Entailment of Non-Structural Subtype Constraints

Joachim Niehren Tim Priesnitz

Programming Systems Lab, Universitat des Saarlandeshi®aken, Germany
www.ps.uni-sbh.de/{niehren,tim}

Abstract. Entailment of subtype constraints was introduced for qaigtsimplification

in subtype inference systems. Designing an efficient algorifor subtype entailment
turned out to be surprisingly difficult. The situation waarified by Rehof and Henglein
who proved entailment of structural subtype constraintset@oNP-complete for simple
types and PSPACE-complete for recursive types. For ergatinof non-structural
subtype constraints of both simple and recursive types heyed PSPACE-hardness
and conjectured PSPACE-completeness but failed in findiegraplete algorithm. In
this paper, we investigate the source of complications aaldte a natural subproblem
of non-structural subtype entailment that we prove PSPAGHEplete. We conjec-
ture (but this is left open) that the presented approach eaxtended to the general case.

Keywords: subtyping, constraints, entailment, automata.

1 Introduction

Subtyping is a natural concept in programming. This obseméhas motivated the
design of programming languages featuring a system forypakinference [8, 11, 2,
6, 18]. Simplification of typings turned out to be the key ssn what concerns the
complexity of subtype inference systems [7, 19, 17]. Sé\mrdnors proposed to sim-
plify typings based on algorithms faubtype entailmeni.e. entailment okubtype
constraints[22, 16]. First approaches towards subtype entailment segresuppose
[22, 16] that the problem could be solved efficiently. But firgdan efficient algorithm
for subtype entailment turned out to surprisingly diffici9t 20, 10, 18]. And in fact,
it still remains open whether subtype entailment is dedajatven if restricted to an
inexpressive type languages. The most prominent opengoisl the decidability of
entailment between non-structural subtype constraints.

Types A simple type is finitetree built from a signatureX’ of function symbols
(i.e. a ground term oveXr). A recursive type is an infinite tree ov&r. Most typically,

X’ contains the constanist and realand the binary function symbot for pairing.
The type of a pair of integers, for instance, is the finite trée int. The signature®
typically also provides constantsandT for theleast typeand thegreatest type

Many further types are of interest for programming: conigiant function types
T—7', record typeq f1:71, . .., fn:Tn }, intersection and union types, and polymorphic
types. These types fall out of the scope of the present plperder to keep subtype
entailment simple, we restrict ourself to types that aradiar infinite trees built from
a signatureX C {int,real x, L, T}.

Subtyping When considering types as trees, subtyping becomes alpairder
on trees. A typical subtype relationship ist < realwhich states that every integer
can be used as a real (its relevance is discussed in deptB])n The former subtype
relationship inducesntxint < reak real which means that every pair of integers can

X X X X
/7 \. /7 N\ /7 \ / N\
X int < X real X 1 < T X

/ N\ 7/ N\ / N\ - / N\

int real real real int int int int

Fig. 1. Structural versus non-structural subtyping

be used as a pair of reals. Both relationshipssamactural in that they relate trees of
the same shape. Subtyping becomes-structuralin the presence of a least type
or greatest typdl, sincel <7 and7<T hold for all typesr. The difference between
structural and non-structural subtyping is illustratedrigure 1.

Subtype EntailmenA subtype constraint is a logical description of types venios
terpretation is based on the subtype relation. We assunteohtgpe variableganged
over byz, y, z. A subtype constraing is a conjunction of ordering constraintst' be-
tween termg, ¢ built from variables and function symbols . Subtype entailment
is the problem to decide whether an implication— z<y is valid in the structure
of trees, i.e. whethep |= z<y holds. Four cases are to be distinguished: either we
interpret over finite trees (simple types) or else over fbgsnfinite trees (recursive
types); either we consideon-structural subtypingvherel, T € X or elsestructural
subtypingwherel, T ¢ 3. The differences between these cases can be illustrated at
the following example.

r<yxy Axxz<ly = 1<y

First, we consider structural subtyping with the signattire- {int, real x }. For finite
trees, the left hand side is unsatisfiable and thus entailim@lds. For infinite trees,
there exists a unique solution where bathndy are mapped to the complete binary
treeuz.z x z; thus entailment holds again. Second, we consider nootatal subtyp-
ing with the signaturel = {T, L, int, real x}. There are many more solutions than
for structural subtyping. For instance, the variable assignt mapping to L x (Tx_1)
andy to Tx (L xT) is a solution oft<yxy A xxxz<y which contradicts entailment of
<y for both finite and infinite trees.

Open ProblemEarly algorithms for subtype entailment were incompl&2, [L6,
18]. The situation was clarified by Henglein and Rehof whedweined the complexity
of structural subtype entailment: for simple types, it illBecomplete [9] and for re-
cursive types it is PSPACE-complete [10]. However, the deity of non-structural
subtype entailment remains open; it is at least PSPACE;batl, for finite and infi-
nite trees [20, 10]. It is even unknown whether non-stradtsubtype entailment is de-
cidable. Nevertheless, Rehof conjectures PSPACE-coenass (see Conjecture 9.4.5
of [20]).

Contribution In this paper, we investigate the source of complicatiameudying
non-structural subtype entailment. To this purpose, wedhice an extension of finite
automata that we caPP-automataand illustrate the relevance of P-automata to non-
structural subtype entailment at a sequence of examplasitdPrata can recognize
nonregular and even non-context-free languages, as we Shosvfact yields new
insights into the expressiveness of non-structural subéypailment.

Based on the insight gained by P-automata, we isolate a &ragaofi non-structural
subtype constraints for which we prove decidability of émtant. We consider the

signature{ L, T, x } and both cases, finite and possibly infinite trees respéytiVbe
only restriction we require is that and T are not supported syntactically, i.e. that
constraints such asxT<z arenot cannot be written.

The algorithm we present is based on a polynomial time réalu¢d the univer-
sality problem of finite automata (which is PSPACE-completde idea is that more
general P-automata are not needed for entailment of thectedtlanguage. Our al-
gorithm solves an entailment problem in PSPACE that wasgatd®®SPACE-hard by
Rehof and Henglein [10]. Its correctness proof is techhjdalolved; it shows why
nonregular sets of words — as recognized by P-automata —ecsafély ignored.

Related Entailment Problems$everal entailment problems for constraint lan-
guages describing trees are considered in the literatwve. of them were shown
PSPACE-complete in [14, 15]. The common property of thesdeATE-complete en-
tailment problems is that entailment depends on propedfiesgular sets of words
in the constraint graph. In contrast, nonregular sets haee ttaken into account for
non-structural subtype entailment.

In feature logics, several languages for describing feaaes (i.e. records types)
have been investigated for entailment. Entailment for Biyuzonstraints over feature
trees can be decided in quasi linear time [1, 21]. Orderimgsttaints over feature
trees [5, 4] can be considered as record subtype constr&ntailment of ordering
constraints over feature trees can be solved in cubic tirfBg However, entailment
with existential quantification is PSPACE-complete agau [

Entailment has also been considered for set constraietscfinstraints for union
and intersection types). Entailment of set constraintdh iritersection is proved
DEXPTIME-complete in [3] for an infinite signature. Entaémt of atomic set
constraints [15] is proved PSPACE-complete in case of amiiafisignature and
DEXPTIME-hard for a finite signature.

2 Non-Structural Subtype Constraints

We assume a signatute which provides function symbols denoted Ilfyeach of
which has a fixed aritar(f) > 0. We require that’ contains the constants and T,
i.e.ar(L) = ar(T) = 0. We also assume an infinite set of variables ranged over by
T,Y, 2, U, V,W.

Paths and TreesA pathis a word of natural numbers > 1 that we denote by,

o, 0, or o. Theempty pathis denoted by and the free-monoidoncatenatiorof paths
7 and~x’ by juxtapositionrz’, with the property thatm = me = 7. A prefixof a path
7 is a pathr’ for which there exists a pati’ such thatr = ='7"”. A proper prefixof
w is a prefix ofr but notr itself. If 7’ is a prefix ofr then we writer’ < = and if /
is a proper prefix ofr then we writer’ < «. The prefix closureof a set of pathT is
denoted apr(II), i.e.pr(Il) = {n | existst’ € II : = < '} and itsproper prefix
closurewith pr, (IT), i.e. pr,(IT) = {x | existst’ € IT : = < 7'}.

A tree 7 is a pair(D, L) where D is a tree domain, i.e. a non-empty prefixed-
closed set of paths, anl : D — X a (total) function determining the labels of
We denote the tree domain of a tredoy D, and its labeling function with... We
require that trees arearity consistentfor all pathsr € D, and natural numbers
1 <i<ar(L,(m)) iff mi € D,. Atree isfinite if its tree domain is finite andhfinite

otherwise. We denote the set of all finite trees mﬁrhé}” and the set of all trees with
Trees.

Non-Structural Subtypind.et <;, be the least (reflexive) partial order on function
symbols ofX which satisfies for alff € X

1L < < T

We definenon-structural subtypin@s a partial ordex on trees such that, <7, holds
for treesr, ry iff for all paths® € D, N D, it holds thatL,, (r) <;, L., (~).

Let NSy, be the structure with signatute U { <} whose domain is the sdtee;.
Function symbols ir2 are interpreted as tree constructors and the relation dyrmbo
as non-structural subtyping (which we also denote)y The structureNS@” is the
restriction of NSy, to the domain of finite treeﬁreé}”.

A termt is either a variable or a constructigtity, ... ,t,) wherety,...,t, are
terms,f € X, andn = ar(f). Of course,L andT are terms since they are constants in
X7, A non-structural subtype constraioter Y’ is a conjunction of ordering constraints
t1<to. We consider two cases for their interpretation, eitherstingctureNSs; or the
structureNS?E”. We mostly use flattened constraintf the following form:

) ou=a=f(z1,....zm) [2<y | P Ay (feX ar(f)=n)

The omission of nested terms does not restrict the expersssg of entailment. Terms
on the left hand side of an entailment judgment can be fladtéyentroducing new
variables for all subterms. Furthermorg, |= ¢, <t, is equivalent to)) A t1<z A
y<ts |= <y wherez, y are fresh variables.

Satisfiability and Entailment.et ¢ denote a first-order formula built from order-
ing constraints with the usual first-order connectives @td’(®) be the set ofree
variablesin @. We write &' in @ if there exists®” such thatd = & A &” up to
associativity and commutativity of conjunction. Suppdsst # is a structure with sig-
natureX’ U {<}. A solution of® in A is a variable assignmentinto the domain of4
such that? evaluates to true undet and«. We call® satisfiable inA if there exists
a solution for® in A. A formula @ is valid in A if all variable assignments into the
domain of A are solutions ofp. A formula @ entails®’ in A, written® =4 @' if
& — ¢ isvalid in A.

Restricted Languagé.et >, be the signatur¢ L, T, x } wherex is a binary func-
tion symbol. Arestricted subtype constrainishas the form:

@ n= u=uiXuy | ur<us | Y1 A @2

The following restrictions are crucial for entailment aswii# discuss later on: 1) The
constraintse=_1 andz=T are excluded. 2) The signatuk& does not contain a unary
function symbol. Nevertheless, the restricted entailnpeablem is not trivial. It is not

difficult to see and proved by Rehof and Henglein [10] thahiémtent of the restricted
language can express universality of non-deterministitefautomata; thus:

Proposition 1 (Hardness). Non-structural subtype entailment for the restricted con-
straint language is PSPACE hard for both structuféSs;, and ngj

SO if x € V(¢) thenz<zin ¢

S1 if z<yiny andy<ziny thenz<zin vy

S2 if x=f(z1,...,xn) ANx<y Ay=Ff(y1,...,yn) in¢then A”_ z;<y;inv
S3 notz=fi(z1,...,zn)INY, z<yiny, y=Ffo(y1,...,yn) i, andfi £, fo
S4 not A7 zi=f(...,yi+1,...) A yir1=xit1in ¢ wheren > 1andz = zn41

Table 1.Closure and Clash-freeness Propert®@S3for NSy and SO-S4for NS

We next recall a closure algorithm from [10] which decidee #atisfiability of
(unrestricted) non-structural subtype constraifitever an arbitrary signatur&’. In
Table 1, a set of propertieSOS4is given. The properties fdlslsgn and NSy, differ
only in an additional occurs check for the case of finite trg®9. Reflexivity and
transitivity of subtype are required by and (S1). The decomposition property of
subtyping is stated in32), and clash-freeness for labeling i83).

We call a (flattened) constraint closedit it satisfiesSGS2 PropertiesSO S2can
also be considered as a saturation algorithm which comphaetosureof a (flattened)
constraintyy in cubic time. A constraint is clash-freefor NSy it it satisfiesS3and
for NS if it satisfiesS354

Proposition 2 (Satisfiability). A constraint is satisfiable itNSy; (resp. NS}”) if its
closure is clash-free foNSy, (resp.NS@").

3 P-Automata

We now present the notion of R-automatonon which we will base our analysis of
subtype entailment. A P-automaton is an extension of a fanitematon with a new
kind of edges. Le#d = (A, Q, I, F, A) be a finite automaton witalphabetA, states
Q, initial statesI, final statesF’, andtransition edgesA. We write A - p —— ¢ for
stategp, ¢ € Q andw € A* if the automaton4 permits a transition fronp to ¢ while
readingn. Thus,.A recognizes the languag{A) = {r € A* | AFp "5 q, p €
I.q€F}.

Definition 3. A P-automator is a pair(.A, P) consisting of a finite automataod =
(A,Q,I,F,A) and a set ofP-edgesP C @ x (@ between the states of. The P-
automatorP recognizes the languaggP) C A* given by:

L(P)=L(A)U U{W(ag)*a |AFp "5 q-Dor 25 s, (s,q)eP, pel, reF}

A P-automaton recognizes all words in thes @ ul @ o 4 @
A

language of the underlying finite automaton. In
addition, it is permitted to use P-edges @as
edges, except that the first usage of a P-edge determinegtiloe pf the remaining
word to be read (the period igo in Definition 3). We draw P-edges as dashed lines.

|
__________ 1

Example 4. Consider the P-automaton with alphabgt,2}, states E
{q, s}, initial and final state;, edgesq L5 andgq -2, s and a sin-

gle P-edg€gs, ¢). The automaton can loop by using its P-edge muItipIyr
but the first usage determines a period (the wiood 2) of the remaining 1 {1 J2
word. Thus, the language recognized isJ 2* rather than(1 U 2)*. L _@

The length of a period fixed by a first usage of a P-edge needw hat bounded
by the number of states of the P-automaton. This fact raisettlowing problem.

Lemma 5 (Failure of context-freeness).There exists a P-automaton whose lan-
guage is not context-free (and thus not regular).

Proof. We consider the P-automaton with alphalét2}, states
{q,r, s}, initial states{q}, final states{r}, transition edgeg — r, e
r - randr - s and a single P-edge, ¢). This P-automaton @
is depicted to the right. It recognizes the languagfgor(n*) | = € :
1*2}. which is not context-free. Otherwise, the intersectiothwhe ! lg D
regular languagé*21*21*2 would also be context-free. But this in- |
tersection is the languadd™21"21"2 | n. > 0} which is clearly not | 12
context-free. !

®

L —

4 Path Constraints

We now introduce path constraints which express propestisgbtrees at a given path.
Path constraints are fundamental in understanding ergatlfor many languages of
ordering constraints [9, 10, 20, 14, 13, 15].

If 7is atree andr € D, then we writer.7 for the subtree ofr at =, i.e. D, =
{7 | 77’ € D;} and L, »(7") = L.(n7’) for all ' € D, . A subtree constraint
x.m=y requires that the domain of the denotationzafontainsr and that its subtree
at pathr is the denotation of.

Conditional path constraints of the first kind we use are @f fihm z70 <j,
y?mw. The question mark indicates conditionality depending lom ¢xistence of a
subtree. A path constraint?c <; y?x is solved by a variable assignment if
T € Dy(yy andmy € Dyyy implies Ly (m1) <p Lagy(m2). We freely omit
the conditionality?e since ite path does always exist. We also writés <;, f in-
stead ofdy (z?0 <, y AN y<f(T,...,T)), and, symmetricallyf <; z?c instead of
Wy (f(L,..., D)<y Ay <p 270).

Proposition 6 (Characterization of Entailment). For all u, v the following equiva-
lence is valid inNSy;, :

ulv < /\{U?TF <p vl | m apath}

We call a pathr acontradiction path for) = z<y if and only if 1) does not entail
7 <g y?=. In this terminology, Proposition 6 states that an entailijadgment
1 | x<y holds if and only if there exists no contradiction path for it

We need further conditional path constraints of the farta <P"y, z<P"y?0, and
277 <P"y70 which do not only restrick andy at the pathg ando but also at their pre-
fixes. The semantics of these constraints is defined in Tab®® that the path con-
straintz?7 <P"y entails3z (z.m=2 — z<y) but not vice versa. The reasornisr <P"y
constrainsz even if z.7 is not defined. For instance, the constrainat f (y) entails
271<P"y which — if z.1 is not defined — requires<_L.

For a restricted signature, the semantics of conditionl @anstraints is much less
ad hoc than it might seem at first sight. This is shown by Lemnfar &e signature
Y, ={L,T,g} whereg is a function symbol witkar(g) = n.

<Py & rza<lyV \/7r,<7r ' <L
z<P"y?0 < z<y.oV \/0,<O T<y.o
2?m<PTy?0 + FJu(z?7m<P"u A u<P"y?0)

Table 2. Semantics of conditional path constraints

Lemma 7. Forn > 1, signatureX’,, = {L, T, g}, pathst € {1,...,n}*andr’ < 7:
u?r<P'v — u?n’ < g and u<P'v?r — g < v?7’ are valid inNSy, .

Lemma 8 (Subtree versus conditional path constraints).For n > 1, paths# €
{1,...,n}* and variablest, y the following equivalences hold in the structisy, :

ztn<Ply < Fz(x<z A z.m=y), x<P'y?r < Fz(2<y A z.m=x)
u.nr=v < ulr<Ply A v<Pluln

Proof. We only prove the implication from the right to the left in ttérd equivalence.
Assume that?7<P"v A v<P"u?x. For arbitraryr’ < 7, Lemma 7 proves the validity
of u?r’ <; g andg <;, u?x’. Thus,u.w must be defined, and heneer = v.

Lemma 9 (Strange loops raising P-edges)or all variable u, v, all pathso < ,
andk > 0 the following implication is valid inNSy;, for all £ > 0:

k k

w?n<Po Au<Po?r — u?ln o < vilnto

Proof. By induction onk. Letk = 0. Sinces < 7, Lemma 7 proves that?7r<P"v A
u<P'o?r entailsu?o <;, g A g <g, v70 which in turn validates?c <;, v?0. Suppose
k > 0 and thatu?n<P"v A u<P"v?x is valid. By definition,u?n<P'v + wu.n<vV
Vipcrwo<L andv<P'v?rn < uv.w V'V, T<u.p hold. If there existy < m
such thatu.p<1 or T<u.p thenu.p<v.p is entailed for some prefix of. In this
caseu?nto <, v?rko follows from Proposition 6. Otherwise,m<v A u<v.rm is
valid. Letw’,v' be such that/ = u.m andv’ = u.wr. Thus,u'<v A v.r=v" holds
and entailsu’?7<P"y' by Lemma 8. Symmetricallyy’<P"+'?7 is entailed, too. The
induction hypothesis yieldg' ?7* o <; v'?7* 1o and thusu?r*o <; v?7to.

5 Entailment and P-Automata

We continue with the signatur®,, = {L, T, g} wherear(g) = n. We fix two vari-
ablesz, y globally and consider a constraipitwith =,y € V(). In Table 3, we define
a finite automatom,, and a P-automatoRy, = (A, Py) for the judgment) = z<y.
Note thatA,, and thusP,, depend on our global variablesandy.

The idea is that the P-automat®), recognizes alsafepaths, i.e those paths that
are not contradiction paths fgr = z<y. In fact, the definition of°;, does not always
achieve this goal. This is not a problem for the purpose af plaiper since our theory
will be based exclusively on the regular approximatiorif provided by the finite
automatonA,,. Even though the construction rules given in Table 3 applhovit
further restriction ta), an automatorP,, may well be useless if is not closed and
clash-free, or containg andT.

Signature Y, ={L1,T,g} ar(g) =n

Alphabet A, ={1,...,n}

States Qu = {(u,v) | u,v € V() }

Intial States Ipy = {(% y)}

Increase (u,v) — (u',v) € Ay if u<u'in

Decrease (u,v) = (u,v') € Ay if v'<vin

Decomposition (1, 0) = (us, v3) € Ay } if {Zzg((;?,’......,711)fln))ilnn1;f),7

u,v) € Fy andi € A,

. u,u) — (u,u) € A P

Equality EU: u; c Fd;(yu) € Ay } ifie A,

P—Edges ((u,v), (v,u)) € Py if u,v € V()

Table 3. The finite automatoody, = (A, Qy, Iy, Fy, Ay) and P-automatofAd,, Py) for ¢ = <y

Given a constraing over the signature,,, the automat&,, and.A,, constructed
in Table 3 recognize words over the alphapkt. . . , n}. Its states are pairs of variables
(u,v) in V(¢). The initial state igx, y), i.e. the pair of variables for which entailment
is tested. Ordering constraints<v correspond te-transitions in the rulefncrease
andDecrease TheDecompositionrule permits transitions that read a natural number
i € A, and descend to thith child, in parallel for both variables in a state. States
to which decomposition applies are final. Tlquality rule requires that statés,, u)
are final and permitted to loop into itself. The automafey featuresP-Edgesfor
switching the two variables in a state.

Proposition 10 (Soundness)Given a constrainty with z,y € V(1) and signature
XY, wheren > 1, no word recognized by the P-automatBp is a contradiction path
for ¢ = 2<y.

Proof. We first show thair € L(.A,) implies entailment) = z?r <, y?7 to hold.
Clearly, if Ay F (u,v) — (u/,v') theny entailsu?r<P"u’ andv'<Prv?7. If 7 €
L(Ay) due to a transitiond, + (z,y) — (u,v) € F, which ends in a final state
(u,v) created by théecompositionrule, thenmi € L(Ay) for all i € A,. Thus,
entailsz?mi<P"u andv<P"y?mi for some variables, v which in turn entailsc?7 <j,
y?m (Lemma 7). Ifr € L(Ay) because a transitiod, - (z,y) — (u,u) € Fy
ends in a final stateu,) contributed thé&Equality rule theny entailsz?7 <P"y?7 and
thusx?m <;, y7m.

It remains to verify that P-edges cannot contribute a cditt@n path. If a path
is contributed by a P-edge t6(P) then it has the formr(og)*o such thatd,, +
(z,y) — (u,v) 2> (v,u) for someu,v € V(¢) (see Definition 3 and thB-Edges
rule in Table 3). FromA,, + (u,v) 7% (v,u) it follows thats) entailsu?oo<P'v A
u<P"v?0p. Thus, Lemma 9 on strange loops implies thaentails u?(oo)*o <;,
v?(op)ko. SinceAy F (z,y) — (u,v) it follows that+ entailsz?r(oo)fo <,
y?m(o0)*o, too.

Example 11.For the signature’s the judgmentpy: x<yxy A zxz<y |= z<y does
not hold if x andy are distinct variables. Entailment is contradicted by thiatgon of

z<yxy A rxz<y pE <y / ()
) LA
I\ A

I

Entailment can be : (1)2 s © s

contradicted at path2, 21, . . . | N 4N
|

Entailment holds.

—0—0—0n—u0n—X

|+
|
©)

Fig. 3. The finite automaton and P-automaton for Example 12 and ldrgguages

@2 Which mapse to L x(Tx1) andy to Tx(LxT). The P-automatof®,, illustrated
in Figure 2 explains what happens. The finite automatgn recognizes the language
{e} only butP,, has an additional P-edge frofy, z) to (z,y) by which it can also
recognize the words ih" U2*. Since P-edges are not nornea¢dges, the P-automaton
does not recognize the word® nor 21 which are in fact contradiction paths.

In Figures 2 and 3, we depict the language recognized by amdPraton over
the alphabef1,...,n} as an n-ary tree: a word recognized by the underlying finite
automaton corresponds to a node labeledkbg word recognized by the additional
P-edges only is indicated by a node labeled wiffor strange loop). All other words
correspond to a node labeled wittffor contradiction).

Example 12.For the signatureZ; = {L, T, g} with ar(g) = 1 the entailment judg-
menty; : 2<g(y) A g(z)<y = z<y holds. This might seem surprising since the
only difference to Example 11 seems to be the choice of a uresus a binary func-
tion symbol. The situation is again clarified when consiugrihe P-automaton. The
automatonP,, is given in Figure 3. In contrast t8,,, in Figure 2, the alphabet of
P,, is the singleto{1}. Thus, its languag€(P,,) = {1}* is universal. Hence, there
cannot be any contradiction path fpr &= z<y, i.e. entailment holds.

Examples 11 and 12 illustrate that P-edges have less effieehtailment in ab-
sence of unary function symbols. In fact, we show in this pdipat P-edges do not
have any effect on entailment for the restricted languagenknore importantly, this
property depends on the restriction that constraiatd. or u=T are not supported.

The context freeness failure for languages of P-automata ha
counterpart for non-structural subtype entailment, ewgritfe re- 15
stricted language. This is illustrated by the judgment: z<u A
v<y A u=uxy A v=vxz = z<y. The language(P,,) is not _)@
context-free sinc®,,, is exactly the P-automaton considered in the

|

|
proof of Lemma 5. On the other hand side, the non-contexifaee | ‘9
of L(P,,) does not force entailment to hold. :

|

|
6 Deciding Entailment in PSPACE 'L_@

We now show how to decide entailment for the restricted Bnait problem with
signatureX’s. Our algorithm requires polynomial space and applies tb Bouctures
NSs;, or ngj respectively. The only difference is hidden in the satiglitgtiest used.
Let NSbe either of the two structures.

Proposition 13 (Characterization). Let ¢ be a closed (restricted) constraint with
z,y € V(p) which is clash-free with respect tS. Then the entailment judgment
¢ = <y holds inNSif and only if the seiL(.A,) is universal, i.eL(A,) = {1, 2}".

Proof. If L(A,) = {1,2}* then no contradiction path far = <y exists (Proposi-
tion 10) and hence = =<y holds (Proposition 6). Proving the converse (complete-
ness) is much more involved. This proof is sketched in Se@&io

Theorem 14 (Decidability and Complexity). Non-structural subtype entailment in
the restricted language is PSPACE-complete for both sirestNSy,, and NS?E’Z

Proof. Proposition 1 claims that entailment is PSPACE-hard. Foidileg ¢ |= z<y,

we compute the closure @f in polynomial time and check whether it is clash-free

with respect taV'Sy;, or NS}Z respectively (Proposition 2). For closed and clash-free
¢, entailment holds if and only i£(.A,) is universal (Proposition 13). This can be

checked in PSPACE sincd,, is a finite automaton which can be constructed from

in (deterministic) polynomial time.

7 Completeness Proof

We prove the completeness of the characterization of email in Proposition 13.
For a constraintp of the restricted language, the idea is that we can freelgnekt
the P-automatoA,,, P,,) with additional P-edges without affecting universalithig
motives to consideration of a languageace, which is recognized by the P-automaton
(Ayp, Qux Q) WhereQ,, is the set of all states od,,.

Definition 15. We define the séBasg, of basesand Trace, of tracesof ¢ = =<y by:
Basg = {r | Ju,v: A, F (z,9) — (u,v)}
Trace, = U{pr(or*) | or € Base}

Lemma 16. The sefpr,(Basg,) is equal to the sef(Ay).

Y a?e<Ply ifx<yiny

Y Ex?mi<Ply if Y Fe?n<P zandz=f(z1,...2i...,2n), z:<yiny
Y y?e ifx<yiny

Y x<PTy?tmi if Y b 2<PTy?randz=f(z1,...2i...,2n),2<z; INY
Y x?r<Py?n’ if 3z) F 2?w<P z andy F <Py ?n’

Table 4. Syntactic Support

Proof. Showing that € L(A,) impliese € pr,(Base) is left to the reader. Ifri €
L(A,) thenA, F (z,y) N (u,v) for some (final) statéu, v). Thus,ri € Basei.e.
™ € pry(Basg). For the converse, assumec pr,(Base). Hence,ri € Base, for

somei. There exists transitiond,, - (z,y) — (u,v) — (u',v") with a final step
done by thdDecompositionrule in Table 3. Thus(u, v) € Fy, i.e.m € L(A,).

Lemma 16 implies thaf(P,) C Trace,. The next proposition states thaiifA,,)
is not universal then neithdirace, nor L(P,) are universal.

Proposition 17 (Escape).If o ¢ L(A,) then there is a patl ¢ Trace, witho < p.

Proof. We assumer ¢ L£(A,) and definep := 01/°I2 where|o| denotes the length
of o and1™ a word which consists of exactly letters1. We provep ¢ Trace, by
contradiction. Suppose thatc Trace,. By definition there exists paths = such that
om € Base, andp € pr(on*). Henceo € pr(on*) such that eithes < om or or<o.
It it not possible thatr < or since otherwiseg € pr,(om) C pr,.(Basg) which
by Lemma 16 contradicts ¢ L(A,). Henceor<o such thatr = orog for some
pathog. In combination withp = ¢1/712 € pr(on*) this yieldsoy117'2 € pr(z*).
Furthermore|n| < |orr| < |o|. The key point comes nowt1/?/2 € pr(z*) and
|7| < |o| imply = € 1* which is impossible since must contain the lette2. Hence,

o ¢ Trace,.

Lemma 18 (Contradiction). Let ¢ be closed and clash-free, ¢ L(A,), and o ¢
Trace,: if o<p theny is a contradiction path forp |= z<y in NS,

Proof of Proposition 13 continued (Completeness)If £(A,) is not universal then

there exists a path<p such thab ¢ L(A,) andp ¢ Trace, according to the Escape
Proposition 17. By Lemma 18, there exists a contradictioth pehich proves that

entailmenty = 2<y cannot hold.

8 Proof of the Contradiction Lemma

In a first step, we refine the contradiction Lemma 18 into Len2bhaThis requires
a notion ofsyntactic supporthat is given in Table 4. Ifx is a path constraint then
the judgmenty + u reads as¢ supportsy syntactically’. Syntactic support fap
refines judgments performed by the finite automatbn For instance, it holds for a
closed and clash-free constraipthaty + z?7<P'y?r iff A, & (z,y) — (u,u).
Judgments likey - 2?7 <P"y or ¢ F 2?7w<P"y?x’ cannot be expressed bY,.

Lemma 19. For all path constraints if ¢ - u theny = p holds.
Definition 20. We define two functions, andr,, for the judgmenty = z<y.

ly(0) = max{r | 7<o A Fu.p F 2?n1<P"u} (left)
ro(0) =max{r | 7<o A Ju.p - v<PTy?nl} (right)

Note that if/, (o) < r,(o) thenl,(o) is the maximal prefix ot in L(A,). Sym-
metrically, if r, (o) < I,(o) thenr, (o) is the maximal prefix of in L(A,,).

Lemma 21 (Contradiction refined). Lety be a closed and clash-free constraint and
o<y paths such that ¢ L(.A,) andp ¢ Trace,.

1. ifl,(0) < r (o) thenp A z.0=T A y.o=f x is satisfiable.
2. ifl,(0) > ry(o) thenp A z.0=x A y.o=; L is satisfiable.

Trivially, Lemma 21 subsumes the contradiction Lemma 1& pitwof of Lemma
21 captures the rest of this section. Since both of its casesyenmetric we restrict our-
self to the first one. We assume thais closed and clash-free and satisfieg € V().
Given a fresh variable we define a constrairs, o) that is satisfaction equivalent to
v A z.o=u A y.o=g x and in addition closed and clash-free.

Definition 22. We call a setD C {1,2}* domain closedf D is prefixed-closed and
satisfies the following property for all € {1,2}*: «1 € D iff 2 € D. Thedomain
closuredd D) is the least domain closed set containiig

Definition 23 (Saturation). Let ¢ be a constraintz,y € V(p), andp € {1,2}*.
For everyz € {z,y} andw € dd({pl, 02}) let ¢: be a fresh variable and/(y, o) the
collection of these fresh variables. The saturasgn o) of ¢ at pathp is the constraint
of minimal size satisfying properties a-f:

. ¢ins(p, o)

forallgz € W(p,0) : =01 X iNS(p,p) if T <p

. Gy=01 Xy in S, 0)

forallgz € W(p, 0),u € V(o) : gE<uin s(p,) if p - 2?n<P'y

. forallgz € Wy, 0),u € V(p) : u<g:ins(p, o) if ¢ Fu<P 2?7
forall g, g € W(p,0) : @&, <q. ins(ip, o) if ¢ - 220<P"2'?0/

D Q0O T

—

Lemma 24. If ¢ is closed and clash-free thesip, o) is also closed and clash-free.

Lemma 24 would go wrong for unrestricted constraints comgi L. or T. Its
proof is not difficult but tedious since it requires a lot oeaistinctions. We omit it
for lack of space. Instead we note the following lemma whiebpite of its simplicity
will turn out to be essential.

Lemma 25. Leto ando be paths withv<oo. If o#£¢ theno € pr(o*).

The proof of Lemma 25 is simple and thus omitted. We can nowcsg the final
step in which we show tha(y, o) A g;=T is also closed and clash-free. Closedness
follows trivially from Lemma 24 but clash-freeness reqaimeork. The only clash rule

2<yxy A "~

exy<y A} = 1<y | / \

ZXTSZ | 9 \
| @ . / \ % \ % \

Entailment holds. l \ ANANIVANVAN
1,2
O~
O,

Fig. 4. An example for the general case

which might possibly apply is S3. Since does not occur irs(¢, ¢), S3 can only be
applied withgy=T and T £, x, i.e. if there arew, w1, wy € V(S(¢, 0)) such that:

w=w1 Xwy i S(p, 0) andg; <w in s(p, o)

We have to distinguish all possible choiceswo& V(s(y, 0)) but restrict ourself to the
more interesting cases wheree W(yp, o). In this caseqy<w was added ts(¢p, o)
by rule fin Definition 23. Sincev=w; Xws in Sy, 0) andw € W(y, p) it follows that
w = ¢}, orw = @ for somer < g andz € {z, y}.

1. Casew = g): Rule frequiresp - 270 <P"y?0 for some prefixo <p. This is equiv-
alent toA, - (z,y) %+ (u,u) for someu. The Equality rule in the automaton
construction yields4,, - (z,y) 25 (u,u). Thus,o € L(.A,) which contradicts
o ¢ Trace,.

2. Casew = g% wherew < p and z € {z,y}: Rule f requires the existence of
0,0 ,n' such thatp - z70'<P"2?n' wherep = ¢'oc andw = n’o. Fromn < p it
follows thatn'c < o’o and thust’ < ¢'. Leto # ¢ be such that’o = ¢'. Thus,
7’0 < 7'oo which in turn yieldss < oo. The key point comes now. We can apply
Lemma 25 in order to deduee € pr(o*). Henceo = ¢'c = n'oo € 7'opr(o*) C
pr(7'o*). Sincep F x70' <P"27x' there exists, such thatp - z?¢' <P"u; together
with our assumptiori, (o) < r,(o) it follows that A, F (z,y) 7, (u,v) for

someu,v. Hence o' € Basg, i.e.n'o € Baseg,. Combined witho € pr(n’o*), we
obtaing € Trace, in contradiction to our assumption.

9 Conclusion and Future Work

We have solved the problem of non-structural subtype engait over the signature

{L, T, x} for the restricted language wheteand T are not supported syntactically.
We have proved PSPACE-completeness both for simple andsieeuypes. We have

presented the notion of a P-automaton and illustrated p®itance for understanding
non-structural subtype entailment. Because of its P-ealfeautomaton can recognize
non context-free languages. In what concerns non-stalctubtype entailment for the

restricted language, we have proved that non regularitypbessafely ignored.

We believe that our methods can be extended to the full pmobfenon-structural

subtype entailment. However, the full problem may well taw to be more complex
then PSPACE-complete. More research is needed to answegubstion finally. The
main problem in the general case is that we have to take Psédigeaccount. This is
illustrated by the following example:

w1 x<YxXy A zxy<y A zxT<z | z<y

Entailment holds even though the language of finite automfatop, given in Figure 4
is not universal. The construction rules for this automatoe more involved than in
Table 3 sincé has to be accounted for. A P-edge fro¢my) to (y, z) has to be added
even though only one of the two variables is switched.

References

1.

2.

10.

11.

12.
13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

H. Ait-Kaci, A. Podelski, and G. Smolka. A feature-basedstraint system for logic programming
with entailment.Theoretical Computer Sciencg&22(1-2):263-283, Jan. 1994.

R. M. Amadio and L. Cardelli. Subtyping recursive typeSCM Transactions on Programming
Languages and Systeni$(4):575-631, September 1993.

W. Charatonik and A. Podelski. Set constraints with seetion. InProceedings of the 12 IEEE
Symposium on Logic in Computer Sciergages 352—-361, Warsaw, Poland, 1997.

J. Dorre. Feature logics with weak subsumption cormggainAnnual Meeting of the ACL (Associ-
ation of Computational Logicspages 256—263, 1991.

J. Dorre and W. C. Rounds. On subsumption and semiundficat feature algebras. IRroceedings
of the 8" IEEE Symposium on Logic in Computer Scierpages 300-310, 1990.

J. Eifrig, S. Smith, and V. Trifonow. Sound polymorphipgyinference for objects. IACM Confer-
ence on Object-Oriented Programming: Systems, LanguagesApplications1995.

. J. Eifrig, S. Smith, and V. Trifonow. Type inference focuesively constrained types and its appli-

cation to object-oriented programminglec. Notes in Theoretical Computer Scientel995.

Y. Fuh and P. Mishra. Type inference with subtypElseoretical Computer Scienceé3, 1990.

F. Henglein and J. Rehof. The complexity of subtype emilt for simple types. IRroceedings of
the 12" IEEE Symposium on Logic in Computer Sciemsges 362—372, Warsaw, Poland, 1997.
F. Henglein and J. Rehof. Constraint automata and theleaity of recursive subtype entailment.
In Proceedings of the 25 Int. Conf. on Automata, Languages, and ProgrammligCS, 1998.

J. C. Mitchell. Type inference with simple subtypeBhe Journal of Functional Programming
1(3):245-285, July 1991.

J. C. Mitchell.Foundations for Programming LanguageBhe MIT Press, Cambridge, MA, 1996.
M. Miller, J. Niehren, and A. Podelski. Ordering coastts over feature treesConstraints, an
International Journal, Special Issue on CP;%{1-2), Jan. 2000. To appear.

M. Muller, J. Niehren, and R. Treinen. The first-ordezdty of ordering constraints over feature
trees. INIEEE Symposium on Logic in Computer Sciemages 432443, 21-24 June 1998.

J. Niehren, M. Milller, and J.-M. Talbot. Entailment tdric set constraints is PSPACE-complete.
In IEEE Symposium on Logic in Computer Sierizes, July 1999. to appear.

F. Pottier. Simplifying subtyping constraints. Pnoceedings of the ACM SIGPLAN International
Conference on Functional Programmingages 122—-133. ACM Press, New York, May 1996.

F. Pottier. A framework for type inference with subtyginn Proceedings of the third ACM SIG-
PLAN International Conference on Functional Programmipgges 228-238, Sept. 1998.

F. Pottier.Type inference in the presence of subtyping: from theorydotjge PhD thesis, Institut
de Recherche d’Informatique et d’Automatique, 1998.

J. Rehof. Minimal typings in atomic subtyping. ACM Symposium on Principles of Programming
LanguagesACM Press, 1997.

J. Rehof.The Complexity of Simple Subtyping SystefBD thesis, DIKU, University of Copen-
hagen, 1998.

G. Smolka and R. Treinen. Records for logic programmirgurnal of Logic Programming
18(3):229-258, Apr. 1994.

V. Trifonov and S. Smith. Subtyping constrained types.Pioceedings of the™$ International
Static Analysis Symposiywolume 1145 o NCS pages 349-365, Aachen, 1996.

