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2 Ralf Treinenrepresentation of the objects of these data types is performed by appropriate representa-tion functions mapping the carrier sets into the universe of the model under consideration.The representation does not re
ect directly in the theory of the model, especially thereis no need for formulas characterizing the images of the representation functions. Theoperations on the data types are expressed by �rst order formulas that are to be designedin regard to the properties of the model.The target formula solvableP consists of a \frame" that is independent of the modelunder consideration but uses subformulas representing the operations on the data types.We present the frame formula and formulate the requirements that guarantee the \cor-rectness" of the representation of the carrier sets and the pertaining operations.To a large extent we constrain the meaning of the formulas only for those elements ofthe universe that represent objects of the data types. Moreover, beyond the correctnessof data type representation we have to make sure that a certain relation on the universeis Noetherian. This is an inherent property of the model, since the well-foundedness of arelation is not expressible in �rst order logic.Several other methods for proving undecidability of theories have been proposed in theliterature. Tarski (1953) shows that a theory T is undecidable if some essentially undecid-able and �nitely axiomatizable theory T 0 (for instance the theoryQ (Tarski et al. 1953a))is relatively weakly interpretable in T . In order to show relative weak interpretability ofT 0 in T one has to �nd �rst order formulas de�ning the universe and operations of T 0in some consistent extension of T . Hence the correspondence between the theories isexpressed completely within the logic.The method of Rabin (1965) does not require a �nite axiomatization of the underlyingundecidable theory. Rabin (1965) summarizes his proof principle as follows: \If T 0 is anundecidable theory and T is a theory such that by using appropriate formulas of T torepresent the universe of T 0 and the non-logical constants of T 0, every model of T 0 isobtained from some model of T , then T is also undecidable". In this way the translationof T 0 into T is again expressed in terms of �rst order logic, but in order to show thecorrectness of the translation it is necessary to prove the required correspondence ofmodels.The method proposed here takes a di�erent point of view: It exploits the properties ofthe model instead of properties of the theory of the model. The logic is not involved in thede�nition of the representation functions: The intended applications concern universesconstituting a formal language, such that the representation may often be performed ona purely symbolic level. The logic is only used in the realization of the operations ofthe data types. We will demonstrate some applications where this technique yields verysimple reduction proofs.A �rst set of applications illustrating the method proposed is concerned with equation-al problems, that is validity of formulas with equality as the only predicate symbol in theinitial, respectively the free algebra of an equational speci�cation (see Comon (1991) andB�urckert & Schmidt-Schau� (1989)). The �rst example (A) treats the decision problemfor the theory of ground term algebras modulo the axioms of associativity and com-mutativity (AC for short) and has been given as an open problem in Comon (1988).In this paper the existential fragment has been shown decidable thus extending the re-sults for AC uni�cation (Stickel (1981), Livesey & Siekmann (1976), Fages (1987) andKirchner (1985) for arbitrary additional free function symbols). This example shows thatequational problems may be undecidable even in case that uni�cation with free function



A New Method for Undecidability Proofs of First Order Theories 3symbols is decidable. The extension by the axiom of idempotency to ACI in Example(B) is straightforward.A related result is the undecidability of the theory of ground terms modulo associativ-ity alone (Example (F)). Quine (1946) showed already the undecidability of the theoryof concatenation. He gives a translation of number theory to the theory of concatenationthat yields a �6-sentence for an instance of Hilbert's Tenth Problem, using the undecid-ability of Hilbert's Tenth Problem (Matijacevi�c (1970)) this proves the undecidability ofthe �6-fragment of the theory of concatenation. On the other hand (Example (F)) showsthe undecidability of the �2-fragment of the theory of a ground term algebra moduloassociativity. A uni�cation algorithm for this theory (without free function symbols) hasbeen given by Plotkin (1972). The decidability of the uni�cation problem for term alge-bras modulo A has been conjectured in Plotkin (1972) and proven in Makanin (1977).Baader & Schulz (1991) show the decidability of the uni�cation problem for associativefunctions together with free function symbols. In contrast to the AC case, associativitywithout commutativity is of uni�cation type ! (see (B�urckert et al. 1989) for the classi-�cation of uni�cation problems), this coincides with the observation that our techniqueyields undecidability of the �3 fragment in the AC case but �2 in the case of associativity.The second �eld of application is the theory of ground terms equipped with some or-dering relation. The undecidability of the \theory of subterm relation" has been shownin Venkataraman (1987) but without the extension to possibly in�nite trees. Further-more Venkataraman (1987) shows the decidability of the existential fragment. Here ourinterest lies in the comparison between Venkataraman's proof and ours. We extend ourundecidability result to the case of in�nite trees. The decidability of the the existentialfragment of the theory of �nite and in�nite trees with the subtree relation was shown inTulipani (1993).The question of decidability of the theory of a total simpli�cation ordering has beenposed in Comon (1988). The decidability of the existential fragment of a total lexico-graphic path ordering (lpo for short) is shown in Comon (1990), the analogous result fora total recursive path ordering has been given in Jouannaud & Okada (1991). We provein Example (C) the undecidability of the �4 fragment of a partial lpo. Unfortunatelythere still remain two big gaps between these results (see Section 5).The undecidability of the �2 fragment of complete number theory (Example (G)) isof course by no means a new result; it is presented here merely for demonstrating someaspects of the method proposed. The undecidability of the �1 fragment has been shownin Matijacevi�c (1970).The separation of Post's Correspondence Problem into two datatypes induces the struc-ture of the paper: After a survey of the mathematical framework in Section 2 the sim-ulation of the data type \strings" is discussed in Section 3. In the applications thispart will always be the trivial one. Section 4 describes the construction of the sentencesolvableP while presenting two alternative methods for the representation of construc-tion sequences. In the �rst method sequences are viewed as sets. This method is easier touse than the second one representing sequences directly but is less powerful, since in someapplications the second method can yield a smaller number of quanti�er alternations inthe formula solvableP .



4 Ralf Treinen 2. PreliminariesIn this paper we consider unsorted �rst order logic where equality is not required.For the basic notions according syntax and semantics of �rst order logic the reader isreferred to textbooks on mathematical logic, for instance Enderton (1972). We specify apredicate logic basis as a pair (P; F ), where the set of function symbols F is given in theform hf(nf ); g(ng); : : :i and the set of predicate symbols P = h�(n�);�(n�); : : :i. Thenumbers in parentheses are not part of the syntax but indicate the arity of the symbols.If =(2) is present in P it is always interpreted as equality. We will frequently use symbolicnames for formulas, and in de�ning one formula we will often refer to other formulas viatheir symbolic \macro" names without giving an exact semantics of macro expansion forformulas. We only mention the following notations:w(x1; : : : ; xn) where w is a symbolic name for a formula stands for a formula thefree variables of which are (possibly as proper subset) among fx1; : : : ; xng. As usualw(t1; : : : ; tn) denotes the result of simultaneously substituting in w(x1; : : : ; xn) the xi bythe corresponding ti. We write I j= w[r1; : : : ; rn] if w is satis�ed in I by the assignmentfxi rig. For the sake of convenience we allow in�x notion, for instance (x)w(y) insteadofw(x; y). Furthermore, in the examples, we will sometimes use tuples of variables insteadof a single variables. In this case of course we have to replace the corresponding quanti�ersby quanti�er strings of the same kind.The set of formulas over a given basis is split up into fragments. Rogers (1987) de�nesthe number of quanti�er alternations of a formula in prenex normal form (Gallier (1986))as \the number of pairs of adjacent but unlike quanti�ers". If this number is n andthe outermost quanti�er is 9 (resp. 8) the formula belongs to the �n+1- (resp. �n+1-) fragment. �0 = �0 denotes the set of quanti�er-free formulas. An arbitrary formulabelongs to a certain fragment if it is logically equivalent to a prenex normal form formulacontained in this fragment.Given a set � of symbols, �� denotes the set of �nite and �+ = �� n f�g the set of�nite nonempty strings over �. / is the pre�x ordering on strings. An instance P of thePost Correspondence Problem over an alphabet � (Post (1946)) is given by a �nite setof the form f(pi; qi) j 0 � i � m; pi; qi 2 �+gA P -construction sequence for (u; v) 2 �� � �� is a sequence �(uj; vj)�j=1:::n with uj; vj 2�� for all j, u1 = v1 = �, un = u and vn = v, and for each 1 � j � n � 1 thereis a 0 � i � m with uj+1 = ujpi and vj+1 = vjqi where juxtaposition denotes theconcatenation of strings. In this case (u; v) is called P -constructible. P is solvable if thereis a u 2 �+ such that (u; u) is P -constructible. It is undecidable whether an instance ofthe Post Correspondence Problem is solvable (Post (1946)), provided � contains at leasttwo elements.Equational problems emerged from the study of uni�cation problems that can nowbe considered as a special case of equational problems (see Siekmann (1989) for a sur-vey on uni�cation). For a set F of ranked function symbols let T (F ) denote the set ofF -ground terms and T (F;X) the set of F -terms that contain variables from the set X.T (F ) and T (F;X) will also be considered as F -algebras where the symbols from Fare given their Herbrand interpretation (Gallier (1986)). The basis and the model forequational problems are de�ned by an equational speci�cation (F;E) in the sense ofEhrig & Mahr (1985). Here we consider the restriction to the one-sorted case, that is F



A New Method for Undecidability Proofs of First Order Theories 5is a ranked set of function symbols and E is a set of implicitly universally quanti�ed equa-tions of F -terms. The only predicate symbol is the equality symbol, the set of functionsymbols is given by the speci�cation. A permutation equation is an equation where allvariables and function symbols have an equal number of occurrences on the left and rightside respectively (B�urckert et al. 1989). The axioms of associativity and commutativityare an example of a set of permutation equations. B�urckert & Schmidt-Schau� (1989)designate the following models of a speci�cation (F;E):1 the initial algebra is the quotient of the ground term algebra T (F ) by the congruencegenerated by E.2 the E-free algebra is the quotient of the term algebra T (F;X) by the congruencegenerated by E where X is a not further speci�ed in�nite set of variables.A discussion of term algebras can be found in Ehrig & Mahr (1985). In this contextB�urckert & Schmidt-Schau� (1989) call the �3 fragment special equational problems andthe �2 fragment special equational problems without independent parameters.The lexicographic path ordering on T (F ) has been described in Dershowitz (1987)yas a tool for proving termination of term rewriting systems. For a given partial orderz<F on the set F of function symbols the lexicographic path ordering �lpo is recursivelyde�ned by t = g(t1; : : : ; tn) �lpo f(s1; : : : ; sm) = si� t = s or one of the following holds1 t �lpo si for some i2 g <F f and tj �lpo s for all j3 f = g and there is a j � n with(a) ti = si for all i < j(b) tj �lpo sj(c) ti �lpo s for all i > jwhere x �lpo y is an abbreviation for x �lpo y ^ x 6= y. �lpo is a simpli�cation ordering(Dershowitz (1987)), especially it is a partial order containing the subterm ordering. �lpois total i� the underlying precedence <F is total.In the context of ordering relations we will also consider algebras containing �nite andin�nite trees. Courcelle (1983) contains a treatment of in�nite trees.fn(t) means n applications of the unary function symbol f to the term t. lth(s) denotesthe length of the sequence s. 2 designates the end of a proof, the end of an example willbe marked by 3. 3. Simulation of StringsThe �rst thing we need for the representation of the data type string is a codingfunction �: fa; bg�! Iy referring to an unpublished paper of Kamin and L�evy.z The de�nition in Dershowitz (1987) (precedence) is slightly more general in using quasi-orderings.



6 Ralf TreinenWe will use the symbol � also to denote the corresponding function �: fa; bg��fa; bg� !I2. The operations that will be used in the simulation of Post's Correspondence Problemare the test for emptiness and for each single nonempty string a unary function thatappends this �xed string to its argument. For the sake of generality this function will berepresented as a formula instead of a term. More precisely, we need:1 is-�(x)2 (y)is(x)v for each v 2 fa; bg+such that[INJ] � is injective[EPS] For all r 2 I: I j= is-�[r] i� r = �(�)[CON] For all r 2 I, v 2 fa; bg+, w 2 fa; bg�: I j= [r]is[�(w)]v i� r = �(wv)In applications we have to specify both � and the formulas is-� and �is � v. Thisprocedure contains a certain redundancy, an alternative is to give a di�erent set of re-quirements on is-� and �is �v such that the representation function can be derived fromthe de�nition of these formulas:�(�) := the unique r with I j= is-�[r]�(w) := the unique r with I j= [r]is[�(�)]w (w 6= �)We do not follow this line since it seems to be more natural to de�ne the representationof strings explicitly. An advantage of this alternative way is that the requirements sub-stituting [INJ], [EPS] and [CON] state only properties of the theory of the model insteadof properties of the model itself. Anyway, with the next requirement we have no hope ofstaying within the scope of �rst order logic as has been explained in the introduction.Definition. < is the relation on I de�ned by: x < y i� there is a v 2 fa; bg+ withI j= [y]is[x]v. As usual <� denotes the re
exive transitive closure of <. Furthermore <generalizes to pairs by (x1; x2) < (y1; y2) i� x1 < y1 and x2 < y2.If r1 = �(w1) and r2 = �(w2) then r1 < r2 expresses the pre�x relationship betweenw1 and w2. However the de�nition is not restricted to representatives of strings, wewill need this de�nition and the pertaining requirement in its full generality later. Theformula finite characterizes the set of elements of the universe where < is a Noetherianrelation. This set has to contain at least (but may not be equal to) the image of �.[NOE] There is no in�nite descending <-chain (ri)i�0 in I with I j= finite[r0].[FIN] For all w 2 fa; bg+: I j= finite[�(w)]Example 1. The basis B contains at least the function symbols �(0); a(1); b(1) and theequality symbol =(2). Let I be the algebra of B-ground terms modulo some set of equa-tions that that is consistent with respect to f�; a; bg (Dershowitz & Jouannaud (1990)).This means that di�erent ground terms built only with the symbols �, a and b havedi�erent interpretations in I.



A New Method for Undecidability Proofs of First Order Theories 7Deliberately confusing the characters a; b from the alphabet with the unary functionsymbols a; b we de�ne �(�0 � � ��n) := �n(� � � (�0(�)) � � �)is-�(x) := x = �(y)is(x)�0 � � ��n := y = �n(� � � (�0(x)) � � �)finite(x) := TrueThe reader might easily check that these de�nitions ful�ll all the requirements [INJ],[EPS], [CON], [NOE] and [FIN]. 3Example 2. The basis B contains at least the equality symbol =(2) and the functionsymbols �(0); f(1) and +(n) with n � 2. Let I denote the algebra of B-ground termsmodulo some set of permutation equations that have no occurrences of any functionsymbol but +. With the temporary de�nitionsa(t) := +(�; f(f(t); �; : : : ; �))b(t) := +(f(�); f(f(t)); f (�); : : : ; f(�))we de�ne �(�0 � � ��n) := �n(� � � (�0(�)) � � �)is-�(x) := x = �(y)is(x)�0 � � ��n := y = �n(� � � (�0(x)) � � �)finite(x) := TrueIn the de�nitions of a(t) and b(t) the occurrences of �, resp. f(�) do the coding of thesymbols a, resp. b. Since there are permutation equations for +, we use a doubled occur-rence of f in order to distinguish the coding of t. The above de�nitions still constitute acorrect representation of strings when we enlarge the model I to the free algebra T (F;X)modulo E. 3The next example shows a nontrivial finite formula.Example 3. B contains at least the function symbols �(0); a(1); b(1) and the predicatesymbols =(2);�(2). Consider the algebra I of �nite and in�nite B-ground terms where� is interpreted as the subterm relation.yWe choose �; is-� and �is�v as in Example (1).The set of �nite objects consists now of the terms built only with unary function symbolsand containing the symbol �.finite(x) := � � x ^ 8x0:x0 � x � �x0 = � _ 9x00:x0 = a(x00) _ x0 = b(x00)	If the set of non-unary function symbols B0 � B is �nite we can transform the conclusionof the above implication into a �1-formula, thus saving one alternation of quanti�ers:finite(x) := � � x ^ 8x0:x0 � x � ^f2B0 8~z:x0 6= f(~z)y Note that the case of �nite terms only is covered by Example (1).



8 Ralf Treinen 4. Solutions of PWe are now ready to de�ne the subformula one-stepP . The intended meaning ofthe formula one-stepP (y1; y2; y3; y4) is: \The pair of strings represented by (y1; y2) isobtained from the pair of strings represented by (y3; y4) by the application of one P -construction step." This is the only subformula that depends directly on the instance ofthe Post Correspondence Problem P :one-stepP (y1; y2; y3; y4) := _i=0;:::;m �(y1)is(y3)pi ^ (y2)is(y4)qi�where P = f(pi; qi) j i = 0; : : : ;mg.4.1. simulation of sequences as setsIn order to construct the sentence solvableP we have to formulate something like\there is a P -construction sequence such that � � �". How can we express as a formula thefact that something represents a P -construction sequence? The key idea we are going toexplore now is: Instead of talking directly about sequences we may view a P -constructionsequence as a set of pairs of strings. Since by de�nition a P -construction sequence isstrictly ordered by the pre�x relation on (pairs of) strings we are able to recover thesequence from the set.With this idea we can now de�ne the subformula constructionP (x) meaning that xrepresents a P -construction sequence. constructionP uses the subformula (y1; y2)in(x)re
ecting the element relationship, the de�nition of which depends again on the modelunder consideration. From now on let a �xed instance P of the Post CorrespondenceProblem be given.constructionP (x) := 8y1; y2:(y1; y2)in(x) �fis-�(y1) ^ is-�(y2)g _ (4.1)9y3; y4:(y3; y4)in(x) ^ one-stepP (y1; y2; y3; y4) (4.2)Still leaving pending the de�nition of in we can now showLemma 4.1. For all r1; r2; u; s 2 I with (r1; r2) <� (u; u) andI j= finite[u]I j= constructionP [s]I j= [r1; r2]in[s]If [INJ], [EPS], [CON] and [NOE] are ful�lled then (r1; r2) 2 Im(�) � Im(�) and theassociated pair of strings ��1(r1; r2) is P -constructible.Proof. We �x u and s with the above properties. Because of [NOE] there can notexist an in�nite descending (w.r.t. <) chain of pairs (r1; r2) <� (u; u). We can thereforeperform Noetherian induction on (r1; r2).If I j= is-�[r1] ^ is-�[r2] then [EPS] yields (r1; r2) = �(�; �) and we are done.Otherwise case (4.2) from the de�nition of constructionP applies, so there existr3; r4 with I j= [r3; r4]in[s] and I j= one-stepP [r1; r2; r3; r4]. From the de�nition ofone-stepP follows (r3; r4) < (r1; r2) <� (u; u). The induction hypothesis yields that



A New Method for Undecidability Proofs of First Order Theories 9(r3; r4) 2 Im(�) � Im(�) and ��1(r3; r4) is P -constructible, and because of [CON] andthe de�nition of one-stepP the same holds for (r1; r2). 2We are now ready to de�ne solvableP .solvableP := 9x; y:constructionP (x) ^ finite(y) ^ (y; y)in(x) ^ :is-�(y)From the above lemma we get immediatelyCorollary 4.1. If [INJ], [EPS], [CON] and [NOE] are ful�lled thenI j= solvableP =) P is solvableThe reader should note that up to now we did not need any constraints on the sub-formula in. We made use of the special properties of the model only in order to ful�llthe requirements in connection with the simulation of strings. Once the representationof strings with the subformulas is-�; �is �v; finite is found, we get the �rst direction ofour "goal"{theorem (1.1) for free | that is without worrying about the representationof sequences.In order to prove the opposite direction of (1.1) we now have to choose a represen-tation function for P -construction sequences and a corresponding formula (y1; y2)in(x).S denotes the domain of the representation function  :S ! I:S := f(ui; vi)i=1:::n j ui; vi 2 fa; bg�; n � 2; ui / ui+1; vi / vi+1; (u1; v1) = (�; �)gOur last requirement relates the representation function  with the subformula in thatis supposed to express the element relationship:[IN] For all r1; r2 2 I, s 2 S: I j= [r1; r2]in[ (s)] i� there exits j 2 f1; : : : ; lth(s)gwith (r1; r2) = �(s(j))Lemma 4.2. If [EPS], [CON], [FIN], [IN] are ful�lled thenP is solvable =) I j= solvablePThe next theorem summarizes the method as it stands now:Theorem 4.1. Let B be a predicate logic basis and I a model for B. If we can �ndrepresentation functions �,  and formulas is-�; �is�v; finite; in such that [INJ], [EPS],[CON], [FIN], [NOE] and [IN] are ful�lled then the �rst order theory of I is undecidable.Now we can complete the examples started in Section 3:Example A. Consider equational problems for the equational speci�cation (FA; AC(+))where FA := h�(0); a(1); b(1); f(2);+(2)i and AC(+) denotes the axioms of associativityand commutativity for +: x+ y = y + x(x+ y) + z = x+ (y + z)We take the representation of strings from Example (1). It is easy to see that with the



10 Ralf Treinenfollowing de�nitions [IN] is ful�lled in the initial and in the free algebra: ((ui; vi)i=1;:::;n) := f(�(u1); �(v1)) + � � �+ f(�(un); �(vn))(y1; y2)in(x) := 9x0:x = f(y1; y2) + x0We can improve this result by restricting the base to FA0 := h�(0); f(1);+(2)i andPA0 := h=(2)i. With the representation of strings as in Example (2) and the followingde�nitions: ((ui; vi)i=1;:::;n) := f(f(�(u1)) + f(f(�(v1)))) + � � �+ f(f(�(un)) + f(f(�(vn))))(y1; y2)in(x) := 9x0:x = f(f(y1) + f(f(y2))) + x0we obtain undecidability of the �rst order theory of T (FA0)=AC(+) and of the �rst ordertheory of T (FA0 ; X)=AC(+). In this construction the AC operator + is used as a setconstructor and as a string constructor. This is made possible by the insertion of thefree function symbol f that serves as a barrier between the di�erent occurrences of + inthe representation of strings. Besides this f is used to build distinguishable items in therepresentation of strings and in order to identify the two components of a pair of stringsin the de�nition of  .With an analogous construction we can show that undecidability holds in the case ofh�(0); f(n);+(2)i with n � 1 and + associative and commutative, and also in the case ofthe signature h�(0); �(2);+(2)i where both + and � are associative and commutative.Theorem 4.2. The (�3 fragment of the) �rst order theory of a ground term algebra(resp. term algebra) modulo associativity and commutativity is undecidable for signaturesthat contain at least one constant, one non-constant function symbol and one binary ACfunction symbol. 3Example B. Theorem 2 still holds when the set of axioms is enlarged by the axiom ofidempotency: x+ x = xTheorem 4.3. The (�3 fragment of the) �rst order theory of a ground term algebra(resp. term algebra) modulo associativity, commutativity and idempotency is undecidable.It is easily seen that the above construction applies here also. The correctness of therepresentation of strings has to be checked separately since the axiom of idempotency isnot a permutation equation. 3Example C. Let FC := h�(0); a(1); b(1); e(1); l(1); h(3)i and PC := h=(2);�(2)i. IC isthe ground term algebra T (FC) where � is interpreted as the lexicographic path ordering�lpo generated by the following precedence on FC :� <F a <F b <F h <F � lee and l are incomparable in the order <F .�; is-�; finite and �is �v can be copied from Example (1). A P construction sequencewill be represented by two lists of labeled strings, one for the �rst component and one



A New Method for Undecidability Proofs of First Order Theories 11h���la0(�) e�(un)PPPPPPPPPh���la1(�) e�(un�1)PPPPP PPPPPh���lan�1(�) e�(u1)@@@�Figure 1. The term �((ui)i=1:::n) representing the sequence (ui)i=1:::nfor the second. The labels associate the corresponding components of a pair, moreoverthey will be essential for the formulation of the membership relation.We associate to each nonempty sequence s = (ui)i=1;:::;n the term �(s) as shown inFigure 1 and choose ((ui; vi)i=1;:::;n) := (�((ui)i=1;:::;n); �((vi)i=1;:::;n))In order to formulate the subformula in we use the following temporary de�nition:(y)in(x)at(z) := h(l(z); e(y); �) � x ^ (4.3)8y0:h(l(z); e(y0); �) � x � y0 � y (4.4)Finally we de�ne(y1; y2)in(x1; x2) := 9z:(y1)in(x1)at(z) ^ (y2)in(x2)at(z)Theorem 4.4. The (�4 fragment of the) �rst order theory of a partial lexicographic pathordering is undecidable.The proof of [IN] is given in Appendix A.1. The separation of the P -constructionsequence into two lists is not essential for the proof. In fact an analogous proof where theP -construction sequence is represented by one list of pairs of strings is also possible (bychanging the arity of h to 4). The price of this variant is the need for another maximalfunction symbol incomparable to e and l, thereby leading to a \less total" ordering. Inthis alternative proof the labels l(ai(�)) can not be omitted, they are necessary for themaximality condition in the de�nition of in.We remark that the same construction can be used to show that the �4 fragment of the�rst order theory of a partial recursive path ordering (Dershowitz (1982)) is undecidable.3Counting the quanti�ers involved in the above construction we �nd that the formula



12 Ralf TreinensolvableP is at least in the �3 fragment. This is an inherent drawback of this methodsince solvableP follows the pattern9s � � � 8(s1; s2) 2 s � � �9(s3; s4) 2 s � � �In general the formula in is the most \expensive" one (in terms of alternations of quan-ti�ers). We will always try to �nd a formula in in �1, if we do not succeed we getundecidability only for a fragment larger than �3.4.2. direct simulation of sequencesIn some applications it is possible to overcome this limitation by using a direct simula-tion technique for sequences. In this case we have to perform three di�erent operations onthe data type sequence, and we have to work a little bit harder to regulate the correlationof the pertaining formulas. We will come back to a comparison of these two methods atthe end of this section.The formulas that are to be designed for the model under consideration are1 nonempty(x)2 (y1; y2; x0)init-of(x)3 (y1; y2)head-of(x)The intended meaning of the �rst formula should be clear. It is useful to consider se-quences as being constructed from right to left. Using this point of view, we call the ele-ment with the highest index in a sequence the head of the sequence. (y1; y2)head-of(x)is intended to express that (y1; y2) is the head of the sequence x. (y1; y2; x0)init-of(x) issupposed to express that the sequence consisting of the sequence x0 plus the head (y1; y2)is an initial segment of the sequence x.The analogous de�nition of constructionP and solvableP are given below. Note that,in contrast to Section 4.1, we now use an universal quanti�er instead of an existentialquanti�er inside the de�nition of constructionP .constructionP (x) := 8y1; y2; x0:(y1; y2; x0)init-of(x) �fis-�(y1) ^ is-�(y2)g _fnonempty(x0) ^ 8y3; y4:(y3; y4)head-of(x0) � one-stepP (y1; y2; y3; y4)gsolvableP := 9x; y:constructionP (x) ^ (y; y)head-of(x) ^ finite(y) ^ :is-�(y)In contrast to Section 4.1 where we obtained the �rst direction of (1.1) just from theproperties of the representation of strings, we now have to state additional requirementson the newly introduced formulas:[NH] I j= 8x:nonempty(x) � 9y1; y2:(y1; y2)head-of(x)[HS] I j= 8x; y1; y2:(y1; y2)head-of(x) � 9x0:(y1; y2; x0)init-of(x)[HSH] I j= 8x; x0; y1; y2; y3; y4:(y1; y2; x0)init-of(x) ^ (y3; y4)head-of(x0) �9x00:(y3; y4; x00)init-of(x)At this point the reader might remark that we could have used [NH] as a de�nitionof nonempty by turning the implication sign into an equivalence. In this case only the



A New Method for Undecidability Proofs of First Order Theories 13requirement [HS] and [HSH] remain relating head-of to init-of. We do not choose thisapproach in order to avoid the introduction of extra quanti�ers. Example (D) shows howa model speci�c argument leads to the elimination of an unwanted existential quanti�erin the de�nition of nonempty.With the help of these properties we can now prove a lemma analogous to Lemma 4.1:Lemma 4.3. For all r1; r2; u; s; s0 2 I with (r1; r2) <� (u; u) andI j= finite[u]I j= constructionP [s]I j= [r1; r2; s0]init-of[s]If [INJ], [EPS], [CON], [NOE], [NH] and [HSH] are ful�lled then (r1; r2) 2 Im(�)�Im(�)and ��1(r1; r2) is P -constructible.Proof. As in the proof of Lemma 4.1 we proceed by Noetherian induction on (r1; r2).If I j= is-�[r1] ^ is-�[r2] we know from [EPS] that (r1; r2) = �(�; �).Otherwise I j= nonempty[s], so we get from [NH] that there are r3; r4 2 I withI j= [r3; r4]head-of[s]. The second case from the de�nition of constructionP appliesand we get I j= one-stepP [r1; r2; r3; r4], this implies (r3; r4) < (r1; r2) <� (u; u). Be-cause of [HSH] there is a s00 2 I with I j= [r3; r4; s00]init-of[s], so we can apply theinduction hypothesis to (r3; r4). With [CON] and the de�nition of one-stepP the proofis completed. 2Corollary 4.2. If [INJ], [EPS], [CON], [NOE], [NH], [HSH] and [HS] are ful�lled thenI j= solvableP =) P is solvableIn a �rst attempt we could require as in Section 4.1 a coding function mapping theset S into I. This will su�ce in some examples, but we can be more liberal and allowfor each sequence s a \private" coding function for the set of the initial segments of s: 2Ys2S(f0; : : : ; lth(s)g ! I)The subformulas nonempty, init-of and head-of have to work properly for the codingsof initial segments:For all s 2 S; n � lth(s):[NIL] I j= nonempty[ (s)(n)] i� n 6= 0[HEA] I j= [r1; r2]head-of[ (s)(n)] i� n � 1 and (r1; r2) = �(s(n))[SUB] I j= [r1; r2; t]init-of[ (s)(lth(s))] i� there is i 2 f1; : : : ; lth(s)g with (r1; r2) =�(s(i)) and t =  (s)(i � 1)Lemma 4.4. If [EPS], [CON], [FIN], [NIL], [HEA] and [SUB] are ful�lled thenP is solvable =) I j= solvablePTheorem 4.5 gives the complete method developed in this subsection:



14 Ralf Treinen f����(ui) �(ui)PPPPPPPPPf����(ui�1) �(vi�1)PPPPP PPPPPf����(u1) �(v1)@@@�Figure 2. The term  ((uj ; vj)j=1:::n)(i) representing the initial segment (uj ; vj)j=1:::i of thesequence (uj; vj)j=1:::n for 1 � i � nTheorem 4.5. Let B be a predicate logic basis and I a model for B. If we can �ndrepresentations �,  and formulas is-�, �is�v, finite, nonempty, head-of and init-ofsuch that [INJ], [EPS], [CON], [NOE], [NH], [HS], [HSH], [FIN], [NIL], [HEA] and[SUB] are ful�lled, then the �rst order theory of I is undecidable.Example D. Let us now see how the undecidability result for the theory of subtermordering from Venkataraman (1987) �ts into our framework:Let FD := h�(0); a(1); b(1); f(3)i and PD := h=(2);�(2)i. ID is the algebra of FD-ground terms where � is interpreted as the subterm relation. The representation ofstrings has been given in Example (1). We choose  (s)(i) as follows (see also Figure 2): (s)(i) := � � if i = 0f(�(ui); �(vi);  (s)(i � 1)) otherwiseand de�ne the remaining formulas:(y1; y2)head-of(x) := 9x0:x = f(y1; y2; x0)(y1; y2; x0)init-of(x) := f(y1; y2; x0) � xnonempty(x) := 9y1; y2; x0:x = f(y1; y2; x0)We can save one alternation of quanti�ers in solvableP by transforming nonempty intoa �1 formulay. nonempty(x) := x 6= � ^ 8x0:x 6= a(x0) ^ x 6= b(x0)Theorem 4.6. (Venkataraman (1987)) The (�2-fragment of the) �rst order theory ofthe subterm ordering is undecidable. 3y In ground term algebras over a �nite alphabet it is always possible to transform a purely equationalformula into a �1 (or �1) formula, see Comon & Lescanne (1989).



A New Method for Undecidability Proofs of First Order Theories 15Example E. We can modify the above example by enlarging the model to the algebraof �nite and in�nite ground terms. We can use exactly the same proof as above but withthe finite formula as in Example (3) to showTheorem 4.7. The (�2 fragment of the) �rst order theory of the subterm ordering inthe algebra of �nite and in�nite trees in undecidable.This undecidability proof for the �2-fragment relies on the �niteness of the particularsignature used here. The �niteness of the signature was exploited in Example (3) in orderto obtain a su�ciently simple finite formula. 3Example F. If we drop commutativity from Example (A) we can now show undecid-ability even of the �2 fragment:Consider the equational speci�cation (FF ; A(+)) where FF = h�(0); f(1);+(2)i andA(+) denotes the axiom of associativity for +:(x+ y) + z = x+ (y + z)For the initial algebra we take the representation of strings from Example (2) and  similar to Example (A): ((ui; vi)i=1;:::;m)(j) := f(f(�(uj )) + f(f(�(vj )))) + � � �� � �+ f(f(�(u1)) + f(f(�(v1)))) + � (j � 1) ((ui; vi)i=1;:::;m)(0) := �(y1; y2)head-of(x) := 9x0:x = f(f(y1) + f(f(y2))) + x0(y1; y2; x0)init-of(x) := x = f(f(y1) + f(f(y2))) + x0 _9x00:x = x00 + f(f(y1) + f(f(y2))) + x0The de�nition of the formula nonempty is somewhat tedious, since we have to �nd a �1-formula that is equivalent to 9y1; y2(y1; y2)head-of(x) in T (FF )=A(+). In the followingde�nition we add in braces as a comment the pattern that x is known to match if theinequalities given so far are ful�lled:nonempty(x) := 8y1; y2; y3; y4:x 6= � ^ x 6= f(y1) ^ x 6= �+ y1 fx � f(z1) + z2g^ x 6= f(�) + y1 ^ x 6= f(f(y1)) + y2 fx � f(z1 + z2) + z3g^ x 6= f(� + y1) + y2 fx � f(f(z1) + z2) + z3g^ x 6= f(y1 + y2 + y3) + y4 ^ x 6= f(y1 + �) fx � f(f(z1) + f(z2)) + z3g^ x 6= f(y1 + f(�)) ^ x 6= f(y1 + f(y2 + y3)) + y4 fx � f(f(z1) + f(f(z2))) + z3gTheorem 4.8. The (�2 fragment of the) theory of a ground term algebra modulo asso-ciativity is undecidable for signatures that contain at least one constant, one non-constantfunction symbol and one associative binary function symbol. 3In the Examples (D) to (F) we gave uniform codings for the sequences. The lastExample (G) shows the use of \private" coding functions for the initial segments of agiven sequence. As mentioned in the introduction this is an arti�cial example that servesjust for the purpose of demonstrating the usage of our method in its full generality.



16 Ralf TreinenExample G. Let FG := h0(0); 1(0);+(2); �(2)i and PG := h=(2);�(2)i. Our interpreta-tion IG is the model of natural numbers. In order to de�ne the representation of stringswe introduce two abbreviations: a(t) := t+ tb(t) := t+ t + 1It is easy to see that the following representation of strings ful�lls the requirements sincethere is an obvious correspondence between strings and the binary representation ofnatural numbers. �(�0 � � ��n) := �n(� � ��0(1)) � � �)is-�(x) := x = 1(y)is(x)�0 � � ��n := y = �n(� � ��0(x)) � � �)finite(x) := TrueFor instance �(aaaba) = 34, that is 100010 in binary notation.We use G�odel's �-predicate(G�odel (1931)) to represent sequences in the domain of natural numbers. The existenceof the representation  is a consequence of the fundamental property of the �-predicate.The de�nition of � and the pertaining theorem are restated in Appendix A.2.nonempty(c; d; n) := n � 1(y1; y2)head-of(c; d; n) := �(c; d; n+ n; y1) ^ �(c; d; n+ n+ 1; y2)(y1; y2; (c0; d0; n0))init-of(c; d; n) := c0 = c ^ d0 = d ^ n0 < n ^(y1; y2)head-of(c0; d0; n0 + 1)As a result we obtain the undecidability of the �2 fragment of complete number theory.The reader should note that Im(�) = I n f0g| especially the images of � and  are notdisjoint. 3In this section we have �nished the presentation of the two methods for proving theundecidability of the �rst order theory of a model. The �rst method is appropriate formodels that miss a concept of ordering (for instance term algebras modulo associativityand commutativity),while the second is applicable to models where some kind of orderingis present. In view of the fact that the second method can yield undecidability of a simplerfragment than the �rst one, the question arises why we did not use the second methodfor proving undecidability of the theory of a partial recursive path ordering in order to�nd a formula solvableP in a smaller fragment than �4.The reason is that we can bene�t from the simpler quanti�cation structure of theformula solvableP in the second method only if we succeed in �nding simple formulasnonempty, init-of and head-of ful�lling the requirements. More precisely, we get aformula solvableP in �3 i� nonempty is in �2 [�1 and both init-of and head-of arein �1[�2, provided that is-�, �is�v and finite do not induce any further alternation ofquanti�ers. This is usually the case, in all applications we found the expensive operationsbelong to the datatype set, resp. sequence. Using representations of sequences in the spiritof Example (C) one could try to de�ne init-of with the help of a maximality conditionas it has been done in the de�nition of in, but we did not succeed in �nding a formulainit-of 2 �1 [�2 ful�lling [HSH].



A New Method for Undecidability Proofs of First Order Theories 175. ConclusionsWe have presented two methods for proving the undecidability of the �rst order theoryof a model. In order to apply one of these methods to a given model we have to �ndappropriate representations of the data types \string" and \sequence" and formulas ex-pressing the operations on these data types. The two main theorems (Theorem 4.1 andTheorem 4.5) state that the proof of undecidability is completed if the pertaining setof requirements is ful�lled. We would like to point out some statements that at a �rstglance one might expect to be essential for a reduction proof but that in fact are not.With the presentation of this list we claim that applications bene�t from a systematicstudy of reduction proofs since it localizes the crucial points where the special propertiesof a model are involved.1 A general binary concatenation operation is not necessary.2 The codings of strings and sequences may be non-disjoint.3 Formulas characterizing the images of the representations � and  are not needed.In particular, it is not necessary to express that the elements of some set (sequence)are indeed pairs of strings.4 One should not worry about an explicit characterization of the �niteness of se-quences in terms of �rst order logic.In the undecidability proof of Venkataraman (1987) there exist subformulas in his con-struction that explicitly specify the shape of the objects that are intended to expressP -construction sequences. In the approach presented here this is not necessary, we there-fore yield a simpler formula solvableP .There is a potentially useful extension to the method that was not carried out sincethere are no applications at hand. Strings have been coded in the universe of the model bya representation function, instead we could associate an equivalence class of the universeto each string. This implies the need for further restrictions that guarantee the congruenceproperty of the operations on strings.The starting point of the method proposed is the undecidability of Post's Correspon-dence Problem. Of course there are many other undecidable problems that might servefor reduction to the decision problem of a theory (see Davis (1977)). One may, for in-stance, take the uniform halting problem for Turing machines and perform a reductionproof in the above style: A Turing machine halts i� there is a �nite sequence of con-�gurations such that the �rst and the last one are in some special form and such thateach adjacent pair is related by some \local transformation". A con�guration can beinterpreted as a pair of strings (the part of the tape to the left, resp. to the right ofthe head). Hence the data types involved here are the same, but there is an importantadvantage of Post's Correspondence Problem that we did exploit in this paper: Pairsof strings are constructed with respect to the Post Correspondence Problem obeying anatural well-founded ordering, while this does not hold for the con�gurations of a somecomputation sequence of a Turing machine. So choosing he Halting Problem leads to thedi�culty of imposing some well-ordering on the codings of the con�gurations.Another popular candidate for reduction is complete number theory. One may use theresult of Matijacevi�c (1970) on the unsolvability of Hilberts Tenth Problem and reducethe �1-fragment hoping to obtain a formula solvableP in a pretty small fragment. In factQuine (1946) gives a reduction of complete number theory to the theory of concatenationof strings over the alphabet fa; bg. The number n is coded by the string consisting of n a's,



18 Ralf Treinensuch that addition of numbers corresponds to the concatenation of strings. Multiplicationis expressed with the help of lists that can be viewed as computation sequences for aniterative version of the multiplication algorithm. So it seems that this approach yieldsequally small fragments as ours, but the special point in Quine's proof is that a generalconcatenation operation is available in the logic, such that no quanti�ers are neededfor expressing addition. In most of the applications presented here we have just somekind of successor function given, in which case we need a list construction for expressingthe addition operation. In order to optimize the alternations of quanti�ers the iterativeprocesses of addition and multiplication has to be performed in one list apparatus, thusyielding a more complex reduction proof.For a similar reason Post's Canonical Production Systems (see Salomaa (1990)) do notqualify for natural candidates . Here the constructibility of a given word is undecidable. Asin the cases considered above, we are able to express the notion of a construction sequenceeasily once we can simulate the elementary construction steps. But in the case of Post'sCanonical Production Systems, these elementary construction steps require general stringconcatenation. For many applications, this will lead to a unnecessary di�culty.In the introduction we mentioned some decidability results related to our applications,but there are still some gaps between these results and ours. We conclude with a compari-son between the undecidability results of this paper and related works on the decidabilityof special subproblems:1 The signatures of Theorem 2 are the minimal signatures such that undecidabili-ty of the theory of (ground) terms modulo associativity and commutativity holds.Comon (1988) remarks that the case of one AC function symbol plus one con-stant is equivalent to Presburger arithmetic and is therefore decidable. Using thisidea the case of one AC function symbol plus a �nite set of constants (calledthe \theory of �nitely generated multisets" in Comon (1991)) can as well be re-duced to the theory of Presburger arithmetic. Furthermore the theory of a groundterm algebra modulo an empty set of equations has been shown to be decidable inComon & Lescanne (1989) and Maher (1988).2 The decidability of the �1-fragment of the theory of ground term algebra moduloassociativity and commutativity has been proved in Comon (1988). While we haveshown the undecidability of the �3-fragment the �2-case is still unsolved.3 Comon (1990) shows the decidability of the �1-fragment of a total lexicographicpath ordering, but the same question for the partial case remains open. On theother hand we have shown the undecidability of the �4-fragment of the theory ofpartial lexicographic path ordering. We gave the proof for a precedence that is \astotal as possible" but did not succeed in applying the technique to the total case.The reason is that at least two incomparable function symbols are needed in orderto distinguish between the two components of a pair. A proof of undecidability inthe style presented here seems only to be possible beyond a purely symbolic levelof representation, as illustrated in Example (G).I am grateful to Hans-J�urgen B�urckert, Hubert Comon, Jacques Loeckx and StephanUhrig for their comments on earlier versions of this paper. The research reported in thisarticle was done while the author was with the \Universit�at des Saarlandes".
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20 Ralf TreinenTulipani, S. (1993). Decidability of the existential theory of in�nite terms with subterm relation. Infor-mation and Computation, 103(2). To appear.Venkataraman, K. N. (1987). Decidability of the purely existential fragment of the theory of termalgebra. Journal of the ACM, 34(2):492{510.A. AppendixA.1. proof of [in] for example (c)In order to give a proper recursive de�nition of � we have to generalize to sequencesstarting with an arbitrary index k � 1:�((ui)i=k:::n) = � � if k > nh(l(ak�1(�)); e(�(un)); �((ui�1)i=k+1:::n)) otherwiseIn order to prove [IN] we need the following lemma:Lemma A.1. Let s = (ui)i=1:::n be a nonempty increasing sequence over fa; bg�. Thenfor all t; t0 2 T (f�; a; bg) the following two statements are equivalent:1 I j= [t]in[�(s)]at[t0]2 there exists j 2 f1; : : : ; ng with t0 = an�j(�) and t = ujProof. First we state a simple fact about the lexicographic ordering �lpo generated byan ordering �F on F :(*) If t1 �lpo t2 then for each operator symbol f occurring in t1 there is a symbol gin t2 such that f �F g.Now let h(l(t0); e(t); �) �lpo �((ui)i=k:::n). According to the de�nition of an lpo thereare four possibilities:1 h(l(t0); e(t); �) �lpo l(ak�1(�)) or h(l(t0); e(t); �) �lpo e(un)2 h(l(t0); e(t); �) �lpo �((ui�1)i=k+1:::n)3 l(t0) = l(ak(�)) and e(t) �lpo e(un)4 l(t0) �lpo l(ak(�)) and e(t) �lpo �((ui)i=k:::n)Because of (*) possibility (1) can be dropped immediately. For the same reason (4) isonly possible if e(t) �lpo e(uj) for some j 2 fk; : : : ; ng. With an inductive argument incase (2) and applying again (*) we get especially for k = 1:(**) If h(l(t0); e(t); �) �lpo �((ui)i=1:::n) then there are i; i0 with 1 � i0 � i � n suchthat t0 �lpo an�i(�) and t �lpo ui0 .(1) ) (2): Let I j= (t)in(�(s))at(t0). From (**) we know that there exist i; i0 witht0 �lpo an�i(�)t �lpo ui0and 1 � i0 � i � n. Since there is no non-constant smaller than a, t0 must be of the forman�j(�) with i � j � n. We therefore concludet �lpo ui0 �lpo ui �lpo uj



A New Method for Undecidability Proofs of First Order Theories 21On the other hand we know from the construction of �(s) thath(l(an�j(�)); e(uj); �) �lpo �(s)and (4.4) from the de�nition of (�)in(�)at(�) yields uj �lpo t. From the antisymmetry of�lpo we get t = uj.(2) ) (1): (4.3) of the de�nition of (�)in(�)at(�) follows immediately from the de�nitionof �(s). So let h(l(am�j(�)); e(t0); �) �lpo �(s)Because of (**) there are i; i0 with 1 � i0 � i � n andam�j(�) �lpo am�i(�)t0 �lpo ui0This is only possible if j � i and we obtaint0 �lpo ui0 �lpo ui �lpo uj = t2 A.2. g�odels �-predicateThe � predicate was introduced in G�odel (1931). A proof of the theorem we restate be-low can also be found in textbooks on mathematical logic, for instance Enderton (1972).�(x1; x2; l; x) := x = x1 mod (1 + (l + 1) � x2)where x = y mod z is an abbreviation for9q:y = q � z + x ^ x < zTheorem A.1. (G�odel (1931)) For each sequence a0; : : : ; an of natural numbers thereexist c; d such that for all i � n:IG j= �[c; d; i; x] , x = aiWe can now choose the representation  of Example (G): ((ui; vi)i=1;:::;m)(j) := (c; d; 2 � j + 1)where c; d are the values corresponding to the sequence(0; 0; �(u1); �(v1); : : : ; �(um); �(vm))


