Efficient Logic Variables for Distributed Computing

SEIF HARIDI

Swedish Institute of Computer Science (SICS)
PETER VAN ROY

Université Catholique de Louvain and SICS
PER BRAND

Swedish Institute of Computer Science
MICHAEL MEHL and RALF SCHEIDHAUER
German Research Center For Artificial Intelligence (DFKI)
and

GERT SMOLKA

Universitat des Saarlandes and DFKI

We define a practical algorithm for distributed rational tree unification and prove its correctness
in both the off-line and on-line cases. We derive the distributed algorithm from a centralized one,
showing clearly the trade-offs between local and distributed execution. The algorithm is used to
realize logic variables in the Mozart Programming System, which implements the Oz language
(see http://www.mozart-oz.org). Oz appears to the programmer as a concurrent object-oriented
language with dataflow synchronization. Logic variables implement the dataflow behavior. We
show that logic variables can easily be added to the more restricted models of Java and ML,
thus providing an alternative way to do concurrent programming in these languages. We present
common distributed programming idioms in a network-transparent way using logic variables. We
show that in common cases the algorithm maintains the same message latency as explicit message
passing. In addition, it is able to handle uncommon cases that arise from the properties of latency
tolerance and third-party independence. This is evidence that using logic variables in distributed
computing is beneficial at both the system and language levels. At the system level, they improve
latency tolerance and third-party independence. At the language level, they help make network-
transparent distribution practical.

Categories and Subject Descriptors: D.1.3 [Programming Techniques]: Concurrent Program-
ming—distributed programming; D.3.2 [Programming Languages|: Language Classifications—
concurrent, distributed, and parallel languages; constraint and logic languages; data-flow lan-

This research is funded in Sweden by the Swedish national board for industrial and technical
development (NUTEK) and SICS. This research is partially funded in Belgium by the Walloon
Region. The development of Mozart at DFKI is supported by the BMBF through Project PER-
DIO (FKZ ITW 9601).

Author’s addresses: S. Haridi and P. Brand, Swedish Institute of Computer Science, S-164 28
Kista, Sweden; email: {seif; perbrand}@sics.se; P. Van Roy, Department of Computing Science
and Engineering, Université Catholique de Louvain, B-1348 Louvain-la-Neuve, Belgium; email:
pvr@Qinfo.ucl.ac.be; M. Mehl and R. Scheidhauer, German Research Center for Artificial Intel-
ligence (DFKI), D-66123 Saarbriicken, Germany; email: {mehl; scheidhr}@dfki.de; G. Smolka,
Universitdt des Saarlandes, D-66123 Saarbriicken, Germany; email: smolka@ps.uni-sb.de.
Permission to make digital/hard copy of all or part of this material without fee is granted
provided that the copies are not made or distributed for profit or commercial advantage, the
ACM copyright /server notice, the title of the publication, and its date appear, and notice is given
that copying is by permission of the Association for Computing Machinery, Inc. (ACM). To copy
otherwise, to republish, to post on servers, or to redistribute to lists requires prior specific
permission and/or a fee.

2 . Seif Haridi et al

guages; multiparadigm languages; D.3.3 [Programming Languages|: Language Constructs
and Features—concurrent programming structures; constraints; F.1.2 [Computation by Ab-
stract Devices]: Modes of Computation—online computation; F.3.2 [Logics and Meanings
of Programs|: Semantics of Programming Languages—operational semantics; F.3.3 [Logics
and Meanings of Programs]: Studies of Program Constructs

General Terms: Algorithms, Languages, Theory

Additional Key Words and Phrases: Distributed algorithms, Oz, Mozart

1. INTRODUCTION

Logic variables were first studied in the context of logic programming [Robinson
1965; Warren 1977]. They remain an essential part of logic programming and
constraint programming systems [Van Roy 1994; Jaffar and Maher 1994]. In the
context of the Distributed Oz project, we have come to realize their usefulness
to distribution [Haridi et al. 1997; Smolka et al. 1995]. Logic variables express
dependencies between computations without imposing an execution order. This
property can be exploited in distributed computing;:

—Two basic concerns in distributed computing are latency tolerance and third-
party independence. We say a program is third-party independent if its execution
is unaffected by sites that are not currently involved in the execution. We show
that using logic variables instead of explicit message passing can reduce the effect
of both concerns with little programming effort.

—With logic variables we can express common distributed programming idioms in
a network-transparent manner that results in optimal or near-optimal message
latency. That is, the same idiom that works well in a centralized setting also
works well in a distributed setting.

The main contribution of this article is a practical distributed algorithm for rational
tree unification that realizes these benefits. The algorithm is used to implement
logic variables in the Mozart system. We formally define the algorithm and prove
that it satisfies safety and liveness properties in both the off-line and on-line cases.

From the programmer’s point of view, the use of logic variables adds a dataflow
component to program execution. In a first approximation, this component can be
completely ignored. That is, it is invisible to the programmer whether or not a
thread temporarily blocks while waiting for a variable’s value to arrive. Programs
can be developed using well-known techniques of concurrent object-oriented pro-
gramming [Lea 1997]. In a second approximation, the dataflow component greatly
simplifies many concurrent programming tasks [Haridi and Franzén 1999; Bal et al.
1989].

This article consists of two parts that may be read independently of each other.
The first part, Section 2, motivates and discusses in depth the use of logic vari-
ables in concurrent and distributed programming. Section 2.1 introduces a general
execution model, its distributed extension, and the concept of the logic variable.
Section 2.2 gives the key ideas of the distributed unification algorithm. Section 2.3
shows how to express basic concepts in concurrent programming using logic vari-
ables. Section 2.4 expresses common distributed programming idioms in a network-

Logic Variables for Distributed Computing . 3

CU agorithm
(Section 4)
A Generalizeto
Extend to model 3 Proof that distributed setting
redundant work | ' RCU iscorrect

of DU algorithm | 1 (Section 6.2)

! Proof that DU implements
RCU algorithm RCU (Section 6) DU algorithm
(Section6.2) ~ T TTTTTTTTOT ™ (Section 5)

Fig. 1. Defining the algorithm and proving it correct.

transparent manner with logic variables. We show that the algorithm provides good
network behavior for these examples. Finally, Section 2.5 shows how to add logic
variables in an orthogonal way to Java and ML, taken as representative examples
of object-oriented and functional languages.

The second part, Section 3 and following, defines the distributed unification algo-
rithm, proves its total correctness (see Figure 1), and discusses its implementation.
Section 3 defines the formal representation of logic variables and data structures.
This section also defines configurations and executions and introduces the reduc-
tion rule notation used to define algorithms. Section 4 defines the CU algorithm,
which implements off-line centralized unification, and summarizes well-known re-
sults about its correctness. By off-line we mean that the set of equations is finite
and initially known. Section 5 defines the DU algorithm, which implements off-line
distributed unification. Section 6 defines the RCU algorithm, which modifies the
centralized algorithm to reflect the redundant work done by the DU algorithm.
The section then proves that the DU algorithm is a correct implementation of the
CU and RCU algorithms. Section 7 defines on-line versions of the CU and DU
algorithms. By on-line we mean that new equations can nondeterministically be
introduced at any moment. We define the finite-size property and prove, that, given
weak fairness, every introduced equation that satisfies this property is eventually
entailed by the store for both algorithms. Section 8 defines the algorithm used in
the Mozart system, which implements the on-line DU algorithm.

2. LOGIC VARIABLES IN CONCURRENT AND DISTRIBUTED SETTINGS

This section motivates our unification algorithm by showing its usefulness to dis-
tributed programming. First Section 2.1 introduces our execution model and its
notation. Then Section 2.2 gives the key ideas of the algorithm. This is followed
by Section 2.3 which gives programming examples showing the usefulness of logic
variables for basic tasks in concurrent programming. Section 2.4 continues with
tasks in distributed programming. We explain in detail the network behavior of
our algorithm for these tasks. Finally, Section 2.5 shows how to add logic variables
to other languages including the Java and ML families.

4 . Seif Haridi et al

Threads @%@%@\@ @

X

p2:proc {$} skip end

Store Z=person(age: Y)

pl:proc {$ A} A=Y+1lend
Y=42 Q=pl

Variables Cells Procedures

Fig. 2. The Oz execution model.

2.1 Basic Concepts and Notation

As a framework for logic variables, we introduce a general execution model that can
accommodate most programming languages. Underlying it is a formal model called
concurrent constraints [Smolka 1995; Saraswat 1993] that contains logic variables
as a basic ingredient. Some uses of logic variables, e.g., synchronization and com-
munication, already appear in this model. The general execution model, called the
Oz execution model, extends the concurrent constraint model with explicit state
and higher-orderness. Other uses of logic variables, e.g., locks, become possible
when explicit state is added.

This section gives the essential characteristics of the Oz execution model and
how it is distributed. Later on, we show how to add logic variables to the more
restricted models of Java and ML. The advantage of using a general formal model
is that it allows us to define precisely what the examples do. It is straightforward
to compile Java or ML to Oz; the converse is not as easy.

The Oz language has advanced support for logic programming and constraint
programming [Smolka 1996; Schulte 1997]. This support shows up in both the Oz
execution model and kernel language. We do not present this support here since it
is outside the scope of the article.

2.1.1 The Oz Execution Model. The Oz execution model consists of a store and
a set of dataflow threads that reference logic variables in the store (see Figure 2).
Threads contain statement sequences S; and communicate through shared refer-
ences. A thread is a dataflow thread if it only executes its next statement when
all the values the statement needs are available. Data availability is implemented
using logic variables. If the statement needs a value that is not yet available, then
the thread automatically blocks until the value is available. We add the fairness
condition that if all values are available then the thread will eventually execute its
next statement.

The shared store is not physical memory; rather it is an abstract store that
only allows legal operations for the entities involved, i.e., there is no direct way to
ingpect their internal representations. The store consists of three compartments,
namely logic variables (with optional bindings), cells (named mutable pointers,
i.e., explicit state), and procedures (named lexically scoped closures, i.e., higher-
orderness). Variables can reference the names of procedures and cells. Cells point to

Logic Variables for Distributed Computing . 5

S:= S S Sequence
| X=f(li:Yr ... 1:Y,) | Value
X=<nunber > | X=<atom> | {NewNane X}
| local X; ... X, in Send | X=Y Variable
| proc {X Y1 ... Y, } Send | {X Y ... V,} Procedure
| {NewCell Y X} |{Exchange X Y Z} |{Access X Y} State
| if X then S else S end Conditional
| thread S end | {GetThreadld X} Thread
| try S catch X then S end | raise X end Exception

Fig. 3. The Oz kernel language.

variables. The external references of threads and procedures are variables. When a
variable is bound, it disappears, i.e., all threads that reference it will automatically
reference the binding instead. Variables can be bound to any entity, including
other variables. The variable and procedure stores are monotonic, i.e., information
can only be added to them, not changed or removed. Because of monotonicity, a
thread that is not blocked is guaranteed to stay not blocked until it executes its
next statement.

2.1.2 The Oz Language. All Oz execution can be defined in terms of a kernel
language whose semantics are outlined in Haridi and Franzén [1999] and Van Roy
et al. [1997]. The current Oz language is called Oz 2 to distinguish it from an
earlier language, Oz 1, whose kernel language is called the Oz Programming Model
(OPM) [Smolka 1995]. Oz 1 was designed for fine-grained concurrency and implicit
exploitation of parallelism. Oz 2 abandons this model in favor of explicit control
over concurrency by means of a thread creation construct. We do not discuss Oz 1
further in this article.

Figure 3 defines the abstract syntax of a statement S in the Oz kernel language.
Statement sequences are reduced sequentially inside a thread. All variables are
logic variables, declared in an explicit scope defined by the local statement. Val-
ues (records, numbers, names, etc.) are introduced explicitly and can be equated
to variables. A name is a unique unforgeable constant that has no external repre-
sentation. A new name is created by calling NewNane. Procedures are defined at
run-time with the proc statement and referred to by a variable. Procedure appli-
cations block until the first argument references a procedure name. State is created
explicitly by NewCel | , which creates a cell, a mutable pointer into the variable
store. Cells are updated by Exchange and read by Access. The if statement
defines a conditional that blocks until its condition is true or false in the variable
store. Threads are created explicitly with the thread statement. Each thread has
a unique identifier that is used for thread-related operations. Exception handling is
dynamically scoped. The try statement defines a scope, and the raise statement
raises an exception that is caught by the innermost enclosing scope.

The full Oz language is defined by transforming all its statements into this ker-
nel language. Oz supports idioms such as objects, classes, reentrant locks, and a
variety of channels called “ports” [Smolka 1995; Van Roy et al. 1997]. The sys-
tem implements them efficiently while respecting their definitions. We give a brief
summary of each idiom’s definition. For clarity, we have made small conceptual
simplifications. Full definitions are given in Haridi and Franzén [1999].

6 . Seif Haridi et al

—Object: An object is essentially a one-argument procedure { Goj M that refer-
ences a cell, which is hidden by lexical scoping. The cell holds the object’s state.
The argument Mindexes into the method table. A method is a procedure that is
given the message and the object state and calculates the new state.

—Class: A class is essentially a record that contains the method table and attribute
names. A class is defined through multiple inheritance, and any conflicts are
resolved at definition time when building its method table.

—Reentrant lock: A reentrant lock is essentially a one-argument procedure { Lck
P} used for explicit mutual exclusion, e.g., of method bodies in objects used con-
currently. P is a zero-argument procedure defining a critical section. Reentrant
means that the same thread is allowed to reenter the lock. Calls to the lock may
therefore be nested. The lock is released automatically if the thread in the body
terminates or raises an exception that escapes the lock body.

—Port: A port is an asynchronous channel that supports many-to-one communi-
cation. A port P encapsulates a stream S. A stream is a list with an unbound
tail. The operation { Send P M adds Mto the end of S. Successive sends from
the same thread appear in the order they were sent.

2.1.3 The Distribution Model. The Mozart system implements Distributed Oz,
which is a conservative extension to the centralized Oz language [DFKI Oz 1998]
that completely separates functionality from distribution structure. That is, Oz
language semantics are unchanged,! while adding predictable and programmable
control over network communication patterns. Porting existing Oz programs to
Distributed Oz requires essentially no effort.

Allowing a successful separation of the functionality from the distribution struc-
ture puts severe restrictions on a language. It would be almost impossible in C++
because of its complex, informal semantics and because the programmer has full ac-
cess to all underlying representations [Stroustrup 1997]. It is possible in Oz because
of the following properties:

—Oz has a simple formal foundation that does not sacrifice expressiveness or ef-
ficient implementation. Oz appears to the programmer as a concurrent object-
oriented language whose basic functionality is comparable to modern languages
such as Java. The current emulator-based implementation is competitive with
Java emulators [Henz 1997b; 1997a]. Standard techniques for concurrent object-
oriented design apply to Oz [Lea 1997]. Furthermore, Oz introduces powerful
new techniques that are not supported by Java [Haridi and Franzén 1999]. Some
of these techniques are presented in this article.

—Oz is both a state-aware and dataflow language. That is, language entities can
be classified naturally into stateless, single assignment, and stateful. This helps
give the programmer control over network communication patterns in a natural
manner. Stateless data include procedures and values, which can safely be copied
to many sites [Alouini and Van Roy 1999]. Stateful data include objects, which at
any instant must reside on just one site [Van Roy et al. 1997]. Single-assignment

1Only ports are changed slightly to better model asynchronous FIFO communication between
sites [Van Roy et al. 1997].

Logic Variables for Distributed Computing . 7

data include logic variables, whose dataflow synchronization allows us to decouple
calculating a value from sending it across the network.

—Oz is a fully dynamic and compositional language. That is, Oz is dynamically
typed, and all entities are first-class. By dynamically typed we mean that its type
structure is checked at run-time. This makes it easy to implement fully open
distribution, in which independent computations can connect and disconnect at
will. When connected they can communicate as if they were in the same central-
ized process. For example, it is possible to define a class Cin one computation,
pass C to an independent computation that has never before heard of C, let the
independent computation define a class D inheriting from C, and pass D back to
the original computation [Van Roy et al. 1999; Haridi et al. 1998].

—Oz provides language security. That is, all references to language entities are
created and passed explicitly. An application cannot forge references nor access
references that have not been explicitly given to it. The underlying representation
of language entities is inaccessible to the programmer. This is a consequence of
the abstract store and a kernel language with lexical scoping and first-class pro-
cedures. These are essential properties to implement a capability-based security
policy, which is important in open distribution.

The Distributed Oz execution model extends the Oz execution model by giving a
distributed semantics to each language entity. The distributed semantics defines
the network behavior when language entities are shared between sites. The se-
mantics is chosen carefully to give predictable control over network communication
patterns. The centralized semantics is unchanged: we say the model is network-
transparent [Cardelli 1995]. In the current system, language entities are put in four
categories. Fach category is implemented by a family of distributed protocols:

—Stateless: records, numbers, procedures, and classes. Since they do not change,
these entities can be copied at will.2 There is a trade-off between when to copy,
how many times to copy to a site, and access time. This gives a family of protocols
to define their distributed behaviors [Alouini and Van Roy 1999].

—Single assignment: logic variables. Assignment is done by a distributed unifi-
cation algorithm, which is the subject of this article. To be precise, logic variables
provide consistent multiple assignment, i.e., there can be multiple assignments
as long as they are unifiable. We keep the phrase “single assignment” to avoid
multiplying terminology.

—Stateful: cells, objects, reentrant locks, ports, and threads. For efficiency rea-
sons, these entities’ state pointers are localized to a site. If the state pointer’s site
can change, we say that the entity is mobile. Currently there are two mobility
behaviors: a mobile state protocol (cells, objects, locks, ports) and a stationary
access protocol (threads). The mobile state protocol ensures coherent state up-
dates with controlled mobility of the state pointer [Van Roy et al. 1997]. The
stationary access protocol is used for entities that cannot move.

—Resource: entities external to the shared store. References to resources can be
passed around the network at will, but the resource can only be executed on

2This is true only for the entity, not for its external references. An external reference has its own
protocol that corresponds to its category.

8 . Seif Haridi et al

its home site [Van Roy et al. 1999]. This includes computational and memory
resources, which can be made visible in the language, e.g., by means of virtual
sites [Haridi et al. 1998].

The single-assignment category can be seen as an optimization of the stateful cate-
gory in which a variable is bound to only one value, instead of repeatedly to different
values. That is, the distributed unification algorithm is more efficient than the mo-
bile state protocol. However, it turns out that logic variables have many more uses
than simply as an optimization of stateful entities. These uses are explained below.

2.1.4 Logic Variables. A logic variable conceptually has a fixed value from the
moment of its creation. The value is unknown at first, and it remains unknown
until the variable is bound. At all times, the variable can be used as if it were the
value. If the value is needed, then the thread requiring the value will block until
the variable is bound. If the value is not needed then execution continues.

A logic variable can be passed among sites arbitrarily. At all times, it “remembers
its origins,” i.e., when the value becomes known then the variable will receive it.
The communication needed to bind the variable is part of the variable and not part
of the program manipulating the variable. This means that the variable can be
passed around at will, and the value will always arrive at the variable. This is one
key reason why logic variables are useful in distributed computing.

Logic variables can replace standard (assignable) variables in all cases where they
are assigned only one value, i.e., where they are used as placeholders for values. The
algorithm used to bind logic variables must ensure that the result is independent
of binding order. In a centralized system, the algorithm is called unification and
is usually implemented as an extension of a union-find algorithm. Union-find han-
dles only the binding of variables with variables [Mehlhorn and Tsakalidis 1990].
Unification generalizes this to handle nonvariable terms as well. In a good imple-
mentation, binding a new variable to a nonvariable (the common case) compiles to
a single register move or store operation [Van Roy 1994].

A logic variable may be bound to another logic variable. A legitimate question is
whether variable-variable binding is useful in a practical system. As we shall see, one
reason that variable-variable binding is important is that it allows us to maintain
maximum latency tolerance and third-party independence when communicating
among more than two sites, independent of fluctuating message delays. A second
reason is that it has a very simple logical semantics.

It is possible to disallow variable-variable binding to obtain a slightly simpler
implementation. The simpler implementation blocks any attempt to do variable-
variable binding until at least one of the variables is bound to a value. The price
of the simpler implementation is that third-party dependencies are not removed
in all cases. Futures [Halstead 1985] and I-structures [Arvind and Thomas 1980;
Veen 1986; Iannucci 1990] resemble this weaker version of logic variables (see Sec-
tion 9.2.1). There remains a crucial difference with logic variables, namely that
futures and I-structures can be assigned only once, whereas logic variables can be
assigned more than once, as long as the assignments are consistent with each other.

The efficiency difference between full and weak logic variables is small. The
distributed binding algorithm is almost identical for the full and weak versions.
Furthermore, the full version has a simple logical semantics. For these three reasons

Logic Variables for Distributed Computing . 9

Centralized Distributed
x=f(x1) | @ Ly fyd)
| Pox1 (none)
= | 1=f : | 1
x=f(x1) | X yl=roo vl | y
x=f(x) yefyD) = e Ste?
X= ! x1 g ‘ "
yl=foo | yl x=Ff(x1) y —f(y) O
— i 1
Equations Store x=y | D Marks
9D variable's
Site3 owner site

Fig. 4. Initial configuration of example.

we have implemented the full version in the Distributed Oz implementation.

2.2 Distributed Unification

For logic variables to be practical in a distributed setting they must be efficiently
implementable. This section gives the key ideas of the distributed algorithm that
realizes this goal. We explain the algorithm in just enough detail so that its network
behavior becomes clear. This will allow us to infer the algorithm’s behavior in the
programming examples that follow. A formal definition of the algorithm and proofs
of its correct behavior are given starting from Section 3.

The two basic operations on logic variables are binding and waiting until bound.
Waiting until bound is easy: the variable has a list containing threads that need
its value. These threads are blocked. When the value arrives, the threads are
awoken. Binding is harder: it requires cooperation between sites. If a variable
exists on several sites, then it must be bound to the same value on all sites, despite
concurrent binding attempts. Unification implements the binding operation. At
any instant there can be any number of bindings in various stages of completion.
Both the centralized and distributed algorithms cause each binding request to be
eventually incorporated into the store, if it is consistent with the store.

The basic distributed operation is binding a variable to a value. This is imple-
mented by making one site the “owner” of the variable. In the current system, the
site that declares the variable is its owner. A binding request is sent to the owner,
and the owner forwards the binding to each site that knows the variable. In terms
of network behavior, one message is sent to the owner, and one message is sent by
the owner to each site that knows the variable. The owner’s sends can be done by a
reliable multicast, if the network supports it efficiently. The owner accepts the first
binding request and ignores all subsequent binding requests. An ignored request
will be retried by its initiating site after it receives the binding. As we will see in
the programming examples, in the majority of cases a variable is declared either on
a site that will need its value or on the site that will bind the variable. In both of
these cases, the network behavior of the algorithm is very good.

A logic variable X can be bound to a data structure or to another variable. The

10 . Seif Haridi et al

O 3 B S
: Ly < f(y1) x=t(x1) |y« f(y1)
x=f(x1) . x1 (none) : ! &
! 1 yl<foo Xzy
| yl< foo | yl<— y ' ylefoo
Sitel Site2 Site3

Fig. 5. Configuration after executing the equation Y1=foo.

algorithm is the same in both cases. By default the binding is eager, i.e., the new
value is immediately sent to all sites that know about X. This means that a bound
variable is guaranteed to eventually disappear from the system. The same binding
eventually appears on each site that has the variable. For example, executing the
equation X=f(X1) causes the binding X <« f(X1) to appear in the store on all sites
containing X. Furthermore, X1 is added to the known variables of all of these sites
that did not know X1.

2.2.1 An Example. We illustrate the algorithm with an example. Figure 4 shows
a centralized configuration (on the left) and one way to distribute it (on the right).
Each configuration has a set of equations and a store. For the algorithm, an equation
is simply a request to perform a binding. In the formal discussion (Section 3 and
following), we need more kinds of requests than just equations. We call all the
requests actions. The same equation may exist more than once. The store contains
the variables and their bindings, if the latter exist.

In the distributed case, each site has a set of equations and a store. The central-
ized equations are distributed among the sites. Each variable is visible on a subset
of the sites. If there is only one site, then the distributed algorithm is identical to
the centralized algorithm. Each variable occurrence on a site is called a “proxy.”
One of the sites is the variable’s owner. In Figure 4, site 1 is the owner of X, and
site 3 is the owner of both X1 and Y1. If the variable is bound, then the binding
will eventually arrive on each site that sees the variable. Variable Y is bound to
f(Y1) on sites 2 and 3.

Site 1 requests the binding Y1=foo. This sends a message to site 3, the owner
of Y1. The owner sends a message to all proxies of Y1. That is, the owner sends
three messages, to sites 1, 2, and 3. When a message arrives on a site, then the
binding Y1 + foo appears on that site (see Figure 5). Since the owner is on site 3,
its message to site 3 does not need any network operations.

2.2.2 Lazy and Fager Variables. Logic variables can have different distributed
behaviors, as long as network transparency is satisfied in each case. As explained
above, by default a logic variable is eager on all sites, i.e., its binding is sent imme-
diately to all sites that reference the variable. This gives maximal latency tolerance
and third-party independence. However, this may cause the binding to be sent
to sites that do not need it. We say that a logic variable is lazy on a site if its
value is only sent to that site when the site needs it, e.g., when a thread is wait-
ing for the variable. Binding a lazy variable typically needs fewer messages, since
not all sites that know the variable need its value. Both eager and lazy variables
are implemented by the on-line DU algorithm of Section 5. They differ only in

Logic Variables for Distributed Computing . 11

the scheduling of one reduction rule. The Mozart implementation currently only
provides eager variables; with a minor change it can provide both. A programmer
annotation can then decide whether a variable is eager or lazy. The implementation
issues of laziness are further explored in Section 8.5.6.

2.3 Examples of Concurrent Programming

It turns out that logic variables suffice to express most concurrent programming
idioms in an intuitive and concise manner. Additional concepts such as semaphores,
critical sections, or monitors are not needed. Bal et al. [1989] conclude that logic
variables are “spectacularly expressive” in concurrent programming even without
explicit state. We give examples of four important idioms, namely synchronization,
communication, mutual exclusion, and first-class channels. Many other idioms can
be found in the concurrent logic programming literature [Shapiro 1989; Haridi and
Franzén 1999].

2.3.1 Synchronization and Communication. The following fragment creates two
threads and synchronizes their execution:

local X in
thread {Print a} X=unit end
thread {wait X} {Print b} end
end

The statement {Wai t X} blocks until X’s value is known. Therefore “a” is always
printed before “b.” The value of X is communicated from the first to the second
thread. {Wait X} is not a new notion; it can be defined as if X=1 then skip
else skip end

2.3.2 Mutual Exclusion. A critical section can be defined by means of logic
variables and one cell. The cell is used to manage access to a token, which is passed
from one thread to the next. Assume that a cell C exists with initial content unit
e.g., defined by {NewCel | unit C}. Then the following fragment defines a critical
section:

local X Y in
{Exchange C X Y} {Wiit X} %Enter
C % Body
Y=unit % Exi t
end
We show that only one thread at a time can be executing the body. A thread
that tries to enter is given C's previous state X, and current state Y,. The thread
then waits on X,,. When the previous thread leaves, it binds Y,_i=unit . Since
Yn—1 = X, this allows the next thread to enter. This works even if many threads
try to enter concurrently, since the exchanges are serialized. Section 2.4.6 uses this
idea to define a procedure NewSi npl eLock that can create any number of locks.

2.3.3 First-Class Channels. A simple kind of FIFO channel is the stream, a
list with an unbound tail. Reading from the stream is receiving from the channel.
Appending to the stream is sending through the channel. Each element of the
stream can be a record containing both the query and an answer channel. For
example, here is a fragment that handles queries appearing on the stream X0:

12 . Seif Haridi et al

case X0 of query(QL Al)| X1 then % WAit for query QL and channel Al

Al={Cal cAnswer St r eam Q1} % Cal cul ate answer stream on Al
case X1 of query(@ A2)| X2 then % Wait for QL and A2
A2={ Cal cAnswer St r eam Q} % Cal cul ate answer stream on A2
end
end

We assume that QL is a database query that gives multiple answers, which appear
incrementally on Al. The case statement is a useful idiom: it waits until X0 is
sufficiently bound to read the pattern query(QL Al) | X1. The pattern variables
QL, A1, X1 are declared implicitly. Typically, the above fragment would be written
as part of a loop:

local P in
proc {P M
case Mof query(Q A) then A={Cal cAnswerStream @& end
end
{ForAl'l X0 P}
end

For Al | takes a list X0 and a one-argument procedure, and applies the procedure
to all the list’s elements. The above example can be written more compactly as a
nested statement with exactly the same meaning:

{ForAl'l XO

proc {$ M
case Mof query(Q A) then A={Cal cAnswerStream @& end
end}

The “$” is used as a nesting marker; it implicitly declares a logic variable. This is a
syntactic short-cut that avoids explicitly declaring P. Using For Al | is efficient; there
are no memory leaks, and the stream is not consumed faster than it is produced.
It may be produced faster than it is consumed, however. Usually, a stream is
associated to an Oz port, and one writes to the port (see Section 2.1.2).

2.4 Examples of Distributed Programming

The purpose of this section is to show the usefulness of logic variables when ex-
tending concurrent object-oriented programming to a distributed setting. Sec-
tions 2.4.1-2.4.7 present a series of common programming idioms in distributed
programming. We show how to express them in a concurrent object-oriented lan-
guage that contains logic variables. The resulting solutions have two properties:

—The solutions perform correctly, independently of how they are partitioned among
sites. That is, the programming idioms underlying the communication patterns
can be expressed in a network-transparent manner.

—No matter how the solutions are partitioned among sites, the resulting message
traffic is optimal or nearly optimal (in the common cases) or at least reasonable
(in the uncommon cases). That is, given logic variables, the same programming
idioms perform well in both centralized and distributed settings.

This shows, that, at least in the cases presented here, using logic variables allows
us to keep useful programming idioms of centralized object-oriented programming,

Logic Variables for Distributed Computing . 13

while allowing the implementation to extend efficiently to a distributed setting.
This is evidence that controlling execution through data availability, which is what
logic variables provide, is a natural way to keep good performance while mapping
a program to arbitrary distribution structures.

The examples show a variety of distributed programming techniques using logic
variables. Some of them, e.g., barrier synchronization and distributed locking, will
normally be provided as primitives by the system. Others, e.g., stream communi-
cation, will normally be programmed by the user. We do not distinguish between
the two cases, since our goal is to show the expressiveness of logic variables.

2.4.1 Latency Tolerance and Third-Party Independence. From the viewpoint of
execution order of basic language operations, a distributed execution cannot be
distinguished from a concurrent execution. Distinguishing them requires looking
at the effects of partitioning an execution over several sites. This affects system
properties such as network properties (e.g., delays and limited bandwidth) and site
resources (e.g., disks and main memory). At the language level, the latter shows
up as the restriction of some operations to be local or remote only (such as local
memory operations and remote message sends).

Logic variables decouple the declaration of a variable from its binding. Once a
variable is declared, it can be passed to other sites, even before it is bound. When
it is bound, the binding will be transferred automatically and efficiently to the
sites needing it. This decoupling allows programs to provide a degree of latency
tolerance, i.e., their execution is less affected by changes in network latency. For
example, in the following code fragment

local Ans in

thread
{Dat aBase query("How far is up?" Ans)}
end
thread
{Renot eCl i ent inform Ans)}
end

end

the database query and the client transfer are initiated concurrently. Assume that
the database and the client are on different remote sites. The initiator site owns
Ans. As soon as Ans is bound, the binding will be sent from the database site to
the initiator site, which forwards it to the client site. This is all done independently
of the initiator.

A logic variable can be bound to another logic variable. This allows programs
to improve third-party independence. For example, assume variable X exists on
sites 1 and 2, and variable Y exists on sites 2 and 3. Assume that X and Y are
bound together on site 2. Then binding X to 99 on site 1 should be visible on site
3 independent of what happens to site 2.

2.4.2 Stream Communication. This second example has a producer Gener at e
that creates a data stream and a consumer Sumthat reads this stream (see Figure 6).
We first examine the program in a centralized setting. Then we explain what
happens when the producer and consumer run on different sites. As we saw before,
a stream is a list whose tail is a logic variable. The producer thread repeatedly

14 . Seif Haridi et al

proc {Generate N Max L} % Return list of integers fromNto Max-1
if N < Max then L1 in
L=N| L1
{Generate N+1 Max L1}
else L=nil end

end
fun {Sum L A} % Return (A + sumof elenents of list L)
case L
of nil then A
[1 X Ls then {SumLs A+X}
end
end
local CS L Sin % Cenerate a list and sumits el enents

CS={ NewConput eServer “sinuhe.sics.se’} % Renbte conpute server
thread L = {Generate 0 150000} end % Producer thread (I ocal)

{CS proc {$} S={Sum L 0} end} % Consuner thread (renote)
{Print S} % Print result (local)
end

Fig. 6. Stream Communication.

proc {Generate N L} % Return list L of integers starting with N
case L of X/ Ls then % Wait until the next elenent is asked for
X=N
{Generate N+1 Ls}
else skip end

end
fun {Sum N L A} % Return (A + sumof first N elenments of L)
if N>0 then X L1 in
L=X| L1 % Ask for the next el ement
{Sum N-1 L1 A+X}
else
A
end
end

local CS L Sin
CS={ NewConput eServer “sinuhe.sics.se’} % Renbte conpute server

{CS proc {$} {Generate O L} end} % Producer thread (renote)
thread S={Sum 150000 L 0} end % Consuner thread (I ocal)
{Print S} % Print result (local)

end

Fig. 7. Stream communication with flow control.

Logic Variables for Distributed Computing . 15

binds the tail to a pair of an element and a new tail. The consumer thread can
start reading the stream while the producer is still creating it. In the program
of Figure 6, the producer generates a list of integers from 0 to 149999 and the
consumer sums them, giving 11249925000.

This example will run in a distributed way if the producer thread and consumer
thread are started on different sites. This is what the main program of Figure 6
does; it executes the producer locally and the consumer remotely. In the producer,
binding L to N| L1 adds one element to the stream. In the distributed execution
this will send exactly one message to the consumer.

The consumer Sumis run remotely by packaging the call S={Sum L 0} into a
zero-argument procedure that is passed to the compute server CS. The procedure’s
compiled code is sent across the network. The logic variable S is shared between the
local and remote sites, and therefore transparently becomes a distributed variable.
When Sum finishes its calculation then the result is bound to S. This sends the
result back to the local site.

A compute server is a one-argument procedure that takes work packaged as a
zero-argument procedure, and executes it in its own thread on the remote machine.
The compute server is created by calling the function NewConput eSer ver with a
hostname. This creates a process on the remote machine and returns a compute
server.

Because of network transparency, all possible code fragments can be used as work
to be transferred to the compute server. However, if the work uses resources, then
it cannot be packaged in a procedure. This is because resources are site-specific (see
Section 2.1.3). Instead, Oz allows such work to be packaged in a functor, which
describes the resources that the work needs. Just like procedures, functors are
stateless and can be passed across the network transparently. Functors are beyond
the scope of this article; for more information see [Duchier et al. 1998; Van Roy
et al. 1999].

2.4.3 Stream Communication with Flow Control. This third example extends
the second example by adding end-to-end flow control (see Figure 7). A stream
element is only generated when the consumer asks for it. The second example has
no flow control, i.e., the producer will create elements eagerly independent of what
the consumer needs. Unless the list’s maximum size is small, flow control is needed
to avoid problems with memory utilization. This is true in both centralized and
distributed settings.

The consumer asks for an element by binding the stream’s tail to a pair of a logic
variable and a new tail. The producer waits until this pair exists and then binds
the logic variable to the next element. The consumer can terminate the producer
by binding L to ni | , i.e., by replacing the “else A end” in its definition by “else
L=ni|l A end.” The producer terminates when it detects the end of L.

In this example the producer and consumer will execute in lock step. The main
program of Figure 7 executes the producer locally and the consumer remotely.
Therefore one round-trip message delay is needed for each element of the stream.
To relax this tight synchronization, an n-element buffer can be programmed.

2.4.4 Stream Communication with Multiple Readers. Now let the stream be
read by multiple consumers. Figure 8 shows how to do it with consumers on three

16 . Seif Haridi et al

local CS1 CS2 CS3 L S1 S2 S3 in
CS1={ NewConput eSer ver “si nuhe. sics.se"}
CS2={ NewConput eSer ver “norge.info.ucl.ac.be}
CS3={ NewConput eServer “tinman. ps. uni-sh. de"}
thread {Generate 0 L} end % Producer (Il ocal)
{Cs1 proc {$} S1={Sum L 150000 0} end} % Consumer 1 (on Site 1)
{CS2 proc {$} S2={Sum L 150000 0} end} % Consumer 2 (on Site 2)
{CS3 proc {$} S3={Sum L 150000 0} end} % Consurmer 3 (on Site 3)
end

Fig. 8. Stream communication with multiple readers.

sites. We assume three compute servers referenced by CS1, CS2, and CS3. Both
previous examples of stream communication (with and without flow control) will
work with multiple consumers. This is an excellent illustration of the difference
between logic variables and I-structures. It is allowed for multiple readers to bind
the list’s tail, since they bind it in a consistent way. This would not work with
ordinary single assignment, e.g., as provided by I-structures.

The example without flow control is straightforward: one message is sent to each
consumer per element. The example with flow control is more interesting; it is
shown in Figure 8. In this case, each consumer sends a message to request the
next element when it is needed. The network behavior is as follows. To make
things interesting, we assume a fast, a medium, and a slow consumer. The fast
consumer sends a message to the producer, which is the owner of the first stream
variable. The message contains two variables: one for the element and one for the
next stream variable. Both of these variables are owned by the fast consumer. It
follows, that, from this point on, the fast consumer will be the owner of all stream
variables. Therefore all further stream elements will be sent by the producer to
the fast consumer, who will multicast them to the other consumers. After the first
message, the medium consumer will send requests to the fast consumer, since it
is the owner. These requests will be ignored, since the fast consumer will already
have bound the stream variable. The slow consumer will send no requests at all; it
receives the elements before asking for them.

2.4.5 Barrier Synchronization. We would like to create a set of concurrent tasks
and be informed as soon as all tasks have finished. This should work efficiently
independently of how the tasks are partitioned over a set of sites. Figure 9 gives
a simple solution that works well in both centralized and distributed settings. To
explain how it works, we need first of all to understand how to synchronize on the
termination of a single thread. This is done as follows, where statement S represents
a task:

local X in thread S X=unit end ... {Wait X} end

The main thread creates a new thread whose body is S X=unit . The new thread
will bind X after S is finished, and the main thread detects this with a {Wait X}. A
statement S finishes when it reduces to skip in its thread. Other threads may be
created during the execution of S; these are independent of S. If the task is executed
remotely, then binding X sends a single message to the main site, which owns X.

Logic Variables for Distributed Computing . 17

proc {BarrierSync Ps}
proc {Conc Ps L}
case Ps of P|Pr then X Ls in
L=X| Ls
thread {P} X=unit end
{Conc Pr Ls}
else
L=ni |
end
end
L
in
{Conc Ps L}
{ForAll L proc {$ X} {Wait X} end}
end

{BarrierSync [proc {$} El end % Task 1
proc {$} E2 end % Task 2
proc {$} E3 end]} % Task 3

Fig. 9. Barrier synchronization.

This informs the thread of the task’s completion. The message sent back to the
task’s site is a simple acknowledgment that does not affect the barrier’s latency,
which is one message.

We generalize this idea to multiple tasks. The general scheme is as follows:

local X1 ... Xn in
thread S1 Xl=unit end
thread S2 X2=unit end

thread Sn Xn=unit end
{wait X1} ... {wit Xn} S
end

The main thread waits until all Xi are bound. When Si terminates then its thread
binds Xi =unit . When all tasks terminate then all Xi are bound, so the main thread
runs S.

Assume now that the tasks are distributed over a set of sites. Each Xi is owned
by the main thread’s site. Therefore binding Xi =unit sends a message from the
task site to the main site. When all variables are bound, the main thread resumes
execution. Concurrently, the main site sends a message back for each message it
received. These messages do not affect the barrier’s latency.

2.4.6 Distributed Locking. If a program fragment may be executed by many
threads, then it is important to be able to guarantee mutual exclusion. A thread
that attempts to execute the fragment should block and be queued. Multiple re-
quests should be correctly queued and blocked, independent of whether the threads
are on the same site or on another site. We show that it is possible to implement
this concisely and efficiently in the language. As explained in Section 2.3, Figure 10

18 . Seif Haridi et al

proc {NewSi npl eLock ?Lock}

Cell = {NewCell unit }
in
proc {Lock Code}
ad New in
try
{Exchange Cell Od New} {Wait O d} % Enter
{ Code} % Body
finally New=unit end % Exi t
end
end

Fig. 10. Distributed locking.

shows one way to implement a lock that handles exceptions correctly.? If multiple
threads attempt to access the lock body, then only one is given access, and the
others are queued. The queue is a sequence of logic variables. Each thread blocks
on one variable in the sequence, and will bind the next variable after it has exe-
cuted the lock body. Each thread desiring the lock therefore references two logic
variables: one to wait for the lock and one to pass the lock to the next thread.
Each logic variable is referenced by two threads.

If the threads are on different sites, then the queue is distributed. A single
message will be sent to transfer the lock from one site to another. This implements
distributed token passing, which is a well-known distributed algorithm for mutual
exclusion [Chow and Johnson 1997]. We explain how it works. When a thread
tries to enter the lock body, the Exchange gives it access to the previous thread’s
New variable. The previous thread’s site is New's owner. When the previous thread
binds New, the owner sends the binding to the next thread’s site. This requires a
single message.

2.4.7 Remote Method Invocation (RMI). Let us invoke an object from within a
thread on a given site. Where will the object execute? On a network-transparent
system there are several possible answers to this question. Here we give just enough
information to justify our RMI implementation. For a full discussion of the issues
we refer the reader to Van Roy et al. [1997; 1998]. In Mozart, objects synchronously
migrate to the invoking site by default. Therefore the object executes locally with
respect to the invoking thread. This makes it easy for the object to synchronize
with respect to the thread. If the object raises an exception, then it is passed to
the thread. Object migration is implemented by a lightweight mobility protocol
that serializes the path of the object’s concurrent state pointer among the invoking
sites.

It is possible in Oz to define a generic procedure that takes any object and returns
a stationary object, i.e., such that all its methods will execute on the same site.
This works because Oz has first-class messages and dynamic typing [Henz 1997a].
This is not possible in Java [Gosling et al. 1996]. Figure 11 defines NewSt at i onary,
which, given any object class, creates a stationary object of that class. It works by

3 A thread-reentrant lock is defined in Van Roy et al. [1997].

Logic Variables for Distributed Computing

proc {NewStationary Class Init ?StatObj}
bj ={New Cl ass I nit}
S P={NewPort S}
N={ NewNane}

proc {StatCbhj M
R in
{Send P WR}
if R=N then skip
else raise R end
end
end
thread
{ForAl'l S
proc {$ WR}
thread
try {Obj M R=N
catch X then R=X end
end
end}
end
end

Fig. 11. RMI definition: Create a stationary object from any class.

% Create class Counter on local site
class Counter

attr i
meth init i <- 0 end
meth inc i <- @+1 end

meth get (X) X=@ end
meth error raise e(soneError) end end
end

% Create object Cbj on renpte site
{CS proc {$} Obj ={NewStationary Counter init} end}

% | nvoke object fromlocal site

{Q0j inc}

{Q0j inc}

local X in {Qhj get(X)} {Print X} end

try {Obj error} catch X then {Print X} end

Fig. 12. RMI example: A stationary counter object.

19

20 . Seif Haridi et al

public class List {
final unknown int car;
final unknown List cdr;

List(unknown int car, unknown List cdr) {
this.car=:=car;
this.cdr=:=cdr;

}

public void cons(unknown int car, unknown List cdr) {
this.car=:=car;
this.cdr=:=cdr;

Fig. 13. List implementation in CC-Java.

wrapping the object inside a port, which is a stationary entity to which messages
can be sent asynchronously. Therefore the object always executes on the same site,
namely the site on which it was created. As before, the object synchronizes with
respect to the invoking thread, and exceptions are passed to the invoking thread.
The logic variable R is used both to synchronize and to pass back exceptions.

Figure 12 defines Obj remotely and invokes it from the local site. For example,
{Obj get(X)} {Print X} queries the object and prints the result on the local
site. The object responds by binding the variable X with the answer. Since the
local site owns X, the binding request sends one message from the remote site to
the local site. With the initial invocation, this gives a total message latency of two
for the remote call, just like an RPC. There is a third message back to the remote
site that does not affect the message latency.

2.5 Adding Logic Variables to Other Languages

This section shows how to add logic variables in an orthogonal way to Java and
ML, representative examples of object-oriented and functional languages.

2.5.1 Java. Sundstrom [1998] has recently defined and implemented a Java vari-
ant, CC-Java (Concurrent Constraint Java), which replaces monitors by logic vari-
ables and adds statement-level thread creation. Except for these differences, CC-
Java has the same syntax and semantics as Java.

CC-Java provides logic variables through a single new modifier, unknown, which
can be used in declarations of local variables, fields, formal parameters, and func-
tions. For example, a variable i declared as unknown int ij; is initially assigned
an unknown value. Standard Java variables can be freely replaced by unknown
variables. The result is always a legal CC-Java program. Variables with Java types
will never be assigned unknown values—any attempt will block the thread until the
value is known.

An unknown variable is bound by the new operator “=:=" which does unification.
Each of the two operands can be known (i.e., be a standard Java variable) or
unknown. Doing i=:=23 binds i to 23. For correctness, the assignment operator
“=” must overwrite (not unify) any reference to an unknown variable on the left-
hand side. Declaring an unknown variable as final means that it is only assigned

Logic Variables for Distributed Computing . 21

public class StreamExample {
// Return list of integers from n to max-1
static List generate(int n, int max) {
final unknown List 1;
unknown List ptr=1;
for (int i=n; i<max; i+=1) {
final unknown List tail;
ptr=:=new List(i,tail);
ptr=tail;
}
ptr=:=null;
return 1;

// Return (a + sum of elements of list 1)
static int sum(unknown List 1, int a) {
int sum=a;
unknown List ptr=1;
while (ptr!=null) {
final unknown int x;
final unknown List 1s;
ptr.cons(x,ls); // Wait until ptr is a list pair
sum+=x; // Wait until x is an integer
ptr=ls;
}

return sum;

// Generate a list and sum its elements
public static void main(String[] args) {
unknown List 1;
int sum;
thread 1=:=generate(0,1500); // Using 150000 would overflow
sum=sum(1,0);
System.out.println(sum);

Fig. 14. Stream communication in CC-Java.

once, i.e., when it is declared. A final unknown variable is therefore equivalent to
an Oz logic variable. An unknown variable is equivalent to an Oz cell that points
to a logic variable.

Figure 13 shows how to implement lists in CC-Java. Each list pair contains
two logic variables, and therefore lists can be partially instantiated just like in Oz.
Using logic variables does not imply any memory penalty for lists: when compiled
to Oz, a CC-Java list pair uses just two memory words. Threads can synchronize
on the instantiation state of lists.

Figure 14 uses these lists to write the stream communication example of Figure 6
in CC-Java (see Section 2.4.2). The thread statement of CC-Java is used to gener-
ate the list in another thread. The example has been written in a natural style in
Oz and CC-Java, where Oz uses recursion, while CC-Java uses iteration to define
the generate and sum functions. Comparing the two examples, we see that there is

22 . Seif Haridi et al

very little difference in clarity between these two styles. Their run-time efficiencies
are comparable.

When examining the CC-Java program, two observations can be made. First,
the example has two synchronization points: the statements ptr.cons(x,1s) and
sum+=x inside the sum function. The former waits until ptr contains a list pair, and
the latter waits until x is an integer. Second, the example shows that both final
unknown and unknown variables are useful. The former are used as fixed references
to data structures. The latter are used in loops that use a different logic variable
in each iteration. In the sum method, the assignment statement ptr=1s makes ptr
point to 1s instead of what it pointed to in the previous iteration.

It is straightforward to compile CC-Java to either Oz or Java. A prototype CC-
Java-to-Oz compiler has been implemented that understands the full Java syntax
and compiles most of the Java language. Benchmarks show that CC-Java and Oz
have comparable performance on the Mozart implementation of Distributed Oz.
Both CC-Java and Oz on Mozart have performance comparable to Java on JDK
1.1.4, except that threads are much faster in Mozart [Henz 1997a; 1997h].

We outline how to implement a CC-Java-to-Java compiler. All Java code that
does not use logic variables is unchanged. For each class C of which unknown
instances are declared, the compiler adds a second class definition UnknownC to the
Java code. The class UnknownC includes all methods of C and additional methods
to unify the variable and to obtain its value. At each point where the value of an
object of class UnknownC is needed, the compiler inserts a call to obtain the value.
If the value is not yet available, then the calling thread is blocked until the value
becomes available through unification.

2.5.2 ML. Smolka [1998] has recently shown how logic variables can be added
as a conservative extension to a functional language very similar to Standard ML.
We outline how the extension is done. Several new operations are added, including
the following;:

—1lvar: wunit -> ’a. The operation lvar() creates a fresh logic variable and
returns its address.

—<-: ’a * ’a -> ’a. The operation x <- y binds x, which must be a logic
variable, to y.

—==: ’a % ’a -> ’a. The operation x == y unifies x and y. This raises an
exception if x and y are not unifiable.

—wait: ’a -> ’a. Theoperation wait x is an identity function that blocks until
its argument is nonvariable.

—spawn e. This operation spawns a new thread evaluating expression e and returns

0.

Execution states map addresses to any ML entity including primitive values, records,
and reference cells. Execution states are extended so that a state may also map an
address to a logic variable or to another address. The entity corresponding to an
address is obtained by iterating the state function until the result is no longer an
address. This iteration is the dereferencing operation. If a thread needs an entity
and encounters a logic variable, then it blocks until the entity is available.

Logic Variables for Distributed Computing . 23

With this extension, existing ML programs continue to work, and logic variables
may be freely intermixed with ML entities. ML provides explicit stateful entities
which are called references and behave like typed Oz cells. As in Oz and CC-Java,
the combination of logic variables and state allows us to easily express powerful
concurrent programming techniques. Smolka outlines the semantics of the extension
and illustrates some of these programming techniques.

3. BASIC CONCEPTS AND NOTATION

This section introduces the basic concepts and notation used for the CU and RCU
algorithms, which do centralized unification. Most of this notation remains valid
for the distributed algorithms. The extra notation they need will be given later on.

3.1 Terms and Constraints

In the usual case, a variable will be bound to a data structure. However, because
of unpredictable network behavior, it may also be necessary to bind variables to
variables or data structures to data structures. The result should not depend on
the order in which the bindings occur. This justifies using a constraint system
(D,C) to model the data structures and their bindings [Jaffar and Maher 1994].
The domain D is the set of data structures of interest; for generality we assume
these are rational trees, i.e., trees with only finitely many subtrees. A rational tree
is a good model for data structures with pointers since the tree can be represented
(though not uniquely represented) by a rooted directed graph. Unfolding the graph
to remove its cycles yields the tree [Courcelle 1983; Podelski and Smolka 1997].

The constraints C' model bindings; we assume they are equalities between terms
that describe sets of rational trees. For example, the constraint z = f(y) means
that the trees described by the variable z all have a root labeled f and a single
subtree, which is a tree described by the variable y. In this way, we express clearly
what it means to bind terms that may contain unbound variables. If y is unbound,
then nothing is known about the subtree of z.

Wnot e introduce a uniform notation for terms, which can be either variables
or trees that may contain variables. Terms are denoted by u, v, w. Variables are
denoted by z, y, z. Nonvariable terms are denoted by ¢, ¢1, t2. A term can either be
a variable or a nonvariable. A nonvariable term is a record of the form f(z1, ..., zy)
with arity n > 0, where 1, ..., ,, are variables and where the label f is an atomic
constant taken from a given set of constants. A constraint has the general form
/\Z. u; = v; where u; and v; are terms. A basic constraint has the form z = u.

To bind u and v means to add the constraint ¥ = v to the system. This is
sometimes called telling the constraint. The operation of binding v and v is called
unification. This is implementable in a time and space essentially equivalent to
that needed for manipulating data structures in imperative languages [Van Roy
1994]. For more on the constraint-solving aspects of unification see Jaffar and
Maher [1994].

For the purpose of variable-variable unification, we assume a partial order be-
tween terms such that all variables are in a total order and such that all nonvariable
terms are less than all variables. That is, we assume a transitive antisymmetric rela-
tion less(u, v) such that for any distinct variables z and y, exactly one of less(z,y)
or less(y,x) holds. In addition, for any nonvariable term ¢ and any variable z,

24 . Seif Haridi et al

less(t, z) holds. The algorithm uses the order to avoid creating binding cycles (e.g.,
z bound to y and y bound to z). This is especially important in a distributed
setting.

3.2 Configurations

A configuration ¢ = (a;o0;u) of a centralized execution is a triple containing an
action «, a store o, and a memo table u:

a=A\u=v; AN\, false A \;true o=, zi—uwi p=U,zi=y

The action « is a multiset of three kinds of primitive actions, of the form u = v, false,
and true. The equation u = v is one kind of primitive action. The notation = + u
represents the binding of x to u. The store is a set of bindings. All variables z; in
the store are distinct, and there are no cycles x4, <4y, ..., Zq,_, < Ta,, Ta, <Ta, -
It is easy to show that configurations always have this form in the CU algorithm.

The notation x < u, o will be used as shorthand for {z < u} Uo. The function
lhs(o) = (U, z; gives the set of bound variables in o, which are exactly the variables
on the left-hand sides of the binding arrows.

The memo table p is used to store previously encountered variable-variable equal-
ities so that the algorithm does not go into an infinite loop when unifying terms
representing rational trees with cycles. For example, consider the equation z = y
with store z < f(z) Ay + f(y). Dereferencing x and y and decomposing the re-
sulting equation f(z) = f(y) gives z = y again (see Section 4). This loop is broken
by putting = y in the memo table and testing for its presence. The memo table
has two operations, ADD and MEM, defined as follows:

ADD(z =y,p) = pU{z=y}
ADD(z =t,u) = p

MEM(z =u,u) = trueifz=u€p
MEM(xz = u,u) = false otherwise

If the number of variables is finite, then the number of possible variable-variable
equations in the memo table is finite also. Therefore all possible loops are broken.
In the off-line case this is always true. In the on-line case this is true if the finite-size
property holds (see Section 7).

3.3 Algorithms

We define an algorithm as a set of reduction rules, where a rule defines a transition
relation between configurations. The algorithms in this article all have a straight-
forward translation into an efficient imperative pseudocode. We do not define the
algorithms in this way, since this would complicate reasoning about them. Rule
reduction is an atomic operation. If more than one rule is applicable in a given
configuration, then one is chosen nondeterministically. A rule is defined according
to the following diagram:

!
(8] (0%
; —— C
o | o' p

A rule becomes applicable for a given action a when (1) the actual store matches
the store o given in the rule and (2) the optional condition C is satisfied. The

Logic Variables for Distributed Computing . 25

rule’s reduction atomically replaces the current configuration (a;o;u) by the result
configuration (a';0';u').

Both the centralized and the distributed algorithms are defined in the context of
a structure rule and a congruence:

!
(65} Qq

I
a1 N\ as ||a/\a2
Structure L
on || oin oip | on
a1 ANas = as AN ag

Congruence { true Ao = o

Because of the congruence, the number of occurrences of the true action is irrelevant.
This is not true of the other primitive actions, which form a multiset.

3.4 Executions

An ezecution e of a given algorithm is a (possibly infinite) sequence of configura-
tions such that the first configuration is an initial configuration and such that each
transition corresponds to the reduction of one rule:

R1 R> R,_1
Cl —>Cy —> -+ —> Cp

In any execution, distributed or centralized, we assume that the rules are reduced
in some total order. This is done without loss of generality, since the results we
prove in this article will hold for all possible executions. Therefore, reductions that
are not causally related may be assumed to execute in any order.

An initial configuration of the CU algorithm is of the form (ay;0;0), where o is
a finite conjunction of equations, while the store and memo table are both empty.
A terminal configuration (if it exists) is a configuration where no rules are appli-
cable. The last configuration of a finite execution is not necessarily a terminal
configuration, since rules may still be applicable. A wvalid configuration is one that
is reachable by an execution of a given algorithm. We speak of centralized execu-
tions (using the CU or RCU algorithms; see Sections 4 and 6.2) and distributed
executions (using the DU algorithm; see Section 5).

3.5 Adapting Unification to Reactive Systems

A store represents a logical conjunction of constraints. Adding a constraint that is
inconsistent with the store results in the conjunction collapsing to a “false” state.
This behavior is incompatible with a long-lived reactive system. Furthermore, it
is expensive in a distributed system, since it requires a global synchronization.
Rather, we want an inconsistent constraint to be flagged as such (e.g., by raising an
exception), without actually being put in the store. This requires two modifications
to the unification algorithm:

—Incremental tell, i.e., information that is inconsistent with the store is not put
in the store [Smolka 1995]. The CU and DU algorithms both implement incre-
mental tell by decomposing a rational tree constraint into the basic constraints
z =y and = t and by not collapsing the store when an inconsistency is detected
with a basic constraint. Inconsistency is represented as a new action “false” in-
stead of being incorporated into the store. This new action can be used to inform
the program, e.g., by raising an exception.

26 . Seif Haridi et al

—Full failure reporting, i.e., every case of inconsistency is flagged to the pro-
gram. Neither the CU nor the DU algorithms do this. If the inconsistent equation
x = y is present more than once, then the CU algorithm flags this only once.
The DU algorithm flags the inconsistency of (z = y)s only once per site s. That
is, both algorithms will flag an inconsistent equation x = y with given variables
x and y only once per memo table. Inconsistencies can be flagged more often
by introducing more memo tables. This may sometimes do redundant work. For
example, if equations reduce within a thread and each thread is given its own
memo table, then multiple occurrences of an inconsistent equation will be flagged
once per thread. The Mozart implementation will flag an inconsistency at least
once per program-invoked unification (see Section 8).

4. CENTRALIZED UNIFICATION (CU) ALGORITHM

This section defines a centralized algorithm for rational tree unification. The defi-
nition is given as a set of transition rules with an interleaving semantics. That is,
rule reductions do not overlap in time. Only their order is important. Nothing is
lost by using an interleaving semantics, since we prove properties that are true for
all interleavings that are valid executions [Alford et al. 1985].

The CU algorithm is the base case for the DU algorithm of Section 5. There are
many possible variant definitions of unification. The definition presented here is
deterministic and constrained by the requirement that it must be extensible to a
practical distributed algorithm. That is, the use of global conditions is minimized
(see Section 5.1).

4.1 Definition
We define the CU algorithm by the following seven rules.
u==x || r=u
INTERCHANGE less(u, x)
oip || osp
BIND T=u true less(u, z), 2 ¢ Ths(0)
o || w0
T=u true less(u,),
Mewmo T v,0u || T+ v,0;p MEM(z = u,)
DEREFERENCE r=u v=u less(u, z),
x4+ v,0;u | x+v0; ADD(x =u,pu) ~MEM(x = u, p)
T =ux | true
IDENTIFY
o p | o p
t1 :t2 false tl :fl(mlmm) t2 :fQ(ylyn)
CONFLICT T ’ Tmene
oip || oy (fi # f2Vm#n)
DECOMPOSE th=ts | Nici<nTi =y t1 = f(z1,...,2n),
o; o5 ty = f(y1, - Yn)

Logic Variables for Distributed Computing . 27

4.2 Properties

This section presents a basic result from unification theory, namely the total cor-
rectness of the CU algorithm. With this result, we can prove correctness of the
distributed unification algorithms by reducing them to centralized unification.

Logical Formula of a Configuration. A configuration ¢ = (a;0;-) has an associated
logical formula e(c) = e,(a) A e5(a), where

Ea(al /\Oég) = Ea(al) /\Ea(ag)
eo(u =) = u=vw

gq(true) = true

eaq(false) = false
85(0'1U0'2) = 83(0'1)/\83(0'2)
es({z+u}) = z=u.

THEOREM (LOGICAL EQUIVALENCE PROPERTY). In every transition ¢; — ¢i11
of every execution of the CU algorithm, the logical equivalence £(c;) < £(cit1) holds
under the standard equality theory.

ProoF. By standard equality theory we mean the theory £ given by Lloyd [1987,
p. 79], minus the acyclicity axioms (i.e., rule 4). This theory has the usual axioms
implying nonequality of distinct symbols; term equality implies argument equal-
ity and vice versa; substitution by equals is allowed; and identity. What we want
to prove is £ = Ve(c;) < e(cit1), where the quantification is over all free vari-
ables. This is a standard result in unification theory [Haridi 1981; Colmerauer
1982; Martelli and Montanari 1982; Haridi and Sahlin 1984]. O

COROLLARY (ENTAILMENT PROPERTY OR CU TOTAL CORRECTNESS). Given
any initial configuration ¢ = (a1;0,0) of the CU algorithm, then the algorithm
always reaches a terminal configuration ¢, = (qu;0,;-) with e(cy) <> e(c1). Fur-
thermore, «, consists of zero or more false actions, and if there are zero, then
es(on) <> eq(an).

PROOF. Again, this is a standard result in unification theory. The equivalence
follows from the previous theorem. O

5. DISTRIBUTED UNIFICATION (DU) ALGORITHM

This section defines a distributed algorithm for rational tree unification. The section
is organized as follows. Section 5.1 explains how to generalize the CU algorithm
to a distributed setting. Section 5.2 sets the stage by giving the basic concepts
and notation needed in the DU algorithm. Section 5.3 gives an example execution.
Section 5.4 defines the DU algorithm in two parts: the nonbind rules, which are
the local part of the algorithm, and the bind rules, which are the distributed part.
Finally, Section 5.5 compares the CU and DU algorithms from the viewpoint of the
dereference operation.

5.1 Generalizing CU to a Distributed Setting

A distributed algorithm must be defined by reduction rules that do local operations
only, since these are the only rules we can implement directly. To be precise, two

28 . Seif Haridi et al

conditions must be satisfied. First, testing whether a rule is applicable should
require looking only at one site. Second, reducing the rule should modify only that
site, except that the rule is allowed to create actions annotated with other sites.
In the distributed system these actions correspond to messages. Rules that satisfy
these two conditions are called local rules. A distributed algorithm defined in terms
of local rules is a transition system in an asynchronous non-FIFO network [Tel
1994].

We would like to extend each CU rule to become a local rule in the distributed
setting. In this way, we maintain a close correspondence between the centralized
and distributed algorithms, which simplifies analysis of the distributed case. Fur-
thermore, this minimizes costly communication between sites.

The first step is to annotate the rule’s actions and bindings with sites. Each CU
rule reduces an input action and may inspect a binding in the store. We annotate
the input action by its site and the binding by the same site. This is correct if
we assume that a binding will eventually appear on each site that references the
variable. We annotate the output action by the same site as the input action.
A “true” output action does not need a site. Actions may remain unannotated,
in which case the DU algorithm does not specify where they are reduced. This
set of annotations suffices for the rules INTERCHANGE, IDENTIFY, CONFLICT, and
DECOMPOSE to become DU rules. An important property of CONFLICT is that an
inconsistency is always flagged on the site that causes it.

The three remaining CU rules cannot be so easily extended, since they have
global conditions. To be precise, BIND has the unboundness condition x ¢ lhs(c),*
and MEMO and DEREFERENCE both have the memoization condition MEM(x =
u, p). It turns out that the memoization condition can be relaxed in the distributed
algorithm, so that it becomes a local condition there. In this way, the MEMO and
DEREFERENCE rules become local rules. The idea is to give each site its own memo
table, which is independent of the other memo tables. Section 6.2 proves that this
relaxation is correct, but that redundant local work may be done.

The unboundness condition of BIND cannot be eliminated in this way. Imple-
menting it requires communication between sites. The single BIND rule therefore
becomes several local rules in the distributed setting. The BIND rule is replaced
by four rules that exchange messages to implement a coherent variable elimination
algorithm.

The resulting DU algorithm consists of 10 local rules, namely six nonbind rules
(Section 5.4.1) and four bind rules (Section 5.4.2). The six nonbind rules do not
send any messages. Of the four bind rules, only INITIATE and WIN send messages.
All rules test applicability by looking at one site only, except for WIN and LOSE,
which use information tied to a variable but not tied to any particular site, namely
a flag unbound(z)/bound(z) and a binding request (z ~ w).

5.2 Basic Concepts and Notation

We introduce a set S = {1,...,k} of k sites, where k& > 1. We model distributed
execution by placing each action and each binding on a site. A primitive action or
binding ¢ is placed on site s by adding parentheses and a subscript (£)s. The same

4The opposite condition, confirming the existence of a binding, is local.

Logic Variables for Distributed Computing . 29

V All variables
B Bound variables

Bs Bound variableson site s
I Initiated variables
Is Initiated variables on site s

Fig. 15. Bound variables and initiated variables.

¢ may be placed on several sites, in which case the resulting actions or bindings
are considered separately. A configuration of a distributed execution is a triple
(A;3;M) consisting of an action A, a store ¥, and a memo table M. We denote
the action, store, and memo table on site s by Ay, ¥4, and M, respectively.

5.2.1 Store. The store X contains sited bindings (z < u)s, sited binding initia-
tions (z ¢+ —)s, and flags to denote whether a variable is bound or not (bound(z)
or unbound(z)). A store has the form

T=2u0J3,
seS
o= @iew),u | (@«
z;€B; z; €l
? = U bound(z;) U U unbound(z;).
z;,€B z;€EV—B

It is easy to show that configurations always have this form in the DU algorithm.
The set V' consists of all variables in A and ¥. The set B C V contains all the
bound variables. The set Bs; C B contains all the bound variables whose binding is
known on site s. The set I C V contains all the variables whose binding has been
initiated on some site but whose binding (if it exists) is not yet known on that site.
The set Iy C I contains all the variables whose binding has been initiated on site
s but is not yet known on that site. In terms of the bind rules of Section 5.4.2, B
corresponds to those variables for which the WIN rule has reduced. I corresponds
to those variables for which the INITIATE rule has reduced but the corresponding
ARRIVE rule has not yet reduced. Figure 15 illustrates the relationship between
these five sets.
Two utility functions are used in the algorithm definition:

lhs(Xs)
var(Xs)

{z|Fu.(z +u)s E XV (x + —)s € T3} = B U I
Ihs(E) U{z|Fy,u.((y + uw)s € Zs Au= f(...,z,...)}

The function lhs(X;) returns all bound and initiated variables of ¥. It generalizes
the function lhs(o) defined in Section 3.2. The function var(X,) returns all variables
mentioned in ¥, including variables that are neither bound nor initiated.

30 . Seif Haridi et al

Table I. Actions in Distributed Configurations
Same as centralized setting
true Null action
falseg Failure notification on site s
(u =v)s Equation on site s
New for distributed setting
T~u Binding request
(r < u)s Binding in transit to site s

5.2.2 Initial Configuration. The initial configuration is (Ainit;Zinit;(i)), with ini-
tial actions A™Y that are all equations and ™ = {unbound(z;) | z; € V}. We
have initially B =@ and T = §.

5.2.3 Action. An action A is a multiset containing two new primitive actions in
addition to the three primitive actions of the centralized setting (see Table I). The
new actions are needed to implement the distributed operations of the algorithm.
The exact meaning of these actions is defined by the reduction rules that manipulate
them. Intuitively, the action z ~ u represents a message requesting the binding of
x to u. For a given z, exactly one such action will cause a binding to be made; all
others are discarded. The algorithm does not specify where the binding decision
is made. An actual implementation can make the decision in a centralized or
distributed way. In the Mozart implementation, the decision is centralized; it is
made on the site where the variable was initially declared (see Section 8). The
action (z < u)s represents a message containing a binding to = that may eventually
become visible in ¥5. As long as z is not in var(X;) then the binding stays “in the
network.”

5.2.4 Memo Table. The global memo table M is the juxtaposition of all the
local memo tables. That is, M = {(z = y)s|z = y € M,}. Each local memo
table M, is a set of variable-variable equalities that has identical structure to the
centralized memo table p.

5.3 An Example

Figure 16 gives an example execution that does distributed variable elimination. In
this figure, thin solid arrows represent actions or bindings. Vertical bars “|” denote
rule reductions, which happen in the numbered order shown. Thin dotted arrows
represent causal links.

Initially, site 1 has equation (z = a);, and site 2 has equation (z = b),. Both
sites do an INITIATE rule, which puts binding initiations (z < —)s in both local
stores. This ensures that the two equations cannot reduce until the binding arrives.
We say that the equations are suspended. Equation (z = b)s is the first to do a
WIN rule, and b therefore becomes the global binding of . The other equation is
discarded by the LOSE rule. The binding (z < b) is sent to all sites. It arrives
at each site through the ARRIVE rule. At that point, the suspended equations
(z = a); and (z = b)2 become reducible again. The equation (z = a); will cause
an inconsistency to be flagged on site 1.

Logic Variables for Distributed Computing 31
X=@) - s > (x=a)
suspended) reducible
(x=a) (x<-0) \ /> (x<—b)
5. Arrive > Stel
6. Arrive ! (x=a) Equation
> Site2 (x Oa) Binding request
(x<-0) Bindinginitiation
(x=b) (x<=b) (x<b) Binding in transit
(X=hb) -~ - (x=h) (x<=b) Binding
suspended reducible Legend
Fig. 16. Distributed unification with (z = @)1 and (z = b)2.

5.4 Definition

The DU algorithm has a close relationship to the CU algorithm. The structure and
congruence rules continue to hold in the distributed setting. The only centralized
rule that is changed is the BIND rule; it is replaced by the four bind rules below. It
is clear from inspection that all six nonbind DU rules have identical behavior to the
corresponding CU rules, if the CU rules are considered as acting on a single site.

5.4.1 Nonbind Rules. These rules correspond exactly to the nonbind rules of
the centralized algorithm. An inconsistency is flagged on the site that causes it by

the action falsey.

(u=1m)s || (z =u)s
INTERCHANGE S || S M less(u, x)
(x = u)s true
MEemo (z < 0)s, 5 || (z+v)s,%; LQA;}SE(]Z’(;:)’_ w, M,)
M,UM M,UM s
(x = u)s (v=u)s
DEREFERENCE (z +v)s,%; (z +v)s,%; f;;%]’waél’ = u, M,)
M,UM || ADD(z = u, M,) UM -
IDENTIFY (=), ” frue
X M || o M
t1 = tg)s falses t1 = fl(xl- l‘m) t2 = f2(y1 yn)
CONFLICT (T ’ T Ina
M S5 M o (fi #faVm#n)
(t1 =t2)s || Ni<i<n(Ti = ¥i)s t1 = f(x1, .., Tn),
DECOMPOSE ==
X M ¥ M ta = f(y1, -1 Yn)

32 . Seif Haridi et al

5.4.2 Bind Rules. These rules replace the BIND rule of the centralized algo-
rithm. The binding initiation (xz + —),; and the condition z ¢ lhs(X,) in the
INITIATE rule together ensure that only one binding attempt can be made per site.

(z=u)s || ~uA(z=u),
INITIATE Y A I e o S less(u,x), x ¢ lhs(X;)
Win T~ || ses(® € u)s
unbound(z),; M || bound(z),X; M
LOSE T ~U || true
bound(z),¥; M || bound(z),¥; M
:c = u s || true
ARRIVE S |[@ewns -z e . M z € var(X;)
5.5 Dereference Chains
A dereference chain in a store o is a sequence of bindings zy < xa, ..., T < Uy,

with n > 1 and u, unbound or nonvariable. We say the value of z; in store o is
Up. To find u, given xy, it is necessary to follow the chain. A major difference
between CU and DU is that CU always constructs dereference chains, whereas DU
with eager variables forbids dereference chains to cross sites. Instead, DU copies
remote terms to make them local. In a centralized setting, pointer dereferencing is
fast, so the penalty of using dereference chains is small. This makes sharing terms
very cheap. In a distributed setting, pointer dereferencing across sites is slow, and
it makes the current site dependent on the other site. This makes copying terms
preferable.

Copying terms instead of creating dereference chains introduces redundant work.
It is possible to reduce this work at the cost of more network operations. For
example, one can eagerly bind to variables and lazily bind to (big) nonvariable
terms. This guarantees that a cross-site dereference chain has a maximum length
of one.

DU with lazy variables allows dereference chains to cross sites. When the value
is needed, the binding is requested from the owner. If the binding is another
variable, then the process is repeated. Each iteration of this process corresponds
to a dereference operation.

Taylor [1991] presents a centralized binding algorithm that avoids all dereference
chains. Variables that are bound together are put into a circular linked list. When
one of them is bound to a value, the list is traversed and all members are bound.
This makes accessing a variable’s value a constant-time operation, at the price of
making binding more expensive. Taylor finds no significant performance difference
between this algorithm and the standard algorithm when both are embedded in a
Prolog system whose performance is comparable to a good C implementation.

6. OFF-LINE TOTAL CORRECTNESS

This section proves that the DU algorithm behaves as expected. We first define
a mapping from any distributed to a centralized execution. Then we define a
modification of the CU algorithm, the RCU algorithm, that models the redundant

Logic Variables for Distributed Computing . 33

Table II. Mapping from Distributed
to Centralized Configurations
Distributed Centralized

Action true true
falseg false
(u=v)s u=v
T U true
(x <= u)s T u
Store bound(z) true
unbound(z) true
(z + L)s true
(z + u)s T+ u

work done by the distributed algorithm. We prove safety and liveness properties of
the DU algorithm by reducing it to the RCU algorithm. From this we show that
the DU algorithm is correct.

We distinguish between the off-line total correctness and the on-line total correct-
ness. In the off-line case, we have to show that the distributed algorithm terminates
and gives correct results for any placement of a fixed set of initial equations. This
can be done without any fairness assumptions. This is not true for the on-line case,
which is handled in Section 7.

6.1 Mapping from Distributed to Centralized Executions

The proofs in this section are based on a mapping m from any distributed config-
uration (A;X;M) to a corresponding centralized configuration (a;o;u). Distributed
executions are mapped to centralized executions by mapping each of their con-
figurations. The mapping m was designed following the reasoning of Section 5.1.
We show that m has very strong properties that lead directly to a proof that the
distributed algorithm implements the centralized algorithm.

A primitive action is mapped to either a primitive action or a binding. A binding
is always mapped to a binding. Other store contents map to true. In this way we
can map any distributed configuration to a centralized one:

(45 M) = (a; 03 1) = (ma(A);ms(A,) mm (M)

Table IT defines the mappings m, and mg for primitive actions and store contents.
The mapping for all of A and ¥ is the union of these mappings for all primitive
actions in A and all store contents in ¥. The centralized memo table m,, (M)
is derived from the local memo tables M, as follows. For each x = y such that
ds : x = y € My, the centralized memo table contains (z = y,7), where ¢ is the
number of tables M, that contain z = y:

mm(M) = {(z =y,i)li = #{slz =y € M;} Ni >0}

The following diagram relates a distributed execution e and its corresponding
centralized execution m(e):

(AT M) 5 (4555 M)
m | Im
m(e)

(o) — (a'50'54))

34 . Seif Haridi et al

To show total correctness, i.e., that the distributed algorithm is an implementation
of unification, we need to show both safety and liveness properties. A sufficient
safety property is proved in Section 6.3: given any distributed execution e, the
corresponding m(e) is a correct centralized execution. A sufficient liveness property
is proved in Section 6.4: given any e, its execution eventually makes progress. That
is, if the last configuration of m(e) is nonterminal, then the last configuration of
e is nonterminal, and continuing e will always eventually advance m(e). In the
distributed execution, the nonbind rules and the WIN rule are called progressing
rules, since they advance the centralized execution (see Table III). The other rules
are called nonprogressing.

6.2 Redundant Centralized Unification (RCU) Algorithm

This section defines and justifies a revised version of the CU algorithm, the RCU
algorithm, that models the redundant work introduced by distributing rational tree
unification. There are two sources of redundant work in the DU algorithm. The first
source is due to the decoupling of binding initiation from binding arrival. A binding
initiation for (z = u)s inhibits reduction of all equations of the form (z = v)s.
When a binding arrives on a site, these reductions become possible again, including
the reduction of the original equation (z = u);. To make the original equation
disappear, several rule reductions are needed including a DEREFERENCE, one or
more IDENTIFY, and possibly a DECOMPOSE. This redundant work can be avoided
in the implementation (see Section 8.5.4).

The second source of redundant work cannot be avoided in the implementation.
It is due to each site having its own local memo table. Memo tables are needed
because of rational trees with cycles. However, they are in fact a general caching
technique that avoids doing any unification more than once. In the distributed
algorithm, the information stored in each site’s memo table is not seen by the other
sites. Therefore each site has to reconstruct the part of the centralized memo table
that it needs.

To model the local memo tables it suffices to weaken the memo table membership
check. This affects the two rules MEMO and DEREFERENCE. Assume there are k
sites. We introduce a weaker membership check MEM;), that is true if and only if
the equation has been entered at least k& times. This is implemented by extending
the memo table to store pairs of an equation and the number of times the equation
has been entered:

ADD(z =y,p) = pU{(z=y }if(z=y,-)¢n
ADD(z =y,p) = p—{(z=y0)}u{lz=y,i+1)}if (z=y,i)€p
ADD(xz =t,u) = p
MEM(z =u,p) = trueif (z=u,) € p
MEM(x =u,u) = false otherwise
MEMy(z = u,u) = trueif (z =u,i) € uNi>k
MEM;(z = u,) false otherwise

The R-MEMO rule uses the new definition of MEM. The R-DEREFERENCE rule
uses MEM;, and the new definition of ADD. If an equation has been entered from
1 to k — 1 times then both rules are applicable. This is an example of using
nondeterminism to model distributed behavior in a centralized setting.

Logic Variables for Distributed Computing

Table III. Correspondence between
Distributed and Centralized Rules

Distributed rule

Centralized rule

MEMO R-MEMO
DEREFERENCE R-DEREFERENCE
INTERCHANGE INTERCHANGE
IDENTIFY IDENTIFY
CONFLICT CONFLICT
DECOMPOSE DECOMPOSE
INITIATE SKIP

WIiN R-BIND

LoOSE SKIP

ARRIVE SKIP

35

Now we can update the CU algorithm to model the two sources of redundant
work. We model memo table redundancy by replacing MEMO and DEREFERENCE
by R-MEMO and R-DEREFERENCE. We model bind redundancy by replacing BIND
by R-BIND, as defined below. The three new rules are as follows:

R-BIND

R-MEMO

R-DEREFERENCE

T=1Uu || r=u

g, l,l, || T u,o; l// IGSS(U,I‘),I‘ ¢ th(o')
T=u true less(u, z),

T v,0p || T 000 p MEM(z =u,p)
r=u v =u

T 0,05 |

less(u,),
x4+ v,0;, ADD(z = u,pn) —MEM(z = u,p)

THEOREM (RCU TotaL CORRECTNESS). Given any initial configuration, the
following two statements hold:

(1) The RCU algorithm terminates.

(2) All terminal configurations of the RCU and CU algorithms are logically equiv-
alent to each other according to the definition of Section 4.2.

Proor. We handle termination and correctness separately.

(1) We know that CU terminates. The redundant work introduced by RCU has
the following effect:
—Bind redundancy. The R-BIND rule introduces extra rule reductions. The

number of extra reductions is 2 if u is a variable and 2+a if u is a nonvariable

and a is its arity.

—Memo table redundancy. The memo table size for RCU is at most &
times that of CU, which is finite. Hence only a finite number of extra rule
reductions can be done.

(2) For both bind and memo table redundancy, the additional equations are always
duplicates of existing equations or equations of some previous configuration.
Therefore they add no additional information, and the Entailment property

still holds.

This completes the proof. O

36 . Seif Haridi et al

6.3 Safety

THEOREM (DU SAFETY). If e is any execution of the DU algorithm, then m(e)
is an execution of the RCU algorithm, and the sequence of rules reduced in m(e)
can be constructed from e.

ProOF. We will prove that Table III correctly gives the centralized rule of m(e)
corresponding to a distributed rule in e. A “SKIP” rule means that no rule is
executed. The proof is by induction on the length of execution e. In the base case,
the initial configuration c¢; of e has an empty store and memo table, and a set of
equations placed on different sites. Therefore m(cy) is a valid initial configuration
for the centralized algorithm.

In the induction case, we assume that the theorem holds for an execution e. We
need to show that for each distributed rule applicable in the last configuration of
e, that doing this rule maps to doing a corresponding centralized rule. We do a
case analysis over the distributed rules. Section 6.3.1 covers the nonbind rules and
Section 6.3.2 covers the bind rules.

6.3.1 Nonbind Rules.

6.3.1.1 Decompose. Assume that the distributed execution reduces a DECOM-
POSE rule. Mapping the before and after configurations of the decomposition gives
the following diagram:

(ty =t2)s NA DEC A(z; =yi)s NA
S M - S M
m | I m
t; =ta Amg(A) l} N zi = yi Amg(A)
ms(Aa E)amm(M) ms(A=Z);mm(M)

It is clear from inspection that rule X is a centralized decomposition.

6.3.1.2 Interchange, Identify, and Conflict. These three rules are handled in the
same way as the DECOMPOSE rule.

6.3.1.3 Memo. It is clear that the MEMO rule maps correctly to an R-MEMO
rule, since from M, C p it follows that MEM(xz = u, Ms) = MEM(xz = u, u).

6.3.1.4 Dereference. We now show that the DEREFERENCE rule maps to an
R-DEREFERENCE rule. We have the following diagram (where ¥, = (z + v);, X):

(x=u)s AN A IE)F (v=u)s NA

S, M, UM .. ADD(z = u, M,) UM
m | I m

z=uAmg(A) X v=uAmg(A)

=

ms(A,X.); mpy (Mg U M) ms(A, X.); mm(ADD(x = u, Ms) U M)

We know that less(u,) A=MEM(x = u, My). Since each site has its own local memo
table, there can be only one redundant equation per site. Therefore ~MEM(z =
u, M) implies that =MEMj,(x = u,). That is, if at least one local memo table
does not contain x = u, then the centralized memo table contains z = u less than &
times. It follows that rule X is an R-DEREFERENCE rule. This shows that relaxing

Logic Variables for Distributed Computing . 37

the memoization condition to do only a check on the local part of the memo table
is correct but may introduce one redundant equation per site.

6.3.2 Bind Rules.
6.3.2.1 Initiate.

(x=u)s AN A ﬂ.}’azrvu/\(a::u)s/\A
M (x =) M
m | Im
z=uAmg(A) l} x=uAmg(A)
ms(A,) my, (M) ms(A,X);mpy, (M)

It is clear from inspection that X is a SkIP rule. After the SKiP, we know that
less(u,).

6.3.2.2 Win.
r~uNA I/IE)N Necs(z € u)s N A
unbound(z), ¥; M bound(z), ¥; M
m | I m
me(A) X me(A)

Mo (A, D) mn (M) (@)y my (A, 2); mon (M)

It is not immediately clear that transition X maps to a rule. We will show that X
maps to an R-BIND rule. First, we show that z = u is in m4(A4). From = ~ u we
know that an INITIATE has been done, while unbound(z) means no WIN has yet
been done; together this means that A contains (x = u),, which maps to z = u.
Second, we have less(u,z) because it is a condition of INITIATE, and because its
truth value never changes. Third, z ¢ lhs(ms(A, X)), since no WIN has been done,
and the only way to get a centralized binding for z is through a WiN. Taken
together, these three statements imply that the centralized transition is an R-BIND
reduction.

6.3.2.3 Lose and Arrive. These rules trivially map to a SKIP rule.

This proves the theorem. [

6.4 Liveness

It remains to show that the DU algorithm always terminates in a configuration that
maps to a terminal configuration of the RCU algorithm. The main step is to show
that the DU algorithm always “makes progress,” in the sense of this section. As a
corollary, it follows that the DU algorithm is deadlock-free. We first prove a small
lemma about the nonprogressing rules.

LEMMA (FINITENESS OF NONPROGRESSING DU EXECUTION). Given any valid
configuration d of the DU algorithm, then the number of consecutive nonprogressing
rules that can be reduced starting from d is finite. All possible resulting configura-
tions d' satisfy m(d') = m(d).

PROOF. The proof is by induction on the length of the execution e of which d
is the last configuration. We assume that the lemma holds for all configurations of
e before d. We show that it holds for d by enumerating all possible executions of

38 . Seif Haridi et al

Nonprogressing
rules applicable

Fig. 17. Nonprogressing transitions in the DU algorithm.

Progressing

___—7 rulesapplicable

No rules applicable

nonprogressing rules. Consider all rules that manipulate actions based on the same
variable-term pair (say, and u). Denote a configuration in which a nonprogressing
rule is applicable by the name of that rule. Denote by X a configuration in which
no rules or only progressing rules are applicable. By inspecting the rules, we deduce
the following graph of causal relationships:

Lose — X
Arrive — X Initiate

That is, applying INITIATE possibly leads to a configuration in which LOSE is appli-
cable, and so forth. A graph identical to this one exists for all variable-term pairs.
In all resulting sequences there are no cycles. Therefore a configuration in which
some nonprogressing rules are applicable will eventually lead to one in which no
nonprogressing rules are applicable. [

TuHEOREM (DU LIVENESS). If e is any execution of the DU algorithm such that
m(e) is nonterminal in the RCU algorithm, then continuing e will always eventually
reduce a progressing rule.

PROOF. Assume a distributed execution e with last configuration d; such that
¢ = m(d;) is nonterminal. We must show that 3j > i :d; = -+ — dj—1 — d;
where d;_1 — d; is an application of a progressing rule. Any execution starting
from d; and doing nonprogressing rules as long as possible must initially follow
the state diagram of Figure 17. Applying the lemma, we can assume that no
nonprogressing rules are applicable in d;_;. It remains to show that a progressing
rule is always applicable there. We do a case analysis over the RCU rules. Let the
RCU configuration be ¢, so that m(d;j—1) = ¢. For each rule, we apply the inverse
of mapping m, and we attempt to infer whether a progressing rule is applicable.

6.4.1 Interchange. Assume that the INTERCHANGE rule is applicable in ¢. There-
fore less(u, z) holds, and ¢ contains u = z. For some site s, dj_1 contains (u = z)s.
Therefore the INTERCHANGE rule is applicable in d;_;.

6.4.2 R-Memo and R-Dereference. Except for the memo table, the conditions
for these two rules are identical. For both R-MEMO and R-DEREFERENCE, ¢
contains x = u and z < v and we know less(u,x), Therefore for some site s,
d;j_1 contains (z = u)s. For this site, dj_1 contains one of (z < v); or (z < v)s.
The case (x < v), is impossible by the lemma, since in that case one of ARRIVE
or INITIATE is applicable depending on whether or not (z < —); is in the store.
If MEM(x = u, M) then a MEMO is applicable. Otherwise, a DEREFERENCE is

applicable.

Logic Variables for Distributed Computing . 39

6.4.3 R-Bind. Both less(u,z) and z ¢ lhs(o) hold. For some site s, d;_1 con-
tains (x = u),. This site must also contain (z < —);, since otherwise an INITIATE
is applicable. Since z ¢ lhs(o), we know unbound(z), so the & ~ u of the INITIATE
still exists, and a WIN rule is applicable.

6.4.4 Identify, Conflict, and Decompose. These are straightforward.

This proves the theorem. [

6.5 Total Correctness

THEOREM (DU ToTAL CORRECTNESS). Given any finite multiset of equations,
then placing them on arbitrary sites and executing the DU algorithm will terminate
and result in a configuration that maps to a configuration equivalent to that of a
terminating CU execution.

ProOF. From DU Safety, any results obtained are correct results for the RCU
algorithm. From DU Liveness and the Finiteness Lemma, the DU algorithm will
terminate and reach this correct result. From RCU Total Correctness, the result is
equivalent to the result of a terminating CU execution. O

7. ON-LINE FINITE ENTAILMENT

In the real system, it is almost never the case that unification is initiated with a
fixed set of equations and runs to termination without any interaction with the
external environment. Rather, the algorithm will be running indefinitely, and from
time to time an equation will be added to the current action. This is the on-line
case. The interesting property is not termination, but whether the equation will
be entailed by the store in a finite number of reductions (finite entailment). In this
section, we extend the CU and DU algorithms to the on-line case, and we show that
the extended algorithms satisfy the finite-entailment property. We use the standard
weak fairness assumption that all rule instances applicable for an indefinite period of
time will eventually be reduced. We show that this is not enough to guarantee that
the equation will be entailed, but that we need an additional property, the finite-
size property, to bound the amount of work needed to incorporate the equation in
the store.

7.1 On-Line CU and DU Algorithms

We extend the CU algorithm (from now on called the off-line CU algorithm) with
a new rule:

true || u=wv
o5 [g; K

INTRODUCE

This rule is always applicable, and it adds a new equation to the action when it
reduces. The extended algorithm, also called the on-line CU algorithm, therefore
does not terminate. We extend the DU algorithm in a similar way by an INTRODUCE
rule that introduces (u = v), for an arbitrary site s.

40 . Seif Haridi et al

X =<—y x =— f(x1, ..., xn) fin

Qxl mun an

Fig. 18. Mapping the store to its graph.

7.2 Finite-Size Property

Any store o can be mapped to a graph with two kinds of nodes, variables and
records. The graph is defined in a straightforward way from the store’s bindings
(see Figure 18):

—A binding z < y maps to variable nodes z and y, with a directed edge from
to y.

—A binding z « f(z1,...,z,) maps to a set of variable nodes z, z1, ..., , and a
record node f/n, with directed edges from z to f/n and from f/n to every zy,
o Tn.

Given a variable node x, we define graph(z, o) as the subgraph of ¢’s graph whose
nodes and edges are reachable from z. We also define size(z, o) as the number of
edges in this subgraph. This quantifies the size of the data structure attached to z.

Given a valid configuration with store o, it is clear that size(z, o) is finite. How-
ever, the size may be unbounded when considering all configurations of a given
execution. This leads us to define the following property. We say a variable z has
the finite-size property for the execution e if

In >0:V(;0k;-) € e:size(x, o) < n.

That is, there is a finite upper bound on the size of = that holds for the whole
execution. We say that an equation v = v has the finite-size property if all its
variables do. The finite-size property is used to avoid infinite executions caused by
race conditions in two cases:

(1) Dereference chains that increase in length indefinitely: For example,
consider the equation zy = yg, which is accompanied by the infinite sequence
of pairs of equations z; = z;41 and y; = y;11, starting with ¢ = 0. These
equations are added by an INTRODUCE rule reductions at the appropriate times.
We assume that the ordering condition enforces that lower-indexed variables
are bound to higher-indexed variables. For each i starting with 0, if z; = z;41
and y; = y;4+1 are both introduced and bound before x; = y; is dereferenced,
then the store will never entail zg = yo.

(2) Nested terms that increase in depth indefinitely: For example, consider
the equation zg = yo, which is accompanied by the equations z; = f(z;11) and
yi = f(yix1), starting with ¢ = 0. For each i starting with 0, if z; = f(2z;11)
and y; = f(yi+1) are both introduced and bound before z; = y; is decomposed,
then the store will never entail zg = yo.

Logic Variables for Distributed Computing . 41

It is remarkable that these two infinite executions are possible even with the weak
fairness assumption. One way to avoid infinite executions would be to give the
INTRODUCE rule lower priority than the others, i.e., as long as another rule is
applicable, do not reduce an INTRODUCE rule. But this does not model the real
world, in which equations can arrive at any time. The finite-size property does
not have this deficiency. It does not restrict in any way when new equations are
introduced. Rather, it forbids just those executions that would cause a problem.

The finite-size property can be enforced easily for dereference chains by requiring
that all new variables have higher order than all existing variables. Then the total
length of all dereference chains that need traversing is bounded by the number of
variables in the system when the equation is introduced.

In the case of nested structures, the finite-size property can be enforced by not
unifying terms whose nesting depth is potentially unbounded. This seems to be a
reasonable condition because when a potentially infinite unification is necessary in
practice, then it is sufficient that it always makes progress, not that it completes
(e.g., see the streams of Section 2.4.2). The weak fairness assumption is enough by
itself to guarantee progress of infinite unifications and eventual termination of finite
unifications. The finite-size property ensures that a unification that is intended by
the programmer to be finite will actually be finite during the execution. These two
conditions suffice for all practical programs we know of.

7.3 Finite Entailment

Under what conditions will the store entail a given equation after a finite number
of reductions? In this section we show that two conditions are needed in addition
to weak fairness. First, there must be no detected inconsistencies (false actions)
within the context of the given memo table. Second, the amount of work needed
to incorporate the equation into the store must be finite (finite-size property).

An inconsistency is detected at most once per memo table. This is true for both
the centralized and distributed algorithms as well as the Mozart implementation. In
the CU algorithm, there is only one memo table, so an inconsistency is detected at
most once. In the DU algorithm, there is a memo table per site, so an inconsistency
can be detected once per site.

THEOREM (FINITE ENTAILMENT OF ON-LINE CU). Given (1) weak fairness,
(2) any valid configuration c of the on-line CU algorithm that contains the equation
u=wv, and (3) any execution e that contains ¢ and satisfies the finite-size property
for u = v, then e will eventually contain either a false action or a store that entails
U= .

PRrROOF. We outline the proof. We are given that size(u = v, o) has a finite
upper bound in e. Therefore graph(u = v, o) has a finite limit graph. Let V
denote the set of variables in this graph. Denote the store corresponding to the
limit graph as oy. Since V has a finite limit, the set uy = { =y € ugl|z,y € V},
i.e., of equalities in uj; whose variables are in V', also has a finite limit. When this
limit is reached, then consider the equations ay, part of ay, whose variables are all
in V. Consider an execution starting with (ay;uy;oy), without the INTRODUCE
rule, and that reduces rules in the same order as e does. This is a continuation of an
off-line CU execution. If no false actions occur, then the Entailment Property (see

42 . Seif Haridi et al

Section 4.2) implies that eventually we end up with a store that entails u = v. O

We now extend this result to the distributed case. First we extend the DU
algorithm to an on-line DU algorithm by an INTRODUCE rule that introduces an
equation on any site. It is easy to see that safety continues to hold. We now show
liveness and finite entailment for the on-line DU algorithm.

THEOREM (LIVENESS OF ON-LINE DU). Given (1) weak fairness and (2) any
execution e of the on-line DU algorithm such that m(e) is nonterminal in the RCU
algorithm, then continuing e will always eventually reduce a progressing rule.

PRrROOF. The proof follows by minor modification of the proof of DU Liveness,
using weak fairness to compensate for the INTRODUCE rule. [

THEOREM (FINITE ENTAILMENT OF ON-LINE DU). Given (1) weak fairness,
(2) any valid configuration d of the on-line DU algorithm that contains the equation
(u=v)s, and (8) any execution e that contains d and such that m(e) satisfies the
finite-size property for w = v, then e will eventually contain either a false, action
or a store on site s that entails u = v.

PRrROOF. We outline the proof. The execution on site s has a local memo table M
for site s. We consider this execution to be a centralized execution with memo table
u = M. By the previous theorem, the result holds for the centralized execution.
Therefore the result holds also for the distributed execution on site s. [

8. THE MOZART IMPLEMENTATION

The Mozart system contains a refined version of the on-line DU algorithm, called
“Mozart algorithm” in what follows. Section 8.1 summarizes how the implemen-
tation differs with respect to the on-line DU algorithm. Section 8.2 introduces
the distribution graph, which is the framework in which the Mozart algorithm is
defined. Then Section 8.3 defines the properties of the network and the notation
used to define the distributed algorithm. After these preliminaries, the algorithm
itself is defined. Section 8.4 defines the local algorithm, and Section 8.5 defines the
distributed algorithm.

8.1 Differences with On-Line DU

The Mozart algorithm refines the on-line DU algorithm by making concrete deci-
sions regarding several aspects that were left open. Furthermore, the Mozart algo-
rithm does several optimizations to improve performance and has several extensions
including a model for failure detection and handling. This section summarizes these
refinements, optimizations, and extensions.

8.1.1 Refinements.

8.1.1.1 Separation into Local and Distributed Algorithms. The Mozart algo-
rithm consists of two parts: a purely local algorithm (corresponding to the DU
nonbind rules; see Section 8.4) and a distributed algorithm (corresponding to the
DU bind rules; see Section 8.5). A thread wishing to tell an equation invokes the
local algorithm. To bind a distributed variable to another one or to a record, the
local algorithm invokes the distributed algorithm. The thread blocks, waiting for a
reply. When the variable binding is known locally, then the thread continues.

Logic Variables for Distributed Computing . 43

8.1.1.2 The Owner Site. Each distributed variable is managed from a special
site, the owner site, which is where the variable was originally created. This site
contains the variable’s unbound/bound flag and other information, e.g., the register
list (see below).

8.1.1.3 Variable Ordering. The Mozart algorithm implements the order relation
less(u,v) as follows. Records are less than distributed variables, which are less than
local variables. Distributed variables are totally ordered; local variables are totally
ordered per site; and records are unordered. Local variables are ordered according to
a per-site index ¢ that is incremented for each new variable.? Distributed variables
are ordered according to a pair (s,7) where s is the site number on which the
variable was initially created and where i is the index of the variable on that site.
From this ordering relation it follows that if the number of sites is finite and data
structures of unbounded depth are not created, then the Mozart algorithm satisfies
the finite-size property (see Section 7.2).

8.1.2 Optimizations.

8.1.2.1 Globalization. The Mozart algorithm distinguishes between local and
distributed variables (see Section 8.5.1).

8.1.2.2 Variable Registration. A variable binding is not sent to all sites, but
only to registered sites (see Section 8.5.2).

8.1.2.3 Grouping Nested Data Structures. Binding a nested data structure to
a distributed variable is done by the Mozart algorithm as a single operation (see
Section 8.5.3).

8.1.2.4 Winner Optimization. When a variable is bound to a term, then the
term does not have to be sent back to the site that initiated the binding (see
Section 8.5.4).

8.1.2.5 Asynchronous Streams. To allow streams to be created asynchronously,
variables are given a set of registered sites as soon as they are globalized (see
Section 8.5.5).

8.1.3 FExtensions.

8.1.3.1 Lazy and Eager Variables. The laziness property affects the moment
when the variable is registered. Eager proxies are registered immediately. Lazy
proxies delay registration until a binding attempt is made (see Section 8.5.6).

8.1.3.2 Read-Only Logic Variables. Standard logic variables have two opera-
tions, reading the value and binding. For security reasons, it is often useful to
prohibit binding, for example, when building abstractions or when passing the
variable to a less-trusted site [Mehl et al. 1998; Mehl 1999].°

8.1.3.3 Garbage Collection. Distributed garbage collection is based on a credit

mechanism that collects all garbage except cross-site cycles between stateful entities

5For local variables, the index is simply the variable’s address.
6Read-only logic variables are confusingly called “futures” in these two references.

44 . Seif Haridi et al

(see Section 8.2.1).

8.1.3.4 The Failure Model. The Mozart algorithm is conservatively extended
with a model for failure detection and handling that reflects network and site failures
to the language level (see Section 8.2.2).

Record (with fields) Unbound variable Thread (with references)

Fig. 19. The three node types of the language graph.

Language graph Distribution graph
access structure for N2
N1 N2 N3 —> NI PL 0 P2 1 P8 N3
O—F—0O~——0 0—a @ &0
| | - tom
Stel ' Site2 | Site3 Site1 | Ste2 Site3

Fig. 20. An access structure in the distribution graph.

8.2 The Distribution Graph

We model distributed executions in a simple but precise manner using the concept
of a distribution graph. We obtain the distribution graph in two steps from an
arbitrary execution state of the system. The first step is independent of distribution.
We model the execution state by a directed graph, called language graph, in which
a record, an unbound variable, and a thread each correspond to one node (see
Figure 19). A node can be considered as an active entity with internal state that
can asynchronously send messages to other nodes and that can receive messages
from other nodes. The edges in the language graph denote the node’s references: a
record and a thread refer to other nodes; an unbound variable has no references.

In the second step, we distribute the execution over a set of sites. Assume a
finite set of sites, and annotate each node by its site (see Figure 20). If a variable
node, e.g., N2, is referenced by at least one node on another site, then map it to
a set of nodes, e.g., {P1,P2,P3.M}. This set is called the access structure of the
original node. An access structure consists of one prozy node Pi for each site that
referenced the original node and one owner node M for the whole structure. The
resulting graph, containing both local nodes and access structures where necessary,
is called the distribution graph. The execution of the distributed algorithm is defined
in terms of this graph. Execution consists of atomic graph transformations that
are initiated by the nodes. A logic variable implemented as an access structure is
called a distributed variable (as opposed to a local variable). A variable referenced
on more than one site is certain to be represented by an access structure.

Logic Variables for Distributed Computing . 45

Each access structure is given a global name n that is unique systemwide. In
Distributed Oz, n is the pair (s, i) that is also used to order the distributed variables.
The global name n encodes (among other things) the owner site s. Furthermore, a
proxy node is uniquely identified by the pair (n,s’), which contains the proxy site
s'. On each site, n indexes into a table that refers to the proxy. This allows to
enforce the invariant that each site has at most one proxy.

Messages are sent between nodes in access structures. In terms of sites, a message
is sent from the source node’s site to the destination node’s site. The message may
contain a subgraph of the distribution graph. Just before the message leaves the
source site, a new access structure is created for each local variable in the subgraph.
When in transit, the message refers only to proxy nodes, not to local variables.
When the message arrives, the subgraph becomes known at the destination site.
Each proxy node is looked up in the site table. If it is not present, then a new proxy
node is created and entered in the table. This extends an existing access structure
with one new proxy. The process of creating or extending an access structure is
called globalization (see Section 8.5.1).

The behavior of a distributed variable is defined as a protocol between the nodes
of its access structure. In general, nodes other than variable nodes can also have
access structures, and therefore obey a protocol. The Distributed Oz implementa-
tion uses four nontrivial protocols. Three are designed for specific language entities,
namely variables, object records, and state pointers. Variables use a variable bind-
ing protocol, which is part of the distributed unification algorithm and is presented
in this article. Object records use a lazy replication protocol. State pointers use
a mobile state protocol. See Alouini and Van Roy [1999], Van Roy et al. [1997;
1998], and Haridi et al. [1998] for more information on these protocols. The fourth
protocol is a distributed garbage collection algorithm using a credit mechanism.
Garbage collection is part of the management of access structures, and it therefore
underlies the other three protocols.

8.2.1 Distributed Garbage Collection. Distributed garbage collection is based on
a credit mechanism, which is a variant of weighted reference counting [Plainfossé
and Shapiro 1995]. The credit mechanism interfaces with the local garbage collector
of each site. All distributed garbage is removed except for cross-site cycles between
stateful entities on different owner sites. The mechanism has four useful properties.
First, creating a new proxy requires essentially zero network messages in addition
to the messages sent by the application. Second, each proxy site does not need to
know any other site except the owner site. Third, the owner site does not need to
know any proxy site. Fourth, sites that no longer locally reference a proxy will,
after a local garbage collection, no longer affect the access structure in any way.

The global name of an access structure is associated with a pool of credits. The
owner site lends credits to sites and messages that know the global name. All proxy
sites and messages must hold at least one credit. The owner site has an integer
corresponding to the total number of credits lent. The proxy site keeps a count of
how many credits it has borrowed from the owner site. If local garbage collection
removes the proxy node, then all its credits are returned to the owner site. Both the
global name and the owner node can be reclaimed after all credits have returned to
the owner site. When that happens, the language entity becomes local again (see

46 . Seif Haridi et al

Thread

Q/g \O =0

Record Local variable Proxy

Fig. 21. The five node types of the distribution graph and their message interfaces.

Section 8.5.1).

8.2.2 The Failure Model. The failure model is designed according to the prin-
ciple that an Oz program should be able to make all decisions regarding failure
behavior [Van Roy et al. 1999; Haridi et al. 1998; Brand et al. 1999; Van Roy 1999].
That is, the implementation does not make any irrevocable decisions by default.
Full treatment of the model is beyond the scope of this article. We briefly summa-
rize the main ideas. The failure model considers failures at the level of individual
language entities, e.g., logic variables. The model covers permanent site failures
and temporary and permanent network failures. The model has two effects at the
language level:

—It extends each operation on an entity to have three possible results. If there is
no failure then the operation succeeds. If there is a failure, then the operation
either waits indefinitely until the problem goes away or aborts and is replaced
by a user-defined procedure call. The call can retry the operation. There are
no default time-outs; it is up to the program to decide whether to continue to
wait or not. For example, an entity can be configured so that all operations wait
indefinitely on network failures (in the hope that they are temporary) and raise
an exception on a permanent site failure.

—1It allows to eagerly detect a problem with an entity, i.e., without having to do an
operation on the entity. When a user-specified failure condition is detected then
a user-defined procedure is called in its own thread. The failure condition does
not necessarily keep the entity from working, i.e., it can just give information.
For example, a remote proxy site failure will often have no effect at all on the
binding of a logic variable, but it may nonetheless be important to be notified of
this failure.

This failure model is fully implemented as part of the Mozart system. We are
currently developing more powerful abstractions in Oz on top of this model.

8.3 Basic Concepts and Notation

8.3.1 Network. Consider a single owner node M, a set of p proxy nodes P; with
1 < < p, and a set of m thread nodes T; with 1 < i < m. All nodes have state and
interact according to Figure 21. Thread, proxy, and owner nodes perform internal
operations. Proxy nodes communicate with thread and owner nodes. Record and
local variable nodes communicate only with thread nodes. Let these nodes be linked
together by a network N that is a multiset containing messages of the form d : m

Logic Variables for Distributed Computing . 47

Table IV. Node State

Node Attribute Type
Any node id Nodeld

type {RECORD,LOCVAR,PROXY ,MANAGER,THREAD}
Record label Atom
(N.type=RECORD) arity Integer

args array|1..arity] of Node
Local variable state {UNBOUND, BOUND(Node)}
(N.type=LOCVAR) eager {FALSE, TRUE}
Proxy state {UNBOUND, INITIATED, BOUND(Node)}
(N.type=PROXY) eager {FALSE, TRUE}

reg {FALSE, TRUE}

owner Nodeld
Owner state {UNBOUND, BOUND(Node)}
(N.type=MANAGER) reglist set of Nodeld
Thread

(N.type=THREAD)

where d identifies a destination (thread, proxy, or owner node) and where m is a
message.
The Mozart algorithm is defined using reduction rules of the form

Condition
Action

Each rule is defined in the context of a single node. Execution follows an interleaving
model. The local algorithm imposes an order on how its rules are fired; see the
pseudocode definition in Section 8.4. The distributed algorithm imposes no such
order.

At each reduction step, a rule with valid condition is selected. Its associated
actions are reduced atomically. A rule condition consists of boolean conditions on
the node state and one optional receive condition Receive(d,m). The condition
Receive(d,m) means that d : m has arrived at d. Executing a rule with a receive
condition removes d : m from the network and performs the action part of the rule.
A rule action consists of a sequence of operations on the node state with optional
sends. The action Send(d,m) asynchronously sends message m to node d, i.e., it
adds the message d : m to the network.

We assume that the network and the nodes are fair in the following sense. The
network is asynchronous, and messages to a given node take arbitrary finite time
and may arrive in arbitrary order. All rule instances that remain applicable for an
indefinite period of time will eventually be reduced.

8.3.2 Node State. Table IV defines the state of the five node types by listing
the attributes of each node. All nodes have attributes “id” and “type,” which
have constant values. The types Nodeld, Atom, and Integer are atomic types
implemented in a straightforward way. In the real system, threads, proxies, and
owners have more attributes, e.g., threads have an execution state, while proxies
and owners maintain information for distributed garbage collection.

8.3.3 Utility Operations. The memo table uses the function clearmemo(), the
procedure add(N1,N9,M), and the boolean function mem(N{,N9,M). The latter
two are exactly the ADD and MEM operations defined in Section 3.2. The other

48 . Seif Haridi et al

eq(Nl,NQ) = Nj.id=Ny.id

locvar(N) = N.type=LOCVAR

disvar(N) = N.type=PROXY

nonvar(N) = N.type=RECORD

var(N) = locvar(N) Vv disvar(N)

bound(N) = if var(N) — N.state=BOUND(.) fi
initiated(N) = ifdisvar(N) — N.state=INITIATED fi
deref1(N) = if var(N) A bound(N) —

N7 where N.state=BOUND(N7) fi
if nonvar(N1) A nonvar(Ng) —
Ny .arity=Ny.arity A Nq.label=Ng.label fi
if locvar(N) — {}
[] disvar(N) —
if bound(N) — proxyids(deref1(N))
[] not bound(N) — {N.id} fi
[] nonvar(N) — UlgiSN.arity proxyids(N.args[7]) fi

compatible(N1,Ny)

proxyids(N)

Fig. 22. Utility operations.

operations are defined in Figure 22.

8.4 The Local Algorithm

Figure 23 defines the local algorithm, which executes in each thread that does a
unification. The definition follows closely the nonbind rules of Section 5.4.1, where
a rule corresponds to a guard and its body. The two main differences are that the
local algorithm maintains a memo table that is shared among the rules and that a
sequential order is imposed on rule reductions. The if is a guarded command that
suspends until at least one of its guards is true.

In the implementation, executions of the local and distributed algorithms are not
interleaved. Rather, the local algorithm is executed atomically until it exits (either
normally or through an exception) or until it blocks after sending a binding request.

Each invocation of unify is done within a thread. The unification completes in
two ways: when it terminates normally or when an inconsistency is detected, in
which case a failure exception is raised. During the unification, the thread will
block when waiting for a binding request to complete. This works as follows. The
first thread that tries to bind a variable will send a binding request (INTTIATE rule).
Other threads that try to bind the same variable on the same site will not send any
message. All threads then block at the if: no guard is true because the variable
satisfies disvar(N1) A not bound(N7) A initiated(N1). As soon as the binding
arrives, bound(Ny) is true, and the if becomes reducible. All threads can then
continue.

The local algorithm is optimized to bind local variables locally. With a suit-
able data representation, the algorithm is implementable very efficiently [Gudeman
1993; Van Roy 1994]. The implementation does binding in place and dereferencing
inline. Common cases of unification such as parameter passing and local variable
initialization do not need binding nor dereferencing, but reduce to single register
moves or stores.

The local memo table is implemented by means of forwarding pointers between
variables [Haridi and Sahlin 1984]. That is, when the equation z = y is encountered

Logic Variables for Distributed Computing

procedure unify(Ny,Ng)
define memotable M
define procedure inner_unify(N{,Ng)
if /¥*** INTERCHANGE ****/
var(Ng), less(N1,Ng) — inner_unify(No,Nq)
[] /**** IDENTIFY **¥%/
var(N7p), eq(Ny,Ng) — skip
[] /¥ MEMo **¥%/
var(Ny), less(Ng,N7), bound(Ny), mem(N{,Ng,M) — skip
[] /**** DEREFERENCE ****/
var(Nq), less(N9,N7), bound(N1), not mem(Ny,Nog,M) —
add(N1 ,N2,M)
inner_unify(deref1(N1),Ng)
[] /¥*%* BIND **%%/
locvar(Ny), less(N9,N1), not bound(N{) —
Ny .state <~ BOUND(Ng)
[] /¥%* INITIATE **%*/
disvar(N7q), less(No,N1), not bound(N{), not initiated(Ny) —
Ny .state < INITIATED
Send(N{.owner,binding request(Ng))
clearmemo(M)
inner_unify(N{,Ng)
[] /**** DECOMPOSE ****/
nonvar(Nq), nonvar(Ny), compatible(N{,Ng) —
for i:=1 to Ny .arity do inner_unify(Ny.args[i],Ng.args]i])
[] /**** CONFLICT **¥*/
nonvar(Nq), nonvar(Ng), not compatible(N{,Ng) —
raise failure_exception
fi
end
in
clearmemo(M)
inner_unify(N{,N9)
end

Fig. 23. Distributed unification part 1: Local algorithm.

49

50 . Seif Haridi et al

/**** WIN ****/

Receive(M.id,binding_request(N)) A M.state=UNBOUND
Vi € M.reglist: Send(i, binding-in_transit(N))
M.state + BOUND(N)

JHEEE L ogE HHEE |
Receive(M.id,binding_request(-)) A M.state=BOUND(_)
skip

J**E% ARRIVE *¥%%

Receive(P.id,binding_in_transit(N)) A (P.state=UNBOUND V P.state=INITIATED)
Vi € proxyids(N): Send(, reg)
P.state + BOUND(N)

/*¥**¥* Variable registration ****/

Receive(P.id,reg) A P.reg=FALSE
P.reg < TRUE
Send(P.owner,register(P.id))

Receive(P.id,reg) A P.reg=TRUE
skip

Receive(M.id,register(PId)) A M.state=UNBOUND
M.reglist < M.reglist U {PId}

Receive(M.id,register(PId)) A M.state=BOUND(N)
Send(PId,binding-in_transit(N))

Fig. 24. Distributed unification part 2: Distributed algorithm.

for the first time, a forwarding pointer is installed from z to y. This allows a very fast
check of memo table membership. Namely, if z = y or y = x is encountered later on,
then dereferencing will reduce the equation to y = y, which does no further work.
The forwarding pointers are installed in the context of a single atomic unification
operation. They are removed when the local algorithm exits or blocks.

Other operations can be performed on a site while a unification is blocked. For
correctness, the forwarding pointers must be removed whenever execution leaves
the local algorithm. This is modeled in Figure 23 by creating a new memo table
when unify is called and by clearing the memo table after an INITIATE rule. This
means that the memo table starts from empty at each atomic execution of the local
algorithm. The Mozart algorithm therefore potentially does more redundant work
than the on-line DU algorithm, because the DU algorithm never clears the local
memo tables.

8.5 The Distributed Algorithm

Figure 24 defines the distributed algorithm, which extends the DU bind rules of
Section 5.4.2 with globalization and variable registration. The implementation does
three other important optimizations, namely grouping nested data structures, the
winner optimization, and asynchronous streams. For clarity, we do not define the
latter formally, but rather show how to extend the protocol to include them. We
also explain how to extend the protocol for lazy and eager variables.

Logic Variables for Distributed Computing . 51

8.5.1 Globalization. Newly created variables are always local. When a message
is sent referencing a local variable, then a new distributed variable is created, and
the local variable is bound to it. This is called globalizing the local variable. An
access structure is created when a local variable is globalized. When the message
arrives then a new proxy will be created for the distributed variable if none exists
on the arrival site. Therefore globalization is part of the Send and Receive oper-
ations [Alouini and Van Roy 1999]. The inverse operation, localization, consists of
removing the access structure when the variable is only referenced on one site (see
Section 8.2.1). The distributed variable becomes a local variable again.

All local variables and proxies have a boolean attribute “eager” that determines
whether the node is eager or lazy. The attribute affects only the network op-
erations of the distributed algorithm. Assume we have a local variable L. with
L.state=UNBOUND and L.eager=b. After globalizing, the original site contains
three nodes, L, P, and M, with the following states:

L.state=BOUND(P)
P.state=UNBOUND, P.eager=b, P.reg=b, P.owner=M.id
M.state=UNBOUND, M.reglist=if b then {P.id} else {} fi

8.5.2 Variable Registration. In the DU algorithm, a binding arrives on a site
if the variable exists in the site’s store. In the Mozart algorithm, the variable’s
owner keeps track of the sites that reference the variable. A site that receives a
distributed variable for the first time (i.e., when a term containing the variable first
arrives on the site) has to register with the owner in order to receive the variable’s
binding. When a variable is bound, then a binding_in_transit message is sent to all
registered sites. When this message reaches a site then the ARRIVE rule reduces
(see Figure 24). This sends reg messages to all proxies in the binding. The reg
message causes all unregistered proxies to register with their owner. If the variable
is already bound when the register message arrives then the binding is sent back
immediately.

8.5.3 Grouping Nested Data Structures. The DU algorithm binds only a single
record at a time, namely the top level of the tree. The Mozart algorithm binds a
complete tree in a single operation. In this way, it avoids the creation of distributed
variables for the intermediate nodes. For example, the unification z; = f(g(a)), is
represented in the DU algorithm as three actions z; = f(z2) Azs = g(x3) Az3 = a.
In the DU algorithm, the arrival of 21 < f(z3) enables the arrival of z, < g(x3),
and similarly for z3. In the Mozart algorithm, the binding z; < f(g(a)) arrives in
one step, so the variables zo and x3 are never created.

8.5.4 Winner Optimization. The winner is the proxy that sent a successful bind-
ing_request(N). This proxy does not need to be sent N, since N already exists on
the proxy’s site. The proxy can be sent a simple acknowledgment that its binding
request was successful. This avoids the redundant work done by the R-BIND rule
(see Section 6.2).

The winner optimization requires the following protocol extensions: an extended
proxy state INITTATED(N) where N is the binding, an extended message bind-
ing_request(N,PId) where PId identifies the winning proxy, and a new message
binding_ack from the owner to the winning proxy. When the proxy receives bind-

52 . Seif Haridi et al

ing_ack, then it retrieves N from the INITTATED(N) state.

8.5.5 Asynchronous Streams. A variable that is exported from its owner site can
be preregistered. That is, the destination site is added to the owner’s reglist without
waiting for a registration message. This is correct if there is a FIFO connection to
the destination site. Preregistering variables allows elements to be added to streams
asynchronously. The example of Section 2.4.2 relies on this behavior.

Let us look closely to see what happens. Assume variable X0 exists on sites 1
and 2. Binding X0=ni| X1 on site 1 causes ml| X1 to be sent to site 2. X1 will be
preregistered, i.e., Mx1 .reglist < Mx1 .reglist UMxg.reglist when the binding leaves
site 1. If X1 is later bound on site 1, then its binding will be sent immediately to
site 2 without waiting for a registration request from site 2.

If preregistration is not done, then adding elements to a stream requires a round-
trip message delay for each element. This is because remote proxies have to be
registered before they can receive a binding. In our example, binding X0=nt| X1 on
site 1 causes ml| X1 to be sent to site 2. When it arrives, an X1 proxy is created
on site 2 which promptly registers with site 1. Binding X1=n2| X2 on site 1 will not
send the binding to site 2 until the registration arrives on site 1. Therefore, each
new element appears on site 2 only after a round trip.

8.5.6 Lazy and Fager Variables. Lazy and eager logic variables are defined in-
formally in Section 2.2.2. In terms of the on-line DU algorithm, they differ only in
the scheduling of the ARRIVE rule. To be precise, laziness is a property of a variable
proxy, not of a variable. A proxy is lazy if the reduction of ARRIVE is delayed until
after INITIATE reduces on that site. If no such delay is enforced then the proxy is
eager.

In terms of the Mozart algorithm, this is implemented by registering lazy and
eager proxies at different times. Eager proxies are registered as soon as they appear
on a site (see ARRIVE rule in Figure 24). Lazy proxies are only registered after the
INITIATE rule is reduced (see Figure 23), i.e., when a binding request is made.

When two proxies are bound together, the result must be eager if at least one
of the two was eager. When a local variable is bound to a proxy, the proxy must
become eager if the local variable was eager. Implementing this requires replacing
the reg message by three messages: (1) in the ARRIVE rule, reg becomes reg-if_eager,
(2) in the INITIATE rule, a new message reg_always is sent, and (3) in the BIND
rule, a new message reg_and_make_eager is sent if the local variable is eager.

9. RELATED WORK

There are two main streams of related work. Some distributed implementations
of concurrent logic languages do distributed unification (see Sections 9.1 and 9.3).
Some imperative or dataflow language implementations have a kind of synchronizing
variable (see Section 9.2). To our knowledge, the present article gives the first formal
definition and correctness proof of a practical algorithm for distributed rational tree
unification. The present article also clearly explains for the first time the advantages
of using logic variables in a distributed system.

Logic Variables for Distributed Computing . 53

9.1 Concurrent Logic Languages

Many concurrent logic languages have been implemented in distributed settings.
These systems do not use logic variables primarily to improve latency tolerance
and network transparency. Rather, logic variables are integral parts of their ex-
ecution models, and the distributed extensions must therefore implement them.
We summarize the distributed unification algorithms used in Flat GHC, Parlog,
Pandora, DRL, and KLIC.

9.1.1 Flat GHC, Parlog, and D/C-Parlog. Among early implementations doing
some form of distributed unification are a Flat GHC (Guarded Horn Clauses) im-
plementation on the Multi-PSI [Ichiyoshi et al. 1987], a Parlog implementation on
a network of workstations [Foster 1988], and designs for distributed implementa-
tions of Parlog, Pandora, and D/C-Parlog [Leung 1993; Leung and Clark 1996].
Pandora extends Parlog with determinacy-driven execution (the Andorra model).
D/C-Parlog extends Parlog with linear real-number constraints, namely equations,
inequalities, and disequalities. All the above distributed unification algorithms are
defined informally by explaining what happens with arguments of different types.
No formal definitions nor correctness arguments are given.

The Parlog implementation contains an algorithm due to Foster [1988]. Variables
exist on one site and have remote references, which is similar to the owner/proxy
model of the Mozart algorithm. Variable-variable unification avoids binding cycles
by ordering the variables, as is done in the DU algorithm. All remote references
to variables are lazy, and dereference chains may cross sites. Preregistering is not
done, so asynchronous streams are not possible.

Like early Prolog systems, Foster’s algorithm does neither an occur-check nor
memoization. When unifying two cyclic structures it may go into an infinite loop.
The algorithm has proxy registration (called “ns_read”) similar to the Mozart algo-
rithm and a novel form of registration (called “read”) that sends the binding only
when the variable is bound to a nonvariable term. This is used to get the value for
operations that need a nonvariable.

9.1.2 DRL. DRL [Diaz et al. 1997] (Distributed Real-time Logic language) is a
concurrent logic language extended with features for distribution and soft real-time
control. Distribution is introduced by allowing computations on different sites to
communicate through shared logic variables. In DRL, the representative of a logic
variable on a site is called a logic channel. A logic channel is always statically
marked with a direction, which is either output or input. For a given logic variable,
only one channel is marked output. Binding the output channel to a term causes
the term to appear at all corresponding input channels. The binding blocks until
the term contains only ground subterms and logic channels. It follows that variables
can be transferred between sites only if they are statically declared as logic channels.

Logic channels can be connected together. This operation is called “unification”
in DRL, but the shared logic variables are not actually unified together. To be
precise, no variable elimination is done, but communication links are set up between
variables. Connecting two output channels causes a future binding of one of them
to be sent also to the other. Connecting an input channel to another channel
suspends until the input channel receives a value. It follows that dependencies on

54 . Seif Haridi et al

intermediate sites are not removed.

9.1.3 KLIC. KLIC [Fujise et al. 1994] is an efficient portable implementation of
the concurrent logic language KL1 (Kernel Language 1) for distributed and shared-
memory machines. KLIC achieves these goals by compiling into C. On one processor
running a series of representative benchmarks, the performance of KLIC approaches
that of C and C++ implementations. The distributed implementation of KLIC
does distributed unification [Rokusawa et al. 1996], including binding variables to
variables. However, the algorithm has several curious properties: binding cycles
can be created when binding variables to variables; inconsistencies are ignored; and
a variable may be bound to different values on different sites. Apparently, the
algorithm is only intended to be used in settings where there is no possibility of
inconsistency.

9.2 Languages Not Based on Logic

We first compare logic variables with futures and I-structures (see Section 9.2.1),
which have been used to improve expressiveness of parallel languages and per-
formance of parallel systems. Then we briefly discuss traditional distributed ar-
chitectures and how they could be extended to incorporate logic variables (see
Section 9.2.2).

9.2.1 Futures and I-Structures. The purpose of futures and I-structures is to
increase the potential parallelism of a program by removing inessential dependen-
cies between calculations. They allow concurrency between a computation that
calculates a value and one that uses the value. This concurrency can be exploited
on a parallel machine. To our knowledge, they have not been used in distributed
programming. We compare futures and I-structures with logic variables (see also
Section 2.4.4).

The call (future E) (in Lisp syntax) does two things: it immediately returns a
placeholder for the result of E, and it initiates a concurrent evaluation of E [Halstead
1985]. When the value of F is needed, the computation blocks until the value is
available. We model this as follows in Oz (where E is a zero-argument function):

fun {Future E}
thread {E} end
end

An important difference with a logic variable is that a future can only be bound
by the concurrent computation that is created along with it. Therefore the above
definition is not quite right; to precisely model futures a read-only logic variable
should be used (see Section 8.1.3).

An I-structure (for incomplete structure) is a single-assignment array whose ele-
ments can be accessed before all the elements are computed [Arvind and Thomas
1980; Veen 1986; Tannucci 1990]. It permits concurrency between a computation
that calculates the array elements and a computation that uses their values. When
the value of an element is needed, then the computation blocks until it is available.
An I-structure differs from an array of logic variables in that its elements can only
be bound by the computation that calculates them.

Logic Variables for Distributed Computing . 55

9.2.2 Two-Level Addressing. Systems with support for distributed computing
commonly provide two-level addressing. This provides the ability to use local and
remote references interchangeably. References that arrive on a site are automati-
cally converted to the local form if they refer to local entities. Typical examples
include Java RMI [Sun Microsystems 1997], CORBA [Otte et al. 1996], and the
Ericsson OTP (Open Telecom Platform) [Armstrong et al. 1996; Wikstrém 1994].

Two-level addressing can be extended to provide weak logic variables (see also
Section 2.1.4). It suffices to add an “unknown” state to variables: (1) threads block
when the variable is unknown, (2) when the value is available, all remote references
to the variable leave the unknown state, and (3) no forwarding chains are created if
a reference travels among many sites. There should be no overhead if the variable
is on one site only. To provide full logic variables this is further extended with
variable-variable unification. As the CC-Java implementation illustrates, dynamic
typing is not necessary (see Section 2.5.1).

9.3 Sending a Bound Term

A basic operation in distributed unification is sending a bound term across the
network. Lamma et al. [1997] investigate the costs of this operation and sketch an
algorithm to send only that part of a term required by a consumer. Sending too
little increases the message latency, since multiple requests will be done. Sending
too much increases network load and memory consumption at the consumer. The
proposed algorithm sends exactly that part of a term required by a consumer. For
example, a list-appending procedure requires only the spine of the list, and not
the terms in the list. The algorithm uses “consumption specifications,” simple tree
grammars extended with an additional terminal, Remote. These specifications can
be given by static analysis or by programmer annotation.

10. CONCLUSIONS

This article has examined the use of logic variables in distributed computing. We
have shown that if the logic variables are well implemented, then common dis-
tributed programming idioms can be written in a network-transparent manner,
and they behave efficiently when distributed. We have defined the CU algorithm,
a centralized algorithm for rational tree unification, and the DU algorithm, its con-
servative extension to a distributed setting. The DU algorithm has just two changes
with respect to the CU algorithm. First, CU’s single BIND rule is replaced by four
rules that do coherent variable elimination. Second, CU’s unique memo table is
replaced by a local memo table per site.

We show that the DU algorithm has good network behavior for common dis-
tributed programming idioms. We prove that the DU algorithm is a correct im-
plementation of unification, and we bound the amount of extra work it can do
compared to the CU algorithm. We show that both lazy and eager logic variables
are implemented by the DU algorithm. They differ only in the scheduling of a single
reduction rule.

We extend both the CU and DU algorithms to the on-line case, in which new
equations can be introduced indefinitely during execution. We show that if a weak
fairness condition holds and if all variables in the equation satisfy the finite-size
property, then any introduced equation will eventually be entailed by the store.

56 . Seif Haridi et al

The Mozart system implements the Distributed Oz language and was publicly
released in January 1999 [Mozart Consortium 1999]. Mozart contains an opti-
mized version of the on-line DU algorithm. Distributed Oz, also known as Oz 3,
conservatively extends Oz 2 to allow an efficient distributed network-transparent
implementation [Haridi et al. 1998; Van Roy et al. 1997; Haridi et al. 1997]. Oz
2 has a robust centralized implementation that was officially released in February
1998 [DFKI Oz 1998]. Oz 3 keeps the same language semantics as Oz 2 and extends
it with support for mobile computations, open distribution, component-based pro-
gramming, and orthogonal failure detection and handling within the language. Oz
2 programs are portable to Oz 3 almost immediately.

ACKNOWLEDGEMENTS

Michael Mehl implemented the distributed unification algorithm in the Mozart sys-
tem. Per Brand and Erik Klintskog have extended it to incorporate orthogonal
failure detection and handling. Ilies Alouini and Mustapha Hadim gave many valu-
able comments on this article. We thank Andreas Podelski and all our colleagues
in the Mozart Consortium (DFKI, SICS, UCL, and UdS). Finally, we thank the
referees for comments that let us vastly improve the presentation.

REFERENCES

ALFORD, M. W., LAMPORT, L., AND MULLERY, G. P. 1985. Lecture Notes in Computer Science,
vol. 190. Springer Verlag, Chapter 2. Basic Concepts, in Distributed Systems—Methods and
Tools for Specification, An Advanced Course.

Avouini, I. AND VAN Roy, P. 1999. Le protocole réparti de Distributed Oz (in French). In
Collogue Francophone sur I’Ingénierie des Protocoles (CFIP 99). 283-298.

ARMSTRONG, J., WiLL1AMS, M., WIKSTROM, C., AND VIRDING, R. 1996. Concurrent Programming
in Erlang. Prentice-Hall, Englewood Cliffs, N.J.

ARVIND AND THOMAS, R. E. 1980. I-Structures: An efficient data type for functional languages.
Tech. Rep. 210, MIT, Laboratory for Computer Science.

Bar, H. E., STEINER, J. G., AND TANENBAUM, A. S. 1989. Programming languages for distributed
computing systems. ACM Comput. Surv. 21, 3 (Sept.), 261-322.

BrAND, P., VAN Rov, P., COLLET, R., AND KLINTSKOG, E. 1999. A reliable mobile-state protocol
for constructing fault-tolerant applications. In preparation.

CARDELLI, L. 1995. A language with distributed scope. ACM Trans. Comput. Syst. 8, 1 (Jan.),
27-59.

Caow, R. AND JouNsON, T. 1997. Distributed Operating Systems and Algorithms. Addison-
Wesley, San Francisco, Calif.

COLMERAUER, A. 1982. Prolog and Infinite Trees. Academic Press. In Logic Programming, Keith
L. Clark and Sten-Ake Tarnlund, eds.

COURCELLE, B. 1983. Fundamental properties of infinite trees. Theoretical Computer Science 25,
95-169.

DFKI Oz 1998. DFKI Oz version 2.0. Available at http://www.ps.uni-sb.de.

Diaz, M., RuBio, B., AND TRrRoOYA, J. M. 1997. DRL: A distributed real-time logic language.
Comput. Lang. 23, 2-4, 87-120.

DucHIER, D., KORNSTAEDT, L., SCHULTE, C., AND SMOLKA, G. 1998. A Higher-order Module
Discipline with Separate Compilation, Dynamic Linking, and Pickling. Tech. rep., Programming
Systems Lab, DFKI and Universitdt des Saarlandes. DRAFT.

FoSTER, I. 1988. Parallel implementation of Parlog. In International Conference on Parallel
Processing. IEEE Computer Society, 9-16.

FuJsise, T., CHIKAYAMA, T., Rokusawa, K., AND NAKASE, A. 1994. KLIC: A portable implemen-
tation of KL1. In Fifth Generation Computing Systems (FGCS ’94). 66-79.

Logic Variables for Distributed Computing . 57

GosLING, J., Joy, B., AND STEELE, G. 1996. The Java Language Specification. Addison-Wesley.
Available at http://www.javasoft.com.

GUDEMAN, D. 1993. Representing type information in dynamically typed languages. Tech. Rep.
TR93-27, University of Arizona, Department of Computer Science. Sept.

HALSTEAD, R. H. 1985. MultiLisp: A language for concurrent symbolic computation. ACM Trans.
Program. Lang. Syst. 7, 4 (Oct.), 501-538.

HARIDI, S. 1981. Logic programming based on a natural deduction system. Ph.D. thesis, Royal
Institute of Technology, Stockholm.

HARIDI, S. AND FRANZEN, N. 1999. Tutorial of Oz. Tech. rep. In Mozart documentation, available
at http://www.mozart-oz.org.

HARIDI, S. AND SAHLIN, D. 1984. Efficient implementation of unification of cyclic structures. Ellis
Horwood Limited. In Implementations of Prolog, J. A. Campbell, ed.

HAriDI, S., VAN ROy, P., BRAND, P., AND SCHULTE, C. 1998. Programming languages for dis-
tributed applications. New Generation Computing 16, 3 (May).

HARIDI, S., VAN ROY, P., AND SMOLKA, G. 1997. An overview of the design of Distributed Oz. In
the 2nd International Symposium on Parallel Symbolic Computation (PASCO 97). ACM.

HeNz, M. 1997a. Objects for Concurrent Constraint Programming. The Kluwer International
Series in Engineering and Computer Science, vol. 426. Kluwer Academic Publishers, Boston.

HENzZ, M. 1997b. Objects in Oz. Ph.D. thesis, Universitit des Saarlandes, Fachbereich Informatik,
Saarbriicken, Germany.

IanNuccr, R. A. 1990. Parallel Machines: Parallel Machine Languages. The Emergence of Hybrid
Dataflow Computer Architectures. Kluwer, Dordrecht, the Netherlands.

IcHryosHr, N., M1vAzaki, T., AND TAk1, K. 1987. A distributed implementation of Flat GHC on
the Multi-PSI. In /th International Conference on Logic Programming. MIT Press, 257-275.
JAFFAR, J. AND MAHER, M. 1994. Constraint logic programming: A survey. J. Log. Prog. 19/20,

503-581.

LamMmA, E., MELLO, P., STEFANELLI, C., AND VAN HENTENRYCK, P. 1997. Improving distributed
unification through type analysis. In Furo-Par ’97 Parallel Processing. Lecture Notes in Com-
puter Science, vol. 1300. Springer-Verlag, 1181-1190.

LEA, D. 1997. Concurrent Programming in Java. Addison-Wesley.

LeuNG, H.-F. 1993. Distributed Constraint Logic Programming. Series in Computer Science, vol.
41. World Scientific, Singapore.

LEUNG, H.-F. AND CLARK, K. L. 1996. Constraint satisfaction in distributed concurrent logic
programming. J. Symbolic Computation 21, 699-714.

Lroyp, J. 1987. Foundations of Logic Programming, Second Edition. Springer-Verlag.

MARTELLI, A. AND MONTANARI, U. 1982. An efficient unification algorithm. ACM Trans. Program.
Lang. Syst. 4, 2 (Apr.), 258-282.

SUN MICROSYSTEMS. 1997. The Remote Method Invocation Specification. Available at
http://www.javasoft.com.

MEHL, M. 1999. The Oz virtual machine - records, transients, and deep guards. Ph.D. thesis,
Technische Fakultdt der Universitit des Saarlandes.

MEHL, M., SCHULTE, C., AND SMOLKA, G. 1998. Futures and by-need synchronization for Oz.

MEHLHORN, K. AND TSAKALIDIS, A. 1990. Data structures. In Handbook of Theoretical Computer
Science — Volume A: Algorithms and Complexity, J. van Leeuwen, Ed. Elsevier MIT Press,
301-341.

MozART CONSORTIUM. 1999. The Mozart programming system (Oz 3). Available at
http://www.mozart-oz.org.

OTTE, R., PATRICK, P., AND ROY, M. 1996. Understanding CORBA: The Common Object Request
Broker Architecture. Prentice-Hall PTR, Upper Saddle River, N.J.

PLAINFOSSE, D. AND SHAPIRO, M. 1995. A survey of distributed garbage collection techniques.
In the International Workshop on Memory Management. Lecture Notes in Computer Science,
vol. 986. Springer-Verlag, Berlin, 211-249.

58 . Seif Haridi et al

PODELSKI, A. AND SMOLKA, G. 1997. Situated simplification. Theoretical Computer Science 173,
209-233.

ROBINSON, J. A. 1965. A machine-oriented logic based on the resolution principle. J. ACM 12,
23-41.

RokUsAawA, K., NAKASE, A., AND CHIKAYAMA, T. 1996. Distributed memory implementation of
KLIC. New Generation Computing 14, 3, 261-280.

SARASWAT, V. A. 1993. Concurrent Constraint Programming. MIT Press.

ScHULTE, C. 1997. Programming constraint inference engines. In Proceedings of the 3rd Inter-
national Conference on Principles and Practice of Constraint Programming, G. Smolka, Ed.
Lecture Notes in Computer Science, vol. 1330. Springer-Verlag, Schlo Hagenberg, Austria,
519-533.

SHAPIRO, E. 1989. The family of concurrent logic programming languages. ACM Comput.
Surv. 21, 3 (Sept.), 413-510.

SMOLKA, G. 1995. The Oz programming model. In Computer Science Today. Lecture Notes in
Computer Science, vol. 1000. Springer-Verlag, Berlin, 324-343.

SMOLKA, G. 1996. Problem solving with constraints and programming. ACM Computing Sur-
veys 28, 4es (Dec.). Electronic Section.

SMOLKA, G. 1998. Concurrent constraint programming based on functional programming. In
Programming Languages and Systems, C. Hankin, Ed. Lecture Notes in Computer Science, vol.
1381. Springer-Verlag, Lisbon, Portugal, 1-11.

SMOLKA, G., SCHULTE, C., AND VAN Roy, P. 1995. PERDIO—Persistent and distributed pro-
gramming in Oz. BMBF project proposal. Available at http://www.ps.uni-sb.de.

STROUSTRUP, B. 1997. The C++ Programming Language, Third Edition. Addison-Wesley.

SUNDSTROM, A. 1998. Comparative study between Oz 3 and Java. Tech. rep., Uppsala University
and Swedish Institute of Computer Science. July.

TAYLOR, A. 1991. High-performance Prolog implementation. Ph.D. thesis, Basser Department of
Computer Science, University of Sydney.

TEL, G. 1994. An Introduction to Distributed Algorithms. Cambridge University Press, Cam-
bridge, United Kingdom.

VAN Roy, P. 1994. 1983-1993: The wonder years of sequential Prolog implementation. J. Log.
Prog. 19/20, 385-441.

VAN Roy, P. 1999. On the separation of aspects in distributed programming: Application to
distribution structure and fault tolerance in Mozart. In International Workshop on Parallel and
Distributed Computing for Symbolic and Irreqular Applications (PDSIA 99). Tohoku University,
Sendai, Japan.

VAN Rov, P., HARIDI, S., AND BRAND, P. 1999. Distributed programming in Mozart — A tutorial
introduction. Tech. rep. In Mozart documentation, available at http://www.mozart-oz.org.
VAN Roy, P., HARIDI, S., BRAND, P., AND SMOLKA, G. 1998. Three moves are not as bad as a fire.
In the Workshop on Internet Programming Languages, International Conference on Computer

Languages (ICCL 98).

VAN Roy, P., HARIDI, S., BRAND, P., SMOLKA, G., MEHL, M., AND SCHEIDHAUER, R. 1997. Mobile
objects in Distributed Oz. ACM Trans. Program. Lang. Syst. 19, 5 (Sept.), 804-851.

VEEN, A. H. 1986. Dataflow machine architecture. ACM Comput. Surv. 18, 4 (Dec.), 365-396.

WARREN, D. H. D. 1977. Applied logic—its use and implementation as a programming tool. Ph.D.
thesis, University of Edinburgh. Reprinted as Technical Note 290, SRI International.

WIksTROM, C. 1994. Distributed programming in Erlang. In the 1st International Symposium
on Parallel Symbolic Computation (PASCO 94). World Scientific, Singapore, 412-421.

Received February 1998; revised September 1998; accepted December 1998

