
Axiomatizing Dependen
y ParsingUsing Set ConstraintsDenys Du
hierProgramming Systems LabUniversity of the Saarland, Saarbr�u
kendu
hier�ps.uni-sb.deAbstra
tWe propose a new formulation of dependen
ygrammar and develop a 
orresponding axiom-atization of synta
ti
 well-formedness with anatural reading as a 
on
urrent 
onstraint pro-gram. We demonstrate the expressivity ande�e
tiveness of set 
onstraints, and des
ribe atreatment of ambiguity with wide appli
abil-ity. Further, we provide a 
onstraint program-ming a

ount of dependent disjun
tions that isboth simple and eÆ
ient and additionally pro-vides the bene�ts of 
onstru
tive disjun
tions.Our approa
h was implemented in Oz and yieldsparsers with very good performan
e for our 
ur-rently middle s
ale grammars. Constraint prop-agation 
an be observed to be remarkably e�e
-tive in pruning the sear
h spa
e.1 Introdu
tionModern linguisti
 theories su
h as hpsg (Pol-lard and Sag, 1987) and lfg (Kaplan andBresnan, 1982) are primarily 
on
erned withthe formulation of general stru
tural prin
iplesthat determine synta
ti
ally well-formed enti-ties, typi
ally represented as hierar
hi
al, pos-sibly typed, feature stru
tures. While featurestru
tures are appealing for their perspi
uityand are easily supported by languages with uni-�
ation, they have the disadvantage that theresulting grammati
al formalisms are hard toparse for both theoreti
al and pra
ti
al rea-sons, even be
oming unde
idable in the worst
ase (Kaplan and Bresnan, 1982). These dif-�
ulties are magni�ed in languages like Ger-man where free word order and dis
ontinuous
onstituents 
ompli
ate the formal a

ount andhandi
ap parsing te
hniques relying on surfa
eorder.While mu
h resear
h was devoted to the 
om-pilation of grammati
al frameworks based on

typed feature stru
tures and on the 
ompa
trepresentation and eÆ
ient pro
essing of dis-jun
tive feature stru
tures, re
ent advan
es in
onstraint te
hnology have re
eived rather lessattention in the 
omputational linguisti
s (CL)
ommunity than they deserve, and their rel-evan
e has gone largely unnoti
ed. Con
ur-rent 
onstraint programming provides today fargreater expressivity and eÆ
ien
y than is 
om-monly assumed.In parti
ular, set 
onstraints are emerging asan espe
ially elegant and 
omputationally e�e
-tive tool for appli
ations in CL. In an earlier pa-per (Du
hier and Gardent, 1999), we des
ribedhow they 
ould serve to eÆ
iently solve dom-inan
e 
onstraints and �nd minimal models oftree des
riptions. We propose here to show theirappli
ation to parsing.In this paper, we are going to demonstratehow, with the help of state-of-the-art 
onstraintprogramming, an elegant and 
on
ise axiomati
spe
i�
ation of synta
ti
 well-formedness be-
omes naturally an eÆ
ient program. In so do-ing, we develop a treatment of ambiguity withfairly general appli
ability. In parti
ular, weprovide a 
onstraint-based a

ount of depen-dent disjun
tions (Maxwell and Kaplan, 1989;D�orre and Eisele, 1990; Gerdemann, 1991; Grif-�th, 1990) that naturally supports 
onstru
tivedisjun
tion semanti
s (lifting of 
ommon infor-mation).Our approa
h stands in sharp 
ontrast tomost extant parsing te
hniques. We abandonthe generative view; we no longer build partialparses by 
ombination of smaller ones, as is the
ase in e.g. 
hart parsing. Rather, we give aglobal well-formedness 
ondition and pro
eed toenumerate its models.We 
hoose dependen
y grammar (DG) asour framework and axiomatize the notion of



a synta
ti
ally well-formed dependen
y tree ina manner that is parti
ularly well-suited to
onstraint-based pro
essing: we propose to re-gard dependen
y parsing as a �nite 
on�gura-tion problem that 
an be formulated as a 
on-straint satisfa
tion problem (CSP).This view takes advantage of the fa
t that fora senten
e of length n, there are �nitely manypossible trees involving just n nodes. Out ofthis large number, we must sele
t those that aregrammati
al. We do not attempt this throughexplorative generation, but rather via modelelimination. What 
onstraint programming af-fords us is e�e
tive model elimination through
onstraint propagation.Maruyama (1990) was the �rst to propose a
omplete treatment of dependen
y grammar asa CSP and des
ribed parsing as a pro
ess of in-
remental disambiguation. Harper (Harper etal., 1999) 
ontinues this line of resear
h andhas proposed several algorithmi
 improvementswithin the MUSE CSP framework (Helzermanand Harper, 1993). Menzel (Menzel, 1998; Hei-ne
ke et al., 1998; Menzel and S
hr�oder, 1998)advo
ates the use of soft \graded" 
onstraintsfor robustness e.g. in parsing spoken language.His proposal turns parsing into a more expen-sive optimization problem, but adapts gra
e-fully to 
onstraint violations.Our presentation has the advantage overMaruyama's that it follows modern linguisti
pra
ti
e: the grammar is spe
i�ed by a lexi-
on and a 
olle
tion of prin
iples. Further, weillustrate the expressiveness of set 
onstraintsand sele
tion 
onstraints, and demonstrate howthey 
an provide 
ompa
t and elegant en
odingsof various forms of ambiguity su
h as lexi
al oratta
hment ambiguity. Finally, our axiomati-zation of dependen
y parsing has the propertythat, modulo details of syntax, it 
an also be re-garded as a program in a 
on
urrent 
onstraintprogramming language su
h as Oz (Smolka,1995). Several parsers were implemented in Ozas des
ribed and provide ex
ellent performan
e,without any sort of optimization.Consider the senten
e1 below whi
h illus-1Joa
him Niehren suggests the following senten
e,whi
h exhibits the same stru
ture but sounds more 
on-vin
ing to the German ear: \Genau diese Flas
he Weinhat mir mein Kommissionn�ar verspro
hen auf der Auk-tion zu ersteigern."

trates the sort of non-proje
tive analysis withfronting, s
rambling and extraposition that istypi
al of German senten
es.das Bu
h hat mir Peter verspro
hen zu lesenthe book has me(dat) Peter promised to read(1)Sin
e both \das Bu
h" and \Peter" 
an be indif-ferently assigned nominative or a

usative 
ase,either one may be subje
t of \hat" while theother is a

usative obje
t of \lesen." There arethus two readings.(Fig 1) demonstrates the e�e
tiveness of 
on-straint propagation: the two readings are enu-merated in approximately 190ms using a single
hoi
e point.2 A graphi
al representation of thepreferred reading is shown in the upper window,while the sear
h tree is displayed in the lowerwindow.

Figure 1: Parser DemoIn our approa
h, 
onstraint propagation alone
onstru
ts the dependen
y tree. Sear
h is onlyneeded to explore alternatives that 
annot beruled out by 
onstraint propagation. In pra
-ti
e, we observe that sear
h is required to enu-merate readings, but very rarely leads to failurewhere e.g. ba
ktra
king is required.Se
tion 2 introdu
es the formal framework;Se
tion 3 presents the novel 
onstraint program-ming ideas su
h as set and sele
tion 
onstraints;2We expe
t better performan
e when e.g. the sele
-tion 
onstraint is given low-level builtin support. It is
urrently implemented in Oz itself.



and in Se
tion 4 we axiomatize a 
onstraintmodel for synta
ti
 well-formedness in DG andturn the problem into a CSP.2 Formal FrameworkWe now present our notion of a dependen
ygrammar and of dependen
y trees. The formu-lation below ignores issues of word order as theyare beyond the s
ope of this arti
le. However,the full treatment in
ludes ideas derived fromReape's word order domains (Reape, 1994) aswell as from the theory of topologi
al �elds inGerman senten
es.2.1 Dependen
y GrammarIn our formal setting, a dependen
y grammar Gis a 7-tuplehWords;Cats;Agrs;Comps;Mods;Lexi
on;Rulesiwhere Words is a �nite set of strings notat-ing the fully in
e
ted forms of words, Cats isa �nite set of 
ategories su
h as n for noun,det for determiner, or vfin for �nite verb,Agrs is a �nite set of agreement tuples su
has hmas
 sing 3 nomi, Comps is a �nite setof 
omplement role types su
h as subje
t ornp dat for dative noun phrase, Mods is a �niteset of modi�er role types, su
h as adj for adje
-tives, disjoint from Comps. We write Roles =Comps ℄Mods for the set of all role types; theywill serve to label the edges of a dependen
ytree. Lexi
on is a �nite set of lexi
al entries(see below), and Rules is a family of binarypredi
ates, indexed by role labels, expressing lo-
al grammati
al prin
iples: for ea
h � 2 Roles,there is �� 2 Rules su
h that ��(w1; w2) 
hara
-terizes the grammati
al admissibility of an edgelabeled � from mother w1 to daughter w2.A lexi
al entry is an attribute value matrix(AVM) with signature:2664 string : Words
at : Catsagr : Agrsroles : 2Comps 3775We write attribute a

ess in fun
tional notation.If e is a lexi
al entry: string(e) is the full form ofthe 
orresponding word, 
at(e) is the 
ategory,agr(e) the agreement, and roles(e) the valen
yexpressed as a set of 
omplement roles.

21 43er liest das Bu
hhe reads the book
subje
t np a

det

1 264 string : er
at : proagr : hmas
 sing 3 nomiroles : fg 3752 264 string : liest
at : vfinagr : hmas
 sing 3 nomiroles : fsubje
t,np a

g 3753 264 string : das
at : detagr : hneut sing 3 a

iroles : fg 3754 264 string : Bu
h
at : nagr : hneut sing 3 a

iroles : fdetg 375Figure 2: Example Dependen
y Tree2.2 Dependen
y TreesWe assume an in�nite set Nodes of nodes andde�ne a labeled dire
ted edge to be an elementof Nodes � Nodes � Roles. Thus, given a setV � Nodes of nodes and a set E � V�V�Rolesof labeled edges between these node, hV; Ei is adire
ted graph, in the 
lassi
al sense, with la-beled edges. We will restri
t our attention to�nite graphs that are also trees.Every node of a dependen
y tree 
ontributesa word to the senten
e; the position where thatword is 
ontributed will be represented by amapping index from nodes to integers. Further,every node must be assigned synta
ti
 features(e.g. 
ase, agreement : : : ), whi
h will be real-ized by a mapping entry from nodes to lexi
alentries.A dependen
y tree T is then de�ned as a 4-tuple: hV; E ; index; entryiwhere V is a �nite set fw1; : : : ; wng of nodes, E



is a �nite set of labeled edges wi �! wj betweenelements of V, and hV; Ei is a tree as de�nedabove.index is a bije
tion from V to [1: :n℄ assigningto ea
h node a linear position in the 
orrespond-ing senten
e, and entry : V 7! Lexi
on assigns alexi
al entry to ea
h node in V.Example. Figure 2 
ontains a graphi
al de-pi
tion of a dependen
y tree. The upper partshows nodes represented as boxes 
onne
ted bylabeled dire
ted edges. The integer appearing inea
h box is the position whi
h index assigns tothe node. For ease of reading, the linearizationof the senten
e is also provided and a dotted lineindi
ates for ea
h node the 
orresponding wordin the senten
e. The lower part of the �guredisplays for ea
h node the lexi
al entry whi
hentry assigns to it.Figure 3 shows the dependen
y tree for ex-ample senten
e (1). In pla
es where the valueassignment is fully un
onstrained (i.e. all assign-ments are a

eptable), we have used the stan-dard \don't 
are" notation ` '.Well-Formedness. A dependen
y tree isgrammati
ally admissible i� 
onditions (2), (3)and (4) below are satis�ed. First, any 
omple-ment required by a node's valen
y must be re-alized pre
isely on
e:8wi 2 V;8� 2 roles(entry(wi))9!wj 2 V; wi �! wj 2 E (2)Se
ond, if there is an edge emanating from wi,then it must be labeled either by a 
omplementtype in wi's valen
y or by a modi�er type:8wi �! wj 2 E� 2 roles(entry(wi)) [Mods (3)Third, whenever there is an edge wi �! wj , thenthe grammati
al 
ondition ��(wi; wj) for �� 2Rules must be satis�ed in T :8wi �! wj 2 E T j= ��(wi; wj) (4)2.3 Improving Lexi
al E
onomyTypi
ally, the same full form of a word may 
or-respond to several distin
t agreements. In theinterest of a more 
ompa
t representation, wewish to 
ollapse together entries that di�er only

in their agreement. We repla
e attribute agr byagrs whose values are now sets of agreement tu-ples. Although of less frequent appli
ability, wedo the same for 
ategories and repla
e 
at by
ats.Optional 
omplements are another sour
e of
onsiderable redundan
y in the lexi
on. In-stead of modeling the valen
y with just oneset roles(e) of 
omplement types, we proposeto use instead a lower bound broles
(e) and anupper bound drolese(e), su
h that broles
(e) �drolese(e). broles
(e) represents the requiredroles and drolese(e) the permissible roles. Op-tional roles are simply drolese(e) n broles
(e).We 
all the new, more 
ompa
t representa-tion a lexi
on entry to distinguish it from a lex-i
al entry whi
h remains as de�ned earlier. Alexi
on entry is said to generate lexi
al entries.The lexi
al entries generated by (5) below areof the form (6) and 
orrespond to all solutionsof 
onstraint (7).26664 string : S
ats : Cagrs : Abroles
 : Rlodrolese : Rhi 37775 (5)264 string : S
at : 
agr : aroles : r 375 (6)
 2 C ^ a 2 A ^ Rlo � r � Rhi (7)This simple formulation illustrates how 
on-straints 
an be used to produ
e 
ompa
t repre-sentations of 
ertain forms of lexi
al ambiguity.3 Constraint ProgrammingThe foundations of 
on
urrent 
onstraint pro-gramming (CCP) are well do
umented e.g.in (Saraswat et al., 1991; Smolka, 1995) andhave been implemented in the programminglanguage Oz (Mozart Consortium, 1998).Modern 
onstraint te
hnology, as providedby CHIP (Din
bas et al., 1988), 
lp(FD)(Codognet and Diaz, 1996), ECLiPSe (Aggounet al., 1995), ILOG Solver (ILOG, 1996), andOz (Mozart Consortium, 1998) has proven quitesu

essful at solving pra
ti
al problems withhigh 
ombinatorial 
omplexity, su
h as s
hedul-ing and 
on�guration, that were resisting tradi-tional methods of operations resear
h.



3 5 64 82 71das Bu
h hat mir Peter verspro
hen zu lesen1 2 3 4 5 6 7 8
subje
t vp past vp zu

det zunp datnp a


1 264 string : das
at : detagr : hneut sing 3 a

iroles : fg 375 2 264 string : Bu
h
at : nagr : hneut sing 3 a

iroles : fdetg 3753 264 string : hat
at : vfinagr : hmas
 sing 3 nomiroles : fsubje
t,vp pastg 375 4 264 string : mir
at : proagr : h sing 3 datiroles : fg 3755 264 string : Peter
at : nagr : hmas
 sing 3 nomiroles : fg 375 6 264 string : verspro
hen
at : vpastagr :roles : fnp dat,vp zug 3757 264 string : zu
at : partagr :roles : fg 375 8 264 string : lesen
at : vinfagr :roles : fzu,np a

g 375Figure 3: Dependen
y tree of demo senten
eThe key to su

ess, presented here, is to re-du
e parsing to a problem that 
onstraint pro-gramming (CP) is good at, namely 
on�gura-tion.3.1 Basi
 NotionsA CSP 
onsists of a �nite 
olle
tion of variables(xi) taking values in �nite domains (Di) anda 
onstraint � on these variables. A solutionis an assignment � of values to these variablessu
h that � is satis�ed. In CP, � is 
omputedin
rementally as a sequen
e of improving ap-proximations: �(xi) is an approximation of theassignment to xi and is typi
ally spe
i�ed eitherby listing the remaining values or by providingupper and lower bounds. Initially the approx-imation of xi 
ontains all of Di. Solutions are

derived by a sear
h pro
ess 
onsisting of alter-nating propagation and distribution steps untilall variables are determined or a 
ontradi
tion isderived. A variable xi is said to be determinedwhen its approximation �(xi) has been redu
edto a single value.In CCP, � is 
alled the store and primi-tive 
onstraints are implemented by 
on
urrentagents that observe the store and 
orrespond-ingly improve the 
urrent approximations by de-riving new basi
 
onstraints a

ording to theirde
larative semanti
s. Basi
 
onstraints are e.g.I = 5, I 6= 5, 5 2 S or 5 62 S.Propagation. This is a pro
ess of determin-isti
 inferen
e. It removes from every approxi-mation �(xi) all values that 
an be inferred to



be in
onsistent with �. In pra
ti
e only a 
heaplo
al inferen
e pro
ess is applied su
h as \ar

onsisten
y."Distribution. When propagation hasrea
hed a �xed point but not all variablesare determined, sear
h be
omes ne
essary toe.g. enumerate the possible assignments of anon-determined variable x. Whi
h variableto pi
k and how to enumerate the values isexpressed by a distribution (or labeling) strat-egy. For example the \�rst-fail" strategy pi
ksa variable that has fewest remaining possiblevalues in its domain; its intended e�e
t is tokeep the bran
hing fa
tor in the sear
h tree assmall as possible.3.2 Set ConstraintsModern 
onstraint te
hnology not only supports�nite domain variables, denoting integers, butalso �nite set variables, denoting �nite sets of in-tegers (Gervet, 1995; M�uller and M�uller, 1997).One of our 
ontributions is to demonstrate theelegan
e, su

in
tness and eÆ
ien
y a

ruingfrom the use of sets and set 
onstraints.A set variable S is approximated by a lowerbound bS
 and an upper bound dSe:bS
 � S � dSeThese bounds 
an be tightened by 
onstraintpropagation. All the usual operations of set the-ory are supported as 
onstraints. In parti
ular,we often use S = S1 ℄ : : : ℄ Sn, where ℄ de-notes disjoint union, to state that (Si) forms apartition of S.Our formulation illustrates many appli
ationsof sets. Of spe
ial interest is the treatment ofatta
hment ambiguity (or more generally of am-biguous graph 
onne
tivity): we use set vari-ables to represent sets of daughters for ea
hnode in a tree.3.3 Sele
tion ConstraintAn essential 
ontribution of this paper is a gen-eral te
hnique for the 
ompa
t representationand e�e
tive treatment of ambiguity su
h as lex-i
al ambiguity. Consider a variable X that maybe equated with one of n variables (Vi). We rep-resent the 
hoi
e expli
itly using a �nite domainvariable I 2 f1: :ng and the sele
tion 
onstraint :X = hV1; : : : ; Vni[I℄ (8)

The notation hV1; : : : ; Vni[I℄ was 
hosen to sug-gest sele
tion of the Ith element of sequen
ehV1; : : : ; Vni.The idea is that the 
onstrained value ofX 
an be approximated from the set of vari-ables that may still be sele
ted by I fromhV1; : : : ; Vni. Conversely: the remaining do-main of I must be restri
ted to the positionsfor whi
h Vi is still 
ompatible with X.This powerful idea was �rst introdu
ed inCHIP (Din
bas et al., 1988) for �nite domain(FD) variables under the name of `element' 
on-straint. We extend it here to �nite set (FS)variables.The sele
tion 
onstraint 
an be implementedeÆ
iently and we outline the intuition in the
ase where X and (Vi) are set variables. Wewrite bX
 and dXe for the lower and upper ap-proximations of X and dom(I) for the approxi-mation of I. Given the sele
tion 
onstraint (8),propagation maintains the following invariant:\j2dom(I)bVj
 � bX
 � X � dXe � [j2dom(I)dVjeand applies the following rule of inferen
e:bVj
 6� dXe _ bX
 6� dVje ) I 6= jAs a 
onsequen
e of the above invariant, thesele
tion 
onstraint implements a form of 
on-stru
tive disjun
tion (lifting of information
ommon to all remaining alternatives). The fa
tthat the 
hoi
e is made expli
it by variable Ipermits dependent sele
tions. For example in(9) the 
hoi
e of whi
h Vi to equate with X andwhi
h Wi to equate with Y are mutually de-pend: X = hV1; : : : ; Vni[I℄Y = hW1; : : : ;Wni[I℄ (9)These two 
onstraints 
an be viewed as realiz-ing the following dependent (or named) disjun
-tions (Maxwell and Kaplan, 1989; D�orre andEisele, 1990; Gerdemann, 1991; GriÆth, 1990)both labeled with name I:(X = V1 _ : : :_ X = Vn)I(Y =W1 _ : : :_ Y =Wn)INotational variations on dependent disjun
tionhave been used to 
on
isely express 
ovariantassignment of values to di�erent features in



feature stru
tures. The sele
tion 
onstraintprovides the same notational 
onvenien
e andde
larative semanti
s, but also gives it all the
omputational bene�ts that a

rue from state-of-the-art 
onstraint te
hnology.4 Constraint ModelIn this se
tion, we develop a 
onstraint modelfor the formal framework of Se
tion 2: we intro-du
e FD and FS variables to en
ode the quan-tities and mappings it mentions, and formulate
onstraints on them that pre
isely 
apture the
onditions the formal model stipulates. Whatmotivates this redu
tion is the desire to take ad-vantage of the powerful and very eÆ
ient te
h-nologi
al support for 
onstraint propagation on�nite domains and �nite sets.For our appli
ation to parsing, we assumethat we are given an input senten
e 
onsisting ofn words s1 s2 : : : sn. The solutions to the CSPobtained as its 
onstraint model 
orrespond toall admissible parse trees of the senten
e.Our approa
h takes advantage of the follow-ing observations: (1) there are �nitely manyedges labeled with Roles that 
an be drawn be-tween n nodes,3 (2) for ea
h word there are�nitely many lexi
al entries. Thus the prob-lem is to pi
k a set of edges and, for ea
h node,to pi
k a lexi
al entry so that (a) the result isa tree, (b) none of the grammati
al 
onditionsare violated. Viewed in this light, dependen
yparsing redu
es to a 
on�guration problem.4.1 RepresentationNodes and Lexi
al Attributes: we identifya node with the integer representing its posi-tion in the senten
e; thus index is simply theidentity fun
tion. The lexi
al entry assigned toea
h node w is represented by its attributes. Wewrite 
at(w), agr(w), and roles(w) for the vari-ables denoting their values.Domains: ea
h 
ategory in Cats is en
odedby a distin
t integer. Similarly for ea
h agree-ment tuple inAgrs4 and ea
h role inRoles. Thusevery value is represented either by an integeror a set of integers.Daughter Sets: for ea
h node w 2 V andea
h role � 2 Roles, we write �(w) for the set3jV � V � Rolesj = n2 jRolesj4In German, there are 72 distin
t agreement tuples:4 
ases � 3 genders � 3 persons � 2 numbers

of immediate daughters of w whose dependen
yedge is labeled �, i.e. �(w) = fw0 j w �! w0 2 Eg.Thus, if there is no edge labeled � emanatingfrom w, �(w) is the empty set. Sin
e �(w) isa subset of V, i.e. a �nite of set of integers inthe 
onstraint model, we represent it by a FSvariable.Lexi
on: we 
onsider the fun
tion Lex fromwords to sets of lexi
on entries.Lex(s) = fe 2 Lexi
on j string(e) = sgWithout loss of generality, we 
an assume thatLex returns a sequen
e rather than a set whi
hallows us to identify the lexi
on entries of agiven word by position in this sequen
e.The lexi
al entry assigned to w is generatedby one of its lexi
on entries as des
ribed in Se
-tion 2.3. We say that the latter is \sele
ted" andintrodu
e variable entryIndex(w) to denote itsposition in the sequen
e returned by Lex for w.4.2 Lexi
al ConstraintsWe now expli
ate the assignment of lexi
al at-tributes to a node w and demonstrate how lex-i
al ambiguity 
an be axiomatized by redu
tionto the sele
tion 
onstraint.Lexi
al attribute assignment pro
eeds in twosteps: (a) sele
tion of a lexi
on entry (b) gener-ation of a lexi
al entry from this lexi
on entry asdes
ribed in Se
tion 2.3. Let us write E for thelexi
on entry sele
ted for w and I for its posi-tion in the sequen
e returned by Lex. They areabstra
tly de�ned by the following equations:he1; : : : ; eni = Lex(string(w))I = entryIndex(w)E = he1; : : : ; eni[I℄the lexi
al attributes are obtained as solutionsof formula (7) whi
h translates into the follow-ing 
onstraints:
at(w) 2 
ats(E)agr(w) 2 agrs(E)broles
(E) � roles(w) � drolese(E)For pra
ti
al reasons of implementation, the se-le
tion 
onstraint is only provided for �nite do-mains and �nite sets, but E and (ei) are AVMs.We over
ome this diÆ
ulty by pushing attribute



a

ess into the sele
tion:
at(w) 2 h
ats(e1); : : : ; 
ats(en)i[I℄agr(w) 2 hagrs(e1); : : : ; agrs(en)i[I℄hbroles
(e1); : : : ; broles
(en)i[I℄ � roles(w)hdrolese(e1); : : : ; drolese(en)i[I℄ � roles(w)4.3 Valen
y ConstraintsEvery daughter set �(w) is a �nite set of nodeso

urring in the tree:8w 2 V 8� 2 Roles �(w) � VA 
omplement daughter set �(w) is of 
ardinal-ity at most 1 (e.g. a verb has at most 1 subje
t),and it is non-empty i� � appears in w's valen
y.We write j�(w)j for �(w)'s 
ardinality.8� 2 Comps0 � j�(w)j � 1^ j�(w)j = 1 � � 2 roles(w)A modi�er daughter set has no 
ardinality re-stri
tion (e.g. a noun 
an have any number ofadje
tives).4.4 Role ConstraintsFor ea
h role type � 2 Roles our grammar spe
-i�es a binary predi
ate �� expressing a gram-mati
al 
ondition between mother and daugh-ter. We assume that ��(w;w0) is de�ned by aformula of a 
onstraint language that 
an be in-terpreted over dependen
y trees. We will notmake this language expli
it here, but detail be-low a few examples. These examples are in-tended to be illustrative rather than normativeand we extend for them no 
laim of linguisti
adequa
y.A

ording to well-formedness 
ondition (4),for every edge w �! w0, grammati
al 
ondition��(w;w0) must hold. Therefore the tree mustsatisfy the following 
ondition:8w;w0 2 V 8� 2 Roles w0 2 �(w)) ��(w;w0)Modern 
onstraint te
hnology has eÆ
ient sup-port for su
h impli
ative 
onditions.5 In par-ti
ular, if 
onstraint propagation 
an show that��(w;w0) is in
onsistent in T , then w0 62 �(w)is inferred whi
h improves the approximationof �(w).5In Oz, this is expressed by the 
onstru
t:or w0 2 �(w) ^ ��(w;w0) [ ℄ w0 62 �(w) end

Subje
t. The subje
t of a �nite verb must beeither a noun or a pronoun, it must agree withthe verb in person and number, and must havenominative 
ase. We write nom for the set ofagreement tuples with nominative 
ase:�subje
t(w;w0) � 
at(w0) 2 fn; prog^ agr(w) = agr(w0)^ agr(w0) 2 nom (10)Adje
tive. An adje
tive may modify a nounand must agree with it:�adj(w;w0) � 
at(w) = n^ 
at(w0) = adj^ agr(w) = agr(w0) (11)Determiner. The determiner of a noun mustagree with the noun and o

ur left-most in itsyield:�det(w;w0) � 
at(w0) = det^ agr(w) = agr(w0)^ w0 = min(yield(w)) (12)The yield of w is the set of nodes (in
ludingw) rea
hable from w by traversing downwardsany number of dependen
y edges. We introdu
evariable yield(w) for this quantity and develop,in Se
tion 4.6, its 
onstraint-based axiomatiza-tion. Sin
e yield(w) 
ontains w, it is a non-empty set of nodes i.e. integers (Se
tion 4.1).Thus it is meaningful to speak of its minimumelement, whi
h we write min(yield(w)).64.5 Treeness ConstraintsOur formal framework simply assumed the\usual" de�nition of treeness: (a) every nodehas a unique mother ex
ept for a distinguishednode, 
alled the root, whi
h has none, (b) thereare no 
y
les. We must now provide an expli
itaxiomatization of this notion. For this pur-pose we introdu
e variables daughters(w) andmother(w) for ea
h node w.The set of immediate daughters of w is simplyde�ned as the union of its daughter sets:daughters(w) = [�2Roles �(w)6Oz supports 
onstraints of the form I = min(S) be-tween a �nite domain variable I and a �nite set vari-able S.



We model the notion of `mother' of a node asa set of 
ardinality at most 1. Thus, we 
ana

ount for both the presen
e or absen
e of amother. The latter 
ase is needed only for theroot of the dependen
y tree.mother(w) � V 0 � jmother(w)j � 1w is a mother of w0 i� w0 is an immediate daugh-ter of w:w 2 mother(w0) � w0 2 daughters(w)Further, treeness requires the existen
e of aunique root. We therefore introdu
e the newvariable root to denote the root of the depen-den
y tree. This is the only node without amother: root 2 V8w 2 V w = root � jmother(w)j = 0Ea
h node must �ll pre
isely one role in the sen-ten
e; it must either be the root or an immedi-ate daughter of another node:V = frootg ℄ ℄w 2 V� 2 Roles �(w)In order to guarantee well-formedness, we mustadditionally enfor
e a
y
li
ity. We do this be-low in the axiomatization of yields.4.6 Axiomatization of YieldThe notion of yield of a lexi
al node, i.e. theset of nodes rea
hable through the transitive
losure of immediate dominan
e edges (
omple-ments and modi�ers), is essential for the expres-sion of grammati
al prin
iples. In a generativeframework, the yield of a node 
annot be 
al-
ulated until the full dependen
y tree rooted atthis node has been 
onstru
ted. In this se
tion,we exhibit a stati
 axiomatization of yields thatfully exposes the underspe
i�
ation of a yieldto the inferen
e me
hanisms of 
onstraint prop-agation.Weighted Set. as a preliminary, we in-trodu
e the weighted set 
onstraint, betweenboolean variable B and FS variables S1; S2:S1 = B ? S2

whi
h has the de
larative semanti
s:B ) S1 = S2:B ) S1 = ;Note that, if we make the 
lassi
al identi�
ationof false with 0 and true with 1, we 
an alsoexpress it with the sele
tion 
onstraint:S1 = B ? S2 � S1 = h;; S2i[B + 1℄The stri
t yield yield!(w) is the set of nodesstri
tly below w in the dependen
y tree. Inother words, it is formed by the disjoint unionof the yields of its immediate daughters:yield!(w) = ℄w02daughters(w) yield(w0)But daughters(w) is not stati
ally known; so,instead, we reformulate the above as a union ofweighted sets:yield!(w) = ℄w02V(w0 ...2 daughters(w)) ? yield(w0)where w0 ...2 daughters(w) is a \rei�ed" 
on-straint: it denotes a boolean whi
h is true i�w0 2 daughters(w) is satis�ed. To obtain theyield of w, we simply add w to its stri
t yield:yield(w) = fwg ℄ yield!(w) (13)Disjoint union in (13) enfor
es the 
onditionthat w must not appear in its own stri
t yield,thus ruling out loops.4.7 Word-order 
onstraintsAlthough the treatment of word-order 
on-straints lies well beyond the s
ope of this ar-ti
le, we give here an idea of how they may bea

ommodated. The te
hnique exploits power-ful 
onstraints on sets, su
h as \sequentiality"and \
onvexity" (no holes).Consider that adje
tives must be pla
ed be-tween the determiner (if any) and the noun,and, for simpli
ity of presentation, ignoring thepossibility of PPs, nothing else is allowed toland between the determiner and the noun.That 
onstraint 
an be expressed as follows:Seq(det(w); adj(w); fwg)^ Convex(det(w) [ adj(w) [ fwg)



where Seq(S1; : : : ; Sm) is satis�ed whenever forall i < j, all elements of Si are stri
tly smallerthan all elements of Sj , and Convex(S) when Sis an interval (with no holes).4.8 Creating and Solving the CSPThe CSP for a given senten
e is de�ned by thevariables introdu
ed above and by the 
onjun
-tion of all 
onstraints presented in the pre
ed-ing se
tions. It is important to noti
e that allquanti�
ation is of the form 8x 2 D �(x) whereD is a �nite stati
ally known set of integers.Su
h formulae are expanded in the CSP intoVx2D �(x).To solve the CSP, we need a \labeling" strat-egy. We have only experimented with the fol-lowing obvious one: �rst apply the default na��velabeling strategy on the 
olle
tion of mothersets fmother(w) j w 2 Vg, then apply �rst-fail to the 
olle
tion of lexi
on entry sele
torsfentryIndex(w) j w 2 Vg, and �nally use againthe default na��ve labeling strategy on the 
olle
-tion of daughter sets f�(w) j � 2 Roles w 2 Vg.5 ResultsWe developed several prototype parsers, forboth German and English, using the te
hniquesdes
ribed in this paper. In addition to whathas been presented, we also support PPs (how-ever, in the 
ase of ambiguous atta
hments, weexpli
itly enumerate all possibilities), relative
lauses, in�nitive 
lauses, separable verb pre-�xes in German (our te
hniques are very e�e
-tive in dealing with the ambiguity arising fromthe multipli
ity of possible verb pre�xes for V2senten
es). We 
over the following phenom-ena: topi
alization, fronting (in
luding partialfronting), extraposition (although not in its fullgenerality) and s
rambling. However we are stillmissing many important notions su
h as 
oordi-nation and nested extraposition �elds, and ourpra
ti
al 
overage is still quite far from whatis possible in more mature grammati
al frame-works.We have experimented with both relativelysmall hand-
rafted lexi
ons and one lexi
on au-tomati
ally derived from an annotated 
orpus(quite large, � 18000 entries, but in pra
ti
edisappointingly sparse). While moderate, our
overage nonetheless permits experimentationwith fairly intri
ate senten
es. Our experien
e

so far has been quite positive: performan
e isgood and s
ales up well with senten
e lengthand number of readings, but a systemati
 eval-uation remains to be done.Sin
e our framework does not assume any a-priori word order, the 
hallenge is not to per-mit diÆ
ult linearizations to a

ount for su
hphenomena as fronting, extraposition, or s
ram-bling, but rather to rule out those that are un-grammati
al and to avoid over-generation. Ourmost 
omplete parser relies on set 
onstraints toexpress 
omplex prin
iples of linear pre
eden
e,and borrows ideas from the theory of topolog-i
al �elds as well as from Reape's (1994) wordorder domains. While we have developed pow-erful te
hniques to express 
omplex word-order
onstraints, we have not yet arrived at a satis-fa
tory formal a

ount for them.Our 
urrent resear
h pro
eeds along 4 lines:(a) extend the grammati
al 
overage, (b) de-velop a formal framework for word-order 
on-straints in the style of the present arti
le, (
)push beyond the limits of dependen
y grammarto a

ount for e.g. \headless" 
onstru
tions, (d)integrate a 
onstraint-based treatment of se-manti
s (Egg et al., 1998) with our treatmentof syntax.6 Con
lusionIn this arti
le, we 
ontributed a new presenta-tion of dependen
y grammar that follows mod-ern linguisti
 pra
ti
e, and provided an ax-iomatization of synta
ti
 well-formedness whosee
onomy and elegan
e a

rues primarily fromthe expressivity of set and sele
tion 
onstraints.This axiomatization regards dependen
y pars-ing as a 
on�guration problem and expresses itas a CSP.Within the paradigm of 
on
urrent 
onstraintprogramming, our axiomatization also has a di-re
t 
omputational reading as a program. As
ould be observed in Figure 1, this program isquite eÆ
ient in two respe
ts:1. Constraint propagation is very e�e
tive atpruning the sear
h spa
e. The example of(Fig 1) makes pre
isely on
e 
hoi
e to enu-merate the two possible readings of the sen-ten
e. In (Fig 4), parsing of an 18 wordsenten
e with ambiguous PP atta
hmentis demonstrated. Again, 
onstraint prop-agation is strong enough to permit optimal



Figure 4: Enumerating PP Atta
hmentsenumeration of all parses without any fail-ure.2. Absolute performan
e is also quite satis-fa
tory, even without any sort of optimiza-tion: the two readings of (Fig 1) are enu-merated in 190ms and the 9 readings of(Fig 4) in 910ms. Our preliminary resultsappear to be typi
ally about 1 order ofmagnitude faster than those reported byHarper (Harper et al., 1999). We intendto look into this more 
losely.We des
ribed an e�e
tive treatment of ambigu-ity resting on set and sele
tion 
onstraints. Inparti
ular we showed how sele
tion 
onstraintsprovided a CP a

ount of dependent disjun
-tions with the added bene�ts of 
onstru
tivedisjun
tion.In 
losing, it is our hope that this paper willhelp promote awareness of re
ent advan
es in
on
urrent 
onstraint te
hnology and of theirrelevan
e to 
omputational linguisti
s, and thatthe te
hniques we des
ribed will �nd appli
a-tions in other grammati
al frameworks.A
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