¢ is inhabited. Hence 7 is inhabited
and thus NF[r] = n(NF[7]) = £({a/NF[7]}i) > £(NF[F]) = NF[o].

10. Let ¢ be normal, ¢ < 7 and 7 5" . Then o = NF[o] < NF[r] by the preceding
statement. Hence u =" NF[r] by the confluence of %+ and thus 0 = NF[¢] < NF[r] < p.

11. Let P be a normal and inhabited prefix and ¢ -2+ 7. Since 7 < ¢ by the first statement,
Pt s:7implies Pt s: 0. To show the other direction, let PP s: . We show by induction
on s that P+ s: 7.

If s = 2, then Pz < 7. Since Pz is normal, we know by the preceding statement that
Px <7 and thus PF 2: 7.

If s = f(5), then we have f:ji = &(d) €T, o =*&(F) and P+ §:{d/F}fi. Since P
is inhabited, o is inhabited and hence, using statement (5), o and 7 have the same top
symbol. Hence 7 =* £(7) and thus ¢ =" 7 by statement (3). Hence {a/d}i ="
{@/7T}ii by statement (1) and thus P §:{a /7 }ji by the induction hypothesis. Hence P
s:T.
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12. Let 0 =" 7 and let § be an Z(T)-assignment. Since the canonical homomorphism
Kk Z(T) — T = Z(T)° is surjective, it suffices to show that T[o].s = T[r]xs. By the
Homomorphism Theorem and the definition of £ we know that

Tlulles = £(Z(T)[u]s) = VALTD[054]

for every sort term p. Hence the claim follows by statement (11) since 650 =" 657 by
statement (1).

13. Let P be normal and inhabited and s be well-typed under P. Then P I s:0%[s] and
hence P I s:NF[o"[s]] by statement (11). Thus o”[s] < NF[o"[s]] < oF[s] by the Least
Sort Theorem and statement (1). Furthermore, we know by Corollary 5.2.9 that o''[s] is
inhabited. O

Corollary 5.2.13 [Full Inhabitation] A type specification T is fully inhabited if and
only if for every sort function symbol £ # — of T there exists a mode (@) — V of TR(T).
Hence it is decidable whether a type specification is fully inhabited. Furthermore, if T is
fully inhabited, then every sort term not containing — is inhabited and normal.

Example 5.2.14 Let T be the type specification
¢ =clf]
Ea,B) = fraxf U gi€(aa).
Then TR(T) consists of the rules
C=0, &la,f) = aB, &(a,f) = &(a, ).
A complete set of modes for TR(T) is obtained with three iteration steps, where
My=Ms={( =0, &(a,f) = {a, B}, &l f) = {a}}.

The subset {¢ — 0, &(a, B) = {a}} is a minimal complete set of modes for T. Using the
modes one verifies easily that £(¢, —) is normal and hence inhabited. a

Example 5.2.15 Let T be the type specification

¢ =]
5(047ﬁ) =fra U g:p
n(e) = h:&(a,n(a)).

Then TR(T) consists of the rules
(=0, &a,f)—=a, &a,8) =8, nla) = &a,n(a)).
A minimal complete set of modes for TR(T') is obtained with three iteration steps, where
My=Ms={C—=0, &(a,f)={a}, &, f) = {8}, nle) = {a}}.
Using the modes one verifies easily that NF[{(n(—), —)] = —. Hence &(n(—),—) is void. O
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Example 5.2.16 Let T be the type specification

¢ =l
g(avﬁ) = fraxp
n(a) = g:§(a,n(a)).
Then TR(T) consists of the rules

(=0, &a,f) = af, nla) = (e, n(a).

A minimal complete set of modes for TR(7") is obtained with two iteration steps, where

M, = M; = {C — ®7 5(047ﬁ) — {O@ﬂ}}
Using the modes one verifies easily that NF[£((¢), )] = —. Hence £(n(¢), () is void. a

5.3 Unlifiers and Solution Schemata

In this section we will investigate solved forms for representing the V-solutions of a con-
straint as explicitly as possible. The idea is that we represent the solutions of a constraint
for the variables z1,...,x, by a constraint

r=51& ... &xp =5, &
Tpp1io & o &y io, &
& o &Y T

such that no s; contains one of the variables z;, every y; occurs in some s;, and every sort
term is inhabited and normal.

Our constraint solving methods will apply to constraints of the form F & M, where F is
a conjunction of equations and M is a conjunction of memberships. For such constraints
we will define suitable unifiers generalizing ordinary unifiers for unsorted terms. Unifiers
are a slightly more general and more syntactically oriented alternative to solutions and will
play a central role in Chapter 6, where we will develop unification and constraint solving
methods. It will turn out that systems of the form F & M have principal unifiers, provided
they satisfy certain weak well-typedness conditions.

An equation system is a possibly empty conjunction of equations. Recall that a mem-
bership system is a possibly empty conjunction of memberships. From now on, the letter £
will always denote an equation system and the letter M will always denote a membership
system. We use NF[M] to denote the membership system that can be obtained from M by
replacing every sort term with its normal form.

An equation s = t is trivial if s = . An equation system is trivial if every equation
occurring in it is trivial. An equation s =t is well-typed under a prefix P if there exists
a sort term o such that P+ s:0 and P F t:0. An equation system is well-typed under
a prefix P if every equation occurring in it is well-typed under P. An equation is well-
typed if it is well-typed under the empty prefix. An equation system is well-typed if
every equation occurring in it is well-typed.
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A unifier is a pair 0p consisting of a substitution # and a normal and inhabited prefix P. A
unifier of a conjunction F & M is a unifier 8p such that P F 8M and the equation system
0F is trivial and well-typed under P. We use U[F & M] to denote the set of all unifiers of
FE & M. We say that a conjunction F & M is unifiable if £ & M has a unifier.

Proposition 5.3.1 [Unifier] Unifiers have the following properties:

1. UF&M]=U[FINU[M] = UE & NF[M]]
2. if P is a normal and inhabited prefix, then

p c UFE&M] < P —0F&0M is valid in T

3. if ¢ is an I(T)-assignment, then

SeI(M[E&M] <= (05)p € UFE&M]

4. & M satisfiable in T <= E & M satisfiable in Z(T)
4, 7777777777
< FE& M is unifiable

5. if U[E & M] C U[E’ & M'), then U[0E & 6M] C U[OE’ & 6M']

6. if U[E & M] C U[E' & M'], then T(T)[E & M] C Z(T)[E' & M'].

Proof. 1. The first equation is obvious. The second equation follows from the Normal-
ization Theorem.

2. Follows from the Soundness and Completeness Theorem for type specifications.

3. Follows from Proposition 3.6.5 and the Soundness and Completeness Theorem for type
specifications.

4. The first equivalence follows from Corollary 3.5.3. The direction “=" of the second equiv-
alence follows from statement (3). To show the other direction, suppose 8p € U[F & M].
Then we know by statement (2) that P — 0F & M is valid in 7. Since P is inhabited,
P is satisfiable in Z(7") (Corollary 5.2.9). Hence 0F & M is satisfiable in Z(7'). Thus we
know by Lemma 3.3.5 that I & M is satisfiable in Z(7).

5. Let UE&M] C U[E' & M'] and suppose g € U[E&OM]. Then (¥8)g €
U[E & M] C U[E'& M']. Hence g € U[0E" & 6M'].

6. Let UF & M] C U[E" & M'] and suppose § € Z(T)[F & M]. Then we know by statement
(3) that (6s5)p € UE& M] C U[E'& M'] and hence, again by statement (3), that § €
Z(T[E & M']. O

Recall that a value substitution is a substitution that maps every sort variable to itself. A
finite value substitution § = {xy/sy,...,2,/s,} defines an equation system E[f] as follows:

Ef] =(@i1=51& ... &z, =s,).
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Proposition 5.3.2 Let 8 be a finite and idempotent value substitution and P be an in-
habited and normal prefix such that P+ @P. Then 6p € U[E[f] & P].

A principal unifier is a unifier #p such that 4 is a finite and idempotent value substitution,
PFOP and D8 C DP. A principal unifier of £ & M is a principal unifier p such that
U[E[0] & P] = U[F & M].

Proposition 5.3.3 If §p is a principal unifier, then 8p € U[E[f] & P].
General Assumption. In the following V is a set of value variables.

Proposition 5.3.4 For every conjunction F & M the following holds:

TIE& M]Y = Z(D[E&M]Y = {b|v |6 € ASSTTD),
fs is normal and inhabited, and

(65)p € U[E & M] ).

Proof. The first equation follows from Corollary 3.5.3 since 7 = Z(7')°. The direction
“D” of the second equation follows from statement (3) of the Unifier Proposition.

To show the direction “C” of the second equation, let 6 € Z(T)[F & M]. Then we know by
the Unifier Proposition that (6s5)y € U[E & M] and hence by the Normalization Theorem
that NF[0s], € UL/ & M]. Now let 0 be some normal and inhabited ground sort term and
let ¢’ be the Z(T')-assignment defined as follows: ¢'(z) = §(x) for every value variable z,
§'(a) = o if NF[§(er)] = —, and ¢'(«) = NF[d(«)] otherwise. Since NF[6s] < 65, we know
that (85)g € U[E & M]. This yields the claim since ¢ and §’ agree on V. 0

We are now ready to define solved forms for explicitly representing V-solutions.
A V-solution schema is a unifier 8p such that

1. 6 is a finite and idempotent value substitution

2. Bz is well-typed under P for every z € D8

3. D8 CV, DP CVUZE, and DP and D8 are disjoint.

A V-solution schema for F & M is a V-solution schema p such that T[E & M]V =
TIE[G] & P]V.

The next theorem makes precise in what sense a V -solution schema represents the solutions
of a constraint “explicitly”.

Theorem 5.3.5 [Solution Schema] Let 6p be a V-solution schema for F'& M. Then
FE & M is satisfiable in T. Furthermore, if V. C DP U D6, then

TIE & M]Y = Z(T)[E & M]Y = {(40)|v | - ¥ P}.
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Proof. Since #p is a V-solution schema for F & M, we know that T[E & M]V =
TIE[6] & P]V. Hence E & M is satisfiable in T if E[f] & P is unifiable. Since DP and D
are disjoint and 2z is well-typed under P for every z € D8, Q := P & {z:0"[fz] | x € DO}
defines a prefix. Since P is normal and inhabited, we know by the Normalization Theorem
that @ is normal and inhabited. Now it’s easy to verify that 8g € U[E[§] & P].

To show the second claim, let V- C DPUDE. Since the first equation has been already estab-
lished in the preceding proposition, it suffices to show that Z(T)[E[6] & P]V = {(¥8)|v | -
P},

“C”. Let 6 € Z(T)[E[f] & P]. Then we know by the Unifier Proposition that (65)y €
U[E[f] & P] and hence that 65 = 656 and - 05P. Thus é|y = (8s)|v = (850)|v € {(¥8)|v | F
P},

“D7. Let - ¢ P. Furthermore, let ® be a sort substitution such that 7« is ground for every
sort variable . Then F wp P.

First we show that w8z = 8z is a well-typed ground value term for every x € DP U D#.
If x € DP, then ¢ D@ and hence 0z = a. Thus F ¥bz:p Pz since - ¢ P. If @ € D4,
then P F #z: 0 for some ¢ and hence F ¥8z: o since F ¥ P.

Hence there exists an Z(7)-assignment ¢ such that éz = w8z for every 2 € DP U DO and
da = mpba for every sort variable. Since V' C DP U D, we know that § agrees with w6

on V. Furthermore, § and w8 agree on every variable occurring in E[8] & P. Hence we
know by the Unifier Proposition that it suffices to show that (7¢8)y € U[E[] & P].

Since F P and D and VP are disjoint, we know — w8P. Since 8 is idempotent, we
know that 718 = 7106 and hence that 7#E[f] is trivial. Furthermore, since we know that
mpfz is well-typed for every x € DO, we know that 70E[6] is well-typed. a

The final theorem of this section tells us that we can obtain a V-solution schema for F
from a principal unifier of I by throwing away redundant information.

Theorem 5.3.6 [Garbage Collection] Let 0p be a principal unifier of E& M and W =
(V—=DO)UZ(0v). Then (8]v)p), is a V-solution schema for I/ & M.

Proof. It is easy to verify that (6|v)p|, is a V-solution schema. Since #p be a prin-
cipal unifier of & M, we know U[E[f] & P] = U[E & M] and hence Z(T)[E[f] & P]V =
Z(T)[E & M]Y by the Unifier Proposition. Thus it suffices to show that Z(T)[E[f] & P]V =
Z(T)[E[|v] & Plw]".

“C”. Since E[f|v]& Plw C E[f] & P, we know that Z(T)[E[f] & P]V C Z(T)[E[6]v] &
Plw]".

“27. Let 6 € Z(T)[E[0|v] & Plw]. We have to show that there exists a 6’ € Z(T')[E[6] & P]
that agree with 6 on V. By the preceding proposition we know that we can assume without
loss of generality that 65 is inhabited. Let 1 := 5. Then we know that - 1 (P|w) and that
wx = Pz for every x € V. Since 0p is a principal unifier we also know that P 6: P.

Let X :=DP — (POUW) and Y :=Df — V. Then we know that PP C DPOUW U X and
that D8, W and X are pairwise disjoint. Since P and 1 are inhabited, we can choose a
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value substitution w such that Dw = X and - wz: ¢ Px. Since wz is ground for z € X, we

know that F w(P|x).

Now let ¢ := ¢¥wf. Then ¢a = pa for every sort variable a. Furthermore, if ¢ X UY,
then ¢ = ta. To see this, suppose ¢ X UY. If & ¢ DP, then ¢z = Ywbzr = Ywr = Y
since ¢ ¢ X = Dw. If € DO, then 2 € DINV since 2 ¢ Y. Hence VOz C Z(0|y) is
disjoint with X = Dw. Hence ¢z = ywbx = pfx = Yz since x € DIN V.

Since V, X and Y are pairwise distinct, we know that ¢ agrees with § on V. Furthermore,
¢ maps every sort variable to a ground sort term and every value variable to a well-typed
ground value term. Thus ¢ extends a Z(7)-assignment. Hence it suffices to show that
¢y € UIE[0] & P].

First we show that = ¢P. Since we know F ¢ (P|w) and Dw = X is disjoint with W, we
have F ¢w(P|w). Since we know F ¢w(P|x), we have - ¢Yw(P|xuw). Since we know P +
6P and 76 C X UW, we have P|xuw F 0(P|pg). Hence we know - pwb(P|pg). Thus -
&(P|pg). Since - ¢(Plw) and W and DU Dw are disjoint, we know that - pwb(P|w) and
hence F ¢(P|w). Since we know that F ¢w(P|x) and wz is ground for every z € X = Dw,
we know that - ¢Yw8(P|x) and hence - ¢(P|x). Thus - ¢P since PP C DIUW U X.

To show that ¢E[f] is trivial, it suffices to show that ¢ = ¢f. This is the case since 6 is
idempotent and hence ¢ = Ywb = pwhl = Hb.

To show that ¢E[f] is well-typed, it suffices to show that ¢z is well-typed for every a € D4.
This is the case since P8 C DP and we have already shown that - ¢P. a

Proposition 5.3.7 If 7 is a sort substitution, then T[E & nM]Y C T[E & M]".

Proof. Let é € T[L & mM] and define ¢’ as follows: §'(2) = é(x) for every value variable
x and ¢'(a) = T[ra]s for every sort variable e. Then we know by Lemma 3.3.2 that
8" € T[F & M]. Since § and &' agree on all value variables, we have the claim. a
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Chapter 6

POS-Constraint Solving

6.1 The Constraint Solver

6.2 Well-Typedness in Pyramids
6.3 Approximations

6.4 P-Infima and Mergings

6.5 Solving PM-Systems

6.6 Solving PE-Systems

6.7 Proof of the Hauptsatz

We have now arrived at the heart of this thesis. This chapter presents the constraint solver
to be employed in the interpreter for relational programs over POS-types. The constraint
solver must solve constraints of the form P & F, where F is typically not well-typed under
P. This is in sharp contrast to logic programming over order-sorted types, where the
constraints produced by the interpreter are always well-typed.

Suppose the program in Figure 1.1 is executed with the well-typed query
L: list(int) & append(nil, cons(p(o), nil), L).
Then reduction with the first clause of append yields the constraint
L: list(int) & L": list(«) & nil = nil & cons(p(o0),nil) = L' & L =L’

whose second and third equation are not well-typed under the prefix of the constraint.
Clearly, the ill-typedness is caused by the fact that the “right” instantiation of the sort
variable « is missing.

Thus a constraint solver for logic programming over POS-types must deal with a further
problem that doesn’t show up at all with order-sorted types. Understanding and solving
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this problem was the major difficulty in successfully finishing the research reported in this
thesis.

It is clear that the constraints produced by the interpreter are not completely ill-typed but
do have a strong structural property. What made things difficult is that the initial structure
of the constraint is not preserved by the constraint solving rules. Thus what I had to find
was a sufficiently strong invariant that is preserved by the constraint solving rules, and this
invariant turned out to be complex. Of course, now that we have the invariant things are
simple again.

The algorithm I will present in this chapter comes with several powerful optimizations
exploiting the structure asserted by the invariant. In particular, it solves a problem that has
been bugging me for quite some time: if an order-sorted unification algorithm is applied to a
many-sorted equation system, all the sort-related computations it performs are redundant
and are thus wasted time. A unification algorithm for POS-equation systems is a lot
more general than an order-sorted algorithm and thus the overhead for unnecessary sort
computations increases dramatically. Now the rule of the game in logic programming is
speed, and if one looks at practical applications there are only a few (but important) places
where nonredundant sort computations are necessary. So what we need to arrive at a
practical theory of logic programming over POS-types is a constraint solver that does only
the nonredundant sort computations and doesn’t spend any time with unnecessary sort
computations.

Fortunately, the problem does have a beautiful solution. The key idea is to not compute
with the actual sort terms but with approximations that are obtained from the sort terms in
the program and the query at compile-time. The approximations are obtained by replacing
sort terms that are maximal with respect to the inclusion order with a wildcard symbol
that can be thought of as a “no operation” code. For instance, if

pair (int, list(string))

is maximal, we can just replace it with the wildcard symbol ¢ _’

sort term

. Moreover, if we have the

pair(nat, list(string)),

where nat is the only nonmaximal sort symbol involved, we can still replace it with the
approximation

pair(nat, _).

Once the computation is finished, we are nevertheless able to print the exact answers since
there exists a retract function computing the actual sort terms from their approximations
and the initial sorts of the variables we were solving for.

The first section of this chapter presents the complete algorithm and states its properties
in the Hauptsatz—the main result of this thesis. The following six sections explain why
the constraint solver works by stepwise developing the proof of the Hauptsatz.
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6.1 The Constraint Solver

This section presents the constraint solving algorithm. If you just want to know how the
algorithm works (for instance, if you want to implement it), this section will suffice and you
can skip the rest of this chapter. If, however, you want to know why the algorithm works,
you will have to work yourself through the remaining six sections of this chapter.

In this section we devise enough notation to state our main result, the so-called Hauptsatz,
which gives the precise precondition under which the constraint solver is correct. The
Hauptsatz and a few results of Section 6.2 is all that is needed for the proofs of the next
chapter, where we will finally give an operational semantics for relational programs over
POS-types.

6.1.1 Approximations

For many-sorted unification one can just take an unsorted unification algorithm while for
order-sorted unification one needs a more complex algorithm computing with sorts. One,
of course, can take the order-sorted unification algorithm as well for doing many-sorted
unification, but only at the price of paying the overhead for the then unnecessary sort
computations. This situation remains unchanged if we have sort functions: as long as
there are no inclusional axioms, any unsorted unification algorithm will do the job (see
[MO84]). But in the presence of sort functions and subsorts computations with sorts are
more complex and hence the overhead of a general algorithm with respect to an unsorted
algorithm increases. So wouldn’t it be nice if we had an algorithm that automatically adapts
to the unification problem to be solved and always just does the work that is absolutely
necessary?

Now, the constraint solver presented here is such an automatically adapting algorithm. The
adaptation is accomplished by a compilation replacing every sort term in the program and
the query with an approximation containing just the nonredundant information. Every
sort term that is maximal with respect to the inclusion order is replaced with the wildcard
symbol saying that no sort related computation is necessary. For instance, if

pair (int, list(string))

b

is maximal, we can just replace it with the wildcard symbol ¢ _’. Moreover, if we have the

sort term
pair(nat, list(string)),
where nat is the only nonmaximal sort symbol involved, we can still replace it with the
approximation
pair(nat, _).
Once the computation is finished, we are nevertheless able to print the exact answers since

there exists a retract function computing the actual sort terms from their approximations
and the initial sorts of the variables we were solving for.

Now that you have got the idea, let’s start with the technical definitions.
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A sort function symbol is called maximal if it is maximal with respect to the partial order
“€ < . A sort term is called maximal if it is maximal with respect to the partial order
“O. S T”.

From now on we assume that the symbol ¢ _’, called wildcard, is a sort variable. Defining

wildcard as a sort variable is technically convenient, but, be warned, rather than behaving
like a sort variable, wildcard behaves like a maximal sort having all values as elements.

A sort term is called an approximation if it is ground or if it contains no variable but
possibly the wildcard symbol. An approximation is called a weakest approximation
if it is a normal sort term and contains no maximal subterm but the wildcard symbol.
The constraint solver will only compute with weakest approximations. Keep in mind that
approximations are syntax and that their denotations aren’t meaningful.

The weakest approximation | o of a sort term ¢ can be computed as follows:

Ja = _
_ if £ is maximal and & = (_,..., _)
1&(@) =< — if £(1&) is top-level void
£(17) otherwise.

It is easy to verify that the weakest approximation of a sort term is in fact a weakest
approximation. The weakest approximation | P of a prefix P is defined as

P = {a:]Px |2 € DP}.

Replacing every sort term with its weakest approximation is the compilation step required
by our constraint solver. Since this eliminates all occurring sort variables (except wild-
card, but wildcard is just technically a sort variable), our constraint solver doesn’t have to
compute with sort variables.

Next we define the retract operation, which is the inverse of the weakest approximation
operation and decompiles an approximation back into the actual sort term it stands for.
The following equations define a computable partial function “c 1 7”7 from sort terms to
sort terms:

afttT =1

§@)tr =¢(@17) ifm =74(7).

If ¢ T 7 is defined, then ¢ 1 7 is called the retract of o with respect to 7. The retract
function is extended to prefixes as follows:

P1Q = {z:(Px1Qx) |2 € DPNDQ}.
In Section 6.3 we will show that
o=(o)tr

if ¢ is normal and ¢ < 7.

If the constraint solver computed with the actual sort terms, the main sort-related operation
would be computing NF[o7] from ¢ and 7. The following equations define a computable
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total function “o | 7”7 from approximations to approximations simulating this operation:

=7
ol _ =0
- N if ((f7) is top-level void
@) Ln(7) = {C(ﬁ) otherwise

If o | 7is defined, then ¢ | 7 is called the merging of ¢ and .

For reasons of efficiency the merging operation integrates the infimum computation with
the reduction to normal form.

In Section 6.4 we will show that the merging of two weakest approximations is again a
weakest approximation.

6.1.2 The Constraint Solving Rules

The constraint solver is organized in two levels. The equation level consists of the usual
unification rules for equations and calls the sort level only if it attempts to bind a variable
x to a term s. The sort level deals with memberships and reduces the membership s: Px
consisting of s and the current sort qualification of x under the current sort qualifications
of the variables in s. For instance, if we take the type specification of Figure 1.1 and have
Pz = list(posint) and s = cons(y, z), we may have to solve the constraint

y:nat & z: list(negint) & cons(y, z): list(posint),
which reduces to the satisfiable constraint
y: posint & z: list(—).

Let’s start with the reduction rules for memberships. The following rules define a decidable
binary relation — on pairs P. M consisting of a prefix and a membership system:

1. P.s: _ &M 2 P.M

2. P&ariow:t& M = P&ai(ol7). M
ifol7T# —and 7# _

3. P.f(§):c&M = P.M
if fifi —&(@)eT, o ="¢£(F),and [ is ground

4. P.f(§):c& M = P.5: | ({a/d}i)&M
if fifi =&(@)eT, o ="¢£(F),and [ is not ground.

Initially, the pair to be solved has the form P.s: Px, where the prefix P represents the cur-
rent sort qualifications of the variables and s: Pz is the membership that must be satisfied
to validate the binding of z to s. The first rule says that a membership s: _ is redundant
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and can be thrown away. Hence, if the sort qualification of z is wildcard, no sort-related
action needs to be taken to validate the binding z/s. The second rule reduces a constraint
z:o& i1 to x: (0 | 7), provided the actual sort terms o and 7 stand for have a nonempty
intersection. The third and the fourth rule solve nontrivial memberships. The third rule is
an important optimization for monomorphic value functions, for which it suffices to check
that the declared codomain satisfies the required sort. Only for polymorphic functions it
is necessary to actually decompose the membership and solve the memberships consisting
of the argument terms and the instantiated sort terms declared for the arguments. The
constraint in the example above can be reduced by first applying the polymorphic decom-
position rule and then applying the merging rule twice.

Proposition 6.1.1 There are no infinite chains P. M =+ P'. M’ = - ... Furthermore, if
P.M =5 P'.M' and every sort term in P. M is a weakest approximation, then every sort
term in P'. M' is a weakest approximation.

A pair P. M is called don’t care if P.M =" Q.0 and P. M =" P'. M’ always implies
P M 257 Q.0. If P.M is don’t care, then the choice which 23 -rule is applied where is
don’t care nondeterministic. The equation level of the constraint solver will call the sort
level only with don’t care pairs.

Next let’s give the equation level of the constraint solver, which consists of a suitable variant
of the ordinary unification rules [MM82], where the variable binding rule is augmented with
the already discussed hook to the sort level. The following rules define a computable binary
relation = on triples P.6. F:

1. PO.E&z=2 2+ P.O.F
2. P.O.E& f(5) = f(f) = P.O.E&s =1

3. PO.F&s=z2 25 PO F&ax=s
if s is no variable

4. PO.E&x=s = Q.{x/s}0.{a/s}F
if # ¢ Vs and P.s: Pv ™" Q. 0.

A triple P.8. F consists of a prefix P representing the current sort qualifications of the
variables, a substitution # representing the variable bindings already made, and an equation
system F still to be solved. To solve a constraint P & F, the constraint solver attempts to
reduce the triple | P. (). E. The reductions succeeds if a “solved” triple | P.(. F =" Q.).0)
can be obtained, and this will be the case if and only if P & F is satisfiable. The Hauptsatz
to be stated soon will give the precise retract function (recall, the solver starts with the
weakest approximation of P and hence the obtained sort qualifications represented by @)
will only be approximations) and the precondition on P & E under which the constraint
solver is correct. As you will expect, the application of the equation reduction rules is don’t
care nondeterministic.

Proposition 6.1.2 There are no infinite chains P.0. F -+ P'.¢'. E' =~ --.. Furthermore,
if P.0.F =2 Q.0.E, then
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1. DQ =DP and DOUZOUVE CVE
2. 8 is idempotent and D@ and VE' are disjoint

3. if every sort term in P is a weakest approximation, then every sort term in () is a
weakest approximation.

Proof. Suppose there is an infinite chain P.6. F = P'.¢'. E' = ..., Since no rule in-
creases the number of variables in £/, this number is decreased by the fourth rule, the first
and the second rules reduce the size of F, and the third rule does not change the size of F/,
there must be an infinite chain employing only the third rule, which is impossible.

The other claims are easy to verify. a

6.1.3 Pyramids

By now you know the algorithm. What you don’t know is the precondition under which
it works. From the reduction rules for memberships it’s clear that there must be some
strong invariant since otherwise the wildcard rule and the monomorphic decomposition
rule couldn’t possibly work.

The precondition is delicate and it took me many absent-minded walks around a certain
block in Stuttgart until I came up with it. A sufficient precondition is to require of the
constraint P & F to be solved that F is well-typed under P, but this is too strong a condition
to be satisfied by the constraints produced by the interpreter for POS-programs. To see
this, recall the program in Figure 1.1 and suppose we want to reduce the query

L: list(int) & append(cons(o, nil), cons(p(o), nil), L).

A first reduction step with the second clause of append yields the goal

L:list(int) & H: o & R: list(or) & L': list(er) & RL: list(a) &
cons(o, nil) = cons(H, R) & cons(p(o), nil) = L' & L = cons(H,RL) &
append(R, L', RL)

whose equations are certainly not well-typed under the sort qualifications of the goal.
Things get more complicated if we reduce again, this time with the first clause of append:

L:list(int) & H: o & R: list(o) & L': list(er) & RL: list(a) & L": list(5) &
cons(o, nil) = cons(H, R) & cons(p(o), nil) = L' & L = cons(H,RL) &
R=nil&Ll' =L"&RL=L".

From this example we can see that the constraints produced by the interpreter are well-
typed modulo application of certain sort substitutions existing for every reduction step.
In the example above, {a/int} is a suitable substitution for the first reduction step, and
{f/a} is a suitable substitution for the second reduction step. For the correctness proof to
go through it will be necessary to have the precise structure of the supporting sequence of
sort substitutions available, which will be called a pyramid. The intuition is that a pyramid
is created according to a stack discipline: each reduction step pushes a new layer on top
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and extends the existing layers by right hand composition with the new layer. (This is a
little bit simplified, but Chapter 7 will tell you all the glory details.)

My argumentation indicates that the correctness proof will take the viewpoint that the
goal is first reduced using only goal reduction. Only after all atoms have been eliminated,
the solution of the piled up constraint system is attempted, where the constraint system
is well-typed modulo the simultaneously obtained pyramid. Of course, in practice such a
strategy would be disastrous since unsatisfiable parts of the search space couldn’t be pruned
early. Fortunately, the structure of the constraint solving rules is incremental enough to
allow incremental constraint solving just in the same way it is done in ordinary Prolog.

Let’s now start with the formal definitions. It will be tough to get all this stuff into your
head, but the proof of the Hauptsatz doesn’t come for less. A good strategy might be to only
skim the following definitions (which I will talk you through in Section 6.2), look carefully
at the Hauptsatz, and then go immediately to Chapter 7. Once you have read Chapter
7, you will know how the constraint solver is integrated with the rest and that everything
works out well. Then you should be well-prepared for the guts of this Chapter, which look
more intimidating than they actually are. Once you can properly visualize pyramids and
the corresponding notion of well-typedness in your mind, everything will turn out to be
rather simple.

A pyramid is a finite sequence Il = wgmy - - -7, of inhabited sort substitutions such that
n > 0 and

1. 7TOI®
2. m=mr;ifn>i>5>0
3. DmyUZIm; CDrjp if0< i <n—1.

If 1T = womy - -7, is a pyramid, we will often use 7= to denote 7,. We call n the height
of II. The pyramid of height 0 consists only of the empty substitution and is called the
trivial pyramid.

Let SV be the set of all sort variables. A pyramid Il = wgmy ---7, defines a partition
SV=SVouw-.-w SV, as follows:

SV, =Dnriy1 —Dm; ifi€0.n—1
SV, : =SV - Dnr,.

Proposition 6.1.3 Let Il = wgmy - - -7, be a pyramid. Then:

1. SV=SVow---wSV,
2. Dn; = SVoW---wWSV,_1ifte€l.n
3. Im;, CSV,;if1€0.n

4. mm; =w;m; il 4,5 € 0..n.
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In the following we assume that Il = wgmy - - -7, is a pyramid.
If o is a sort variable, we say that « has level 7 and write Ao = 7 if « € SV;.

A sort term is called IT-admissible if all sort variables occurring in it have the same level
with respect to II. A prefix is called II-admissible if every sort term occurring in it is
[I-admissible.

The level Ao of a II-admissible sort term is defined as follows:

N — {n if o is ground

¢ if o is not ground and Yo € Vo. Aa = ¢.
Proposition 6.1.4 [l-admissible sort terms have the following properties:

1. if ¢ is ll-admissible, then ;0 is ll-admissible for every ¢ € 0..n

2. if 0 < 7 and 7 is ll-admissible, then o is ll-admissible, Ao > A1, and Ao = At if ¢
contains a variable

3. if o is ll-admissible and © < Ao, then 7,0 = ¢
4. if o is Il-admissible, then Am;o0 = max{i, Ao }.

If P is a IT-admissible prefix and s is a value term such that Vs C DP, then the level A5
of s with respect to P is defined as

VB [ if s is ground
5 min{APz | 2 € Vs} otherwise.

We now generalize ordinary well-typedness to well-typedness modulo pyramids. The fol-
lowing rules define inductively a relation “P F s:0” taking a Il-admissible prefix P, a
value term s and a Il-admissible sort term ¢ as arguments:

1. PHFY 20 if Po < mappo
2. PH s:if s is no variable, A's > Aa, and P F! s: 7, pa
3. PR f(8):aif f1ji — &(@) €T, 0 =* £(G) and PH 5:{a/3}ji.

This definition will be discussed in Section 6.2.

If 11 is the trivial pyramid, then P F s:o if and only if P F!! s:o. Thus well-typedness
modulo pyramids generalizes ordinary POS-well-typedness.

6.1.4 The Hauptsatz

First we state the precise precondition under which the constraint solver is correct.

A constraint P& F is called V-admissible if there exists a pyramid Il such that

1. P is a normal, inhabited and Il-admissible prefix
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2. F is an equation system such that for every equation s = ¢ € FE there exists a II-
admissible sort term o such that P! s:0 and PH! t: 0

3. VC DP and Pz = wPx for every variable z € V.

Proposition 6.1.5 Let P be a normal and inhabited prefix and let the equation system
FE be well-typed under P. Then P & F is D P-admissible.

Proof. Take the trivial pyramid. a

The following defines the final retract operation, where () is the computed approximating
prefix, 1 represents the computed variable bindings, and P is the prefix representing the
initial sort qualifications:

1@, ¢, P] = E[¢]pp] & (Q T GP[¢P])
if (Y|pp)@rapp)) is @ DP-solution schema.

Theorem 6.1.6 [Hauptsatz] Let T' be a fully inhabited type specification and let P& F
be V-admissible. Then:

1. P& E is satisfiable in T if and only if there exist ) and 1 such that | P.).F 3~
Q.. 0

2. if [P.0.E5"Q..0, then T[P & E]Y = T[1[Q, v, Pv]]Y
3. i LP.0.E25"Q.0. " &x = s, then Q.s:Qu is don’t care

4. if [P.O.E257Q.0.0 and | P.0.E 5" Q.. E’', then there exist Q" and 6" such
that Q.0 E' <" Q" 9",

The first two statements say that the constraint solver does what it is supposed to, and
the next two statements say that all choices involved in the application of the constraint
solving rules are don’t care nondeterministic.

6.2 Well-Typedness in Pyramids

This section investigates the properties of the membership relation “P F! s:07. T will try
to talk you through the definitions made in Subsection 6.1.3 and give you some of my
visualizations.

General Assumption. Here and in the rest of this chapter we assume that 1T is a
type specification, Il = mgmy---7, is a pyramid, and that every occurring sort term is
[I-admissible.

Recall the a pyramid of height n partitions the set of sort variables into n classes. It is useful
to think of this classes as classes of informedness. Sort variables of level n (the maximal
level) are fully informed and sort variables of a lower level are partially informed.
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Recall that a sort term is admissible if all sort variables occurring in it have the same level
of information. All sort terms we need to consider in this chapter will be admissible. Hence
we can say that a ground sort term is fully informed, and that a sort term containing sort
variables is informed at the same level the variables occurring in it are informed.

Every layer 7; of the pyramid is an information providing function that maps all variables
of an information level less than ¢ to sort terms that are either ground or are informed at
level 7. Variables of level ¢ or higher are not affected by ;.

If 0 is admissible and we apply the information layer 7; to o, then there are two possibilities:
if o is already informed at level ¢ or higher, then ¢ = m;0; otherwise, m;0 # ¢ and ;0 is
either ground or informed at level q.

We now generalize the inclusion order to pyramids:
II .
o< T = < M,T.

The idea is to tolerate that 7 is less informed than o. This is accomplished by informing
up to the level of ¢ before testing the ordinary inclusion relation.

Proposition 6.2.1 The relation “c < 77 has the following properties:

1. if ¢ < w7, then o < 7; in particular, if o < 7, then o < 7
2. if o <7, then Ao > At
3. “o <17 s a partial order on the set of all ll-admissible sort terms

4. (Orthogonality) if o <7, 0 =*&(&) and 7 =* £(F), then & < 7.

Proof. 1. Let ¢ < m;7. Then Ao > 7 and hence 0 = 7,0 < T\ T = TogT-

2. Let 0 < my,7. If ¢ is ground, then Ao = n > Ar. If o contains a variable, then
Ao = Amy,7 = max{Ao, AT} and hence Ao < AT.

3. Since my,0 = o, we know that “oc <! 77 is reflexive. To show the antisymmetry,

suppose 0 < 7 and 7 <! 5. Then we know by statement (2) that Ao = Ar. Hence
0 <my,7=7and 7 < mwy,0 =0 and thus ¢ = 7 since “oc < 77 is a partial order. To show
the transitivity, suppose o <l 7 and 7 <" ;. Hence Ao > At by statement (2) and hence
0 < TaeT < TreTarf = Trg

4. Let 0 < wpo7, 0 =* &(7) and 7 =* &(7). Then ¢ < 7)\,7. If a component o; of & is
ground, then Ao; > Ao and hence 0; = 7y, 0; < Trg, TroT; = Mo, i 1f @ component o; of

& contains a variable, then Ao; = Ao and hence o; < 7y, 7. a

Let P be a prefix. In Subsection 6.1.3 we have assigned to every value variable in DP the
information level of its sort qualification Px. For a value term s that is pyramid well-typed
with respect to P it’s not possible to require that all value variables occurring in s are
informed at the same level. Hence we have defined that s is fully informed if s is ground
and that s is informed at the level of the least informed value variable occurring in it if s
is not ground (this is the definition of A's, remember?).
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Now look again at the definition of the pyramid membership relation “P F s:¢” in Sub-
section 6.1.3. Analogously to the pyramid inclusion order “o <! 77, the relation “P FII
s:0” tolerates that o is less informed than P. Things will become clearer as we state and
prove more properties.

Proposition 6.2.2 If P+ s:o, then PH s:0.

Proof. Let Pk s:0. We prove P H!! s:¢ by induction on s.
If s =z, then Pz < ¢ and hence Px <5, Hence PH! s: 0.

If s = f(5), then we have f:ji = &(@) €T, 0 =*&(F) and P+ §:{a/F}ii. Hence we
know P F1 5:{@/&}ji by the induction hypothesis and thus P ! s: . O

Proposition 6.2.3 If PH s:0, then 7P F s:7wo.

Proof. Let P s:6. We prove 7P I~ s: 7o by induction on the pair (|s|,n — Ao) with
respect to the canonical lexicographic order, where |s| is the size of s and n is the height of
the pyramid II.

Let s = . Then Px < m\p,o and hence 7Pz < no. Hence 7P+ 2:7o.

Let s = f(5) and o be a variable. Then AMs > Ao and P ! s:7,p0. Hence we have 7P
s:wmy\po by the induction hypothesis, which yields 7P F s: 7o since nm\po = 7o.

Let s = f(§) and o not be a variable. Then we have f: i — (@) € T, 0 =*£(J) and
PH15:{a/3}ji. Hence we know 7P F §:7{@/&}ji by the induction hypothesis and
thus 7Pt s:mo. O

Proposition 6.2.4 If P F! s:6 and P is inhabited, then o is inhabited.

Proof. Let P F s:0 and P be inhabited. By the preceding proposition we know that
7P F s:mo. Since P and w are inhabited, 7P is inhabited. Hence we know by Corollary
5.2.9 that mo and hence ¢ is inhabited. a

The Monotonicity Lemma says that P F s: ¢ can only hold if ¢ is at most as informed as
s with respect to P:

Lemma 6.2.5 [Monotonicity] If P F! s: 0, then Ms > \o.

Proof. Let PH!s:0. We prove by induction on s that AMs > \o.

If s =z, then Px <II'5 and hence Ms = APz > Ao.

Let s = f(5). If 0 = «, then A5 > Ao by the definition of “P F!I s:0”7. Otherwise, we
have f:ji — &(@) €T, 0 =*&(¢) and PH1 5:{a/&}ji. By the induction hypothesis we
have Ms; > M@ /& }p; for every component. Hence A% = min; Ms; > min; M@/} = Ao
since V({a/d }ui) C Vo. 0

The Flexibility Lemma, which will be used in many proofs to come, says that P F s:¢
remains valid if one withdraws information from o or adds information to o (only up to
level Afs, of course).
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Lemma 6.2.6 [Flexibility] If P F s: ;0 and j < Ms, then P F!! s:m;o. Furthermore,
if PHF s: 70, then PH" s: 0.

Proof. We first show the second claim using the first claim. Suppose P H s:7;0. Then
Ms > Am;o > Ao by the Monotonicity Lemma. Hence we know by the first claim that P+
$: Trs0, Which yields P HI s: 0 since o = myy0.

To show the first claim, let P FI s: 70 and j < Ms. We prove P I s m;jo by induction
on the triple (|s|,n —4,n — j) with respect to the canonical lexicographic order, where |s]
is the size of s and n is the height of the pyramid II.

Let s = x. Then Pz < map,mic and APz > j. Hence APx > ¢ and thus Pz < m\p,7;0 =
TPz (7;0), which yields P HIL g ;0.

Let s = f(§) and m;0 be a variable. Then Ms > Mmoo > i, Ao and P HI s:mypo. Hence
PHIs: 7;o by the induction hypothesis.

Let s = f(§) and m;0 not be a variable. We distinguish two cases.

1. Let m;0 be a variable. Then we know Ms > i > j by the Monotonicity Lemma and
hence P H s:7,p0 by the induction hypothesis. Hence P FI s: m;o by the definition of
“prHls: o7,

2. Let m;0 be no variable. Then we distinguish once more two cases.

j < Ms = min M3, we have by the induction hypothesis that P 1 §:7;{@/3}fi. Since
mio = wi(mo) = £(r;d), we have P F s: 70,

2.2. Let j < i. Then we have f:ji — &(d) € T, mio =~ £(m;8), mjo =" &(7;7), and P I

§:mi{a/d}ji. Since j < i < Ms = min M5, we have by the induction hypothesis that P I
5:7;{@/3}ji and hence P! s:7 0. O

The remaining three lemmas of this section show that the major properties of the ordinary
membership relation are kind enough to generalize to the pyramid membership relation.

Lemma 6.2.7 [Upper Weakening] If P F' s: 0 and ¢ <" r, then P+ s: 7.

Proof. Let P! s:0 and o < 7. We prove by induction on s that P F s:7. Together
with the Flexibility Lemma this yields the claim of the lemma.

If s =z, then Px <II's <+ and hence P H s: 7.

Let s = f(§). If o is a variable, then o = 7, which yields the claim trivial. Otherwise, we
have fiji — &(@) €T, o =*&(F) and PH 5:{a/d}ji, 7 =* £(7), and & < 7. Hence
P 5 {a/7}ji by the induction hypothesis and thus P T s: 7. O

Lemma 6.2.8 [Normalization] If P F'! s: 0 and P is normal, then P F'1 5: NF[o].

Proof. Let P ! s:0 and let P be normal. We prove by induction on s that P F1
s:NF]o].
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If s = &, then Pz < mypyo. Hence Px = NF[Pz] < NF[r)\p,y0] < m\pNF[o] and thus
P 1 2:NF|[o].

If s = f(5) and o is a variable, then ¢ = NF[c] and hence the claim is trivial.

If s = f(3) and o is not a variable, then we have f:fi — (&) €T, o =*¢£(F) and
PH15:{a/3}ji. Hence we have P F' 5:NF[{@/#}ji] by the induction hypothesis and
thus P F1 5:{@/NF[#]}ji by the Upper Weakening Lemma. Hence P F s:¢(NF[F]).
Since P is inhabited, £(&) is inhabited and hence NF[£(5)] = £(NF[F]). Since 0 =* £(7),
we have {(NF[7]) = NF[¢(F)] < NF[o]. Hence P ' s:NF[¢] by the Upper Weakening
Lemma. a

We extend “P H s:6” to membership systems as one would expect:

PHUM te—= VYVsocM PH!so0.

Lemma 6.2.9 [Substitution] Let § be a value substitution, Q@ ' P and P F! s:0.
Then Q F' 4s: 6.

Proof. We prove @ F! fs:0 by induction on the pair (|s|,n — Ao) with respect to the
canonical lexicographic order, where |s| is the size of s and n is the height of the pyramid

IT.

Let s = z. Then Pz <" ¢ and Q F §z: Pz. Hence Q H z: 5 by the Upper Weakening
Lemma.

Let s = f(5) and o be a variable. Then Ms > Ao and P F! s:7,p0. Hence we have @ 11
fs: 7\ ro by the induction hypothesis, which yields @ ! #s: ¢ with the Flexibility Lemma.

Let s = f(§) and o not be a variable. Then we have f: i — (@) € T, 0 =*£(J) and
PH15:{a/3}ji. Hence we know Q F!! 85 {@ /& }ji by the induction hypothesis and thus
QFH19s: 0. a

6.3 Approximations
General Assumption. In this section we assume that T is fully inhabited.

We now show that one can compute the weakest approximation | o of a sort term ¢ with
a confluent and terminating rewrite system that contains the normalization rule of Section
5.2. The characterization of weakest approximations as normal forms of a convergent system
of simplification rules will provide for pleasant proofs of their properties.

We write ¢ 2= 7 if one of the following conditions holds:

1. 7 can be obtained from o by replacing a variable subterm « # _ with _

2. 7 can be obtained from o by replacing a subterm &( _, ..., _) such that £ is maximal
with _
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3. 7 can be obtained from ¢ by replacing a top-level void subterm u # — with —.
Proposition 6.3.1 The relation 0 > 7 is terminating and confluent.

Proof. The termination follows from the fact that every reduction step reduces k + [,
where k is the number of occurrences of sort function symbols different from — and [ is the
number of occurrences of sort variables different from _. Furthermore, o 2 7 is locally
confluent since a replacement according to condition (2) cannot overlap with a replacement
according to condition (3) because T is fully inhabited. Hence we know that o == 7 is
confluent. a

Proposition 6.3.2 A sort term 7 is the normal form of a sort term o with respect to 2
if and only if T = [ o. Furthermore, the weakest approximations are exactly the normal
forms of “o 2= 17,

If # and 1 are substitutions, we write § 2" ¢ if # and 1) agree on every value variable and
fa 2" Yo for every sort variable «.

The relation “o 2= 77 is extended to prefixes as follows:
P2y"Q < DP=DQ AN Vaxe€DP. Prx-23"Qu.

Note that “P 24" Q" is again terminating and confluent, and that the weakest approxi-
mation | P defined in Section 6.1 is in fact the = -normal form of P.

Theorem 6.3.3 [Approximation] The approximation relation “o 2+ 77 has the follow-
ing properties:

1. if o 25" 7, then ¢ 2" 1

2. if 0 23" 1, then o is inhabited if and only if T is inhabited

3. o isvoid < |o=—- <= NF[o]=—

4. ¢ is maximal <— o= _

5. if 0 25"+, then o 25" o

6. (Orthogonality) if c 2" 7,0 =* £(&) and 7 =* (), then & 25" 7

7. if o 25" 1, 7 is an approximation, and @« is maximal for every a € Vo, then o 25~
T.

Proof. 1. Obvious.
2. Let 0 %~ 7. We prove by induction on o that ¢ is inhabited if and only if 7 is inhabited.

If 0 = o, then 7 = _ and hence the claim is trivial.
Let 0 = &(G). If T = _, then o =&(_,..., ) # — and hence o is inhabited, which yields
the claim trivial. If 7 = —, then o is top-level void and hence void, which yields the claim
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trivial. Otherwise, we have 7 = £(7) and & -2+" 7. By the induction hypothesis we know
that a component of & is inhabited if and only if the corresponding component of 7 is
inhabited. Hence we know by Corollary 5.2.7 that £(&) is inhabited if and only if £(7) is
inhabited.

3. Follows from statement (1) and the Normalization Theorem.

4. Let ¢ be maximal. We prove by induction on ¢ that o = _. If ¢ is a variable, then the
claim is obvious. Otherwise, o = £(&), € is maximal and every component of & is maximal.
Hence we know by the induction hypothesis that |& = (_,..., -) and thus, since ¢ is
maximal, [ £(6) = _.

Let o = _. We prove by induction on ¢ that ¢ is maximal. If ¢ is a variable, then the
claim is obvious. Otherwise, o = £(&), € is maximal and | & = (_,..., -). Hence we know

by the induction hypothesis that every component of & is maximal and thus, since £ is
maximal, that £(&) is maximal.

5. Let 8@ 2+ 4. We prove by induction on ¢ that o 2" +o. If ¢ = «a, then the claim is

trivial. Otherwise, we have ¢ = £(¢) and 65 25" ¢ by the induction hypothesis, which
yields §o = £(05) 2" £(¥F) = Yo

6. Let 0 25" 7, 0 =*&(F) and 7 =* {(7). Then neither o nor 7 is a variable. If 7 = —,
then — = &(7) = £(&) and hence the claim is trivial. Otherwise, ¢ = n(&1), 7 = n(71)
and ¢; 2" 71. Furthermore, (@) =* £(f) and & = {a@ /G 1 }ji 2" {a/71}i = 7 by the
preceding statement.

7. Follows by induction on ¢ using statement (4). a
Theorem 6.3.4 [Retract] If o0 2+ 7 and o < p, then ¢ 25" 7 1 pu.

Proof. Let 0 24" 7 and o < u. We prove by induction on o that ¢ 2=+" 7 1 p.

Let o be a variable. Then ¢ = p and 7 is a variable. Hence c =710 =171 p.

Let 0 = &(&) and T be a variable. Then o = _ and hence ¢ is maximal. Thus ¢ = p and
c=17to=11u
Let o0 = £(d) and 7 = —. Then ¢ is void and hence o0 25" — = 7 1 4.

o
Let 0 = &(7) and 7 = &(7). Then ¢ 2" 7, p =* £(@) and & < ji. Hence @ =" 7 1 [
by the induction hypothesis. Thus o = £(G) 2" &(7 1 @) = &(F) 1 . O

Corollary 6.3.5 If 0 is normal and 0 < 7, then ¢ = (o) 1 7.
The next two lemmas will be needed in the proofs to come.

Lemma 6.3.6 Let Il be a pyramid, o be ll-admissible, and w;o be maximal for every
o € Vo. Then, for every m; € Il, m;a is maximal for every o € V7jo.

Proof. If Aog > j, then 0 = ;0 and hence the claim is trivial. Otherwise, Ao < j and let
o € Vrjo. Then there exists 3 € Vo such that o € Vr;8. If ¢ > j, then m;«v is a subterm of
;73 = m;# and hence 7 is maximal since 7;3 is maximal. If 7 < j, then m;a0 = « since
Ao =7 > 1. a
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Lemma 6.3.7 Let P +H s:0 and P2+ Q. Furthermore, let every sort term in Q be an
approximation and let m;a be maximal for every a € Vo. Then m;Px 2" Qx for every
r € Vs.

Proof. We prove 7; Pz 25" Qz by induction on the length of a derivation P F! s: 0.

Let s = z. Then Pz < m\p,o and hence VPz C V(7\p;0). Thus we know by the preceding
lemma that ma is maximal for every @ € VPx. Hence m;Px 2" Qz by statement (7) of
the Approximation Theorem.

Let s = f(§) and o be a variable. Then As > Ao and P ! s: 7, po. Thus we know by the
preceding lemma that 7o is maximal for every a € Vm\po. Hence we have by the induction
hypothesis that 7; Pz 24" Qx for every z € Vs.

Let s = f(§) and o be no variable. Then we have f:ji — &(@) €T, o =*£(F) and
P 5 {a@/7}ji. Since V({@/F}fi) C Vo, the claim follows by the induction hypothe-
sis. a

6.4 P-Infima and Mergings

Now it’s time to tell you more about the proof of the Hauptsatz. The basic idea, which 1
discussed before, is that the constraint solver simulates a hypothetical computation using
the actual sort terms rather than their weakest approximations. The hypothetical compu-
tation, which is called P-computation (P stands for pyramid), attempts to solve the system
7P & F, where 7 = 7, is the lowest layer of the pyramid providing full information. How-
ever, the P-computation has still very limited access to the pyramid Il and only knows the
information levels of the occurring sort variables. In particular, the P-computation has to
start with P & F rather than 7P & F and cannot access the information layers m; of the
pyramid.

Not using the pyramid in the P-computation provides for a close coupling (realized by
“L0”) of the approximations used by the constraint solver and the sort terms used by the
P-computation.

The merging operation “o | 7”7 simulates the operation “NF[ro’'M#7’], where ¢’ and 7’ are

the actual sort terms. For the P-computation we need an operation “o’ * 7/ simulating

“mo’Mm7r"”, which is defined on II-admissible sort terms as follows:

ke = o

axf =« if dae > Ap
ax3 =0 if da < Ap

axT =T if 7 is no variable
oxf =0 if o is no variable

§(@)xn(T) =C(@+v) i C=¢&Nn, §(7) =7 C(@), n(T) =7 (7).

If o % 7 exists, then we call ¢ x 7 the P-infima of ¢ and 7.

Theorem 6.4.1 [P-Infima] P-Infima have the following properties:
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1. if o % 7 exists, then cx T =T %0

2. ife<pandT < 1, then o x 7 exists and o *x 7 = 7\, 001°T

3. ifo, T <M 1, then o x 7 exists and 0 * T = Ty, 0M° T\oT <l o, T
4. if o T exists and p < o, 07, then p < 6(o * 7)

5. if o T exists and p <" o, 7, then p <M o % 7.

Proof. 1. Can be shown with a straightforward induction on o.

2. Let 0 < pand 7 <" u. We show by induction on on ||o|| (see Section 4.3, called
R-complexity there) that o % 7 exists and o x 7 = my,o M 7. This suffices since the infimum
of my;o and 7 is stable because my,0,7 < wy-p (Theorem 4.3.7).

Let ¢ = . Then p = o = ¢ and hence 7 <o and 7y,on7 = 7. If 7 is no variable, then
o x 7 = 7. Otherwise, let 7 = 3. Then 8 = 7\ga and hence A > Aa. If A3 = Aa, then
f=aand oxT=0+«=0=71.If A > Aa,thenoxT=axf=05=r1.

Let 0 = &(&) and 7 = 3. Then = m\gp and hence p is a variable. Thus ¢ = —. Hence
ocxT=—=—[MT1=my,0lT.

Let 0 = £(--+) and 7 = n(--+). Furthermore, let ( = &{Mn, 0 =* ((6), 7 =* ((T) and
p =* C(7). Then & < @ and ¥ <™ 7. Hence we know by the induction hypothesis
that & x 7 = 7,26 M7. Thus o« 7 = ((7\#6N7T) = my,oN7, provided we can show that
T\zO 1T = T\, 01T,

Let o; and 7; be corresponding components of & and 7. If 7; contains a variable, then
A, = At. Otherwise, 7; is ground. Since we already know that wy,oM7 is stable, we
know in particular that my,0;M7; is stable. Hence we have wy.0;07; = w(m\r0,M7;) =
TTA\-0; 17T, = Wrr,0;117; since 7; and hence 7y 0;17; is ground.

3. Let o,7 < p. Since “o x 77 and “oMN°7” are commutative, we can assume without
loss of generality that Ae < Ar. Then ¢ < 7wy, p and 7 < Tropt- Thus we have o x 7 =
T\ 0M°T = my;0MN° 1wy, 7 using the preceding statement. Since ¢ x 7 < wy,0,7, we know
that A(o * 7) > A7 > Ao and thus 0 * 7 = Ty(5ur)(0 % T) < Ty\(gur)0s Fr(oeryT- Hence
oxr < o, T.

4. Let o 7 exist and p < fo,07. We prove by induction on ||o|| that g < 8(c * 7).
If o or 7 is a variable, then o x 7 € {0, 7} and hence the claim is trivial.

Let 0 = &(--+) and 7 = & (--+). Then we have £ = £, N, 0 =*&(F), T = £(7),
oxT =& «T), Il =&u(7), (@) =7 E(V), @ <0{a/d}v, and i < §{a/T}V. Let p; be
a component of i and let v; be the corresponding component of 7.

We now prove by induction on ||v;|| that p; < 6{& /(7 * 7) }v;.

Let v; = 8. Furthermore, let o; := {d/d}p and 7; := {&@/7}3. Then p; < fo;,07;. Hence
we know by the outer induction hypothesis that p; < 8(o; ;) = 6{a@ /(5 *T) }v;.
Otherwise, let p; = n(f;) and v; =* v(V;). Then we have i, < 0{a/5}V; and [i; <
6{a/7T}V;. Hence we know by the inner induction hypothesis that i, < 6{a /(& * 7)}V;.
Thus 0{a /(G « 7)}vi =" n(0{a /(G T)}7:) > (i) = pi-
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We now return to the outer induction. We now know that p < 8{a /(& x 7)}v. Hence
0o x7) =&(0(0 xT)) =" &u(0{a/(d + T)}7) = & (i) = p-
5. Follows immediately from statement (4). ]

Theorem 6.4.2 [Merging] Let T' be fully inhabited. Then the merging operation “o | 77
has the following properties:

1. if ¢ and T are approximations, then their merging exists and o | 7T =7 ] ¢

2. if o and T are weakest approximations, then their merging ¢ | 7 is a weakest approx-
imation

3. ifo,7 <y, then [ (o 7) = (Lo) L (7).

Proof. 1. Can be shown by a straightforward induction on o.

2. Let ¢ and 7 be weakest approximations. We show by induction on ||o|| that o | 7 is a
weakest approximation.

If o= _or7= _, then 0] 7 € {0,7} and hence the claim is obvious.

Otherwise, let 0 = £(&), 7 = n(7), ¢ = &Nn, 0 =" ((F1), T =" ((T1), and i =
(4d1) § (J71). Then we know by the induction hypothesis that {7 is a tuple of weakest
approximations. If ((f7) is top-level void then ¢ | 7 = — and hence the claim is trivial. If
C(f7) is not top-level void, it suffices to show that either ¢ is not maximal or 7 # (_,..., _).
Suppose i = (-,..., -) and let ¢ be maximal. Then £ = = ¢ and, by the definition of
“olrm,d=1d=1d1=(-,...,)and T =|T=]T1=(-,...,-). Hence 0 =&£(F) is
not a weakest approximation, which contradicts our assumptions.

3. Let 0,7 <l . Since “o%7” and “o | 77 are commutative, we can assume without loss of
generality that Ao < Ar. Since then ¢ < 7y, p and 7 <M ot We can assume without loss
of generality that o < p and 7 <" . Now it suffices to show that o x 7 22" (Lo) | ({7)
since we know by the preceding statement that (J o) | (] 7) is a weakest approximation.

Assuming o < y and 7 <My, we show by induction on ||| that o * 7 2" (Ja) | (L 7).

If jlo=—or)7=—, then 07 = 7,007 is void and hence o7 = 23" — = (o) | ({ 7).
If o = _, then ¢ is maximal and hence ¢ = u. Thus 7 < w),;0 and hence o7 = 7y, 0T =
2571 = (bo) b (7).

If {7 = _, then 7 is maximal and hence 7 = 7y . Since ¢ < u we have 7y,0 < 7. Hence

oxT = 7w\ 0MN7T = w0 and (o) | (7) = Lo. Tt remains to show that my,0 2" |o.
Since o 2+ | o, we know by statement (7) of the Approximation Theorem that it suffices
to show that 7y c is maximal for every o € Vo. This is the case since Vo C Vu and
Tarft = T is maximal by assumption.

Otherwise, let ¢ = &(6), 7 = n(7), lo = £€(&) and {7 = n(} 7). Furthermore, let
C=¢&Mn, 0 =7 ¢(F1), 7 =7 ¢(T1), u =7 CiI1), §(F) =7 ((F2), and n(I7) =7 ((T2).
Then o7 = ((F1%71), &1 < jiy, 71 < ji1, and, using statement (6) of the Approximation
Theorem, 61 2-+" &9 and 71 23" 75. Hence |61 = | &9 and |7 = |75 by the confluence
of 247,
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By the induction hypothesis we know & * 74 —> (41) } (I71). Hence o x 7 = (&1 *

g
T1) =7 C(F) L (UT1) = C((LF2) L (U72)) ==7E(a) Ln(lr) = (1) L (I7). a

6.5 Solving PM-Systems

General Assumption. In this section we assume that T is fully inhabited.

Now we are ready to present the part of the P-computation that is simulated by the sort
level of the constraint solver. Recall that the sort level of the constraint solver solves
membership systems of the form P & M.

We start with the invariant preserved by the membership reduction rules employed in the
P-computation.

A pair P. M is ll-well-typed if

1. P is a normal, inhabited and Il-admissible prefix

2. M is a Il-admissible membership system such that for every membership s:oc € M
there exists a IT-admissible sort term g such that P T s:pand o < p.

The following rules define a binary relation -2~ on pairs P. M:

1. P.ssa&k M 25 P. M
if s is no variable

2. P&aiox:t& M 25 P& a:NF[ox7]. M
if NF[o* 7] # —

3. P.f(8):0& M 25 P.M
if fifi —&(@)eT, o ="¢£(F),and [ is ground

4. P.f(§):c& M 5 P.5:{a/d}i &M
if frii—=&(@)eT, o ="&(F),and fi is not ground.

The relation -*+ mimics the relation -, where -2+ employs Il-admissible sort terms
while = employs weakest approximations.

Proposition 6.5.1 There are no infinite chains P.M *» P'.M' -2 ... or P.M
P M2 ... Furthermore, if P.M 25" P'.M' or P.M 2™ P'.M', then DP = DP’
and Px = P'x for every x € DP — VM.

Our goal is to prove Theorems 6.5.6 and 6.5.7 appearing at the end of this section. I suggest
that you first look at these theorems and convenience yourself that they just state what
you expect anyway at this point. Then you can go back and look at the preparing lemmas
following now.

Lemma 6.5.2 [Invariance] Let P. M be Il-well-typed and P. M 2~ P'. M'. Then:
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1. P'. M’ is lI-well-typed
2. if Q is a normal prefix, then QFH' P& M «— QF1 P & M’
3. U[P & M] C U[P' & M.

Proof. We have to prove the claims for each of the four -2 -rules.
I Let P.s:a& M -2+ P. M, s be no variable, and let P.s:a & M be Il-well-typed.
L 1. Obvious.

L2, The direction “=" is obvious. To show the other direction, suppose ) is a normal
prefix such that @ F' P& M. Since P.s:a & M is Il-well-typed, we know that there exists
a variable 3 such that & = 7y, and P F'! s: 3. Hence we know by the Substitution Lemma
that @ F'T s: 3. Thus Aav < A% and hence @ F!! s: & by the Flexibility Lemma. Thus @ FI
P&s:a&k M.

1.3. Obvious.

II. Let P&a:oa:t&M £y P&a:NF[ox7].M, NF[ox7] # —, and let
P& x:o.x:7 & M be Il-well-typed. Then we have o, 7 <™ ;i and hence

NF[o 7] < ox7 =m0 w7 <V 0,7

by the P-Infima Theorem. Thus P’ := P& 2:NF[o * 7] is a normal, inhabited and II-
admissible prefix.

IL1. Let s:v € M. It suffices to show that there exists a IT-admissible g such that P’ -
st and v <y, Since P& z:o.2:7& M is H-well-typed, there exists a [I-admissible p
such that P& 2:0 F1 s:pp and v < . Since P/ HF' P& 210, we know P’ ! s: 1 by the
Substitution Lemma.

I1.2. Let @ be a normal prefix such that Q F'' P& 2:0 & 2: 7 & M. It suffices to show that
Q F 2:NF[o  7]. Since Qz <" o, 7, we know by the P-Infima Theorem that Qz <™ o x .
Hence Qz < mygg(o * 7) and thus

Qr = NF[Qz] < NF[m\gu(0 *7)] < 70 NF[o * 7]

by the normality of ¢ and the Normalization Theorem. Thus Q F z: NF[o * 7].

To show the other direction, suppose () is a normal prefix such that Q F' P & z: NF[o * 7] &
M. Then Qz <" NF[o+ 7] <" o, 7. Hence Q F' P& 2:0 & x:7 & M.

11.3. Let g € U[P&a:o& z:7 & M]. It suffices to show that @ - a:)NF[o * 7]. Since
Q F Yx:po & Yr:pT, we know that o@[vz] < o, 1. Hence we know by the P-Infima
Theorem that 0@[yx] < ¢(0 * 7) and thus

UQ[¢$] = NF[UQWJC]] < NF[¢ (o + 7)] < NF[o * 7]

by the normality and inhabitation of ¢ and the Normalization Theorem. Hence @)
a: Y NF[o * 7].

HI Let P.f(S):c& M5 P.M, fiji =&@)eT, o =*&(&), @ be ground, and let
P. f(5):0& M be ll-well-typed.
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II1.1. Obvious.

I1.2. The direction “=" is obvious. To show the other direction, suppose ¢ is a normal
prefix such that @ F' P & M. It suffices to show that Q F' f(5): 0. Since P. f(3):0& M
is I-well-typed, we know that there exists a II-admissible v such that o <! v and P F!I
f(8):v. Since o is no variable, we can assume without loss of generality (by the Flexibility
Lemma) that v is no variable. Hence we know by the definition of P F!I f(5):v that P 1
f(3): i since i is ground. Since Q FI P, we know by the Substitution Lemma that Q
5:ji. Hence Q F f(5): 0 since f:ji — £(@) € T, ¢ =* £(F) and [7 is ground.

I11.3. Obvious.

IV. Let P.f(8):o& M 2 P.5:{d/ad}i& M, fii—=E&@)eT, o =*&(F), i not be
ground, and let P. f(5):0& M be Il-well-typed.

IV.1. Tt suffices to show that there exists a [lI-admissible tuple 77 such that P F!1 5:7 and
{@/a}ii <M 7. Since P. f(5):0& M is Il-well-typed, there exists a Il-admissible v such
that P F f(3):v and o <" v. Since o is no variable, we can assume without loss of
generality (by the Flexibility Lemma) that v is no variable. Hence v =* &(#7) and P F!
§:{a/v}i. It remains to show that {@ /& }ji <" {a/i}ji.

Since 0 < v, 0 =* () and Ty, = {(mr,7), we have & < 7wy, 7 and hence {& /5 }ji <
Tao{a@ /T L.

Now let u; be a component of p. If {&/&}pu; is ground, then {&/&}pu; = w{d@/d}u; <
Taol@ /Ui = 7{d@/0}p; and hence {@/& }u; <" {&@/F}p;. If {@/&}p; is not ground,
then M&/&}u; = Ao since Vy; € V@ and V& C Vo. Hence {@/7 }pu; < {&/i}u; since
(@/5V € man @70

IV.2. Let @ be a normal prefix such that Q 1 P& f(3):0& M. Since Q F f(5):0,
fiii = &@) eT and 0 =*£(F), we have Q FU 5:{a@/F}ji and hence Q F! P&
§:{a/F}i & M.

To show the other direction, let () be a normal prefix such that Q F' P& 5:{a /7 }ji & M.
Since f:ji — &(&) €T, 0 =*€(F) and P 5:{@/5}ji, we have Q F' f(5): 0 and hence
QFI P& f(5):0& M.

IV.3. Let g € UP& f(5): 0 & M]. It suffices to show that @ - 5 ¢{a /& }ji. Since Q -
f@3)po, frji — (@) € T and Yo =* {(YF), we have Q + §: {d /& }ji, which yields
the claim since Vi C V&. a

Lemma 6.5.3 Let P be a normal and inhabited prefix and P H' s:. Then P.s: w0 25"
Plpp_vs & NF[m;Ply;] . 0.

Proof. We prove the claim by induction on the pair (|s|,n — Ao) with respect to the
canonical lexicographic order, where |s| is the size of s and n is the height of the pyramid
I1. According to the definition of P F! s: ¢, we distinguish three cases.

1. Let s = «. Then Pz <! o. Tt suffices to show that Pz * m;0 = 7; Pz and that m; Pz is
inhabited, since then the second £ -rule applies and yields the claim. Since P and 7; are
inhabited, we know that 7; Pz is inhabited. Since 7;0, Pz <!l o, we know by the P-Infima,
Lemma that Pz x m;0 = myr,,PeNmy\pymio. Hence Pz x mijo = m;PxNr\py,mic = m;Px
since APz > Ao and 7; Px < m\py7;0 = T;T\pPz0.



6.5. Solving PM-Systems 103

2. Let s = f(5) and 0 = a. Then Ao < Ms, PF! s: 7, p0 and 7,50 is no variable.
If AMfs < i, then 7,0 = m;(7\50) and the claim follows by the induction hypothesis.

Otherwise, we have i < Afs and hence NF[r; P|y;] = NF[P|y;] = P|y, since P is normal. If
7;0 is a variable, then P.s:m;0 £+ P.() with the first £ -rule, which yields the claim. If
7;0 is no variable, then P F! s: 70 by the Flexibility Lemma and Am;o > Ao. Hence the
claim follows by the induction hypothesis since m;(m;0) = m;0.

3. Let s = f(5) and o be no variable. Then f:f —¢&(@)eT, o =*&(F) and
PHY s {a /7).

If ji is ground, we have P. ;0 2+ P.{ by the third £+ -rule. Since P 5:{&@/7}ji, we
know A5 = n by the Monotonicity Lemma. Hence NF[r;P|y;s] = NF[P|y;s] = P|ys since P
is normal, which yields the claim.

If 7 is not ground, we have P. w0 £ P.§:m;{d /& }ji by the fourth £ -rule. Since we
have NF[m;NF[r; Pz]] = NF[NF[r;Pz]] = NF[r;Pz] < m; Pz <" Pz for every € DP, the
claim follows by repeated application (one for every component of the tuple {&/&}ii) of
the induction hypothesis and the Substitution Lemma. a

Lemma 6.5.4 [Simulation] Let P. M be Il-well-typed and let | P.| M = Q. N. Then
there exist P' and M’ such that P.M 25T P'.M' and Q.N = [ P'. | M.

Proof. We assume without loss of generality that M consists of a single membership.
Let P.s:o be Il-well-typed and let — apply to | P.s:}o. Since in this case —% is
deterministic, it suffices to show that there exist P’ and M’ such that P.s:o 25T P/ AL’
and [ P.s: o5 | P M'. We distinguish two cases.

1. Let lo= _. Then [ P.s:|oc =% | P'.{) and ¢ is maximal. Since P.s: o is II-well-typed,
we have P s: i and ¢ <! 1. Hence 0 = 7\, and we have

P.sio 257 Plpp_y, & NE[m (Plys)]. 0

by the preceding lemma. It remains to show that | NF[m\,(P|vs)] = L (Plys).

Since ¢ is maximal and ¢ = 7wy, ¢, we know that my,2 is maximal for every a € Vyu.
Since P.s:o is [I-well-typed, we know P F!I s:p. Hence we know by Lemma 6.3.7 that
Tro (Plys) 2" L (Plys). Hence NF[my (Plys)] 23" L (P|ys) since =+ C 23 and 2+ is
confluent. Thus | NF[m\,(Plvs)] = L (Plvs).

2. Let Lo # _. Since 7 | — = — for every 7 and = applies to | P.s: | o, we know that
lo # —. Hence 0 = 5(&) and o = n(] 7). Again, we distinguish two cases.

2.1. Let s = x. Then

IP.s:lo =2 (JP—{a:{Pz}) & a:({Pz) | (lo) .0

and (JPz) | (o) # —. Since P.s:0 is Il-well-typed, we have Pz,o < . Hence
L(Pxxo)= (lPz) ] (J]o) # — by the Merging Theorem. Thus | NF[Pz x o] = ([ Pz) |
(Lo) # — since =— C =+ and - is confluent. Hence

P.s:o 25 (P—{xz:Pz}) & a:NF[Pxz x o] .0,
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which yields the claim.

2.2. Let s = f(5). Then we have f:ji = &(@) € T and o = n(ld) =% {(F1) since —
applies to | P.s:}o. Furthermore, we have ¢ = n(d) =* &(F3) and &2 2" &1 using
the Approximation Theorem. If [ is ground, then | P.s: o | P.0 and P.s:0 2+ P.0,
which yields the claim. Otherwise, we have

LP.silo = [P.s:L({d/d1}id)

and

P.sio 5 P.§5:{d/F:}ii.
It remains to show that | ({&/F.}i) = J({@/&1}i). Since Gy -2+"G;, we have
{&@/d3}ji 25" {a/d1}fi by the Approximation Theorem.  Hence | ({&/F2}f) =
L({a@/&1}ii) by the confluence of == . 0

Lemma 6.5.5 [Completeness] Let P. M be Il-well-typed and let P& M be unifiable.
Then = applies to | P.\ M if M is nonempty.

Proof. We assume without loss of generality that M consists of a single membership.
Let P.s:o be Il-well-typed and let P & s: ¢ be unifiable. Then there exists a substitution
theta such that - 6P and F fs:8o. Hence o is inhabited and |0 # —. If o = _, then the
second — -rule applies to | P.s: ] o. Otherwise we know that o = 1(&) and | o = (7).
Now we distinguish two cases.

Let s = z. It suffices to show that (| Pz) | (o) # — since then the second — -rule
applies to | P.s:|o. Since P.s:o is [I-well-typed we have Pz,o < . Hence we know
by the Merging Theorem that ({ Pz) | (o) = | (Pz * o). Furthermore, we know by the
P-Infima Theorem that £*02 < 0(Px x o) since L*0z < Pz, 00 because F 0z: 0Pz and -
fz:6c. Since - Ox: L*0x we know that L£*0z is inhabited. Hence Pz % ¢ is inhabited and

thus ({ Pz) | (Jo) =, (Pz*o) # —.
Let s = f(§). Since F 0s: 0o, we know f:ji — &(@) € T and 6o = 1(65) =* £(---). Hence
lo=n(d) =*£(---) and thus either the third or fourth — -rule is applicable. O

Theorem 6.5.6 [P-Reduction] Let P. M be Il-well-typed. Then:

1. P& M unifiable < 3 Q. P.M 2+"Q.0
2. if P.M 257 Q. 0, then:

(a) if P.M 25" P'.M’, then P'.M' 25" Q.0
(b) Q is a normal, inhabited and Tl-admissible prefix such that Q F1 P& M,
U[P & M] C U[Q], and Onrrq) is a principal unifier of 7P & 7M.

Proof. 1. Suppose P. M is II-well-typed and P & M is unifiable. We show by induction on
P.M with respect to £+ that there exists a prefix ) such that P. M 2+ Q.0. If M = 0,
then the claim is trivial. Otherwise, we know by the Completeness and the Simulation
Lemma that there exist P’ and M’ such that P. M 2% P/ M’ and | P. [ M 2 | P'. | M.
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By the Invariance Lemma we know that P’. M’ is II-well-typed and unifiable. Hence we
know by the induction hypothesis that there exists a prefix @) such that P’. M’ =" Q. 0.

Suppose P. M is II-well-typed and P. M -2+* Q. (). By the Invariance Lemma we know that
@ is a normal, inhabited and M-admissible prefix. Hence @ F' Q and thus Q H' P& M
by the Invariance Lemma. Thus #Q F 7P & 7 M and hence #Q) — 7P & M is valid in 7.
Since ) and 7 are inhabited, the prefix #() is inhabited and hence unifiable. Thus 7P &
M and hence P & M is unifiable.

2. Let P.M be Il-well-typed and P. M 25" @Q.0. Then we know by (1) that P& M is
unifiable.

2.1. Suppose P. M 25" P'.M’'. Then we know by the Invariance Lemma that P'. M’ is
II-well-typed and unifiable. Hence we know by (1) that there exists a prefix @)’ such that
P M 257 Q. 0. By the Invariance Lemma we know that @ and @’ are normal and II-
admissible prefixes. Hence Q F' @ and @' H'' @’. Thus we know by the Invariance Lemma
that Q F' @’ and Q' F' Q. Hence Q = ('.

2.2. By the Invariance Lemma we know that () is a normal, inhabited and II-admissible
prefix such that U[P & M] C U[Q]. Hence U[rP & 7 M] C U[xQ]. Since Q F' Q, we also
have Q HF'' P & M by the Invariance Lemma.

To show that QNF[WQ] is a principal unifier of # P& 7 M, it remains to show that x() is
inhabited and that U[r@Q] C U[x P & mM]. Since 7 and ) are inhabited, we know that 7(Q)
is inhabited. Furthermore, suppose g € U[rQ]. Then R F 7Q. Since Q F' P & M, we
know 7Q F 7P & 7M. Hence R+ @7 P& ¢pr M and thus ¢ € U[rP & nM]. a

Theorem 6.5.7 [M-Reduction] Let P. M be Il-well-typed. Then:

1. if {P..M 2" Q.N, then there exist P' and M’ such that P.M 2+~ P'. M’ and
O.N=|P.|M

2. P& M unifiable <= 3Q. |P.|M 2"Q.0
3. LP. I M is don’t care

4. if | P.{M 257 Q,.0, then there exists a normal, inhabited and ll-admissible prefix
Q such that Q, = [Q, Q F' P& M, U[P & M] C U[Q], and Onriro) is @ principal
unifier of tP & 7M.

Proof. 1. Follows by a straightforward induction using the Simulation and the Invariance
Lemma.

2. The direction “<” follows by statement (1) and the first statement of the P-Reduction
Theorem. To show the other direction, suppose P.M is Il-well-typed and unifiable. We
show by induction on P.M with respect to £+ that there exists a prefix @ such that
P M 27Q.0.

If M = 0, then the claim is trivial. Otherwise, we know by the Completeness and the Simu-
lation Lemma that there exist P’ and M’ such that P. M 257 P/ M’ and [ P.| M -2
lP'.|M'. By the Invariance Lemma we know that P’'. M’ is II-well-typed and unifi-
able. Hence we know by the induction hypothesis that there exists a prefix ) such that
VP LM 27 Q.0.



106 Chapter 6. POS-Constraint Solving

3. Let JP.IM27Q,.0 and | P.{ M 2" P'.M'. We have to show that P'. M’ 2"
Qa-0.

By statement (1) we have P.M 25" Q.0, Q, = |Q, P.M 2" P".M", P = | P", and
M' = | M". Since [ P.{M " Q,.0, we know by statement (2) that P& M is unifi-
able. Hence we know by the Invariance Lemma that P” & M" is unifiable. Thus we have
P'.M' =57 Q".0 by statement (2) and hence P”. M"” 25" Q.0 and Q] = |Q’ by state-
ment (1). By statement (2.1) of the P-Reduction Theorem we have @ = (’. Hence
Q. =1Q=1Q" =Q,.

4. Let [ P.{ M 5" Q,.0. Then we know by statement (1) that there exists a prefix @ such
that Q, = @ and P. M -2+* Q.. Now the claims follow by the P-Reduction Theorem. O

6.6 Solving PE-Systems

General Assumption. In this section we assume that T is fully inhabited.

This section presents the part of the P-computation that is simulated by the equation level
of the constraint solver. We start with the invariant that is preserved by the equation
reduction rules employed in the P-computation.

A triple P.6. F is [I-well-typed if

1. P is a normal, inhabited and Il-admissible prefix

2. 6 is an idempotent value substitution such that D8 N VE = (), D§ C DP, and P FI
P

3. for every equation s =t € F there exists a IT-admissible sort term p such that P F
stpand PHT ¢ p

Proposition 6.6.1 [l-well-typed triples have the following properties:

1. if P.6. I is ll-well-typed, then D UZ6 UVE C DP
2. if P. 0.0 is ll-well-typed, then Oxp(.p) is a principal unifier of 7P & E[f]

3. if P.0.F &z = s is ll-well-typed, then P.s: Pz is [I-well-typed.

The relation - is defined by the same rules as < , except that the fourth rule of -

m

employs the relation 2+" rather than the relation 2 :

1. POE&2 =2 2 PO.E
2. P.O.E& f(5) = f(f) 2> PO.E&s =1

3. POF&s=2 Y POF&z=s
if s is not a variable
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4. P.O.E&x=s 5 Q.{a/s}0.{a/s}F
if # ¢ Vs and P.s: Pz 25" Q. 0.

Proposition 6.6.2 There are no infinite chains P.0. E — P'.¢'. ' = - ... Furthermore,
ifP.0.E->*+ P .¢'" E' then DP =DP'.

Proof. The termination of — follows by the same argument as the termination of =
(Proposition 6.1.3). The second claim is obvious from the defining rules. O

Our goal is to prove Theorems 6.6.6 and 6.6.9 and Corollary 6.6.7 appearing at the end of
this section. As in the last section I propose to first look at these theorems and understand
what they say. Then you can go through the preparing lemmas following now.

Lemma 6.6.3 [Invariance] Let P.0.F be ll-well-typed and let P.0.F = P'.¢'. F'.
Then:

1. P'.¢'. E' is l-well-typed

2. PPFI P

3. UP&E[6] & E]C U[P' & E[f'] & E']

4. UlzP' & E[#)& E'] C U[rP & E[f] & E)].

Proof. We have to prove the claims for each of the four = -rules.

LLet PO F&ax =25 P.0.F and let P.0. F & x = x be II-well-typed. Then all claims
are trivial.

IL Let P.O.E& f(5) = f() 2 P.0.E&S = ¢ and let P.0. E& f(5) = f(f) be Tl-well-
typed. Then there exists a Il-admissible sort term p such that P F f(5):pu and P I
F(@&): e

II.1. Tt suffices to show that there exists a tuple 7 of Il-admissible sort terms such that
PHFU g7 and PHT#:7. Let i := min{\F(5), A9 (f)}. Then we know by the Flexibility
Lemma that P T f(§):m;u and P T f(£): m;u. Since ;i cannot be a variable, we have
frii = &@) eT, mp =*€(F), PFY5:{a@/é}pu, and PHFY £ {a /3 }pu.

I1.2 and 11.3. Trivial.

114. Let vg € UrP& E[0] & F & 5 = t]. 1t suffices to show that ¥ f(5) is well-typed with
respect to Q. Since P 1 f(5): yu, we know 7P F f(5):7pu. Since Q & 7P, we have @
Vf(§):mp.

IHIL Let P.0.F&s=a2—"5 P.0. F&ax = s andlet P.0.F& s = x be [I-well-typed. Then
all claims are trivial.

IV.let P.O. F& v = s Q. {x/s}0.{x/s}F,x ¢ Vs, P.s: Pr 25" Q.0,and let P.0. E &
x = s be Il-well-typed. Then PAUZOUVFE U {z} UVs C DP = DQ and Py = Qy for
every y € DP — Vs. Furthermore, we know by Proposition 6.6.1 that P.s: Pz is Il-well-
typed. Hence we know by the P-Reduction Theorem that () is a normal, inhabited and
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T-admissible prefix such that @ F! P& s: Pz, U[P & s: Pz] C U[Q], and Onriro) is a
principal unifier of 7P & s:7Px. Thus U[rQ] = U[rP & s: 7Pz]. Since Q F P & s: Pz,
we have Q F! {2/s}P. Since P.0.E &z = s is [l-well-typed, we have P F1 P and thus
Q F1 {2/5}0P by the Substitution Lemma.

IV.1. Since {z}UVs and D@ are disjoint and & ¢ Vs, we know that {z/s}6 is an idempotent
value substitution. Furthermore, D({z/s}0) and V({z/s}FE) are disjoint since z ¢ Vs and
DO and VE U Vs are disjoint. Moreover, D({z/s}0) = {z}uUDI C DP = DQ.

Next we show that @ F {2/s}0Q. Suppose y € DQ. We have to show that @ F
{x/s}0y:Qy. If y € Vs, then y # 2 and y ¢ DO. Hence {z/s}8y = y and the claim is
trivial. If y ¢ Vs, then Qy = Py and hence Q F {/5}0y: Qy since Q F! {x/s}0P.

Let u = v € E. We have to show that there exists a IT-admissible p such that @ F
{z/s}u:p and Q F1 {z/s}v:p. Since P.0. E& x = s is Il-well-typed, there exists a II-
admissible p such that P F w:y and P F v:p. Since Q F {2/s}P we have @ I
{x/s}u: p and Q F'1 {z/s}v: u by the Substitution Lemma.

1V.2. We know Q F'T P since Q F'' P & s: Px.

IV.3. Let vp € UP&E[&E&s =s5]. Then o = s and hence ¢ = p{z/s}.
Since z ¢ D@, we have E[{z/s}0] = {z/s}E[f]&z = s. Thus ¢(E[{z/s}0]&
{z/s}F) = v{z/s}E[fl&z = s&{z/s}FE) = (E[f|& F&a = s). Furthermore,
since R = ¥ P, we have R F s:¢¥ Pz and thus ¢p € UP&s: PX] C U[Q]. Hence
Yr € UQ&E[{x/s}8] & {z/s}F].

V.4, Let vp € UrQ&E[{z/s}0]&{z/s}E]. Since @ ¢ D, we have E[{z/s}d] =
{z/s}E[0] &z = s. Thus ¢(E[{z/s}] &{z/s}F) = v({z/s}E[fl&z = s&{a/s}F) =
P(E[A & E&a = s) since Y(E[{z/s}0] & {x/s}F) is trivial, hence a = s, and thus
Pp{xz/s} = 1. Furthermore, we know U[rQ] = U[rP&s:wPz] C U[rP]. Hence
Yr € UrP&ER& E& e = s). 0

Lemma 6.6.4 [Simulation] Let P.6.F be Il-well-typed and let | P.0. F == Q.0'. E'.
Then there exists a prefix P’ such that Q = [P’ and P.0. K~ P'.¢'. F'.

Proof. 1If [P.0.FE =5 Q.¢.E" by one of the first three —— -rules, then the claim is
obvious since the first three = -rules are identical with the first three —— -rules.

Otherwise, suppose [ P.0. E& v = s -°= Q. {x/s}0.{x/s}FE, v & Vs, [ P.s:| Px 2" Q. 0,
and let | P.6. E & x = s be [I-well-typed. Then we know by Proposition 6.6.1 that P.s: Px
is [I-well-typed. Hence we know by the M-Reduction Theorem that there exists a prefix P’
such that P.s: Px 25" P'.) and Q = [ P'. Thus P.0. E&x = s P'.{x/s}0.{x/s}F,
which yields the claim. a

Lemma 6.6.5 [Completeness] Let P. 0. E be ll-well-typed and let P & E[] & E be unifi-
able. Then - applies to | P.0. F.

Proof. Without loss of generality we can assume that [ consists of a single equation
s=t. Let P.0.s =t be ll-well-typed and let ¢y € U[P.0.s =t].

If s = f(5) and t = g(f), then f = g since v»s = 9t, and hence the second %= -rule applies.



6.6. Solving PE-Systems 109

If s= f(5) and t = 2, then the third = -rule applies.
If s =t = a, then the first = -rule applies.

Otherwise, we have s = « # t. Hence x ¢ Vt since tpa = ¢t. Thus the fourth = -rule
applies if we can show that there exists a prefix () such that | P.t: | Pz =" Q. 0.

Since ¥, € U[P.f.s=1], we know that  F P and 2 = t. By Proposition 6.6.1 we
know that P.¢: Px is Il-well-typed. Thus 2 € DP and hence () - tpa:p Pz, Since o = i,
we have () F t: Pz and thus g € U[P & t: Pz]. Hence we know by the M-Reduction
Theorem that there exists a prefix @ such that | P.t: | Pz 57 Q. 0. a

Theorem 6.6.6 [U-Reduction] Let P.6. E be ll-well-typed. Then:

1. P& E[ & E is unifiable <= 3 Q,¢. P.0. F-"Q.4.0
2. if P.O.E25"Q.1. 0, then

(a) Q F1 9@, Q F' P, U[P&E[F & E] C U[Q & E[¢]], and UNF[rQ] Is a principal
unifier of P& E[0] & F

(b) if P.6.F 2" P'.¢'.E', then P'.¢'. E' is Il-well-typed and there exist Q' and 9’
such that P'.¢§'. E' 25" Q.. 0.

Proof. 1. Suppose P.6.F is ll-well-typed and P & E[f] & F is unifiable. We show by
induction on P. 4. I/ with respect to =+ that there exists ) and 1 such that P.9. F 2+~
Q..0. If F =, then the claim is trivial. Otherwise, we know by the Completeness and
the Simulation Lemma that there exist P, # and F’ such that P.6. F *+ P'.¢'. F' and
lP.0.FE =+ | P.0" F' By the Invariance Lemma we know that P’.¢. E’ is [I-well-typed
and that P’ & E[#'] & E’ is unifiable. Hence we know by the induction hypothesis that there
exist @ and ¢ such that P'.¢'. B/ 2" Q.. 0.

Suppose P. 0. E is Il-well-typed and P. 6. E 24" Q... By the Invariance Lemma we know
that Q. 4.0 is Il-well-typed and that U[rQ & E[¢]] C U[rP & E[f] & E]. Hence ¢nprq) is
a principal unifier and Ynpprqg) € U[rQ & E[¢]] C Ulr P & E[f] & E]. Thus (¢7)Np[rq) 15 @
unifier of P& E[] & F.

2. Let P.4§. E is [I-well-typed and P.0. E 25" Q.. 0.

2.1. By the Invariance and the Substitution Lemma we know that @ F' 4@, @ F P,
UP&EF & E] C UQ&E[W]], and UrQ & E[¢]] C UrP& E[f]& E]. Thus we know
UlrQ & E[¢]] = U[r P & E[f] & E]. Since Q.. 0 is [I-well-typed, we know that 1np( is a
principal unifier of 7Q) & E[¢)]. Hence ¢, is a principal unifier of 7 P & E[f] & F.

2.2. Suppose P.0. E -2+" P'.¢'. E'. Then we know by the Invariance Lemma that P’.6'. £’
is Il-well-typed. Since we assumed P.0.F 5" Q.1.0), we know by statement (1) that
P& E[f] & E is unifiable. Thus we know by the Invariance Lemma that P’ & E[0'] & £’
is unifiable. Hence we know by statement (1) that there exist @’ and %’ such that
P ¢ B 27 Q 0. O

The following corollary is a weak version of the U-Reduction Theorem obtained by employ-
ing the trivial pyramid. What we get is POS-unification, which is the natural generalization
of order-sorted unification.
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Corollary 6.6.7 [POS-Unification] Let P be a normal and inhabited prefix and let F
be an equation system that is well-typed under P. Then:

1. P& F is unifiable <= 3 Q,v. P.0.F 25" Q. .0
2. P& F is unifiable <= P & F has a principal unifier
3. if P.0.F 57 Q..0, then ¢ is a principal unifier of P& F

4. if P.0.F 2" Q. 0.0 and P.O. E 25" P'.¢'. ', then P' - @'P', E' is well-typed under
P, and there exist )’ and @' such that P'.¢'. K" 2™ Q. ¢'. (.

Theorem 6.6.8 [Simulation] Let P.6. E be [I-well-typed and let [ P.6. K *+"Q.¢". F'.
Then there exists a prefix P’ such that P.0. F 2" P'.¢'. I and Q = | P'.

Proof. Follows by a straightforward induction using the Simulation and the Invariance
Lemma. a

Theorem 6.6.9 [E-Reduction] Let P.0. E be Il-well-typed. Then:

1. P& E[A) & E is unifiable < 3 Q,v. [ P.0.E=5"Q.¢.0
2.ifP.O.E5"P .0 . E' &ax=s, then P'.s: P'z is don’t care

3. i [P.0.F3"Q.¢.0 and [ P.0.E " P'.0'. I, then there exist ' and v’ such
that P'.¢/. E'<* Q.. ()

4. if | P.0.F " Q,.1.0, then there exists a normal, inhabited and Il-admissible prefix
Q such that Qu = 1Q, Q F ¢Q, Q FII P, UP&E[0]& E] C UQ & E[v]], and
UNF[=) is a principal unifier of 7P & E[0] & F.

Proof. 1. The direction “«<” follows by the Simulation Theorem and the first statement
of the U-Reduction Theorem. To show the other direction, suppose P.8. F is [I-well-typed
and P & E[f] & F is unifiable. We show by induction on P. 6. E with respect to —— that
there exist () and 1 such that | P.0. E <= Q..0.

If £ = (, then the claim is trivial. Otherwise, we know by the Completeness and the Simula-
tion Lemma that there exist P, 8 and F’ such that P.6. F = P'.¢'. ' and | P.0. F =~
LP'.0". FE'. By the Invariance Lemma we know that P'.¢.FE’ is [I-well-typed and that
P& E[¢'] & E' is unifiable. Hence we know by the induction hypothesis that there exist @
and v such that | P.6. F = Q..0.

2. Let P.0.E be Il-well-typed and let | P.0. F 3" P'.¢'. /& x = s. Then we know by
the Simulation Theorem that there exist a prefix ) such that P.6. K 2" Q.0 . E' & 2 = s
and P’ = | Q). By the Invariance Lemma we know that Q.60". F' & x = s is [I-well-typed.
Hence we know by Proposition 6.6.1 that (). s: Qz is Il-well-typed. Thus we know by the
M-Reduction Theorem that [ Q.s:|Qx = P'.s: P'x is don’t care.

3. Let P.0. E be II-well-typed, | P.0. E *=+"Q.%.0, and | P.§. E -+~ P'.¢'. E'. Then we
know by the first statement that P. 6. I is unifiable. By the Simulation Theorem we know



6.7. Proof of the Hauptsatz 111

that there exist a prefix () such that P.0. F " Q.. E' and P’ = | Q. By the Invariance
Lemma we know that @.68'. E' is Il-well-typed and that @ & E[¢’'] & E’ is unifiable since
P.6. F is unifiable. Hence we know by the first statement there exist )’ and ¢’ such that
P ¢ B =37 Q 0.

4. Follows by the Simulation Theorem and the U-Reduction Theorem. a

6.7 Proof of the Hauptsatz

Now we are ready to enjoy the rewards of our hard work and prove the Hauptsatz.

Proof. Let P& F be V-admissible and let II be a validating pyramid. Then P.0. E is
[I-well-typed and all except the second claim of the Hauptsatz follow immediately from
corresponding statements of the IE-Reduction Theorem.

Now let | P.0. F %" Q,.v.0. Then we know by the E-Reduction Theorem that there
exists a normal, inhabited and IT-admissible prefix Q such that Q, = }@Q, Q F v»Q, Q F!I
P, U[E & P] C U[Q & E[¢]], and ©np(rq) is a principal unifier of 7P & F.

Let W= (V —Dy) UZ(¥|v).
Since @ FI' P and P|y = 7P|y, we know that 7Q|y = Q|y < Ply. Since Q FI 4Q, we
hence know by the Monotonicity Lemma that #Q|w = Q|w. Since Q|v < P|y, we know by

the Upper Weakening Lemma that Q|w ! ¥ P|y. Hence 7Q|w F 7P|y and thus Q|w
PPy since Q|w and ¥ P|y are fully informed. Hence we have Q|w < GP[¢P|v].

Since (., = | @ and @ is normal, we know by the Corollary to the Retract Theorem that

Qlw = Qa T GP[YP|v].

Since ¢¥NF[rq] is a principal unifier of 7 P & F, we know by the Garbage Collection Theorem
that (¢[v)(NFirQ)ly) 18 @ V-solution schema for 7P & F. Since @ is normal and Q|w =
mQ|w, we know that (¥|v)(q|,) is a V-solution schema and

TINQ, v, PVI]Y = TIERIVI& QIw]" = TIxP & E]".

It remains to show that T[E[¢|v] & Qw]Y = T[F & P]".
Since U[E& P] C U[E[]& Q] and E[|v]&Qlw C E[]& Q, we have T[E & P]V C

TIE[R] & Q)Y C TIE[W|v] & Q|w]Y. Furthermore, since 7 is a sort substitution and V is a
set of value variables, we have T[E & 7P]Y C T[E & P]V by Proposition 5.3.7 and hence

TIER|v]&Qw]” € TIE & PIY. O
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Chapter 7

Logic Programming over

POS-Types

7.1 POS-Programs
7.2 The Interpreter
7.3 Type Inference

Now that we have gone trough four chapters on POS-types developing their declarative
and operational semantics, we are well-prepared for the final step in our enterprise. The
POS-programs defined in this chapter rely on a type discipline that is considerably more
restrictive than the canonical notion of well-typedness developed in Chapter 2. While the
canonical type discipline would result in ad hoc polymorphism, the type discipline imposed
on POS-programs yields parametric polymorphism, which is the form of polymorphism em-
ployed in functional programming languages such as ML. There is a good reason for insisting
on parametric polymorphism: the constraint solver developed in Chapter 6 works only for
this less general form of polymorphism, and I even don’t know if there is a computable
complete constraint solver for programs relying on ad hoc polymorphism.

The last section of this chapter addresses type checking and inference. 1 will show that
it is decidable whether some finite collection of syntactic objects is a POS-program and
thus solve the type checking problem. Type inference generalizes type checking in that the
programmer is allowed to omit some or all sort qualifications for the variables employed in a
clause and the system is expected to infer most general sort qualifications under which the
clause becomes well-typed. Here I cannot offer a perfect solution, but only give an incom-
plete algorithm, whose implementation in TEL works quite well for practical applications.
The programmer can always prevent the type inference algorithm from failing by explicitly

113



114 Chapter 7. Logic Programming over POS-Types

giving the sort qualifications for “critical” variables.

7.1 POS-Programs

This section defines the class of relational programs over POS-types that can be executed
using the constraint solver of Chapter 6. The well-typedness condition imposed prevents
ad hoc polymorphism and enforces parametric polymorphism [Str67], the form of polymor-
phism realized in functional programming languages such as ML, [HMM86] and in Mycroft
and O’'Keefe’s [MO84] polymorphic type discipline for Prolog. Using the results of Chapter
2 we show that POS-programs do have least models satisfying the sort declarations of the
relations. Finally, we give a tailored goal reduction rule for POS-programs and show its
soundness and completeness exploiting the general results of Chapter 2.

General Assumption. In this chapter we assume that T is a fully inhabited type
specification and that R is a set of relation symbols.

Let £(T) be the constraint language obtained from £(%7)* by forgetting all interpretations
but 7. In the following we assume tacitly that all constraints and all interpretations are
taken from L£(T)%.

Of course, we could also take the initial interpretation Z(7') rather than the extensional
interpretation 7 of T'. Since our constraint solver works for both interpretations in exactly
the same way, all results of this chapter stay true if Z(7") instead of T is taken as the base
interpretation.

A POS-declaration is a declaration r(Z)—32:& such that & is a tuple of normal and
inhabited sort terms. Since the validity of a POS-declaration in an interpretation does not
depend on the particular variables employed, we will use the abbreviation r: 5. A set of
POS-declarations is called singular if it contains for no relation symbol more than one
declaration.

Proposition 7.1.1 If A is an interpretation and r: & is a POS-declaration, then A satisfies

r:& if and only if r* C | J{T[¢]s | 6 € ASST}.

A POS-atom is a constraint 37.(¥ = § & r(Z)) such that § has no variable in common with
Z. Since the denotation of a POS-atom does not depend on the particular variables in #, we
use the abbreviation r(%). In the following, the letters A and B will always denote a POS-
atom. Furthermore, the letters G and H will always denote a possibly empty conjunction
of POS-atoms.

Proposition 7.1.2 If A is an interpretation and r(5) is a POS-atom, then A[r(5)] = {0 €
ASST | TT5]s € ).

A POS-clause is an implication A + P& A1 & ... & A, such that n > 0, P is a normal
and inhabited prefix, and A and A44,..., A, are POS-atoms.
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Proposition 7.1.3 An interpretation satisfies the POS-clause
ro(50) « P&ri(51) & ... &r,(5,)
if and only if it satisfies the definite clause
ro(@o) « P&{Z, =5} o&r(@1) & ... &r,(Z,),

provided the sets VI, ..., VI, are pairwise disjoint and have no variable in common with
P and §y,...,8,.

Let D be a singular set of POS-declarations. A POS-atom r(5) is POS-well-typed under
a prefix P with respect to D if there exists a declaration r:& € D and a substitution 6
such that P F §:65. A POS-clause r(5) «+ P& A & ... & A, is POS-well-typed with
respect to D if the POS-atoms Ay, ..., A, are POS-well-typed under P with respect to D
and there exists a variant r: & of a declaration in D such that P F §:5.

Our definition of well-typed clauses is considerably more restrictive than the general def-
inition in Chapter 2 since the head of the clause is required to satisfy a variant of the
declaration rather than an instance. For instance, the program

a:A, ria, r(a) <0

is well-typed under the general definition of Chapter 2 but is not POS-well-typed. Our
notion of POS-well-typedness agrees with the notion of well-typedness in polymorphical-
ly typed functional programming languages such as ML [HMMS&6] and in Mycroft and
O’Keefe’s [MO84] polymorphic type discipline for Prolog. This strong notion of well-
typedness is necessary to obtain “parametric polymorphism” rather than “ad hoc poly-
morphism” [Str67]. It is also crucial for our constraint solver to work with our programs.
(In fact, I don’t know whether the satisfiability of the constraints produced by “weakly well-
typed” programs is decidable.) Interestingly, Hanus [Han88, Han89] investigates a poly-
morphic type discipline for Horn Logic that employs the general notion of well-typedness of
Chapter 2 and thus admits “ad hoc polymorphism”. Hanus’ system doesn’t accommodate
subsorting.

A POS-program is a pair (D, (') consisting of a singular set D of POS-declarations and
a set C of POS-clauses that are POS-well-typed with respect to D.

Theorem 7.1.4 Let S = (D,() be a POS-program. Then C' has a least model and the
least model of C' satisfies D.

Proof. By Proposition 7.1.3 we know that we can obtain from C' a set C' of definite clauses
such that an interpretation satisfies C' if and only if it satisfies C'. Since all interpretations
have 7 as base, we know by the Definiteness Theorem of Chapter 2 that C' and hence C
have a least model.

One verifies easily that C'is well-typed with respect to D (as defined in Section 2.5). Hence
we know by Theorem 2.5.5 that the least model of €', which is also the least model of C,
satisfies D. a
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To obtain a convenient notation, we fix some POS-program (D, ') and use § to denote its
least model. Moreover, the letter V will always denote a finite set of value variables.

The following rule defines a binary relation “F RN F" | called H-reduction, on constraints:

F&r(3) 2 F&F=i&F
if  r(f) « F'is a variant of a clause in C

having no variables in common with F & r(5).
Proposition 7.1.5 [Soundness] If F 25" F', then S[F'] C S[F].

A POS-goal is a conjunction P & G such that P is an inhabited and normal prefix and GG
is a conjunction of POS-atoms that are POS-well-typed under P with respect to D.

Theorem 7.1.6 [Completeness] Let P & G be a POS-goal and § € S[P & G]PF. Then
there exists a complexity measure “||F||” such that

1. ||P & G| is defined
2. if ||| is defined, then § € S[F]P*

3. if P& G257 F, ||F|| is defined, and A is a POS-atom in F, then there exists a clause
~ € (' such that

(a) H-reduction of I' on A with ~ is possible
(b) if F' is obtained from F by H-reduction on A with v, then ||F'|| < || F||.

Proof. Let C' be obtained from C be replacing every clause with an equivalent definite
clause according to Proposition 7.1.3. Then C'is a definite clause specification in the sense
of Chapter 2. The idea is to simulate 2 with ~—¢cpp © —pp and to obtain the claims
from the general Completeness Theorem 2.4.5.

Recall that a POS-atom r(5) is actually a constraint 37.(% = §& r(Z)). Now let G be
obtained from G by omitting all quantifiers, that is, by replacing every POS-atom 37 .(Z =
§&r(Z)) with & = §& r(&), where the existentially quantified variables # are renamed
such that they occur nowhere else. Then S[G]PF = S[G]PF and G is a goal in the sense
of Chapter 2.

Now let G = Gy &r(5) and G = G, & ¥ = §& r(F). Furthermore, suppose
P&G &r(5) 2 PLP &F=1&G &Gy,

where r(f) + P'& (3 is a variant of a clause in C' having no variables in common with
P& Gy & r(5). Then there exists a variant r(Z) « & =t & P’ & Gy of a clause in C' having
no variables in common with V(P & Gl) U V3 such that G5 can be obtained from G5 in the
same way (G was obtained from . Hence

PG I&TF=5&r(F) opp PEP &T =547 =T&G 1 &G,
C—>DP P&Pl&ng&él&éz
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a

That’s as much as we can get out of the general framework of Chapter 2. We cannot
integrate the constraint solver of Chapter 6 directly since it is not incremental in the strong
sense required by the general constraint solving rule. In particular, this failure is caused
by the fact that the constraint solver doesn’t compute with the “real” constraints but
only with their approximations. We will see in the next section that our constraint solver,
nevertheless, can do the job perfectly.

7.2 The Interpreter

As in the last section, we assume that a fully inhabited type specification T, a set R of
relation symbols, and a POS-program (C, D) in L£(T)} are given. All constraints and
interpretations are taken from L£(1)%. Furthermore, let S be the least model of C' and V
be a finite set of value variables.

Our final interpreter for POS-programs consists of a single rule, called G-reduction:

P.O.G&r(s) 2 Q.¢v.G&G
if  r(t)« P'&G'is a variant of a clause in C' such that
DPNADP =0 and (P&LP).0.05 =1 == Q.4.0.

Let P& G be a POS-goal. We will show that G-reduction is sound, that is,
LP.O.GE7Q..0 = T[1Q,, P|PY C S[P&G]PT,
and that G-reduction is complete, that is,
SeSPLGIPY = 3Q,¢. [P.0.GE5"Q..0 A 6 e TIHQ, v, P]IPT.

Of course, we will show a stronger completeness result saying that only the choice of the
clause is don’t know and that all other involved choices are don’t care (in particular, during
constraint solving).

The proof idea is simple: we will show that every -8+ -derivation issuing from a POS-goal
can be simulated by a LN -derivation, and that enough by _derivations can be anticipated
to be complete. The conjunctions of the Ay _derivation will satisfy a sufficiently strong
invariant ensuring that E-reduction is only applied to constraint systems that are admissible
in the sense of the Hauptsatz.

A conjunction P& F & G is V-admissible if there exists a pyramid II such that

1. Pis a normal, inhabited and Il-admissible prefix such that V- C DP and P|y = nP|y

2. F is an equation system such that for every equation s = ¢ € FE there exists a II-
admissible sort term p such that Vu C Dr, PF simypu, and Pt

3. G is a conjunction of POS-atoms such that every POS-atom r(§) € G is POS-well-
typed under P with respect to D and APz = APy for any two variables z,y € V3.
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Proposition 7.2.1 If P& G is a POS-goal and V. C DP, then P& G is V-admissible.
Furthermore, if P& F & GG is V-admissible, then P & E is V-admissible (as defined in Sub-
section 6.1.4).

We now define so-called V-pairs relating the triples of the £+ -derivation with the “hy-
pothetical” conjunctions of the simulating by derivation. A pair <Q.%.G, P& E&G>
is called a V-pair if P& F & G is V-admissible and | P.0. F 3" Q.%.0. Note that the
V-admissibility of P& F & G implies that P & F is V-admissible as required by the Haupt-

satz.

The next lemma states the two crucial properties of V-pairs, where the second property is
definitely nontrivial and follows from the Hauptsatz. This is one of the two places where
the Hauptsatz is needed in the proofs to come.

Lemma 7.2.2 [V-Pair] If P& G is a POS-goal, then </ P.).G, P& G> is a DP-pair.
Furthermore, if <Q..G, P& F & G> is a V-pair, then T[P & E]Y = T[1[Q, v, P|v]]V.

Proof. The first claim is obvious from the definitions and the preceding proposition.
To show the second claim, let <Q.v.G, P& E & G> be a V-pair. Then |P.0. F -4+~
Q.¥.0 and P & F is V-admissible since P & F & (G is V-admissible. Hence we know by the
Hauptsatz that T[P & E]Y = T[1[Q, ¥, Plv]]Y. |

Next we define so-called ——y -derivations on V-pairs relating -£- -derivations with their
simulating Ay _derivations:

< P> —y <>
if <?, F> and <?’, "> are V-pairs,
7 859 and P2 P

Proposition 7.2.3 Let P&(G be a POS-goal and <|P.0.G,P&G>—}p
<Qq.v.0, Q & E>. Then

Tt Qu, v, PIPF = TIQ & E]PY C S[P & G]PT.

Proof. Follows from the soundness of H-reduction and the V-Pair Lemma since Q|pp =
P. a

Next we will show that every £ -reduction issuing from a POS-goal P & G can be extended
to a —pp -derivation. This yields the soundness of G-reduction. The proof will force us
for the very last time to get involved with the tedious details of pyramid well-typedness.

Following a -8~ -derivation issuing from a POS-goal P & GG, one can build up incrementally
the simulating Ay _derivation together with the pyramids validating its D P-admissibility
using the following lemma.

Lemma 7.2.4 [Pyramid Construction] Let Il = 7, -7y be a pyramid and 1) be an
idempotent sort substitution such that Dy and Dr, UZr, are disjoint. Then:
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1. if Tvp C SVy, then
I = (1) -+ (mot))0

is a pyramid such that

/\’04:{0 if o € Dy and 7Tzl'+104:{m¢a if o € Dy

Ao+ 1 otherwise igte) otherwise
2. il Ty C SV and k € 1..n, then

' = (7ph) -+ (FpY) Tppmr - - o
is a pyramid such that

/\/a:{k—l if o € Dy and T{a:{ﬂﬂba ifoe Dy andi >k

Ao otherwise igte) otherwise.

Proof. Tedious but straightforward. a

Lemma 7.2.5 Let P& F & G & r(3) be V-admissible, | P.}. E <+*Q.1.0, and r(t)
P' & G' be a variant of a clause v € C such that DQ and DP' are disjoint. Then there
exists a variant r(f) - P" & G’ of 4 having no variables in common with P such that

1. P&P'&FE&5=t&G &G is V-admissible

2. lP&LIPO0.E&T=T <" Q&P .3 =1,

Proof. 1. Let Il = 7, - -7y be a pyramid such that: P is Il-admissible, P|y = 7P|y
and V C DP; for every s =t € F there exist a Il-admissible p such that Vu C Dr, P F
simypp and P Ft:p; and APz = APy for every r(4) € G & r(§) and for every two variables
z,y € Vu.

Furthermore, let r(f) + P" & G’ be a variant of v such that DP” = DP’ and r(f) + P" &
G’ has no variable in common with VP U Dx U Zx. Such a variant can be obtained by
renaming the sort variables of P’ since r(f) < P'& G’ has no value variable in common
with DP = D(] P) = DQ.

Finally, let r: & be a variant of a declaration in D such that P’ - ¢:& and & has no variable
in common with VP U Dr UZ~r.

Since r(§) is POS-well-typed under P with respect to D, there exists a sort substitution
such that P F §:¢&. Since T is fully inhabited, we can assume without loss of generality
that 1 is inhabited, D = V& U U eppr VP2, and, using Proposition 5.1.5, that Tt =
U,eyz VPx. Hence D¢ has no variable in common with VPUD7rUZr and ¢ is idempotent.
Since we know by our assumptions that APz = APy for every two variables @,y € V§, there
exists a unique number k such that Zv» C SV and k = 0 if Z¢) = 0.

Let II be obtained by either the first construction of the Pyramid Construction Lemma if
k = 0 or the second construction if & > 0. We now verify that P& P"& E& 5§ =1 & G & G’
is V-admissible with respect to II’.
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1.1. Since DP and DP’ are disjoint and all sort variables in P” are in D> and hence have
the same level with respect to IT', P& P” is a Il’-admissible prefix. By our assumptions
it is also clear that P& P” is normal and inhabited. Furthermore, V.C DP C D(P & P")
and hence

(P& Py =Ply =7'Ply =7 (P& P")|v
since D1 has no variables in common with P.

1.2. Let s =t € IJ. Then there exists a Il-admissible p such that Vu C Dr, P F s:m\n
and P t:p. Hence p is TI'-admissible, Vu C Dr C Dr’ and P& P" F s: (7] PSP (g )),u

since (7 /A/P&P”(s))'u = 7w\ by the construction of II.

Now let s; be a component of 5, t; be the corresponding component of £, and o; be the
corresponding component of &@. Since Vo; C D1, we know that o; is II’-admissible and
Vo; C Dx'. Since P" - t;: 0;, we know that P & P” - t;: o;. It remains to show that

P&Plll_SZ ( /\/P&P”( z))O-Z

We know that P F s;:¢p0;. Thus Plys, b s;i1po; and hence Plys, F s;: TAP(s lbaz since
(s Plvs; = Plys;. Thus we have P & s;:my\p(, )0y Since U eyy VPr = I¢ Q SV we
know that AP (s;) > k and hence

7T/\P(Sl.)¢ = Tﬁ\/P(Si) = 7"'i\/1:>&13”(5i)
for either construction of Il’. Thus P& P" - s;: (7 Tipepn s ‘))O'Z'.

1.3. Let r(@) € G. Then r(&) is POS-well-typed under P& P” with respect to D since
r() is POS-well-typed under P with respect to D. Furthermore, NPz = X' Py for every
two variables x,y € Vi since APz = APy and P has no variables in common with Dz.

Let r(@) € G'. Then r(@) is POS-well-typed under P & P with respect to D since r(@) is
POS-well-typed under P” with respect to D because every clause in C' is POS-well-typed
with respect to D. Furthermore, N'P"x = N P"y for every two variables z,y € V4 since all
sort variables in P” are in D% and hence have the same level.

2. We know that | P.0. F =" Q.¢.0. Since D(} P") = DP" is disjoint with D(] P), we
know that | P& [ P".0. E 55" Q & [ P". 4.0 and hence

JP&IP"0.E&FT=t5"Q& | P . 4§ = yt.

Since P» C PP and t has no variable in common with P, we know that ¢ = t. Since P" is
a variant of P’ such that P"” and P’ differ only in sort variables, we know that | P’ = | P".
Hence [P& [P 0. E& 5T =1 =" Q& [P .. 95 =1, o

Lemma 7.2.6 [Simulation] If <?, F'> is a V-pair and ? £+ 7' then there exists a con-
straint F' such that <7, F> —y <7’ F'>

Proof. Let <Q..G & r(3), P& E& G &r(5)> be a V-pair, r(t) + P'& G’ be a vari-
ant of v € C such that PQ and DP are disjoint, Q& | P'.1p. 5 = i <" Q"¢ 0, and
Q.0.G-E5Q . W.G&G'. By the preceding lemma we know that there exists a variant
r(t) + P" & G’ of « having no variables in common with P such that
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() P& P'&E&F=1&G&G" is V-admissible
(b) [P&IP"O.E&F=1 =" Q&P .5 =1,
Since P contains all variables in P& /& G & r(§), we know that
PYE&G&r(3) 2 PP &FE&F=1&G&G.
Furthermore, we have
VP& IP"0.E&ST =t =% Q.. 0
by plugging the two know — -derivations together. Hence
<Q' W G&G P&P'&E&5=t&G&G">

is a V-pair that can be obtained from <Q.¢.G & r(5), P& F & G & r(5)> by a —y -step.
O

Theorem 7.2.7 [Soundness] If P& G is a POS-goal and [ P.0.G 25" Q..0, then
TIHQ, ¢, PIIPY € S[P & GTPP.

Proof. Follows from the Simulation Lemma and Proposition 7.2.3. a

We call a triple Q.. FE don’t care if there exist P, £’ and V such that P& £’ is
V-admissible and P.0. E' 5" Q.v.E. By the Hauptsatz we know that if we apply E-
reduction to don’t care triples, all possible choices of what to do next how are don’t care
nondeterministic.

Theorem 7.2.8 [Don’t careness of Constraint Solving] Let P& GG be a POS-goal,
LP.0.G 5% Q.1p. H & r(F), and r(t) + P' &G’ be a variant of a clause in C' such that
DQ and DP' are disjoint. Then (Q & | P').1b.15 =t is don’t care.

Proof. We know that <| P.0.G, P& GG> is a DP-pair. Hence we know by the Simulation
Lemma that there exists a D P-admissible conjunction

P& E& H & r(5)

such that | P.0. F+"Q.v.0. Now we know by Lemma 7.2.5 that there exists a DP-
admissible conjunction (P & P") & (F & & = t) such that

IP&LP 0. E&E=T <" Q&P . ¢v.p5=T1.

Hence Q & | P'.¢p. 1§ =t is don’t care. a

Theorem 7.2.9 [Completeness] Let P & G be a POS-goal and § € S[P & G]PF. Then
there exists a complexity measure “||7||” such that
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1. ||P.0.G|| is defined
2. if [|Q.4.0|| is defined, then & € T[1[Q,, P]|P*

3. if P.0.G 2577 ||7|| is defined, and A is a POS-atom in ?, then there exists a clause
~ € (' such that

(a) G-reduction of 7 on A with v is possible
(b) if 7 is obtained from ? by G-reduction on A with v, then [|?'|| < [|7]].

Proof. By the Completeness Theorem for H-reduction we know that there exists a suit-
able complexity measure “||F||” for H-reduction, the POS-goal P & G and § € S[P & G]PF.
With that we define the complexity function “||7|” as follows:

17|l = min{||F]| | <P.0.G, P&G> —pp<?, F> A ||F|| is defined }
if there exists a conjunction F' such that ||F|| is defined and
<P.0.G, P&G>—5Hp<?, F>.

Now we verify the claims of the Theorem.
1. Obvious.

2. Suppose [|@Q.%.0]] is defined. Then there exists @’ and FE such that
<P.0.G, P& G>—5p <Q.9.0, Q" & E> and ||Q" & E|| is defined. Hence we know by the
Completeness Theorem for H-reduction that § € S[Q’' & E]PF = T[Q' & E]PF. By Propo-
sition 7.2.3 we know that T[1[Q, v, P]|PF = T[Q' & E]PF. Hence 6 € T[1[Q, v, P]JPF.

3. Let P.0.G 25" Q.¢.G1 & r(5) and ||Q.1.G1 & r(5)|| be defined. Then we know that
there exist a DP-admissible constraint P; & F & Gy & r(§) such that

<P.0.G, P&G> —rpp <Q.1.G1 &r(5), P& BE& Gy & r(5)>

and [|Q.v.G1 &r(3)|| = |P&E&G&r(5)||. Now let v be the clause that exists
for P & E'& G & r(5) according to statement (3) of the Completeness Theorem for H-
reduction. Furthermore, let r(f) < P’ & G’ be a variant of 4 such that DPQ and DP’ are
disjoint. Now it suffices to show that:

Lo (a) 3QL Y. Q.8 =1 -57Q" ..
2. (b) |Q". Y. GL &G < ||Q. .Gy & r(5)]].

By Lemma 7.2.5 we know that there exists a variant r(f) « P" & G’ of v having no variables
in common with P such that:

L () P&P'& E& S =T&G, &G is DP-admissible
2. () JPL& P 0. E&E =t <% Q&P .1p.p5 =1.

Hence

P&E&G &r(5) 2 PYP & E&F=i&G &G
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by a step on r(§) with v. By the Completeness Theorem for H-reduction we know that
|P&P'& E&E =t &G &G < ||PL & E &Gy &r(F)].

Hence § € S[P& P"& E& § =1 &Gy & G']PF and thus P& P" & F & § = { is satisfiable
in 7. Furthermore, we know by (c) that (P& P") & (E & § = t) is DP-admissible. Hence
we have claim (a) by (d) and the Hauptsatz.

Since we now have shown claim (a), we know that
<Q. .G &r(5), L& E&G &r(5)>
—spp <Q' V.G &G P& P'&E&F =t &G &G">.
Hence
1Q. .Gl & G| <||P&P'"&E&F=t&G &G < ||Q.1. Gy & r(F)].
a

Corollary 7.2.10 [Weak Completeness] If P& G is a POS-goal and § € S[P & G]PF,
then there exist () and 1 such that P.0.G £+*Q.+.0 and § € T[1]Q,, P]|PT.

7.3 Type Inference

In this section, let T" be a fully inhabited type specification, R be a decidable set of relation
symbols, and D be a finite and singular set of POS-declarations in £(1)%. As before, we
tacitly assume that all constraints are taken from L£(7)%.

We will show that it is decidable whether a POS-clause or a POS-goal are POS-well-typed
with respect to D. Together with our decidability results for type specifications this shows
that one can decide for a finite collection of syntactic objects whether they constitute a
POS-program.

In particular, we will investigate type inference, which generalizes the problem of type
checking. We will devise an algorithm that, given a POS-clause whose prefix consists of ap-
proximations, computes a prefix under which the clause is POS-well-typed. This algorithm
doesn’t perform perfect type checking in the sense of Chapter 2, in that it may fail although
the clause could be well-typed, and in that it may compute a prefix that is not most gen-
eral. This flaws only appear if the clause employs relations with polymorphic declarations.
Nevertheless, an implementation of this algorithm in the TEL programming system works
quite well for practical programs. Furthermore, the programmer can always prevent the
type inference algorithm from failing by giving more informative sort qualifications for the
critical variables.

I don’t know whether there is a perfect type inference algorithm for POS-programs in
general. However, even if there is one, it is not clear whether it would be useful in practice.
Our experiments with a more powerful, backtracking type inference algorithm were rather
frustrating since for clauses that couldn’t be well-typed (the ones you want to find in
practice) it was very slow and we didn’t succeed in making it produce good (that is, specific)
error messages.

Deciding whether a POS-atom is well-typed is easy:
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Proposition 7.3.1 A POS-atom r(5) is POS-well-typed under a prefix P with respect
to D if and only if there exists a declaration r:& € D such that ¢*'[§] C & has an upper
matcher.

To show that a POS-clause r(§) « P & G is POS-well-typed with respect to D, we need to
show that every atom in G is POS-well-typed under P with respect to D, and that there

exists a variant r: & of a declaration in D such that P §:4. The well-typedness of the
head r(§) can be decided with the method given in the following proposition.
Proposition 7.3.2 There exists a variant ©& of & such that P + §:4¢d if and only if
0 := LUM[o"[5] C &] exists and

1. if « € V&, then O« is a variable or —

2. if a, 3 € V& are distinct sort variables, then o # 05 or 8o = 05 = —.

Proposition 7.3.3 It is decidable whether a POS-clause is POS-well-typed with respect
to D. Furthermore, it is decidable whether a conjunction P & G is a POS-goal.

We now attack the problem of type inference. First, we extend the inclusion order by
defining the wildcard symbol as the greatest element. The following defines inductively a
partial order < on the set of all sort terms:

—<a, a<a,
§(@)<r if 1 =*&(T) and 5<7T.
We call a sort term proper if it doesn’t contain the wildcard symbol.
Proposition 7.3.4 The relation < is a partial order on the set of all sort terms such that:
1. if o <7, then <7
2. if 7 is proper and o<t, then o is proper

3. if 7 is proper, then o < 7 if and only if 0<71.

The following equations define a computable total function “oM7” from sort terms to sort
terms:

ocl_ =0
_Ar =
ol =«
EE)(F) = CENF) ¢ = €My, €F) =* (i), and n(7) = ()
ofr = — if none of the equations above applies.

Proposition 7.3.5 If ¢ and T are sort terms, then of7 is the infimum of ¢ and T with
respect to < and o7 < ofr. Furthermore, if ¢ and T are both proper, then ofr = oTT.
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Next we define a new decomposition relation “M 4y M on membership systems exploit-
ing the extended inclusion order <:

1. M& f(3):0 - M&&:{a/d}i
if f:i—¢&(@)eT and o =*(F)

2. M&aw:o&ka:r s M&a: (ofir).
Proposition 7.3.6 The decomposition relation M Ay M s terminating and confluent.

Proof. The termination of —— is obvious. Since the infimum function “cfr” is asso-
ciative, we know that —— is locally confluent and hence confluent. a

The following conditional equation defines a computable partial function “IP[M]” from
membership systems to normal and inhabited prefixes:

IP[M] := NF[P] if M " P and P is an inhabited prefix.

Note that TP[M] is unique if it exists since a prefix is normal with respect to 1y and 1
is confluent. If IP[M] exists, we call it the inferred prefix of M.

Proposition 7.3.7 If every sort term in M is proper and 1P[M & M'] exists, then
IP[M & M|+ M and TP[M & M'](z) is proper if x € VM.

If P is a prefix, then P_ denotes the prefix obtainable from P by replacing all occurrences
of the wildcard symbol with —.

Now we are ready to give the type inference algorithm by extending IP[] to clauses and
their bodies:

1. IP[r(5) « P& G =1P[IP[Q & 5: 5] &G if r:d € D and
Q:=P&{x:_ |2 e (VSUVG)-DP}

2. IP[P] = P if every sort term in P is proper

3. IP[P&r(5)&G]=IP[IP[P&§:0]&G] if r:d € D and & is ground

5) &
4. IP[P&r( )& G] = IP[IP[P&5:05]& G if r:éd € D, & is nonground, and § =
LUM[oPL[5] C 7).

To make this definition work, we assume here that the atoms in the body of the clause are
ordered and that no declaration in D contains the wildcard symbol. In practical programs
that are executed with the usual left-to-right strategy an atom order that is good with
respect to control is often also good with respect to type inference.

Proposition 7.3.8 [Type Inference] Let A «+ P& G be a POS-clause such that @) :=
IP[A + P & (] exists. Then:
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1. A+ Q&G is POS-well-typed with respect to D
2. if v € DP, then Qz<Px.

The next proposition states that our type inference algorithm is at least perfect for clauses
not containing polymorphic relations.

Proposition 7.3.9 [Monomorphic Type Inference] Let A + P & G be a POS-clause
such that every relation symbol occurring in it has a ground declaration in D. Furthermore,
let Q' be a prefix such that A + Q' & G is POS-well-typed with respect to D, Q'z<Px for
every v € DP, and DQ' = VAUDPUVG. Then @ := IP[A «+ P & (] exists, Q' < @, and
A+ @Q & G is POS-well-typed with respect to D.

Example 7.3.10 Consider the declarations
app: () X I(a) x I(«), sub:l{a) x ()

and the clause

sub(S,L) « app(X,S,XS) &app(XS,Y,L)

and think of app as a list concatenation relation and of sub as a sublist relation. Then the
type inference algorithm computes the prefix

S:l(a) & Lil(a) & X: 1(er) & XS: () & Y: 1(av).
Furthermore, for the clause
sub(S,L) « S:l(nat) & app(X,S,XS) & app(XS, Y, L)
the type inference algorithm computes the prefix
Sil(—) & Lil(a) & X: (=) & XS: (=) & Y: I(av).

Incidentally, TEL [Smo88b] would not accept this clause since TEL requires that for every
explicitly qualified variable in a clause the given sort term is an approximation of the
inferred sort term. a

Example 7.3.11 Consider the type specification
nat C int, 1l:nat, —1:int,
the declaration
m: o x |(a),

and the goal
m(1,L)& m(—1,L)

and think of m as a list membership relation. Then the type inference algorithm computes
the prefix L:I(nat) although the weaker prefix L:[(int) would suffice. Note that the inferred
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prefix L: [(nat) renders the goal unsatisfiable while L:I(int) & m(1, L) & m(—1, L) is satisfiable.
However, if the goal is rearranged to

m(—1,L)&m(1,L)

the type inference algorithm computes the most general prefix L:int. Now suppose we
extend the program with

mtwo L int, —2:mtwo, cons:a X I(a) = I(cr), r:mtwo.
Then the type inference algorithm will fail on the goal
m(1, cons(X, L)) & r(X)
although the goal is well-typed under its most general prefix
X:mtwo & L: I(int).
However, if the goal is rearranged to
r(X) & m(1, cons(X, L))

the type inference algorithm succeeds with the most general prefix. The difficulty is obvi-
ously caused by the fact that, for polymorphic atoms, the type inference algorithm relies
on the least upper matcher. Unfortunately, I don’t know of any weakening method for the
least upper matcher that, under agreeable restrictions, works in general. One difficulty in
coming up with such a weakening is that there are always infinite ascending chains like, for
instance, — C (=) CI(I(=))C ---. ]
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Appendix A

Mathematical Preliminaries

In this thesis we use some of the notations and results in the paper [Hue80]. The following
just collects a few slight deviations from and additions to this standard notation.

Let — be a binary relation on aset M. Then we use =~ to denote the reflexive and transitive
closure of —, and —% to denote the transitive closure of —. We call — terminating if
there are no infinite chains a1 — a1 — as — - - -

We assume that a decidable set of function symbols and a decidable set of variables
are given such that no variable is a function symbol. Every function symbol comes with
a nonnegative integer specifying the number of arguments it takes. Function symbols that
take zero arguments are called constant symbols. We assume that there are infinitely
many variables, and that, for every nonnegative integer n, there are infinitely many function
symbols taking n arguments.

A signature is a set of function symbols.

Terms are built from variables and function symbols as usual. We often write f(3) for a
term of the form f(s1,...,s,), where n > 0. In this case § denotes the tuple (sq1,...,,).
We assume that there is an empty tuple having zero components. A term is called a
Y-term if every function symbol occurring in it is in the signature ¥. We use Vs [V3] to
denote the set of all variables occurring in a term s [tuple §]. A term is called linear if no
variable occurs more than once in it.

A substitution is a total function 6 from terms to terms such that 0f(5) = f(65) for
every term f(§). If 6 is a substitution, the domain and the introduced variables of §
are defined as follows:

DO = {x| bz # x and z is a variable}

76 = [J V(b).
zeDI

A substitution 6 is called finite if D@ is finite. If V is a set of variables, the restriction

129
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of 0 to V is defined as the substitution 8|y satisfying

Ol = {ox ifreV

r  otherwise

for every variable x. A substitution € is idempotent if § = 6. Note that a substitution
is idempotent if and only if D8 and 78 are disjoint. We use

{x1/s1,.. ., 20/, }

to denote the substitution @ satisfying D8 C {xy,...,z,} and Oz; = s; for i € 1..n. Fur-
thermore, we use () to denote the identity function on the set of all terms (called the empty
substitution).

A term ¢ is called an instance of a term s if there exists a substitution 8 such that ¢ = 0s.

A rewrite rule is an ordered pair s — ¢ consisting of two terms s and ¢ such that V(¢) C
V(s). A rewrite system is a set of rewrite rules. If R is a rewrite system, we write s =p
t and call s — ¢t an instance of a rule of R if there exists a substitution 6 and a rule
u — v € R such that s = fu and t = fv. We write s — g t if s contains a subterm u such
that u =g v and ¢ can be obtained from s by replacing some (not every) subterm u with
v.

If Ris a rewrite system and 6 and 1) are substitutions, we write 8 —7% ¢ if 82 —} ¥a for
every variable . Note that 0s —}; ¥t if s =3 t and § =% 9.

A rewrite system R is called terminating if there are no infinite chains sy —pgr s2 —nr
83 _>R “ e
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