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Abstract. We show how to implement efficient records in constraint log-
ic programming (CLP) and its generalization concurrent constraint pro-
gramming (CCP). Records can be naturally integrated into CCP as a new
constraint domain. The implementation provides the added expressive
power of concurrency and fine-grained constraints over records, yet does
not pay for this expressivity when it is not used. In addition to traditional
record operations, our implementation allows to compute with partially-
known records. This fine granularity is useful for natural-language and
knowledge-representation applications. The paper describes the imple-
mentation of records in the DFKI Oz system. Oz is a higher-order CCP
language with encapsulated search. We show that the efficiency of records
in CCP is competitive with modern Prolog implementation technology
and that our implementation provides improved performance for natural-
language applications.
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1 Introduction

Records are an important data structure with many advantages for program
structuring and understandability. It has been shown that records can be nat-
urally integrated into concurrent constraint programming (and therefore also
into constraint logic programming) as a new constraint domain [19]. This gives
a simple logical explanation of feature structures in natural-language processing
(NLP). Erbach and Manandhar mention record constraints as a first requirement
for future NLP systems [6].

This paper presents the implementation of records in the DFKI Oz sys-
tem [16]. We evaluate the implementation according to its complexity as well as
its space and time performance. Our implementation generalizes in two ways the
compound structures (trees) of Prolog:

— Concurrent constraints. From the implementation viewpoint, the generaliza-
tion of CLP(X) to CCP(X), where X is the constraint domain, requires two
changes. First, the system is concurrent—there are multiple activities that
evolve independently. Second, the system requires {wo basic operations on
the constraint domain X, namely satisfiability and entailment checking (see
Sect. 7). A CLP(X) language requires only a single operation on the domain
X, namely a satisfiability check. We show that the two basic operations can
be efficiently implemented for records.
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— Fine-grained record constraints. Our implementation provides a solver over
records that allows computing with partially-known records. Yet, its efficien-
cy is comparable to that of modern high-performance Prolog implementa-
tions when the full power of the solver is not used.

This paper extends a WAM-like abstract machine to support record constraints
and concurrency. The paper is structured into three main parts: definition of the
constraint systems (Sect. 3), their efficient implementation (Sects. 4-7), and the
evaluation of the implementation (Sect. 8).

For ease of understanding, we present and implement three constraint sys-
tems that progressively provide more powerful record-like operations: Prolog
structures (finite or rational trees, Sect. 4), bound records (Prolog structures
with named subfields, Sect. 5), and free records (that may be partially-known,
Sect. 6). We implement the three constraint systems in a CLP framework based
on a WAM-like abstract machine. We then extend the implementation to a CCP
framework by showing how to generalize unification to perform an incremental
entailment check (Sect. 7). Finally, we evaluate free records in DFKI Oz (Sect. 8).

2 Related Work

To our knowledge, this paper is the first work that explains from a practical
viewpoint how to implement efficient records in a logic language. The paper
is intended to complement the description of Amoz [10], an abstract machine
for CCP languages that provides for deep guards, threads, and lexically-scoped
higher-order procedures. The paper is based on foundational work on records [19]
and t-terms [3] for logic programming. Most of the theoretical concepts were
introduced by Ait-Kaci in the LIFE language [2]. The entailment checking algo-
rithm, using the scripting idea, was used in early committed-choice systems and
justified in [8].

Previous work with record-like structures was done as part of the work on
LIFE compilation [5, 7, 12, 13, 14]. The main results of this work are the Beauty
& Beast algorithm and the Half_Life system. These results give the first, albeit
incomplete, indication that record-like structures can be added to CCP languages
(and a fortiori to CLP languages) without loss of efficiency over records in im-
perative languages. The present work strengthens these results by presenting
and analyzing an actual efficient implementation for DFKI Oz.

3 Constraints Over Trees

All constraints in this paper describe rational feature trees, 1.e., rational trees
with labeled edges and nodes. We use the short names tree and record inter-
changeably instead of rational feature tree in the following sections. We start
the discussion of constraints by presenting a simple and general constraint sys-
tem over trees. To obtain a practical system, we restrict the general system to
three practical systems of successively increasing generality.

The rest of this paper shows how to efficiently implement the three restricted
constraint systems. Section 4 sets the stage by briefly presenting the implemen-
tation of Prolog structures in CLP. Section 5 extends this to bound records and



Sect. 6 further extends it to free records. Section 7 shows how to do free records
in CCP. We show how each stage can be implemented with the efficiency of the
previous stage, when the new generality i1s not used.

3.1 General Constraints Over Trees

The underlying structure of our rational feature tree theory contains three do-
mains, namely trees, sorts and features. Every domain has an infinite number
of values. In a general formulation of tree constraints, we consider the following
five basic constraints:

— A sort constraint Sort(z,y) holds if and only y is a sort and the root of the
tree x is labeled with y.

— A feature constraint Feature(z,y, z) holds if and only if y is a feature and
the tree x has the subtree z at the feature y.

— An arity constraint Arity(xz, F') holds if and only if F' is a set of features and
the tree & has subtrees exactly at the features appearing in ¥, and at no
other features. We say that F is the arity® of z.

— An equality constraint * = y holds if and only if x and y describe the same
feature trees.

— A record constraint Record(x) holds if and only if z is a tree.

In this general form, all arguments of the constraints are variables or values from
the particular domains (trees, sorts, features, or sets of features). Little is known
about the general form [20, 21].

3.2 Restricted Constraints Over Trees

To make these constraints practical, we restrict them. We present three progres-
sively more powerful restricted versions: Prolog structures, bound records, and
free records. We show how to implement all three systems efficiently.

The terminology “bound” and “free” records is chosen for its similarity to
bound and free variables. Both bound and free record constraints describe ra-
tional feature trees. A bound record constraint entails both an arity and a sort
constraint. Other record constraints are free.

Prolog Structures. Prolog structures are trees where the domain of features
1s limited to positive integers, i1.e., for each node, the n edges of its subtrees are
labeled with successive integers 1, ..., n. There are three basic kinds of constraints:
1. A family of functor constraints & = s(y1,...,yn), for all values of s and
nonnegative integers n. Each constraint is equivalent to:

Sort(x, s) N Arity(x, {1,...,n}) A /\ Feature(z, i, y;)
1<i<n

Both s (the functor) and n (the width) must be fixed. The Prolog built-in
funetor(z, s,n) imposes this constraint with existentially quantified feature
constraints, i.e., Sort(z,s) A Arity(z, {1,...,n}). 4

? We call the number of arguments the width.
* Note that Arity(e, {1,...,n}) implies 1 < Vi < n 3y Feature(z, i, y).



2. A family of feature constraints Feature(x,i,y;), for all integers ¢ > 0. These
constraints are written in Prolog as arg(i, x, y;). Imposing one when the arity
and sort are not present gives a run-time error.

3. An equality constraint z = y.

In older Prolog systems, these constraints described a domain of finite trees. In
modern Prolog systems they are based on a domain of rational trees (allowing
cyclic structures).

Bound Records. Bound records generalize Prolog structures to have features
(named fields) instead of successively-numbered fields. There are three basic
kinds of constraints:

1. A family of functor constraints = s(f1 : y1, ..., fn : yn) for any sort s and
distinct features f1, ..., fn. Each constraint is equivalent to:
Sort(x, s) N Arity(x, {f1, ..., fa}) A /\ Feature(z, fi, yi)

1<i<n
The integer n > 0 and arguments s, fi, ..., f, must all be fixed.

2. A family of feature constraints Feature(z, f,y) where f must be fixed. They
can be imposed at any moment, but their resolution is delayed until the arity
and sort are present.

3. An equality constraint z = y.

To create a new bound record, a functor constraint must be given. Since an arity
constraint is always present, the set of features is fixed.

Free Records. Free records are described by more fine-grained constraints. It
is possible to say that a free record has a particular feature without saying
anything else. There are four basic kinds of constraints:
1. A family of sort constraints Sort(z, s), for all different values of s. In each
constraint s is fixed.
2. A family of feature constraints Feature(z, f,y), for all different values of f.
In each constraint f is fixed.
3. A family of arity constraints Arity(x, F), for all different values of F'. In each
constraint F' is a fixed set of features.
4. An equality constraint x = y.
Free records are provided as a logical data structure by the constraint sys-
tem CFT [19]. CFT is a generalization of the rational tree system of Prolog IT
that provides finer-grained constraints and allows to identify subtrees by key-
words rather than by position. There exists an efficient incremental decision
procedure for CFT that decides entailment and disentailment between possibly
existentially-quantified constraints.
As an example of what is described by CFT, consider the two records & and
y given in the following Oz-like notation:
& = person(age : 25)
y = person(age : 25 ...)
This notation is an abbreviation for the two conjunctions:
Sort(xz, person) A Feature(x, age, 25) A Arity(z, {age})
Sort(y, person) A Feature(y, age, 25)



Because of the arity constraint, the record x may have no other features than
age. The record y does not have this restriction.

4 Prolog Structures

This paper extends a WAM-like abstract machine to support record constraints
and concurrency. To fix the notation, this section summarizes briefly the imple-
mentation of Prolog structures in the WAM. For more information about the
WAM, the reader is advised to consult one of many works explaining Prolog im-
plementation techniques [1, 9, 22]. All code fragments are given in a pseudocode
closely resembling C++.

4.1 Representation of Prolog Structures

A Prolog structure is represented by functor and width fields, and an array of
arguments (indexed from 0 to width-1):
enum Tag {REF, STR, ATOM, VAR};
class Term { Tag tag; switch (tag) {
case REF: Term xref; case STR: Structure str;
case ATOM: Atom atom; case VAR: ... } };
class Structure { Atom *sort; int width; Term *args[]; };
The Term class is defined using a variant-record notation. Terms include variables
(VAR), structures (STR), atoms (ATOM), and the reference (REF) which is used for
binding and dereferencing. Using different tags for unbound variables and refer-
ence links is needed for the CCP implementation (see Sect. 7). The Atom type is
used to represent sorts and features. Term uses a tag-on-data representation and
the sort and width are stored as separate words. More optimized representations
are straightforward modifications of this one.

4.2 Operations on Prolog Structures

Two operations are provided on Prolog structures: unification and access to a
structure argument. Unification implements the functor and equality constraints
and argument access implements the feature constraint.

Unification. If neither structure is known statically (i.e., at compile-time), then
the following general rational-tree unification routine 1s called:
#define deref(t) { while (t—tag==REF) t=t—ref; }
#define bind(t,u) { t—tag=REF; t—ref=u; }
bool unify(Term xt1, *t2) {
deref(t1); deref(t2); if (t1==t2) return TRUE;
if (t1—>tag==VAR || t2—tag==VAR) {
if (t1—tag==VAR) bind(t1,t2); else bind(t2,t1);
return TRUE;
} else if (t1—tag==STR &% t2—tag==STR) { ... } }
This routine handles terms that can be unbound variables, structures, and atoms.
In the following sections we discuss extensions of the unification procedure; to
handle bound and free records and to allow for speculative execution.



If one of the two structures is known statically, then the above unification
routine can be statically decomposed into more primitive operations [22]. In the
WAM, each functor constraint is independently decomposed into sort and feature
constraints [1]. The unification X = f(foo, bar) is compiled into the following
abstract machine instructions:

get_structure X, £, 2

unify_constant foo

unify_constant bar
If foo or bar are of other types than atoms, then other specialized unify in-
structions will replace the unify constant instructions. The get_structure in-
struction initializes two global variables called mode and s, which are used by the
unify_constant instructions:

enum mode {READ, WRITE};

Term **xg;

get_structure(Term xt, Atom *sort, imt width) {

deref(t); if (t—tag==VAR) {
Term *nt=newStructure(sort,width); bind(t,nt);
mode=WRITE; s=nt—args;
} else if (t—tag==STR) {
if (t—str.sort#sort || t—str.width#width) fail();
mode=READ; s=t—str.args;
} else fail(); }
We assume the £ail () routine handles unification failure, e.g. in Prolog it restores
the abstract machine state from the topmost choice point. The newStructure
routine allocates a new structure with given sort and width on the heap. The
unify_constant instructions use s to access the structure argument they are to
unify with, and they use mode to decide whether to write a new value there or
to read an existing value.

Argument Access. The arguments of a Prolog structure are numbered from 1
to the width. Accessing a structure 1s done with a single array indexing operation,
augmented with the necessary type checks:
Term *access(Term *t, int i) {
deref (t); if (t—tag#STR) return error();
if (i<1 || t—width<i) return fail();
return t—str.args[i-1]; }

5 Bound Records

The representation of a bound record is closely related to that of a Prolog struc-
ture. Bound records are represented as arrays of terms. With this representation
we can efficiently implement traditional record operations (record creation, ar-
gument access). The following sections describe how unification is modified for
records.

5.1 Representation of Bound Records

To represent bound records, a term is modified to include the term type Record
and its tag REC:



class Term { Tag tag; switch (tag) { case REC: Record rec; ... } };
class Record { Atom *sort; Arity sarity; Term xargs[l; };
The type Record differs from Structure in that it replaces width by arity. The
arity points to a hash table that maps features to offsets into the argument array
args:
class Arity { class { Atom *feat; int index; } table[];
int lookup(Atom *); int getwidth(); ... };
Features are represented as atoms. All arities are kept in a single global table
that is itself a hash table:
class AtomList { Atom *atom; AtomList *next; };
class ArityTable {
class { AtomList *featlist; Arity *arity; } table[];
Arity *insert (AtomList *); ... };
The procedure insert takes an arity given as list of features and searches for
this arity in the table. If this is not found a new arity is created. ArityTable is
needed to ensure that unification of two bound records is fast. Because arities
are globally unique, equality between them can be determined by a single-word
comparison.

5.2 Operations on Bound Records

Two operations are provided on bound records: unification of two records and
access to a record argument. Unification implements the functor and equality
constraints and argument access implements the feature constraint. We show
how both of these operations can be done as efficiently for bound records as for
Prolog structures.

Unification. Two records can be unified with no overhead compared to struc-
ture unification. There are two cases, namely if one of the records 1s statically
known or not. If one is statically known, e.g., the unification is X = f(a : foo b :
bar), then the compiler determines the offsets of features a and b (for example,
1 and 0 in that order) and arranges the unify_constant instructions in order of
increasing offset:

getrecord X, £, [a b]

unify_constant bar

unify_constant foo
The arity [a b] is statically inserted into ArityTable.

If neither record is statically known then the unification routine compares
the sorts and arities. Since the arities are stored in the global ArityTable, this
can be done in constant time by simple pointer comparison. Finally, the argu-
ments are unified in pairs by traversing the two argument arrays in the same
way as for Prolog structures. The only difference is that the width is given by
t—>arity->get width() instead of t->width.

Argument Access. To access field feat of record rec requires looking up the
field’s offset in the record’s hash table:

Term *access(Record *rec, Atom xfeat)

{ return rec—args[rec—arity—lookup(feat)]; }



This requires a single hash table lookup. To make this almost as fast as indexed
argument lookup, we use the caching technique pioneered in Smalltalk imple-
mentations [4] where the record’s type, the feature, and the offset are stored in
the instruction. If the feature feat is statically known then the following routine
can be used:
Term *access_feat(Term *t) { // not in cache = -1

static Arity xarCache=NULL; static int indCache= -1;

deref (t); if (t—tag#REC) return error();

if (t—arity==arCache) return t—args[indCachel;

arCache=t—arity; indCache=arCache—lookup(feat);

if (indCache # -1) return t—args[indCachel;

else { arCache=NULL; return fail(); } }
If the feature is not statically known then an additional static variable featureCache
is needed. In the case of a cache hit, both cases are as efficient as argument ac-
cess to a Prolog structure. For DFKI Oz, we measure that the feature is known
statically in 84% of argument accesses (with a run-time hit ratio of 95%), for a
representative set of large programs totalling several tens of thousands of source
lines.

5.3 Delayed Execution

In the above implementation, the access function fails if the record argument is
a variable. In fact, we instead want to delay the functor and feature constraints
until the argument is bound. The routines access and access feat are easily
extended to support delaying: it suffices to create a suspension, 1.e. a delayed
goal, if the first argument is unbound. This can be done without slowing down
the common case. The code is extended as follows:

Term *access feat(Term *t) { ... if (t—tag#REC) {
if (t—tag==VAR) { t—add suspension(goal); return NULL; }
return fail(); } ... }

We assume goal is a global variable pointing to the current goal being executed.
We now briefly explain how add_suspension is implemented.

Delayed execution is implemented by the concept of a suspension. A suspen-
sion contains all the state necessary to reexecute a goal. We assume the following
data structures to implement suspension handling:

class Term { Tag tag;

switch (tag) { case VAR: SusplList *susplList; ... }
add_suspension(Goal x); wake suspensions(); };

class SusplList { Suspension *susp; Susplist *next; };

class Suspension { Goal xgoal; ... };

We assume that Goal i1s defined elsewhere. A list of suspensions is attached
to every term that can be constrained (e.g., an unbound variable, which can
be bound). All the suspensions are executed (“woken up”) when the term is
constrained (e.g., the variable is bound). A term is extended with a suspension
list and two basic operations: add_suspension adds a goal to the suspension list,
and wake_suspensions empties the suspension list and executes all its goals. A
new type of unbound variable can be added to optimize the common case when
the variable has no suspensions. For more details see [11] (CLP) and [10] (CCP).



6 Free Records

Free records are provided by the constraint system CFT. The solved form of a
free record constraint for x is summarized as follows (where {a1,...,an} C F):

Record(z) A ( Arity(x, ) | T ) A ( Sort(z,s) | T ) A /\ Feature(x, a;, yi)
1<i<n

The constraint Record(x) is mandatory. The other constraints are optional. This
solved form is variable-centered, that is, all information about a variable can be
represented locally at that variable.

For efficiency, free records have two internal representations. When the record
is bound, we use the bound representation (see Sect. 5). When the record is free,
we use the free representation. The transition from free to bound representa-
tion occurs when arity and sort constraints are imposed. This happens inside
unification and 1s invisible to the programmer.

6.1 Representation of Free Records

The free representation must potentially allow an arbitrary number of features
to be added. We implement the free representation by adding a new term type
FreeRecord and its tag FREEREC:
enum Tag {FREEREC, ...};
class Term { Tag tag; switch (tag) {
case FREEREC: FreeRecord frec; SusplList *suspList; }},
class FreeRecord { Atom *sort; DynamicTable *dyntab; };
Since the free representation can be further constrained, it must have a sus-
pension list. The dynamic table contains a mapping from features to feature
values:
class DynamicTable {
int width, size; // current and mazimum no. of elements
class { Atom *feat; Term *value; } table[];
Term *lookup(Atom *feat);
void insert (Atom *feat, Term #value); int get_width();
void iter_start(); Term *itermext(Atom sxfeat); };
This mapping constitutes the solved form of the record constraints. The iter_start
and iter next operations are used to iterate through all elements of the table.
The insert operation doubles the table size if it becomes too full, i.e., when
width/size is greater than a given threshold. Thus insertion is done in constant
amortized time. A threshold of 75% gives reasonable performance.

6.2 Operations on Free Records

Three operations are provided on free records: unification, argument access, and
argument creation. The feature and sort constraints are implemented by access-
ing the sort or a feature value, instantiating the sort, or creating a new feature.
The equality constraint is implemented by unification. The unifier of the free and
bound representations is the bound representation. Therefore unification can be
used to impose the arity constraint. We give no code for the sort operations since
they are obvious simplifications of the feature operations.



Unification. Consider the unification of two free records x; and x5 when both
use the free representation and are statically unknown. The two dynamic tables
must be merged. The new table contains the union of the elements of the original
tables, and corresponding elements are unified. Merging table dt1 into dt2 can
be done efficiently as follows:
class PairlList {
class Pair { Term *t1, *t2; Pair #mnext; } xlist;
PairList () { list=NULL; }
void add(Term *, Term *); // add pair to the list
bool next(Term *x, Term *x); }; // FALSE <f empty
bool merge(DynamicTablexdtl,*dt2) { Atom *f1; Term *tl,xt2;
PairList #pairs=new PairList(); dtl—iter start();
while (tl=dtl—itermext(&f1)) { // next feature of dti1
Term *t2=dt2—lookup(fl); // s <t in dt2?
if (t2) pairs—add(t1,t2); else dt2—insert(fi,t1); }
while (pairs—mnext(&t1,%t2))
if ('unify(t1,t2)) return FALSE;
return TRUE; }
For correctness when unifying cyclic structures, the merging of the tables is
separated from the unification of the pairs of feature values. The PairList tem-
porarily stores the pairs. For efficiency, we merge the smallest table into the
largest. Therefore the unification algorithm is extended as follows:
bool unify(Term xt1, xt2) { ... else if (t1—>tag==FREEREC) {
if (t2—tag==FREEREC) {
DynamicTable *dtl=t1—-frec—dyntab;
DynamicTable *dt2=t2—frec—dyntab;
if (dt1—getwidth() <dt2—getwidth())
{ bind(t1,t2); return (merge(dt1,dt2)); }
else { bind(t2,t1); return (merge(dt2,dt1)); }
} else if (t2—tag==REC) { ... // unify corresp. elements
bind(t1,t2); return TRUE; // result is bound
} else returm FALSE; } ... }
Amortized time complexity is O(min(|T1],|Ts|)), where |T| denotes the size of
table T'.
We extend the get_structure operation to unify with a static bound record:
get_structure(Term xt, Atom xsort, Arity xarity) { ...
else if (t—tag==FREEREC) {
Term #nt=newRecord(sort,arity); mode=READ;
if (lunify(t,nt)) failO; } ... }
In case the argument uses the free representation, a new bound record is created
and the general unification routine is called. Unification of the arguments is done
by the unify instructions as before. This is a simple way to extend get_structure
to handle any number of new types.

Argument Access and Creation. Argument access and creation are done
with the lookup and insert operations. With a reasonable hash function, these
can be done in constant time.



7 Free Records in CCP

So far the record implementation has been presented as an instantiation of the
CLP framework, giving the system CLP(Records), which requires an efficient
incremental test for non-unifiability for CFT. We have presented a unification
algorithm that implements this test. In this section, we extend the implementa-
tion to the CCP framework. See [8, 17, 18] for further information on CCP and
its realization in Oz.

To extend our CLP record implementation to CCP, it is sufficient to sup-
port local computation spaces and to add an incremental entailment check for
record constraints. Local computation spaces are CCP’s counterpart to CLP’s
choice point segments, and can be implemented efficiently with a seripting tech-
nique. The entailment check is implemented as an extension to the unification
algorithm.

7.1 Checking Entailment With Local Spaces

In theory, doing the entailment check is straightforward. To check whether the
constraint store y entails the constraint ¢, create a local space and impose ¢ in
it [8]. If imposing ¢ requires constraining variables in v, then there exist bindings
of these variables that conflict with ¢. Hence the local space is not entailed. If
the constraint store is later strengthened to v A %', then the entailment check is
redone by reexecuting ¢ in the local space. For more details see [10].

For variable-centered constraints, constraining a global variable means bind-
ing 1t. Executing ¢ in the local space may bind global variables. We remove the
bound pairs and store them in a script attached to the local space. If the script
is empty, then 7 entails ¢. The script plays the role of a trail.

The local space has two operations: we can enter it (make it the current
space) and leave it (make its parent space the current space). Entering a space
is done by unifying the binding pairs in the script, thus emptying the script.
Leaving a space means undoing the global variable bindings and saving them in
the script.

Conceptually, whenever 7 is strengthened, ¢ must be reexecuted in the local
space. With the script we can make this reexecution incremental. When the
constraint store v is strengthened, we do not have to reexecute ¢ completely.
It suffices to enter the local space and leave it again. This creates a new script,
which may be smaller or larger than the original.

7.2 Representing Local Spaces

Extending unification to take local spaces into account requires unbound vari-
ables and records to know their home spaces:
class Space { class Script { Term *t1, *t2; } script[];
add(Term *, Term *); leave(); enter(); ... };
Space *current;
class Term { Tag tag; switch (tag) {
case VAR: Space xhome; case REC: Space xhome;
case FREEREC: Space xhome; ... } };



An unbound variable is represented as a term with tag VAR and space home. This
can be encoded in a single word. All terms that can be bound (i.e., VAR, REC, and
FREEREC) have a home space pointer. The bind routine is modified to take the
term’s space into account:
#define isGlobal(t) (t—homez#current)
#define isLocal(t) (t—home==current)
void bind(Term *t, *u) {
if (isGlobal(t)) current—add(t,uw); // tratling
t—tag=REF; t—ref=u; }
All global bindings are stored in the script. The isGlobal test is similar to a trail
condition.

7.3 Checking Entailment

Consider the unification of two free records #;1 and x5 that both have the free
representation. If one is local, then its representation is modified. If both are
global, then a new local record is created and the globals are bound to it. In
both cases the dynamic tables are merged. Depending on the sizes of the tables
and the locality or globality of their spaces, design decisions need to be made
how the tables are merged. There are three possible cases: x; and z5 are both
local, both global, or global and local. The case when both are local has been
taken care of in Sect. 6.

If 21 18 local and z; is global, then the global variable is bound to the local
variable,® and the global table is merged into the local table:

bool unify(Term xt1, *t2) { ...

if (t1—tag==FREEREC && t2—>tag==FREEREC) {
if (isLocal(t1) && isGlobal(t2)) {
DynamicTable xdtl1=t1—frec—dyntab;
DynamicTable *dt2=t2—frec—dyntab;
bind(t2,t1); return (merge(dt2,dt1)); } ... } ... }
This requires looking through only the elements of the global table. It has amor-
tized time complexity O(|Tgiobail)-

If both 21 and s are global, then a new local variable is created which
contains the union of the global tables, and both global variables are bound to
the local variable:

bool unify(Term xt1, *t2) { ...

if (t1—tag==FREEREC && t2—>tag==FREEREC) {
if (isGlobal(t1) &% isGlobal(t2)) {

Term *t=newFreerec(); // make new local record

DynamicTable xdtl1=t1—frec—dyntab;

DynamicTable *dt2=t2—frec—dyntab;

bind(t1,t); bind(t2,t); merge(dtl,t—frec—dyntab);

return (merge(dt2,t—frec—)dyntab)); } ... } ... }
This requires looking through the elements of both tables. It has time complexity
O(|T1| + |T]).

5 Binding must be done in this order, since merging into the global table is very
expensive.



8 Evaluation and Measurements

The record implementation described above has been realized since DFKI Oz
version 1.1 [16]. We provide measurements of the implementation’s performance
as well as its complexity. All benchmarks are run under Linux 2.0 on a single
processor of an unloaded Pentium 133 MHz PC with 512 K second-level cache
and 64 MB RAM. We compare DFKI Oz 1.9.13 (emulated) [16] with SICStus
Prolog 3 (emulated) [15]. Garbage collection is turned off. In each benchmark,
the basic operation is put in a tail-recursive loop and loop overhead is subtracted.

The evaluation is done in four parts. First, we evaluate the space cost of free
records relative to bound records. Then we compare the time cost of Oz tuples
(which are exactly Prolog structures) and Oz records (both bound and free) to
structures in SICStus Prolog. Tuples are a subtype of bound records and use the
same representation. Record features comprise atoms and integers (including
bignums). Third, we do a more thorough comparison of bound records and free
records from the NLP viewpoint. Finally, we summarize the implementation
effort that was required to add records to DFKI Oz.

8.1 Space Evaluation

The memory usage of free records is within a small constant factor of bound
records. The following numbers are taken from the DFKI Oz implementation.
A bound record with f features takes 2 + f words of memory. It uses a tag-
on-pointer representation. A free record with f features takes 7 + 2 - 201082 f1
words if f < 4 and 74 2 - 2M1982(//0.75)1 words otherwise. This gives an average
of T4+ 2f words if f < 4 and 7+ 3.6 f words otherwise. That is, records with four
features or less are particularly memory efficient. The parameters 4 and 0.75 can
be adjusted for the best time/space trade-off.

The arity of a bound record is stored as an entry in the system’s symbol
table. The entry gives the mapping between feature names and offsets into the
record. The entry’s size i1s 8+ 6 f words on average. This becomes significant only
if there are few bound records with the same arity. Free records do not have an
entry in the symbol table.

A free record is implemented as a resizable hash table that uses semi-quadratic
probing. That is, probe number i > 0 is offset by é(¢i + 1)/2 from the initial hash
value. If the table size s is a power of two, then one can show that s successive
probes will access all entries of the table. Therefore the hash table can be com-
pletely filled. The current system fills the table completely for f < 4 and to 75%
otherwise.

System Creation Argument access Unification
DFKI Oz 1.9.13 free records 7750 966 3975
bound records 391 206 890
tuples 395 207 869
SICStus 3 tuples 354 341 566

Table 1. Times for 600,000 basic operations (in ms)



8.2 Time Evaluation

Table 1 compares execution times for 600,000 basic operations. The times are
accurate to within 5%. We define the three basic operations (term creation, argu-
ment access, term unification) as follows. Term creation builds a single term with
three constant arguments. Argument access accesses a single constant argument
three times. Term unification unifies two terms with three constant arguments
each.

We see that the two emulators are competitive. These numbers confirm the
result that records in CCP introduce no inefficiencies when used as Prolog struc-
tures. Tuples use the same representation as bound records without penalty. Ar-
gument access for bound records in Oz is fast because of caching (see Sect. 5.2).
It 1s faster than SICStus because it is implemented as an emulator instruction,
which has lower function-call overhead than a built-in operation. The time (but
not the space) for creation of free records is large because creation is incremental.
It is currently not possible to create a free record with a given set of features as
a single operation. Doing so would require compile-time knowledge of the hash
function, which is not yet implemented.

Operation Time (ms) [Memory (KB)
1 feat|10 feat|1 feat| 10 feat
Bound records (explicit suspensions)| 2120| 18200|16700| 145000
Free records (solved form) | 1100| 7470|10900| 29800

Table 2. Measurement of suspensions versus the solved form in DFKI Oz

8.3 Records for NLP

Free records are useful for NLP applications. For such applications, it is im-
portant to calculate with individual features without being obliged to create a
bound record that contains all features. Consider for example a large parse tree.
Free records allow one to efficiently express paths in this tree from the root to
a leaf. Using bound records would require each node of such a path to contain
all possible children, instead of just the child that is of current interest. A single
path breaks even as a free record if there are at least 7 features at each node
(le,24+f>74+2-1).

A second example is the sample HPSG parser in the DFKI Oz release. This
parser is 1.6 times faster and uses half the memory when using free records in-
stead of bound records. This improved performance is not due to the efficient
expression of paths in the parse tree. There is a second improvement that oc-
curs when accessing features that do not yet exist. In a free record, the feature
can be added directly, resulting in a CFT solved form. In a bound record, a
suspension must be created to wait until the feature is added. We measure the
difference between adding a feature and creating a suspension. Consider these
two scenarios:

— Bound records (explicit suspensions). Access each feature of an un-
bound variable once, which creates a suspension for each feature.



— Free records (solved form). Incrementally create a free record by adding
one feature at a time.
Table 2 compares the time and memory usage of 150,000 basic operations, for 1
feature and for 10 features. The solved form is from 1.9 (one feature) to 2.4 (ten
features) times faster than a set of suspensions. The solved form uses from 1.5
(one feature) to 4.9 (ten features) times less memory than a set of suspensions.

8.4 Implementation Effort

The bound record implementation of DFKI Oz 1.0 was extended to free records.
This required adding 2000 C++ lines to the emulator and 1000 Oz lines to the
browser.® This is 10% of the basic emulator machinery and 5% of the browser.
This required 10 man-weeks for the emulator and 2 man-weeks for the browser.
The extension was simplified by using the emulator’s support for constrained
variables and scripting. Constrained variables are closely related to the attribut-

ed variables of ECLiPSe [11].

9 Conclusions and Further Work

We have shown how to extend CLP and CCP systems with efficient and flexible
record constraints. We have demonstrated for DFKI Oz:

1. Bound records have the same time and space efficiency as structures in Prolog
in a high-performance emulator implementation.

2. Free records have the same amortized time and space complexity as Prolog
structures in a high-performance emulator implementation. Furthermore, the
actual time needed is within a factor of five and the actual space needed is
within a factor of four. The single exception to this conclusion in the current
system is the time (not space) of free record creation, whose constant factor
is larger since the record is created incrementally.

3. In addition to their additional constraint solving power, free records are more
efficient than bound records for NLP in two ways. First, a feature constraint
is at least twice as fast and uses less memory when represented in a CFT
solved form than when represented as a suspension. Second, free records
allow the efficient expression of paths in trees.

4. Adding a record constraint system to CCP is not much harder than adding a
record constraint system to CLP. The CCP paradigm replaces choice points
by local computation spaces and requires a single additional constraint oper-
ation, namely entailment. With local spaces, entailment can be implemented
as an extension to unification.

Free records are a fully-integrated and robust part of DFKI Oz since version
1.1. They are being used by our group in a NLP project on concurrent grammar
processing. Further refinements of the record implementation (including more
optimizations, compile-time analysis, additional primitive operations, and more
powerful constraints) must wait for experience from this project and other prac-
tical applications.

% The browser is a concurrent tool used to inspect Oz data structures.
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