
PARIS RESEARCH LABORATORY

d i g i t a l

December 1993

36

Peter Van Roy

1983–1993:
The Wonder Years of

Sequential Prolog Implementation

36

1983–1993:
The Wonder Years of

Sequential Prolog Implementation

Peter Van Roy

December 1993

Publication Notes

This report is an edited version of an article to appear in the Journal of Logic Programming,
tenth anniversary issue, 1994, Elsevier North-Holland.

Contact address of author:

Peter Van Roy
vanroy@prl.dec.com

Digital Equipment Corporation
Paris Research Laboratory
85 Avenue Victor Hugo
92500 Rueil-Malmaison, France

c
 Digital Equipment Corporation 1993

This work may not be copied or reproduced in whole or in part for any commercial purpose. Permission
to copy in whole or in part without payment of fee is granted for non-profit educational and research
purposes provided that all such whole or partial copies include the following: a notice that such copying
is by permission of the Paris Research Laboratory of Digital Equipment Centre Technique Europe, in
Rueil-Malmaison, France; an acknowledgement of the authors and individual contributors to the work;
and all applicable portions of the copyright notice. Copying, reproducing, or republishing for any other
purpose shall require a license with payment of fee to the Paris Research Laboratory. All rights reserved.

ii

Abstract

This report surveys the major developments in sequential Prolog implementation during the
period 1983–1993. In this decade, implementation technology has matured to such a degree
that Prolog has left the university and become useful in industry. The survey is divided into four
parts. The first part gives an overview of the important technical developments starting with the
Warren Abstract Machine (WAM). The second part presents the history and the contributions
of the major software and hardware systems. The third part charts the evolution of Prolog
performance since Warren’s DEC-10 compiler. The fourth part extrapolates current trends
regarding the evolution of sequential logic languages, their implementation, and their role in
the marketplace.

Résumé

Ce rapport passe en revue les developpements majeurs d’implantation de Prolog séquentiel
pendant les années 1983–1993. Dans cette période, la technologie d’implantation a mûri
considérablement. Prolog n’est plus seulement utilisé dans les universités mais est devenu
utile pour l’industrie. La revue est divisée en quatre parties. La première donne un résumé
des développements techniques importants à partir de la machine abstraite de Warren, la WAM
(“Warren Abstract Machine”). La seconde partie présente l’histoire et les contributions des
logiciels et matériels. La troisième partie montre l’évolution des performances des systèmes
Prolog depuis le compilateur DEC-10 de Warren. La quatrième partie extrapole, à partir des
tendances actuelles, l’évolution des langages logiques séquentiels, leur implantation, et leur
impact économique.

iii

Keywords

Implementation, Prolog, logic programming, WAM, Warren Abstract Machine, abstract inter-
pretation, compiler, survey, history.

Acknowledgements

The author thanks the many developers and pioneers in the logic programming community. In
particular, the following friends and colleagues helped tremendously by recollecting past events
and providing critical comments: Abder Aggoun for ECRC and CHIP, Dave Bowen for Quintus
Prolog, Mats Carlsson for SICS, SICStus Prolog, and its native code timing measurements,
Koen De Bosschere, Saumya Debray for SB-Prolog and QD-Janus, Bart Demoen and André
Mariën for Leuven and BIM Prolog, Marc Gillet for IBM Prolog and its timing measurements,
Manuel Hermenegildo for MA3 and PLAI, Bruce Holmer, Tim Lindholm for Quintus Prolog,
Peter Ludemann, Micha Meier for ECRC, SEPIA, the KCM, and ECLiPSe, Richard Meyer
for putting up with this paper black hole, Lee Naish and Jeff Schultz for MU-Prolog and
NU-Prolog and their timing measurements, Hiroshi Nakashima, Katsuto Nakajima, Takashi
Chikayama, and Kouichi Kumon for ICOT, the PSI machines and their timing measurements,
Ulrich Neumerkel for the VAM and BinProlog, Jacques Noyé for ECRC and the KCM,
Fernando Pereira for Edinburgh, DEC-10 Prolog, C-Prolog, and Quintus Prolog, Christian
Pichler for IF/Prolog and SNI-Prolog, Andreas Podelski, Olivier Ridoux for MALI and�Prolog,
Konstantinos Sagonas for SB-Prolog, XSB and its timing measurements, Bart Sano for the
VLSI-BAM, Kazuo Seo for Pegasus and the Pegasus-II timing measurements, Zoltan Somogyi
for NU-Prolog and databases, Vason Srini for the VLSI-PLM, Péter Szeredi for MProlog and
its timing measurements, Paul Tarau for BinProlog, Andrew Taylor, Evan Tick for ICOT,
David H.D. Warren for Edinburgh, DEC-10 Prolog, and Quintus Prolog, David Scott Warren
for Stony Brook, SB-Prolog, the SLG-WAM, and XSB, S. Bharadwaj Yadavalli, and finally,
the referees for a host of good suggestions. I also thank Hervé Touati and Chris Weikart for
their excellent job of proofreading. Finally, a special thank you for TEXnician par excellence
Hassan Aı̈t-Kaci.

iv

Contents

1 Introduction 1
1.1 The Influence of the WAM : 1
1.2 Organization of the Survey : 2

2 The Technological View 2
2.1 Before the Golden Age : 3

2.1.1 The First Compiler: DEC-10 Prolog : : : : : : : : : : : : : : : : : 3
2.1.2 The Simplification Principle : 4
2.1.3 Bridging the Gap Between DEC-10 Prolog and the WAM : : : : : : 4

2.2 The Warren Abstract Machine (WAM) : : : : : : : : : : : : : : : : : : 5
2.2.1 The Relationship of the WAM to Prolog and Imperative Languages 6
2.2.2 Data Structures and Memory Organization : : : : : : : : : : : : : 7
2.2.3 The Instruction Set : 9
2.2.4 Optimizations to Minimize Memory Usage : : : : : : : : : : : : : 12
2.2.5 How to Compile Prolog to the WAM : : : : : : : : : : : : : : : : : 14

2.3 WAM Extensions for Other Logic Languages : : : : : : : : : : : : : : 14
2.3.1 CHIP : 14
2.3.2 clp(FD) : 16
2.3.3 SLG-WAM : 16

2.4 Beyond the WAM: Evolutionary Developments : : : : : : : : : : : : : 17
2.4.1 Chinks in the Armor : 17
2.4.2 How to Compile Unification: The Two-Stream Algorithm : : : : : : 18
2.4.3 How to Compile Backtracking: Clause Selection Algorithms : : : : 22
2.4.4 Native Code Compilation : 24
2.4.5 Global Analysis : 27
2.4.6 Using Types when Compiling Unification : : : : : : : : : : : : : : 31

2.5 Beyond the WAM: Radically Different Execution Models : : : : : : : : 33
2.5.1 The Vienna Abstract Machine (VAM) : : : : : : : : : : : : : : : : 33
2.5.2 BinProlog : 34

3 The Systems View 35
3.1 Software Sagas : 35

3.1.1 MProlog : 36
3.1.2 IF/Prolog and SNI-Prolog : 37
3.1.3 MU-Prolog and NU-Prolog : 37
3.1.4 Quintus Prolog : 38
3.1.5 BIM Prolog (ProLog by BIM) : 39
3.1.6 IBM Prolog : 40
3.1.7 SEPIA and ECLiPSe : 40
3.1.8 SB-Prolog and XSB : 41
3.1.9 SICStus Prolog : 41
3.1.10 Aquarius Prolog : 42

v

3.2 Hardware Histories : 44
3.2.1 ICOT and the PSI Machines : 45
3.2.2 ECRC and the KCM : 46
3.2.3 The Aquarius Project: The PLM and the VLSI-BAM : : : : : : : : 47

4 The Evolution of Performance 49

5 Future Paths in Logic Programming Implementation 51
5.1 Low Level Trends : 51
5.2 High Level Trends : 53
5.3 Prolog and the Mainstream : 54

6 Summary and Conclusions 54

References 56

1983–1993: The Wonder Years of Sequential Prolog Implementation 1

De Prolog van Tachtig was zonder twijfel prachtig,
maar de Prolog van Thans maakt ook geen kwade kans.
– Dr. D. von Tischtiegel, Ongerijmde Rijmen.

1 Introduction

This report is a personal view of the progress made in sequential Prolog implementation from
1983 to 1993, supplemented with learning of the wise [10]. 1983 was a serendipitous year
in two ways, one important and one personal. In this year David H. D. Warren published his
seminal technical report [163] on the New Prolog Engine, which was later christened the WAM
(for Warren Abstract Machine).1 This year also marks the beginning of my research career in
logic programming.

The title reflects my view that the period 1983–1993 represents the “coming of age” of sequential
Prolog implementation. In 1983, most Prolog programmers (except for a lucky few at Edinburgh
and elsewhere) were still using interpreters. In 1993 there are many high quality compilers,
and the fastest of these are approaching or exceeding the speed of imperative languages. Prolog
has found a stable niche in the marketplace. Commercial systems are of high quality with a full
set of desirable features and enough large industrial applications exist to prove the usefulness
of the language [102, 103].

1.1 The Influence of the WAM

The development of the WAM in 1983 marked the beginning of a veritable “gold rush” for
Prolog developers, all eager for that magical moment when their very own system would be up
and running.

David Warren presented the WAM in a memorable talk at U.C. Berkeley in October 1983.
This talk was full of mystery, and I remember being amazed at how append/3 was compiled
into WAM instructions. The sense of mystery was enhanced by the strange names of the
instructions: put, get, unify, variable, value, execute, proceed, try, retry, and trust.

The WAM is simple on the outside (a small, clean instruction set) and complex on the inside
(the instructions do complex things). This simultaneously helped and hindered implementation
technology. Because the WAM is complex on the inside, for a long time many people used
it “as is” and were content with its level of performance. Because the WAM is simple on the
outside, it was a perfect environment for extensions. After a few years, people were extending
the WAM left and right (see Section 2.3). Papers on yet another WAM extension for a new
logic language were (and are) very common.

The quickest way to get an implementation of a new logic language is to write an interpreter in

1The name WAM is due to the logic programming group at Argonne National Laboratory.

Research Report No. 36 December 1993

2 Peter Van Roy

Prolog. In the past, the quickest way to get an efficient implementation was usually to extend the
WAM. Nowadays, it is often better to compile the language into an existing implementation. For
example, the QD-Janus system [39] is a sequential implementation of Janus (a flat committed-
choice language) on top of SICStus Prolog (see Section 3.1.9). Performance is reasonable
partly because SICStus provides efficient support for coroutining.

If the language is sufficiently different from Prolog, then it is better to design a new abstract
machine. For example, the�Prolog language [100] was implemented with MALI [20]. �Prolog
generalizes Prolog with predicate and function variables and typed �-terms, while keeping
the familiar operational and least fixpoint semantics. MALI is a general-purpose memory
management library that has been optimized for logic programming systems.

1.2 Organization of the Survey

The survey is divided into four parts. The first part (Section 2) gives an overview from the
viewpoint of implementation technology. The second part (Section 3) gives an overview from
the viewpoint of the systems (both software and hardware) that were responsible for particular
developments. The vantage points of the two parts are complementary, and there is some
overlap in the developments that are discussed. The third part (Section 4) summarizes the
evolution of Prolog performance from the perspective of the Warren benchmarks. The fourth
part (Section 5) extrapolates current implementation trends into the future. Finally, Section 6
recapitulates the main developments and concludes the survey.

A large number of Prolog systems have been developed. The subset included in this survey
covers systems that are popular (e.g., SICStus Prolog), are good examples of a particular class
of systems (e.g., CHIP for constraint languages), or are especially innovative (e.g., Parma).
They all have implementations on Unix workstations. I have done my best to contact everyone
who has made a significant contribution. There are Prologs that exist only on other platforms,
e.g., on PCs (Arity, LPA, Delphia) and on Lisp machines (LMI, Symbolics). There is relatively
little publicly available information about these systems, and therefore I do not cover them in
this report.

2 The Technological View

This section gives an overview of Prolog implementation technology. Section 2.1 gives a
brief history of the pre-WAM days (before 1983) and presents the main principle of Prolog
compilation. Section 2.2 presents and justifies the WAM as Warren originally defined it.
Section 2.3 explores a few of the myriad systems it has engendered. Section 2.4 highlights
recent developments that break through its performance barrier. Section 2.5 presents some
promising execution models different from the WAM.

Prolog systems can be divided into two categories: structure-sharing or structure-copying.
The idea of structure sharing is due to Boyer and Moore [19]. Structure copying was first
described by Bruynooghe [21, 22]. The distinction is based on how compound terms are

December 1993 Digital PRL

1983–1993: The Wonder Years of Sequential Prolog Implementation 3

represented. In a structure-sharing representation, all compound terms are represented as a
pair of pointers (called a molecule): one pointer to an array containing the values of the term’s
variables, and another pointer to a representation of the term’s nonvariable part (the skeleton).
In a structure-copying representation, all compound terms are represented as record structures
with one word identifying the main functor followed by an array of words giving its arguments.
It is faster to create terms in a structure-sharing representation. It is faster to unify terms in
a structure-copying representation. Memory usage of both techniques is similar in practice.
Early systems were mostly structure-sharing. Modern systems are mostly structure-copying.
The latter includes WAM-based systems and all systems discussed in this survey, except when
explicitly stated otherwise.

2.1 Before the Golden Age

The insight that deduction could be used as computation was developed in the 1960’s through
the work of Cordell Green and others. Attempts to make this insight practical failed until
the conception of the Prolog language by Alain Colmerauer and Robert Kowalski in the early
1970’s. It is hard to imagine the leap of faith this required back then: to consider a logical
description of a problem as a program that could be executed efficiently. The early history is
presented in [32], and interested readers should look there for more detail.

The work on Prolog was preceded by the Absys system. Absys (from Aberdeen System)
was designed and implemented at the University of Aberdeen in 1967. This system was an
implementation of pure Prolog [46]. For reasons that are unclear but that are probably cultural,
Absys did not become widespread.

Several systems were developed by Colmerauer’s group. The first system was an interpreter
written in Algol-W by Philippe Roussel in 1972. This interpreter served to give users enough
programming experience so that a refined second system could be built. The second system
was a structure-sharing interpreter written in Fortran in 1973 by Gérard Battani, Henri Meloni,
and René Bazzoli, under the supervision of Roussel and Colmerauer. This system’s operational
semantics and its built-ins are essentially the same as in modern Prolog systems, except for the
setof/3 and bagof/3 built-ins which were introduced by David Warren in 1980 [162]. The system
had reasonable performance and was very influential in convincing people that programming
in logic was a viable idea.

In particular, David Warren from the University of Edinburgh was convinced. He wrote the
Warplan program during his two month stay in Marseilles in 1974 [30]. Warplan is a general
problem solver that searches for a plan (a list of actions) that transforms an initial state to a
goal state.

2.1.1 The First Compiler: DEC-10 Prolog

Back in Edinburgh and thinking about a dissertation topic, Warren was intrigued by the idea
of building a compiler for Prolog. An added push for this idea was the fact that the parser for
the interpreter was written in Prolog itself, and hence was very slow. It took about a second to

Research Report No. 36 December 1993

4 Peter Van Roy

parse each clause and users were beginning to complain.

By 1977 Warren had developed DEC-10 Prolog, the first Prolog compiler [159]. This landmark
system was built with the help of Fernando Pereira and Luis Pereira.2 It is structure-sharing
and supports mode declarations. It was competitive in performance to Lisp systems of the
day and was for many years the highest performance Prolog system. Its syntax and semantics
became the de facto standard, the “Edinburgh standard”. The 1980 version of this system had
a heap garbage collector and last call optimization (see Section 2.2.4) [160]. It was the first
system to have either. An attempt to commercialize this system failed because of the demise of
the DEC-10/20 machines and because of bureaucratic problems with the British government,
which controlled the rights of all software developed with public funds.

2.1.2 The Simplification Principle

The main principle in compiling Prolog is to simplify each occurrence of one of its basic
operations (namely, unification and backtracking). This principle underlies every Prolog
compiler. Compiling Prolog is feasible because this simplification is so often possible. For
example, unification is often used purely as a parameter passing mechanism. Most such cases
are easily detected and compiled into efficient code.

It is remarkable that the simplification principle has continued to hold to the present day. It
is valid for WAM-based systems, native code systems, and systems that do global analysis.
In the WAM the simplification is done statically (at compile-time) and locally [79]. The
simplification can also be done dynamically (with run-time tests) and globally. An example of
dynamic simplification is clause selection (see Section 2.4.3). Examples of global simplification
are global analysis (see Sections 2.4.5 and 2.4.6) and the two-stream unification algorithm (see
Section 2.4.2). The latter compiles the unification of a complete term as a whole, instead of
compiling each functor separately like the WAM.

2.1.3 Bridging the Gap Between DEC-10 Prolog and the WAM

An important early system is the C-Prolog interpreter, which was developed at Edinburgh in
1982 by Fernando Pereira, Luis Damas, and Lawrence Byrd. It is based on EMAS Prolog, a
system completed in 1980 by Luis Damas. C-Prolog was one of the best interpreters, and is still
a very usable system. It did much to create a Prolog programming community and to establish
the Edinburgh standard. It is cheap, robust, portable (it is written in C), and fast enough for
real programs.

There were several compiled systems that bridged the gap between the DEC-10 compiler (1977–
1980) and the WAM (1983) [17, 28]. They include Prolog-X and NIP (New Implementation of
Prolog). David Bowen, Lawrence Byrd, William Clocksin, and Fernando Pereira at Edinburgh
were the main contributors in this work. These systems miss some of the WAM’s good
optimizations: separate choice points and environments, argument passing in registers instead
of on the stack, and clause selection (indexing). David Warren left Edinburgh for SRI in 1981.

2They are not related.

December 1993 Digital PRL

1983–1993: The Wonder Years of Sequential Prolog Implementation 5

Prolog

set of clauses

predicate; set of clauses
with same name and arity

clause; axiom

goal invocation

unification

backtracking

logical variable

recursion

Imperative language

program

procedure definition;
nondeterministic case statement

one branch of a nondeterministic case statement;
if statement; series of procedure calls

procedure call

parameter passing; assignment;
dynamic memory allocation

conditional branching; iteration;
continuation passing

pointer manipulation

iteration

Figure 1: The Correspondence Between Logical and Imperative Concepts

According to Warren, the WAM design was an outcome of his own explorations and was not
influenced by this work.

2.2 The Warren Abstract Machine (WAM)

By 1983 Warren had developed the WAM, a structure-copying execution model for Prolog that
has become the de facto standard implementation technique [163]. The WAM defines a high-
level instruction set that maps closely to Prolog source code. This section concisely explains
the original WAM. In particular, the many optimizations of the WAM are given a uniform
justification. This section assumes a basic knowledge of how Prolog executes [85, 115, 130]
and of how imperative languages are compiled [3].

For several years, Warren’s report was the sole source of information on the WAM, and its terse
style gave the WAM an aura of inscrutability. Many people learned the WAM by osmosis,
gradually absorbing its meaning. Nowadays, there are texts that give lucid explanations of the
WAM and WAM-like systems [4, 85].

There are two main approaches to efficient Prolog implementation: emulated code and native
code. Emulated code compiles to an abstract machine and is interpreted at run-time. Native
code compiles to the target machine and is executed directly. Native code tends to be faster
and emulated code tends to be more compact. With care, both approaches are equally portable
(see Section 5.1). The original WAM is designed with an emulated implementation in mind.
For example, its unification instructions are more suited to emulated code (see Section 3.1.4).
The two-stream unification algorithm of Section 2.4.2 is more suited to native code.

Research Report No. 36 December 1993

6 Peter Van Roy

2.2.1 The Relationship of the WAM to Prolog and Imperative Languages

The execution of Prolog is a natural generalization of the execution of imperative languages
(see Figure 1). It can be summarized as:

Prolog = imperative language
+ unification
+ backtracking

As in imperative languages, control flow is left to right within a clause. The goals in a
clause body are called like procedures. A goal corresponds to a predicate. When a goal is
called, the clauses in the predicate’s definition are chosen in textual order from top to bottom.
Backtracking is chronological, i.e., control goes back to the most recently made choice and
tries the next clause. Hence, Prolog is a somewhat limited realization of logic programming,
but in practice its trade-offs are good enough for a logical and efficient programming style to
be possible [113].

The WAM mirrors Prolog closely, both in how the program executes and in how the program
is compiled:

WAM = sequential control (call/return/jump instructions)
+ unification (get/put/unify instructions)
+ backtracking (try/retry/trust instructions)
+ optimizations (to use as little memory as possible)

The WAM has a stack-based structure, of which a subset is similar to imperative language
execution models. It has call and return instructions and local frame (environment) management
instructions. It is extended with instructions to perform unification and backtracking. These
form the core of the WAM. Around this core, the WAM has added optimizations intended to
reduce memory usage.

Prolog as executed by the WAM defines a close mapping between the terminology of logic and
that of an imperative language (see Figure 1). Predicates correspond to procedures. Procedures
always have a case statement as the first part of their definition. Clauses correspond to the
branches of this case statement. Variables are scoped locally to a clause.3 Goals in a clause
correspond to calls. Unification corresponds to parameter passing and assignment. Other
features do not map directly: backtracking, the single-assignment nature, and the modification
of control flow with the cut operation. Cut is a language feature that increases the determinism
of a program by removing choice points.

The WAM is a good intermediate language in the sense that writing a Prolog-to-WAM compiler
and a WAM emulator are both straightforward tasks. A compiler and emulator can be built
without a deep understanding of the internals of Prolog or the WAM.

3Global variables and self-modifying code are possible with the assert/1 and retract/1 built-ins. These built-ins
are potentially nonlogical and certainly inefficient, and hence should be infrequent.

December 1993 Digital PRL

1983–1993: The Wonder Years of Sequential Prolog Implementation 7

P Program counter
CP Continuation Pointer (top of return stack)
E current Environment pointer (in local stack)
B most recent Backtrack point (in local stack)
A top of local stack
TR top of TRail
H top of Heap
HB Heap Backtrack point (in heap)
S Structure pointer (in heap)
Mode Mode flag (read or write)
A1, A2, ... Argument registers
X1, X2, ... temporary variables

Table 1: The Internal State of the WAM

2.2.2 Data Structures and Memory Organization

Prolog is a dynamically typed language, i.e., variables may contain objects of any type at run-
time. Hence, it must be possible to determine the type of an object at run-time by inspection.4

In the WAM, terms are represented as tagged words: a word contains a tag field and a value
field. The tag field contains the type of the term (atom, number, list, or structure). See [52] for
an exhaustive presentation of alternative tagging schemes. The value field is used for different
purposes depending on the type: it contains the value of integers, the address of unbound
variables and compound terms (lists and structures), and it ensures that each atom has a value
different from all other atoms. Unbound variables are implemented as self-referential pointers,
i.e., they point to themselves. When two variables are unified, one of them is modified to point
to the other.5 Therefore it may be necessary to follow a chain of pointers to access a variable’s
value. This is called dereferencing the variable.

Table 1 shows how the internal state of the WAM is stored in registers. The purpose of
most registers is straightforward. The HB register caches the value of H stored in the most
recent choice point. The S register is used during unification of compound terms (with
arguments): it points to an argument being unified. All arguments can be accessed one by one
by successively incrementing S. Some instructions have different behaviors during read and
write mode unification; the mode flag is used to distinguish between them (see Section 2.2.3).
In the original WAM, the mode flag is implicit (it is encoded in the program counter).

The external state (stored in memory) is divided into six logical areas (see Figure 2): two
stacks for the data objects, one stack (the PDL) to support unification, one stack (the trail) to
support the interaction of unification and backtracking, one area as code space, and one area
as a symbol table.

4Unless the type can be determined at compile-time.
5More precisely, variable-variable unification can be implemented with a Union-Find algorithm [91]. With this

algorithm, unifying n variables requires O(n�(n)) time, where �(n) is the inverse Ackermann function.

Research Report No. 36 December 1993

8 Peter Van Roy

trail push-down
list (PDL)

Three kinds of data objects on stacks

Support for
backtracking

and unification

code area and
symbol table

TR PDL

P

HB

local stack

E

A

Yn
...
Y2
Y1
CP
CE

H'
TR'
BP
B'

BCP
BCE
A1

...
Am

B

E
nv

ir
on

m
en

t
C

ho
ic

e
po

in
t

global stack
(heap)

H

S

Tn
...
T2
T1

F/N D
at

a
te

rm

Figure 2: The External State of the WAM� The global stack or heap. This stack holds lists and structures, the compound data
terms of Prolog.� The local stack. This stack holds environments and choice points. Environments (also
known as local frames or activation records) contain variables local to a clause. Choice
points encapsulate execution state for backtracking, i.e., they are continuations. A variant
model, the split-stack, uses separate stacks for environments and choice points. There
is no significant performance difference between the split-stack and the merged-stack
models. The merged-stack model uses more memory if choice points are created.� The trail. This stack is used to save locations of bound variables that have to be unbound
on backtracking. Saving the addresses of variables is called trailing, and restoring them
to being unbound is called detrailing. Not all variables that are bound have to be trailed.
A variable must only be trailed if it continues to exist on backtracking, i.e., if its location
on the global or local stack is older than the top of this stack stored in the most recent
choice point. This is called the trail condition. Performing it is called the trail check.

December 1993 Digital PRL

1983–1993: The Wonder Years of Sequential Prolog Implementation 9� The push-down list (PDL). This stack is used as a scratch-pad during the unification of
nested compound terms. Often the PDL does not exist as a separate stack, e.g., the local
stack is used instead.� The code area. This area holds the compiled code of a program. It is not recovered on
backtracking.� The symbol table. This area is not mentioned in the original article on the WAM. It
holds various kinds of information about the symbols (atoms and structure names) used
in the program. It is not recovered on backtracking. It contains the mapping between
the internal representation of symbols and their print names, information about operator
declarations, and various system-dependent information related to the state of the system
and the external world. Because creating a new entry is relatively expensive, symbol
table memory is most often not recovered on backtracking. It may be garbage collected.
Systems that manipulate arbitrary numbers of new atoms (e.g., systems with a database
interface) must have garbage collection.

It is possible to vary the organization of the memory areas somewhat without changing anything
substantial about the execution. For example, some systems have a single data area (sometimes
called the firm heap) that combines the code area and symbol table.

2.2.3 The Instruction Set

The WAM instruction set, along with a brief description of what each instruction does, is
summarized in Table 2. Unification of a variable with a data term known at compile-time
is decomposed into instructions to handle the functor and arguments separately (see Fig-
ures 3 and 4). There are no unify list and unify structure instructions; they are left out
because they can be implemented using the existing instructions. The switch on constant and
switch on structure instructions fall through if A1 is not in the hash table. The original WAM
report does not talk about the cut operation, which removes all choice points created since
entering the current predicate. Implementations of cut are presented in [4, 85]. A variable
stored in the current environment (pointed to by E) is denoted by Yi. A variable stored in a
register is denoted by Xi or Ai. A register used to pass arguments is denoted by Ai. A register
used only internally to a clause is denoted by Xi. The notation Vi is shorthand for Xi or Yi. The
notation Ri is shorthand for Xi or Ai.

A useful optimization is the variable/value annotation. Instructions annotated with “variable”
assume that their argument has not yet been initialized, i.e., it is the first occurrence of the
variable in the clause. In this case, the unification operation is simplified. For example, the
get variable X2, A1 instruction unifies X2 with A1. Since X2 has not yet been initialized, the
unification reduces to a move. Instructions annotated with “value” assume that their argument
has been initialized (i.e., all later occurrences of the variable). In this case, full unification is
done.

Figures 3 and 4 give the Prolog source code and the compiled WAM code for the predicate
append/3. The mapping between Prolog and WAM instructions is straightforward (see Sec-

Research Report No. 36 December 1993

10 Peter Van Roy

Loading argument registers (just before a call)
put variable Vn, Ri Create a new variable, put in Vn and Ri.
put value Vn, Ri Move Vn to Ri.
put constant C, Ri Move the constant C to Ri.
put nil Ri Move the constant nil to Ri.
put structure F=N, Ri Create the functor F=N, put in Ri.
put list Ri Create a list pointer, put in Ri.

Unifying with registers (head unification)
get variable Vn, Ri Move Ri to Vn.
get value Vn, Ri Unify Vn with Ri.
get constant C, Ri Unify the constant C with Ri.
get nil Ri Unify the constant nil with Ri.
get structure F=N, Ri Unify the functor F=N with Ri.
get list Ri Unify a list pointer with Ri.

Unifying with structure arguments (head unification)
unify variable Vn Move next structure argument to Vn.
unify value Vn Unify Vn with next structure argument.
unify constant C Unify the constant C with next structure argument.
unify nil Unify the constant nil with next structure argument.
unify void N Skip next N structure arguments.

Managing unsafe variables (an optimization; see Section 2.2.4)
put unsafe value Vn, Ri Move Vn to Ri and globalize.
unify local value Vn Unify Vn with next structure argument and globalize.

Procedural control
call P, N Call predicate P, trim environment size to N.
execute P Jump to predicate P.
proceed Return.
allocate Create an environment.
deallocate Remove an environment.

Selecting a clause (conditional branching)
switch on term V , C, L, S Four-way jump on type of A1.
switch on constant N, T Hashed jump (size N table at T) on constant in A1.
switch on structure N, T Hashed jump (size N table at T) on structure in A1.

Backtracking (choice point management)
try me else L Create choice point to L, then fall through.
retry me else L Change retry address to L, then fall through.
trust me else fail Remove top-most choice point, then fall through.
try L Create choice point, then jump to L.
retry L Change retry address, then jump to L.
trust L Remove top-most choice point, then jump to L.

Table 2: The Complete WAM Instruction Set

December 1993 Digital PRL

1983–1993: The Wonder Years of Sequential Prolog Implementation 11

append([], L, L).
append([XjL1], L2, [XjL3]) :- append(L1, L2, L3).

Figure 3: The Prolog Code for append/3

append/3: switch on term V1,C1,C2,fail Jump if variable, constant, list, structure.
V1: try me else V2 Create choice point if A1 is variable.
C1: get nil A1 Unify A1 with nil.

get value A2, A3 Unify A2 and A3.
proceed Return to caller.

V2: trust me else fail Remove choice point.
C2: get list A1 Start unification of list in A1.

unify variable X4 Unify head: move head into X4.
unify variable A1 Unify tail: move tail into A1.
get list A3 Start unification of list in A3.
unify value X4 Unify head: unify head with X4.
unify variable A3 Unify tail: move tail into A3.
execute append/3 Jump to beginning (last call optimization).

Figure 4: The WAM Code for append/3

tion 2.2.5). The switch instruction jumps to the correct clause or set of clauses depending on
the type of the first argument. This implements first-argument selection (indexing). The choice
point (try) instructions link a set of clauses together. The get instructions unify with the head
arguments. The unify instructions unify with the arguments of structures.

The same instruction sequence is used to take apart an existing structure (read mode) or to
build a new structure (write mode). The get instructions set the mode flag, which determine
whether execution proceeds in read mode or write mode. For example, if get list Ai sees an
unbound variable argument, it sets the flag to write mode. If it sees a list argument, it sets the
flag to read mode. If it sees any other type, it fails, i.e., it backtracks by restoring state from
the most recent choice point. The unify instructions have different behavior in read and write
mode. The get instructions initialize the S register and the unify instructions increment the S
register.

Choice point handling (backtracking) is done by the try instructions. The try me else L
instruction creates a choice point, i.e., it saves all the machine registers on the local stack. It is
compiled just before the code for the first clause in a predicate. It causes a jump to label L on
backtracking. The try L instruction is identical to try me else L, except that the destinations
are switched: try immediately jumps to L. The retry me else L instruction modifies a choice
point that already exists by changing the address that it jumps to on backtracking. It is compiled
with clauses after the first but not including the last. This means that a predicate with n clauses
is compiled with n� 2 retry me else instructions. The trust me else fail instruction removes
the top-most choice point from the stack. It is compiled with the last clause in a predicate.

Research Report No. 36 December 1993

12 Peter Van Roy

2.2.4 Optimizations to Minimize Memory Usage

The core of the WAM is straightforward. What makes it subtle are the added optimizations.
Because of these optimizations the WAM is extremely memory efficient. For programs with
sufficient backtracking, a garbage collector is not necessary. The optimizations are explained in
terms of the following classification of memory, from least to most costly to allocate, deallocate,
and reuse.� Registers (arguments, temporary variables). These are available at any time without

overhead.� Short-lived memory (environments on the local stack). This memory is recovered on
forward execution, backtracking, and garbage collection.� Long-lived memory (choice points on the local stack, data terms on the heap). This
memory is recovered only on backtracking and garbage collection.� Permanent memory (the code area and symbol table). This memory is recovered only
by garbage collection.

With this classification, the optimizations can be explained as follows.� Prefer registers to memory. There are three optimizations in this category.

– Argument passing. All procedure arguments are passed in registers. This is im-
portant because Prolog is procedure-call intensive. For example, the most efficient
way to iterate is through recursion. Backtracking can express iteration as well, but
less efficiently.

– The return address. Inside a procedure, the return address of the immediate caller
is stored in the CP register. This optimization is closely related to the leaf routine
calling protocol done in imperative language compilers.

– Temporary variables. Temporary variables are variables whose lifetimes do not
cross a call. That is, they are not used both before and after a call. Therefore
they may be kept in registers. This definition of temporary variables simplifies and
slightly generalizes Warren’s original definition.� Prefer short-lived memory to long-lived memory. There are three optimizations in

this category.

– Permanent variables. Permanent variables are variables that need to survive a
call. They may not be kept in registers, but must be stored in memory. They are
given a slot in the environment. This makes it easy to deallocate their memory if
they are no longer needed after exiting the predicate (see unsafe variables, below).

– Environment trimming (last call optimization). Environments are stored on
the local stack and recovered on forward execution just before the last call in a

December 1993 Digital PRL

1983–1993: The Wonder Years of Sequential Prolog Implementation 13

procedure body. This optimization is known as the tail recursion optimization or
more accurately, the last call optimization. This is based on the observation that
an environment’s space does not need to exist after the last call, since no further
computation is done in the environment. The space can be recovered before entering
the last call instead of after it returns. Because execution will never return to the
procedure, the last call may be converted into a jump. For recursive predicates,
this converts recursion into iteration, since the jump is to the first instruction of the
predicate. The WAM generalizes the last call optimization to be done gradually
during execution of a clause: the environment size is reduced (“trimmed”) after
each call in the clause body, so that only the information needed for the rest of the
clause is stored. Trimming increases the amount of memory that is recovered by
garbage collection.

– Unsafe variables. A variable whose lifetime crosses a call must be allocated an
unbound variable cell in memory (i.e., in an environment or on the heap). If it is
sure that the unbound variable will be bound before exiting the clause, then the
space for the cell will not be referenced after exiting the clause. In that case the cell
may be allocated in the environment and recovered with environment trimming. In
the other case one is not sure that the unbound variable will be bound. This leads
to the following space-time trade-off. The fastest alternative is to always create
the variable on the heap. The most memory-efficient alternative is to create the
variable on the environment and just before trimming the environment, to move the
variable to the heap if it is unbound. The WAM has chosen the second alternative,
and the variable being tested is referred to as an “unsafe variable”.� Prefer long-lived memory to permanent memory. Data objects (variables and com-

pound terms) disappear on backtracking, and hence all allocated memory for them may
be put on the heap. In a typical implementation this is not quite true. The symbol table
and code area are not put on the heap, because their modifications (i.e., newly interned
atoms and asserted clauses) are permanent.

Measurements have been done of the unsafe variable trade-off for Quintus Prolog (see Sec-
tion 3.1.4) and the VAM (see Section 2.5.1) [76]. Tim Lindholm measured the increase of
peak heap usage for Quintus on a set of programs including Chat-80 [161] and the Quintus test
suite and compiler. He found that the first alternative increases peak heap usage by 50 to 100%
for Quintus (see Section 3.1.4). Because this leads to increased garbage collection and stack
shifting, Lindholm concluded that unsafe variables are useful.

Andreas Krall measured the increase of peak heap usage on a series of small and medium-size
programs for the VAM, which stores all unbound variables on the heap. He measured increases
of from 4% to 26%, with an average of 15%. Because unsafe variables impose a run-time
overhead (two comparisons instead of one for the trail check and run-time tests for globalizing
variables), Krall concluded that unsafe variables are not useful.

The VAM and Quintus execution models are significantly different, so the VAM and Quintus
measurements cannot be compared directly. My own view is that unsafe variables are useful

Research Report No. 36 December 1993

14 Peter Van Roy

since the run-time overhead is small and the reduction of heap usage is significant.

2.2.5 How to Compile Prolog to the WAM

Compiling Prolog to the WAM is straightforward because there is a close mapping between
lexical tokens in the Prolog source code and WAM instructions. Figure 5 gives a scheme
for compiling Prolog to the WAM. For simplicity, the figure omits register allocation and
peephole optimization. This compilation scheme generates suboptimal code. One can improve
it by generating switch instructions to avoid choice point creation in some cases. For more
information on WAM compilation see [116, 148].

The clauses of predicate p/3 are compiled into blocks of code that are linked together with
try instructions. Each block consists of a sequence of get instructions to do the unification of
the head arguments, followed by a sequence of put instructions to set up the arguments for
each goal in the body, and a call instruction to execute the goal. The block is surrounded by
allocate and deallocate instructions to create an environment for permanent variables. The
last call is converted into a jump (an execute instruction) because of the last call optimization
(see Section 2.2.4).

2.3 WAM Extensions for Other Logic Languages

Many WAM variants have been developed for new logic languages, new computation models,
and parallel systems. This section presents three significant examples:� The CHIP constraint system, which interfaces the WAM with three constraint solvers.� The clp(FD) constraint system, which implements a glass box approach that allows

constraint solvers to be written at the user level.� The SLG-WAM, which extends the WAM with memoization.

2.3.1 CHIP

CHIP (Constraint Handling In Prolog) [2] is a constraint logic language developed at ECRC (see
Section 3.1.7 for more information on ECRC). The system has been commercialized by Cosytec
to solve industrial optimization problems. CHIP is the first compiled constraint language. In
addition to equality over Prolog terms, CHIP adds three other computation domains: finite
domains, boolean terms, and linear inequalities over rationals. The CHIP compiler is built on
top of the SEPIA WAM-based Prolog compiler. The system contains a tight interface between
the WAM kernel and the constraint solvers. The system extends the WAM to the C-WAM (C
for Constraint). The C-WAM is quite complex: it has new data structures and over one hundred
new instructions. Many instructions exist to solve commonly-occurring constraints quickly.

Measurements of early versions of CHIP showed that a large amount of trailing was being done,
to the point that many programs quickly ran out of memory. This happened because the trailing

December 1993 Digital PRL

1983–1993: The Wonder Years of Sequential Prolog Implementation 15

p(A,B,C) :- q(A,Z,W), r(W,T,B), ..., z(A,X).

p(E,F,G) :- k(X,F,P), m(S,T), ...

p(Q,R,S) :- ...

...

choice
point

p/3: try_me_else L2

L2: retry_me_else L3

Ln: trust_me_else fail

code for
clause 1

code of
last clause

allocate

(put arguments)

call q/3

call r/3

deallocate
execute z/2

(put arguments)

(put arguments)

Create environment.

Unify with caller arguments.(get arguments)

Load arguments and call.

.

.

.

Load arguments and call.

Remove environment.
Last call is a jump.

.

.

.

.

Original Prolog predicate

 Compiled WAM code

.

.

.

.

A single compiled clause

code for
clause 2

Figure 5: How to Compile Prolog to the WAM

Research Report No. 36 December 1993

16 Peter Van Roy

was done with the WAM’s trail condition (see Section 2.2.2). This condition is appropriate for
equality constraints, which are implemented by unification in the WAM. For more complex
constraints, the condition is wasteful because a variable’s value is often modified several times
between two choice points. The CHIP system reduces memory usage by introducing a different
trail condition called “time-stamping” [1]. Each data term is marked with an identifier of the
choice point segment the term belongs to (see Section 2.3.1). Trailing is only necessary if the
current choice point segment is different from the segment stored in the term. Time-stamping
is an essential technique for any practical constraint solver.

2.3.2 clp(FD)

The clp(FD) system [29, 40] is a finite domain solver integrated into a WAM emulator. It
was built by Daniel Diaz and Philippe Codognet at INRIA (Rocquencourt, France). It uses a
glass box approach. Instead of considering a constraint solver as a black box (in the manner of
CHIP), a set of primitive operations is added that allows the constraint solver to be programmed
in the user language. The resulting system outperforms the hard-wired finite domain solver of
CHIP.

In clp(FD), a single primitive constraint is added to the system, namely the range constraint X
in R, where X is a domain variable and R is a range (e.g., 1..10). Instead of just using constant
ranges, the idea is to introduce what are known as indexical ranges, i.e., ranges of the form
f(Y)..g(Y) or h(Y) where f(Y), g(Y), and h(Y) are functions of the domain variable Y. A set
of these functions that do local propagation is built-in. For example, the system provides the
constraints X in min(Y)..max(Y) and X in dom(Y) with the obvious meanings. Arithmetic
constraints such as X=Y+Z and boolean constraints such as X=Y and Z can be written in terms
of indexical range constraints.

Indexical range constraints are smoothly integrated into the WAM by providing support for
domain variables and suspension queues for the various indexical functions [40]. The time-
stamping technique of CHIP is used to reduce trailing.

2.3.3 SLG-WAM

Memoization is a technique that caches already-computed answers to a predicate. By adding
memoization to Prolog’s resolution mechanism, one obtains an execution model that can do
both top-down and bottom-up execution. For certain algorithms, this model executes simple
logical definitions with a lower order of complexity than a pure top-down execution would.
For example, the recursive definition of the Fibonacci function runs in linear time rather than
exponential time. More realistic examples are parsing and dynamic programming.

One realization of memoization is OLDT resolution (Ordered Linear resolution of Definite
clauses with Tabulation) [131]. A recent generalization, SLG resolution [27], handles negation
as well. This has been implemented in an abstract machine, the SLG-WAM (previously
called the OLDT-WAM), and realized in the XSB system (see Section 3.1.8). The current
implementation executes Prolog code with less than 10% overhead relative to the WAM as

December 1993 Digital PRL

1983–1993: The Wonder Years of Sequential Prolog Implementation 17

implemented in XSB, and is much faster than deductive database systems [132]. An important
source of overhead is the complex trail: it is a linked list whose elements contain the address
and old contents of a cell.

2.4 Beyond the WAM: Evolutionary Developments

The WAM was a large step towards the efficient execution of Prolog. From the viewpoint of
theorem proving, Prolog is extremely fast. But there is still a large gap between the efficiency
of the WAM and that of imperative language implementations. As people started using Prolog
for standard programming tasks, the gap became apparent and people started to optimize their
systems. This section discusses the gap and some of the clever ideas that have been developed
to close it.

2.4.1 Chinks in the Armor

This section lists the limits to Prolog performance and their causes.� WAM instructions are too coarse-grained to perform much optimization. For example,
many WAM instructions perform an implicit dereference operation, even if the compiler
can determine that such an operation is unnecessary in a particular case. In practice,
dereference chains are short: dynamic measurements on real programs show that two
thirds are of length zero (no memory reference is required), one third are of length one,
and <1% are of length two or greater [145]. Despite these statistics, dereferencing is
expensive. For example, Aquarius on the VLSI-BAM, a high-performance system with
hardware support, spends 9% of its total execution time doing dereferencing [152].� The majority of predicates written by human programmers are intended to give at most
one solution, i.e., they are deterministic. These predicates are in effect case statements,
yet they are too often compiled in an inefficient manner using the full generality of
backtracking (which implies saving the machine state and repeated failure and state
restoration). The WAM’s first-argument selection is inadequate to compile these predi-
cates efficiently (see Section 2.4.3). Measurements of Prolog applications support this
assertion:

– Tick shows that shallow backtracking (backtracking from clause to clause within a
single predicate) dominates even for well-written deterministic programs. Choice
point references constitute about half (45–60%) of all data references [143].

– Touati and Despain show that at least 40% of all choice point and fail operations
can be removed through optimization [145].� The single-assignment nature of Prolog (i.e., a variable can only be assigned one value

in forward execution) needs to be handled well. In a straightforward implementation it is
time-consuming to modify large data structures incrementally, because the programmer
may use copying of terms to represent incremental changes, and the implementation
will not optimize this copying away. This problem, also known as the copy avoidance

Research Report No. 36 December 1993

18 Peter Van Roy

problem, is a special case of the general problem of efficiently representing state modi-
fication in logic. It is impossible to use large data structures with the same efficiency as
in procedural languages unless the compiler is able to introduce destructive assignment
(overwriting of memory locations) in the implementation. Section 5.1 gives suggestions
on how to get around this problem.� Prolog has dynamic typing (variables may contain values of any type) and dynamic
memory allocation (all data objects are allocated at run-time). Both of these cost
execution time. They should be compiled statically wherever possible.� Programming style has a large effect on a program’s efficiency. Prolog programming is
at a high level of abstraction, so it hides many details of the implementation from the
programmer, making it difficult to improve efficiency when it is important to do so. For
example, adding a single cut can make the difference between a program that runs fast
and one that thrashes. This is possible even if the cut does not change the operational
semantics of the program. The thrashing behavior is caused by a pile-up of choice
points during deterministic (forward) execution. Because the choice points encapsulate
execution states that remain accessible through potential backtracking, their memory is
not recovered by garbage collection.� The apparent need for architectural support. So-called “general-purpose” architectures
are in fact optimized for imperative languages and number crunching. To run Prolog
equally well, either the compiler must do more work, or conceivably the architecture
should be modified. Some experiments have been done with architectures optimized for
Prolog (among others, the PSI-II, KCM, and VLSI-BAM, see Section 3.2), but the true
architectural needs of Prolog are a moving target. They depend on the execution model
and the sophistication of the compiler. As better compilers have been developed, the
perceived architectural needs of Prolog have been getting smaller and smaller. One need
likely to stay for a long time is a fast memory system. Prolog’s dynamic nature requires
frequent pointer dereferencing. There are no compilation techniques on the horizon that
are likely to reduce the resulting need for a fast memory system (see Section 5.1).

2.4.2 How to Compile Unification: The Two-Stream Algorithm

This section presents the two-stream unification algorithm, an elegant scheme for compiling
unification that is more efficient than the WAM for native code implementation. Rough
measurements comparing unification times of the VLSI-PLM (a microcoded WAM) and the
VLSI-BAM (see Section 3.2.3) show a speedup factor of two to three [153] in favor of the
latter. This algorithm was independently reinvented at least four times by different people at
about the same time: Mohamed Amraoui at the Université de Rennes I [8], André Mariën
and Bart Demoen at BIM and KUL [86, 88], Kent Boortz at SICS [16], and Micha Meier at
ECRC [94]. Write mode propagation was discussed earlier by Andrew Turk [146].

Figures 6 and 8 show how the unification X=f(g(A),h(B)) is compiled in the WAM and by the
two-stream algorithm. The actions of the instructions are represented as primitive constraints
of two kinds: functor constraints (such as X=(f/2)) and argument constraints (such as X.1=Y).

December 1993 Digital PRL

1983–1993: The Wonder Years of Sequential Prolog Implementation 19

get_structure f/2, A1
unify_variable X4
unify_variable X5
get_structure g/1, X4
unify_value A2
get_structure h/1, X5
unify_value A3

X=(f/2)
X.1=Y
X.2=Z
Y=(g/1)
Y.1=A
Z=(h/1)
Z.1=B

Variable

X
A
B
Y
Z

WAM instructions Operations
(as primitive constraints)

Register

A1
A2
A3
X4
X5

Figure 6: The WAM Compilation of the Unification X=f(g(A),h(B))

Functor and argument constraints correspond to the get and unify instructions in the WAM.
An important advantage of the primitive constraint representation over the WAM is that the
constraints may be executed in any order. In addition to providing a powerful conceptual
description of the WAM, primitive constraints are useful in compiling more advanced logic
languages [6, 84, 117].

The WAM compiles unification as a single sequence of instructions (see Figure 6). This has
several problems:� Write mode is not propagated to subterms. For example, the unification X=f(g(a))

is compiled as X=f(T), T=g(a). These two unifications are compiled independently. If
X is unbound, the fact that T is created as an unbound variable in the first unification
is not propagated to the second unification. This means a superfluous dereference, a
superfluous trail check, and a superfluous binding.� Instructions have modes. All instructions have two modes of execution, read mode and
write mode. The current mode is stored in a global mode flag, which is set in get list and
get structure instructions and tested in all unify instructions. Some implementations
(e.g., the intended implementation of the original WAM report, and Quintus) encode the
mode flag in the program counter, which avoids the testing overhead.� Poor translation to native code. The straightforward method for generating native code
is to macro-expand the WAM instructions. This means that the read and write mode parts
are interleaved, which results in many jumps. This is less of a problem on a microcoded
machine since microcode jumps are often free (the destination address is part of the
microword).

The key insight is that unification should be compiled into two instruction streams, one for read
mode and one for write mode, with conditional jumps between them in both directions. With

Research Report No. 36 December 1993

20 Peter Van Roy

if S=1 jump L'

Selectively executed
subsequence

Sequence of
instructions

set S←0

set S←1
jump L L:

L':

W streamR stream

Figure 7: How to Execute a Particular Subsequence with Low Overhead

two streams one avoids superfluous operations while keeping a linear code size. The practical
problems that remain are how to configure the instructions so they work correctly despite being
jumped to from different places, and how to minimize bookkeeping overhead for the jumps.

Figure 7 illustrates a technique to execute any subsequence of a main instruction sequence with
very little overhead. The idea is to give the main sequence an identifier (say, the integer 0) and
the subsequence a different identifier (say, the integer 1). Then a single conditional jump is all
that is required. If the subsequence is non-contiguous, then a single conditional jump to the next
segment is needed per contiguous segment of the subsequence. If more than one subsequence
has to be selected, then a unique identifier is needed for each one. The subsequences may be
overlapping.

With the idea of selective execution in mind, arrange the primitive constraints of the term
according to a depth-first traversal of the term (Figure 8). The resulting sequence satisfies the
property that each subterm corresponds to a contiguous sequence of instructions. This is all
one needs to implement the algorithm. At run-time, unification follows the read mode stream,
and selectively executes contiguous parts of the write mode stream for subterms to be created.

A reduction of bookkeeping overhead is possible based on a second property of the sequence.
Nested terms correspond to nested sequences of instructions. Number each subterm with
an integer representing its nesting level within the term. With this numbering, an adjacent
sequence of conditional jumps back to the read mode stream can be collapsed into a single

December 1993 Digital PRL

1983–1993: The Wonder Years of Sequential Prolog Implementation 21

Ly':

Lz':
Lx':

Lx:

Ly:

Lz:

X=(f/2)
X.1=Y
X.2=Z

Y=(g/1)
Y.1=A
if S=1 jump Ly'

Z=(h/1)
Z.1=B
if S=1 jump Lz'
if S=0 jump Lx'

if var(X) set S←0, jump Lx
X=(f/2)
X.1=Y
X.2=Z
if var(Y) set S←1, jump Ly
Y=(g/1)
Y.1=A

if var(Z) set S←1, jump Lz
Z=(h/1)
Z.1=B

Read mode
instructions

Write mode
instructions

Figure 8: The Two-Stream Compilation of the Unification X=f(g(A),h(B))

conditional jump (changing the condition from “=” to “�”). In Figure 8, the two conditional
jumps if S=1 jump Lz’ and if S=0 jump Lx’ can be rewritten as the single jump if S�0 jump
Lz’. To collapse the maximum number of jumps, reorder the arguments of all subterms to unify
the most complex subterms last.

The advantages of the two-stream algorithm are:� Low overhead. The bookkeeping overhead is a small constant factor. The only book-
keeping is the set of jumps and register moves needed to manage the selective execution
of subsequences. This is small compared to the work done in the primitive constraints.
There is no explicit mode flag.� Downward propagation of write mode. The write mode of a term is propagated at
compile-time to all of its subterms. There are no superfluous dereferences, trail checks,
or bindings.� Upward propagation of read mode. The read mode of a term is propagated at compile-
time to its siblings and ancestors.� Linear code size. This contrasts with the algorithm of [150], which expands all cases
without any sharing. That algorithm has zero bookkeeping overhead, but exponential
code sizes occur in practice.� Efficient expansion to native code. The number of instructions generated is about dou-

Research Report No. 36 December 1993

22 Peter Van Roy

ble that of the WAM, but the instructions themselves have less than half the complexity.
The primitive constraints of Figure 8 are expanded differently in the read mode and write
mode streams. Essentially, the internal operations of the WAM instructions have been
made visible and arranged in an efficient order. There are no jumps inside the primitive
constraints, but only between them, and then only when it is necessary to choose between
read and write mode.

2.4.3 How to Compile Backtracking: Clause Selection Algorithms

This section surveys the clause-selection algorithms that have been developed since the WAM.
The WAM supports first-argument selection. It has instructions that can choose clauses based
on the main functor of the first argument. If all of a predicate’s clauses contain different main
functors, then a hash table can be constructed and calling the predicate will avoid a choice
point creation when the first argument is not a variable. In the general case, predicates can
be compiled to create at most one choice point between entry and the execution of the first
clause [24, 148]. The original WAM report describes a two-level indexing scheme which
creates up to two choice points [163].

Many programs cannot profit from first-argument selection. For example, selection may depend
on more than one argument. The following example is extracted from an actual program. The
first two arguments are integer inputs, the third is an output (all numbers are in base two):

get relop(2’001, 2’001, 2’000).
get relop(2’001, 2’010, 2’011).
get relop(2’001, 2’011, 2’000).
... 33 more clauses ...

The second example is a predicate in which selection depends on arithmetic comparisons
instead of unification only:

max(A, B, C) :- A�B, C=B.
max(A, B, C) :- A>B, C=A.

In general, selection is possible if the compiler can determine that only a subset of the clauses
in the definition can possibly succeed, given some particular argument types at the call. An
appropriate definition of type is given in Section 2.4.5.

An ideal clause-selection algorithm would generate code that has the following properties:� It takes advantage of argument types to try only the clauses that can possibly succeed.� It avoids all useless choice point creations.� Its size is linear in the size of the program.

December 1993 Digital PRL

1983–1993: The Wonder Years of Sequential Prolog Implementation 23� It creates choice points incrementally, i.e., choice points contain only that part of the
execution state that needs to be saved.� Its performance degradation is gradual if insufficient type information is known.

There is no published algorithm that satisfies all these conditions. There are published algo-
rithms that satisfy some of the conditions and do better clause selection than the WAM. Several
algorithms create a selection tree or graph, i.e., a series of tests that determine which subset
of clauses to try given particular arguments (e.g., [167]). Generating a naive selection tree
may result in exponential code size for predicates encountered in real-world programs. The
following algorithms are noteworthy:� Van Roy, Demoen, and Willems [149] present a compilation algorithm that generates

a naive selection tree and creates choice points incrementally. The algorithm compiles
clauses with four entry points, depending on whether or not there are alternative clauses,
and whether or not a previously executed clause has created a choice point. The algorithm
was not implemented.� Carlsson [25] has implemented a restricted version of the above algorithm in SICStus
Prolog. Meier [92] has done a similar implementation in KCM-SEPIA. Choice point
creation is split into two parts. The try and try me else instructions are modified to
create a partial choice point that only contains P and TR. A new instruction, neck, is
added. If a partial choice point exists when neck is executed, then the remaining registers
are filled in. Two entry points are created for each clause: one when there are alternative
clauses, and one where there are none. A neck instruction is only included in the first
case. In SICStus, this algorithm results in a performance improvement of 7% to 15% for
four large programs, at a cost of a 5% to 10% increase in code size.� Hickey and Mudambi [61] present compilation algorithms to generate a tree of tests
and to minimize work done in backtracking. One of their selection algorithms results
in a tree that has a quadratic worst-case size. They improve choice point management.
The try instruction only stores registers needed in clauses after the first clause. The
retry and trust instructions restore only those registers needed in the clause and remove
the registers not needed in subsequent clauses. The latter operation lets the garbage
collector recover more memory. The technique of improved choice point management
was independently invented earlier by Andrew Turk [146] and later by Van Roy [153].
The technique has not yet been quantitatively evaluated.� Kliger [71, 72] presents a compilation algorithm that generates a directed acyclic graph
of tests (a “decision graph”). The algorithm was extended by Korsloot and Tick for
nondeterminate (“don’t know”) predicates [74]. The graph has two important properties.
First, it never does worse than first-argument selection. Second, it has size linear in
the number of clauses. This follows from the property that each clause corresponds to
a unique path through the graph. Linear size is essential when compiling predicates
consisting of a large number of clauses.

Research Report No. 36 December 1993

24 Peter Van Roy� The Aquarius system [153, 154] produces a selection graph for disjunctions containing
three kinds of tests: unifications, type tests, and arithmetic comparisons. It uses heuristics
to decide which tests to do first and whether to use linear search or hashing for table
lookup. The nodes in the graph partition the tests occurring in the predicate. Each node
corresponds to a subset of these tests. Unifications are only used as tests if it can be
deduced from the predicate’s type information that they will be executed in read mode.
The type enrichment transformation adds type information to a predicate that lacks it. The
performance of the resulting code is therefore always at least as good as first-argument
selection. The factoring transformation allows the system to take advantage of tests on
variables inside of terms, by performing the term unification once for all occurrences of
the term. The problem with Aquarius selection is similar to that of the naive selection
tree: if too much type information is given, then the selection graph may become too
large.� The Parma system [140] uses techniques similar to Aquarius. It produces efficient
indexing code for the same three kinds of tests. To improve the clause selection, Parma
uses transformations analogous to type enrichment and factoring. It uses optimal binary
search for table lookup. Taylor’s dissertation discusses how to choose between linear
search, binary search, jump tables, and hashing.

2.4.4 Native Code Compilation

One way to improve the performance of a WAM-based system is to add instructions. For
example, instructions can be added to do efficient arithmetic and to index on multiple arguments.
Common instruction sequences can be collapsed into single instructions. This is quick to
implement, but it is inherently a short-term solution. As the number of instructions increases,
the system becomes increasingly unwieldy.

The main insight in speeding up Prolog execution is to represent the code in terms of simple
instructions. The first published experiments using this idea were done in 1986 by Komatsu
et al [73, 135] at IBM Japan. These experiments gave the first demonstration that specialized
hardware is not essential for high-performance execution of Prolog. Compilation is done in
three steps. The first step is to compile Prolog into a WAM-like intermediate code. In the
second step the WAM-like code is translated into a directed graph. The graph is optimized
using rewrite rules. In the final step, the result is translated into PL.8 intermediate code and
compiled with an optimizing compiler. For several small programs, this system demonstrated
a fourfold performance improvement using mode hints given by the programmer.

Around 1988, Andrew Taylor and I independently set about building full systems (Parma and
Aquarius) that compile directly to a simple instruction set, using global analysis to provide
information for optimizations. Both Parma and Aquarius bypass WAM instructions entirely
during compilation. We were confident that the fine granularity of the instruction set would
allow us to express all optimizations. Taylor presented results for his Parma system in two
important papers [138, 139]. The first paper presents and evaluates a practical global analysis
technique that reduces the need for dereferencing and trailing. The second paper presents

December 1993 Digital PRL

1983–1993: The Wonder Years of Sequential Prolog Implementation 25

BAM Code SPARC Code

procedure(append/3).
 test(ne,tlst,r(0),L1).
L2:
 pragma(align(r(0),2)).
 pragma(tag(r(0),tlst)).
 move([r(0)],r(3)).
 pragma(tag(r(0),tlst)).
 move([r(0)+1],r(0)).
 pragma(tag(r(2),tvar)).
 move(tlst^r(h),[r(2)]).
 pragma(push(term(2))).
 pragma(push(cons)).
 push(r(3),r(h),1).
 move(tvar^r(h),r(2)).
 adda(r(h),1,r(h)).
 test(eq,tlst,r(0),L2).
L1:
 equal(r(0),tatm^[],fail).
 pragma(tag(r(2),tvar)).
 move(r(1),[r(2)]).
 return.

 ...
L2:
 add %l3, 0, %o0
 add %l3, 8, %l3
 ld [%g1-1], %g4
 ld [%g1+3], %g1
 st %g4, [%l3-9]
 add %l3, -5, %g3
 and %g1, 3, %o0
 cmp %o0, 1
 be,a L2
 st %l3, [%g3]
 ...

Kernel Prolog Code

A,L1 = r(0) = %g1
C,L3 = r(2) = %g3
X = r(3) = %g4
(heap) r(h) = %l3
(temp) %o0

tlst = 1
tvar = 0
r(h) has tlst tag

Registers:

Tags:

append(A,B,C) :-
 (cons(A) ->

 A=[X|L1],

 C=[X|L3],

 append(L1,B,L3)
 ;
 A=[],

 B=C
).

Figure 9: The Aquarius SPARC Code for append/3 in Naive Reverse

performance results for Parma on a MIPS processor. The first results for Aquarius were
presented in [63], which describes the VLSI-BAM processor and its simulated performance.
A second paper measures the effectiveness of global analysis in Aquarius [152]. Both the
Parma and Aquarius systems vastly outperform existing implementations. They prove the
effectiveness of compiling directly to a low-level instruction set using global analysis to help
optimize the code.

An important idea in both systems is uninitialized variables. An uninitialized variable is
defined to be an unbound variable that is unaliased, i.e., there is exactly one pointer to it. An
uninitialized variable can be represented more efficiently than a standard WAM variable. Beer
first proposed the idea of uninitialized variables after he noticed that most unbound variables
in the WAM are bound soon afterwards [12]. For example, this is true for output arguments
of predicates. WAM variables are created as self-referencing pointers in memory, and need
to be dereferenced and trailed before being bound. This is time-consuming. Beer represents
variables as pointers to memory words that have not been initialized. He introduces several
new tags for these variables and keeps track of them at run-time. The creation of uninitialized
variables is simpler and they do not have to be dereferenced or trailed. Binding them reduces
to a single store operation. In Parma and Aquarius, these variables are derived by analysis at
compile-time. They use the same tag as other variables.

Aquarius supports a further specialization: the “uninitialized register” variable. This idea is

Research Report No. 36 December 1993

26 Peter Van Roy

due to Bruce Holmer. This variable is an output that is passed in a register. No memory is
allocated for uninitialized registers, unlike standard uninitialized variables. This reduces the
space advantage of unsafe variables. The use of uninitialized registers allows Aquarius to
run recursive integer functions faster than popular implementations of C [154].6 In principle,
all uninitialized variables can be transformed into uninitialized registers. In practice, to avoid
losing last call optimization (see Section 2.2.4) only a subset is transformed [153]. The trade-off
with last call optimization has not yet been studied quantitatively.

Figure 9 shows the Aquarius intermediate codes (kernel Prolog and BAM code) and the SPARC
code generated for append/3 in naive reverse. See Figures 3 and 4 for the Prolog source code
and WAM code. Kernel Prolog is Prolog without syntactic sugar and extended with efficient
conditionals, arithmetic, and cut.

The BAM (Berkeley Abstract Machine) is an execution model with a memory organization
similar to the WAM. The BAM defines a load-store instruction set supplemented with tagged
addressing modes, pragmas, and five Prolog-specific instructions (dereference, trail, general
unification, choice point manipulation, and environment manipulation). Pragmas are not
executable but give information that improves the translation to machine code.

In the SPARC code, tags are represented as the low two bits of a 32-bit word. This is a common
representation that has low overhead for integer arithmetic and pointer dereferencing [52]. The
tag of a pointer is always known at compile-time (it is put in a pragma). When following
a pointer, the tag is subtracted off at zero cost with the SPARC’s register+displacement
addressing mode. The compiler derives the following types for append/3:

:- mode((append(A,B,C) :-
ground(A), rderef(A),
ground(B), rderef(B),
uninit(C))).

An uninitialized argument is represented by uninit . A ground argument contains no
unbound variables. A recursively dereferenced (rderef) argument is dereferenced and its
arguments are recursively dereferenced. This type generalizes the DEC-10 mode:

:- mode append(++, ++, �).

which states that the first two arguments are ground and the last argument is an unbound
variable.

6I posted this result to the Internet newsgroup comp.lang.prolog in February 1991, with the comment: “Don’t
believe it any more that there is an inherent performance loss when using logic programming”. There was a barrage
of responses, ranging from the incredulous (and incorrect) comment “Obviously, he’s comparing apples and oranges,
since the system must be doing memoization” to the encouraging “That’s telling ’em Peter”.

December 1993 Digital PRL

1983–1993: The Wonder Years of Sequential Prolog Implementation 27

2.4.5 Global Analysis

Global analysis of logic programs is used to derive information to improve program execution.
Both type and control information can be derived and used to increase speed and reduce
code size. The analysis algorithms studied so far are all instances of a general method called
abstract interpretation [34, 35, 69]. The idea is to execute the program over a simpler domain.
If a small set of conditions are satisfied, this execution terminates and its results provide a
correct approximation of information about the original program. Le Charlier et al [80, 81]
have performed an extensive study of abstract interpretation algorithms and domains and their
effectiveness in deriving types. Getzinger [50] has recently presented an extensive taxonomy
of analysis domains and studied their effects on execution time and code size.

Since Mellish’s early work in 1981 and 1985 [96, 98], global analysis has been considered
useful for Prolog implementation. This section summarizes the work that has been done in
making analysis part of a real system. By type we denote any information known (at compile-
time or at run-time) about a variable’s value at run-time. A mode is a restricted type that
indicates whether the variable is used as an input (nonvariable) or an output (unbound variable).
Useful types include argument values, compound structures, dependencies between variables,
and operational information such as the length of dereference chains (see also Sections 2.4.6
and 5.1).

In 1982, Lee Naish performed an experiment with automatically generated control information
for MU-Prolog [106]. Control information is all information related to the execution order
of a program’s procedures. The MU-Prolog interpreter supports wait declarations. A “wait”
declaration defines a set of arguments of a predicate that may not be constructed by a call (i.e.,
unified in write mode). When a call attempts to construct a term in any of these arguments, then
the call delays until the argument is sufficiently instantiated so that no construction is done (i.e.,
the argument is unified in read mode). This provides a form of coroutining. The automatic
generation of “wait” declarations is based on a simple heuristic: to delay rather than guess
one of an infinite number of bindings.7 A “wait” declaration is inserted for each recursive call
that does not progress in its traversal of a data structure. This algorithm was implemented and
tested on some small examples. It significantly reduces the programmer’s burden in managing
control, but it does not always help: if the clause head is as general as the recursive call then
no “wait” declaration is generated, even though one might be necessary.

A later system, NU-Prolog, supports when declarations. These are both more expressive
and easier to compile into efficient code (see Section 3.1.3). A “when” declaration is a
pattern containing a term with optional variables and a nested conjunction and/or disjunction
of nonvariable and ground tests on these variables. Variables may not occur more than once in
the term. A “when” declaration is true if unification between the term and the call succeeds and
does not bind any variables in the call. A call will delay until its “when” declarations are true.
This is called one-way unification or matching. NU-Prolog contains an analyzer that derives
“when” declarations.

7This heuristic is closely related to the “Andorra principle” [33, 55]. The main difference is that the heuristic is
applied at analysis time whereas the Andorra principle is applied at run-time.

Research Report No. 36 December 1993

28 Peter Van Roy

In 1988, Richard Warren, Manuel Hermenegildo, and Saumya Debray did the first measure-
ments of the practicality of global analysis in logic programming [60, 164]. They measured
two systems, MA3, the MCC And-parallel Analyzer and Annotator, and Ms, an experimental
analysis scheme developed for SB-Prolog. The paper concludes that both dataflow analyzers
are effective in deriving types and do not unduly increase compilation time.

In 1989, André Mariën et al [87] performed an interesting experiment in which several small
Prolog predicates (recursive list operations) were hand-compiled with four levels of optimiza-
tion based on information derivable from a global analysis. The levels progressively include
unbound variable and ground modes, recursively defined types, lengths of dereference chains,
and liveness information for compile-time garbage collection. Execution time measurements
show that each analysis level significantly improves speed over the previous level. This exper-
iment shows that a simple analysis can achieve good results on small programs.

Despite this experimental evidence, there was until 1993 no generally available sequential
Prolog system that did global analysis, and since 1988 only a few research systems doing
analysis. Why is this? I think the most important reason is that other areas of system
development were considered more important. Commercial systems worked on improving
their development environments: source-level debugging, a proper foreign language interface,
and useful libraries. Research systems worked in other areas such as language design and
parallelism. A second reason may be that the structure of the WAM (high-level compact
instructions) does not lend itself well to the optimizations that analysis supports. A whole
new instruction set would be needed, and the development effort involved may have seemed
prohibitive given the existing investment in the WAM. A third reason is that analysis was
erroneously considered impractical.

Currently, there are at least seven systems that do global analysis of logic programs:� Ms, the analyzer for SB-Prolog, written by Saumya Debray. Ms derives ground and
nonvariable types.� MA3, the analyzer for &-Prolog, written by Manuel Hermenegildo and Richard Warren.
MA3 derives variable sharing (aliasing) and groundness information. This information
is used to eliminate run-time checks in the And-parallel execution of Prolog. This was
the first practical application of abstract interpretation to logic programs. The &-Prolog
system both derives information and uses it for optimization. PLAI, the successor to
MA3, subsumes it and has been extended to analyze programs in constraint languages [49]
and languages with delaying [90].� The FCP(:,?) compiler (Flat Concurrent Prolog with Ask and Tell guards and read-only
variables), written by Shmuel Kliger, has a global analysis phase [72].� The Parma system, written by Andrew Taylor, is an implementation of Prolog with global
analysis targeted to the MIPS processor [140].� The Aquarius system is an implementation of Prolog with global analysis targeted to the
VLSI-BAM processor and various general-purpose processors [58, 153]. An extensive

December 1993 Digital PRL

1983–1993: The Wonder Years of Sequential Prolog Implementation 29

System Speedup factor Code size reduction
Small Medium Small Medium

Aquarius 1.5 1.2 2.2 1.8
Parma 3.0 2.1 2.9 2.0

Table 3: The Effectiveness of Analysis for Small and Medium-Size Programs

study of improved analyzers and their integration in the Aquarius system is given in [50].� The MU-Prolog analyzer generates “wait” declarations for coroutining [106]. Its im-
proved NU-Prolog version generates “when” declarations.� The IBM Prolog analyzer. It determines whether choice points have been created or
destroyed during execution of a predicate, and whether there are pointers into the local
stack. This improves the handling of unbound variables and the management of envi-
ronments. The IBM Prolog analyzer has been available since 1989 (see Section 3.1.6).
There is no published information on the analyzer.

Of these systems, five were developed for sequential Prolog (the MU-Prolog and IBM Prolog
analyzers, Ms, Parma, and Aquarius) and two for parallel systems (MA3 and the FCP(:,?)
analyzer). Three (MA3, Parma, and Aquarius) have been integrated into Prolog systems and
their effects on performance evaluated and published [60, 140, 153]. The analysis domains
of Aquarius and Parma are shown in Figure 10. For both analyzers the analysis time is linear
in program size and performance is adequate. Four analyzers (MA3, FCP(:,?), Aquarius, and
IBM Prolog) are robust enough for day-to-day programming.

The effect of the Aquarius and Parma analyzers on speed and code size is shown in Table 3.
The “Small” column refers to a standard set of small benchmarks (between 10 and 100 lines).
The “Medium” column refers to a standard set of medium-size benchmarks (between 100 and
1000 lines). These benchmarks are well-known in the Prolog programming community [156].
They do tasks for which Prolog is well-suited and are written in a good programming style.
The numbers are taken from [140, 152, 153]. The numbers can be significantly improved by
tuning the programs to take advantage of the analyzers.

For the medium-size benchmarks, the Aquarius analyzer finds uninitialized, ground, nonvari-
able, and recursively dereferenced types in 23%, 21%, 10%, and 17% of predicate arguments,
respectively, and 56% of predicate arguments have types.8 One third of the uninitialized types
are uninitialized register types, so about one twelfth of all predicate arguments are outputs
passed in registers. On the VLSI-BAM this results in a reduction of dereferencing from 11%
to 9% of execution time and a reduction of trailing from 2.3% to 1.3% of execution time.

The Parma analyzer’s domain has been split into parts and their effects on performance measured
separately. For the medium-size benchmarks, performance is improved through dereference
chain analysis by 14%, trailing analysis by 8%, structure/list analysis by 22%, and uninitialized

8Arguments can have more than one type.

Research Report No. 36 December 1993

30 Peter Van Roy

top(may_alias)

bound(may_alias)

list(car,cdr) term(functor(a1type,...,antype))

free(may_alias,must_alias,is_aliased,
 trailflag,derefflag)

ground

const

number atom

integer float []

• list(car,cdr) = {cdr, [car|cdr],...,[car,...,car|cdr]},
 i.e., it is able to represent difference lists.

• Objects with the same must_alias values
 are certainly aliased.

• Objects with different may_alias values
 are certainly not aliased.

• Terms are nested to four levels.

rderef

top

nonvar+
rderef

ground+
rderef

ground uninit

bottom

nonvar

uninit_reg

bottom

• rderef = recursively dereferenced. It is
 dereferenced and its arguments are recursively
 dereferenced.
• uninit = uninitialized (unaliased and unbound).
 Binding needs no dereferencing nor trailing.

• uninit_reg = uninitialized register. An output
 that is passed in a register.

Aquarius domain

Parma domain

Figure 10: The Analysis Domains of the Aquarius and Parma Systems

December 1993 Digital PRL

1983–1993: The Wonder Years of Sequential Prolog Implementation 31

variables by 12%. The combined benefit of two analysis features is usually not their product,
since features may compete with or enhance each other. For example, uninitialized variables
do not need to be trailed, and this fact will often also be determined by the trailing analysis.

Two conclusions can be drawn by studying the effects of analysis in the Parma and Aquarius
systems. Analysis results in both code size reduction and speed increase. A first conclusion is
that the effects of analysis on code size and speed are fundamentally different. Derived types
allow both tests and the code that handles other types to be removed. Tests are usually fast.
The code to handle all possible outcomes of the tests can be very large. For Aquarius the code
size reduction is greater than the performance improvement. This is partly due to the lack of
structure and list types in the Aquarius domain, which means that run-time type tests are still
needed. For Parma the code size reduction is about the same as the performance improvement.

A second conclusion can be drawn regarding the types that are most useful for the compiler.
Deriving types that have a logical meaning is not sufficient. Performance increases significantly
when the analysis is able to derive types that have only an operational meaning, such as
dereference (reference chains), trailing, and aliasing-related types (uninitialized variables).

2.4.6 Using Types when Compiling Unification

It is just as hard to use analysis in the compiler as it is to do analysis. Very little has been
published on how to use analysis. This section shows how unification is compiled in the
Aquarius system to take maximum advantage of the types known at compile-time. The code
generated by the two-stream algorithm of Section 2.4.2 handles the general case when no types
are known. If types are known then compiling unification becomes a large case analysis.9

Even after common cases are factored out, the number of cases remains large. Figure 11 gives
a simplified view of the top two levels of the case analysis done in Aquarius.

Table 4 gives details of the case analysis done in Aquarius for the compilation of the unification
X=Y with type T. The compiler attempts to use all possible type information to simplify the
code. A general unify instruction is only generated once (in oldvar oldvar), namely when
unifying two initialized variables for which nothing is known. For simplicity, the table omits
the generation of dereference and trail instructions, the handling of uninitialized memory and
uninitialized register variables, the updating of type information when variables are bound, the
generation of pragmas, and various less important optimizations. See Section 2.4.4 for more
information.

The variable T denotes the type information known at the start of the unification. The impli-
cation (T)ground(X)) is true if T implies that X is bound to a ground term at run-time. The
conditions var(X) and (T)var(X)) are very different: the first tests whether X is a variable at
compile-time, and the second tests whether X is a variable at run-time. The condition new(X)
succeeds if X does not yet have a value, i.e., for the first occurrence of X in the clause or if X is
uninitialized. The condition old(X) is the negation of new(X). The function atomic value(T,X)
succeeds if T implies that X is an atomic term whose value is known at compile-time. The

9Compiling a goal invocation (a call) is also a large case analysis [153].

Research Report No. 36 December 1993

32 Peter Van Roy

Definition of routines
Name Condition Actions

unify(X,Y) var(X),var(Y) var var(X,Y)
var(X),nonvar(Y) var nonvar(X,Y)
nonvar(X),var(Y) var nonvar(Y,X)
nonvar(X),nonvar(Y) nonvar nonvar(X,Y)

nonvar nonvar(X,Y) For all arguments Xi, Yi: unify(Xi,Yi)
var nonvar(X,Y) T)new(X) new old(X,Y)

T)ground(X) old old(X,Y)
otherwise old old(X,Y) (with depth limiting)

var var(X,Y) T)(old(X),old(Y)) oldvar oldvar(X,Y)
T)(old(X),new(Y)) Generate store instruction
T)(new(X),old(Y)) Generate store instruction
T)(new(X),new(Y)) new new(X,Y)

new new(X,Y) Generate store and move instructions
new old(X,Y) compound(Y) write sequence(X,Y)

atomic(Y) Generate store instruction
var(Y) var var(X,Y)

old old(X,Y) compound(Y),(T)nonvar(X)) Test Y’s type, then old old read(X,Y)
atomic(Y),(T)nonvar(X)) old old read(X,Y)
nonvar(Y),(T)var(X)) old old write(X,Y)
compound(Y) Generate switch, old old read(X,Y),

old old write(X,Y)
atomic(Y) Generate unify atomic instruction
var(Y) var var(X,Y)

oldvar oldvar(X,Y) A=atomic value(T,X) unify(Y,A)
A=atomic value(T,Y) unify(X,A)
T)(atomic(X),atomic(Y)) Generate comparison instruction
T)(var(X),nonvar(Y)) Generate store instruction
T)(nonvar(X),var(Y)) Generate store instruction
otherwise Generate general unify instruction

old old write(X,Y) compound(Y) write sequence(X,Y)
atomic(Y) Generate store instruction

old old read(X,Y) compound(Y) Test Y’s functor, then for all arguments
Xi, Yi: old old(Xi,Yi)

atomic(Y) Generate comparison instruction
write sequence(X,Y) Generate instructions to create com-

pound term Y in X

Table 4: The Case Analysis in the Aquarius Compilation of the Unification X=Y with Type T

December 1993 Digital PRL

1983–1993: The Wonder Years of Sequential Prolog Implementation 33

unify

var-nonvar var-var

old-old new-old new-new oldvar-oldvar

nonvar-nonvar

...

Figure 11: Case Analysis in Compiling Unification

function returns this atomic term. For example, if T is (X==a), then the function returns the
atom ‘a’.

The general unify instruction is expanded into code that handles inline the cases where one
or both of the arguments are variables. Measurements of the dynamic behavior of unification
on four real programs show that one or both of the arguments are variables about 85% of the
time [63]. A subroutine call is made only if both arguments are nonvariables.

2.5 Beyond the WAM: Radically Different Execution Models

Some recent developments in Prolog implementation are based on novel models of execution
very different from the WAM. The Vienna Abstract Machine (VAM) is based on partial
evaluation of each call. The BinProlog system is based on the explicit passing of success
continuations.

2.5.1 The Vienna Abstract Machine (VAM)

The VAM is an execution model developed by Andreas Krall at the Technische Universität
Wien (Vienna, Austria) [77]. The VAM is considerably faster than the WAM. The insight of the
VAM is that the WAM’s separation of argument setup from argument unification is wasteful.
In the WAM, all of a predicate’s arguments are built before the predicate is called. The VAM
does argument setup and argument unification at the same time. During the call the operations
of argument setup and unification are combined into a single operation that does the minimal
work necessary. This results in considerable savings in many cases. For example, consider
the call p(X,[a,b,c],Y) to the definition p(A, ,B). The second argument [a,b,c] is not created
because it is a void variable in the head of the definition. In the WAM, the second argument
would be created and then ignored in the definition.

Research Report No. 36 December 1993

34 Peter Van Roy

There exist two versions of the VAM: the VAM1p and the VAM2p. The difference is in how
the argument traversal is done. In the VAM2p there are two pointers. One points to the caller’s
arguments and one points to the definition’s arguments. The operation to be performed for each
argument is obtained by a two-dimensional array lookup depending on the types of the caller
argument and the definition argument. This lookup operation can be made extremely fast by
a technique similar to direct threaded coding, where the address of the abstract instruction is
obtained by adding two offsets. In the VAM1p there is a single pointer that points to compiled
code representing the caller-definition pair. The code size for the VAM1p is much greater than
for the VAM2p, since the called predicate must be compiled separately for each call. Currently,
the VAM2p is a practical implementation, whereas the VAM1p is not because of code size
explosion.

2.5.2 BinProlog

BinProlog10 is a high performance C-based emulator developed by Paul Tarau at the Uni-
versité de Moncton (Canada) [36, 136, 137]. BinProlog has two key ideas: transforming
clauses to binary clauses and passing success continuations. The resulting instruction set is
essentially a simplified subset of the WAM. Implementing Prolog by means of continuations
is an old technique. It was used to implement Prolog on Lisp machines and in Pop-11, see
for example [23, 97]. The technique has recently received a boost by Tarau’s highly efficient
implementation. Functional languages have more often been implemented by means of contin-
uations. A good example is the Standard ML of New Jersey system, which uses an intermediate
representation in which all continuations are explicit (“Continuation-Passing Style”) [9].

The idea of BinProlog is to transform each Prolog clause into a binary clause, i.e., a clause
containing only one body goal. Predicates that are expanded inline (such as simple built-ins) are
not considered as goals. The body goal is given an extra argument, which represents its success
continuation, i.e., the sequence of goals to be executed if the body completes successfully.
This representation has two advantages. First, no environments are needed. Second, the
continuations are represented at the source level. For example, the clauses:

p(X, X).
p(A, B) :- q(A, C), r(C, D), s(D, B).

are transformed into:

p(X, X, Cont) :- call(Cont).
p(A, B, Cont) :- q(A, C, r(C, D, s(D, B, Cont))).

Each predicate is given an additional argument and each clause is converted into a binary
clause.

With a well-chosen data representation, the binary clause transformation can be the basis of
a system that uses very little memory yet compiles and executes very quickly. The technique

10There is no relationship with BIM Prolog.

December 1993 Digital PRL

1983–1993: The Wonder Years of Sequential Prolog Implementation 35

as currently implemented has two problems. First, the continuations are put on the heap
(“long-lived” memory), hence they do not disappear on forward execution as environments
would in the WAM. That is, there is no last call optimization (see Section 2.2.4) if the original
clause body contains more than one goal. Second, if the first goal fails, then the creation of
the continuation is an overhead that is avoided in the WAM. Both of these problems are less
severe than they appear at first glance. The first problem goes away with a suitable garbage
collector. A copying collector has execution time proportional to the amount of active memory.
A generational mark-and-sweep collector can perform even better in practice [168]. The second
problem almost never occurs in real programs.

An important potential use of the binary clause transformation is as a tool for source transfor-
mation in Prolog compilers. By making the continuations of the WAM explicit as data terms,
a series of optimizing transformations becomes possible at the source level [110]. After doing
the optimizations, a reverse transformation to standard clauses can be done.

3 The Systems View

The previous sections have summarized developments from the technical viewpoint, focusing
on particular developments without giving further information about the systems that pioneered
them.

This section concentrates on the systems themselves. It tells the stories of some of the
more popular and influential systems, of the people and institutions behind them, and of the
particular problems they encountered. The section is divided into two parts. Section 3.1 talks
about software systems and Section 3.2 talks about hardware systems.

3.1 Software Sagas

Since the development of the WAM in 1983 there have been many software implementations
of Prolog. At the end of 1993, more than fifty systems were listed in the Prolog Resource
Guide [70]. The systems discussed here are MProlog, IF/Prolog, SNI-Prolog, MU-Prolog,
NU-Prolog, Quintus, BIM, IBM Prolog, SEPIA, ECLiPSe, SB-Prolog, XSB, SICStus, and
Aquarius.

All of these systems are substantially compatible with the Edinburgh standard. They have
been released to users and used to build applications. Many have served as foundations for
implementation experiments. In particular, MU-Prolog, NU-Prolog, SB-Prolog, XSB, SICStus,
and Aquarius are delivered with full source code. Quintus, MProlog, IF/Prolog, and SICStus
are probably the implementations that have been ported to the largest number of platforms.
The most popular systems on workstations today are SICStus and Quintus. C-Prolog was also
very popular at one point.

For each system are listed its most important contributions to implementation technology. These
lists are not exhaustive. Most of the important “firsts” have since been incorporated into many

Research Report No. 36 December 1993

36 Peter Van Roy

other systems. In some cases, a contribution was developed jointly or spread too fast to identify a
particular system as the pioneer. For example, almost all commercial systems support modules.
Likewise, almost all commercial systems have a full-featured foreign language interface, and
many of them (including Quintus, BIM, IF/Prolog, SNI-Prolog, SICStus, and ECLiPSe) allow
arbitrarily nested calls between Prolog and C.

IF/Prolog, SNI-Prolog, IBM Prolog, SEPIA, ECLiPSe, and SICStus support rational tree
unification. Rational trees account for term equations which express cycles. For example, the
term equation X=f(X) has a solution over rational trees, but does not over finite trees [66, 68].

All of the compiled systems except MProlog and Aquarius are based on the WAM instruction
set, but modified and extended to increase performance. MProlog, BIM, IBM Prolog, SEPIA,
ECLiPSe, and Aquarius support mode declarations and multiple-argument indexing. The other
systems do not support mode declarations. Quintus, NU-Prolog, and XSB provide some support
for multiple-argument indexing, and IF/Prolog, SNI-Prolog, and SICStus do not implement it.
IBM Prolog, SEPIA, ECLiPSe, and Aquarius index on some other conditions than unification,
for example on arithmetic comparisons and type tests. Quintus, BIM, SEPIA, ECLiPSe, XSB,
SB-Prolog, but not SICStus, compile conditionals (if-then-else) deterministically in the special
case where the condition is an arithmetic comparison or a type test.

The most interesting problems of system building are related to input size. These scalability
problems tend to occur only when one exercises a system on large inputs. They are the main
obstacles on the long path between research prototype and production quality systems. For
each system are listed some of the more interesting such problems.

3.1.1 MProlog

The first commercial Prolog system was MProlog.11 MProlog was developed in Hungary
starting in 1978 at NIMIGUSZI (Computer Center of the Ministry of Heavy Industries) [13, 47].
The main developer is Péter Szeredi, aided by Zsuzsa Farkas and Péter Köves. MProlog was
completed at SZKI (Computer Research and Innovation Center), a computer company set up
a few years before. The implementation is based on Warren’s pre-WAM three-stack model of
DEC-10 Prolog. The first public demonstration was in 1980 and the first sale in September
1982.

MProlog is a full-featured structure-sharing system with all Edinburgh built-ins, debugging,
foreign language interface, and sophisticated I/O. It shows that structure-sharing is as efficient as
structure-copying [75]. Its implementation was among the most advanced of its day. Early on,
it had a native code compiler, memory recovery on forward execution (including tail recursion
optimization) and support for mode declarations (including multiple-argument indexing). It
had garbage collection for the symbol table and code area. It did not and does not do garbage
collection for the stacks. MProlog is currently a product of IQSOFT, a company formed in
1990 from the Theoretical Lab of SZKI.

11M for Modular or Magyar.

December 1993 Digital PRL

1983–1993: The Wonder Years of Sequential Prolog Implementation 37

3.1.2 IF/Prolog and SNI-Prolog

IF/Prolog was developed at InterFace Computer GmbH, which was founded in 1982 in Munich,
Germany. Nothing has been published about the implementation of IF/Prolog. The following
information is due to Christian Pichler. IF/Prolog was commercialized in 1983. The first release
was an interpreter. A WAM-based compiler was released in 1985. The origin of the compiler
is an early WAM compiler developed by Christian Pichler [116]. The main developers of
IF/Prolog were Preben Folkjær, Christian Reisenauer, and Christian Pichler. Siemens-Nixdorf
Informationssysteme AG bought the IF/Prolog sources in 1986. They ported and extended the
system, which then became SNI-Prolog.

In 1990, SNI-Prolog was completely redesigned from scratch. Pichler went to Siemens-Nixdorf
to help in the redesign. The main developers of SNI-Prolog are Reinhard Enders and Christian
Pichler. The current system conforms to the ISO Prolog standard [122], supports constraints,
has been ported to more platforms and has improved system behavior (more flexible interfaces
and less memory usage). The design of the new system benefited from the fact that Siemens is
one of the shareholders of ECRC. Siemens-Nixdorf bought the rights to IF/Prolog in 1993 after
InterFace disappeared. They plan to integrate the best features of IF/Prolog and SNI-Prolog
into a single system.

Both systems support rational tree unification. In addition, SNI-Prolog has delaying, indefinite
precision rational arithmetic, and constraint solvers for boolean constraints, linear inequalities,
and finite domains. It has metaterms, which allow constraint solvers to be written in the
language itself (see Section 3.1.7).

Both SNI-Prolog and IF/Prolog have extensive C interoperability. With regard to interoper-
ability they can best be compared with Quintus (see Section 3.1.4). They allow redefinition of
the C and Prolog top levels and arbitrary calls between Prolog and C to any level of nesting
with efficient passing of arbitrary data (including compound terms). They have configurable
memory management and garbage collection of all Prolog memory areas. They are designed
to interact correctly with the Unix memory system and to support signal handlers.

3.1.3 MU-Prolog and NU-Prolog

MU-Prolog and NU-Prolog were developed at Melbourne University by Lee Naish and his
group [106]. Both systems do global analysis to generate delaying declarations (see Sec-
tion 2.4.5). Neither system does garbage collection.

MU-Prolog is a structure-sharing interpreter. The original version (1.0) was written by John
Lloyd in Pascal. Version 2.0 was written by Naish and completed in 1982. Version 2.0 supports
delaying, has a basic module system and transparent database access. Performance is slightly
less than C-Prolog.

NU-Prolog is a WAM-based emulator written in C primarily by Jeff Schultz and completed
in 1985. It is interesting for its pioneering implementation of logical negation, quantifiers,
if-then-else, and inequality, through extensions to the WAM [105]. The delay declarations

Research Report No. 36 December 1993

38 Peter Van Roy

(“when” declarations) are compiled into decision trees with multiple entry points. This avoids
repeating already performed tests on resumption. It results in indexing on multiple arguments
in practice. NU-Prolog was the basis for many implementation experiments, e.g., related to
parallelism [107, 114], databases [118], and programming environments [108].

3.1.4 Quintus Prolog

Quintus Prolog is probably the best-known commercial Prolog system. Its syntax and semantics
have become a de facto standard, for several reasons. It is close to the Edinburgh syntax and is
highly compatible with C-Prolog. It was the first widely known commercial system. Several
other influential systems (e.g., SICStus Prolog) were designed to be compatible with it. The
pending ISO standard for Prolog [122] will most likely be close in syntax and semantics to the
current behavior of Quintus.

Quintus Computer Systems was founded in 1984 in Palo Alto, California. It is currently
called Quintus Corporation, and is a wholly-owned subsidiary of Intergraph Corporation. The
founders of Quintus are David H. D. Warren, Lawrence Byrd, William Kornfeld, and Fernando
Pereira. They were joined by David Bowen shortly thereafter, and Richard O’Keefe in 1985.
Tim Lindholm was responsible for many improvements including discontiguous stacks and
the semantics for self-modifying code (see below). Many other people contributed to the
implementation. Quintus Prolog 1.0 first shipped in 1985.

Quintus Prolog compiles to an efficient and compact direct threaded-code representation. For
portability and convenience, the emulator is written in Progol,12 a macro-language which is
essentially a macro-assembler for Prolog using Prolog syntax. The mode flag does not exist
explicitly, but is cleverly encoded in the program counter by giving the unify instructions two
entry points.

Quintus Prolog made several notable contributions, including those listed below.� It is the Prolog system that generates the most compact code. Common sequences of
operations are encoded as single opcodes. The code size is several times smaller than
native code implementations. For example, the code generated for a given input program
is about one fifth the size of that generated by the BIM compiler. The code size is
between one fifth and one half that of Aquarius Prolog. The figure of one half holds only
when the global analysis of Aquarius performs well [154]. For applications with large
databases, compact code can become significant. The recent rapid increase in physical
memory size makes reducing code size less of a priority, although there will always be
applications (e.g., databases and natural language) that require compact code to run well.� It was the Prolog system that first developed a foreign language interface. Since then,
it is the Prolog system that has put the most effort into making the system embeddable.
It is important to be able to seamlessly integrate Prolog code with existing code. This
implies a set of capabilities to make the system well-behaved and expressive. Quintus

12The name is a contraction of Prolog and Algol.

December 1993 Digital PRL

1983–1993: The Wonder Years of Sequential Prolog Implementation 39

is able to redefine the C and Prolog top levels. It allows arbitrary calls between Prolog
and C, with efficient manipulation of Prolog terms by C and vice versa. It has an open
interface to the operating system that lets one redefine the low-level interfaces to memory
management and I/O. It does efficient memory management, e.g., it was the first system
to run with discontiguous stacks. This “small footprint” version has been available since
release 3.0. It carefully manages the Prolog memory area to avoid conflicts with C. It
provides tools for the user including source-level debugging on compiled code and an
Emacs interface.� It was the first system to provide a clean and justified semantics for self-modifying code
(assert and retract), namely the logical view [82]. A predicate in the process of being
executed sees the definition that existed at the time of the call.� It is the system that comes with the largest set of libraries of useful utilities. More than
one hundred libraries are provided.

3.1.5 BIM Prolog (ProLog by BIM)

BIM Prolog was developed by the BIM company in Everberg, Belgium in close collaboration
with the Catholic University of Louvain (KUL). The name has recently been changed to
“ProLog by BIM” due to a copyright conflict with the prefix “BIM” in the United States.

Logic programming research at KUL started in the mid 1970’s. Maurice Bruynooghe had
developed one of the early Prolog systems, Pascal Prolog, which was used at BIM at that
time. The BIM Prolog project started in October 1983. It was then called P-Prolog (P for
Professional). Its execution model was originally derived from the PLM model in Warren’s
dissertation, but was quickly changed to the WAM.

The first version of BIM Prolog, release 0.1, was distributed in October 1984 and used in an
ESPRIT project. It was a simple WAM-based compiler and emulator. Meanwhile, Quintus
had released their first system. The BIM team realized that they needed to go further than
emulation to match the speed of Quintus, so they decided immediately to do a native code
implementation through macro-expansion of WAM instructions. In contrast to Quintus, which
intended to cover all major platforms from the start, BIM initially concentrated on Sun and
decided to do a really good implementation there. By 1985 the team consisted of the three
main developers who are still there today: Bart Demoen, André Mariën, and Alain Callebaut.
Other people have contributed to the implementation. Because BIM Prolog only ran on a few
machines, it was possible for different implementation ideas to be tried over the years. For
more information on the internals of BIM Prolog, see [89].

BIM Prolog made several notable contributions, including those listed below.� It was the first WAM-based system:

– To do native code compilation.

– To do heap garbage collection. The Morris constant-space pointer-reversal algo-
rithm was available in release 1.0 in 1985.

Research Report No. 36 December 1993

40 Peter Van Roy

– To do symbol table garbage collection. This is important if the system is interfaced
to an external database.

– To support mode declarations and do multiple-argument indexing, instead of in-
dexing only on the first argument.

– To provide modules.

These abilities were provided earlier by DEC-10 Prolog (see Section 2.1) and MProlog
(see Section 3.1.1).� It was the first system to provide a source-level graphical debugger, an external database
interface, and separate compilation.

3.1.6 IBM Prolog

IBM Prolog was developed primarily by Marc Gillet at IBM Paris. Nothing has been pub-
lished about the implementation. The following information is due to Gillet and the system
documentation [67]. The first version, a structure-sharing system, was written in 1983–1984
and commercialized in 1985 as VM/Prolog. A greatly rewritten and extended version was
commercialized in 1989 as IBM Prolog.13 It runs on system 370 under the VM and MVS
operating systems. The system was ported to OS/2 with a 370 emulator.

The system is WAM-based and supports delaying, rational tree unification, and indefinite
precision rational arithmetic. The system does global analysis at the level of a single module
(see Section 2.4.5). It supports mode declarations, but may generate incorrect code if the
declarations are incorrect. The system generates native 370 code and has a foreign language
interface.

3.1.7 SEPIA and ECLiPSe

ECRC (European Computer-Industry Research Centre) was created in Munich, Germany in
1984 jointly by three companies: ICL (UK), Bull (France), and Siemens (Germany). ECRC has
done research in sequential and parallel Prolog implementation, in both software and hardware.
See Section 3.2.2 for a discussion of the hardware work. The constraint language CHIP was
built at ECRC (see Section 2.3.1).

Several Prolog systems were built at ECRC. An early system is ECRC-Prolog (1984–1986), a
Prolog-to-C compiler for an enhanced MU-Prolog. At the time, ECRC-Prolog had the fastest
implementation of delaying. The next system, SEPIA (Standard ECRC Prolog Integrating
Advanced Features), first released in 1988, was a major improvement [93]. Other systems are
Opium [44], an extensible debugging environment, and MegaLog [15], a WAM-based system
with extensions to manage databases (e.g., persistence). The most recent system, ECLiPSe
(ECRC Common Logic Programming System) [45, 95], integrates the facilities of SEPIA,
MegaLog, CHIP, and Opium. The system supports rational tree unification and indefinite

13Curiously, both systems are written mostly in assembly code, several hundred thousand lines worth.

December 1993 Digital PRL

1983–1993: The Wonder Years of Sequential Prolog Implementation 41

precision rational arithmetic. It provides libraries that implement constraint solvers for atomic
finite domains and linear inequalities.

ECLiPSe is a WAM-based emulator with extensive support for delaying [95]. This makes it
easy to write constraint solvers in the language itself. ECLiPSe supports this with two concepts:
metaterms and suspensions. A metaterm is a variable with a set of user-defined attributes. The
set of attributes is similar to a Lisp property list. A suspension is a closure. It is an opaque
data type at the Prolog level. A goal can be delayed explicitly by making it into a suspension
and inserting it into a list of delayed goals. The list is stored as an attribute of a variable.
When the variable is unified, an event handler is invoked. The handler is free to manipulate the
suspended goals in any way. Through metaterms, the wakeup order of suspended goals can be
programmed by the user.

The ECLiPSe compiler is incremental and compilation time is probably the lowest of any
major system. The debugger uses compiled code supplemented with debugging instructions.
Because of its fast compilation, ECLiPSe has no need of an interpreter. ECLiPSe (and SEPIA
before it) uses two-word (64-bit) data items, with a 32-bit tag and a 32-bit value field. This
allows more flexibility in tag assignment and full pointers can be stored directly in the value
field. It also makes for a more straightforward C interface.

3.1.8 SB-Prolog and XSB

SB-Prolog is a WAM-based emulator developed by a group led by David Scott Warren at
SUNY (State University of New York) in Stony Brook. The compiler was written by Saumya
Debray and the system was bootstrapped with C-Prolog. After several years of development,
SB-Prolog was made available by Debray from Arizona in 1986. Because it was free and
portable, it became quite popular. Neither it nor XSB does garbage collection. The worst
problem regarding portability was the use of the BSD Unix syscall system call which supports
arbitrary system calls through a single interface.

SB-Prolog was the basis for much exploration related to language and implementation (e.g., [37]):
backtrackable assert, existential variables in asserted clauses, memoizing evaluation, register
allocation, mode and type inferencing (see Section 2.4.5), module systems, and compilation.

The most recent system, XSB, is SB-Prolog extended with memoization (tabling) and HiLog
syntax [119]. The resulting engine is the SLG-WAM (see Section 2.3.3). XSB 1.3 implements
the SLG-WAM for modularly stratified programs, i.e., for programs that do not dynamically
have recursion through negation.

3.1.9 SICStus Prolog

SICStus Prolog14 was developed at SICS (Swedish Institute of Computer Science) near Stock-
holm, Sweden. SICS is a private foundation founded in late 1985 which conducts research in
many areas of computer science. It is sponsored in part by the Swedish government and in

14The name is a pun on Quintus.

Research Report No. 36 December 1993

42 Peter Van Roy

part by private companies. The guiding force and main developer of SICStus is Mats Carls-
son. Many other people have been part of the development team and have made significant
contributions.

In 1993, SICStus Prolog was probably the most popular high performance Prolog system
running on workstations. SICStus is cheap, robust, fast, and highly compatible with the
“Edinburgh standard”. It has been ported to many machines. It has flexible coroutining,
rational tree unification, indefinite precision integer arithmetic, and a boolean constraint solver.

The first version of SICStus Prolog, release 0.3, was distributed in 1986. SICStus became
popular with the 0.5 release in 1987. Originally, SICStus was an emulated system written in
C. MC680X0 and SPARC native code versions were developed in 1988 and 1991. The current
version, release 2.1, has been available since late 1991.

SICStus is the first system to do path compression (“variable shunting”) of dereference chains
during garbage collection [120]. The parts of a dereference chain in the same choice point
segment are removed. This lets the garbage collector recover more memory. This is essential
for Prologs that have freeze or similar coroutining programming constructs [24], since the
intermediate variables in a dereference chain may contain large frozen goals that can be
recovered.

Among the scalability problems encountered during the development of SICStus are those
listed below.� Interface with malloc/free, the Unix memory allocation library. SICS wrote their own

version of the malloc/free library that better handles the allocation done by their system.
Increasing the size of system areas is done by calling realloc.� Native code limitations. A problem for large programs is that the offsets in machine
instructions have a limited size. For example, the SPARC’s load and store instructions
use a register+displacement addressing mode with a displacement limited to 12 bits.
Other native code systems (e.g., IBM Prolog) have run into the same problem.� The space versus time trade-off. Native code implementations have larger code size than
emulated implementations. This difference can be quite significant: a factor of five or
more. For large programs, e.g., natural language parsers with large databases, having
compact code can mean the difference between a program that runs and one that thrashes.
SICStus minimizes the size of its generated native code by calling little-used operations
as subroutines rather than putting them inline. For example, the dereference operation
is inlined only for a predicate’s first argument.

3.1.10 Aquarius Prolog

Aquarius Prolog was originally developed in the context of the Aquarius project at U.C. Berke-
ley as the compiler for the VLSI-BAM processor [153] (See Section 3.2.3 for the hardware side
of the story). After our relationship with the hardware side of the project ended in the spring of

December 1993 Digital PRL

1983–1993: The Wonder Years of Sequential Prolog Implementation 43

1991, Ralph Haygood (the main developer of the back-end, run-time system, and built-ins) and
I decided to continue part-time work on the software so that it could be released to the general
public [58, 70]. We were joined by Tom Getzinger at USC. The system achieved 1.1 MLIPS
on a SPARCstation 1+ in February 1991. It first successfully compiled itself in February 1992.
It was completed and released as Aquarius Prolog 1.0 in April 1993.

Aquarius Prolog made several contributions, including those listed below.� It is the first system to compile to native code without a WAM-like intermediate stage. It
compiles first to BAM code (see Section 2.4.4), and then macro-expands to native code.� It is the first well-documented system to do global analysis. See Section 2.4.5 for more
information on the analyzer and Sections 2.4.4 and 2.4.6 for information on how the
analyzer is used to improve code generation. Type and mode declarations are supported.
They are used to supplement the information generated by analysis. The system may
generate incorrect code if the declarations are incorrect.� It is the first system in which most built-ins are written in Prolog with little or no
performance penalty. A technique called entry specialization replaces built-ins by more
specialized entry points depending on argument types known at compile-time.� It is the first system to generate code which rivals the performance of an optimizing C
compiler on a nontrivial class of programs [154].

The main disadvantage of Aquarius in its current state is the time of compilation. This has little
to do with the sophistication of the optimizations performed, but is due primarily to the naive
representation of types in the compiler. The representation was chosen for ease of development,
not speed. It is user-readable and new types can be added easily.

Among the scalability problems encountered during the development of Aquarius are those
listed below.� Garbage collection with uninitialized variables. Before they are bound, uninitialized

variables contain unpredictable information. The garbage collector must be able to
handle this correctly. In Aquarius, the garbage collector follows all pointers, including
uninitialized variables. Hence, it does not recover all the memory it could. As far as
we can tell, following all pointers does not adversely affect the system in practice. All
programs we have tried, including very long-running ones, have stable memory sizes.� Interaction of memory management with malloc. The observed behavior was that the
system crashed because some stdio routines called malloc, which returned memory
blocks inside the Prolog heap. Calling the default malloc is incompatible with our
memory manager because it expands memory size if more memory is needed. After
such an expansion, the malloc-allocated memory is inside a Prolog stack. On some
platforms there is a routine, f prealloc, that ensures that stdio routines do all of their
allocation at startup. This does not work for all platforms. Our final solution uses a

Research Report No. 36 December 1993

44 Peter Van Roy

public domain malloc/free package (written by Michael Schroeder) that is given its own
region of memory upon startup.� During the DECstation port, a bug was found in the MIPS assembler provided with
the system. The assembler manual states that registers t0-t9 ($8-$15, $24-$25) are not
preserved across procedure calls. The MIPS instruction scheduler apparently assumes
that they need not be saved even across branches, but this is not documented. We solved
the problem with the directive “.set nobopt”, which prevents the scheduler from moving
an instruction at a branch destination into the delay slot. This results in slightly lower
performance. The problem went undiscovered until we made the system self-compiling.

3.2 Hardware Histories

Starting in the early 1980’s there was interest in building hardware architectures optimized for
Prolog. Two events catalyzed this interest: the start of the Japanese Fifth Generation Project
in 1982 and the development of the WAM in 1983. In 1984 Tick and Warren proposed a paper
design of a microcoded WAM that was influential for these developments [142]. At first, the
specialized architectures were mostly microcoded implementations of the WAM (e.g., the PLM
and the PSI-II). Later architectures (e.g., the KCM and the VLSI-BAM) modified the WAM
design.

Some of the most important efforts are the PSI and CHI machine projects primarily at ICOT,
the KCM project at ECRC, the POPE project at the GMD in Berlin, the Pegasus project at
Mitsubishi, the Aquarius project at U.C. Berkeley (with its commercial offspring, Xenologic
Inc.), and the IPP project at Hitachi. All these groups built working systems.

The POPE (Parallel Operating Prolog Engine) design is based on extracting fine-grain paral-
lelism in WAM instructions [11]. The POPE was built in Berlin at the GMD (Gesellschaft
für Mathematik und Datenverarbeitung) in the late 1980’s. The machine is a ring of up to
seven tightly coupled sequential Prolog processors. Parallelism is achieved at each call by
interleaving argument setup with head unification. The head unification is done on the next
machine in the ring. In this fashion, the machine is automatically load balanced and achieves
a speedup of up to seven.

The IPP (Integrated Prolog Processor) [78] is a Hitachi ECL superminicomputer of cycle time
23ns (� 43.5 MHz) with 3% added hardware support for Prolog. The IPP was built in the late
1980’s. The support comprises an increased microcode memory of 2 KW and tag manipulation
hardware. The IPP implements a microcoded WAM instruction set modified to reduce pipeline
bubbles and memory references. Its performance is comparable to Aquarius Prolog on a
SPARCstation 1+ (see Table 7).

In the late 1980’s came the first efforts to build RISC processors for Prolog. These include
Pegasus, LIBRA [101], and Carmel-2 [56] (the latter supports Flat Concurrent Prolog). For
lack of appropriate compiler technology, these systems executed macro-expanded WAM code
or hand-coded assembly code.

December 1993 Digital PRL

1983–1993: The Wonder Years of Sequential Prolog Implementation 45

The Pegasus project began in 1986 at Mitsubishi. They designed and fabricated three single-
chip RISC microprocessors in the period 1987–1990 [125]. The first two chips were fabricated
in October 1987 and August 1988 [123, 124, 166]. The first chip contains 80,000 transistors
in an area of 10 mm square (� 100 mm2) with 2� CMOS. The second chip contains 80,000
transistors in an area of 9.7 mm square (� 94 mm2) with 1.5� CMOS. The third and last
chip, Pegasus-II, was fabricated in September 1990 and at 10 MHz achieves a performance
comparable to the KCM (see Table 7). The third chip contains 144,000 transistors in an
area of 9.3 mm square (� 86.5 mm2) with 1.2� CMOS. The last two chips ran the Warren
benchmarks a few months after fabrication. The chips have a bank of shadow registers to
improve the performance of shallow backtracking. They provide support for tagging and
dereferencing with ideas similar to those of the VLSI-BAM and KCM. Pegasus-II has two
interesting features. It provides support for context dependent execution (which the designers
call “dynamic execution switching”) of read/write mode in unification (see Section 3.2.2). It
provides compound instructions (pop & jump, push & jump, pop & move, push & move) to
exploit data path parallelism.

By 1990, the appropriate compiler technology was developed on two RISC machines. The
VLSI-BAM, a special-purpose processor, ran Aquarius Prolog [63]. The MIPS R3000, a
general-purpose processor, ran Parma [139]. The VLSI-BAM has a modest amount of archi-
tectural support for Prolog (10.6% of active chip area). Parma achieves a somewhat greater
performance on a general-purpose processor at the same clock rate (see Table 7). The major
difference between the two systems is that Parma has a bigger type domain in its analysis (see
Figure 10 and Section 2.4.5).

The experience with Aquarius and Parma proves that there is nothing inherent in the Prolog
language that prevents it from being implemented with execution speed comparable to that of
imperative languages. Comparing the two systems shows that improved analysis lessens the
need for architectural support.

Since 1990 the main interest in special-purpose architectures has been as experiments to guide
future general-purpose designs. The interest in building special-purpose architectures for their
own sake has died down. Better compilation techniques and increasingly faster general-purpose
machines have taken the wind out of its sails (see also Section 5.1). This parallels the history
of Lisp machines.

The rest of this section examines three projects in more detail: the PSI machine project
(ICOT/Mitsubishi/Oki), the KCM project (ECRC), and the Aquarius project (U.C. Berkeley).
I have chosen these projects for two reasons: they show clearly how system performance
improved as Prolog was better understood, and detailed measurements were performed on
them.

3.2.1 ICOT and the PSI Machines

The FGCS (Fifth Generation Computer System) project at ICOT (Japanese Institute for New
Generation Technology) has designed and built a large number of sequential and parallel Prolog
machines [134, 147]. Both in manpower and machines, the FGCS was the largest architecture

Research Report No. 36 December 1993

46 Peter Van Roy

project in the logic programming community. Two series of sequential machines were built:
the PSI (Personal Sequential Inference) machines (PSI-I, PSI-II, and PSI-III) and the CHI
(Cooperative High performance sequential Inference) machines (CHI-I and CHI-II) [54]. I
will limit the discussion to the PSI machines, which were the most popular. All the PSI
machines are horizontally microprogrammed and have 40-bit data words with 8-bit tag and
32-bit value fields.

The PSI-I was developed before the WAM [133]. After the development of the WAM this
was followed by two WAM-based machines, the PSI-II and PSI-III. The three models were
manufactured by Mitsubishiand Oki, and commercialized by Mitsubishi in Japan. Several mul-
tiprocessors were built at ICOT with these processors as their sequential processing elements.
The PSI-II is the PE of the Multi-PSI/v2 and the PSI-III is the PE of the PIM/m.

The PSI-I was designed as a personal workstation for logic programming. It was first operational
in December 1983 at a clock rate of 5 MHz. It runs ESP (Extended Sequential Prolog), a Prolog
extended with object-oriented features. More than 100 machines were shipped. The first ESP
implementation was an interpreter written in microcode (not a WAM). A WAM emulator was
later written for the PSI-I and ran twice as fast. The main advantage of the PSI-I was not speed,
but memory. It had 80 MB of physical memory, a huge amount in its day.

The PSI-II was first operational in December 1986 [109]. More than 500 PSI-II machines were
shipped from 1987 until 1990 and delivered primarily to ICOT. Its clock was originally 5 MHz
but was quickly upgraded to 6.45 MHz. At the higher clock, its average performance is 3 to 4
times that of the interpreted PSI-I.

The PSI-III was first operational near the end of 1990. More than 200 PSI-III machines have
been shipped. It is binary compatible with the PSI-II and has almost the same architecture with
a clock rate of 15 MHz. The microcode was ported from the PSI-II by an automatic translator.
Its average performance is 2 to 3 times that of the upgraded PSI-II.

3.2.2 ECRC and the KCM

The architecture work at ECRC culminated in the KCM (Knowledge Crunching Machine)
project, which started in 1987 [14, 112]. The KCM was probably the most sophisticated
Prolog machine of the late 1980’s. It had an innovative architecture and significant compiler
design was done for it. It was preceded by two years of preliminary studies (the ICM, ICM3,
and ICM4 architectures) [111, 165]. The KCM was built by Siemens. The first prototypes
were operational in July 1988 and ran at a clock speed of 12.5 MHz. About 50 machines were
delivered to ECRC and its member companies [141].

The KCM is a single user, single tasking, dedicated coprocessor for Prolog, used as a back-end
to a Unix workstation. It is a tagged general-purpose design with support for Prolog, and hence
is not limited to Prolog. It uses 64-bit data words, with a 32-bit tag and a 32-bit value field.

The KCM’s instruction set consists of two parts: a general-purpose RISC part and a microcoded
WAM-like part. Prolog compilation for the KCM is still WAM-like, but the instructions have

December 1993 Digital PRL

1983–1993: The Wonder Years of Sequential Prolog Implementation 47

Feature Benefit (%)
multiway tag branch (MWAC) 23.1
context dependent execution (flags) 11.4
dereferencing support 10.0
trail support 7.2
load term 5.7
fast choice point creation/restoration 2.3
Total 59.7

Table 5: The Benefits of Prolog-Specific Features in the KCM

evolved greatly from Warren’s original design (see [92, 112]). The KCM supports the delayed
creation of choice points. The KCM runs KCM-SEPIA, a large subset of SEPIA that was
ported to it (see Section 3.1.7).

The Prolog support on the KCM improves its performance by a factor of � 1.60 [112, 141].
The architectural features and their effects on performance are given in Table 5.

The MWAC (Multi-Way Address Calculator) is a functional unit that does a 16-way microcode
branch depending on the types of two arguments. It calculates the target address during the
last step of dereferencing. The MWAC is used in the execution of all unification operations. It
is similar to the partial unification unit of the LIBRA [101].

Context dependent execution uses flags in addition to the opcode during instruction decoding.
Three flags are used: read/write mode for unification, choicepoint/nochoicepoint for delayed
choice point creation, and deep/shallow for fast fail in shallow backtracking.

3.2.3 The Aquarius Project: The PLM and the VLSI-BAM

In 1983, Alvin Despain and Yale Patt at U.C. Berkeley initiated the Aquarius project. Its
main goal was to design high performance computer systems with large symbolic and numeric
components. The project continued at Berkeley until 1991.15 They decided to focus on
Prolog architectures, being inspired by the FGCS project and seduced by the mathematical
simplicity of Prolog. As soon as Warren presented the WAM at Berkeley, Despain turned the
project to focus on hardware support for the WAM. He proposed that I write a compiler for
their architecture, the PLM. The compiler was completed and the report was delivered to the
university on August 22, 1984.16 This was the first published WAM compiler [148].17

A whole series of sequential and parallel Prolog architecture designs came out of Aquarius.
The sequential designs that were built are:

15Despain is continuing this work at USC’s Advanced Computer Architecture Laboratory.
16The exact day of my flight back to Belgium.
17In January 1991, I toured several German universities and research institutes to talk about Aquarius Prolog. At

ECRC a scientist from East Berlin came to me after the talk. He explained that they had typed in the source code
of the PLM compiler from the appendix of the report.

Research Report No. 36 December 1993

48 Peter Van Roy� The PLM [42, 43] (1983–87). The Programmed Logic Machine.18 This is a microcoded
WAM.� The VLSI-PLM [128, 129] (1985–89). This is a single-chip implementation of the PLM.� The Xenologic X-1. This is a commercial version of the PLM, designed as a copro-
cessor for the Sun-3. Due to weaknesses in its system software, this system was not
commercially successful.� The VLSI-BAM [63] (1988–91). The VLSI Berkeley Abstract Machine. This is a
single-chip RISC processor with extensions for Prolog.

The PLM was wire-wrapped and ran a few small programs in 1985. The Xenologic X-1 has
been running at 10 MHz since 1987. The VLSI-PLM was fabricated and ran all benchmarks
at 10 MHz in June 1989. The VLSI-BAM was designed to run at 30 MHz. It contains 110,000
transistors in an active area of 91 mm2 with 1.2� CMOS. It was fabricated in November 1990
and ran most benchmarks of [154, 156] at 20 or 25 MHz on its custom cache board in November
1991.

The core of the VLSI-BAM is a RISC in the classic sense: it is a 32-bit pipelined load-store
architecture with single-cycle instructions, 32 registers, and branch delay slots. The processor
is extended with support for Prolog and for multiprocessing, which together form 10.6% of the
active chip area and improve Prolog performance by a factor of � 1.70 [63]. The VLSI-BAM
executes the same Prolog program in one third the cycles of the VLSI-PLM, a gain due to
improved compilation.

The primary purpose in building the VLSI-BAM was not to achieve the best absolute perfor-
mance–a university project cannot compete in performance with industry–but to quantify the
usefulness of its architectural features. The intention was that the results could be used to guide
the design of other machines.

The Prolog support takes the form of six architectural features and new instructions using them.
The architectural features, their performance benefits, and their active chip area are given in
Table 6. The benefit figures cannot be directly added up because the effects of the architectural
features are not independent.

Except for dereference, the instructions are all single-cycle. There are two- and three-way
tagged branches to support unification and a conditional push to support trailing. The instruc-
tions for data structure creation (write-mode unification) were derived automatically using
constrained exhaustive search [64]. VLSI-BAM measurements [63] show that with advanced
compilation techniques, multiway branches for general unification are effective only up to a
three-way branch.19 Multiple-cycle (primarily dereference) and conditional instructions are
implemented by logic to insert or remove opcodes in the pipeline. The opcode pipe has space

18The name correspondence with the PLM model in Warren’s dissertation [159] is a coincidence.
19This does not contradict the measurements of the KCM’s MWAC since the latter is used for all unification

operations, not just general unification.

December 1993 Digital PRL

1983–1993: The Wonder Years of Sequential Prolog Implementation 49

Feature Benefit (%) Area (%)
fast tag logic (tagged branching) 18.9 1.6
double-word memory port 17.1 1.9
tag and segment mapping 10.3 4.8
multi-cycle/conditional 9.1 0.1
tagged-immediates 7.9 2.2
arithmetic overflow detect 1.4 <0.1
Total 70.1 10.6

Table 6: The Benefits and Chip Area of Prolog-Specific Features in the VLSI-BAM

for both user instructions and added “internal” instructions. The double-word memory port
(with double bandwidth to cache) improves general-purpose memory operations as well as
choice point creation and restoration speed.

4 The Evolution of Performance

Due to faster machines and improved compilation technology, the performance of Prolog has
increased about two orders of magnitude since DEC-10 Prolog. Table 7 gives the execution
time ratios, relative to DEC-10 Prolog, of a set of representative systems running the five Warren
benchmarks [159]. For the reasons given below, the numbers in Table 7 do not generalize to
large programs. They should be seen only as indicating trends.

Table 7 is split into two parts. The first five rows show the performance of specialized hardware.
The following rows show general-purpose hardware. For the first five rows and for DEC-10
Prolog the year in which the systems were first running is given. For the other systems the
architecture is given. Results for the benchmarks nreverse, qsort, deriv, serialise, and query
are given in columns N, Q, D, S, and R, respectively. Table 8 gives their absolute execution
times on DEC-10 Prolog. The benchmarks were timed with a failure-driven loop. The deriv
benchmark is the sum of the four benchmarks times10, log10, divide10, and ops8. The last
column of Table 7 gives the harmonic mean of the speedup ratios.

Performance is one of the few quantifiable measures of a system. Many other measures are
just as important, but are hard to quantify. For example, it is difficult to assign numbers to
embeddability, robustness, debuggability, portability, and the usefulness of the available built-
in operations. The overall quality of a system depends on how well it meets the needs of the
task at hand. A rough indication of overall quality can be obtained from the software sagas
presented earlier. This should be refined for a particular system by using it to solve a relevant
problem.

The systems marked by y are research systems. The systems on general-purpose hardware that
are marked by z are native code systems. The others are emulated. The numbers for XSB 1.3
are within 10% of SB-Prolog 3.1. Many of the systems generate better code if the program has
mode declarations. For example, IBM Prolog is about 1.5 times faster with mode declarations.

Research Report No. 36 December 1993

50 Peter Van Roy

System Machine (Year) Clock Benchmark
(MHz) N Q D S R meanyPLM compiler [148] PLM [43] (1985) 10. 19 12 9 12 8 11

ESP PSI-II (1986) 6.45 41 25 12 18 10 16
KCM-SEPIA [112] KCM (1989) 12.5 83 57 37 33 15 32yPegasus compiler [125] Pegasus-II (1990) 10. 91 69 39 40 19 39yAquarius [63] VLSI-BAM (1991) 20. 270 260 75 57 32 72

Machine (Architecture)zDEC-10 Prolog [159] DEC-10 (1977) 1 1 1 1 1 1
XSB 1.3 SPARCstation 1+ (SPARC) 25 7 4 2 4 3 3
Quintus 2.0 [63] Sun 3/60 (MC68020) 20 11 4 3 4 3 4zMProlog 2.3 IBM PC clone (386) 33 13 6 5 5 2 5
ECLiPSe 3.3.7 SPARCstation 1+ (SPARC) 25 11 6 4 6 3 5
NU-Prolog 1.5.38 SPARCstation 1+ (SPARC) 25 22 7 5 7 2 5
SICStus 2.1 DECstation 5000/200 (R3000) 25 37 16 10 10 5 10
Quintus 2.5 [154] SPARCstation 1+ (SPARC) 25 33 16 9 13 8 12zBIM 3.1 beta [154] SPARCstation 1+ (SPARC) 25 34 21 8 16 8 13zSICStus 2.1 SPARCstation 1+ (SPARC) 25 39 26 15 20 8 17zyAquarius [154] SPARCstation 1+ (SPARC) 25 120 140 28 25 12 29zIBM Prolog ES/9000 Model 9021 (370) 120 59 74 69 33 60zAquarius 1.0 DECstation 5000/200 (R3000) 25 180 210 63 44 46 71zyParma [140] MIPS R3230 (R3000) 25 330 350 130 170 59 140

Table 7: The Evolution of Prolog Performance

MProlog 2.3 is about 1.2 times faster with mode and indexing declarations. On the same PC
clone, emulated SICStus 2.1 is 1.5 times slower than MProlog 2.3 and five times slower than
native SICStus 2.1 on a SPARCstation 1+.

The Warren benchmarks were chosen because reliable performance numbers for them are
available for many machines. They are not a good measure of the performance of real programs.
A more realistic benchmark set that subsumes the Warren benchmarks is used in [140, 154]
and may be obtained from [156].

The Warren benchmarks are small and many systems have been optimized to execute them
fast. The speedup for nreverse is greater than average because more effort has been done to
optimize it. The speedup for query is less than average because it is dominated by integer
multiplication and division. Due to limitations in their analysis domains (see Section 2.4.5),
Aquarius and Parma have lower performance for large programs unless the programs are tuned.
Large programs are more likely to spend most of their time doing built-in operations, which
are a fixed cost since they are usually implemented in a lower level language.

In older publications, a common unit in Prolog performance is the LIPS, or Logical Inferences
Per Second, i.e., the number of goal invocations or procedure calls per second. Because the
amount of work done by a procedure call is not constant, the LIPS number is an unreliable
indicator of system performance and is not given. By convention, published LIPS numbers are
measured for nreverse, which reverses a 30-element list in 496 logical inferences.

December 1993 Digital PRL

1983–1993: The Wonder Years of Sequential Prolog Implementation 51

Benchmark N Q D S R
Time (ms) 53.7 75.0 10.1 40.2 185.0

Table 8: The Execution Times of the Warren Benchmarks on DEC-10 Prolog

It is difficult to compare the performance of two systems unless they are running on identical
hardware. For example, the same system can vary greatly in speed even when running the
same CPU-bound program on two machines with the same processor, clock speed, and cache
size. This could be the case because the write buffers are of different sizes. Among the
machine-related factors that affect performance are clock speed, but also the memory system
(i.e., cache and virtual memory structure, memory size and bandwidth), the operating system
(e.g., speed of I/O and context switching overhead), the data path (e.g., pipeline structure,
multiple functional units, out-of-order and superscalar execution), and the implementation of
various primitive operations (e.g., multiplication can vary an order of magnitude in speed even
on systems with the same clock). An important difference between the SPARC-based and
R3000-based systems in Table 7 is that the latter have a faster memory system.

5 Future Paths in Logic Programming Implementation

This section gives a personal view of the trends in sequential logic programming implementa-
tion. It is important to distinguish three levels of evolution. First, the low level trends. What
will be the basic improvements in implementation technology for Prolog and related languages?
Second, the high level trends. What will be the new tools, new languages, and programming
paradigms? Finally, what will be the relation between Prolog and the mainstream computing
community? See [48] for an early but still useful discussion of these issues.

5.1 Low Level Trends

There are many ways in which Prolog implementation technology can be improved. Here are
some of the important ones, given in order of increasing difficulty:� Overlap with mainstream compiler technology. As Prolog compilers approach imper-

ative language performance, the standard optimizations of imperative language compilers
(global register allocation, code motion, instruction reordering, and so forth) become im-
portant. Some of these are being implemented in current systems [38]. One approach
is to compile to C. This shortens development time, gains portability, and (to a lesser
degree) takes advantage of what the C compiler does (e.g., register allocation). This
approach has traditionally had a performance loss over native code of a factor of two to
three. This will change in the future. For example, because of its first-class labels and
global register declarations, the recently released GNU C 2.X compiler has a smaller
performance loss than other C compilers [36, 57]. Recent work shows that the over-
head of compilation to C can be reduced to less than 30%, while keeping the system
portable [99]. C is becoming a portable assembly language.

Research Report No. 36 December 1993

52 Peter Van Roy� Type inference and operational types. When writing a program, a programmer often
has definite intentions about the types of predicate arguments. This includes information
on the structure of compound terms (e.g., recursive types such as lists and trees) and on
operational types (see Section 2.4.5). For analysis to work well with large programs as
well as small benchmarks, the analysis domain has to represent this information, to track
variable dependencies, and to correctly handle built-in predicates. Objects whose type
is known at compile-time can be represented unboxed, i.e., accessible without tagging or
other overhead. Current systems only unbox variables (see the discussion on uninitialized
variables in Section 2.4.4) and numbers within arithmetic expressions.� Determinism extraction. Often, a deterministic user-defined predicate is used to select
a clause. This is currently compiled by creating a choice point, executing the predicate,
and backtracking if it fails. It would be more efficient to compile such a predicate as a
boolean function and to do a conditional jump on its result.� Multiple specialization. Different calls to the same predicate frequently have different
types in the same argument. The predicate will run faster if it is compiled separately
for each pattern of calling types. As a first step, multiple specialization can be enabled
by a directive. Profiling could supply the directives. Measurements show that adding
these directives is often fruitful. For example, in the chat parser benchmark the inner
loop is a two-clause predicate, terminal/5, that is called 22 times. Making 22 copies
and recompiling with analysis under Aquarius Prolog results in a 16% performance
improvement. In programs with tighter inner loops the performance improvement can
be much greater. For example, the SEND+MORE=MONEY puzzle shows a tenfold
speedup [155].� Compile-time garbage collection. Prolog creates three kinds of data objects in memory:
choice points, compound data terms, and environments. When a data object becomes
inaccessible, a new object can often reuse part of the old one. For example, a program
that uses an array can destructively update the array if it is unaliased (see Section 2.4.4).
Unaliased arrays are called single-threaded. Recent developments indicate that it is more
practical to enforce single-threadedness syntactically (through source transformation)
than to use an analyzer-compiler combination [65]. See for example the use of monads
in functional programming [158] and the Extended Definite Clause Grammar notation
of [151, 153] which is extended in [7].� Dynamic to static conversion. All data in Prolog is allocated dynamically, i.e., at run-
time. It is accessed through tagged pointers. Often, it is necessary to follow a chain of
pointers to find the data. Since CPU speed is increasing faster than memory speed [59],
the overhead of memory access will become relatively more important in the future. The
software and hardware approaches to speed up memory access are complementary:

– A future compiler could statically allocate part of the dynamically allocated data
to reduce access time and improve locality. This requires analysis to determine
the evolution of aliasing during program execution. For example, objects that are

December 1993 Digital PRL

1983–1993: The Wonder Years of Sequential Prolog Implementation 53

unaliased, that exist only in one copy at any given time, and whose size is known
can be allocated statically.

– A future architecture could be designed to tolerate memory latency. If the architec-
ture could follow one level of tagged pointer in zero time, then the execution model
of Prolog could be changed drastically and would run faster. Two techniques that
help are starting to appear in existing architectures: asynchronous loads (decou-
pling the load request and arrival of the result) and multithreading (fast switching
between register sets). These are useful for all languages, not just Prolog.

5.2 High Level Trends

The development of both Prolog and more advanced logic languages are active areas of research.
In recent years, the implementation of logic programming systems has continued in two main
directions.� Further development of Prolog.

– Software engineering aspects: this development has been mostly in the area of
extended usability of the system rather than performance. For example, many
systems including Quintus, SICStus, BIM, and ECLiPSe, have a foreign language
interface that allows arbitrary calls between Prolog and C, to any level of nesting.
Debugging has improved, and several systems now have source-level debuggers
and profilers [51]. Many systems have eased the strict control flow by including
coroutining facilities (such as freeze). There is an ISO standard for Prolog that is
essentially complete [122].

– “Cleaner” Prologs: these languages aim to keep the ideas and functionality of
Prolog, but to replace the “dirty” operational features (such as assert, var, and
cut) by clean declarative ones. It is not yet obvious whether this is possible
without losing expressivity and performance. This group includes the MU-Prolog
and NU-Prolog family [104] (see Section 3.1.3), xpProlog [83], and the Gödel
language [62].� Other logic programming languages. These can be roughly subdivided into three main

families. The families overlap, but the division is still useful.

– Concurrent languages: these languages include the committed-choice languages
[126] (e.g., Parlog, FGHC, and FCP) and languages based on the “Andorra princi-
ple” [33, 55] (an elegant synthesis of Prolog and committed-choice languages).

– Constraint languages: a language that does incremental global constraint solving
in a particular domain is called a constraint language. These languages come
in two flavors. The general-purpose languages (such as Prolog, Trilogy [157],
and LIFE [5]) provide domains that are useful for most programming tasks. For
example, unification in Prolog handles equality constraints over finite trees. The

Research Report No. 36 December 1993

54 Peter Van Roy

special-purpose languages (such as Prolog III, CLP(R), and CHIP) provide spe-
cialized domains that are useful for particular kinds of problems. For example,
linear arithmetic inequalities on real numbers and membership in finite domains.
These languages allow practical solutions to many problems previously considered
intractable such as optimization problems with large search spaces.

– “Synthesis” languages: there are now serious attempts to make syntheses of dif-
ferent styles of programming [53]. For example, �Prolog [100] and languages
based on narrowing are syntheses of logic and functional programming, LIFE is a
synthesis of logic, functional, and object-oriented programming, and AKL [55] is
a synthesis of concurrent and constraint languages [121]. An important principle
is that a synthesis must start from a simple theoretical foundation.

5.3 Prolog and the Mainstream

As measured by the number of users, commercial systems, and practical applications, Prolog
is by far the most successful logic programming language. Its closest competitors are surely
the special-purpose constraint languages. But it is true that logic programming in particular
and declarative programming in general remain outside of the mainstream of computing. Two
important factors that hinder the widespread acceptance of Prolog are:� Compatibility. Existing code works and investment in it is large. Therefore people will

not easily abandon it for new technology. Therefore a crucial condition for acceptance
is that Prolog systems be embeddable. This problem has been solved to varying degrees
by commercial vendors (see Section 3.1.4).� Public perception. To the commercial computing community, the terms “Prolog” and
“logic programming” are at best perceived as useful in an academic or research setting,
but not useful for industry. This image is not based on any rational deduction. Changing
the image requires both marketing and application development.

The ideas of logic programming will continue to be used in those application domains for
which it is particularly suited. This includes domains in which program complexity is beyond
what can be managed in the imperative paradigm.

6 Summary and Conclusions

This survey summarizes the technical developments in sequential Prolog implementation during
the past decade and the systems that pioneered them. Much has happened in this time, and
I hope that the survey is successful in capturing most of the important developments and in
pointing out some intriguing trends for the future.

The WAM opened the floodgates for a proliferation of systems and ideas. It was the substrate
upon which most sequential Prolog development took place in the past decade. Nowadays, the

December 1993 Digital PRL

1983–1993: The Wonder Years of Sequential Prolog Implementation 55

WAM is no longer the best model to use for high performance. But it continues to be useful
as a conceptual model, and the compilation principle that underlies the WAM is still highly
relevant: to compile a logic language, simplify each occurrence of one of its basic operations
with all the information at one’s disposal. The last decade has seen an increased understanding
of how this can be done: by measuring actual programs to optimize frequent operations, by
learning how to compile unification and backtracking, and by using simpler instruction sets
and global analysis.

The Prolog language has proven to be an elegant implementation target. The language has been
generalized in many ways. There have been large advances in implementation technology, but
there is still plenty to do, both in implementing Prolog and its successors. The next decade
promises to be as interesting as the first.

Research Report No. 36 December 1993

56 Peter Van Roy

References

1. Abderrahmane Aggoun and Nicolas Beldiceanu. Time Stamps Techniques for the Trailed Data in
Constraint Logic Programming Systems. In Actes du Séminaire 1990–Programmation en Logique,
CNET, Tregastel, France, May 1990.

2. Abderrahmane Aggoun and Nicolas Beldiceanu. Overview of the CHIP Compiler System. In 8th
ICLP, pages 775–789, MIT Press, June 1991.

3. Alfred V. Aho, Ravi Sethi, and Jeffrey D. Ullman. Compilers: Principles, Techniques, and Tools.
Addison–Wesley, 1986.

4. Hassan Aı̈t-Kaci. Warren’s Abstract Machine, A Tutorial Reconstruction. MIT Press, Cambridge,
MA, 1991.

5. Hassan Aı̈t-Kaci and Andreas Podelski. Towards a Meaning of LIFE. DEC PRL Research Report
11, Digital Equipment Corporation, Paris Research Laboratory, June 1991 (Revised October 1992).

6. Hassan Aı̈t-Kaci and Andreas Podelski. Functions as Passive Constraints in LIFE. DEC PRL
Research Report 13, Digital Equipment Corporation, Paris Research Laboratory, June 1991 (Revised
November 1992).

7. Hassan Aı̈t-Kaci, Bruno Dumant, Richard Meyer, Andreas Podelski, and Peter Van Roy. The Wild
LIFE Handbook. Digital Equipment Corporation, Paris Research Laboratory, 1994.

8. Mohamed Amraoui. Une Expérience de Compilation de PrologII sur MALI (in French). Doctoral
dissertation, Université de Rennes I, France, January 1988.

9. Andrew W. Appel. Compiling with Continuations. Cambridge University Press, 1992.

10. Bilbo Baggins and Frodo Baggins. The Memoirs of Bilbo and Frodo of the Shire, Supplemented by
the Accounts of Their Friends and the Learning of the Wise. The Shire, Arnor, 3021 TA.

11. Joachim Beer. Concepts, Design, and Performance Analysis of a Parallel Prolog Machine. Ph.D.
dissertation, Technische Universität Berlin, September 1987.

12. Joachim Beer. The Occur-Check Problem Revisited. In JLP, Elsevier North-Holland, vol. 5, no. 3,
pages 243–261, September 1988.

13. Judit Bendl, Péter Köves, and Péter Szeredi. The MPROLOG System. In Logic Programming
Workshop, pages 201–209, Debrecen, Hungary, 1980.

14. Hans Benker, J. M. Beacco, S. Bescos, M. Dorochevsky, Th. Jeffre, A. Pohimann, J. Noyé, B. Poterie,
A. Sexton, J. C. Syre, O. Thibault, and G. Watzlawik. KCM: A Knowledge Crunching Machine.
In 16th ISCA, pages 186–194, IEEE Computer Society Press, May 1989.

15. J. Bocca. MegaLog–A Platform for Developing Knowledge Base Management Systems. In 2nd
International Symposium on Database Systems for Advanced Applications, pages 374–380, Tokyo,
April 1991.

16. Kent Boortz. SICStus Maskinkodskompilering (in Swedish). SICS Technical Report T91:13,
August 1991.

December 1993 Digital PRL

1983–1993: The Wonder Years of Sequential Prolog Implementation 57

17. David L. Bowen, Lawrence M. Byrd, and William F. Clocksin. A Portable Prolog Compiler. In
Logic Programming Workshop, pages 74–83, Algarve, Portugal, 1983.

18. Kenneth A. Bowen, Kevin A. Buettner, Ilyas Cicekli, and Andrew K. Turk. The Design and
Implementation of a High-Speed Incremental Portable Prolog Compiler. In 3rd ICLP, pages 650–
656, Springer-Verlag LNCS 225, July 1986.

19. Roger S. Boyer and Jay S. Moore. The Sharing of Structure in Theorem Proving Programs. In
Machine Intelligence 7, pages 101–116, Edinburgh University Press, New York, 1972.

20. Pascal Brisset and Olivier Ridoux. The Compilation of�Prolog and its Execution with MALI. IRISA
Publication Interne 687, Rennes, France, November 1992. Also published as INRIA Rapport de
Recherche 1831, January 1993.

21. Maurice Bruynooghe. An Interpreter for Predicate Logic Programs. Report CW 10, Department of
Computer Science, Katholieke Universiteit Leuven, Belgium, October 1976.

22. Maurice Bruynooghe. The Memory Management of Prolog Implementations. In Logic Program-
ming, ed. K. Clark and S. Tärnlund, pages 83–98, Academic Press, 1982.

23. Mats Carlsson. On Implementing Prolog in Functional Programming. In 1st ICLP, pages 154–159,
IEEE Computer Society Press, February 1984.

24. Mats Carlsson. Freeze, Indexing, and Other Implementation Issues in the WAM. In 4th ICLP,
pages 40–58, MIT Press, May 1987.

25. Mats Carlsson. On the Efficiency of Optimising Shallow Backtracking in Compiled Prolog. In 6th
ICLP, pages 3–16, MIT Press, June 1989.

26. M. Carlsson, J. Widèn, J. Andersson, S. Andersson, K. Boortz, H. Nilsson, and T. Sjöland. SICStus
Prolog User’s Manual. SICS, Box 1263, 164 28 Kista, Sweden, 1991.

27. Weidong Chen and David Scott Warren. Query Evaluation under the Well-Founded Semantics. In
12th Symposium on Principles of Database Systems (PODS ’93), ACM, 1993.

28. William F. Clocksin. Design and Simulation of a Sequential Prolog Machine. In Journal of New
Generation Computing (NGC), pages 101–120, vol. 3, no. 1, 1985.

29. Philippe Codognet and Daniel Diaz. Boolean Constraint Solving using clp(FD). In 10th ILPS,
pages 525–539, MIT Press, October 1993.

30. Helder Coelho and José C. Cotta. Prolog by Example: How to Learn, Teach and Use It. Springer-
Verlag, 1988.

31. A. Colmerauer, H. Kanoui, and M. V. Caneghem. Prolog, Theoretical Principles and Current Trends.
In Technology and Science of Informatics, 2(4):255–292, 1983.

32. A. Colmerauer. The Birth of Prolog. In The Second ACM-SIGPLAN History of Programming
Languages Conference, pages 37–52, ACM SIGPLAN Notices, March 1993.

33. Vitor Santos Costa, David H. D. Warren, and Rong Yang. Andorra-I: A Parallel Prolog System that
transparently exploits both And- and Or-parallelism. In Proc. 3rd ACM SIGPLAN Conference on
Principles and Practice of Parallel Programming, pages 83–93, August 1991.

Research Report No. 36 December 1993

58 Peter Van Roy

34. Patrick Cousot and Radhia Cousot. Abstract Interpretation: A Unified Lattice Model for Static
Analysis of Programs by Construction or Approximation of Fixpoints. In 4th POPL, pages 238–
252, January 1977.

35. Patrick Cousot and Radhia Cousot. Abstract Interpretation and Application to Logic Programs. In
JLP, Elsevier North-Holland, pages 103–179, vol. 13, nos. 2-3, July 1992.

36. Koen De Bosschere and Paul Tarau. Continuation Passing Style Prolog-to-C Mapping at Native
WAM-speed. ELIS Technical Report DG 93-15, Universiteit Gent, Vakgroep Elektronica en Infor-
matiesystemen, November 1993. Summary in ACM Symposium on Applied Computing (SAC ’94),
March 1994 (forthcoming).

37. Saumya Debray. Global Optimization of Logic Programs. Ph.D. dissertation, Computer Science
Department, SUNY Stony Brook, September 1986.

38. Saumya Debray. A Simple Code Improvement Scheme for Prolog. In JLP, Elsevier North-Holland,
pages 57–88, vol. 13, no. 1, May 1992.

39. Saumya Debray. Implementing Logic Programming Systems: The Quiche-Eating Approach. In
ICLP ’93 Workshop on Practical Implementations and Systems Experience, Budapest, Hungary,
June 1993.

40. Daniel Diaz and Philippe Codognet. A Minimal Extension of the WAM for clp(FD). In 10th ICLP,
pages 774–790, Budapest, Hungary, MIT Press, June 1993.

41. M. Dincbas, P. Van Hentenryck, H. Simonis, A. Aggoun, T. Graf, and F. Berthier. The Constraint
Logic Programming Language CHIP. In FGCS ’88, pages 693–702, Tokyo, November 1988.

42. T. P. Dobry. Performance Studies of a Prolog Machine Architecture. In 12th ISCA, IEEE Computer
Society Press, June 1985.

43. T. P. Dobry. A High Performance Architecture for Prolog. Ph.D. dissertation, Department of
Computer Science, U.C. Berkeley, Report UCB/CSD 87/352, April 1987. Also published by Kluwer
Academic Publishers, 1990.

44. Mireille Ducassé. Opium: An Advanced Debugging System. In 2nd Logic Programming Summer
School, Esprit Network of Excellence in Computational Logic (COMPULOG-NET), ed. G. Comyn
and N. Fuchs, Springer-Verlag LNAI 636, September 1992.

45. ECRC. ECLiPSe 3.2 User Manual. August 1992.

46. E. W. Elcock. Absys: The First Logic Programming Language–A Retrospective and a Commentary.
In JLP, Elsevier North-Holland, pages 1–17, vol. 9, no. 1, July 1990. Also published as Technical
Report #210, Department of Computer Science, University of Western Ontario, July 1988.

47. Zsuzsa Farkas, Péter Köves, and Péter Szeredi. MProlog: An Implementation Overview. In ICLP
’93 Workshop on Practical Implementations and Systems Experience, Budapest, Hungary, June
1993.

48. Hervé Gallaire. Boosting Logic Programming. In 4th ICLP, pages 962–988, Melbourne, Australia,
May 1987.

49. M. Garcı́a de la Banda and M. Hermenegildo. A Practical Approach to the Global Analysis of CLP
Programs. In 10th ILPS, pages 435–455, MIT Press, October 1993.

December 1993 Digital PRL

1983–1993: The Wonder Years of Sequential Prolog Implementation 59

50. Thomas Walter Getzinger. Abstract Interpretation for the Compile-Time Analysis of Logic Pro-
grams. Ph.D. dissertation, Advanced Computer Architecture Laboratory, University of Southern
California, Report ACAL-TR-93-09, September 1993.

51. Michael M. Gorlick and Carl F. Kesselman. Gauge: A Workbench for the Performance Analysis of
Logic Programs. In 5th ICSLP, pages 548–561, MIT Press, August 1988.

52. David Gudeman. Representing Type Information in Dynamically Typed Languages. University of
Arizona, Department of Computer Science, Report TR93-27, September 1993.

53. Yi-Ke Guo and Hendrik C. R. Lock. A Classification Scheme for Declarative Programming
Languages. GMD-Studien Nr. 182, GMD, Germany, August 1990.

54. S. Habata, R. Nakazaki, A. Atarashi, and M. Umemara. Co-operative High Performance Sequential
Inference Machine: CHI. In International Conference on Computer Design (ICCD ’87), pages
601–604, IEEE Computer Society Press, October 1987.

55. Seif Haridi and Sverker Janson. Kernel Andorra Prolog and its Computation Model. In 7th ICLP,
pages 31–48, MIT Press, Cambridge, June 1990.

56. Arie Harsat and Ran Ginosar. CARMEL-2: A Second Generation VLSI Architecture for Flat
Concurrent Prolog. In FGCS ’88, pages 962–969, Tokyo, November 1988.

57. Bogumił Hausman. Turbo Erlang. In 10th ILPS, page 662, MIT Press, October 1993.

58. Ralph Clarke Haygood. Aquarius Prolog User Manual. In Aquarius Prolog 1.0 documentation,
U.C. Berkeley, April 1993.

59. John L. Hennessy and David A. Patterson. Computer Architecture: A Quantitative Approach.
Morgan Kaufmann, 1990.

60. Manuel Hermenegildo, Richard Warren, and Saumya Debray. Global Flow Analysis as a Practical
Compilation Tool. In JLP, Elsevier North-Holland, pages 349–367, vol. 13, no. 4, August 1992.

61. Timothy Hickey and Shyam Mudambi. Global Compilation of Prolog. In JLP, Elsevier North-
Holland, pages 193–230, vol. 7, no. 3, November 1989.

62. P. M. Hill and J. W. Lloyd. The Gödel Programming Language. Technical Report CSTR-92-27,
Department of Computer Science, University of Bristol, October 1992 (Revised May 1993).

63. Bruce K. Holmer, Barton Sano, Michael Carlton, Peter Van Roy, Ralph Haygood, Joan M. Pendleton,
T. P. Dobry, William R. Bush, and Alvin M. Despain. Fast Prolog with an Extended General Purpose
Architecture. In 17th ISCA, pages 282–291, IEEE Computer Society Press, May 1990.

64. Bruce K. Holmer. Automatic Design of Computer Instruction Sets. Ph.D. dissertation, Department
of Computer Science, U.C. Berkeley, 1993.

65. Paul Hudak. Reflections on Program Optimization. Invited talk, 1993 Workshop on Static Analysis
(WSA ’93), page 193, Springer-Verlag LNCS 724, September 1993.

66. Gérard Huet. Résolution d’Équations dans des Langages d’Ordre 1, 2, : : : , ! (in French). Thèse
de Doctorat d’État, Université Paris VII, September 1976.

67. IBM. IBM SAA AD/Cycle Prolog/MVS & VM Programmer’s Guide and Language Reference,
Release 1, December 1992.

Research Report No. 36 December 1993

60 Peter Van Roy

68. Joxan Jaffar. Efficient Unification over Infinite Terms. In Journal of New Generation Computing
(NGC), pages 207–219, vol. 2, no. 3, 1984.

69. Gerda Janssens and Maurice Bruynooghe. Deriving Descriptions of Possible Values of Program
Variables by means of Abstract Interpretation. In JLP, Elsevier North-Holland, pages 205–258,
vol. 13, nos. 2-3, July 1992.

70. Mark Kantrowitz. Prolog Resource Guide. Regularly posted on Internet newsgroups
comp.lang.prolog and comp.answers.

71. Shmuel Kliger and Ehud Shapiro. From Decision Trees to Decision Graphs. In NACLP90, pages
97–116, MIT Press, October 1990.

72. Shmuel Kliger. Compiling Concurrent Logic Programming Languages. Ph.D. dissertation, Weiz-
mann Institute, Rehovot, October 1992.

73. H. Komatsu, N. Tamura, Y. Asakawa, and T. Kurokawa. An Optimizing Prolog Compiler. In Logic
Programming ’86, pages 104–115, Springer-Verlag LNCS 264, June 1986.

74. M. Korsloot and E. Tick. Compilation Techniques for Nondeterminate Flat Concurrent Logic
Programming Languages. In 8th ICLP, pages 457–471, MIT Press, June 1991.

75. Péter Köves and Péter Szeredi. Getting the Most Out of Structure-Sharing. In Collection of Papers
on Logic Programming, pages 69–84, SZKI, Budapest, 1988 (Revised November 1993).

76. Andreas Krall, Tim Lindholm, et al. Net Talk: Term Comparisons with Variables. In ALP Newslet-
ter, pages 18–21, November 1992. From Internet newsgroup comp.lang.prolog, July 1992.

77. Andreas Krall and Ulrich Neumerkel. The Vienna Abstract Machine. In PLILP ’90, pages 121–135,
Springer-Verlag LNCS 456, August 1990.

78. K. Kurosawa, S. Yamaguchi, S. Abe, and T. Bandoh. Instruction Architecture for a High Per-
formance Integrated Prolog Processor IPP. In 5th ICSLP, pages 1506–1530, MIT Press, August
1988.

79. Peter Kursawe. How to Invent a Prolog Machine. In 3rd ICLP, pages 134–148, Springer-Verlag
LNCS 225, July 1986. Also in Journal of New Generation Computing, vol. 5, pages 97–114, 1987.

80. Baudouin Le Charlier, Kaninda Musumbu, and Pascal Van Hentenryck. A Generic Abstract Inter-
pretation Algorithm and its Complexity Analysis (Extended Abstract). In 8th ICLP, pages 64–78,
MIT Press, June 1991.

81. Baudouin Le Charlier, Olivier Degimbe, Laurent Michel, and Pascal Van Hentenryck. Optimization
Techniques for General Purpose Fixpoint Algorithms: Practical Efficiency for the Abstract Inter-
pretation of Prolog. In 1993 Workshop on Static Analysis (WSA ’93), pages 15–26, Springer-Verlag
LNCS 724, September 1993.

82. Tim Lindholm and Richard A. O’Keefe. Efficient Implementation of a Defensible Semantics for
Dynamic Prolog Code. In 4th ICLP, pages 21–39, MIT Press, May 1987.

83. Peter Ludemann. xpProlog: High Performance Extended Pure Prolog. Master’s thesis, University
of British Columbia, 1988.

84. Michael J. Maher. Logic Semantics for a Class of Committed-Choice Programs. In 4th ICLP,
pages 858–876, MIT Press, 1987.

December 1993 Digital PRL

1983–1993: The Wonder Years of Sequential Prolog Implementation 61

85. David Maier and David Scott Warren. Computing with Logic–Logic Programming with Prolog.
Benjamin/Cummings, 1988.

86. André Mariën. An Optimal Intermediate Code for Structure Creation in a WAM-based Prolog
Implementation. Katholieke Universiteit Leuven, Belgium, May 1988.

87. André Mariën, Gerda Janssens, Anne Mulkers, and Maurice Bruynooghe. The Impact of Abstract
Interpretation: An Experiment in Code Generation. In 6th ICLP, pages 33–47, MIT Press, June
1989.

88. André Mariën and Bart Demoen. A New Scheme for Unification in WAM. In ILPS, pages 257–271,
MIT Press, October 1991.

89. André Mariën. Improving the Compilation of Prolog in the Framework of the Warren Abstract
Machine. Ph.D. dissertation, Katholieke Universiteit Leuven, September 1993.

90. Kim Marriott, Maria Garcı́a de la Banda, and Manuel Hermenegildo. Analyzing Logic Programs
with Dynamic Scheduling. In 20th POPL, ACM, 1994.

91. K. Mehlhorn and A. Tsakalidis. Data Structures. Chapter 6 of Handbook of Theoretical Computer
Science, Volume A: Algorithms and Complexity, pages 301–341, MIT Press/Elsevier, 1990.

92. Micha Meier. Shallow Backtracking in Prolog Programs. Internal report, ECRC, Munich, Germany,
February 1987.

93. M. Meier, A. Aggoun, D. Chan, P. Dufresne, R. Enders, D. Henry de Villeneuve, A. Herold, P. Kay,
B. Perez, E. van Rossum, and J. Schimpf. SEPIA–An Extendible Prolog System. In Proceedings
of the 11th World Computer Congress IFIP’89, pages 1127–1132, San Francisco, August 1989.

94. Micha Meier. Compilation of Compound Terms in Prolog. In NACLP90, pages 63–79, MIT Press,
October 1990.

95. Micha Meier. Better Late Than Never. Internal report, ECRC, Munich, Germany, 1993. In ICLP
’93 Workshop on Practical Implementations and Systems Experience, Budapest, Hungary, June
1993.

96. C. S. Mellish. Automatic Generation of Mode Declarations for Prolog Programs (draft). Depart-
ment of Artificial Intelligence, University of Edinburgh, August 1981.

97. C. S. Mellish and S. Hardy. Integrating Prolog in the POPLOG environment. In Implementations
of PROLOG, ed. J. A. Campbell, 1984, pages 147–162.

98. C. S. Mellish. Some Global Optimizations for a Prolog Compiler. In JLP, Elsevier North-Holland,
pages 43–66, vol. 1, 1985.

99. Richard Meyer. Private communication. Digital Equipment Corporation, Paris Research Labora-
tory, December 1993.

100. Dale Miller and Gopalan Nadathur. Higher-Order Logic Programming. In 3rd ICLP, pages
448–462, Springer-Verlag LNCS 225, July 1986.

101. Jonathan Wayne Mills. LIBRA: A High-Performance Balanced Computer Architecture for Prolog.
Ph.D. dissertation, Arizona State University, December 1988.

Research Report No. 36 December 1993

62 Peter Van Roy

102. Chris Moss and Ken Bowen (chairs). International Conference on the Practical Application of
Prolog. ALP, London, April 1992.

103. Chris Moss and Al Roth. The Prolog 1000 database. Available through anonymous ftp from
src.doc.ic.ac.uk in packages/prolog-progs-db/prolog1000.v1, August 1993.

104. Lee Naish. MU-Prolog 3.1db Reference Manual. Computer Science Department, University of
Melbourne, Melbourne, Australia, May 1984.

105. Lee Naish. Negation and Quantifiers in NU-Prolog. In 3rd ICLP, pages 624–634, Springer-Verlag
LNCS 225, July 1986.

106. Lee Naish. Negation and Control in Prolog. Ph.D. dissertation, University of Melbourne, published
as Springer-Verlag LNCS 238, 1986.

107. Lee Naish. Parallelizing NU-Prolog. In 5th ICSLP, pages 1546–1564, MIT Press, August 1988.
Also published as Technical Report 87/17, Department of Computer Science, University of Mel-
bourne.

108. Lee Naish, Philip W. Dart, and Justin Zobel. The NU-Prolog Debugging Environment. In 6th
ICLP, pages 521–536, MIT Press, June 1989.

109. Hiroshi Nakashima and Katsuto Nakajima. Hardware Architecture of the Sequential Inference
Machine: PSI-II. In SLP, pages 104–113, IEEE Computer Society Press, August 1987.

110. Ulrich Neumerkel. Une Transformation de Programme Basée sur la Notion d’Équations entre
Termes (in French). In Journées Francophones de Programmation en Logique (JFPL), pages
215–229, Nı̂mes, France, May 1993.

111. Jacques Noyé, Hans Benker, et al. ICM3: The Abstract Machine. Technical Report CA-19, ECRC,
Munich, February 1987.

112. Jacques Noyé. An Overview of the Knowledge Crunching Machine. ECRC, Munich, Germany,
1993. In Emerging Trends in Database and Knowledge-base Machines. IEEE Computer Society
Press (forthcoming).

113. Richard A. O’Keefe. The Craft of Prolog. MIT Press, 1990.

114. Doug Palmer and Lee Naish. NUA-Prolog: An Extension to the WAM for Parallel Andorra. In
8th ICLP, pages 429–442, MIT Press, June 1991.

115. Fernando C. N. Pereira and Stuart M.Shieber. Prolog and Natural-Language Analysis. Center for
the Study of Language and Information (CSLI), Lecture Notes Number 10, 1987.

116. Christian Pichler. Prolog-Übersetzer (in German). Master’s thesis (Diplomarbeit), Institut für
Praktische Informatik, Technische Universität Wien, November 1984.

117. Andreas Podelski and Peter Van Roy. The Beauty and the Beast Algorithm: Testing Entailment
and Disentailment Incrementally. In 10th ILPS, page 653, MIT Press, October 1993. Also Research
Report (forthcoming), Digital Equipment Corporation, Paris Research Laboratory.

118. Kotagiri Ramamohanarao, John Shepherd, Isaac Balbin, Graeme Port, Lee Naish, James Thom,
Justin Zobel, and PhilipDart. The NU-Prolog Deductive Database System. In IEEE Data Engineer-
ing, pages 10–19, vol. 10, no. 4, December 1987. Also in Prolog and Databases, Ellis Horwood,
1988. Also Technical Report 87/19, Department of Computer Science, University of Melbourne.

December 1993 Digital PRL

1983–1993: The Wonder Years of Sequential Prolog Implementation 63

119. Konstantinos Sagonas, Terrance Swift, and David Scott Warren. XSB: An Overview of its Use
and Implementation. SUNY Stony Brook, October 1993. Available through anonymous ftp from
cs.sunysb.edu in pub/TechReports/warren/xsb overview.ps.Z.

120. Dan Sahlin and Mats Carlsson. Variable Shunting for the WAM. In NACLP ’90 Workshop on Logic
Programming Architectures and Implementations, Austin, Texas, November 1990. Also available
as SICS Research Report R91:07, March 1991.

121. Vijay Saraswat. Concurrent Constraint Programming Languages. Ph.D. dissertation, Carnegie-
Mellon University, 1989. Revised version published by MIT Press, 1992.

122. Roger Scowen. ISO Draft Prolog Standard (N72). ISO/IEC JTC1 SC22 WG17, June 1991.

123. Kazuo Seo and Takashi Yokota. Pegasus: A RISC Processor for High-Performance Execution
of Prolog Programs. In VLSI ’87, Vancouver, Canada, pages 261–274, Elsevier North-Holland,
August 1987.

124. Kazuo Seo and Takashi Yokota. Design and Fabrication of Pegasus Prolog Processor. In VLSI ’89,
Munich, Germany, pages 265–274, Elsevier North-Holland, August 1989.

125. Kazuo Seo. Study of a VLSI Architecture for the Logic Programming Language Prolog (in
Japanese). Ph.D. dissertation, Keio University, March 1993.

126. Ehud Shapiro. The Family of Concurrent Logic Programming Languages. In ACM Computing
Surveys, pages 412–510, vol. 21, no. 3, September 1989.

127. Aaron Sloman. The Evolution of Poplog and Pop-11 at Sussex University. In POP-11 Comes of
Age: The Advancement of an AI Programming Language, ed. J. A. D. W. Anderson, pages 30–54,
Ellis Horwood, 1989.

128. Vason P. Srini, J. Tam, T. Nguyen, C. Chen, A. Wei, J. Testa, Y. Patt, and A. M. Despain. VLSI
Implementation of a Prolog Processor. In Stanford VLSI Conference, March 1987.

129. Vason P. Srini, Jerric V. Tam, Tam M. Nguyen, Yale N. Patt, Alvin M. Despain, Maurice Moll,
and Dan Ellsworth. A CMOS Chip for Prolog. In International Conference on Computer Design
(ICCD ’87), pages 605–610, IEEE Computer Society Press, October 1987.

130. Leon Sterling and Ehud Shapiro. The Art of Prolog. MIT Press, 1986.

131. Terrance Swift and David Scott Warren. Compiling OLDT Evaluation: Background and Overview.
SUNY Stony Brook Technical Report 92/04, 1992. Available through anonymous ftp from
cs.sunysb.edu in pub/TechReports/warren/xwam overview.dvi.Z, June 1993.

132. Terrance Swift and David Scott Warren. Performance of Sequential SLG Evaluation. SUNY Stony
Brook. Available through anonymous ftp from cs.sunysb.edu in pub/TechReports/warren/xsb-
perf.ps.Z, November 1993.

133. K. Taki, M. Yokota, A. Yamamoto, H. Nishikawa, S. Uchida, H. Nakashima, and A. Mitsuishi.
Hardware Design and Implementation of the Personal Sequential Inference Machine (PSI). In
FGCS ’84, 1984.

134. Kazuo Taki. Parallel Inference Machine PIM. In FGCS ’92, 1992.

135. N. Tamura. Knowledge-Based Optimization in Prolog Compiler. In ACM/IEEE Computer Society
Fall Joint Conference, November 1986.

Research Report No. 36 December 1993

64 Peter Van Roy

136. Paul Tarau. A Compiler and a Simplified Abstract Machine for the Execution of Binary Metapro-
grams. In Proceedings of the Logic Programming Conference ’91, pages 119–128, ICOT, Tokyo,
September 1991.

137. Paul Tarau. WAM-optimizations in BinProlog: Towards a Realistic Continuation Passing Prolog
Engine. Technical Report, Université de Moncton, Canada, 1992.

138. Andrew Taylor. Removal of Dereferencing and Trailing in Prolog Compilation. In 6th ICLP,
pages 48–60, MIT Press, June 1989.

139. Andrew Taylor. LIPS on a MIPS: Results from a Prolog Compiler for a RISC. In 7th ICLP, pages
174–185, MIT Press, June 1990.

140. Andrew Taylor. High-Performance Prolog Implementation. Ph.D. dissertation, Basser Department
of Computer Science, University of Sydney, June 1991.

141. Olivier Thibault. Hardware evaluation of KCM. ECRC, Munich, Germany, May 1990. In Tools
for Artificial Intelligence 1990. IEEE Computer Society Press, November 1990.

142. Evan Tick and David H. D. Warren. Towards a Pipelined Prolog Processor. In SLP, pages 29–40,
February 1984. Also in Journal of New Generation Computing, pages 323–345, vol. 2, no. 4, 1984.

143. Evan Tick. Memory- and Buffer-referencing Characteristics of a WAM-based Prolog. In JLP,
Elsevier North-Holland, pages 133–162, November 1991.

144. R. M. Tomasulo. An Efficient Algorithm for Exploiting Multiple Arithmetic Units. In IBM Journal,
pages 25–33, vol. 11, January 1967. Also as Chapter 19 in Computer Structures: Principles and
Examples, ed. Siewiorek, Bell, and Newell, McGraw-Hill, pages 293–302, 1982.

145. Hervé Touati and Alvin M. Despain. An Empirical Study of the Warren Abstract Machine. In
SLP, pages 114–124, IEEE Computer Society Press, August 1987.

146. Andrew K. Turk. Compiler Optimizations for the WAM. In 3rd ICLP, pages 657–662, Springer-
Verlag LNCS 225, July 1986.

147. Shunichi Uchida. Summary of the Parallel Inference Machine and its Basic Software. In FGCS
’92, 1992.

148. Peter Van Roy. A Prolog Compiler for the PLM. Report UCB/CSD No. 84/203, Master’s Report,
U.C. Berkeley, November 1984.

149. Peter Van Roy, Bart Demoen, and Yves D. Willems. Improving the Execution Speed of Compiled
Prolog with Modes, Clause Selection, and Determinism. In TAPSOFT ’87, pages 111–125, Springer-
Verlag LNCS 250, March 1987, also Report CW 51, K. U. Leuven.

150. Peter Van Roy. An Intermediate Language to Support Prolog’s Unification. In NACLP 89, pages
1148–1164, MIT Press, October 1989.

151. Peter Van Roy. A Useful Extension to Prolog’s Definite Clause Grammar notation. In ACM
SIGPLAN Notices, pages 132–134, November 1989. See also Extended DCG Notation: A Tool for
Applicative Programming in Prolog, Report UCB/CSD 90/583, U.C. Berkeley, July 1990.

152. Peter Van Roy and Alvin M. Despain. The Benefits of Global Dataflow Analysis for an Optimizing
Prolog Compiler. In NACLP 90, pages 491–515, MIT Press, October 1990.

December 1993 Digital PRL

1983–1993: The Wonder Years of Sequential Prolog Implementation 65

153. Peter Van Roy. Can Logic Programming Execute as Fast as Imperative Programming? Ph.D.
dissertation, Department of Computer Science, U.C. Berkeley, Report UCB/CSD 90/600, December
1990. Revised version published as Fast Logic Program Execution by Intellect Books.

154. Peter Van Roy and Alvin M. Despain. High-Performance Logic Programming with the Aquarius
Prolog Compiler. In IEEE Computer, pages 54–68, vol. 25, no. 1, January 1992.

155. Peter Van Roy. How to Get the Most Out of Aquarius Prolog. In Aquarius Prolog 1.0 documenta-
tion, Digital Equipment Corporation, Paris Research Laboratory, April 1993.

156. Peter Van Roy et al. Aquarius Benchmarks. Available through anonymous ftp from gate-
keeper.dec.com in pub/plan/prolog/AquariusBenchmarks.tar.Z.

157. Paul J. Voda. Types of Trilogy. In 5th ICSLP, pages 580–589, MIT Press, August 1988.

158. Philip Wadler. The Essence of Functional Programming. In 19th POPL, pages 1–14, ACM Press,
January 1992.

159. David H. D. Warren. Applied Logic–Its Use and Implementation as a Programming Tool. Ph.D.
dissertation, University of Edinburgh, DAI Research Reports 39 & 40, 1977, also SRI Technical
Report 290, 1983.

160. David H. D. Warren. Prolog on the DECsystem-10. In Expert Systems in the Micro-Electronic
Age, Edinburgh University Press, 1979.

161. David H. D. Warren and Fernando C. N. Pereira. An Efficient Easily Adaptable System for
Interpreting Natural Language Queries. In American Journal of Computational Linguistics, pages
110–122, vol. 8, nos. 3-4, July-December 1982.

162. David H. D. Warren. Higher-Order Extensions to Prolog–Are They Needed? In Machine Intelli-
gence 10, Ellis Horwood, 1982.

163. David H. D. Warren. An Abstract Prolog Instruction Set. Technical Note 309, SRI International
Artificial Intelligence Center, October 1983.

164. Richard Warren, Manuel Hermenegildo, and Saumya K. Debray. On the Practicality of Global
Flow Analysis of Logic Programs. In 5th ICSLP, pages 684–699, MIT Press, August 1988.

165. Günter Watzlawik, Hans Benker, Jacques Noyé, et al. ICM4. Technical Report CA-25, ECRC,
Munich, Germany, February 1987.

166. Takashi Yokota and Kazuo Seo. Pegasus–An ASIC Implementation of High-Performance Prolog
Processor. In EURO ASIC ’90, Paris, France, pages 156–159, IEEE Computer Society Press, May
1990.

167. Neng-Fa Zhou. Backtracking Optimizations in Compiled Prolog. Ph.D. dissertation, Kyushu
University, Fukuoka, Japan, November 1990.

168. Benjamin G. Zorn. Comparative Performance Evaluation of Garbage Collection Algorithms.
Ph.D. dissertation, Department of Computer Science, U.C. Berkeley, Report UCB/CSD 89/544,
December 1989.

Research Report No. 36 December 1993

PRL Research Reports

The following documents may be ordered by regular mail from:

Librarian – Research Reports
Digital Equipment Corporation
Paris Research Laboratory
85, avenue Victor Hugo
92563 Rueil-Malmaison Cedex
France.

It is also possible to obtain them by electronic mail. For more information, send a
message whose subject line is help to doc-server@prl.dec.com or, from
within Digital, to decprl::doc-server .

Research Report 1: Incremental Computation of Planar Maps. Michel Gangnet, Jean-
Claude Hervé, Thierry Pudet, and Jean-Manuel Van Thong. May 1989.

Research Report 2: BigNum: A Portable and Efficient Package for Arbitrary-Precision Arith-
metic. Bernard Serpette, Jean Vuillemin, and Jean-Claude Hervé. May 1989.

Research Report 3: Introduction to Programmable Active Memories. Patrice Bertin, Didier
Roncin, and Jean Vuillemin. June 1989.

Research Report 4: Compiling Pattern Matching by Term Decomposition. Laurence Puel
and Ascánder Suárez. January 1990.

Research Report 5: The WAM: A (Real) Tutorial. Hassan Aı̈t-Kaci. January 1990.y
Research Report 6: Binary Periodic Synchronizing Sequences. Marcin Skubiszewski. May
1991.

Research Report 7: The Siphon: Managing Distant Replicated Repositories. Francis J.
Prusker and Edward P. Wobber. May 1991.

Research Report 8: Constructive Logics. Part I: A Tutorial on Proof Systems and Typed�-Calculi. Jean Gallier. May 1991.

Research Report 9: Constructive Logics. Part II: Linear Logic and Proof Nets. Jean Gallier.
May 1991.

Research Report 10: Pattern Matching in Order-Sorted Languages. Delia Kesner. May
1991.yThis report is no longer available from PRL. A revised version has now appeared as a book: “Hassan Aı̈t-Kaci,
Warren’s Abstract Machine: A Tutorial Reconstruction. MIT Press, Cambridge, MA (1991).”

Research Report 11: Towards a Meaning of LIFE. Hassan Aı̈t-Kaci and Andreas Podelski.
June 1991 (Revised, October 1992).

Research Report 12: Residuation and Guarded Rules for Constraint Logic Programming.
Gert Smolka. June 1991.

Research Report 13: Functions as Passive Constraints in LIFE. Hassan Aı̈t-Kaci and Andreas
Podelski. June 1991 (Revised, November 1992).

Research Report 14: Automatic Motion Planning for Complex Articulated Bodies. Jérôme
Barraquand. June 1991.

Research Report 15: A Hardware Implementation of Pure Esterel. Gérard Berry. July 1991.

Research Report 16: Contribution à la Résolution Numérique des Équations de Laplace et
de la Chaleur. Jean Vuillemin. February 1992.

Research Report 17: Inferring Graphical Constraints with Rockit. Solange Karsenty, James
A. Landay, and Chris Weikart. March 1992.

Research Report 18: Abstract Interpretation by Dynamic Partitioning. François Bourdoncle.
March 1992.

Research Report 19: Measuring System Performance with Reprogrammable Hardware. Mark
Shand. August 1992.

Research Report 20: A Feature Constraint System for Logic Programming with Entailment.
Hassan Aı̈t-Kaci, Andreas Podelski, and Gert Smolka. November 1992.

Research Report 21: The Genericity Theorem and the Notion of Parametricity in the Polymor-
phic �-calculus. Giuseppe Longo, Kathleen Milsted, and Sergei Soloviev. December 1992.

Research Report 22: Sémantiques des langages impératifs d’ordre supérieur et interprétation
abstraite. François Bourdoncle. January 1993.

Research Report 23: Dessin à main levée et courbes de Bézier : comparaison des algo-
rithmes de subdivision, modélisation des épaisseurs variables. Thierry Pudet. January 1993.

Research Report 24: Programmable Active Memories: a Performance Assessment. Patrice
Bertin, Didier Roncin, and Jean Vuillemin. March 1993.

Research Report 25: On Circuits and Numbers. Jean Vuillemin. November 1993.

Research Report 26: Numerical Valuation of High Dimensional Multivariate European Secu-
rities. Jérôme Barraquand. March 1993.

Research Report 27: A Database Interface for Complex Objects. Marcel Holsheimer, Rolf A.
de By, and Hassan Aı̈t-Kaci. March 1993.

Research Report 28: Feature Automata and Sets of Feature Trees. Joachim Niehren and

Andreas Podelski. March 1993.

Research Report 29: Real Time Fitting of Pressure Brushstrokes. Thierry Pudet. March
1993.

Research Report 30: Rollit: An Application Builder. Solange Karsenty and Chris Weikart.
April 1993.

Research Report 31: Label-Selective �-Calculus. Hassan Aı̈t-Kaci and Jacques Garrigue.
May 1993.

Research Report 32: Order-Sorted Feature Theory Unification. Hassan Aı̈t-Kaci, Andreas
Podelski, and Seth Copen Goldstein. May 1993.

Research Report 33: Path Planning through Variational Dynamic Programming. Jérôme
Barraquand and Pierre Ferbach. September 1993.

Research Report 34: A Penalty Function Method for Constrained Motion Planning. Pierre
Ferbach and Jérôme Barraquand. September 1993.

Research Report 35: The Typed Polymorphic Label-Selective �-Calculus. Jacques Garrigue
and Hassan Aı̈t-Kaci. October 1993.

Research Report 36: 1983–1993: The Wonder Years of Sequential Prolog Implementation.
Peter Van Roy. December 1993.

Research Report 37: Pricing of American Path-Dependent Contingent Claims. Jérôme Bar-
raquand and Thierry Pudet. January 1994.

Research Report 38: Numerical Valuation of High Dimensional Multivariate American Secu-
rities. Jérôme Barraquand and Didier Martineau. April 1994.

36
1983–1993:

T
h

e
W

o
n

d
er

Years
o

f
S

eq
u

en
tialP

ro
lo

g
Im

p
lem

en
tatio

n
P

eter
V

an
R

oy

d i g i t a l

PARIS RESEARCH LABORATORY
85, Avenue Victor Hugo
92563 RUEIL MALMAISON CEDEX
FRANCE

