
Integrating e�cient records intoconcurrent constraint programmingPeter Van Roy1, Michael Mehl2, and Ralf Scheidhauer21 Swedish Institute of Computer Science, Stockholm, Sweden2 Programming Systems Lab, DFKI, Saarbr�ucken, GermanyAbstract. We show how to implement e�cient records in constraint log-ic programming (CLP) and its generalization concurrent constraint pro-gramming (CCP). Records can be naturally integrated into CCP as a newconstraint domain. The implementation provides the added expressivepower of concurrency and �ne-grained constraints over records, yet doesnot pay for this expressivity when it is not used. In addition to traditionalrecord operations, our implementation allows to compute with partially-known records. This �ne granularity is useful for natural-language andknowledge-representation applications. The paper describes the imple-mentation of records in the DFKI Oz system. Oz is a higher-order CCPlanguage with encapsulated search. We show that the e�ciency of recordsin CCP is competitive with modern Prolog implementation technologyand that our implementation provides improved performance for natural-language applications.Keywords. Concurrent Constraint, Record, Logic Programming, Imple-mentation, Natural-Language Processing, Prolog1 IntroductionRecords are an important data structure with many advantages for programstructuring and understandability. It has been shown that records can be nat-urally integrated into concurrent constraint programming (and therefore alsointo constraint logic programming) as a new constraint domain [19]. This givesa simple logical explanation of feature structures in natural-language processing(NLP). Erbach and Manandhar mention record constraints as a �rst requirementfor future NLP systems [6].This paper presents the implementation of records in the DFKI Oz sys-tem [16]. We evaluate the implementation according to its complexity as well asits space and time performance. Our implementation generalizes in two ways thecompound structures (trees) of Prolog:{ Concurrent constraints. From the implementation viewpoint, the generaliza-tion of CLP(X) to CCP(X), where X is the constraint domain, requires twochanges. First, the system is concurrent{there are multiple activities thatevolve independently. Second, the system requires two basic operations onthe constraint domain X, namely satis�ability and entailment checking (seeSect. 7). A CLP(X) language requires only a single operation on the domainX, namely a satis�ability check. We show that the two basic operations canbe e�ciently implemented for records.In Proceedings of PLILP'96, Aachen, Germany, September 1996, Springer.



{ Fine-grained record constraints. Our implementation provides a solver overrecords that allows computing with partially-known records. Yet, its e�cien-cy is comparable to that of modern high-performance Prolog implementa-tions when the full power of the solver is not used.This paper extends a WAM-like abstract machine to support record constraintsand concurrency. The paper is structured into three main parts: de�nition of theconstraint systems (Sect. 3), their e�cient implementation (Sects. 4{7), and theevaluation of the implementation (Sect. 8).For ease of understanding, we present and implement three constraint sys-tems that progressively provide more powerful record-like operations: Prologstructures (�nite or rational trees, Sect. 4), bound records (Prolog structureswith named sub�elds, Sect. 5), and free records (that may be partially-known,Sect. 6). We implement the three constraint systems in a CLP framework basedon a WAM-like abstract machine. We then extend the implementation to a CCPframework by showing how to generalize uni�cation to perform an incrementalentailment check (Sect. 7). Finally, we evaluate free records in DFKI Oz (Sect. 8).2 Related WorkTo our knowledge, this paper is the �rst work that explains from a practicalviewpoint how to implement e�cient records in a logic language. The paperis intended to complement the description of Amoz [10], an abstract machinefor CCP languages that provides for deep guards, threads, and lexically-scopedhigher-order procedures. The paper is based on foundational work on records [19]and  -terms [3] for logic programming. Most of the theoretical concepts wereintroduced by A��t-Kaci in the LIFE language [2]. The entailment checking algo-rithm, using the scripting idea, was used in early committed-choice systems andjusti�ed in [8].Previous work with record-like structures was done as part of the work onLIFE compilation [5, 7, 12, 13, 14]. The main results of this work are the Beauty& Beast algorithm and the Half Life system. These results give the �rst, albeitincomplete, indication that record-like structures can be added to CCP languages(and a fortiori to CLP languages) without loss of e�ciency over records in im-perative languages. The present work strengthens these results by presentingand analyzing an actual e�cient implementation for DFKI Oz.3 Constraints Over TreesAll constraints in this paper describe rational feature trees, i.e., rational treeswith labeled edges and nodes. We use the short names tree and record inter-changeably instead of rational feature tree in the following sections. We startthe discussion of constraints by presenting a simple and general constraint sys-tem over trees. To obtain a practical system, we restrict the general system tothree practical systems of successively increasing generality.The rest of this paper shows how to e�ciently implement the three restrictedconstraint systems. Section 4 sets the stage by brie
y presenting the implemen-tation of Prolog structures in CLP. Section 5 extends this to bound records and



Sect. 6 further extends it to free records. Section 7 shows how to do free recordsin CCP. We show how each stage can be implemented with the e�ciency of theprevious stage, when the new generality is not used.3.1 General Constraints Over TreesThe underlying structure of our rational feature tree theory contains three do-mains, namely trees, sorts and features. Every domain has an in�nite numberof values. In a general formulation of tree constraints, we consider the following�ve basic constraints:{ A sort constraint Sort(x; y) holds if and only y is a sort and the root of thetree x is labeled with y.{ A feature constraint Feature(x; y; z) holds if and only if y is a feature andthe tree x has the subtree z at the feature y.{ An arity constraint Arity(x; F ) holds if and only if F is a set of features andthe tree x has subtrees exactly at the features appearing in F , and at noother features. We say that F is the arity3 of x.{ An equality constraint x = y holds if and only if x and y describe the samefeature trees.{ A record constraint Record(x) holds if and only if x is a tree.In this general form, all arguments of the constraints are variables or values fromthe particular domains (trees, sorts, features, or sets of features). Little is knownabout the general form [20, 21].3.2 Restricted Constraints Over TreesTo make these constraints practical, we restrict them. We present three progres-sively more powerful restricted versions: Prolog structures, bound records, andfree records. We show how to implement all three systems e�ciently.The terminology \bound" and \free" records is chosen for its similarity tobound and free variables. Both bound and free record constraints describe ra-tional feature trees. A bound record constraint entails both an arity and a sortconstraint. Other record constraints are free.Prolog Structures. Prolog structures are trees where the domain of featuresis limited to positive integers, i.e., for each node, the n edges of its subtrees arelabeled with successive integers 1; :::; n.There are three basic kinds of constraints:1. A family of functor constraints x = s(y1; :::; yn), for all values of s andnonnegative integers n. Each constraint is equivalent to:Sort(x; s) ^Arity(x; f1; :::; ng)^ ^1�i�nFeature(x; i; yi)Both s (the functor) and n (the width) must be �xed. The Prolog built-infunctor(x; s; n) imposes this constraint with existentially quanti�ed featureconstraints, i.e., Sort(x; s) ^Arity(x; f1; :::; ng). 43 We call the number of arguments the width.4 Note that Arity(x; f1; :::;ng) implies 1 � 8i � n9y Feature(x; i; y).



2. A family of feature constraints Feature(x; i; yi), for all integers i > 0. Theseconstraints are written in Prolog as arg(i; x; yi). Imposing one when the arityand sort are not present gives a run-time error.3. An equality constraint x = y.In older Prolog systems, these constraints described a domain of �nite trees. Inmodern Prolog systems they are based on a domain of rational trees (allowingcyclic structures).Bound Records. Bound records generalize Prolog structures to have features(named �elds) instead of successively-numbered �elds. There are three basickinds of constraints:1. A family of functor constraints x = s(f1 : y1; :::; fn : yn) for any sort s anddistinct features f1, ..., fn. Each constraint is equivalent to:Sort(x; s) ^Arity(x; ff1; :::; fng) ^ ^1�i�nFeature(x; fi; yi)The integer n � 0 and arguments s, f1, ..., fn must all be �xed.2. A family of feature constraints Feature(x; f; y) where f must be �xed. Theycan be imposed at any moment, but their resolution is delayed until the arityand sort are present.3. An equality constraint x = y.To create a new bound record, a functor constraint must be given. Since an arityconstraint is always present, the set of features is �xed.Free Records. Free records are described by more �ne-grained constraints. Itis possible to say that a free record has a particular feature without sayinganything else. There are four basic kinds of constraints:1. A family of sort constraints Sort(x; s), for all di�erent values of s. In eachconstraint s is �xed.2. A family of feature constraints Feature(x; f; y), for all di�erent values of f .In each constraint f is �xed.3. A family of arity constraints Arity(x; F ), for all di�erent values of F . In eachconstraint F is a �xed set of features.4. An equality constraint x = y.Free records are provided as a logical data structure by the constraint sys-tem CFT [19]. CFT is a generalization of the rational tree system of Prolog IIthat provides �ner-grained constraints and allows to identify subtrees by key-words rather than by position. There exists an e�cient incremental decisionprocedure for CFT that decides entailment and disentailment between possiblyexistentially-quanti�ed constraints.As an example of what is described by CFT, consider the two records x andy given in the following Oz-like notation:x = person(age : 25)y = person(age : 25 :::)This notation is an abbreviation for the two conjunctions:Sort(x; person) ^ Feature(x; age; 25) ^Arity(x; fageg)Sort(y; person) ^Feature(y; age; 25)



Because of the arity constraint, the record x may have no other features thanage. The record y does not have this restriction.4 Prolog StructuresThis paper extends a WAM-like abstract machine to support record constraintsand concurrency. To �x the notation, this section summarizes brie
y the imple-mentation of Prolog structures in the WAM. For more information about theWAM, the reader is advised to consult one of many works explaining Prolog im-plementation techniques [1, 9, 22]. All code fragments are given in a pseudocodeclosely resembling C++.4.1 Representation of Prolog StructuresA Prolog structure is represented by functor and width �elds, and an array ofarguments (indexed from 0 to width-1):enum Tag fREF, STR, ATOM, VARg;class Term f Tag tag; switch (tag) fcase REF: Term �ref; case STR: Structure str;case ATOM: Atom atom; case VAR: : : : g g;class Structure f Atom �sort; int width; Term �args[]; g;The Term class is de�ned using a variant-record notation. Terms include variables(VAR), structures (STR), atoms (ATOM), and the reference (REF) which is used forbinding and dereferencing. Using di�erent tags for unbound variables and refer-ence links is needed for the CCP implementation (see Sect. 7). The Atom type isused to represent sorts and features. Term uses a tag-on-data representation andthe sort and width are stored as separate words. More optimized representationsare straightforward modi�cations of this one.4.2 Operations on Prolog StructuresTwo operations are provided on Prolog structures: uni�cation and access to astructure argument. Uni�cation implements the functor and equality constraintsand argument access implements the feature constraint.Uni�cation. If neither structure is known statically (i.e., at compile-time), thenthe following general rational-tree uni�cation routine is called:#define deref(t) f while (t!tag==REF) t=t!ref; g#define bind(t,u) f t!tag=REF; t!ref=u; gbool unify(Term �t1, �t2) fderef(t1); deref(t2); if (t1==t2) return TRUE;if (t1!tag==VAR jj t2!tag==VAR) fif (t1!tag==VAR) bind(t1,t2); else bind(t2,t1);return TRUE;g else if (t1!tag==STR && t2!tag==STR) f : : : g gThis routine handles terms that can be unbound variables, structures, and atoms.In the following sections we discuss extensions of the uni�cation procedure, tohandle bound and free records and to allow for speculative execution.



If one of the two structures is known statically, then the above uni�cationroutine can be statically decomposed into more primitive operations [22]. In theWAM, each functor constraint is independently decomposed into sort and featureconstraints [1]. The uni�cation X = f(foo; bar) is compiled into the followingabstract machine instructions:get structure X, f, 2unify constant foounify constant barIf foo or bar are of other types than atoms, then other specialized unify in-structions will replace the unify constant instructions. The get structure in-struction initializes two global variables called mode and s, which are used by theunify constant instructions:enum mode fREAD, WRITEg;Term ��s;get structure(Term �t, Atom �sort, int width) fderef(t); if (t!tag==VAR) fTerm �nt=newStructure(sort,width); bind(t,nt);mode=WRITE; s=nt!args;g else if (t!tag==STR) fif (t!str.sort6=sort jj t!str.width6=width) fail();mode=READ; s=t!str.args;g else fail(); gWe assume the fail() routine handles uni�cation failure, e.g. in Prolog it restoresthe abstract machine state from the topmost choice point. The newStructureroutine allocates a new structure with given sort and width on the heap. Theunify constant instructions use s to access the structure argument they are tounify with, and they use mode to decide whether to write a new value there orto read an existing value.Argument Access. The arguments of a Prolog structure are numbered from 1to the width. Accessing a structure is done with a single array indexing operation,augmented with the necessary type checks:Term �access(Term �t, int i) fderef(t); if (t!tag6=STR) return error();if (i<1 jj t!width<i) return fail();return t!str.args[i-1]; g5 Bound RecordsThe representation of a bound record is closely related to that of a Prolog struc-ture. Bound records are represented as arrays of terms. With this representationwe can e�ciently implement traditional record operations (record creation, ar-gument access). The following sections describe how uni�cation is modi�ed forrecords.5.1 Representation of Bound RecordsTo represent bound records, a term is modi�ed to include the term type Recordand its tag REC:



class Term f Tag tag; switch (tag) f case REC: Record rec; : : : g g;class Record f Atom �sort; Arity �arity; Term �args[]; g;The type Record di�ers from Structure in that it replaces width by arity. Thearity points to a hash table that maps features to o�sets into the argument arrayargs:class Arity f class f Atom �feat; int index; g table[];int lookup(Atom �); int get width(); : : : g;Features are represented as atoms. All arities are kept in a single global tablethat is itself a hash table:class AtomList f Atom �atom; AtomList �next; g;class ArityTable fclass f AtomList �featlist; Arity �arity; g table[];Arity �insert(AtomList �); : : : g;The procedure insert takes an arity given as list of features and searches forthis arity in the table. If this is not found a new arity is created. ArityTable isneeded to ensure that uni�cation of two bound records is fast. Because aritiesare globally unique, equality between them can be determined by a single-wordcomparison.5.2 Operations on Bound RecordsTwo operations are provided on bound records: uni�cation of two records andaccess to a record argument. Uni�cation implements the functor and equalityconstraints and argument access implements the feature constraint. We showhow both of these operations can be done as e�ciently for bound records as forProlog structures.Uni�cation. Two records can be uni�ed with no overhead compared to struc-ture uni�cation. There are two cases, namely if one of the records is staticallyknown or not. If one is statically known, e.g., the uni�cation is X = f(a : foo b :bar), then the compiler determines the o�sets of features a and b (for example,1 and 0 in that order) and arranges the unify constant instructions in order ofincreasing o�set:get record X, f, [a b]unify constant barunify constant fooThe arity [a b] is statically inserted into ArityTable.If neither record is statically known then the uni�cation routine comparesthe sorts and arities. Since the arities are stored in the global ArityTable, thiscan be done in constant time by simple pointer comparison. Finally, the argu-ments are uni�ed in pairs by traversing the two argument arrays in the sameway as for Prolog structures. The only di�erence is that the width is given byt->arity->get width() instead of t->width.Argument Access. To access �eld feat of record rec requires looking up the�eld's o�set in the record's hash table:Term �access(Record �rec, Atom �feat)f return rec!args[rec!arity!lookup(feat)]; g



This requires a single hash table lookup. To make this almost as fast as indexedargument lookup, we use the caching technique pioneered in Smalltalk imple-mentations [4] where the record's type, the feature, and the o�set are stored inthe instruction. If the feature feat is statically known then the following routinecan be used:Term �access feat(Term �t) f // not in cache = -1static Arity �arCache=NULL; static int indCache= -1;deref(t); if (t!tag6=REC) return error();if (t!arity==arCache) return t!args[indCache];arCache=t!arity; indCache=arCache!lookup(feat);if (indCache 6= -1) return t!args[indCache];else f arCache=NULL; return fail(); g gIf the feature is not statically known then an additional static variable featureCacheis needed. In the case of a cache hit, both cases are as e�cient as argument ac-cess to a Prolog structure. For DFKI Oz, we measure that the feature is knownstatically in 84% of argument accesses (with a run-time hit ratio of 95%), for arepresentative set of large programs totalling several tens of thousands of sourcelines.5.3 Delayed ExecutionIn the above implementation, the access function fails if the record argument isa variable. In fact, we instead want to delay the functor and feature constraintsuntil the argument is bound. The routines access and access feat are easilyextended to support delaying: it su�ces to create a suspension, i.e. a delayedgoal, if the �rst argument is unbound. This can be done without slowing downthe common case. The code is extended as follows:Term �access feat(Term �t) f : : : if (t!tag6=REC) fif (t!tag==VAR) f t!add suspension(goal); return NULL; greturn fail(); g : : : gWe assume goal is a global variable pointing to the current goal being executed.We now brie
y explain how add suspension is implemented.Delayed execution is implemented by the concept of a suspension. A suspen-sion contains all the state necessary to reexecute a goal. We assume the followingdata structures to implement suspension handling:class Term f Tag tag;switch (tag) f case VAR: SuspList �suspList; : : : gadd suspension(Goal �); wake suspensions(); g;class SuspList f Suspension �susp; SuspList �next; g;class Suspension f Goal �goal; : : : g;We assume that Goal is de�ned elsewhere. A list of suspensions is attachedto every term that can be constrained (e.g., an unbound variable, which canbe bound). All the suspensions are executed (\woken up") when the term isconstrained (e.g., the variable is bound). A term is extended with a suspensionlist and two basic operations: add suspension adds a goal to the suspension list,and wake suspensions empties the suspension list and executes all its goals. Anew type of unbound variable can be added to optimize the common case whenthe variable has no suspensions. For more details see [11] (CLP) and [10] (CCP).



6 Free RecordsFree records are provided by the constraint system CFT. The solved form of afree record constraint for x is summarized as follows (where fa1; :::; ang � F ):Record(x) ^ ( Arity(x; F ) j > ) ^ ( Sort(x; s) j > ) ^ ^1�i�nFeature(x; ai; yi)The constraint Record(x) is mandatory. The other constraints are optional. Thissolved form is variable-centered, that is, all information about a variable can berepresented locally at that variable.For e�ciency, free records have two internal representations. When the recordis bound, we use the bound representation (see Sect. 5). When the record is free,we use the free representation. The transition from free to bound representa-tion occurs when arity and sort constraints are imposed. This happens insideuni�cation and is invisible to the programmer.6.1 Representation of Free RecordsThe free representation must potentially allow an arbitrary number of featuresto be added. We implement the free representation by adding a new term typeFreeRecord and its tag FREEREC:enum Tag fFREEREC, : : :g;class Term f Tag tag; switch (tag) fcase FREEREC: FreeRecord frec; SuspList �suspList; : : :gg;class FreeRecord f Atom �sort; DynamicTable �dyntab; g;Since the free representation can be further constrained, it must have a sus-pension list. The dynamic table contains a mapping from features to featurevalues:class DynamicTable fint width, size; // current and maximum no. of elementsclass f Atom �feat; Term �value; g table[];Term �lookup(Atom �feat);void insert(Atom �feat, Term �value); int get width();void iter start(); Term �iter next(Atom ��feat); g;This mapping constitutes the solved formof the record constraints. The iter startand iter next operations are used to iterate through all elements of the table.The insert operation doubles the table size if it becomes too full, i.e., whenwidth/size is greater than a given threshold. Thus insertion is done in constantamortized time. A threshold of 75% gives reasonable performance.6.2 Operations on Free RecordsThree operations are provided on free records: uni�cation, argument access, andargument creation. The feature and sort constraints are implemented by access-ing the sort or a feature value, instantiating the sort, or creating a new feature.The equality constraint is implemented by uni�cation. The uni�er of the free andbound representations is the bound representation. Therefore uni�cation can beused to impose the arity constraint. We give no code for the sort operations sincethey are obvious simpli�cations of the feature operations.



Uni�cation. Consider the uni�cation of two free records x1 and x2 when bothuse the free representation and are statically unknown. The two dynamic tablesmust be merged. The new table contains the union of the elements of the originaltables, and corresponding elements are uni�ed. Merging table dt1 into dt2 canbe done e�ciently as follows:class PairList fclass Pair f Term �t1, �t2; Pair �next; g �list;PairList() f list=NULL; gvoid add(Term �, Term �); // add pair to the listbool next(Term ��, Term ��); g; // FALSE if emptybool merge(DynamicTable�dt1,�dt2) f Atom �f1; Term �t1,�t2;PairList �pairs=new PairList(); dt1!iter start();while (t1=dt1!iter next(&f1)) f // next feature of dt1Term �t2=dt2!lookup(f1); // is it in dt2?if (t2) pairs!add(t1,t2); else dt2!insert(f1,t1); gwhile (pairs!next(&t1,&t2))if (!unify(t1,t2)) return FALSE;return TRUE; gFor correctness when unifying cyclic structures, the merging of the tables isseparated from the uni�cation of the pairs of feature values. The PairList tem-porarily stores the pairs. For e�ciency, we merge the smallest table into thelargest. Therefore the uni�cation algorithm is extended as follows:bool unify(Term �t1, �t2) f : : : else if (t1!tag==FREEREC) fif (t2!tag==FREEREC) fDynamicTable �dt1=t1!frec!dyntab;DynamicTable �dt2=t2!frec!dyntab;if (dt1!get width()<dt2!get width())f bind(t1,t2); return (merge(dt1,dt2)); gelse f bind(t2,t1); return (merge(dt2,dt1)); gg else if (t2!tag==REC) f : : : // unify corresp. elementsbind(t1,t2); return TRUE; // result is boundg else return FALSE; g : : : gAmortized time complexity is O(min(jT1j; jT2j)), where jT j denotes the size oftable T .We extend the get structure operation to unify with a static bound record:get structure(Term �t, Atom �sort, Arity �arity) f : : :else if (t!tag==FREEREC) fTerm �nt=newRecord(sort,arity); mode=READ;if (!unify(t,nt)) fail(); g : : : gIn case the argument uses the free representation, a new bound record is createdand the general uni�cation routine is called. Uni�cation of the arguments is doneby the unify instructions as before. This is a simple way to extend get structureto handle any number of new types.Argument Access and Creation. Argument access and creation are donewith the lookup and insert operations. With a reasonable hash function, thesecan be done in constant time.



7 Free Records in CCPSo far the record implementation has been presented as an instantiation of theCLP framework, giving the system CLP(Records), which requires an e�cientincremental test for non-uni�ability for CFT. We have presented a uni�cationalgorithm that implements this test. In this section, we extend the implementa-tion to the CCP framework. See [8, 17, 18] for further information on CCP andits realization in Oz.To extend our CLP record implementation to CCP, it is su�cient to sup-port local computation spaces and to add an incremental entailment check forrecord constraints. Local computation spaces are CCP's counterpart to CLP'schoice point segments, and can be implemented e�ciently with a scripting tech-nique. The entailment check is implemented as an extension to the uni�cationalgorithm.7.1 Checking Entailment With Local SpacesIn theory, doing the entailment check is straightforward. To check whether theconstraint store 
 entails the constraint �, create a local space and impose � init [8]. If imposing � requires constraining variables in 
, then there exist bindingsof these variables that con
ict with �. Hence the local space is not entailed. Ifthe constraint store is later strengthened to 
 ^ 
0, then the entailment check isredone by reexecuting � in the local space. For more details see [10].For variable-centered constraints, constraining a global variable means bind-ing it. Executing � in the local space may bind global variables. We remove thebound pairs and store them in a script attached to the local space. If the scriptis empty, then 
 entails �. The script plays the role of a trail.The local space has two operations: we can enter it (make it the currentspace) and leave it (make its parent space the current space). Entering a spaceis done by unifying the binding pairs in the script, thus emptying the script.Leaving a space means undoing the global variable bindings and saving them inthe script.Conceptually, whenever 
 is strengthened, � must be reexecuted in the localspace. With the script we can make this reexecution incremental. When theconstraint store 
 is strengthened, we do not have to reexecute � completely.It su�ces to enter the local space and leave it again. This creates a new script,which may be smaller or larger than the original.7.2 Representing Local SpacesExtending uni�cation to take local spaces into account requires unbound vari-ables and records to know their home spaces:class Space f class Script f Term �t1, �t2; g script[];add(Term �, Term �); leave(); enter(); : : : g;Space �current;class Term f Tag tag; switch (tag) fcase VAR: Space �home; case REC: Space �home;case FREEREC: Space �home; : : : g g;



An unbound variable is represented as a term with tag VAR and space home. Thiscan be encoded in a single word. All terms that can be bound (i.e., VAR, REC, andFREEREC) have a home space pointer. The bind routine is modi�ed to take theterm's space into account:#define isGlobal(t) (t!home6=current)#define isLocal(t) (t!home==current)void bind(Term �t, �u) fif (isGlobal(t)) current!add(t,u); // trailingt!tag=REF; t!ref=u; gAll global bindings are stored in the script. The isGlobal test is similar to a trailcondition.7.3 Checking EntailmentConsider the uni�cation of two free records x1 and x2 that both have the freerepresentation. If one is local, then its representation is modi�ed. If both areglobal, then a new local record is created and the globals are bound to it. Inboth cases the dynamic tables are merged. Depending on the sizes of the tablesand the locality or globality of their spaces, design decisions need to be madehow the tables are merged. There are three possible cases: x1 and x2 are bothlocal, both global, or global and local. The case when both are local has beentaken care of in Sect. 6.If x1 is local and x2 is global, then the global variable is bound to the localvariable,5 and the global table is merged into the local table:bool unify(Term �t1, �t2) f : : :if (t1!tag==FREEREC && t2!tag==FREEREC) fif (isLocal(t1) && isGlobal(t2)) fDynamicTable �dt1=t1!frec!dyntab;DynamicTable �dt2=t2!frec!dyntab;bind(t2,t1); return (merge(dt2,dt1)); g : : : g : : : gThis requires looking through only the elements of the global table. It has amor-tized time complexity O(jTglobal j).If both x1 and x2 are global, then a new local variable is created whichcontains the union of the global tables, and both global variables are bound tothe local variable:bool unify(Term �t1, �t2) f : : :if (t1!tag==FREEREC && t2!tag==FREEREC) fif (isGlobal(t1) && isGlobal(t2)) fTerm �t=newFreerec(); // make new local recordDynamicTable �dt1=t1!frec!dyntab;DynamicTable �dt2=t2!frec!dyntab;bind(t1,t); bind(t2,t); merge(dt1,t!frec!dyntab);return (merge(dt2,t!frec!idyntab)); g : : : g : : : gThis requires looking through the elements of both tables. It has time complexityO(jT1j+ jT2j).5 Binding must be done in this order, since merging into the global table is veryexpensive.



8 Evaluation and MeasurementsThe record implementation described above has been realized since DFKI Ozversion 1.1 [16]. We provide measurements of the implementation's performanceas well as its complexity. All benchmarks are run under Linux 2.0 on a singleprocessor of an unloaded Pentium 133 MHz PC with 512 K second-level cacheand 64 MB RAM. We compare DFKI Oz 1.9.13 (emulated) [16] with SICStusProlog 3 (emulated) [15]. Garbage collection is turned o�. In each benchmark,the basic operation is put in a tail-recursive loop and loop overhead is subtracted.The evaluation is done in four parts. First, we evaluate the space cost of freerecords relative to bound records. Then we compare the time cost of Oz tuples(which are exactly Prolog structures) and Oz records (both bound and free) tostructures in SICStus Prolog. Tuples are a subtype of bound records and use thesame representation. Record features comprise atoms and integers (includingbignums). Third, we do a more thorough comparison of bound records and freerecords from the NLP viewpoint. Finally, we summarize the implementatione�ort that was required to add records to DFKI Oz.8.1 Space EvaluationThe memory usage of free records is within a small constant factor of boundrecords. The following numbers are taken from the DFKI Oz implementation.A bound record with f features takes 2 + f words of memory. It uses a tag-on-pointer representation. A free record with f features takes 7 + 2 � 2dlog2 fewords if f � 4 and 7 + 2 � 2dlog2(f=0:75)e words otherwise. This gives an averageof 7+2f words if f � 4 and 7+3:6f words otherwise. That is, records with fourfeatures or less are particularly memory e�cient. The parameters 4 and 0:75 canbe adjusted for the best time/space trade-o�.The arity of a bound record is stored as an entry in the system's symboltable. The entry gives the mapping between feature names and o�sets into therecord. The entry's size is 8+6f words on average. This becomes signi�cant onlyif there are few bound records with the same arity. Free records do not have anentry in the symbol table.A free record is implemented as a resizable hash table that uses semi-quadraticprobing. That is, probe number i � 0 is o�set by i(i+1)=2 from the initial hashvalue. If the table size s is a power of two, then one can show that s successiveprobes will access all entries of the table. Therefore the hash table can be com-pletely �lled. The current system �lls the table completely for f � 4 and to 75%otherwise.System Creation Argument access Uni�cationDFKI Oz 1.9.13 free records 7750 966 3975bound records 391 206 890tuples 395 207 869SICStus 3 tuples 354 341 566Table 1. Times for 600,000 basic operations (in ms)



8.2 Time EvaluationTable 1 compares execution times for 600,000 basic operations. The times areaccurate to within 5%.We de�ne the three basic operations (term creation, argu-ment access, term uni�cation) as follows. Term creation builds a single term withthree constant arguments. Argument access accesses a single constant argumentthree times. Term uni�cation uni�es two terms with three constant argumentseach.We see that the two emulators are competitive. These numbers con�rm theresult that records in CCP introduce no ine�ciencies when used as Prolog struc-tures. Tuples use the same representation as bound records without penalty. Ar-gument access for bound records in Oz is fast because of caching (see Sect. 5.2).It is faster than SICStus because it is implemented as an emulator instruction,which has lower function-call overhead than a built-in operation. The time (butnot the space) for creation of free records is large because creation is incremental.It is currently not possible to create a free record with a given set of features asa single operation. Doing so would require compile-time knowledge of the hashfunction, which is not yet implemented.Operation Time (ms) Memory (KB)1 feat 10 feat 1 feat 10 featBound records (explicit suspensions) 2120 18200 16700 145000Free records (solved form) 1100 7470 10900 29800Table 2. Measurement of suspensions versus the solved form in DFKI Oz8.3 Records for NLPFree records are useful for NLP applications. For such applications, it is im-portant to calculate with individual features without being obliged to create abound record that contains all features. Consider for example a large parse tree.Free records allow one to e�ciently express paths in this tree from the root toa leaf. Using bound records would require each node of such a path to containall possible children, instead of just the child that is of current interest. A singlepath breaks even as a free record if there are at least 7 features at each node(i.e., 2 + f � 7 + 2 � 1).A second example is the sample HPSG parser in the DFKI Oz release. Thisparser is 1.6 times faster and uses half the memory when using free records in-stead of bound records. This improved performance is not due to the e�cientexpression of paths in the parse tree. There is a second improvement that oc-curs when accessing features that do not yet exist. In a free record, the featurecan be added directly, resulting in a CFT solved form. In a bound record, asuspension must be created to wait until the feature is added. We measure thedi�erence between adding a feature and creating a suspension. Consider thesetwo scenarios:{ Bound records (explicit suspensions). Access each feature of an un-bound variable once, which creates a suspension for each feature.



{ Free records (solved form). Incrementally create a free record by addingone feature at a time.Table 2 compares the time and memory usage of 150,000 basic operations, for 1feature and for 10 features. The solved form is from 1.9 (one feature) to 2.4 (tenfeatures) times faster than a set of suspensions. The solved form uses from 1.5(one feature) to 4.9 (ten features) times less memory than a set of suspensions.8.4 Implementation E�ortThe bound record implementation of DFKI Oz 1.0 was extended to free records.This required adding 2000 C++ lines to the emulator and 1000 Oz lines to thebrowser.6 This is 10% of the basic emulator machinery and 5% of the browser.This required 10 man-weeks for the emulator and 2 man-weeks for the browser.The extension was simpli�ed by using the emulator's support for constrainedvariables and scripting. Constrained variables are closely related to the attribut-ed variables of ECLiPSe [11].9 Conclusions and Further WorkWe have shown how to extend CLP and CCP systems with e�cient and 
exiblerecord constraints. We have demonstrated for DFKI Oz:1. Bound records have the same time and space e�ciency as structures in Prologin a high-performance emulator implementation.2. Free records have the same amortized time and space complexity as Prologstructures in a high-performance emulator implementation.Furthermore, theactual time needed is within a factor of �ve and the actual space needed iswithin a factor of four. The single exception to this conclusion in the currentsystem is the time (not space) of free record creation, whose constant factoris larger since the record is created incrementally.3. In addition to their additional constraint solving power, free records are moree�cient than bound records for NLP in two ways. First, a feature constraintis at least twice as fast and uses less memory when represented in a CFTsolved form than when represented as a suspension. Second, free recordsallow the e�cient expression of paths in trees.4. Adding a record constraint system to CCP is not much harder than adding arecord constraint system to CLP. The CCP paradigm replaces choice pointsby local computation spaces and requires a single additional constraint oper-ation, namely entailment. With local spaces, entailment can be implementedas an extension to uni�cation.Free records are a fully-integrated and robust part of DFKI Oz since version1.1. They are being used by our group in a NLP project on concurrent grammarprocessing. Further re�nements of the record implementation (including moreoptimizations, compile-time analysis, additional primitive operations, and morepowerful constraints) must wait for experience from this project and other prac-tical applications.6 The browser is a concurrent tool used to inspect Oz data structures.
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