Feature Trees over Arbitrary Structures

Ralf Treinen*

Programming Systems Lab
German Research Center for Artificial Intelligence (DFKI)
Stuhlsatzenhausweg 3, D66123 Saarbriicken, Germany
treinen@dfki.uni-sh.de

Abstract

This paper presents a family of first order feature tree theories, indexed by the
theory of the feature labels used to build the trees. A given feature label theory, which
1s required to carry an appropriate notion of sets, is conservatively extended to a theory
of feature trees with the predicates #[t]y (feature ¢ leads from the root of tree x to the
tree y), where we have to require ¢ to be a ground term, and xt (feature ¢ is defined at
the root of tree x). In the latter case, t might be a variable. Together with the notion
of sets provided by the feature label theory, this yields a first-class status of arities.

We present a quantifier elimination procedure to reduce any sentence of the feature
tree theory to an equivalent sentence of the feature label theory. Hence, if the feature
label theory is decidable, the feature tree theory is too.

If the feature label theory is the theory of infinitely many constants and finite sets
over infinitely many constants, we obtain an extension of the feature theory CFT,
giving first-class status to arities. As an another application, we obtain decidability of
the theory of feature trees, where the feature labels are words, and where the language
includes the successor function on words, lexical comparison of words and first-class
status of arities.

Introduction

Feature trees have been introduced as record-like data structures in constraint (logic) pro-
gramming [4], [28], and as models of feature descriptions in computational linguistics [7],
. The use of record-like structures in logic programming languages, in the form of so-
called t-terms [1], was pioneered by the languages LOGIN [2] and LIFE [3]. More recently,
Oz [17, 26] uses a feature constraint system, the semantics of which is directly based on
feature trees. In computational linguistics, feature structures have a long history in the

field of unification grammars (as described in [25]).

*On leave to: L.R.I., Bat. 490, Université Paris Sud, F91405 Orsay cedex, France, treinen@lri.fr

To appear in: Patrick Blackburn and Maarten de Rijke, eds., Logic, Structures and Syntax, Studies in Logic,

Language and Information, 1995

1

In both areas, first order predicate logic has been recognized as a powerful description
language for feature trees. For the first area, this is immediate by the role of constraints
in constraint logic programming [19] and in concurrent constrained-based languages [26],
while in the second area different approaches have been proposed. [24, 27, 20, 25] have
advocated the use of predicate logic as feature description languages. [6] argues that
predicate logic is the right language to express phenomena in both fields, and that feature
trees constitute the canonical semantical model.

Feature trees [4] are possibly infinite, finitely branching trees, where the edges carry labels
taken from some given set of feature symbols. Features are functional, i.e., all edges de-
parting from the same node have different labels. In contrast to the usual definition from

the literature, we will omit in this paper the labeling
of nodes by so-called sort /\ symbols. Different first or-
der languages have been studied. = The most ba-
sic class of predicate sym- V /\ bols, which is contained in
any first order feature lan- guage, consists of binary
relation symbols z[f]y for /N /\ every feature symbol f. In
the standard model of fea- ture trees, the denotation
of this predicate is “y is the direct subtree of © un-
der edge f”. The feature Figure 1: A Feature Tree theory F'T'[4] is an axiom-

atization of feature trees based exactly on this language (besides equality and sort predi-
cates). The feature theory CFT [28] uses a much more expressive language which extends
FT by so-called arity constraints z{fi,..., fn}. The denotation of such a constraint in
the standard model is “x has exactly edges labeled by fi,..., f, departing from its root”.
Furthermore, regular path expressions (which contain an implicit existential quantification
over feature paths, [7]), and subsumption ordering constraints [15, 14] have been considered.
Finally, the language F'[31] contains a ternary feature predicate z[y]z. Using quantification
over features, all other feature theories can be embedded in the theory F [31, 6].

With the establishment of first order logic as feature description language, concrete prob-
lems concerning logical theories of feature trees have been attacked. After fixing an ap-
propriate predicate logic language, these problems can be phrased as decision problems of
certain, syntactically characterized fragments of the theory of feature trees. Satisfiability
of existentially quantified conjunctions of atomic constraints (so-called basic constraints)
and entailment between basic constraints is efficiently decidable for the languages F'T' [4]
and CFT[28], and satisfiability of regular path constraints [7] and weak subsumption con-
straints [14] is decidable, while it is undecidable for subsumption constraints [13]. These
considerations lead to the more general question whether the full first order theories of
these languages is decidable. An affirmative answer was given for the case of FT [9] and
CFT [10, 8]. Not surprisingly, the full first order theory of feature trees over F'is unde-
cidable, although the existential fragment of the theory is NP-complete even with arity
constraints as additional primitive notions [31].

The reason for the undecidability of F is the fact that it allows one to quantify over the
direct subtrees of a tree. Taking z < y (“z is a direct subtree of y”) as abbreviation of

Af y[flz, we can define for trees & with only finitely many different subtrees (rational trees)
the predicate “z is a subtree of y” by

Vz(y<z/\Vy1,y2(y1<y2<z%y1<z)—>x<z)

Here, the idea is to “abuse” feature trees as sets, taking the direct subtrees of a tree as
the elements of a set. Note that z fulfills the hypothesis in the above formula exactly if
the “set” z contains y and is transitive, and that hence the transitive closure of y is the
smallest z which satisfies the hypothesis.

Thus, we can easily show (e.g., with the method of [30]) the undecidability of the theory
of feature trees in the language of F. Consequently, in order to get a decidable sub-theory
of F, we have to restrict the use of quantification over features.

The first contribution of this paper is the formulation of a decidable theory of feature trees
which lies between CFT and F. The idea is to allow quantification over features only
in order to state which features are defined, but not to quantify over the direct subtrees
of a tree. More precisely, we will define the restricted theory of feature trees as the set
of formulae where ¢ in z[t]y is always a ground term, but where still atomic constraints
afl (“f is defined on 27), where f may be a variable, are allowed. This situation is
similar to Process Logic, where unrestricted quantification over path and state variables
lead immediately to an undecidable validity problem, while a syntactic restriction leads to
decidable sub-logic [22].

This restricted theory still is an essential extension of the theory of CFT. It extends CFT,
since we can encode an arity constraint a{fi,..., f,} as Vf (¢ fl & V7, f = fi). Beyond
the expressivity of C'F'T, we can make statements about the arities of trees, for instance
we can say that the arity of x is contained in the arity of y by

Vi@fl—=yfl)

As another example, the following formula expresses that & has exactly 3 features:
3f1s f2, fs (fl FhANRFBANMLE LAV (gl lg=fivg=fivg= f3]))

From these examples, one gets the idea that the theory of sets of feature symbols is hidden
in our restricted theory of feature trees. This leads to the second contribution of our
approach, which we now explain in three steps.

The first step is to realize that, in order to decide the validity of first order sentences over
feature trees, we can save some work if we employ an existing decision algorithm for the
theory of finite sets over infinitely many constants. Since this theory is easily encoded in
the theory WSI1S, the weak second order monadic theory of one successor function, the
existence of such an algorithm follows immediately from Biichis result on the decidability

of WS1S [11]',

'The reader shouldn’t be confused by the fact that we are apparently mixing first and second order
structures. A second order structure can always be considered as a two-sorted first order structure, with
one sort, for the elements, and another sort for the sets. Only in the context of classes of structures makes
it really sense to distinguish first order from second order structures.

The following examples give an idea why logical statements involving feature trees can be
reduced to logical statements on sets of features. Let z,y, z denote variables ranging over
feature trees, f, g, h range over features and F, G, H range over sets of features. First, the
formula

o,y (Vf (£ = yfl) A Vg (ygl — 2gl))

does not involve any tree construction. This formula is just about the sets of features
defined at the roots of and y, and hence can be translated to:

ﬂ%?@ﬂjéFﬁféGwvwﬁgéGﬁgéFD

Formulae like the above subformula (Vf (zf]...), where the feature tree z is only used as
a set of features, will be called primitive formulae.

The formula

Jdz (z[a]z A 2[b]ly A —zhl) (1)

where a and b are two different constants, is clearly satisfiable if we can find a set which
contains a and b, but not h. Hence, (1) can be reduced to

AF (a € FAbE FA-hEF) (2)

In the setting we have defined so far, this is equivalent to « # h Ab # h.

The next step is to generalize this idea to the situation where we have some structure of
feature symbols and finite sets of feature symbols given, and to build the feature trees with
the feature labels we find in the given feature label structure. Hence, we now obtain a
family of feature tree structures, indexed by the feature label structures. This is a well-
known situation, for instance in constraint domains for programming languages [26], where
feature constraints are not isolated but come in combination with other constraint domains
like numbers and words.

Hence, our decision procedure now decides the validity of a sentence of the feature tree
theory relative to the theory of the feature labels. As a consequence, our feature tree
theory is decidable if the feature label theory is. There is only little to do in order to
adopt the reduction procedure to this more general case. The only problem is now that
two different ground terms, like the constants ¢ and b in example (1) above, not necessarily
denote semantically different elements. Hence we have to consider the two cases ¢ = b and
a # b. In the first case, a« = b and the functionality of features yield # = y. Hence, we can
eliminate z, and obtain for the first case

a=bAylaly Aylbly A —yhl
In the second case, we get the same reduction as before:
a#bAIF (a€ FAbe FA—-heTF)

The feature label structure may be equipped with operations and predicate symbols of their
own, which of course can be used in the feature tree structure as well. We could for instance

take as feature label structure WS2S, that is the structure of words over the alphabet {a, b},
finite sets of words, and successor functions for every symbol of the alphabet. Since the
membership predicate in any regular language is definable in the theory of this structure,
we can express in this feature tree theory for any regular language L that the arity of some
x is contained in L.

So far, feature trees have been finitely branching trees, that is we took as possible arities
all finite sets of features. The third step is to generalize this to an arbitrary notion of
arities. That is, we assume that the feature label structure comes with a notion of sets,
where we only require that there are at least two different sets. From this, we construct
the feature trees such that the arities of the trees are always sets of the given feature
label structure. For instance, we get as before the finitely branching feature trees if the
feature label structure contains all the finite sets of feature trees. If we take as feature
label structure natural numbers and all the initial segments of the natural numbers, that
is sets of the form {1,...,n}, we get a structure of feature trees where at every node the
edges are consecutively numbered. In example (1) above, this has the consequence that we
cannot reduce (2) to a # h Ab # h. Instead, the satisfiability of (3) depends on the theory
of the feature label structure.

As another example, consider

Fa,y (2[fle Aylfly Ne £ y) (3)

Here, we will make a case distinction: Either both 2 and y have the arity {f}, that is f
is the only feature defined, or at least one of them has a greater arity. In the first case
both variables are called tight, in the second case a variable with arity greater than {f} is
called sloppy. Intuitively, a sloppy variable has features for which there are no constraints.
For the case that both variables are tight, the formula can not be satisfied. This is a
consequence of the fact that the formula z[f]z A arity(z, {f}), a so-called determinant [28],
has a unigue solution. In the other case, the formula is clearly satisfied, since we can use
the unconstrained features of z, resp. y, to make both values different. Hence, we can
translate (3) to the formula which states that this other case is indeed possible:

IF,g(f e FA—g € F) (4)

Up to now, we have been talking about the feature tree structures defined upon some
feature label structure. The quantifier elimination procedure we are going to present will
be based on an axiomatization FX only, no other properties of the structures will be used
for the justification of the procedure. The axiomatization is not subject to the syntactic
restriction we imposed on the input formulae to the procedure, that is the axioms may
contain subformulae z[t]y where ¢ is non-ground.

The quantifier elimination procedure proposed in this paper takes another road than the
quantifier eliminations which have been given for the feature theories F'T'[9] and CFT [8].
We believe that, in the case of FT and CFT, our procedure is simpler than the existing
ones for these theories. The difference lies in the way how the procedure deals with the fact

that these feature theories themselves do not have the property of quantifier elimination.
A theory T is defined to have the property of quantifier elimination [18], if for every
variable # and atomic formulae ¢q,..., ¢, there is a quantifier-free formula # such that
TE3z(d1A...A¢n) < 1. An effective procedure to compute this ¢ yields immediately
a decision procedure for T, provided v does not contain new free variables, and provided
True and False are the only quantifier-free formulae. A simple counterexample, showing
that for instance T does not have the property of quantifier elimination, is

S (4l A ok)) (5)

We can not simply eliminate z, since we need it to express an important property of the
free variable y, which we must not drop.

The classical way to solve this problem is to extend the language, such that non-reducible
formulae like (5) become atomic formulae in the extended language. In our example, this
means that we have to add so-called path-constraints like y(lk)| to the language. This
solution was chosen in [9] and [8].

We will use another idea: We exploit the functionality of features to trade in the above
situation an existential quantifier for a universal quantifier, and transform (5) into:

yll ANV (yll]lz — zk])

We can benefit from this quantifier-switching if we consider the elimination of blocks of
quantifiers of the same kind. This idea has already been used, for instance, in [21, 12]: We
consider formulae in prenex normal form, for instance

J...3Y---v3---36

where ¢ is quantifier-free. If we can transform 3---3¢ into a formula of the form V- - -V
for some quantifier-free v, then we have reduced the number of quantifier alternations from
2 to 1, although the total number of quantifiers might have increased.

The rest of the paper is organized as follows: Section 2 fixes the necessary notions from
predicate logic. In Section 3, we define by an axiom the class of feature label structures,
which will be called admissible parameter structures in the rest of the paper. In Section 4
we construct the standard model of feature trees over some arbitrary admissible parameter
structure, present the axiomatization FX and show that the feature tree structure is a
model of FX. Some basic properties of the axiomatization FX are stated in Section 5.
The overall structure of the quantifier elimination procedure is presented in Section 6, the
details are given in Section 7.

2 Preliminaries

We consider many-sorted predicate logic with equality.

We use the standard shortcuts from predicate logic: V ¢ is the universal closure of ¢. We
write 3% ¢, where & = (z1,...,2,) is a list of variables, as abbreviation for 3z ...32, ¢
(Vz ¢ is defined accordingly.) We also use sometimes the notation 3X ¢, where X is a
finite set of variables, for 4z ¢ where z is some linear arrangement of X. Instead of writing
the sort with every quantified variable, as in “Yz € S...”, we will introduce naming
conventions which allow us to directly read off the sort of a variable. As usual, variables
may be decorated with sub-and superscripts. Lists of variables will be denoted with an
overstrike as in z.

The junctors A, V take precedence over (bind tighter than) <, —. Negation — and quantors
bind tightest. It is understood that conjunction is commutative and associative. Conse-
quently, we identify a conjunction of formulae with the multiset of its conjuncts. We use
notions like 1 € ¢ or ¥ C ¢, where ¢ is a conjunction, accordingly.

We write the negation of x = y as @ # y. We consider equality as symmetrical, that is we
identify @ = y with y = 2 (and hence, © # y with y # 2). The reader should be aware,
that # = y and = # y are formulae of our object logic, while z = y, resp. # # y, is a
mathematical statement, expressing that the two variables x, y are syntactically identical,
resp. distinct.

fr(¢) is the set of free variables of ¢, ¢[y/x] denotes the formula that is obtained from ¢
by replacing every occurrence of z by y, after possibly renaming bound variables to avoid
capture.

An assignment a is a X-update of an assignment o/, where X is a set of variables, if a(z) =
o/ () for all variables ¢ X. We write a[z1 — ay,...,2, — a,] for the {z1, ..., 2, }-update
of & which assigns a; to z;, respectively.

3 Admissible Parameter Structures

In this section, we specify the class of parameter structures which we want to allow as a
basis for the construction of feature trees.

Definition 3.1 (Admissible parameter signature) The signature ¥ = (Sy, Fy, Rx)
is an admissible parameter signature, if Sy contains at least the two sorts Feat and Set,
and Ry, contains at least the relational symbol Feat € Set, that is the binary infiz relation
symbol € of profile Feat, Set.

The sort Feat is intended to denote the features, and the sort Set is intended to denote the
sets of features. In this sense, € can be thought of as the usual elementship relation.

Small letters from the middle of the alphabet f, g, h,... are variables of sort Feat, and
capital letters from the middle of the alphabet F, G, H, ... are variables of sort Set.

The only requirement on the class of admissible parameter structures is, that they contain
at least two (observationally) different sets:

(82) ARG, f(fe FA-fe@)

Definition 3.2 (Admissible Parameter Structure) Let Y be an admissible parameter
signature. We call a ¥-structure B an admissible parameter structure, if B = (5S2).

This is in two respects weaker than what is usually stated by axioms systems of second
order logic [5]. First, we don’t require extensionality, that is two different sets may have
the same elements. Second, axiom (S2) is much weaker than the usual comprehension
axiom of second order logic which states that every formula denotes a set. Note that, as
a consequence of (S2), every admissible parameter structure contains at least one element
of sort Feat.

Examples of admissible parameter signatures and algebras are

1. The signature X¢ consists of an infinite set (' of Feat-constants and the € predicate
symbol. The algebra B¢ assigns C' to Feat, every constant of C' to itself, the powerset
over (' to Set, and the elementship relation to €.

2. Xr and Bp are defined as above with the only difference that Set is interpreted as
the class of finite sets over C.

3. The signature X contains the constant 0 of sort Feat, the unary function symbol succ
of profile Feat — Feat, and €. The algebra By assigns the set of natural numbers to
Feat, the number 0 to the constant 0 and the successor function to suce. Set denotes
the class of initial segments of natural numbers (that is, sets of the form {1,...,n}),
and € denotes elementship.

4. The signature g contains the constant € of sort Feat, finitely many function symbols
succ;, 1 <1 < n, of profile Feat — Feat, two predicate symbols <,,.. and <., and €.
The algebra Bg assigns the set {1,...,n}* to Feat, the empty word to ¢, the function
Az.xn to suce,, the prefix (resp. lexical) ordering to <,,.., resp. <j, the powerset
of {1,...,n}* to Set, and elementship to €.

4 Feature Tree Structures

In this section we give the definition of a standard model of features trees over some given
admissible parameter structure. We also present a set of axioms for feature trees. We will
prove, along the presentation of the axioms, that the standard model of feature trees is
indeed a model of this axiomatization. No other properties of the feature tree model than
the axiomatization will be used for the justification of the quantifier elimination procedure
to be presented in the next sections.

Definition 4.1 (Tree signature) For a given admissible parameter signature 3, we de-
fine the tree signature ©T = (Syy, Fyt, Ryt) by

Syt = Sy 0 {Tree}
FET = FE
Ryt = Ry U {Tree[Feat]|Tree, Tree Feat] }

In the standard model to be defined below, the sort symbol Tree denotes a set of trees.
Small letters at the end of the alphabet (z,y,z...) denote Tree-variables. Note that the
only Tree-terms are the Tree-variables, and that any Xt-formula without Tree-variables is
in fact a Y-formula. We write the negation of zt] as xtt.

Definition 4.2 (Tree) For a set M, a set 7 C M* of finite M -words is called a tree over
M if it is prefiz-closed, that is if vw € T implies v € T for all v,w € M*. T (M) denotes
the set of trees over M.

Note that every tree contains the empty word ¢ and hence is non-empty, and that a tree
may be infinite. This is of course the usual definition of trees—the tree in Figure 1, for
instance, is {¢, a, b, ad, be, ba, ada, ade, add, bac, bad}.

Definition 4.3 (Admissible Tree) For an admissible parameter structure B, an admis-
sible tree over Feat® is a tree 7 € T (Feat®), such that

Jor all v e 7 exists M € Set® with: g e®M e ver

AT (Feat?®) denotes the set of admissible trees over Feat®.

Intuitively, this means that the set of features defined at some node of an admissible tree
must be licensed by the denotation of Set in the admissible parameter structure B. If we
take, e.g., an admissible structure B where Set? is the class of finite subsets of Feat?, then
AT (Feat®) contains exactly the finitely branching trees over Feat”.

Definition 4.4 (Feature tree structure) For any admissible X-structure B, we define
the St -structure BT by

1. B |s =B,

2. Tree® = AT (Feat?),

3. (B iff o= {v | Bver),
4. B8 i er.

Hence, Bt is a conservative extension of B.

The first axiom gives an explicit definition for the - - | predicate:

) Ve, f(afl < Ty e[fly)

The next axiom scheme expresses that every feature is functional:

(F) Va,y,z (2[tly A zt]z = y = 2) where ¢ is ground.

Syntactic Convention arity(z, F) :=Vf (a2 fl < f € F)
If 2 = (21,...,2,) and F = (F,..., F,), we write arity(z, F) for A\’ arity(z;, F}).

The next axiom states that every tree has an arity, and hence reflects the fact that we
consider admissible trees only.

(A) Va 3F arity(z, F)

By construction, we get immediately:
Proposition 4.5 For any admissible S-structure B, we have BT |= (), (F), (A).

Next next axiom scheme expresses that certain formulae indeed have a solution in the
domain of feature trees.

Definition 4.6 (Graph, Constrained variable) A conjunction v of formulae of the
form x[t]y is a called a graph. For a graph v, let co(vy) := {a | z[tly € v for some t and y}
be the set of variables constrained by ~.
Syntactic Convention For a graph v and variable z, we define

Fy = {t]|z[t]y € v for some variable y}

A, = {t#s|t#sandt,sc I for some 2}

For instance,
v = wla(N)ly A xlbly, a(f)]z Aylala(f)]z A ylala(f))]y

is a graph with co(y) = {a,y}, F¥ = {a(f),b(g.a(/))}. F¥ = {a(a(f))}, FZ = 0, and
Ay = a(f) % blg, a(f)).

(E) v AWA/\ /\ a€F; — day, ..., 2, (’y/\/\arity(xi,Fi))

=1 =1

where v is a graph with co(y) ={z1,...,2,}.

10

An example of axiom scheme (E) is

VZ7f17f27g7F7G(f1%f2/\f1éF/\fQéF/\QéG (6)
— Juy, 2o ([fi]ea A 2i[folz A zoglaiA
arity(zq, ') A arity(zq, ()))

Proposition 4.7 T (M) with the subset relation is a cpo.

(see, e.g., [16] for definition and basic properties of cpos). Note, that in general AT (M)
does not constitute a sub-cpo of 7(M). Obviously, the set of compact elements of T (M)
are exactly the finite sets in 7 (M), and 7 (M) is an algebraic cpo.

Lemma 4.8 For any admissible Y-structure B, we have BT |= (F).

Proof: (Sketch) Lety be agraph, co(y) = {z1,...,2,}, and B, a = A AN, /\aeFﬁ" a€
F;. We construct 71, ...,7, € AT (Feat®), such that

Bf,alzy = 1, x0T EYA /\ Narity(z;,) (7)
=1

We define the operator ®: (T (Feat®))” — (7 (Feat®))" by its n components pr; o ®. For
given i, let {a;[t1]z1, ..., x[tm]zm } be the set of atoms in v which constrain x;.

prio®(vy,...,v,) ={e;U ot U...UBno, U{B € Feat® | B € Ba(ﬂ)}

where 3; is the evaluation of ¢; in B, o, and where we define o; := v}, if z; = z} for some
1 < k < n, and otherwise o; := a(z;). As usual 3;0; is an abbreviation for {3;v | v € o;}.

& is obviously continuous, hence we can define (74, ...,7,) as the least fixed point of . By
construction, 7; € AT(FeatB) for all i. Since BT, a = A, all 3; for given i are different.
Hence, (7) holds.]

As an example of this construction, consider the formula (6). Let a(z) = {¢, e, ee}, a(f1) =

a, a(fz) = b, a(g) = ¢, a(F) = {a,b} and a(G) = {c,d}. In this case, we define ® by

prio®(vy,vy) = {efUary Ub{e e, ee}U{a,b}
= {¢,b,be,bee}Uary
prao®(vy, 1) = {efUcn U{c, d}
= {¢d}Ucn

The least fixed point of @ is (Ly, Ly), where Ly is the prefix-closure of (ac)*(bee Uad), and
Ly is the prefix-closure of (ca)*(d U cbee).

11

Syntactic Convention Let M be a finite set of Feat-terms.

arity(z, M) :=Vf (¢ f] & \/ f=a)

a€eM
As above, this notion generalizes to arity(z, M).

Definition 4.9 A determinant ¢ is a formula

YA /\ arity(z, FY)
TECO(v)

where v is a graph and has only free variables of sort Tree.

In other words, for every constraint z[t]y in a determinant, the term t must be ground.

For instance, from the following three formulae

la(e)]y A 2[b(d)]z A ylala(e))]e A arity (e, {a(c), b(d) }) A arity(y, {a(a(c))})
ela(f)ly A arity(z,{a(f)})
zla(e)]y A xlb(d, a(e))]z A arity(z, {a(c)})

only the first one is a determinant (since f denotes a variable).

The last axiom scheme expresses that determinants have at most one solution in the con-
strained variables.

Syntactic Convention 3I='Z ¢ is an abbreviation for
Vi, g (o(2) N o(y) = & =)
where 7 is some list of distinct variables as long as z, and disjoint to fr(¢).

<1z ¢ reads “there is at most one tuple #, such that ¢”.

(U) Y (A, = 3%t co(d) 8) where § is a determinant.

An example of (U) is

V2 (ay # ay — 35 a,y (2[ar]y A z[az)z A y[blz A arity(z, {ay, az}) A arity(y, {b})))

Note, that (U) does not state that a determinant always has a solution. In the above
example, it might be the case that, e.g., the “set” {b} does not exist, that is that IF'Va (z €
F + ¢ = b) does not hold in the parameter structure. In this case, the determinant does
not have a solution due to axiom (A).

Lemma 4.10 For any admissible S-structure B, we have BT |= (U).

12

Proof: (Sketch) We split the determinant ¢ into v A p, where v is a graph and p
is a conjunction of arities. As in the proof of Lemma 4.8, let Bf,a = Aj, and let &
be the operator defined by 7. By the construction given in the proof of Lemma 4.8,
B a[zy = 11, 2, = 7] 8 iff (71,...,7,) is a fixed point of .

We show, that ® has only one fixed point. Let (7y,...,7,), (01,...,05,) be two fixed points
of ®. Define 7/ := {v € 7; | length(v) = j} for any j > 0, and analogously for o7. One
shows easily by induction on j that Tij = Uf for all 4, j. Taking the limits of the two chains,
the claim follows immediately. a

Definition 4.11 The axiom system F'X consists of the axioms (S2), (1), (F), (A), (E)
and (U)

Corollary 4.12 For every admissible parameter structure B, we have that BY = FX.

5 Some Properties of F.X

5.1 Determinants

As an immediate consequence of (U) and the definition of 35! | we get

Proposition 5.1 For every formula v and determinant &, we have

FX =V (A5 A3co(8) (5 A¢) = Yeo(6) (6 — ¢))

This prominent role of determinants is the heart of the entailment check for the feature
theory CF'T [28].

5.2 Primitive Formulae
Definition 5.2 The set of primitive formulae is defined by the grammar
pu=o | atl [pAp [pVp | -p | Vxp | Ixp

where o denotes an arbitrary X-formula, and where y denotes a variable not of sort Tree.

In other words, a primitive formula is a ©f-formula that does not contain a Tree-quantifier,
and does not contain an atom of the form # = y or z[t]y. A primitive formula without free
Tree-variables is in fact a »-formula. Intuitively, in a primitive formula, the sort Tree is
only used to express statements that could be as well expressed using sets. The following
definition makes this intuition formal:

13

Definition 5.3 We define inductively ¢[F//x], the replacement of a Tree-variable x by a
Set-variable F in a primitive formula ¢.

stl[F/ja] = tEF
alF//z] = a if a is an atomic formula different from xt| for allt
(OF)) = ~(6[F//a)
(o1 A @)[F//a] = oi[F//a] A da[F//2]
Ax o) //x] = Ix@F/=]) iFF#x
@AF@)[F//x] = 3G (SlG/FDIF//x]) if G & £r(¢)

Intuitively, @[F//x] abstracts the feature tree z in ¢ to a set F. This operation is an
abstraction since it “drops”all the subtrees of a feature tree and just keeps the information
about the features defined at the root. Again, this notation generalizes to simultaneous
replacement y[F'//z]. For instance, ¢ = za(f)} A Vg (za(g)l — zb(g)l) is a primitive
formula, and

G[F//x] = a(f) € F AVg(a(g) € F — b(g) € F)

The following lemma expresses that the definition of ¢[F'//x] meets the intuition of replacing
a Tree-variable x by a Set-variable F.

Proposition 5.4 Let ¢ be a primitive formula. Then =¥ (arity(i, F) = (¢« qﬁ[F//i]))

It would be possible to extend the definition of a primitive formula and of ¢[F'//z] to allow
also for Tree-quantifiers. The definition given here is sufficient for the quantifier elimination
as described below.

6 The Main Theorem

We first define the class of restricted formulae, which is the class of input formulae for our
quantifier elimination procedure.

Definition 6.1 (Restricted formula) A Xf-formula is called a restricted formula, if in

every subformula x[t]y the term t is ground.

In the following, we will also speak of restricted sentences, the restricted theory of a X1-
structure, and so on.

Theorem 6.2 (Main Theorem) There is an algorithm which computes for every re-
stricted Y1 -sentence o a Y-sentence v with FX |= 0 < 7.

Before we can discuss the top-level structure of the proof, we need some additional concepts
which describe the intermediate results we get during the quantifier elimination.

14

Definition 6.3 (Molecule) The set of molecules is defined by the following grammar:
mu=w=y |afy |20y | ~2ly|p
where p is a primitive formula, and where t is a ground term.

Hence, any molecule without free Tree-variables is in fact a primitive formula without free
Tree-variables, and hence a X-formula.

Definition 6.4 (Basic Formula) A basic formula is a St-formula of the form
3z (my AL A my,)

where myq, ..., m, are molecules. A variable is local to a basic formula 3% ¢ if it occurs in
z, and global otherwise.

Let 3% ¢ be a basic formula, and let v be the greatest graph contained in ¢, that is v is
the set of all molecules of the form z[t]y contained in ¢. Then we define Fjj = FY.

Theorem 6.2 follows from the following lemma:

Lemma 6.5 (Main Lemma) There is an algorithm which computes for every basic for-
mula ¢ an universally quantified Boolean combination v of molecules, such that

1. FX =V (6 ¢ 1)
2. fr(¢) C fr(¢)

3. if fr(¢) = 0, then 1 is a boolean combination of molecules.

We borrow the technique of proving Theorem 6.2 from Lemma 6.5 from [21], [12].

Proof of Theorem 6.2: It is sufficient to consider only sentences ¢ in a weak prenex
normal form, where the matrix is just required to be boolean combination of molecules
(instead of a boolean combination of atoms). We proceed by induction on the number n
of quantifier blocks in the quantifier prefix.

If n = 0, then since o is a sentence, it does not contain any Tree-variables and hence is a
>-sentence.

Let n > 1 and 0 = Q37 ¢, where Q) is a (possibly empty) string of quantifiers, not ending
with 4, and ¢ is a Boolean combination of molecules. We transform ¢ into disjunctive
normal form and obtain an equivalent formula

QIz (A1 V...V &)

where every ¢ is a conjunction of molecules. This is equivalent to

Q(Fz $1 Vv ...V 3T Pn)

15

where every 3% ¢; is a basic formula. Using (1) of Lemma 6.5, we can transform this
equivalently into

Qg1 1 V ...V Y, 1)

where every 1; is a Boolean combination of molecules, and where all y; are empty if () is the
empty string (because of (3) in Lemma 6.5). After possibly renaming bound variables, this
can be transformed into the sentence QQVZz 1, where 1 is Boolean combination of molecules.
By condition (2) of Lemma 6.5, QVZ 1 is again a sentence. Since the number of quantifier
alternations in QVz ¢ is n — 1, we can now apply the induction hypothesis.

If the innermost block of quantifiers consists of universal quantifiers, we consider the nega-
tion —o of the sentence (which now has an existential innermost block of quantifiers) and
transform it into a restricted sentence v. Consequently, F'X = o < —. a

Corollary 6.6 If B is an admissible Y-structure, then the restricted theory of Bl is de-
cidable relative to the theory of B.

Note that all four admissible parameter structures introduced at the end of Section 3 have
a decidable first-order theory.

1. We can interpret the theory of B in 515, the monadic second order theory of natural
numbers with successor. The decidability of the theory of B¢ follows from Biichis
result [11] on the decidability of S15.

2. Analogously, the decidability of the theory of Bp follows from the decidability of
WS515, the weak monadic second order theory of the natural numbers with successor.
The decidability of WS1S is an easy corollary of [11], since the finite sets are definable
in 519.

3. Decidability of the theory of By follows again from [11], since the initial fragments
of natural numbers are definable in S1.5.

4. Definability of the theory of Bg follows from Rabins celebrated result [23] on the
decidability of 525, the monadic second order theory of two successor functions.
Note that the prefix relation and the lexical ordering can be defined in 525 [29].

Corollary 6.7 The restricted theory of BY, where B is one of Bo, Br, By, Bs, is decid-
able.

7 The Reduction

We now prove Lemma 6.5. Our goal is to eliminate, by equivalence transformations w.r.t.
F X, all the quantifiers of sort Tree, taking care of the fact that we don’t introduce new
variables. This will be achieved by transformation rules which transform basic formulae
into combinations of basic formulae. To make this formal, we introduce the class of complex
formulae (see Figure 7 for an overview of the different syntactic classes of formulae):

16

=y, x#y,

[tly, =]y
\ molecule i»basic VAV complex

AV, - ///

>-f. ————— primitive
v, 3, zt]

Figure 2: Classes of formulae

Definition 7.1 (Complex formula) The set of complex formulae is defined by the fol-
lowing grammar:

Fu=VaF | FAF | FVF | (basic formula)

Note that this fragment, by closure of the set of molecules under negation, also contains
constructions like

moleculey A ... N\ molecule, — basic formula

The transformation rules always have a basic formula in the hypothesis. Such a rule can
be applied to any maximal basic formula occurring in a complex formula. The maximality
condition means here, that we have to use the complete existential quantifier prefix. If
a complex formula does not contain any basic formula, it can be easily transformed into
a universal quantified boolean combination of molecules by moving universal quantifiers
outside.

Definition 7.2 (Quasi-solved from) A basic formula 3% v is a quasi-solved form, if

1. v does not contain @ molecule x = y or —z[t]y,
ife#y€y, thena £y, andx € T or y € .
if [t]ly € v, then z € &,

if x[tly Az[t]z C v, theny = z.

o e e

if the ground Feat-terms t, s occur in v and t # s, thent # s € 7.

6. if © € T, then arity(z, F§) € v or —arity(z, I'}) € 7.

7.1 Transformation into Quasi-solved Form

The goal of the rules in Figure 3 is to have only basic formulae which are quasi-solved
forms.

Proposition 7.3 The rules described by (SC), (E1), (E2), (IL1), (FI) are equivalence
transformations in every structure.

17

(E1)

(E2)

(IE1)

(UD)

(FD)

(K1)

3z (m A @)

— fr(m) Nz =0, m is not a primitive formula
m Az ¢

dz,x (e =y A @)
3z gly/x]

Jdz (z =2 A ¢)
EF)

y#x

Jz (2 # 2 A)

3z (-a[tly A ¢)
3z (ztT A ¢)
V 3z, z (aft]z Az Z yAP)

Z new

3z (z[tly A z[t]z A @)
3z (a[tly Ay =2 A)

3z ¢
s=tA3Jz Pt/s]
vV 3z (s £t A9

the ground terms s, t occur in ¢, s £ ¢

3z, z (y[tlz A @)

Yy & T,z new

yLL AV (yll)z — 3z 6l=/a))

Figure 3: The rule set (QSF) for quasi-solved forms.

18

Lemma 7.4 (UD) describes an equivalence transformation in every model of the axioms

schemes (1), (F).

Proof: Axiom scheme (F) is equivalent to
Va,y (2tly & Jz 2[t]z AVz (2[t]z = 2 = y))
which can be transformed equivalently, using axiom (J), into
Va,y (—a[tly < att Vv 3z (2t]z Az £ y))
As a consequence, we have for every formula ¢ with z ¢ fr(¢):
(1), (F) £V (eltly A 6 & (21 A) V 3= (alt]e A = % y A 6))

and hence

(1), (F) BV (32 (-a[tly A ¢) & 3z (att A)V Iz, 2 (e[]z Az # y A 9)) =

Lemma 7.5 (FD) describes an equivalence transformation in every model of the axiom

scheme (F).

Lemma 7.6 (FQ) describes an equivalence transformation in every model of the axiom

scheme (F).

Proof: We have for any formula ¢ with = ¢ fr(v)

(F) =¥ (3o (4[t)a A) & yth AV (ylt]z = pl2/a]))

Now we choose 1 to be the formula 3z ¢. Since y € Z the antecedent of the rule is equivalent
to Jx (y[t]z A 3% ¢), and the claim follows immediately. a

For this rule it is essential that ¢ is ground.

Lemma 7.7 The rule system (QSF) is terminating.

Proof: We define a measure on basic formulae and show, that for every rule application
the measure of every single basic formula generated is smaller than the measure of the
basic formula being replaced. Termination then follows by a standard multiset argument.
We assign a basic formula +y the tuple (ay, ag, a3, a4), where

1. aj is the number of —a[t]y molecules in 7,

19

2. ay is the number of z[t]y molecules in ~,

3. as is the number of pairs (¢, s) of Feat-ground terms, where both ¢ and s occur in 7,
but ¢ # s does not occur in 7,

4. oy is the total length of .

It is now easily checked that the lexicographic ordering on these measures is strictly de-
creased by every application of a rule. The side condition of rule (Sc) guarantees that no
formula of the form ¢ # s, arity(x, FY) or marity(z, F§) is moved out of a basic formula.

O

Corollary 7.8 There is an algorithm, which transforms any basic formula into an FX-
equivalent complex formula, in which all basic formulae are quasi-solved forms.

Proof: We compute a normal-from wrt. the ruleset (QSF), and from this compute a
normal form wrt. the following rule:

dz,z ¢ . .
ST : ty(x, FT), marity(e, F?
(58T) 3z, x (¢ A arity(z, qu)) arity(x (b) arity(z (b) 7o

V 3z, (¢ A —arity(z, FY))

7.2 Eliminating quasi-solved forms with sloppy inequations

In this section, we show how to eliminate quasi-solved forms with only benign inequations,
in a sense to be explained soon. In the next subsection, we will explain how to get rid of
nasty inequations.

Definition 7.9 (Sloppy and Tight variables) Let 3z v be a basic formula. We call a
local variable x € ¥ tight (in 3z v) if arity(z, FY) € v, and otherwise sloppy.

By the definition of a quasi-solved form, —arity(z, F(ff) € v for every sloppy variable z.

Definition 7.10 (Closure) For a graph v, we define for every feature path © of Feat-

terms the relation ~7 as the smallest relation on fr(y) with

v~ if e € fr(y)

if v ~T y and y[t]z € v, then z «»;”L z

. . -
We write © ~+y y if x ~T y for some w.

For a graph v and variables z,y, we define the closure of (z,y)

(2, y)y = {(u,v) € £r(7)* | = ~7 u and y ~7 v for some 7}

20

In [8], the variable y with @ ~7 y has been called the value |7 |, of the rooted path zw
in 7. Obviously, (z,y), can be computed in finitely many steps.

Proposition 7.11 For every graph ,variables x,y and (u,v) € (z,y), we have
(F)E0Autv—a#y)

Definition 7.12 (Sloppy and Tight inequations) Let 3z v be a basic formula. We
call an inequation x # y sloppy (in 3z v), if there is a (u,v) € (x,y), with & # y, where at
least one of u and v is sloppy. Otherwise, the inequation is called tight.

The benign inequations handled in this section are the sloppy ones. The idea is that for
sloppy variables, we have enough freedom to make them all different.

In the following, we assume a partition of a quasi-solved form as 3z (v A ¢ A p), where
~ denotes a graph, ¢ denotes a conjunction of inequations between Tree-variables, and p
denotes a primitive formula. Note that in this case, by the definition of quasi-solved forms,
co(y) €z, A, C p, and ¢ contains only non-trivial inequations which use at least one local
variable. For a graph v, we denote by ¥ the formula obtained by replacing every atom

z[tly by xt].
Lemma 7.13 Let 3% (v A p) be a quasi solved form without inequations. Then
FX Y (32 (v A p) = 3F (7 A p)[F//a)))

where F is disjoint with £x(p).

Proof: Let A FX and a be a valuation with A, a = 3% (y A p). Since E v — 7, we
get A, = 3% (3 A p). Together with axiom (A), this means since F'is disjoint with £r(p),
that A, a |= 3z, F (arity(z, F) A5 A p). With Proposition 5.4, we get

A al=3F (7 A p)[F//7])

since 7 is disjoint with £r((¥ A p)[F//z]).]

Lemma 7.14 Let 3z (YAt Ap) be a quasi solved form, where F is disjoint with £x(p) and
v consists of sloppy inequations only. Then

FX =Y (3F (7 A p)[F//a) = 33 (v AL A p))

Proof: Let A= FX and a be a valuation with A, a = 3F (A p)[F//7]. Let 3 be an F-
update of «, such that A, 3 &= (7 A p)[F//Z]. Let SI be the set of sloppy variables of v A p.
Let f, F be new variables, and for every z € SI, let n,, > 0, and f,, 2", ..., 2" be variables

21

not occurring in ¥ A p. Let SIf = {f, |« € Sl}, and Slz = {a* |2 € S[,0<i < n,}. We
define an extension & of v by

E=yA /\ [f]2® A2 [flzt ALz fla" A arity(z", F))
z€S!

Hence, |= & — v. By axiom (S2), there are a € Feat” and A, B € Set” with a €4 4 and
a ¢4 B. We denote by Z the extension of by Slz, and by F an according extension of F.
Hence, by definition of sloppyness, there is a SIf U Slz U {f, F}-update 3’ of § such that

A B De A ENp)[F/7]

Especially, 5'(f) = a, 3'(F") = A if F corresponds to some z* with ¢ < n,, and 3/(F") = B

if I corresponds to some z"®. Note, that A; extends A, C p just by stating that f,

is assigned a value different from all (ground) terms in FY. By construction, A, 3" =
L /\angi a € F;. Hence, by axiom (E), there is an z-update 3" of §’, such that

A, 8" = € A arity(Z, F)

Let o/(z) = §"(2) if € z, and o/(2) = a(x) otherwise. Hence, A, o' =~. By Proposi-
tion 5.4 and since F is disjoint with fr(p), A, o’ = p.

Since there are infinitely many choices of n, for every z € SI, we can easily find values
ng such that p”(z) # §”(y) for every variable y € fr(y At A p) with y # 2. Hence, by
Proposition 7.11, A, o/ |= ¢. a

We are now ready to give the elimination rule for quasi-solved forms with benign inequa-
tions:

(IE2) 3z (yALAp)
F((3~p)[E//2])

As an example of rule (IE2), consider

Ju,y,u (a[s]ly Auls]o A y[tly Az # u A arity(z, {s}) A arity(u, {s}) A —arity(y, {t}))

IF,G,H(s€ FAs€GALEHN .
WweFov=s)A\WreGorv=s)A-Ww (v eF <v=s))

if + contains only sloppy inequations, F'N£r(p) =0

Here, x # u is a sloppy inequation since y is a sloppy variable.

From Lemma 7.14 and Lemma 7.13, we get immediately

Lemma 7.15 (1FE2) describes an equivalence transformation in every model of F'X.
Corollary 7.16 There is an algorithm, which transforms any complex formula, in which

all basic formulae are quasi-solved forms containing only sloppy inequations, into an FX -
equivalent universally quantified boolean combination of molecules.

22

7.3 Eliminating tight inequations

In the closure of tight inequations, there are only inequations of type tight # tight or
tight # global. We first show how to transform the quasi-solved form such that the
only tight inequations are of type tight # global. Then, we show how to get rid of the
tight # global inequations.

3z (yAutAz #yAp) therearetight variables u,v with (u,v) € (z,y),

IE3 u v
() Elf(’y/\L/\p) andFﬁ #Fw

From Proposition 7.11, we get

Proposition 7.17 ([E3) describes an equivalence transformation on quasi-solved forms in
every model of FX.
Proof: This is a consequence of condition (5) in the definition of a quasi-solved form. O

We say that the set 5 of equations is closed under a graph =, if whenever z = y € v and
(u,v) € (x,y), then u=v € 4.

Proposition 7.18 Let § be a determinant and 1 a set of equations which is closed under §.
If £r(n) C co(8) and Fy = F} for every equation x =y € n, then

FX EY(A; = (5§ —1)

Proof: Let A, a = As. By Proposition 5.1, we have to show that
Ao = Feo(8)(3 A) 3)
Let @ be an idempotent substitution equivalent to 1. Then

8) & A,afEdco(§)(6N0)
< A o = dco(d)(86 A 0)
< A, a = dco(0)(69) since fr(f) C co(9) (9)

By construction, 86 is again a determinant, with co(#) C co(6), and Ags = As. Hence, (9)
follows from axiom (E).]

A similar lemma, in the context of CFT, was presented in [28].

Proposition 7.19 Let § be a determinant and n,n' be sets of equations such that n A1’ is
closed under &. If £r(n) C co(8) and F¥ = F} for every equation x =y € 1), then

FXEAs =Y (= (0 < nAn))

23

Proof: We have to show that

FX EY(AsASAT —n) (10)
Let ¢ be an idempotent substitution equivalent to n’. Then (10) is equivalent to

FX =Y (AsA05— 0'n) (11)
since A5 = As. Observe, that As = Agrs, £r(6'n) C co(#'8), 8'n is closed under 6§, and
that Fji; = Fj; for every equation = y € . Hence, (11) follows from Proposition 7.18.

a

We can now give the rule which reduces the tight # tight inequations to tight # global
inequations:

(Y ALAT#yAp) @ # y tight, rule (IE3) does not apply,

(IE4) - : 12 (o) e (2.9, | {0} ¢ 2)
\/ AZ (yALAuFvAp) =w,v z,)~ | {u, v z
(u,v)EI

As an example of rule (IE4), consider

Ju,y, v (z[s]o Azt Aylslw A y[tlw' A s £ A
arity(z, {s,t}) A arity(y, {s,t}) A arity(v, {}) A @ # y)
Ju,y, v (a[s]o Az[t]o" Aylslw A y[t]w A s £ A .
arity(z, {s,t}) A arity(y, {s, t}) A arity(v,{}) A v # w)
Vo Ja,y, v (x[s]o Azl Ay[slw A ylt]w' A s # A
arity(z, {s,t}) A arity(y, {s,t}) A arity(v, {}) A v # w')

Lemma 7.20 (1F}) describes an equivalence transformation in every model of F'X.

Proof: This follows immediately from Proposition 7.19. a

Finally, we give the rule to eliminate tight # global inequations.

Definition 7.21 (Generated subformula) For a conjunction ¢ of molecules and vari-
able x, the subformula ¢, of ¢ generated by z is defined as

Oy = A{u[t]v, arity(u, M) € ¢ | © ~y u}

Note that, if @ # y is tight in the quasi-solved form 37 ¢, then ¢, is a determinant.

24

(IE5) Jz,z (9 Ax #y)

37,2 6 AVeo(dy) (b — @ £ y) ¢,y # v, tight

As an example of rule (IE5), consider

Jz, 2’ (z[s]z Aztly Aa'[t]a" A s £t A arity(z, {f}) ANz # y)
o, 2’ (x[s]le A aftly A a'[tla’ As#t /\.eurity(ac7 {fHin
Va (z[s]e A z[tly A arity(z,{f}) = = # y)

Lemma 7.22 (IF5) describes an equivalence transformation in every model of F'X.

Proof: First note that co(¢,) C z U{z}. Since | ¢ — ¢, the conclusion implies the
hypothesis.

The hypothesis obviously implies the first part of the conclusion. By Proposition 5.1, it
also implies the second part (note that Ay, C ¢, since ¢ is a quasi-solved form). O

Corollary 7.23 There is an algorithm, which transform any complex formula in which all
basic formulae are quasi-solved forms, into an FX -equivalent complex formula, in which
all basic formulae are quasi-solved forms containing only sloppy inequations.

Hence, we obtain the proof of Lemma 6.5 by composing the Corollaries 7.8, 7.16 and 7.23.

Acknowledgments. David Israel pointed out the analogy to the situation in process
logic. Rolf Backofen, Andreas Podelski and Gert Smolka provided helpful criticism and
remarks.

This work has been supported by the Bundesminister fiir Bildung, Wissenschaft, Forschung
und Technologie (Hydra, ITW 9105), the Esprit Basic Research Project ACCLAIM (EP
7195) and the Esprit Working Group CCL (EP 6028).

References

[1] Hassan Ait-Kaci. An algebraic semantics approach to the effective resolution of type equations.
Theoretical Computer Science, 45:293-351, 1986.

[2] Hassan Alt-Kaci and Roger Nasr. LOGIN: A logic programming language with built-in inher-
itance. Journal of Logic Programming, 3:185-215, 1986.

[3] Hassan Ait-Kaci and Andreas Podelski. Towards a meaning of LIFE. In Jan Maluszyriski and
Martin Wirsing, editors, 3rd International Symposium on Programming Language Implemen-
tation and Logic Programming, Lecture Notes in Computer Science, vol. 528, pages 255-274.
Springer-Verlag, August 1991.

25

[4]

Hassan Ait-Kaci, Andreas Podelski, and Gert Smolka. A feature-based constraint system for
logic programming with entailment. Theoretical Computer Seience, 122(1-2):263-283, January
1994.

Peter B. Andrews. An Introduction to Mathematical Logic and Type Theory: To Truth through
Proof. Computer Science and Applied Mathematics. Academic Press, 1986.

Rolf Backofen. Ezpressiwity and Decidability of First-Order Theories over Feature Trees. PhD
thesis, Technische Fakultat der Universitat des Saarlandes, Saarbrucken, Germany, 1994.

Rolf Backofen. Regular path expressions in feature logic. Journal of Symbolic Computation,

17:421-455, 1994.

Rolf Backofen. A complete axiomatization of a theory with feature and arity constraints.
Journal of Logic Programming, 1995. To appear.

Rolf Backofen and Gert Smolka. A complete and recursive feature theory. Theoretical Computer
Science. To appear.

Rolf Backofen and Ralf Treinen. How to win a game with features. In Jean-Pierre Jouannaud,
editor, Ist International Conference on Constraints in Computational Logics, Lecture Notes
in Computer Science, vol. 845, Munchen, Germany, September 1994. Springer-Verlag.

J. R. Biichi. On a decision method in restricted second order arithmetic. In E. Nagel et. al.,
editor, International Congr. on Logic, Methodology and Philosophy of Science, pages 1-11.
Stanford University Press, 1960.

Hubert Comon and Pierre Lescanne. Equational problems and disunification. Journal of

Symbolic Computation, 7(3,4):371-425, 1989.

Jochen Dorre. Feature-Logik und Semiunfikation. PhD thesis, Philosophische Fakultat der
Universitat Stuttgart, July 1993. In German.

Jochen Dorre. Feature-logic with weak subsumption constraints. In M. A. Rosner C. J. Rupp
and R. L. Johnson, editors, Constraints, Language and Computation, chapter 7, pages 187-203.
Academic Press, 1994.

Jochen Dorre and William C. Rounds. On subsumption and semiunification in feature algebras.
Journal of Symbolic Computation, 13(4):441-461, April 1992.

C. A. Gunter and D. S. Scott. Semantic domains. In van Leeuwen [32], chapter 12, pages
633-674.

Martin Henz, Gert Smolka, and Jorg Wurtz. Object-oriented concurrent constraint program-
ming in Oz. In V. Saraswat and P. Van Hentenryck, editors, Principles and Practice of Con-
strawnt Programming, chapter 2, pages 27-48. MIT Press, Cambridge, MA| 1995. To appear.

Wilfrid Hodges. Model Theory. Encyclopedia of Mathematics and its Applications 42. Cam-
bridge University Press, 1993.

Joxan Jaffar and Jean-Louis Lassez. Constraint logic programming. In Proceedings of the 14th
ACM Conference on Principles of Programming Languages, pages 111-119, Munich, Germany,
January 1987. ACM.

Mark Johnson. Attribute-Value Logic and the Theory of Grammar. CSLI Lecture Notes 16.
Center for the Study of Language and Information, Stanford University, CA, 1988.

26

[21]

[22]

[32]

Anatolii Ivanovi¢c Malc’ev. Axiomatizable classes of locally free algebras of various type. In
IIT Benjamin Franklin Wells, editor, The Metamathematics of Algebraic Systems: Collected
Papers 1936-1967, chapter 23, pages 262-281. North Holland, 1971.

Rohit Parikh. A decidability result for a second order process logic. In 19th Annual Symposion
on Foundations of Computer Science, pages 177-183, Ann Arbor, Michigan, October 1978.
IEEE.

Michael O. Rabin. Decidability of second-order theories and automata on infinite trees. Trans-
actions of the American Mathematical Society, 141:1-35, 1969.

William C. Rounds and Robert Kasper. A complete logical calculus for record structures rep-
resenting linguistic information. In Proceedings of the First Symposium on Logic in Computer
Science, pages 38-43, Cambridge, MA, June 1986. IEEE Computer Society.

Gert Smolka. Feature constraint logics for unification grammars. Journal of Logic Program-

ming, 12:51-87, 1992.

Gert Smolka. The definition of Kernel Oz. In Andreas Podelski, editor, Constraints: Basics
and Trends, Lecture Notes in Computer Science, vol. 910, pages 251-292. Springer-Verlag,
March 1995.

Gert Smolka and Hassan Alt-Kaci. Inheritance hierarchies: Semantics and unification. Journal

of Symbolic Computation, 7:343-370, 1989.

Gert Smolka and Ralf Treinen. Records for logic programming. Journal of Logic Programming,

18(3):229-258, April 1994.

Wolfgang Thomas. Automata on infinite objects. In van Leeuwen [32], chapter 4, pages
133-191.

Ralf Treinen. A new method for undecidability proofs of first order theories. Journal of
Symbolic Computation, 14(5):437-457, November 1992.

Ralf Treinen. Feature constraints with first-class features. In Andrzej M. Borzyszkowski
and Stefan Sokolowski, editors, Mathematical Foundations of Computer Science 1993, Lecture
Notes in Computer Science, vol. 711, pages 734-743. Springer-Verlag, 30 August—3 September
1993.

Jan van Leeuwen, editor. Handbook of Theoretical Computer Science, volume B - Formal
Models and Semantics. Elsevier Science Publishers and The MIT Press, 1990.

27

