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175programs with the least model semantics in [22]. Their analysis is an approxi-mation method for the success set of a logic program, i.e. for the set of initialqueries for which a successfully terminating execution exists.In this paper, we consider the �nite failure set of a logic program, i.e. the setof initial queries for which all fair executions terminate with failure. In order togive a sound prediction of �nite failure (`if predicted, it will occur'), we need acharacterization of �nite failure in terms of program semantics. Classical resultsfrom logic programming, however, only yield the converse, i.e. a characterizationof the greatest-model semantics in terms of �nite failure (see Remark 1). Fortu-nately, for programs over the domain of in�nite trees we can characterize �nitefailure through the greatest-model semantics (more precisely, its complement;see Theorem 1). Since the analysis we design computes an abstraction of thatsemantics, we obtain an approximation method for the �nite-failure set of a logicprogram over in�nite trees (see Theorem 3). More precisely, the emptiness of thecomputed abstract value for the predicate p indicates the �nite failure of everypredicate call p(x). At the same time, this method can predict �nite failure of alogic program over rational trees, or over �nite trees (see Remarks 3 and 5).In the least-model analysis in [22], Heintze and Ja�ar use de�nite set con-straints; they give a corresponding constraint solving algorithm in [21] (see [9] forfurther results). Our analysis uses co-de�nite set constraints, which bear theirname in duality to de�nite set constraints due to the fact that every satis�ableconstraint in this class has a greatest solution. This fact is crucial for our analy-sis. Algorithms for solving co-de�nite set constraints are given in [4, 16]. In thispaper, we focus on the de�nition of the analysis and the soundness of the abstrac-tion, which is: the greatest solution of the co-de�nite set constraint 'P inferredfrom the program P is a safe approximation of the greatest-model semanticsfor P (see Theorem 2).In a di�erent reading, our abstraction method is a type analysis of logic pro-grams with ongoing behavior . Such programs are investigated under the denom-ination perpetual processes in [28]. There, the semantics of such a program P isde�ned by the greatest-�xpoint semantics over the domain of in�nite trees. Ouranalysis computes the abstraction of this semantics in the form of the greatestsolution of the inferred co-de�nite set constraint (the greatest-�xpoint semanticsis equal to the greatest model of P 's completion [10]). This solution assings toevery program variable x a set of in�nite trees that can be viewed as the typeof x. This type describes a safe approximation (i.e. a superset) of the set of allpossible runtime values for x in ongoing program executions.Finally, we consider a potential application to concurrent constraint programs(see e.g. [36, 37]). We carry over the approximation method of the greatest modelto cc programs. This yields a type analysis for cc programs in the same sense asabove. It also yields a failure analysis. In cc programs, an inconsistent constraintstore (viz., failure) is considered a runtime error. (This is in contrast to logicprogrammingwhere failure is part of the backtracking mechanism.) Our analysiscomputes an approximation of the execution states of cc programs for whichfailure is inevitable in fair executions unless a process (i.e. a predicate call)



176suspends forever (see Theorem 4). The global suspension of a process is notnecessarily a programming error. That a process must suspend forever in orderto avoid a runtime error is, however, a problem worth diagnosing and reporting.Related Work. To our knowledge, set-based analysis for logic programming (seee.g. [5, 18, 13, 14, 22, 23, 30]) has previously only been designed to approximatethe success set (which can be characterized by the least model semantics).Mishra's analysis [30] is often cited as the historically �rst one here. Heintzeand Ja�ar [23] have shown that Mishra's analysis is less accurate than theirsin two ways, due to the choice of the greatest solution for the class of set con-straints he considers (see Remark 4) and due to the choice of the non-standardinterpretation of non-empty path-closed sets of �nite trees, respectively. Usingthe techniques in this paper, we are able to show that Mishra's approximationis so weak that it even approximates the greatest model. Mishra proves that`p(x) will never succeed' if the set constraint  P he derives is unsatis�able. Ourresults yield that `p(x) will �nitely fail' if  P is unsatis�able over the domain ofnon-empty path-closed sets of in�nite trees (see Remark 6).Regarding the analysis of concurrent constraint programs, various techniquesbased on abstract interpretation have been used (see e.g. [17]) but none that isrelated to set-based analysis. A �rst formal calculus for (partial) correctness of ccprograms is developed in [15]. The proof methods there are more powerful thanours but not automatic. The necessity to consider greatest-�xed point semanticsfor the analysis of reactive systems has been observed by other authors and inthe context of di�erent programming paradigms (see e.g. [11, 19]). None of theseanalyses is set-based.Finally, we want to mention that the idea to derive necessary conditions forthe inevitability of a runtime error by static analysis stems from the work ofBourdoncle [3] on abstract debugging .2 Logic ProgramsPreliminaries. We assume a ranked alphabet � �xing the arity n � 0 of itsfunction symbols f; g; : : : and constant symbols a; b; : : :, and an in�nite set Varof variables x; y; z; : : :. We write �x for �nite sequences of variables, and useanalogous sequence notation for other syntactic entities. We also write f(�x) for
at terms, where we assume implicitly that the arity of f equals the length of �x.A term without variables is called a ground term. The set of in�nite trees over �is denoted by T1� . Note that an in�nite tree can have �nite paths (ending witha constant symbol); a �nite tree is a special case. The set of terms over � andVar is denoted by T1� (Var). For an arbitrary formula �, we write 9�x� for theexistential closure of � with respect to all variables in � but x. We also assumea set Pred of predicate symbols. The Herbrand Base B is the set of all groundatoms over Pred and T1� , i.e., B = fp(t) j p 2 Pred; t 2 T1� g.11 What we call Herbrand Base is sometimes called Complete Herbrand Base [28] inorder to distinguish it from the classical notion for �nite trees.



177Logic Programs. A logic program de�nes predicates through clauses of theform p(t)  p1(t1); : : : ; pn(tn)where p(t) is called the head and p1(t1); : : : ; pn(tn) is called the body of theclause. A clause with an empty body is called a fact. A complete program hasthe form ^p2Pred np̂i=1 p(ti)  ni;p̂j=1 pij(tij) :where i ranges over the number np of clauses in the de�nition of predicate p,and j ranges over the number ni;p of queries in the ith clause of predicate p. Forbetter readability, we assume that all predicates are unary; the results can easilybe extended to the case without this restriction (for example, by requiring thesignature to contain at least one binary function symbol).If we consider the logical semantics of a program of the form above, we takethe completion of P [10], which is given by the following formula.compl (P ) � ^p2Pred 8x p(x)$ np_i=1 9�x( x = ti ^ ni;p̂j=1 pij(tij) ):A query s is a conjunction Vk pk(tk) where the tk are terms. We here allowin�nite terms like f(x; f(x; : : :)) in order to model execution states with cyclicuni�ers such y 7! f(x; y). Such terms can be �nitely represented by equations,e.g. y = f(x; y), or by syntact annotations as in [2].A ground query is a query Vk pk(tk) such that all tk are ground (i.e. with-out variables). We use the predicate constant true as the neutral element forconjunction: i.e., s = s^ true. In particular, the `empty' query is written as true.An interpretation � (sometimes called a model) is a subset of the HerbrandBase, � � B. Interpretations are ordered by subset inclusion.We identify an interpretation � � B with a valuation � : Pred! 2T1� ,i.e. a mapping of predicate symbols to sets of trees such that�(p) = ft 2 T1� j p(t) 2 �g:A model of the program P is a valuation � : Pred ! 2T1� such that the formulacompl (P ) is valid in the usual logical sense.The greatest model of compl(P ), denoted by gm(P ), always exists. Using ourconvention of identifying the interpretation gm(P ) with a valuation, we use thenotation gm(P )(p) for the denotation of the predicate p by the greatest-modelsemantics, i.e. gm(P )(p) = ft 2 T1� j p(t) 2 gm(P )g:



178Operational Semantics. The logic program P de�nes a fair transition sys-tem TP = hS; �P i. The fairness of the transition system is de�ned by the fairnessof the non-deterministic selection rule (in the classical sense [28]: a selection ruleis fair if every query atom in a state s gets selected eventually, in every executionstarting in s). The non-determinism of the selection rule means that conjunctioncorresponds to parallel composition with the interleaving semantics; disjunctioncorresponds to non-deterministic choice.The set S of states of the transition system TP consists of all queries (includ-ing true) and the failure state false,S = f k̂ pk(tk) j 8k pk 2 Pred; tk 2 T1� (Var)g [ ffalsegThe transition relation �P � S�S is de�ned according to the standard rewritingsemantics under a fair selection rule. When a selected query atom p(t) in a states 2 S of the form s = srest ^ p(t) uni�es with the head of a clause p(ti)  Vi pij(tij), then the state s0 obtained as the instantiation of srest ^ Vi pij(tij)under the most general uni�er of t and ti is a possible successor state of s. Wesay that p(t) is applied in the transition step from s to s0. When a selected queryatom p(t) does not unify with any of the heads of the clauses of p, then thesuccessor state is false.Similarly, P de�nes a fair ground transition system T gP = hS; �gP i. We obtainthe transition relation �gP by modifying the one of TP : after every transition stepof T gP , all variables in the successor state are instantiated with ground terms(i.e. in�nite trees). Note that ground queries are a special case of queries.We say that a derivation �nitely fails if if it ends in the state false. Aquery p(x) is �nitely failed (and belongs to the set FF ) if every TP derivationstarting with query p(x) �nitely fails.FF = fp(x) j p(x) is �nitely failedgSimilarly, a ground query p(t) is called ground �nitely failed (and belongs to theset GFF ) if every T gP derivation starting from p(t) �nitely fails.GFF = fp(t) j p(t) is ground �nitely failedgWe will now characterize the �nite failure set of a program P over the domain T1�of in�nite trees through the greatest model of compl(P ). Since we have not foundthis observation in the literature, we will give its proof, drawing from severalresults that are classical in the theory of logic programming.Theorem 1 (Characterization of �nite failure over in�nite trees).Given a logic program P over in�nite trees, the query p(x) is �nitely failedif and only if the value of p in the greatest model of compl(P ) over the domainT1� of in�nite trees is the empty set; i.e.,p(x) 2 FF (P ) if and only if gm(P )(p) = ;:



179Proof. The only-if direction is a classical result (namely, the `algebraic soundnessof �nite failure', see [28, 25]).For the other direction, �rst note that equations over in�nite trees have thesaturation property, that is, an in�nite set of constraints is satis�able if every ofits �nite subsets is [28, 26, 33].Now assume that p(x) 62 FF (P ). Since (see [28, 26])gm(P )(p) = ft j p(t) 62 GFF (P )g;it is su�cient to show that there exists an in�nite tree t such that p(t) 62 GFF (P )(i.e., p(t) is not in the ground �nite failure set; note that in general, the ground�nite failure of a call does not imply �nite failure of some ground instance ofthis call.)By assumption, there exists an execution starting in the state p(x) thatdoes not lead to the failure state. That is, there exists a transition sequences0; s1; s2; : : : starting in s0 = p(x) such that the constraint store 'i of everystate si is satis�able (in the terminology of constraint logic programming [25], astate Vk pk(tk) is written as the pair hVk pk(xk); 'i where the constraint store 'is a conjunction of equations that is equivalent to Vk xk = tk over the domainof in�nite trees). Since 'i is stronger than 'i�1 for i � 1, 'n is equivalent toVni=0 'i.Thus, we have a sequence of constraints '0; '1; '2; : : : such that Vni=0 'i issatis�able for all n. The saturation property yields that also the in�nite conjunc-tion Vi�0 'i is satis�able. Let � be a solution of Vi�0 'i. Then the transitionsequence s0o; s01; s02; : : : that we obtain by instantiating the states si by the valua-tion � is a ground transition sequence that does not lead to the fail state. Hence,if �(x) = t, then p(t) 62 GFF (P ) and GFF (P )(p) is nonempty. 2Remark 1. Palmgren [33] has shown that a constraint logic program over a con-straint domain with the saturation property is canonical. That is, gfp(TP ) =TP #! (where P #! = T!i=1 T iP (B) holds; for the de�nition of TP see Section 4.)Since gfp(TP ) = BnGFF (P ) holds for canonical programs (see [25]), this issu�cient to characterize ground �nite failure over in�nite trees. Canonicity isnot su�cient for �nite failure of non-ground queries.For example, consider the program p(f(x))  p(x) over the structureof �nite trees. This program is canonical (over �nite trees). Its greatest modelover �nite trees assigns p the empty set (in accordance with the fact that p(t) 2GFF (P ) for all �nite trees t), but p(x) is not �nitely failed.Similarly, Ja�ar and Stuckey [26] have shown that for programs over in�nitetrees, TP # ! equals the complement of [FF (P )], where [FF (P )] is the set ofground instances of elements of FF (P ). This is a characterization of the denota-tional semantics through the operational semantics; our characterization is theconverse.Remark 2. The statement of Theorem 1 holds for constraint logic programs overevery constraint system with the saturation property (`an in�nite set of con-straints is satis�able if every of its �nite subsets is').



180Remark 3. Since the structure of rational trees and the structure of in�nitetrees are elementarily equivalent [29] (in particular, the test of satis�ability ofconstraints is the same), we can take the operational semantics of programsover rational trees in Theorem 1 (but we must consider the logical semanticsover in�nite trees; note that ratinal tree constraints do not have the saturationproperty). The modi�ed statement is:Given a logic program P over rational trees, the query p(x) is �nitely failed ifand only if the value of p in the greatest model of compl (P ) over the domain T1�of in�nite trees is the empty set.3 Co-de�nite Set ConstraintsSyntax. A (general) set expression e is built from �rst-order terms, union, in-tersection, complement, and the projection operator [21]:e ::= x j f(e) j e [ e0 j e \ e0 j ec j f�1(k) (e)The projection f�1(k)(e) is only de�ned if k is a positive integer smaller than thearity of f . If e does not contain the complement operator, then e is called apositive set expression. A (general) set constraint is a conjunction of inclusionsof the form e � e0.A de�nite set constraint [21] is a conjunction of inclusions el � er betweenpositive set expressions, where the set expressions er on the right hand side of� are furthermore restricted to contain only variables, constants and functionsymbols and the intersection operator (i.e., no projection or union).De�nition 1. A co-de�nite set constraint ' is a conjunction of inclusions el �er between positive set expressions, where the set expressions el on the left-hand side of � are further restricted to contain only variables, constants, unaryfunction symbols and the union operator (that is, no projection, intersection orterms with a function symbol of arity greater than one).el ::= x j a j f(e) er ::= x j f(e) j e [ e0 j e \ e0 j f�1(k)(e)Semantics. We interpret set constraints over 2T1� , the domain of sets of treesover the signature�. That is, variables denote sets of trees, and a (set) valuationis a mapping � : Var ! 2T1� . Tree constructors are interpreted as functions oversets of trees: the constant a is interpreted as fag, and the function symbol f isinterpreted as the function which maps sets S1; : : : ; Sn into the setff(t1; : : : ; tn) j t1 2 S1; : : : ; tn 2 Sng :The application of the projection operator for a function symbol f and the k-thargument position on a set S of trees is de�ned byf�1(k) (S) = ft j 9t1; : : : tn : tk = t; f(t1; : : : ; tk; : : : ; tn) 2 Sg :



181The set operators union [ and intersection \, as well as inclusion � are in-terpreted as usual. De�ne the union of set valuations Si �i on variables as thepointwise union on the images of all variables; i.e., (Si �i)(x) = Si �i(x).The following properties hold for co-de�nite set constraints (see also [4]).These properties are essential for our proof in the following section to work,which shows soundness of abstraction.Proposition 1 (Properties of co-de�nite set constraints).1. Solutions of co-de�nite set constraints are closed under arbitrary unions.That is, the valuation Si �i is a solution if the valuations �i, i 2 I , are.2. If satis�able, every co-de�nite set constraint ' has a greatest solution,noted gSol(').3. Every co-de�nite set constraint without inclusions of the form a � x issatis�able.Proof. The �rst claim is proved by case-distinction over the possible set inclu-sions. The second is an immediate corollary from the �rst one. (Note that therestriction to constants and monadic function symbols on the left hand side of aninclusion is crucial here. For instance, the set constraint f(x; y) � f(a; a)[f(b; b)does not have a greatest solution; it has two maximal but incomparable ones.)In order to verify the third claim notice that the valuation which maps everyvariable into the empty set is a solution of co-de�nite set constraints withoutinclusions of the form a � e. 2Remark 4. Mishra [30] uses a class of set constraints with a non-standard inter-pretation over non-empty path-closed sets of �nite trees to approximate the suc-cess set of a logic program. (A set of trees is path-closed if it can be recognized bya deterministic top-down tree automaton [20].) Set constraints over non-emptypath-closed sets also have the properties 1. and 2. above. Due to the non-standardinterpretation, this holds even if n-ary constructor terms are allowed on the leftside of the inclusion. For example, the constraint f(x; y) � f(a; a) [ f(b; b) hasa greatest solution over path-closed sets (which assigns both variables x and ythe set fa; bg).4 Set-based AnalysisWe will next describe the inference of a co-de�nite set constraint 'P from alogic program P . The intuition is as follows. A clause of the form p(ti) pj(tij)can be written equivalently as p(xi) xi = ti ^ tij = xij ^ p(xij). Following theabstract interpretation framework, we abstract the semantics-de�ning �xpointoperator TP by replacing the constraint xi = ti ^ tij = xij in its de�nition by theco-de�nite set constraint xi � ti ^ �(tij � xij); the operator � is de�ned below.The �xpoint equation for the abstract operator T#P is essentially the inferred setconstraint 'P . The soundness of the abstraction follows directly. The schema



182of our method (whose ingredients are Propositions 1 and Lemma 1 below) isdescribed in an abstract setting in [12].We next introduce the operator � that assigns an inclusion of the form t � x aco-de�nite set constraint. For example, �(f(x; y) � f(a; a)[f(b; b)) is essentiallythe conjunction of x � f�1(1) (f(a; a)[f(b; b)) and y � f�1(2) (f(a; a)[f(b; b)) whichis equivalent to the conjunction of x � a [ b and y � a [ b.We introduce a fresh variable zt for each subterm t appearing in the formulaand then de�ne the constraint �(t � x) for a term t and a variable x by inductionon the depth of t.�(y � x) = y � x�(t � x) = 0@zt � x ^ zt1 � f�1(1) (zt) ^ �(t1 � zt1): : :^ ztn � f�1(n)(zt) ^ �(tn � ztn)1A for t = f(t1; : : : ; tn)Lemma 1. If a tree valuation � : Var ! T1� satis�es the equality x = t, thenthe set valuation �� : Var ! 2T1� de�ned by ��(x) = f�(x)g satis�es the co-de�nite set constraints x � t and �(t � x). 2We de�ne the co-de�nite constraint 'P inferred from P as follows. Here, weassume that the di�erent clauses are renamed apart (if not, we apply �-renamingto quanti�ed variables).'P � ^p2Pred p � np[i ti ^ np̂i ni;p̂j �(tij � pij)Both, symbols p 2 Pred and x 2 Var act here as second-order variables rangingover sets of trees. In the following, when we compare an interpretation � of a logicprogram with a valuation � of a set constraint, � � � means that �(p) � �(p)for all p 2 Pred.Theorem 2 (Soundness of Abstraction).For a logic program P , the greatest model of P 's completion is smaller than thegreatest solution of 'P , formally gm(P ) � gSol('P ).Proof. We �rst de�ne an abstraction T#P of the TP operator, and we provethat gfp(TP ) � gfp(T#P ), using Lemma 1. In the second part we show thatgfp(T#P ) � gSol('P ), using here Proposition 1.1. gfp(TP ) � gfp(T#
P
). The TP operator maps an interpretation � to anotherone TP (�) where, for all p 2 Pred,TP (�)(p) = (t 2 T� ����� 9� : Var! T� 9i : t = �(ti);T1� ; � j= Vj tij 2 �(pij) ) :As usual, we writeM; � j= F if the formula F is valid under the interpretationwith the valuation � on the structure (with the domain)M. The greatest-model



183semantics and the greatest-�xpoint semantics of a program P coincide; i.e., thegreatest model of P 's completion is the greatest �xpoint of the operator TP ,formally gm(P ) = gfp(TP ) (see e.g. [28]).The T#P operator maps an interpretation � to the interpretation T#P (�) where,for all p 2 Pred,T#P (�)(p) = (t 2 T� ����� 9� : Var! 2T1� ; 9i : t 2 �(ti);2T1� ; � j= Vj �(tij � xij) ^ xij � �(pij) ) :Here, we use new variables xij as placeholders for pij . The variables x 2 Varnow range over sets of trees. The formula above is a co-de�nite set constraintwith additional constants noted �(pij). The constant �(pij) is interpreted as theset �(pij).Let �0 = TP (�) and �00 = T#P (�). Then �0(p) � �00(p) holds for all p 2 Pred.This can be seen as follows. For every tree valuation � satisfying the conditionin the set comprehension for �0, the set valuation �� de�ned by ��(x) = f�(x)gsatis�es the condition in the set comprehension for �00. Clearly, ��(tij) � �(pij);we replace the inclusion tij � �(pij) by the equivalent conjunction tij = xij ^xij � �(pij). If �� satis�es the equality tij = xij then also �(tij � xij) byLemma 1.Hence, T#P is indeed an abstraction of Tp, and, thus, gfp(TP ) � gfp(T#P ).This concludes the �rst part of the proof.2. gfp(T#
P
) � gSol('P ). In order to show that gfp(T#P ) � gSol('P ), we�rst reformulate the de�nition of T#P as follows.T#P (�)(p) = [�:Var!2T1� [i f�(ti) j 2T1� ; � j= ĵ �(tij � xij) ^ xij � �(pij)gFix � and let �00 = T#P (�).We next exploit the fact that the solutions of co-de�nite set constraints areclosed under arbitrary unions (Proposition 1). Hence, we can replace the unionof solutions in the formula above by the greatest solution. We obtain that�00(p) = [i �i(ti) where �i = gSol( ĵ �(tij � xij) ^ xij � �(pij)):Since all program variables are renamed apart, we have �00(p) = Si �(ti) where� = gSol( î ĵ �(tij � xij) ^ xij � �(pij)):Thus, we have �00(p) = �(p) where� = gSol(p =[i ti ^ î ĵ �(tij � xij) ^ xij � �(pij)):



184Again, since all program variables are renamed apart,�00 = gSol( ^p2Pred p =[i ti ^ î ĵ �(tij � xij) ^ xij � �(pij)):Here, we equate the interpretation �00 : Pred ! 2T1� with a valuation � inter-preting a formula with predicate symbols p 2 Pred and tree variables x 2 Varboth ranging over sets of trees, and with constants of the form �(pij) standingfor the corresponding sets. We omit any further formalization of this setting.Let �0 be any �xpoint of T#P , i.e., T#P (�0) = �0. This means that �0 is asolution (the greatest one, in fact) of^p2Pred p =[i ti ^ î ĵ �(tij � xij) ^ xij � �0(pij):That is, �0 is a solution of 'P . Hence, �0 is smaller than the greatest solutionof 'P . This is true in particular if �0 is chosen as the greatest �xpoint of T#P .This concludes the second part of the proof. 2Theorem 3 (Set-based failure analysis for logic programs).The query p(x) is �nitely failed in every fair execution of the logic program Pif the value of p in the greatest solution (over sets of in�nite trees) of the co-de�nite set constraint 'P derived from P is the empty set; i.e., for all predicatesp 2 Pred, if gSol('P )(p) = ; then p(x) 2 FF (P ).Proof. We combine Theorems 2 and 1. 2A more precise formulation of the statement above is: the emptiness of thecomputed value for an argument variable in the i-th clause of p entails the �nitefailure of every predicate call of p with that clause.Remark 5. Since the domains of in�nite and rational trees are equivalent wrt.to �nite failure, and failure over in�nite trees implies failure over �nite trees, wehave the following two statements.Given a logic program P over rational trees [over �nite trees], the query p(x) is�nitely failed if the value of p in the greatest solution over sets of in�nite treesof the co-de�nite set constraint 'P derived from P is the empty set.Remark 6. Essentially, the set constraint derived from a logic program P in the`least-model' analysis of Mishra [30] is of the form P � ^p2Pred p = np[i ti ^ np̂i ni;p̂j tij � pij :Instead of Lemma 1, we have the obvious fact that the set valuation �� de�nedby ��(x) = f�(x)g satis�es the set constraint x = t (which is equivalent to t = x)if the tree valuation � satis�es the tree constraint x = t. Since we also have the



185existence of greatest solutions over the domain of non-empty path-closed sets of(�nite or in�nite) trees (see Remark 4), the proof of Theorem 2 goes throughalso for  P instead of 'P , and the statements in this and the next sectionhold in the appropriate adaptation. One can prove that gSol('P ) � gSol( P )(see [5]), i.e. the analysis using path-closed constraints is less accurate than theone with co-de�nite set constraints. Solving path-closed constraints is still anopen problem (both, for least and for greatest solutions).5 Concurrent Constraint ProgramsWe consider concurrent constraint (cc) programs (see e.g. [36, 37]) in a nor-malized form such that we can employ a Prolog-style clausal syntax. This isa notational convention which is convenient to establish a connection to logicprogramming.Furthermore, we consider only the case where constraints C are term equa-tions t1 = t2 interpreted over in�nite trees, as in the cc programming languageand system Oz [32, 37]. Hence, we can adopt a Prolog-like syntax and assumethat every procedure p is de�ned either by a single fact or by several guardedclauses of the form p(x)  x = t [] p1(t1); : : : ; pn(tn):In such a guarded clause, we call x = t the guard and p1(t1); : : : ; pn(tn) the body.The operational semantics of a cc program P is de�ned through a fair transi-tion system T ccP as TP for logic programs (again with the non-deterministic fairselection rule), with one important di�erence: A selected query p(t) can only beapplied if amongst the guarded clauses of predicate p there is one, the ith onewith body x = ti [] Vj pij(tij), say, such that x = t entails 9�x x = ti; if this isthe case in a state S, then the successor state will be S ^Vj pij(tij) under themost general uni�er of t and ti (for a more precise de�nition, see e.g. [36, 37]).Notice that a logic program is a special case of a cc program where all guardsare trivially true, e.g. x = x.Failure of cc programs. We next apply the approximationmethod of the previoussection to logic programs abstracting cc programs in order to predict the behaviorof the latter.De�ne the logic program ~P abstracting the cc program P by replacing theguard [] with conjunction. It is an abstraction in the following sense.Proposition 2. If the query p(t) �nitely fails in the logic program ~P abstractingthe cc program P then failure is inevitable in fair executions of the cc program Punless a process (i.e. a predicate call) suspends forever.Proof. Observe that every (�nite or in�nite) fair computation in P in whichno process suspends forever induces a fair computation in ~P . Namely, when-ever a selected query p(t) is applied with a guarded clause in P it can also be



186applied with the associated unguarded clause in ~P . This proves the claim bycontraposition. 2Proposition 3 (Prediction of failure behavior of cc programs).Failure is inevitable in fair executions of the cc program P unless a processsuspends forever, if the value of p in the greatest model of compl( ~P ) over thedomain T1� of in�nite trees is the empty set.Proof. We combine Proposition 2 and Theorem 1. 2Theorem 4 (Set-based failure analysis for cc programs).Failure is inevitable in fair executions of the cc program P unless a processsuspends forever if the value of p in the greatest solution (over sets of in�nitetrees) of the co-de�nite set constraint ' ~P derived from ~P is the empty set.Proof. We combine Theorem 3 and Proposition 3. 26 ExamplesWe will give some examples to illustrate how our method of approximatinggreatest models with co-de�nite set constraints tests the inevitability of certainruntime errors. Consider the following simple stream program.stream([X;Y jS])  Y = s(s(X)); computation(X); stream([Y jS]):main(Z)  stream([ZjT ]):Suppose we know that the predicate computation makes sense only for (treesrepresenting) odd numbers, whereas no such restriction is known for main andstream. This invariant can be expressed by the following set constraint, whichmay have been derived from another code fragment or externally provided by aprogram annotation.computation � s(0) [ s(s(computation)) : (1)Further, we can approximate the set of non-failed computations of the programwith the constraintstream � cons(X; cons(Y; S)) ^X � computation ^ X � s�1(1)(s�1(1)(Y )) ^Y � cons�1(1)(stream) ^ S � cons�1(2)(stream) ^main � cons�1(1)(stream) : (2)
It is not di�cult to see that the greatest solution of the conjunction of (1)and (2) assigns to the variable main (as well as to X , Y , and computation) the



187set of odd numbers. We obtain from this fact that, for example, the querymain(0)inevitably leads to a state where computation is called with a wrong argument.We illustrate now the necessity to consider in�nite trees by another example.Consider the reactive logic program P de�ned byp(f(x)) p(x):The execution of the query p(x) does not fail, whether the program is de�nedover the domain of �nite or in�nite trees. We derive the co-de�nite set constraint'P � p � f(x) ^ x � p. When interpreted over sets of �nite trees, 'P has asgreatest solution the valuation assigning the empty set to p (and x). In thein�nite tree case the greatest solution assigns to p the singleton set containingthe in�nite tree f(f(f(: : :))). That is, an interpretation of the derived co-de�niteset constraint over sets of �nite trees does not admit the prediction of �nitefailure.7 ConclusionWe have presented a set-based analysis of logic programs with ongoing behavior(i.e. with the greatest-�xpoint semantics). We have given a characterization of�nite failure of logic programs over rational or in�nite trees through the greatestmodel over in�nite trees, and we have exhibited a connection between the in-evitability of `inconsistent-store' runtime error for cc programs and �nite failurefor logic programs, thus indicating a potential application to error diagnosis forcc programs.Our `greatest-model' set-based analysis of logic programs is interesting in itsown right, as a particular instance of static analysis, and also in comparisionwiththe `least-model' set-based analyses of classical logic programs e.g. by Mishra [30]or by Heintze and Ja�ar [22].The practicability of our approach depends on the e�ciency of the constraintsolving. Succeeding the technical report [8] on which this paper and [4] are based,Devienne, Talbot and Tison [16] have given a strategy for solving co-de�nite setconstraints which may achieve an exponential speedup. The realization of thisset-based analysis for the Oz system, and its extension to reactive Oz programswith non-cc features such as cells and higher-order features is part of ongoingwork. We have implemented a prototype version (with an incomplete constraintsolver); experiments seem to indicate its potential usefulness for �nding bugs.One question arising from this work and the work by Cousot and Cousotin [12] is whether this set-based analysis is an instance of an abstract interpre-tation, i.e., whether our constraint-solving process is isomorphic to the iterationof an abstraction of the TP �xpoint operator.References1. A. Aiken. Set constraints: Results, applications and future directions. In Pro-ceedings of the Workshop on Principles and Practice of Constraint Programming,LNCS 874, pages 326{335. Springer-Verlag, 1994.
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