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We claim that the reduction of Post’s Correspondence Problem to the decision problem
of a theory provides a useful tool for proving undecidability of first order theories given
by some interpretation. The goal of this paper is to define a framework for such reduction
proofs. The method proposed is illustrated by proving the undecidability of the theory of
a term algebra modulo the axioms of associativity and commutativity and of the theory
of a partial lexicographic path ordering.

1. Introduction

The interest of this paper is twofold. First it proposes a general methodology for proving
results of the kind:

The first order theory of the predicate logic model Z = -- - is undecidable.

Second, besides examples that serve just for the illustration of the method proposed, we
show some applications that are interesting in their own right.

We only consider theories of given models, in contrast to theories defined by some sets
of axioms that are not necessarily complete (for instance the theory defined by the axioms
of Boolean algebras is not complete). When applied to (the theory of) a given model Z,
the method leads to an effective mechanism that yields for each instance P of the Post
Correspondence Problem over the alphabet {a,b} a formula, denoted solvablep, such
that

P is solvable <= 7 |=solvable, (1.1)

Because of the effectiveness of the construction of this formula we immediately get the
undecidability result for the theory from the well-known undecidability of Post’s Corre-
spondence Problem. Furthermore we are interested in showing not only undecidability
of the whole theory of Z, but of a smallest possible fragment of this theory. In the con-
struction of solvablep we will therefore try to avoid alternations of quantifiers as far as
possible.

The basic principle of the proof method proposed is the simulation of the two data
types involved in Post’s Correspondence Problem: strings and sequences (resp. sets). The
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representation of the objects of these data types is performed by appropriate representa-
tion functions mapping the carrier sets into the universe of the model under consideration.
The representation does not reflect directly in the theory of the model, especially there
is no need for formulas characterizing the images of the representation functions. The
operations on the data types are expressed by first order formulas that are to be designed
in regard to the properties of the model.

The target formula solvablep consists of a “frame” that is independent of the model
under consideration but uses subformulas representing the operations on the data types.
We present the frame formula and formulate the requirements that guarantee the “cor-
rectness” of the representation of the carrier sets and the pertaining operations.

To a large extent we constrain the meaning of the formulas only for those elements of
the universe that represent objects of the data types. Moreover, beyond the correctness
of data type representation we have to make sure that a certain relation on the universe
is Noetherian. This is an inherent property of the model, since the well-foundedness of a
relation is not expressible in first order logic.

Several other methods for proving undecidability of theories have been proposed in the
literature. Tarski (1953) shows that a theory T is undecidable if some essentially undecid-
able and finitely axiomatizable theory T” (for instance the theory Q (Tarski et al. 1953a))
is relatively weakly interpretable in T'. In order to show relative weak interpretability of
T’ in T one has to find first order formulas defining the universe and operations of 7’
in some consistent extension of 7. Hence the correspondence between the theories 1s
expressed completely within the logic.

The method of Rabin (1965) does not require a finite axiomatization of the underlying
undecidable theory. Rabin (1965) summarizes his proof principle as follows: “If 7" is an
undecidable theory and 7' is a theory such that by using appropriate formulas of 7" to
represent the universe of 7" and the non-logical constants of 7", every model of T’ is
obtained from some model of T', then T is also undecidable”. In this way the translation
of T" into T is again expressed in terms of first order logic, but in order to show the
correctness of the translation it 1s necessary to prove the required correspondence of
models.

The method proposed here takes a different point of view: It exploits the properties of
the model instead of properties of the theory of the model. The logic is not involved in the
definition of the representation functions: The intended applications concern universes
constituting a formal language, such that the representation may often be performed on
a purely symbolic level. The logic is only used in the realization of the operations of
the data types. We will demonstrate some applications where this technique yields very
simple reduction proofs.

A first set of applications illustrating the method proposed is concerned with equation-
al problems, that is validity of formulas with equality as the only predicate symbol in the
initial, respectively the free algebra of an equational specification (see Comon (1991) and
Biirckert & Schmidt-Schauf (1989)). The first example (A) treats the decision problem
for the theory of ground term algebras modulo the axioms of associativity and com-
mutativity (AC for short) and has been given as an open problem in Comon (1988).
In this paper the existential fragment has been shown decidable thus extending the re-
sults for AC unification (Stickel (1981), Livesey & Siekmann (1976), Fages (1987) and
Kirchner (1985) for arbitrary additional free function symbols). This example shows that
equational problems may be undecidable even in case that unification with free function
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symbols is decidable. The extension by the axiom of idempotency to ACI in Example
(B) is straightforward.

A related result is the undecidability of the theory of ground terms modulo associativ-
ity alone (Example (F)). Quine (1946) showed already the undecidability of the theory
of concatenation. He gives a translation of number theory to the theory of concatenation
that yields a Yg-sentence for an instance of Hilbert’s Tenth Problem, using the undecid-
ability of Hilbert’s Tenth Problem (Matijacevi¢ (1970)) this proves the undecidability of
the Yg-fragment of the theory of concatenation. On the other hand (Example (F)) shows
the undecidability of the Xs-fragment of the theory of a ground term algebra modulo
associativity. A unification algorithm for this theory (without free function symbols) has
been given by Plotkin (1972). The decidability of the unification problem for term alge-
bras modulo A has been conjectured in Plotkin (1972) and proven in Makanin (1977).
Baader & Schulz (1991) show the decidability of the unification problem for associative
functions together with free function symbols. In contrast to the AC case, associativity
without commutativity is of unification type w (see (Biirckert et al. 1989) for the classi-
fication of unification problems), this coincides with the observation that our technique
yields undecidability of the X5 fragment in the AC case but X5 in the case of associativity.

The second field of application is the theory of ground terms equipped with some or-
dering relation. The undecidability of the “theory of subterm relation” has been shown
in Venkataraman (1987) but without the extension to possibly infinite trees. Further-
more Venkataraman (1987) shows the decidability of the existential fragment. Here our
interest lies in the comparison between Venkataraman’s proof and ours. We extend our
undecidability result to the case of infinite trees. The decidability of the the existential
fragment of the theory of finite and infinite trees with the subtree relation was shown in

Tulipani (1993).

The question of decidability of the theory of a total simplification ordering has been
posed in Comon (1988). The decidability of the existential fragment of a total lexico-
graphic path ordering (Ipo for short) is shown in Comon (1990), the analogous result for
a total recursive path ordering has been given in Jouannaud & Okada (1991). We prove
in Example (C) the undecidability of the X4 fragment of a partial Ipo. Unfortunately
there still remain two big gaps between these results (see Section 5).

The undecidability of the X5 fragment of complete number theory (Example (G)) is
of course by no means a new result; it is presented here merely for demonstrating some
aspects of the method proposed. The undecidability of the ¥; fragment has been shown
in Matijacevié (1970).

The separation of Post’s Correspondence Problem into two datatypes induces the struc-
ture of the paper: After a survey of the mathematical framework in Section 2 the sim-
ulation of the data type “strings” is discussed in Section 3. In the applications this
part will always be the trivial one. Section 4 describes the construction of the sentence
solvablep while presenting two alternative methods for the representation of construc-
tion sequences. In the first method sequences are viewed as sets. This method is easier to
use than the second one representing sequences directly but is less powerful, since in some
applications the second method can yield a smaller number of quantifier alternations in
the formula solvablep.
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2. Preliminaries

In this paper we consider unsorted first order logic where equality is not required.
For the basic notions according syntax and semantics of first order logic the reader is
referred to textbooks on mathematical logic, for instance Enderton (1972). We specify a
predicate logic basis as a pair (P, F'), where the set of function symbols F' is given in the
form (f(ng),g(ng),...) and the set of predicate symbols P = (®(ng), ©(ng),...). The
numbers in parentheses are not part of the syntax but indicate the arity of the symbols.
If =(2) is present in P it is always interpreted as equality. We will frequently use symbolic
names for formulas, and in defining one formula we will often refer to other formulas via
their symbolic “macro” names without giving an exact semantics of macro expansion for
formulas. We only mention the following notations:

w(xy,...,2y) where w is a symbolic name for a formula stands for a formula the
free variables of which are (possibly as proper subset) among {x1,...,#,}. As usual
w(ty, ..., t,) denotes the result of simultaneously substituting in w(zy, ..., z,) the z; by

the corresponding ¢;. We write Z |= w[ry, ..., ;] if w is satisfied in Z by the assignment
{x; < r;}. For the sake of convenience we allow infix notion, for instance ()w(y) instead
of w(x, y). Furthermore, in the examples, we will sometimes use tuples of variables instead
of a single variables. In this case of course we have to replace the corresponding quantifiers
by quantifier strings of the same kind.

The set of formulas over a given basis is split up into fragments. Rogers (1987) defines
the number of quantifier alternations of a formula in prenex normal form (Gallier (1986))
as “the number of pairs of adjacent but unlike quantifiers”. If this number is n and
the outermost quantifier is 3 (resp. V) the formula belongs to the X1~ (resp. Tl,41-
) fragment. Yo = IIy denotes the set of quantifier-free formulas. An arbitrary formula
belongs to a certain fragment if it is logically equivalent to a prenex normal form formula
contained in this fragment.

Given a set ¥ of symbols, ©* denotes the set of finite and X = £* \ {¢} the set of
finite nonempty strings over X. < is the prefix ordering on strings. An instance P of the
Post Correspondence Problem over an alphabet ¥ (Post (1946)) is given by a finite set
of the form

A P-construction sequence for (u, v) € £* x * is a sequence ((uj, vj)) with u;, v; €

j=l..n
¥* forall j, uy = v1 = ¢, u, = u and v, = v, and for each 1 < j < n — 1 there
isal0 << mwith uj4.1 = uw;p; and vj41 = vj¢; where juxtaposition denotes the

concatenation of strings. In this case (u, v) is called P-constructible. P is solvable if there
is a u € X1 such that (u,u) is P-constructible. Tt is undecidable whether an instance of
the Post Correspondence Problem is solvable (Post (1946)), provided ¥ contains at least
two elements.

Equational problems emerged from the study of unification problems that can now
be considered as a special case of equational problems (see Siekmann (1989) for a sur-
vey on unification). For a set F' of ranked function symbols let T(F') denote the set of
F-ground terms and T'(F, X) the set of F-terms that contain variables from the set X.
T(F) and T(F,X) will also be considered as F-algebras where the symbols from F
are given their Herbrand interpretation (Gallier (1986)). The basis and the model for
equational problems are defined by an equational specification (F, E) in the sense of
Ehrig & Mahr (1985). Here we consider the restriction to the one-sorted case, that is F
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1s a ranked set of function symbols and F is a set of implicitly universally quantified equa-
tions of F-terms. The only predicate symbol is the equality symbol, the set of function
symbols is given by the specification. A permutation equation is an equation where all
variables and function symbols have an equal number of occurrences on the left and right
side respectively (Biirckert ef al. 1989). The axioms of associativity and commutativity
are an example of a set of permutation equations. Biirckert & Schmidt-Schauf} (1989)
designate the following models of a specification (F, E):

1 the initial algebra is the quotient of the ground term algebra T'(F') by the congruence
generated by E.

2 the E-free algebra is the quotient of the term algebra T'(F, X) by the congruence
generated by E where X 1s a not further specified infinite set of variables.

A discussion of term algebras can be found in Ehrig & Mahr (1985). In this context
Biirckert & Schmidt-Schauf (1989) call the I3 fragment special equational problems and
the ¥s fragment special equational problems without independent parameters.

The lexicographic path ordering on T(F) has been described in Dershowitz (1987)]L

as a tool for proving termination of term rewriting systems. For a given partial order?
<F on the set F' of function symbols the lexicographic path ordering <, is recursively

defined by
t=yg(t1,...,tn) <ipo f(51,...,8m) =5

iff £ = s or one of the following holds

1 t <4po s; for some ¢
2 g <p f and t; <ipo s for all j
3 f =g and there is a j < n with

(a) t; =s; foralli < j
(b) £; <ipo 5
(€) ti <ipo s forall i > j

where & <po ¥ 1s an abbreviation for <6 y A & # y. =<ipo 1s a simplification ordering
(Dershowitz (1987)), especially it is a partial order containing the subterm ordering. <ip
is total iff the underlying precedence <p is total.

In the context of ordering relations we will also consider algebras containing finite and
infinite trees. Courcelle (1983) contains a treatment of infinite trees.

f7(t) means n applications of the unary function symbol f to the term ¢. [th(s) denotes
the length of the sequence s. O designates the end of a proof, the end of an example will

be marked by <.

3. Simulation of Strings

The first thing we need for the representation of the data type string is a coding
function

$:Ha, b} =7

i referring to an unpublished paper of Kamin and Lévy.

¥ The definition in Dershowitz (1987) (precedence) is slightly more general in using quasi-orderings.
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We will use the symbol ¢ also to denote the corresponding function ¢: {a, b}* x {a,b}* —
T2. The operations that will be used in the simulation of Post’s Correspondence Problem
are the test for emptiness and for each single nonempty string a unary function that
appends this fixed string to its argument. For the sake of generality this function will be
represented as a formula instead of a term. More precisely, we need:

1 is-e(x)
2 (y)is(z)v for each v € {a,b}T

such that

[INJ] ¢ 1s injective
[EPS] Forallr € 7: T |= is—¢[r] iff r = ¢(¢)
[CON]  Forallr€Z,v e {a,b}t, we{a,b}*: T [rlis[¢(w)]v iff r = ¢(wv)

In applications we have to specify both ¢ and the formulas is-¢ and -is - v. This
procedure contains a certain redundancy, an alternative is to give a different set of re-
quirements on is—¢ and -is- v such that the representation function can be derived from
the definition of these formulas:

¢(e) := the unique r with 7 |= is—¢[r]
$(w) = the unique r with 7 = [r]is[é(e)]w  (w # €)

We do not follow this line since 1t seems to be more natural to define the representation
of strings explicitly. An advantage of this alternative way is that the requirements sub-
stituting [INJ], [EPS] and [CON] state only properties of the theory of the model instead
of properties of the model itself. Anyway, with the next requirement we have no hope of
staying within the scope of first order logic as has been explained in the introduction.

DEFINITION. [ is the relation on 7 defined by: T y iff there is a v € {a,b}T with
7 k= [y]is[z]v. As usual C* denotes the reflexive transitive closure of C. Furthermore C
generalizes to pairs by (z1,22) C (y1,y2) iff 21 C 91 and 23 C yo.

If 1 = ¢(wy) and ro = ¢(w2) then r1 T ra expresses the prefix relationship between
w1 and wy. However the definition is not restricted to representatives of strings, we
will need this definition and the pertaining requirement in its full generality later. The
formula finite characterizes the set of elements of the universe where [ is a Noetherian

relation. This set has to contain at least (but may not be equal to) the image of ¢.

[NOE]  There is no infinite descending C-chain (7;);>0 in Z with Z = finite[r].
[FIN] For all w € {a,b}*: Z = finite[¢(w)]

ExAMPLE 1. The basis B contains at least the function symbols €(0), a(1), 6(1) and the
equality symbol =(2). Let Z be the algebra of B-ground terms modulo some set of equa-
tions that that is consistent with respect to {¢, a,b} (Dershowitz & Jouannaud (1990)).
This means that different ground terms built only with the symbols ¢, ¢ and b have
different interpretations in Z.
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Deliberately confusing the characters a,b from the alphabet with the unary function
symbols a, b we define

¢(0'0 .. .0-”) — 0-”(. .. (0’0(6)) .. )

is-e¢(x) = z=¢
(y)is(x)og---on = y=on(--(o0(x))--)
finite(z) := TRUE

The reader might easily check that these definitions fulfill all the requirements [INJ],
[EPS], [CON], [NOE] and [FIN]. &

ExAMPLE 2. The basis B contains at least the equality symbol =(2) and the function
symbols €(0), f(1) and +(n) with n > 2. Let T denote the algebra of B-ground terms
modulo some set of permutation equations that have no occurrences of any function
symbol but 4. With the temporary definitions

?(t) =+, f(ft),€,.. . 6)
bt) = +(f(e), F(F(X), f(e),-. ., f(e))

we define

¢(UO"'Un) — ﬁ((g_o(g)))

is-e¢(x) = z=¢
(Wis(z)og-on = y=7n((F0(z)) )
finite(z) := TRUE

In the definitions of @(¢) and b(t) the occurrences of ¢, resp. f(¢) do the coding of the
symbols a, resp. b. Since there are permutation equations for 4+, we use a doubled occur-
rence of f in order to distinguish the coding of £. The above definitions still constitute a
correct representation of strings when we enlarge the model 7 to the free algebra T'(F, X)

modulo F. &
The next example shows a nontrivial £inite formula.

EXAMPLE 3. B contains at least the function symbols €(0), a(1),5(1) and the predicate
symbols =(2), <(2). Consider the algebra 7 of finite and infinite B-ground terms where

< is interpreted as the subterm relation.t We choose ¢,is-cand -is-v as in Example (1).
The set of finite objects consists now of the terms built only with unary function symbols
and containing the symbol e.

finite(z) = e<zAVd'a' <zD {x/ —evId' 2 =a(x")va = b(a:”)}

If the set of non-unary function symbols B’ C B is finite we can transform the conclusion
of the above implication into a II;-formula, thus saving one alternation of quantifiers:

finite(z) = e <z AVe 2’ <z D /\ vZ.x' £ f(7)
feB’

T Note that the case of finite terms only is covered by Example (1).
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4. Solutions of P

We are now ready to define the subformula one-step,,. The intended meaning of
the formula one—stepP(yl, Y2, Ys, ya) is: “The pair of strings represented by (y1,y2) is
obtained from the pair of strings represented by (ys,y4) by the application of one P-
construction step.” This is the only subformula that depends directly on the instance of
the Post Correspondence Problem P:

one-step, (y1,¥2,¥3,¥4) = \/ ((y1)is(ys)pi A (y2)is(ya)gi)

i=0,....m

where P = {(pi,¢;) | i=0,...,m}.
4.1. SIMULATION OF SEQUENCES AS SETS

In order to construct the sentence solvablep we have to formulate something like
“there is a P-construction sequence such that ---”. How can we express as a formula the
fact that something represents a P-construction sequence? The key idea we are going to
explore now is: Instead of talking directly about sequences we may view a P-construction
sequence as a set of pairs of strings. Since by definition a P-construction sequence is
strictly ordered by the prefix relation on (pairs of) strings we are able to recover the
sequence from the set.

With this idea we can now define the subformula constructionp(z) meaning that »
represents a P-construction sequence. constructiony uses the subformula (y1,y2)in(z)
reflecting the element relationship, the definition of which depends again on the model
under consideration. From now on let a fixed instance P of the Post Correspondence
Problem be given.

constructionp(x) := Vy1,y2-(y1, y2)in(z) D
{is=c(y1) Ais=e(y2)} Vv (4.1)
Jys, ya-(ys, ya)in(x) A one-step (y1,¥2,ys,ya) (4.2)

Still leaving pending the definition of in we can now show

LEMMA 4.1. For all 1,79, u,s € T with (r1,72) C* (u,u) and
T & tinitelu]
7 | constructionp[s]
T = [r1, 2] ins]
If [INJ], [EPS], [CON] and [NOE] are fulfilled then (ri,72) € IM(¢) x IM(¢) and the

associated pair of strings ¢~1(r1,ra) s P-constructible.

ProoF. We fix u and s with the above properties. Because of [NOE] there can not
exist an infinite descending (w.r.t. C) chain of pairs (ry,72) C* (u, u). We can therefore
perform Noetherian induction on (rq, ra).
If 7 |= is—€[r1] A is=¢[rs] then [EPS] yields (r1,72) = ¢(€, €) and we are done.
Otherwise case (4.2) from the definition of construction, applies, so there exist
rs, 74 with Z = [rs, r4]in[s] and 7 |= one-step [r1, 72, 73,74]. From the definition of
one-step, follows (rs,r4) T (r1,72) C* (u,u). The induction hypothesis yields that
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(r3,ra) € IM(¢) x IM(4) and ¢~1(r3,74) is P-constructible, and because of [CON] and
the definition of one-step, the same holds for (ry,r2). U

We are now ready to define solvablep.

solvablep := J,y.constructionp(z)Afinite(y) A (y,y)in(z) A —is—¢(y)

From the above lemma we get immediately

COROLLARY 4.1. If [INJ], [EPS], [CON] and [NOE] are fulfilled then

T = solvablep — P is solvable

The reader should note that up to now we did not need any constraints on the sub-
formula in. We made use of the special properties of the model only in order to fulfill
the requirements in connection with the simulation of strings. Once the representation
of strings with the subformulas is-¢,-is-v,finite is found, we get the first direction of

our "goal”—theorem (1.1) for free — that is without worrying about the representation
of sequences.

In order to prove the opposite direction of (1.1) we now have to choose a represen-
tation function for P-construction sequences and a corresponding formula (y, y2)in(z).
S denotes the domain of the representation function ¢:S — 7:

S={(uwi, vi)i=1n | wi, v € {a, 0}, 0 > 2,0 Qugr, v Quig, (ur, v1) = (€, €)}

Our last requirement relates the representation function ¢ with the subformula in that
1s supposed to express the element relationship:

[IN] For all ri,70 € Z, s € S: T |= [r1, ro]in[¢(s)] iff there exits j € {1,...,Ith(s)}
with (r1,r2) = ¢(s(j))

LEmMMA 4.2. If [EPS], [CON], [FIN], [IN] are fulfilled then
P is solvable — 7T |=solvablep

The next theorem summarizes the method as it stands now:

THEOREM 4.1. Let B be a predicate logic basis and T a model for B. If we can find
representalion functions ¢, ¢ and formulas is—¢,-is-v,finite, in such that [INJ], [EPS],
[CON], [FIN], [NOE] and [IN] are fulfilled then the first order theory of T is undecidable.

Now we can complete the examples started in Section 3:

ExaMPLE A. Consider equational problems for the equational specification (Fa, AC(+))
where Fy := (€(0),a(1),b(1), £(2),+(2)) and AC(+) denotes the axioms of associativity
and commutativity for +:
r+y = y+«x
(z4+y)+2z = z+(y+2)

We take the representation of strings from Example (1). Tt is easy to see that with the
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following definitions [IN] is fulfilled in the initial and in the free algebra:

U ((us, vi)i:l,...,n) = f(o(ur),d(v1)) + -+ F(o(un), d(vn))
(yla yz)ﬁ(l‘) = A’ x= f(yl’yz) + z

We can improve this result by restricting the base to Far := (€(0), f(1),+(2)) and
Py := (=(2)). With the representation of strings as in Example (2) and the following
definitions:

U((ui, vi)iz1,m) = F(f(0(w)) + F(F(8(v1))) + -+ F(F(d(un)) + F(f(6(vn))))
(yi,y2)in(z) = 3w = F(f(y1) + F(f(ya))) + 2’

we obtain undecidability of the first order theory of T'(Fas)/ac(4) and of the first order
theory of T'(Fas, X)/ac(4)- In this construction the AC operator + is used as a set
constructor and as a string constructor. This is made possible by the insertion of the
free function symbol f that serves as a barrier between the different occurrences of + in
the representation of strings. Besides this f is used to build distinguishable items in the
representation of strings and in order to identify the two components of a pair of strings
in the definition of .

With an analogous construction we can show that undecidability holds in the case of
(e(0), f(n),+(2)) with n > 1 and + associative and commutative, and also in the case of
the signature (€(0), *(2), +(2)) where both + and  are associative and commutative.

THEOREM 4.2. The (X3 fragment of the) first order theory of a ground term algebra
(resp. term algebra) modulo associativity and commutativity is undecidable for signatures
that contain at least one constant, one non-constant function symbol and one binary AC
function symbol. <&

ExaMPLE B. Theorem 2 still holds when the set of axioms is enlarged by the axiom of
idempotency:

r+r==2x

THEOREM 4.3. The (X3 fragment of the) first order theory of a ground term algebra
(resp. term algebra) modulo associativity, commutativity and idempotency is undecidable.

It is easily seen that the above construction applies here also. The correctness of the
representation of strings has to be checked separately since the axiom of idempotency is
not a permutation equation. <&

ExaMPLE C. Let Fe := (e(0),a(1),b(1),e(1),1(1),h(3)) and Pc := (=(2),<(2)). Z¢ is
the ground term algebra T'(F¢) where < is interpreted as the lexicographic path ordering
=ipo generated by the following precedence on Fc:

€<FCE<FI)<Fh<F{(l3

e and [ are incomparable in the order <p.
¢,is-¢, finite and -is-v can be copied from Example (1). A P construction sequence
will be represented by two lists of labeled strings, one for the first component and one
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h
[ e h
| /‘\
a®(e) d(un)
{ € \
| h

Figure 1. The term &((u;)i=1...n) representing the sequence (u;)i=1...n

for the second. The labels associate the corresponding components of a pair, moreover
they will be essential for the formulation of the membership relation.

We associate to each nonempty sequence s = (u;)i=1, . the term d(s) as shown in
Figure 1 and choose

Y((ui, v3)iz1,. n) = (0((wi)i=1,.. n), 6((vi)i=1, .n))

In order to formulate the subformula in we use the following temporary definition:

(Win(e)at(s) = h((=),e(y).e) <z A (4.3)
vy h(l(=), (), ) <2 Dy <y
Finally we define

(y1,y2)in(z1,22) = Fz.(y1)in(ar)at(z) A (y2)in(as)at(z)

THEOREM 4.4. The (X4 fragment of the) first order theory of a partial lexicographic path
ordering 1s undecidable.

The proof of [IN] is given in Appendix A.l. The separation of the P-construction
sequence into two lists is not essential for the proof. In fact an analogous proof where the
P-construction sequence is represented by one list of pairs of strings is also possible (by
changing the arity of h to 4). The price of this variant is the need for another maximal
function symbol incomparable to e and [, thereby leading to a “less total” ordering. In
this alternative proof the labels [(a’(¢)) can not be omitted, they are necessary for the
maximality condition in the definition of in.

We remark that the same construction can be used to show that the X4 fragment of the
first order theory of a partial recursive path ordering (Dershowitz (1982)) is undecidable.

&

Counting the quantifiers involved in the above construction we find that the formula
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solvablep is at least in the X3 fragment. This is an inherent drawback of this method
since solvablep follows the pattern

Jds---V(s1,82) €Es---I(s3,84) Es-+-

In general the formula in is the most “expensive” one (in terms of alternations of quan-
tifiers). We will always try to find a formula in in X4, if we do not succeed we get
undecidability only for a fragment larger than 3.

4.2. DIRECT SIMULATION OF SEQUENCES

In some applications it is possible to overcome this limitation by using a direct simula-
tion technique for sequences. In this case we have to perform three different operations on
the data type sequence, and we have to work a little bit harder to regulate the correlation
of the pertaining formulas. We will come back to a comparison of these two methods at
the end of this section.

The formulas that are to be designed for the model under consideration are

1 nonempty(z)
2 (ylay2a )71n1t Of( )
3 (y1,y2)head-of(x)

The intended meaning of the first formula should be clear. It is useful to consider se-
quences as being constructed from right to left. Using this point of view, we call the ele-
ment with the highest index in a sequence the head of the sequence. (y1, y2)head-of ()
is intended to express that (y1,y2) is the head of the sequence z. (y1, y2, #’)init-of(x) is
supposed to express that the sequence consisting of the sequence @’ plus the head (y1, y2)
is an initial segment of the sequence x.

The analogous definition of constructionp and solvablep are given below. Note that,
in contrast to Section 4.1, we now use an universal quantifier instead of an existential
quantifier inside the definition of constructionp.

constructionp () := Vy1,y2, 2’ .(y1, y2, ') init-of(z) D
{is=e(y1) A is=€(y2)} Vv
{nonempty(z') A Vys, ys.(y3, y4)head-of(z’) D one-step , (y1,y2, ¥3, ya) }

solvablep := Jz, y.constructiony(z) A (y, y)head-of(z) A finite(y) A —is—€(y
P P

In contrast to Section 4.1 where we obtained the first direction of (1.1) just from the
properties of the representation of strings, we now have to state additional requirements
on the newly introduced formulas:

[NH] T = Va.nonempty(x) D Jy1, y2.(y1, y2)head-of (x)

[HS] Z =V, y1,y2-(y1, y2)head-of(x) D Iz’ (y1, y2, *')init-of(x)

[HSH] 7 ': an $/a Y1, Y2, Y3, y4~(y1a Ya, l’/)M(I) A (ys, yQM(l‘/) 0
Fx" (ys, ya, " )init-of(x)

At this point the reader might remark that we could have used [NH] as a definition
of nonempty by turning the implication sign into an equivalence. In this case only the



A New Method for Undecidability Proofs of First Order Theories 13

requirement [HS] and [HSH] remain relating head-of to init-of. We do not choose this
approach in order to avoid the introduction of extra quantifiers. Example (D) shows how
a model specific argument leads to the elimination of an unwanted existential quantifier
in the definition of nonempty.

With the help of these properties we can now prove a lemma analogous to Lemma 4.1:

LEMMA 4.3. For all 1,79, u,s,8 € T with (r1,r2) C* (u,u) and
T tinitelu]
T = constructiong|s]
T | [r1, 72, 8')init-of][s]
If[INJ], [EPS], [CON], [NOE], [NH] and [HSH] are fulfilled then (r1,r2) € IM(¢) x IM(¢)

and ¢=1(r1,r2) is P-constructible.

PROOF. As in the proof of Lemma 4.1 we proceed by Noetherian induction on (r1, ra).

If 7 |= is—¢[r1] A is—€[ro] we know from [EPS] that (rq, ) = ¢(e, €).

Otherwise 7 = nonempty[s], so we get from [NH] that there are rz,r4 € 7 with
7 | [rs, raJhead-of[s]. The second case from the definition of constructionp applies
and we get 7 &= one—stepp[rl,rz,rg,m], this implies (r3,74) T (r1,72) C* (u,u). Be-
cause of [HSH] there is a s/ € T with 7 = [rs, r4, s”]init-of[s], so we can apply the
induction hypothesis to (rs, rs). With [CON] and the definition of one-step,, the proof
is completed. O

CoROLLARY 4.2. If[INJ], [EPS], [CON], [NOE], [NH], [HSH] and [HS] are fulfilled then

T = solvablep — P is solvable

In a first attempt we could require as in Section 4.1 a coding function mapping the
set .S into Z. This will suffice in some examples, but we can be more liberal and allow
for each sequence s a “private” coding function for the set of the initial segments of s:

y e [JHo,.... Ith(s)} — I)
SES

The subformulas nonempty, init-of and head-of have to work properly for the codings
of initial segments:
For all s € S,n < Ith(s):

[NIL] 7 = nonempty[¢(s)(n)] iff n £ 0

[HEA] 7 = [r1, ro]Jhead-of[¢p(s)(n)] iff n > 1 and (r1,7r2) = ¢(s(n))

[SUB] T |=[r1, 72, t]linit—of[¢(s)(Ith(s))] iff there is i € {1, ..., Ith(s)} with (r1,7q) =
H(5(0) and 1 = () (i — 1)

LEmMA 4.4. If [EPS], [CON], [FIN], [NIL], [HEA] and [SUB] are fulfilled then

P is solvable — 1T |= solvablep

Theorem 4.5 gives the complete method developed in this subsection:
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!
dus)  Pluy) !

dui—1)  dvi-1)

Figure 2. The term ¢ ((u;,v;);=1...n)(¢) representing the initial segment (u;,v;);=1..; of the
sequence (u;,v;);=1..n for 1 <7< n

THEOREM 4.5. Let B be a predicate logic basis and T a model for B. If we can find
representations ¢, 1 and formulas is—¢, -is-v, £inite, nonempty, head-of and init-of

such that [INJ], [EPS], [CON], [NOE], [NH], [HS], [HSH], [FIN], [NIL], [HEA] and
[SUB] are fulfilled, then the first order theory of T is undecidable.

ExamMPLE D. Let us now see how the undecidability result for the theory of subterm
ordering from Venkataraman (1987) fits into our framework:

Let Fp := (e(0),a(1),b(1), £(3)) and Pp := (=(2),<(2)). Ip is the algebra of Fp-
ground terms where < is interpreted as the subterm relation. The representation of
strings has been given in Example (1). We choose ¢(s)(¢) as follows (see also Figure 2):

[ e ifi=0
b(s)(1) = { F(d(ui), d(vi), w(s)(i — 1)) otherwise

and define the remaining formulas:

(y1,y2)head-of () = F'.x = f(y1,y2, )
(y1,y2, ¥')init-of (x) = f(y1,y0,2") <
nonempty(z) = Jy1,y2, 2 .2 = f(y1,y2, ')

We can save one alternation of quantifiers in solvablep by transforming nonempty into

ally formulaT.

nonempty(z) = x#ecAVa'x#a(z')Ax£b(2)

THEOREM 4.6. (Venkataraman (1987)) The (Xa-fragment of the) first order theory of
the subterm ordering ts undecidable. <&

T In ground term algebras over a finite alphabet it is always possible to transform a purely equational
formula into a IT; (or X;) formula, see Comon & Lescanne (1989).
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ExaMpPLE E. We can modify the above example by enlarging the model to the algebra
of finite and infinite ground terms. We can use exactly the same proof as above but with
the finite formula as in Example (3) to show

THEOREM 4.7. The (X2 fragment of the) first order theory of the subterm ordering in
the algebra of finite and wnfinite trees in undecidable.

This undecidability proof for the Xs-fragment relies on the finiteness of the particular
signature used here. The finiteness of the signature was exploited in Example (3) in order
to obtain a sufficiently simple finite formula. <&

ExaMPLE F. If we drop commutativity from Example (A) we can now show undecid-
ability even of the ¥, fragment:

Consider the equational specification (Fr, A(4+)) where Fr = (¢(0), f(1),+(2)) and
A(+) denotes the axiom of associativity for +:

ety +z = ot (y+3)

For the initial algebra we take the representation of strings from Example (2) and ¢
similar to Example (A):

(uis vi)i=1, m) (7)== F(F(6(uy)) + F(F(D(v5))) + -
s f(f(o(w)) + F(f(e(v)) +e (= 1)
V((ui,vi)i=1,. . m)(0) = ¢
(y1,y2)head=of (v) = Ja'w=f(f(y)+ f(f(y2))) + 2
(y1, 92, 2)init-of(x) = a= f(f(y1) + f(f(32))) + 2"V
e =" + f(Fy) + F(F(y2)) + 2
The definition of the formula nonempty is somewhat tedious, since we have to find a I1;-
formula that is equivalent to Jy1, y2(y1, y2)head=of(x) in T(Fr)/a(4). In the following

definition we add in braces as a comment the pattern that x is known to match if the
inequalities given so far are fulfilled:

nonempty(z) := Yy1, y2, ¥s, Ya.

cE Azt [n)Astetm fo~ J(2) + 22)
N oz fle)FyAx £ F(fy)) + e {2~ flz1 + 22) + 23}
N oz # fledy) + e {& ~ f(f(21) + 22) + 23}
N xE flyn+y+ys)tyaNeZ flyn+e) {x~ f(f(z1) + flz2)) + 23}
Nox#F [+ FO) AN flyr+ flyz +ys)) +va e~ F(f(21) + f(f(22)) + 23}

THEOREM 4.8. The (X5 fragment of the) theory of a ground term algebra modulo asso-
ciatwity s undecidable for signatures that contain at least one constant, one non-constant
function symbol and one associative binary function symbol. <&

In the Examples (D) to (F) we gave uniform codings for the sequences. The last
Example (G) shows the use of “private” coding functions for the initial segments of a
given sequence. As mentioned in the introduction this is an artificial example that serves
just for the purpose of demonstrating the usage of our method in its full generality.
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ExAMPLE G. Let Fg :=(0(0),1(0),+(2), *(2)) and Pg := (=(2), <(2)). Our interpreta-
tion Zg is the model of natural numbers. In order to define the representation of strings
we introduce two abbreviations:

6 = 4t
(t) t+t+1
It is easy to see that the following representation of strings fulfills the requirements since

there is an obvious correspondence between strings and the binary representation of
natural numbers.

o>~ 8l
—~

d(oo--0,) = Tul---o0(1)) )

is-¢(z) = z=1
(Wis(@)oo—0a = y=7al-55() )
finite(x) := TRUE

For instance ¢(aaaba) = 34, that is 100010 in binary notation. We use Godel’s S-predicate
(Godel (1931)) to represent sequences in the domain of natural numbers. The existence
of the representation 1 is a consequence of the fundamental property of the G-predicate.
The definition of 8 and the pertaining theorem are restated in Appendix A.2.

nonempty(c,d,n) = n>1
(y1,y2)head-of(c, d, n) Ble,d,n+n,y1) ABle,d,n+n+1,ys)
(yl’ Y2, (Cl’ d/a n/))iinit_()f(ca da n) = d=ceANd =dAn <nA
(y1, y2)head-of(c', d' n' + 1)

As a result we obtain the undecidability of the X5 fragment of complete number theory.
The reader should note that IM(¢) = Z \ {0} — especially the images of ¢ and ¢ are not
disjoint. <&

In this section we have finished the presentation of the two methods for proving the
undecidability of the first order theory of a model. The first method is appropriate for
models that miss a concept of ordering (for instance term algebras modulo associativity
and commutativity), while the second is applicable to models where some kind of ordering
is present. In view of the fact that the second method can yield undecidability of a simpler
fragment than the first one, the question arises why we did not use the second method
for proving undecidability of the theory of a partial recursive path ordering in order to
find a formula solvablep in a smaller fragment than X,.

The reason is that we can benefit from the simpler quantification structure of the
formula solvablep in the second method only if we succeed in finding simple formulas
nonempty, init-of and head-of fulfilling the requirements. More precisely, we get a
formula solvablep in X3 iff nonempty is in IIs UX; and both init-of and head-of are
in IT; UXs, provided that is—¢, -is-v and finite do not induce any further alternation of
quantifiers. This is usually the case, in all applications we found the expensive operations
belong to the datatype set, resp. sequence. Using representations of sequences in the spirit
of Example (C) one could try to define init-of with the help of a maximality condition
as 1t has been done in the definition of in, but we did not succeed in finding a formula
init-of € II; U X, fulfilling [HSH].
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5. Conclusions

We have presented two methods for proving the undecidability of the first order theory
of a model. In order to apply one of these methods to a given model we have to find
appropriate representations of the data types “string” and “sequence” and formulas ex-
pressing the operations on these data types. The two main theorems (Theorem 4.1 and
Theorem 4.5) state that the proof of undecidability is completed if the pertaining set
of requirements 1s fulfilled. We would like to point out some statements that at a first
glance one might expect to be essential for a reduction proof but that in fact are not.
With the presentation of this list we claim that applications benefit from a systematic
study of reduction proofs since it localizes the crucial points where the special properties
of a model are involved.

1 A general binary concatenation operation is not necessary.

2 The codings of strings and sequences may be non-disjoint.

3 Formulas characterizing the images of the representations ¢ and 1 are not needed.
In particular, it is not necessary to express that the elements of some set (sequence)
are indeed pairs of strings.

4 One should not worry about an ezplicit characterization of the finiteness of se-
quences in terms of first order logic.

In the undecidability proof of Venkataraman (1987) there exist subformulas in his con-
struction that explicitly specify the shape of the objects that are intended to express
P-construction sequences. In the approach presented here this is not necessary, we there-
fore yield a simpler formula solvablep.

There 1s a potentially useful extension to the method that was not carried out since
there are no applications at hand. Strings have been coded in the universe of the model by
a representation function, instead we could associate an equivalence class of the universe
to each string. This implies the need for further restrictions that guarantee the congruence
property of the operations on strings.

The starting point of the method proposed is the undecidability of Post’s Correspon-
dence Problem. Of course there are many other undecidable problems that might serve
for reduction to the decision problem of a theory (see Davis (1977)). One may, for in-
stance, take the uniform halting problem for Turing machines and perform a reduction
proof in the above style: A Turing machine halts iff there is a finite sequence of con-
figurations such that the first and the last one are in some special form and such that
each adjacent pair is related by some “local transformation”. A configuration can be
interpreted as a pair of strings (the part of the tape to the left, resp. to the right of
the head). Hence the data types involved here are the same, but there is an important
advantage of Post’s Correspondence Problem that we did exploit in this paper: Pairs
of strings are constructed with respect to the Post Correspondence Problem obeying a
natural well-founded ordering, while this does not hold for the configurations of a some
computation sequence of a Turing machine. So choosing he Halting Problem leads to the
difficulty of imposing some well-ordering on the codings of the configurations.

Another popular candidate for reduction is complete number theory. One may use the
result of Matijacevié (1970) on the unsolvability of Hilberts Tenth Problem and reduce
the ¥ -fragment hoping to obtain a formula solvablep in a pretty small fragment. In fact
Quine (1946) gives a reduction of complete number theory to the theory of concatenation
of strings over the alphabet {a, b}. The number n is coded by the string consisting of n a’s,
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such that addition of numbers corresponds to the concatenation of strings. Multiplication
1s expressed with the help of lists that can be viewed as computation sequences for an
iterative version of the multiplication algorithm. So it seems that this approach yields
equally small fragments as ours, but the special point in Quine’s proof is that a general
concatenation operation is available in the logic, such that no quantifiers are needed
for expressing addition. In most of the applications presented here we have just some
kind of successor function given, in which case we need a list construction for expressing
the addition operation. In order to optimize the alternations of quantifiers the iterative
processes of addition and multiplication has to be performed in one list apparatus, thus
yielding a more complex reduction proof.

For a similar reason Post’s Canonical Production Systems (see Salomaa (1990)) do not
qualify for natural candidates . Here the constructibility of a given word is undecidable. As
in the cases considered above, we are able to express the notion of a construction sequence
easily once we can simulate the elementary construction steps. But in the case of Post’s
Canonical Production Systems, these elementary construction steps require general string
concatenation. For many applications, this will lead to a unnecessary difficulty.

In the introduction we mentioned some decidability results related to our applications,
but there are still some gaps between these results and ours. We conclude with a compari-
son between the undecidability results of this paper and related works on the decidability
of special subproblems:

1 The signatures of Theorem 2 are the minimal signatures such that undecidabili-
ty of the theory of (ground) terms modulo associativity and commutativity holds.
Comon (1988) remarks that the case of one AC function symbol plus one con-
stant is equivalent to Presburger arithmetic and is therefore decidable. Using this
idea the case of one AC function symbol plus a finite set of constants (called
the “theory of finitely generated multisets” in Comon (1991)) can as well be re-
duced to the theory of Presburger arithmetic. Furthermore the theory of a ground
term algebra modulo an empty set of equations has been shown to be decidable in

Comon & Lescanne (1989) and Maher (1988).

2 The decidability of the X;-fragment of the theory of ground term algebra modulo
associativity and commutativity has been proved in Comon (1988). While we have
shown the undecidability of the ¥X3-fragment the Xs-case is still unsolved.

3 Comon (1990) shows the decidability of the X;-fragment of a total lexicographic
path ordering, but the same question for the partial case remains open. On the
other hand we have shown the undecidability of the ¥4-fragment of the theory of
partial lexicographic path ordering. We gave the proof for a precedence that is “as
total as possible” but did not succeed in applying the technique to the total case.
The reason is that at least two incomparable function symbols are needed in order
to distinguish between the two components of a pair. A proof of undecidability in
the style presented here seems only to be possible beyond a purely symbolic level
of representation, as illustrated in Example (G).

I am grateful to Hans-Jurgen Burckert, Hubert Comon, Jacques Loeckx and Stephan
Uhrig for their comments on earlier versions of this paper. The research reported in this
article was done while the author was with the “Universitat des Saarlandes”.
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A. Appendix

A.l. PROOF OF [IN] FOR EXAMPLE (C)

In order to give a proper recursive definition of § we have to generalize to sequences
starting with an arbitrary index k& > 1:

G ifk>n
0((ui)i=k..) _{ h(l(a®=1(€)), e(d(un)), 8((ui—1)i=k+1..n)) otherwise

In order to prove [IN] we need the following lemma:

LEMMA A.l. Let s = (u;)i=1. .n be a nonempty increasing sequence over {a,b}*. Then
for all t tg € T({e,a,b}) the following two statements are equivalent:

1 T |= [t]in[d(s)]at]to] ,
2 there exists j € {1,...,n} withtg=a""7(¢) and t = u;

Proor. First we state a simple fact about the lexicographic ordering <, generated by
an ordering <p on F:

(*) If t1 <ipo t2 then for each operator symbol f occurring in ¢, there is a symbol ¢
in t5 such that f <gp g.

Now let h(l(to),e(t), €) =ipo 8((¢i)i=k. n). According to the definition of an Ipo there
are four possibilities:

po O((Uiz1)izh41..m)
) = (62) and e(t) <ipo e(un)
0) <ipo {(a”(€)) and e(t) <ipo 6((4i)iz=k..n)

Because of (*) possibility (1) can be dropped immediately. For the same reason (4) is
only possible if e(t) <ipo e(u;) for some j € {k,...,n}. With an inductive argument in
case (2) and applying again (*) we get especially for k = 1:

(**) If h(l(to),e(t), €) =ipo 0((ui)i=1..n) then there are 4,7 with 1 < ¢ < i < n such

that tg <ipo @' (€) and ¢ <ipo wir.

(1) = (2): Let T = (¢)in(d(s))at(tp). From (**) we know that there exist 4, ¢ with
tO jlpo an—i(g)
t jlpo U/

and 1 <4’ < i < n. Since there is no non-constant smaller than a, { must be of the form
a2 (e) with ¢ < j < n. We therefore conclude

t jlpo Ut jlpo U jlpo Uuj
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On the other hand we know from the construction of d(s) that
h(I(a" 77 (), e(uj), €) Zipo 6(s)
and (4.4) from the definition of (-)in(-)at(-) yields u; <ipo ¢. From the antisymmetry of

=ipo We get { = u;.

(2) = (1): (4.3) of the definition of (-)in(-)at(-) follows immediately from the definition
of 6(s). So let

h(I(a™ 9 (€)), e(t'), €) =1po 6(s)
Because of (**) there are ¢, with 1 <4 < i <n and
a" () Zpo a"7(e)
t =i wir
This is only possible if 7 > ¢ and we obtain

/
t jlpo Ut jlpo U jlpo Uuj =t

A.2. GODELS 3-PREDICATE

The 3 predicate was introduced in Godel (1931). A proof of the theorem we restate be-
low can also be found in textbooks on mathematical logic, for instance Enderton (1972).
Bley,we, ) =2 =21 mod (1 + ({ + 1) * 22)

where £ = y mod z is an abbreviation for
Jqy=qrxz4+zAhe<z
THEOREM A.l. (Godel (1931)) For each sequence ag, ..., a, of natural numbers there

exist ¢, d such that for all i < n:
Ia EPBle,diz] & z=aq

We can now choose the representation ¢ of Example (G):
1/)((uiavi)i:1,...,m)(j) = (Ca da2*]+ 1)

where ¢, d are the values corresponding to the sequence

(Oa 0, ¢(u1)’ ¢(v1)’ R ¢(um)’ ¢(vm))



