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1 IntroductionFeature constraint grammars, also known as uni�cation grammars, have be-come the predominant family of declarative grammar formalisms in Compu-tational Linguistics [11, 7, 21, 20, 16]. The common assumption of these for-malisms is that linguistic objects can be described by means of their features,which are functional attributes. Figure 1, for instance, shows the descriptionof a linguistic object that may represent the sentence \John sings a song".The features appear as edges of the graph. The terminal nodes are atomsrepresenting primitive linguistic objects.Kasper and Rounds [10, 17] were the �rst to capture the relation betweenfeature descriptions and linguistics objects in terms of a logic. Subsequently,Johnson [6] and Smolka [22, 23] realized that feature logics can be modeledstraightforwardly in Predicate Logic.1 In this approach, which underlies thepresent paper, a domain of linguistic objects is called a feature algebra and issimply a structure that interprets atoms as pairwise distinct individuals andfeatures as unary partial functions that are unde�ned on atoms. In addition,one can have sorts, which are interpreted as sets of individuals.One popular syntax for feature descriptions are so-called feature terms[10, 17, 23], which are expressions denoting sets in feature algebras. Thebasic feature term forms are given byS �! a j A j p:S j p#q j S u S 0 j S t S 0 j :S;where a stands for atoms, A stands for sorts, and p and q stand for words overfeatures. Given a feature algebra, a denotes the singleton consisting of theatom a, p:S denotes the inverse image of S under p (where p is interpretedas unary partial function obtained as the composition of its features), p # qdenotes the set of all individuals for which p and q are de�ned and agree,SuS 0 denotes the intersection of S and S 0, StS 0 denotes the union of S andS0, and :S denotes the complement of S. For applications it is importantto decide whether a feature term is satis�able, that is, whether it denotes anonempty set in some feature algebra. The satis�ability problem for featureterms as given above is NP-complete [23].1An alternative view on these formalisms is provided by the \modal perspective" [2].2



In this paper we investigate the expressivity of an additional feature termform that is known as functional uncertainty [8, 9] and was invented for theconvenient description of so-called long-distance dependencies in the gram-mar formalism LFG [7]. It takes the form9L(S);where L is a �nite description of a regular set of words over features and Sis a feature term. A feature term 9L(S) denotes the set of all individuals dsuch that there exists a word p 2 L such that d is in the inverse image of Sunder p. One can think of 9L(S) as the possibly in�nite unionp1:S t p2:S t p3:S t � � � ;where p1; p2; p3; : : : are the words in L. Note that the form p:S can beexpressed with 9L(S) if one takes for L the singleton consisting of the word p.So far, the computational properties of functional uncertainty are knownonly for one restricted special case. Kaplan and Maxwell [8] have shown thatsatis�ability of feature terms built with the forms a, p#q, S u S 0, and 9L(S)is decidable, provided a certain acyclicty condition is met. The decidabilityfor more general cases has been an open problem, however.We show below that satis�ability is undecidable in the general case, evenif there are no atoms. However, our result depends crucially on the presenceof the negation :S. In so far, our result presents only an upper bound for themore restricted class of feature terms actually used in practice. In particular,the problem is still open for feature terms that are built using only the formsa, p # q, S u S 0, and 9L(S) without any additional conditions such as theacylicity condition mentioned above.In order to characterize the expressivity of functional uncertainty, werelate it to another construct often used in feature constraint grammars,namely, sort equations. A sort equation is a pair S := S 0 consisting of twofeature terms. A feature algebra is a model of a set of sort equations if forevery equation both sides denote the same set.Grammar rules in Functional Uni�cation Grammar [11] and the morerecent HPSG [16] are stated by means of sort equations. Figure 2 shows asimple grammar in this style (sorts start with capital letters), which generates3



?� -tense present?pred��������	 subj @@@@@@@@Robj�?verbsing -patient� agent sing �������spec -num@@@@@Rpred a sgsong�@@@@@I pred� num �����	 personjohnsg3rd Figure 1: A feature graph.the single sentence \John sings a song", provided the right assumptions onword order are made. The basic idea is that in a model of the grammarthe elements of a sort are the linguistic objects of the syntactic categoryexpressed by the sort. Note that the graph in Figure 1 describes an elementof the sort S in some model of the grammar in Figure 2.There is a surprising connection between functional uncertainty and sortequations. We will exhibit an algorithm that, given a �nite set E of sort equa-tions and a feature term S, produces �nitely many feature terms S1; : : : ; Snsuch that S is satis�able in a model of E if and only if S1; : : : ; Sn are satis�ablein some (arbitrary) feature algebra. This result says that, in the presence offunctional uncertainty and negation, sort equations can be internalized andthus do not yield additional expressivity with respect to satis�ability. Sinceit is known that satis�ability with respect to sort equations is undecidable[23], this result immediately implies that satis�ability of feature terms withfunctional uncertainty and negation is undecidable.As an interesting byproduct of the internalization result for sort equa-tions, we will show that, somewhat surprisingly, it is decidable whether a�nite set of sort equations has a model, provided there is at least one atom.4



S := (subj:NP) u VPNP := (D u N) t NameVP := V u (obj:NP)D := (num: sg) u (spec: a)N := (num: sg) u (pred: song)Name := (num: sg) u (person: 3rd) u (pred: john)V := (subj num: sg) u (subj person: 3rd) u (pred verb: sing) u(tense: present)u (pred agent# subj) u (pred patient#object)Figure 2: A simple grammar.However, if we do not assume atoms, the consistency of sort equations be-comes undecidable, even if we disallow feature terms with functional uncer-tainty.The paper is organized as follows. Section 2 de�nes feature algebras,feature terms and sort equations and states basic properties. Section 3 showsthat to decide satis�ability of feature terms it su�ces to consider only theroots of rooted feature algebras, an auxiliary result on which the rest ofthe paper depends. Section 4 shows that consistency of sort equations isdecidable if there is at least one atom while it is undecidable if there isno atom (our �rst main result). Section 5 shows how sort equations canbe expressed with functional uncertainty (our second main result). Section6 shows that satis�ability of feature terms with functional uncertainty andnegation is undecidable (our third main result). Section 7 concludes.2 Feature Algebras and Feature TermsWe assume three pairwise disjoint, possibly empty sets of symbols: atoms(denoted by a, b, c), sorts (denoted by A, B, C), and features (denotedby f , g, h). In the following, let A denote the set of all atoms, S the set ofall sorts, and F the set of all features. We assume that there is at least one5



symbol, that is, A [ S [ F 6= ;.A feature algebra is a pair (DI ; �I) consisting of a nonempty set DI(the domain of I) and an interpretation function �I assigning to everyatom a an element aI 2 DI, to every sort A a subset AI � DI , and toevery feature f a set of ordered pairs fI � DI �DI such that the followingconditions are satis�ed:1. if (d; e) and (d; e0) are in fI , then e = e0 (features are functional)2. if a 6= b, then aI 6= bI (unique name assumption)3. if f is a feature and a is an atom, then there exists no d 2 DI suchthat (aI; d) 2 fI (atoms are primitive).Note that we can see features equivalently either as functional binaryrelations or as unary partial functions. In place of (d; e) 2 fI we shallequivalently use the notation e = dfI , which means that the partial functionfI , if applied to d, yields the value e. If there exists no e such that (d; e) 2fI we say that dfI is unde�ned. We use su�x notation for application ofpartial functions because we want to write composition of binary relationsand partial functions from left to right, that is, fIgI will mean apply �rstfI and then gI .A path is a word in F�, that is, a �nite, possibly empty sequence offeatures. We shall use the letters p, q, and r for paths. Let I be a featurealgebra and p = f1 � � � fn (n � 0) be a path. The empty path " is interpretedas the identity on DI . For n � 1, p is interpreted as the functional binaryrelation pI which is obtained by composition of the functional binary relationsf I1 ; : : : ; f In, that is,(d; e) 2 (f1 � � � fn)I () 9d0; : : : ; dn: d = d0 ^ dn = e^ (d0; d1) 2 fI1 ^ : : : ^ (dn�1; dn) 2 fIn :As for single features, we shall often write e = d(f1 � � � fn)I instead of (d; e) 2(f1 � � � fn)I , and shall say d(f1 � � � fn)I is unde�ned if there exists no such e.Regular sets of paths can be speci�ed by �nite means, for instance, byregular expressions over the alphabet of all features. The letter L will always6



denote a �nite description of a regular set of paths, and we write p 2 L ifthe path p is in the regular set speci�ed by L. As usual, we shall take ; asdescription of the empty set of paths, and for a path, p as description of thesingleton fpg.Feature terms are descriptions that denote sets in feature algebras. Hereis the abstract syntax of feature terms:S; T �! a atomA sortp:S selectionp#q agreement? bottom> topS u T intersectionS t T union:S negationS � T di�erence9L(S) existential path quanti�cation8L(S) universal path quanti�cation:Because of the symmetry with universal path quanti�cation we prefer to callthe functional uncertainty construct existential path quanti�cation. We willsee that universal path quanti�cation can be expressed with existential pathquanti�cation and negation.It is important to note that our feature term language is parameterizedwith respect to the three alphabets of atoms, sorts and features, and thateach of these alphabets may be empty.Given a feature algebra I, the denotation SI of a feature term S in Iis a subset of DI de�ned inductively as follows:(a)I = faIg(p:S)I = fd 2 DI j 9e 2 SI: (d; e) 2 pIg(p#q)I = fd 2 DI j 9e 2 DI: (d; e) 2 pI \ qIg?I = ;>I = DI 7



(S u T )I = SI \ T I(S t T )I = SI [ T I(:S)I = DI � SI(S � T )I = SI � T I(9L(S))I = fd 2 DI j 9p 2 L 9(d; e) 2 pI : e 2 SIg(8L(S))I = fd 2 DI j 8p 2 L 8(d; e) 2 pI : e 2 SIg:Note that if a feature term S is a sort, SI is given directly by the featurealgebra I.Two feature terms S and T are equivalent (written S � T ) if SI = T Ifor every feature algebra I.Many of the introduced feature term forms are redundant. By rewritingwith the equivalencesp:S � 9p(S)8L(S) � :9L(:S)? � 9;(S) (where S is an arbitrary feature term)> � 8;(S) (where S is an arbitrary feature term)S t T � :(:S u :T )S � T � S u :Tthe forms appearing as the left hand sides can be eliminated. Obviously, theequivalences for > and ? can only be used to eliminate these forms if thereexists a feature term S containing neither > nor ?. This is in fact the casesince we assumed A [ S [ F to be nonempty.Proposition 2.1 For every feature term one can compute in linear time anequivalent feature term containing only the forms a, A, p#q, 9L(S), S u T ,and :S.A feature term S is called satis�able if there exists a feature algebraI such that SI 6= ;. Due to the presence of negation, unsatis�ability andequivalence of feature terms are linear-time reducible to each other:S unsatis�able () S � ?S � T () (S � T ) t (T � S) unsatis�able:8



Until now we have de�ned satis�ability, equivalence and inclusion of fea-ture terms with respect to all feature algebras. One can also use axioms tospecify classes of feature algebras with respect to which satis�ability, equiv-alence and inclusion should be considered. As axioms we use so-called sortequations which take the form S := T , where S and T are feature terms.A feature algebra I satis�es a sort equation S := T i� SI = T I. A featurealgebra I is a model of a set E of sort equations i� it satis�es every sortequation in E. A set of sort equations is called consistent i� it has at leastone model. We say that a feature term S is satis�able w.r.t. a set E of sortequations i� there exists a model I of E such that SI 6= ;. As for the casewithout sort equations, unsatis�ability, inclusion, and equivalence of featureterms w.r.t. a set of sort equations are linear-time reducible to each other.Finitely many sort equations can always be equivalently expressed by asingle sort equation of the form S := ?. In fact, a feature algebra I satis�esa sort equation S := T i� it satis�es (S � T ) t (T � S) := ?; and I satis�esthe sort equations S1 := ?, ..., Sn := ? i� it satis�es S1 t ::: t Sn := ?.3 Rooted Feature AlgebrasThe purpose of this section is to de�ne the notion of a \rooted feature al-gebra," and to derive some results for rooted feature algebras which will beuseful in the following two sections. This notion is very similar to the notionof a \generated submodel" as introduced for modal and multimodal logic(see e.g. [5]). However, because of the presence of atoms in our formalism,the de�nition of rooted feature algebras is more complex.Let S be a satis�able feature term, and let the feature algebra I togetherwith the element d 2 DI be a witness for the satis�ability of S, that is, letd 2 SI . Then DI may contain \unreachable" elements that are not neededto verify d 2 SI . As a consequence of the main theorem of this section we willsee that, to decide satis�ability of feature terms, it su�ces to consider onlythe roots of rooted feature algebras. This fact will be used in Section 5 toshow that sort equations can be internalized, i.e., simulated by feature termswith path quanti�cation. As a second consequence of the main theorem, oneobtains a result on the behavior of atoms with respect to sorts and feature9



terms, which is used in Section 4 to show that consistency of sort equationsis decidable, provided that one has at least one atom.Let I be a feature algebra and let d be an element of DI . We de�negen(d) := fe 2 DI j there exists a path p with dpI = egand say that an element of gen(d) is generated by d. Obviously, d 2 gen(d),and e 2 gen(d) implies that gen(e) � gen(d).Our intention is now to restrict the domains of feature algebras to suchsets gen(d). However, we must keep in mind that atoms must always beinterpreted somehow. Thus, if some elements of AI = faI j a 2 Ag are notcontained in gen(d) we cannot really restrict the domain to gen(d), but onlyto gen(d) [AI .We say that a feature algebra I is rooted i� there exists d 2 DI suchthat DI = gen(d) [AI . In this case, d is called a root of I.In order to show that it is su�cient to consider such rooted feature alge-bras when interested in satis�ability of feature terms, we need the followingweak notion of restriction of a feature algebra. Let I be a feature algebraand let M be a subset of DI . Then a feature algebra J is called a quasi-restriction of I to the subset M i� it satis�es the following properties:1. DJ = M [AI ,2. aJ = aI for all atoms a,3. AJ \M = AI \M for all sorts A, and4. fJ = fI \M�M for all features f .For a given feature algebra I and a subset M of DI there may exist morethan one quasi-restriction of I to M . These quasi-restrictions may di�er inthe behavior of elements of AI �M with respect to sorts. Nevertheless, weshall often use the name IjM for such a quasi-restriction. We call J quasi-restriction of I and not restriction because usually one has that restrictionsare unique. However, de�ning the notion \quasi-restriction to a set M" inthis non-unique way is necessary for the proof of Corollary 3.4, which in turnis important for the proofs of Proposition 4.1 and Lemma 5.1.10



Lemma 3.1 Let IjM be a quasi-restriction of I to the subset M of DI . Forall feature terms S and all elements d of DI satisfying gen(d) �M we haved 2 SI () d 2 SIjM :Proof. The lemma is proved by induction on the structure of S. Withoutloss of generality we may assume that S contains only the forms a, A, p#q,9L(T ), T1 u T2, :T .1. S = a for an atom a. Since IjM is a quasi-restriction of I to M wehave aIjM = aI, and thus d 2 SI i� d 2 SIjM is trivially satis�ed.2. S = A for a sort A. We have AIjM \ M = AI \M since IjM is aquasi-restriction of I to M , and d 2M since gen(d) �M . This yieldsd 2 SI i� d 2 SIjM .3. S = p#q for paths p, q. Let p = f1:::fk and q = g1:::gl.Assume that d 2 (p # q)I, that is, dpI and dqI are both de�ned andequal. To be more precise, that means there exist d1, ..., dk, e1, ...,el in DI such that (d; d1) 2 fI1 , (d1; d2) 2 fI2 , ..., (dk�1; dk) 2 fIk ,(d; e1) 2 gI1 , (e1; e2) 2 gI2 , ..., (el�1; el) 2 gIl , and dk = el. Obviously,d1, ..., dk, e1, ..., el are all elements of gen(d), and thus of M . But thendpIjM = dk = el = dqIjM , which shows d 2 (p#q)IjM .Conversely, assume that d 2 (p # q)IjM , that is, dpIjM = e = dqIjM foran element e 2 DIjM . Obviously, this implies dpI = e = dqI , and thusd 2 (p#q)I.4. S = 9L(T ) for a feature term T and a description L of a regular set ofpaths.Assume that d 2 (9L(T ))I, that is, there exists a path p 2 L andan element e 2 T I such that dpI = e. As above, dpI = e impliesdpIjM = e. In addition, e 2 gen(d) yields gen(e) � gen(d) � M . Thuswe can apply the induction hypothesis to T and e, and get e 2 T IjM .This shows d 2 (9L(T ))IjM .The other direction can be proved in a similar way.5. S = T1 u T2. By induction, we have for i = 1; 2 that d 2 T Ii i� d 2T IjMi . This yields d 2 (T1 u T2)I i� d 2 (T1 u T2)IjM .11



6. S = :T . By induction, we have d 2 T I i� d 2 T IjM . This yieldsd 2 (:T )I i� d 2 (:T )IjM .This completes the proof of the lemma.If we take M = gen(d) in this lemma we getTheorem 3.2 Let I be a feature algebra, d be an element of DI , and S bea feature term. Then d 2 SI () d 2 SIjgen(d)provided that Ijgen(d) is a quasi-restriction of I to gen(d).The theorem shows that one can restrict the attention to rooted featurealgebras if one is interested in the satis�ability of a feature term.Corollary 3.3 A feature term S is satis�able if and only if there exists arooted feature algebra I with root d 2 DI such that d 2 SI .As another consequence of Theorem 3.2 one gets that the behavior of anatom with respect to feature terms only depends on its behavior with respectto sorts.Corollary 3.4 Let b be an atom, and let I and J be feature algebras suchthat bI 2 AI if and only if bJ 2 AJ holds for all sorts A. Then we havebI 2 SI if and only if bJ 2 SJ for all feature terms S.Proof. Without loss of generality we may assume that AI = AJ (otherwisewe could rename the domains of the interpretations appropriately). For anatom b the set gen(bI) is always a singleton set consisting of the elementbI alone. Thus any quasi-restriction Ib of the feature algebra I to gen(bI)has the set AI as its domain. By the de�nition of quasi-restrictions, all thefeatures are interpreted as empty relations in Ib. For all sorts A we have12



bI 2 AI i� bIb 2 AIb, but the behavior of elements aIb for a 6= b with respectto sorts is arbitrary. Since Ib has AI = AJ as its domain, the assumptionof the corollary implies that Ib can be seen as a quasi-restriction of J aswell. Together with Theorem 3.2 this observation completes the proof of thecorollary.As already pointed out earlier, this corollary will be important for theproofs of Proposition 4.1 and Lemma 5.1.4 Consistency of Sort EquationsWhen working with a �nite set of sort equations, it is important to knowwhether this set is consistent, i.e., whether it has a model. With respect toan inconsistent set of sort equations, all feature terms are unsatis�able andthus equivalent to ?. Suprisingly, decidability of the consistency problemfor sort equations depends on the existence of atoms in the feature termlanguage. In the �rst part of this section we will show that consistency isdecidable if the language contains at least one atom. In principle, the reasonfor this is that, in the presence of atoms, whenever there is a model, thereis a rather trivial model, consisting of the denotation of atoms only. In thesecond part of the section, it will be shown that consistency is in generalundecidable if there are no atoms.As pointed out before, it is su�cient to consider a single sort equation ofthe form S := ?. First, assume that there exists at least one atom. In thiscase, consistency of the sort equation S := ? can be characterized as follows.Proposition 4.1 Assume that A 6= ;. Then the sort equation S := ? isconsistent if and only if for all atoms a the feature term :S ua is satis�able.Proof. Let I be a model of the sort equation S := ?. This means thatSI = ;, and thus (:S)I = DI . Consequently, we have for any atom a thataI 2 DI = (:S)I . But then aI 2 (:S u a)I, which shows that this featureterm is satis�able. 13



On the other hand, assume that for any atom a there is a feature algebraIa such that (:S u a)Ia 6= ;. This means that for any atom a we haveaIa 2 (:S)Ia . We de�ne a new feature algebra I as follows: DI := faI ja is an atomg where the aI are assumed to be di�erent individuals; for allfeatures f we de�ne fI := ;; and for all sorts A we de�ne AI := faI j aIa 2AIag. Obviously, I is a feature algebra. By Corollary 3.4 we get for all atomsa that aI 2 (:S)I because aIa 2 (:S)Ia . This shows that (:S)I = DI, andthus SI = ;.This proposition reduces the question of consistency of sort equations tothe problem of satis�ability of feature terms of the form T ua. The followinglemma shows that we can further restrict ourselves to the case where T doesnot contain path quanti�cations.Lemma 4.2 Let T be a feature term and a be an atom. Then there exists afeature term T 0 without path quanti�cations such that T u a � T 0 u a.Proof. It is easy to see that a term of the form 8L(T1) u a or 9L(T1) u ais equivalent to the term T1 u a if the empty word " is in L. If " 62 L, then8L(T1)ua is equivalent to >ua and 9L(T1)ua is equivalent to ?ua. Usingthis fact, the lemma can easily be proved by induction. Please note that,if T starts with a negation, then this negation can be pushed into the termwith the help of de Morgan's rules and the fact that :8L(S) � 9L(:S) and:9L(S) � 8L(:S).Since satis�ability of feature terms not containing path quanti�cations isdecidable [23], the proposition and the lemma yieldTheorem 4.3 Assume that A 6= ;, and let E be a �nite set of sort equations.Then it is decidable whether E is consistent or not.Proof. The only remaining problem is that, if the set of atoms is in�nite, weshould have to consider in�nitely many terms of the form :S u a in order tocheck the condition of Proposition 4.1. However, the sort equations contain14



only �nitely many atoms. It is easy to see that it is enough to consider these�nitely many atoms, and only one of the other atoms as specimen.Now let us consider the case where A = ;, that is, there is no atom. Weshall show that consistency of sort equations may become undecidable, even ifthe terms occurring in the sort equations do not contain path quanti�cations.This result will be proved by a reduction of the word problem for groups. Tothis purpose we rephrase the word problem in such a way that it �ts into ourframework.Let � be a nonempty set of symbols, �� be the set of words over �, and" be the empty word. Under concatenation of words, �� is a monoid whoseneutral element is ". A congruence is an equivalence relation � on �� suchthat p � q implies rpr0 � rqr0 for all p, q, r, r0 2 ��. If � is clear fromthe context, we use p to denote the equivalence class of a word p 2 �� withrespect to �. The quotient ��=� is again a monoid under the operationp q := pq.A Thue equation over � is a set fp; qg consisting of two words p; q 2 ��.A Thue system over � is a �nite set T of Thue equations over �. EveryThue system T over � de�nes a binary relation $T on �� byu$T v :() 9 w1; w2 2 �� 9 fp; qg 2 T : u = w1pw2 ^ v = w1qw2:We use �T to denote the re
exive and transitive closure of $T on ��. It iseasy to see that �T is a congruence on ��. To be more precise, �T is theleast congruence � such that p � q for every Thue equation fp; qg in T .It is known that there exists a Thue system T consisting of seven equationsover a two-element alphabet such that it is undecidable for two words p, qwhether p �T q holds or not (see, for instance, [3]). In the following we shallneed a stronger version of this undecidability result, which is due to Novikovand Boone (see [15, 3, 24]): there is a �nite set of symbols � and a Thuesystem G = ffp1; "g; : : : ; fpn; "gg such that1. for every f 2 � there is some q 2 �� such that G contains the Thueequation ffq; "g2. the set of words p with p 6�G " is not recursively enumerable.15



In particular, it is undecidable whether p �G " or not. Note that property (1)implies that ��=�G is a group.Theorem 4.4 Assume that A = ;, that is, there is no atom. Then thereexists a feature term S of the formp1#" u : : : u pn #"such that the set of paths p for which the sort equationS u :(p#") := >is consistent is not recursively enumerable. In particular, it is undecidablewhether the sort equation S u :(p#") := > is consistent or not.Proof. Suppose that � is a set of symbols and G = ffp1; "g; : : : ; fpn; "gg aThue system over � with the properties stated in the theorem by Novikovand Boone. We regard elements of � as features and words over � as paths.Let S be the feature term p1 #" u : : : u pn #":To prove our claim it su�ces to show that for every p 2 �� the sort equationS u :(p#") := > is consistent if and only if p 6�G ".\)" Suppose p 6�G ". We construct a feature algebra I satisfyingS u :(p#") := > as follows:DI := ��=�Gq fI := qf for every f 2 � and q 2 ��.Since �G is the congruence generated by G, we have pi = " for every Thueequation fpi; "g in G. This implies q pIi = qpi = q" = q for every q 2 DI.Hence, I satis�es S := >.Assume that I does not satisfy :(p#") := >. Then there is some q 2 DIsuch that q pI = q, which implies that q = qp = q p. Since ��=�G is a group,the element q has an inverse q0. Then p = q0 q p = q0q = ", that is p �G ". Wethus have obtained a contradiction to the fact that p 6�G ". Hence, q pI 6= q16



for all q 2 DI, which implies that I satis�es :(p# ") := >. Since I satis�esS := > and :(p#") := >, it follows that I satis�es S u :(p#") := >.\(" Suppose p �G ". Assume there is a feature algebra I that satis�esS u :(p#") := >. We de�ne an equivalence relation � on �� byq � q0 :() I satis�es q#q0 := >.Since I satis�es S u :(p#") := >, it follows that I satis�es pi # " := > forevery Thue equation fpi; "g in G. By property (1) of G, for every f 2 �there is some q 2 �� such that I satis�es fq # " := >. This means that forevery d 2 DI we have dfIqI = d. Hence, every fI is a total function onDI . We conclude that for all q, q0, r, r0 2 �� the feature algebra I satis�esrqr0#rq0r0 := > if I satis�es q#q0 := >. Thus, � is a congruence.For every Thue equation fpi; "g in G, the feature algebra I satis�espi #" := >, which implies pi � ". By de�nition, �G is the least congru-ence with this property. Therefore, p �G " implies p � ", that is, I satis�esp#" := >. This contradicts our assumption that I satis�es :(p#") := >. Weconclude that S u :(p#") := > is unsatis�able.Since consistency of an equation S := > is equivalent to consistency ofthe equation :S := ? we get the following immediate consequence of thetheorem.Corollary 4.5 Assume that A = ;. Then consistency of a sort equationS := ? is undecidable.5 Internalizing Sort EquationsThe purpose of this section is to show that sort equations do not enhancethe expressive power of a feature term language that allows for path quan-ti�cation. In fact, it will turn out that satis�ability of a feature term withrespect to a �nite set of sort equations is equivalent to pure satis�ability ofa set of feature terms. We call this process of encoding sort equations intofeature terms with path quanti�cation \internalization." Similar result have17



been obtained for propositional dynamic logic (see e.g. [12], p.805, Propo-sition 16), but again, the presence of atoms makes the formulation and theproof of our result more complex.As mentioned before, it is su�cient to consider only one sort equation ofthe form S := ?. Recall that we denote by F� the set of all paths, that is,the set of all words over F. Obviously, a feature term T can be satis�ablewith respect to S := ? only if this equation is consistent. For this reason, thecondition for consistency of sort equations in the presence of atoms occursin the formulation of the following internalization lemma.Lemma 5.1 The feature term T is satis�able w.r.t. the sort equation S := ?if and only if the feature term T u 8F�(:S), and the feature terms :S u afor all atoms a are satis�able.Proof. Assume that I is a feature algebra such that SI = ?I = ; andT I 6= ;. Obviously, SI = ;means that all the elements ofDI are in (:S)I . Inparticular, we have aI 2 (:S)I for all atoms a. This shows that (:Sua)I 6= ;.Let d 2 DI be such that d 2 T I. In order to prove that d 2(T u 8F�(:S))I it is enough to show that d 2 (8F�(:S))I . Let p 2 F�and e 2 DI be such that dpI = e. Since all the elements of DI are in (:S)Iwe have e 2 (:S)I , which completes the proof of the \only-if" part of thelemma.Conversely, assume that the feature term T u 8F�(:S) and the featureterms :S u a for all atoms a are satis�able. Let I be a feature algebra suchthat (T u8F�(:S))I 6= ;, and for all atoms a let Ia be a feature algebra suchthat (:S u a)I 6= ;. Let d 2 DI be such that d 2 (T u 8F�(:S))I. We wantto de�ne a quasi-restriction Ijgen(d) of I to gen(d) which satis�es the sortequation S := ? and interprets the feature term T as nonempty set. For thatpurpose we have to �x the interpretation of the sorts on RA := AI � gen(d)in an appropriate way. This can be done as follows: For all sorts A we de�neAIjgen(d) := (AI \ gen(d)) [ faI j aI 2 RA and aIa 2 AIag.By Theorem 3.2 we have d 2 (T u 8F�(:S))Ijgen(d) since d 2(T u 8F�(:S))I . In particular, this yields d 2 T Ijgen(d). It remains to be18



shown that SIjgen(d) = ;. Assume that there exists e 2 DIjgen(d) = gen(d)[RAsuch that e 2 SIjgen(d).If e 2 gen(d) then there exist a path p 2 F� such that e = dpI . But thene 2 SIjgen(d) contradicts d 2 (8F�(:S))Ijgen(d).Assume that e 2 RA, that is, e = aI for an atom a such that aI 62 gen(d).We have de�ned Ijgen(d) such that e = aIjgen(d) 2 AIjgen(d) i� aIa 2 AIa holdsfor all sorts A. By Corollary 3.4 we get e = aIjgen(d) 2 (:S u a)Ijgen(d) sinceaIa 2 (:Sua)Ia . This is a contradiction to our assumption that e 2 SIjgen(d).If there are no atoms, that is, if A = ;, then the condition \the featureterms :S u a for all atoms a are satis�able" is void. This yieldsTheorem 5.2 Assume that A = ;. Then the feature term T is satis�ablew.r.t. the sort equation S := ? if and only if the feature term T u 8F�(:S)is satis�able.On the other hand, if there exists at least on atom, the condition isequivalent to the consistency of the sort equation S := ?.Theorem 5.3 Assume that A 6= ;. Then the feature term T is satis�ablew.r.t. the sort equation S := ? if and only if the sort equation S := ? isconsistent and the feature term T u 8F�(:S) is satis�able.6 Satis�ability is UndecidableAs an easy consequence of the undecidability result of Section 4 we get thatsatis�ability of feature terms w.r.t. sort equations is undecidable, if we haveno atoms. In fact, the feature term > is satis�able w.r.t. a �nite set of sortequations E if and only if E is consistent. Please note that in the proof ofthe undecidability result we did not use path quanti�cation.19



On the other hand, we have seen that consistency of sort equations isdecidable, if we have at least one atom. But satis�ability of feature termsw.r.t. sort equations is nevertheless undecidable in this case. This is shownin [23] in the presence of three features, two atoms and one sort. Again, thesort equations and the feature term constructed in [23] do not contain pathquanti�cations.Taking the two results together we thus haveTheorem 6.1 Satis�ability of feature terms w.r.t. sort equations is undecid-able. This holds even if path quanti�cations are disallowed, and it does notdepend on whether A = ; or A 6= ;.In the light of Section 5, this theorem shows that satis�ability of featureterms with path quanti�cations is undecidable, independently on whether wehave atoms or not.Theorem 6.2 Satis�ability of feature terms with path quanti�cation is un-decidable. This result does not depend on whether A = ; or A 6= ;.Proof. Assume that satis�ability of feature terms with path quanti�cationsis decidable. Then the characterizations of satis�ability of feature termsw.r.t. sort equations given in Theorem 5.2 (for A = ;) or Theorem 5.3 (forA 6= ;) would yield a decision criterion for satis�ability w.r.t. sort equations.This is a contradiction to Theorem 6.1.7 ConclusionWe have studied the expressivity of functional uncertainty in a feature termlanguage with negation and obtained two main results: satis�ability is un-decidable and sort equations can be internalized.For practical applications in grammar formalisms the language studiedin this paper is probably too expressive since general negation is not needed.20



Thus it would be interesting to �nd out whether satis�ability of feature termsbuilt from the forms a, A, p#q, 9L(S), and S u S 0 is decidable.Feature logics are closely related to terminological logics [4, 13, 14, 19],which are employed in knowledge representation and grew out of research insemantic networks and frame systems. The essential di�erence between thesetwo formalisms is that in terminological logics attributes can be nonfunctionalwhile they must be functional in feature logics.Baader [1] studies a terminological logic that can be obtained from thefeature logic in this paper by three changes: disallow atoms and agreements,and admit also interpretations that interpret features as nonfunctional binaryrelations. He shows that in this logic satis�ability of \feature terms" (whichare called concept terms in this context) is decidable. Since concept equations(i.e., the equivalent of the sort equations of the present paper) can also beinternalized with the help of path quanti�cations, the algorithm given in [1]also yields a decision procedure for satis�ability w.r.t. concept equations.Baader's algorithm can easily be adapted to the case where one allows onlyfunctional binary relations. This means that the feature logic of the presentpaper becomes decidable if agreements and atoms are disallowed.Similar results for terminological logics have independently been obtainedby Schild [18] as byproducts of the correspondence he exhibits between termi-nological logics and dynamic logics. In addition, he shows that this correspon-dence also yields complexity results for the terminological logic consideredby Baader, and for our feature logic if agreements and atoms are disallowed.In both cases, one has an exptime-complete satis�ability problem.References[1] F. Baader. Augmenting concept languages by transitive closure of roles:An alternative to terminological cycles. Proceedings of the 12th Interna-tional Joint Conference on Arti�cial Intelligence, pages 446{451, Syd-ney, Australia, 1991.[2] P. Blackburn and E. Spaan. A modal perspective on the computationalcomplexity of attribute value grammar. Logic Group Preprint Series21
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