Axiomatizing Dependency Parsing
Using Set Constraints

Denys Duchier
Programming Systems Lab
University of the Saarland, Saarbriicken
duchier@ps.uni-sb.de

Abstract

We propose a new formulation of dependency
grammar and develop a corresponding axiom-
atization of syntactic well-formedness with a
natural reading as a concurrent constraint pro-
gram. We demonstrate the expressivity and
effectiveness of set constraints, and describe a
treatment of ambiguity with wide applicabil-
ity. Further, we provide a constraint program-
ming account of dependent disjunctions that is
both simple and efficient and additionally pro-
vides the benefits of constructive disjunctions.
Our approach was implemented in Oz and yields
parsers with very good performance for our cur-
rently middle scale grammars. Constraint prop-
agation can be observed to be remarkably effec-
tive in pruning the search space.

1 Introduction

Modern linguistic theories such as HPSG (Pol-
lard and Sag, 1987) and LFG (Kaplan and
Bresnan, 1982) are primarily concerned with
the formulation of general structural principles
that determine syntactically well-formed enti-
ties, typically represented as hierarchical, pos-
sibly typed, feature structures. While feature
structures are appealing for their perspicuity
and are easily supported by languages with uni-
fication, they have the disadvantage that the
resulting grammatical formalisms are hard to
parse for both theoretical and practical rea-
sons, even becoming undecidable in the worst
case (Kaplan and Bresnan, 1982). These dif-
ficulties are magnified in languages like Ger-
man where free word order and discontinuous
constituents complicate the formal account and
handicap parsing techniques relying on surface
order.

While much research was devoted to the com-
pilation of grammatical frameworks based on

typed feature structures and on the compact
representation and efficient processing of dis-
junctive feature structures, recent advances in
constraint technology have received rather less
attention in the computational linguistics (CL)
community than they deserve, and their rel-
evance has gone largely unnoticed. Concur-
rent constraint programming provides today far
greater expressivity and efficiency than is com-
monly assumed.

In particular, set constraints are emerging as
an especially elegant and computationally effec-
tive tool for applications in CL. In an earlier pa-
per (Duchier and Gardent, 1999), we described
how they could serve to efficiently solve dom-
inance constraints and find minimal models of
tree descriptions. We propose here to show their
application to parsing.

In this paper, we are going to demonstrate
how, with the help of state-of-the-art constraint
programming, an elegant and concise axiomatic
specification of syntactic well-formedness be-
comes naturally an efficient program. In so do-
ing, we develop a treatment of ambiguity with
fairly general applicability. In particular, we
provide a constraint-based account of depen-
dent disjunctions (Maxwell and Kaplan, 1989;
Dorre and Eisele, 1990; Gerdemann, 1991; Grif-
fith, 1990) that naturally supports constructive
disjunction semantics (lifting of common infor-
mation).

Our approach stands in sharp contrast to
most extant parsing techniques. We abandon
the generative view; we no longer build partial
parses by combination of smaller ones, as is the
case in e.g. chart parsing. Rather, we give a
global well-formedness condition and proceed to
enumerate its models.

We choose dependency grammar (DG) as
our framework and axiomatize the notion of

a syntactically well-formed dependency tree in
a manner that is particularly well-suited to
constraint-based processing: we propose to re-
gard dependency parsing as a finite configura-
tion problem that can be formulated as a con-
straint satisfaction problem (CSP).

This view takes advantage of the fact that for
a sentence of length n, there are finitely many
possible trees involving just n nodes. Out of
this large number, we must select those that are
grammatical. We do not attempt this through
explorative generation, but rather via model
elimination. What constraint programming af-
fords us is effective model elimination through
constraint propagation.

Maruyama (1990) was the first to propose a
complete treatment of dependency grammar as
a CSP and described parsing as a process of in-
cremental disambiguation. Harper (Harper et
al., 1999) continues this line of research and
has proposed several algorithmic improvements
within the MUSE CSP framework (Helzerman
and Harper, 1993). Menzel (Menzel, 1998; Hei-
necke et al., 1998; Menzel and Schréder, 1998)
advocates the use of soft “graded” constraints
for robustness e.g. in parsing spoken language.
His proposal turns parsing into a more expen-
sive optimization problem, but adapts grace-
fully to constraint violations.

Our presentation has the advantage over
Maruyama’s that it follows modern linguistic
practice: the grammar is specified by a lexi-
con and a collection of principles. Further, we
illustrate the expressiveness of set constraints
and selection constraints, and demonstrate how
they can provide compact and elegant encodings
of various forms of ambiguity such as lexical or
attachment ambiguity. Finally, our axiomati-
zation of dependency parsing has the property
that, modulo details of syntax, it can also be re-
garded as a program in a concurrent constraint
programming language such as Oz (Smolka,
1995). Several parsers were implemented in Oz
as described and provide excellent performance,
without any sort of optimization.

Consider the sentence! below which illus-

!Joachim Niehren suggests the following sentence,
which exhibits the same structure but sounds more con-
vincing to the German ear: “Genau diese Flasche Wein
hat mir mein Kommissionndr versprochen auf der Auk-
tion zu ersteigern.”

trates the sort of non-projective analysis with
fronting, scrambling and extraposition that is
typical of German sentences.

das Buch hat mir Peter versprochen zu lesen
the book has me(dat) Peter promised to read

(1)

Since both “das Buch” and “Peter” can be indif-
ferently assigned nominative or accusative case,
either one may be subject of “hat” while the
other is accusative object of “lesen.” There are
thus two readings.

(Fig 1) demonstrates the effectiveness of con-
straint propagation: the two readings are enu-
merated in approximately 190ms using a single
choice point.? A graphical representation of the
preferred reading is shown in the upper window,
while the search tree is displayed in the lower
window.

=R Oz Window - O x

e _dat —— zu

NP_SCC z

e

das buch hat mir peter versprochen zu lesen

R I

Quit ||das Buch hat mir Peter versprochen zu leser{| Clear | Parse |

]
in
s
‘Hl—

B 0z Explorer -0 X

Explorer Move Search Nodes Hide Options |

|

=

Time: 190ms §1 P2 M0 Depth: 2

Figure 1: Parser Demo

In our approach, constraint propagation alone
constructs the dependency tree. Search is only
needed to explore alternatives that cannot be
ruled out by constraint propagation. In prac-
tice, we observe that search is required to enu-
merate readings, but very rarely leads to failure
where e.g. backtracking is required.

Section 2 introduces the formal framework;
Section 3 presents the novel constraint program-
ming ideas such as set and selection constraints;

*We expect better performance when e.g. the selec-
tion constraint is given low-level builtin support. It is
currently implemented in Oz itself.

and in Section 4 we axiomatize a constraint
model for syntactic well-formedness in DG and
turn the problem into a CSP.

2 Formal Framework

We now present our notion of a dependency
grammar and of dependency trees. The formu-
lation below ignores issues of word order as they
are beyond the scope of this article. However,
the full treatment includes ideas derived from
Reape’s word order domains (Reape, 1994) as
well as from the theory of topological fields in
German sentences.

2.1 Dependency Grammar

In our formal setting, a dependency grammar G
is a 7-tuple

(Words, Cats, Agrs, Comps, Mods, Lexicon, Rules)

where Words is a finite set of strings notat-
ing the fully inflected forms of words, Cats is
a finite set of categories such as n for noun,
det for determiner, or vfin for finite verb,
Agrs is a finite set of agreement tuples such
as (masc sing 3 nom), Comps is a finite set
of complement role types such as subject or
np_dat for dative noun phrase, Mods is a finite
set of modifier role types, such as adj for adjec-
tives, disjoint from Comps. We write Roles =
Compsd Mods for the set of all role types; they
will serve to label the edges of a dependency
tree. Lexicon is a finite set of lexical entries
(see below), and Rules is a family of binary
predicates, indexed by role labels, expressing lo-
cal grammatical principles: for each p € Roles,
there is 'y € Rules such that I' (w1, wo) charac-
terizes the grammatical admissibility of an edge
labeled p from mother w; to daughter ws.

A lexical entry is an attribute value matrix
(AvM) with signature:

string Words
cat . Cats
agr o Agrs
roles 2 Comps

We write attribute access in functional notation.
If e is a lexical entry: string(e) is the full form of
the corresponding word, cat(e) is the category,
agr(e) the agreement, and roles(e) the valency
expressed as a set of complement roles.

subjec

er liest das Buch

he reads the book
[string : er 7
cat . pro
. .
agr : (masc sing 3 nom)
| roles : {} _
[string : liest T
cat : vfin
| .
agr : (masc sing 3 nom)
L roles {subject,np_acc} |
[string das T
cat : det
agr : (neut sing 3 acc)
L roles : {} i
[string : Buch 7
cat :n
agr . (neut sing 3 acc)
L roles {det} i

Figure 2: Example Dependency Tree

2.2 Dependency Trees

We assume an infinite set Nodes of nodes and
define a labeled directed edge to be an element
of Nodes x Nodes X Roles. Thus, given a set
V C Nodes of nodes and aset £ CV xV x Roles
of labeled edges between these node, (V,€) is a
directed graph, in the classical sense, with la-
beled edges. We will restrict our attention to
finite graphs that are also trees.

Every node of a dependency tree contributes
a word to the sentence; the position where that
word is contributed will be represented by a
mapping index from nodes to integers. Further,
every node must be assigned syntactic features
(e.g. case, agreement ...), which will be real-
ized by a mapping entry from nodes to lexical
entries.

A dependency tree T is then defined as a 4-
tuple:

(V, &, index, entry)

where V is a finite set {w1,... ,w,} of nodes, £

is a finite set of labeled edges w; LN w; between
elements of V, and (V,€) is a tree as defined
above.

index is a bijection from V to [1..n] assigning
to each node a linear position in the correspond-
ing sentence, and entry : V +— Lexicon assigns a
lexical entry to each node in V.

Example. Figure 2 contains a graphical de-
piction of a dependency tree. The upper part
shows nodes represented as boxes connected by
labeled directed edges. The integer appearing in
each box is the position which index assigns to
the node. For ease of reading, the linearization
of the sentence is also provided and a dotted line
indicates for each node the corresponding word
in the sentence. The lower part of the figure
displays for each node the lexical entry which
entry assigns to it.

Figure 3 shows the dependency tree for ex-
ample sentence (1). In places where the value
assignment is fully unconstrained (i.e. all assign-
ments are acceptable), we have used the stan-
dard “don’t care” notation ‘_ .

Well-Formedness. A dependency tree is
grammatically admissible iff conditions (2), (3)
and (4) below are satisfied. First, any comple-
ment required by a node’s valency must be re-
alized precisely once:

Yw; € V,Vp € roles(entry(w;)) 2
E”U)j eV, w; ﬁ) w; € &

Second, if there is an edge emanating from w;,

then it must be labeled either by a complement

type in w;’s valency or by a modifier type:

p € roles(entry(w;)) U Mods

Third, whenever there is an edge w; LN wj, then
the grammatical condition I',(w;, w;) for T, €
Rules must be satisfied in T":

Yw; i) w; € ET |= Fp(wiawj) (4)

2.3 Improving Lexical Economy

Typically, the same full form of a word may cor-
respond to several distinct agreements. In the
interest of a more compact representation, we
wish to collapse together entries that differ only

in their agreement. We replace attribute agr by
agrs whose values are now sets of agreement tu-
ples. Although of less frequent applicability, we
do the same for categories and replace cat by
cats.

Optional complements are another source of
considerable redundancy in the lexicon. In-
stead of modeling the valency with just one
set roles(e) of complement types, we propose
to use instead a lower bound [roles|(e) and an
upper bound [roles]|(e), such that |roles|(e) C
[roles](e). |roles|(e) represents the required
roles and [roles]|(e) the permissible roles. Op-
tional roles are simply [roles](e) \ |roles](e).

We call the new, more compact representa-
tion a lexicon entry to distinguish it from a lex-
ical entry which remains as defined earlier. A
lexicon entry is said to generate lexical entries.
The lexical entries generated by (5) below are
of the form (6) and correspond to all solutions
of constraint (7).

string S
cats . C
agrs A (5)
[roles|] ' Ry
[roles] : Ry
string S
cat LocC
agr a (6)
roles T

ce€C Na€A N RyCrC Ry (7)

This simple formulation illustrates how con-
straints can be used to produce compact repre-
sentations of certain forms of lexical ambiguity.

3 Constraint Programming

The foundations of concurrent constraint pro-
gramming (CCP) are well documented e.g.
in (Saraswat et al., 1991; Smolka, 1995) and
have been implemented in the programming
language Oz (Mozart Consortium, 1998).

Modern constraint technology, as provided
by CHIP (Dincbas et al., 1988), clp(FD)
(Codognet and Diaz, 1996), ECLiPSe (Aggoun
et al., 1995), ILOG Solver (ILOG, 1996), and
Oz (Mozart Consortium, 1998) has proven quite
successful at solving practical problems with
high combinatorial complexity, such as schedul-
ing and configuration, that were resisting tradi-
tional methods of operations research.

das Buch hat mir Peter versprochen

1 2 3 4 Y

[string das
cat : det]
agr : (neut sing 3 acc)
| roles @ {}
[string : hat
cat viin
.
agr (masc sing 3 nom)
| roles {subject,vp_past}
" string : Peter
cat . n
F—
agr : (masc sing 3 nom)
| roles : {}
[string : zu
cat . part
agr L
| roles : {}

zu lesen

6 7 8
[string Buch
cat :n
| .
agr : (neut sing 3 acc)
L roles {det}
[string : mir T
cat I pro
agr : (. sing 3 dat)
L roles : {} i
[string : versprochen]
@ cat : vpast
agr -
L roles {np_dat,vp_zu} |
[string lesen
cat vinf
agr -
L roles {zu,np_acc}

Figure 3: Dependency tree of demo sentence

The key to success, presented here, is to re-
duce parsing to a problem that constraint pro-
gramming (CP) is good at, namely configura-
tion.

3.1 Basic Notions

A CSP consists of a finite collection of variables
(x;) taking values in finite domains (D;) and
a constraint ¢ on these variables. A solution
is an assignment o of values to these variables
such that ¢ is satisfied. In CP, o is computed
incrementally as a sequence of improving ap-
proximations: o(z;) is an approximation of the
assignment to z; and is typically specified either
by listing the remaining values or by providing
upper and lower bounds. Initially the approx-
imation of x; contains all of D;. Solutions are

derived by a search process consisting of alter-
nating propagation and distribution steps until
all variables are determined or a contradiction is
derived. A variable z; is said to be determined
when its approximation o(z;) has been reduced
to a single value.

In CCP, o is called the store and primi-
tive constraints are implemented by concurrent
agents that observe the store and correspond-
ingly improve the current approximations by de-
riving new basic constraints according to their
declarative semantics. Basic constraints are e.g.

I=5T#55€Sor5¢8.

Propagation. This is a process of determin-
istic inference. It removes from every approxi-
mation o(z;) all values that can be inferred to

be inconsistent with ¢. In practice only a cheap
local inference process is applied such as “arc
consistency.”

Distribution. When propagation has
reached a fixed point but not all variables
are determined, search becomes necessary to
e.g. enumerate the possible assignments of a
non-determined variable z. Which variable
to pick and how to enumerate the values is
expressed by a distribution (or labeling) strat-
egy. For example the “first-fail” strategy picks
a variable that has fewest remaining possible
values in its domain; its intended effect is to
keep the branching factor in the search tree as
small as possible.

3.2 Set Constraints

Modern constraint technology not only supports
finite domain variables, denoting integers, but
also finite set variables, denoting finite sets of in-
tegers (Gervet, 1995; Miiller and Miiller, 1997).
One of our contributions is to demonstrate the
elegance, succinctness and efficiency accruing
from the use of sets and set constraints.

A set variable S is approximated by a lower
bound [S| and an upper bound [S]:

S| € SCS]

These bounds can be tightened by constraint
propagation. All the usual operations of set the-
ory are supported as constraints. In particular,
we often use S = S; W... ¥ S,, where & de-
notes disjoint union, to state that (S5;) forms a
partition of S.

Our formulation illustrates many applications
of sets. Of special interest is the treatment of
attachment ambiguity (or more generally of am-
biguous graph connectivity): we use set vari-
ables to represent sets of daughters for each
node in a tree.

3.3 Selection Constraint

An essential contribution of this paper is a gen-
eral technique for the compact representation
and effective treatment of ambiguity such as lex-
ical ambiguity. Consider a variable X that may
be equated with one of n variables (V;). We rep-
resent the choice explicitly using a finite domain
variable I € {1..n} and the selection constraint:

X=W,..., V)] (8)

The notation (V1,...,V,)[I] was chosen to sug-
gest selection of the Ith element of sequence
(Vla s 7Vn>

The idea is that the constrained value of
X can be approximated from the set of vari-
ables that may still be selected by I from
(Vi,...,V,). Conversely: the remaining do-
main of I must be restricted to the positions
for which Vj is still compatible with X.

This powerful idea was first introduced in
CHIP (Dincbas et al., 1988) for finite domain
(FD) variables under the name of ‘element’ con-
straint. We extend it here to finite set (FS)
variables.

The selection constraint can be implemented
efficiently and we outline the intuition in the
case where X and (V;) are set variables. We
write | X | and [X] for the lower and upper ap-
proximations of X and dom([) for the approxi-
mation of 7. Given the selection constraint (8),
propagation maintains the following invariant:

Sha

jedom(I)

AVl CIX|cXClX]c
jedom(I)

and applies the following rule of inference:

VI [XT Vv IX]ZIV;] = T#]

As a consequence of the above invariant, the
selection constraint implements a form of con-
structive disjunction (lifting of information
common to all remaining alternatives). The fact
that the choice is made explicit by variable I
permits dependent selections. For example in
(9) the choice of which V; to equate with X and
which W, to equate with Y are mutually de-
pend:

X=W,...,Vp)[I] (9)

Y = (Wi,... , Wp)[I]

These two constraints can be viewed as realiz-
ing the following dependent (or named) disjunc-
tions (Maxwell and Kaplan, 1989; Dérre and
Eisele, 1990; Gerdemann, 1991; Griffith, 1990)
both labeled with name I:

(X=V, VvV...v X=V);
Y=W; Vv...v Y=W,);

Notational variations on dependent disjunction
have been used to concisely express covariant
assignment of values to different features in

feature structures. The selection constraint
provides the same notational convenience and
declarative semantics, but also gives it all the
computational benefits that accrue from state-
of-the-art constraint technology.

4 Constraint Model

In this section, we develop a constraint model
for the formal framework of Section 2: we intro-
duce FD and FS variables to encode the quan-
tities and mappings it mentions, and formulate
constraints on them that precisely capture the
conditions the formal model stipulates. What
motivates this reduction is the desire to take ad-
vantage of the powerful and very efficient tech-
nological support for constraint propagation on
finite domains and finite sets.

For our application to parsing, we assume
that we are given an input sentence consisting of
n words s 89 ... s,. The solutions to the CSP
obtained as its constraint model correspond to
all admissible parse trees of the sentence.

Our approach takes advantage of the follow-
ing observations: (1) there are finitely many
edges labeled with Roles that can be drawn be-
tween n nodes,® (2) for each word there are
finitely many lexical entries. Thus the prob-
lem is to pick a set of edges and, for each node,
to pick a lexical entry so that (a) the result is
a tree, (b) none of the grammatical conditions
are violated. Viewed in this light, dependency
parsing reduces to a configuration problem.

4.1 Representation

Nodes and Lexical Attributes: we identify
a node with the integer representing its posi-
tion in the sentence; thus index is simply the
identity function. The lexical entry assigned to
each node w is represented by its attributes. We
write cat(w), agr(w), and roles(w) for the vari-
ables denoting their values.

Domains: each category in Cats is encoded
by a distinct integer. Similarly for each agree-
ment tuple in Agrs* and each role in Roles. Thus
every value is represented either by an integer
or a set of integers.

Daughter Sets: for each node w € V and
each role p € Roles, we write p(w) for the set

3|V x V x Roles| = n* | Roles|
*In German, there are 72 distinct agreement tuples:
4 cases x 3 genders x 3 persons X 2 numbers

of immediate daughters of w whose dependency
edge is labeled p, i.e. p(w) = {w' |w 5 w' € E}.
Thus, if there is no edge labeled p emanating
from w, p(w) is the empty set. Since p(w) is
a subset of V, i.e. a finite of set of integers in
the constraint model, we represent it by a FS
variable.

Lexicon: we consider the function Lex from
words to sets of lexicon entries.

Lex(s) = {e € Lezicon | string(e) = s}

Without loss of generality, we can assume that
Lex returns a sequence rather than a set which
allows us to identify the lexicon entries of a
given word by position in this sequence.

The lexical entry assigned to w is generated
by one of its lexicon entries as described in Sec-
tion 2.3. We say that the latter is “selected” and
introduce variable entrylndex(w) to denote its
position in the sequence returned by Lex for w.

4.2 Lexical Constraints

We now explicate the assignment of lexical at-
tributes to a node w and demonstrate how lex-
ical ambiguity can be axiomatized by reduction
to the selection constraint.

Lexical attribute assignment proceeds in two
steps: (a) selection of a lexicon entry (b) gener-
ation of a lexical entry from this lexicon entry as
described in Section 2.3. Let us write E for the
lexicon entry selected for w and I for its posi-
tion in the sequence returned by Lex. They are
abstractly defined by the following equations:

(e1,...,en) = Lex(string(w))
I = entrylndex(w)
E = (e1,...,en)[I]

the lexical attributes are obtained as solutions
of formula (7) which translates into the follow-
ing constraints:

agr(w) € agrs(E)

cat(w) € cats(E)
(Q [roles] (E)

|roles|(F) C roles(w)

For practical reasons of implementation, the se-
lection constraint is only provided for finite do-
mains and finite sets, but E and (e;) are AvMs.
We overcome this difficulty by pushing attribute

access into the selection:

cat(w) € (cats(eq),...

agr(w) € (agrser), -, agrs(en)]
(Lroles|(e1),... . |roles|(en))[I] C roles(w)
([roles](e1),... ,[roles](en))[I] D roles(w)

4.3 Valency Constraints

; cats(en))[1]

Every daughter set p(w) is a finite set of nodes
occurring in the tree:

Yw € V Vp € Roles p(w) CV

A complement daughter set p(w) is of cardinal-
ity at most 1 (e.g. a verb has at most 1 subject),
and it is non-empty iff p appears in w’s valency.
We write |p(w)]| for p(w)’s cardinality.

Vp € Comps
0<|p(w)] <1
A p(w) =1 = p € roles(w)

A modifier daughter set has no cardinality re-
striction (e.g. a noun can have any number of
adjectives).

4.4 Role Constraints

For each role type p € Roles our grammar spec-
ifies a binary predicate I', expressing a gram-
matical condition between mother and daugh-
ter. We assume that I')(w,w’) is defined by a
formula of a constraint language that can be in-
terpreted over dependency trees. We will not
make this language explicit here, but detail be-
low a few examples. These examples are in-
tended to be illustrative rather than normative
and we extend for them no claim of linguistic
adequacy.

According to well-formedness condition (4),
for every edge w L , grammatical condition
I',)(w,w’) must hold. Therefore the tree must
satisfy the following condition:

Vw,w' € V Vp € Roles w' € p(w) = Tp(w,w’)

Modern constraint technology has efficient sup-
port for such implicative conditions.> In par-
ticular, if constraint propagation can show that
[',(w,w') is inconsistent in T', then w’ ¢ p(w)
is inferred which improves the approximation
of p(w).

5In Oz, this is expressed by the construct:
or w' € p(w) AT, (w,w') [] w & p(w) end

Subject. The subject of a finite verb must be
either a noun or a pronoun, it must agree with
the verb in person and number, and must have
nominative case. We write NOM for the set of
agreement tuples with nominative case:

cat(w') € {n,pro}

A agr(w) = agr(w')
A agr(w') € NOM

1—‘subject (wa ’U)’) =

(10)

Adjective. An adjective may modify a noun
and must agree with it:

cat(w)
A cat(w’)—adJ (11)
A agr(w) = agr(w')

[agj (w,w") =

Determiner. The determiner of a noun must
agree with the noun and occur left-most in its
yield:

Chet (w,w') = cat(w') = det

A agr(w) =agr(w’) — (12)
A w' = min(yield(w))

The yield of w is the set of nodes (including
w) reachable from w by traversing downwards
any number of dependency edges. We introduce
variable yield(w) for this quantity and develop,
in Section 4.6, its constraint-based axiomatiza-
tion. Since yield(w) contains w, it is a non-
empty set of nodes i.e. integers (Section 4.1).
Thus it is meaningful to speak of its minimum
element, which we write min(yield(w)).®

4.5 Treeness Constraints

Our formal framework simply assumed the
“usual” definition of treeness: (a) every node
has a unique mother except for a distinguished
node, called the root, which has none, (b) there
are no cycles. We must now provide an explicit
axiomatization of this notion. For this pur-
pose we introduce variables daughters(w) and
mother(w) for each node w.

The set of immediate daughters of w is simply
defined as the union of its daughter sets:

U »ow)

p€ Roles

daughters(w) =

60z supports constraints of the form I = min(S) be-
tween a finite domain variable I and a finite set vari-
able S.

We model the notion of ‘mother’ of a node as
a set of cardinality at most 1. Thus, we can
account for both the presence or absence of a
mother. The latter case is needed only for the
root of the dependency tree.

mother(w) CV 0 < |mother(w)| <1

w is a mother of w’ iff w' is an immediate daugh-
ter of w:

w € mother(w') = w' € daughters(w)
Further, treeness requires the existence of a

unique root. We therefore introduce the new
variable ROOT to denote the root of the depen-

dency tree. This is the only node without a
mother:
ROOT € V
Vw €Y w=ROOT = |mother(w) =0

Each node must fill precisely one role in the sen-
tence; it must either be the root or an immedi-
ate daughter of another node:

V={rooT}¥ 4 p(w)

w eV
p € Roles

In order to guarantee well-formedness, we must
additionally enforce acyclicity. We do this be-
low in the axiomatization of yields.

4.6 Axiomatization of Yield

The notion of yield of a lexical node, i.e. the
set of nodes reachable through the transitive
closure of immediate dominance edges (comple-
ments and modifiers), is essential for the expres-
sion of grammatical principles. In a generative
framework, the yield of a node cannot be cal-
culated until the full dependency tree rooted at
this node has been constructed. In this section,
we exhibit a static axiomatization of yields that
fully exposes the underspecification of a yield
to the inference mechanisms of constraint prop-
agation.

Weighted Set. as a preliminary, we in-
troduce the weighted set constraint, between
boolean variable B and FS variables S1, 52:

SlzB*SQ

which has the declarative semantics:

B = 5§ =25
-B = Slzw

Note that, if we make the classical identification
of false with 0 and true with 1, we can also
express it with the selection constraint:
Si=BxSy; = S = (@,SQ)[B-I- 1]
The strict yield yield!(w) is the set of nodes
strictly below w in the dependency tree. In

other words, it is formed by the disjoint union
of the yields of its immediate daughters:

yield!(w) = L—_I-J

w' €daughters(w)

yield(w")

But daughters(w) is not statically known; so,
instead, we reformulate the above as a union of
weighted sets:

yieldl(w) = |4 (' € daughters(w)) * yield(w')
w'eY

where w' € daughters(w) is a “reified” con-
straint: it denotes a boolean which is true iff
w' € daughters(w) is satisfied. To obtain the
yield of w, we simply add w to its strict yield:

yield(w) = {w} W yield!(w) (13)

Disjoint union in (13) enforces the condition
that w must not appear in its own strict yield,
thus ruling out loops.

4.7 Word-order constraints

Although the treatment of word-order con-
straints lies well beyond the scope of this ar-
ticle, we give here an idea of how they may be
accommodated. The technique exploits power-
ful constraints on sets, such as “sequentiality”
and “convexity” (no holes).

Consider that adjectives must be placed be-
tween the determiner (if any) and the noun,
and, for simplicity of presentation, ignoring the
possibility of PPs, nothing else is allowed to
land between the determiner and the noun.
That constraint can be expressed as follows:

Seq(det(w), adj(w), {w})
A Convex(det(w) Uadj(w) U {w})

where Seq(S1, ... ,Sn) is satisfied whenever for
all 1 < 7, all elements of S; are strictly smaller
than all elements of S;, and Convex(S) when S
is an interval (with no holes).

4.8 Creating and Solving the CSP

The CSP for a given sentence is defined by the
variables introduced above and by the conjunc-
tion of all constraints presented in the preced-
ing sections. It is important to notice that all
quantification is of the form Vax € D ¢(z) where
D is a finite statically known set of integers.
Such formulae are expanded in the CSP into
A (o).
€D

To solve the CSP, we need a “labeling” strat-

egy. We have only experimented with the fol-
lowing obvious one: first apply the default naive
labeling strategy on the collection of mother
sets {mother(w) | w € V}, then apply first-
fail to the collection of lexicon entry selectors
{entrylndex(w) | w € V}, and finally use again
the default naive labeling strategy on the collec-
tion of daughter sets {p(w) | p € Roles w € V}.

5 Results

We developed several prototype parsers, for
both German and English, using the techniques
described in this paper. In addition to what
has been presented, we also support PPs (how-
ever, in the case of ambiguous attachments, we
explicitly enumerate all possibilities), relative
clauses, infinitive clauses, separable verb pre-
fixes in German (our techniques are very effec-
tive in dealing with the ambiguity arising from
the multiplicity of possible verb prefixes for V2
sentences). We cover the following phenom-
ena: topicalization, fronting (including partial
fronting), extraposition (although not in its full
generality) and scrambling. However we are still
missing many important notions such as coordi-
nation and nested extraposition fields, and our
practical coverage is still quite far from what
is possible in more mature grammatical frame-
works.

We have experimented with both relatively
small hand-crafted lexicons and one lexicon au-
tomatically derived from an annotated corpus
(quite large, ~ 18000 entries, but in practice
disappointingly sparse). While moderate, our
coverage nonetheless permits experimentation
with fairly intricate sentences. Our experience

so far has been quite positive: performance is
good and scales up well with sentence length
and number of readings, but a systematic eval-
uation remains to be done.

Since our framework does not assume any a-
priori word order, the challenge is not to per-
mit difficult linearizations to account for such
phenomena as fronting, extraposition, or scram-
bling, but rather to rule out those that are un-
grammatical and to avoid over-generation. Our
most complete parser relies on set constraints to
express complex principles of linear precedence,
and borrows ideas from the theory of topolog-
ical fields as well as from Reape’s (1994) word
order domains. While we have developed pow-
erful techniques to express complex word-order
constraints, we have not yet arrived at a satis-
factory formal account for them.

Our current research proceeds along 4 lines:
(a) extend the grammatical coverage, (b) de-
velop a formal framework for word-order con-
straints in the style of the present article, (c)
push beyond the limits of dependency grammar
to account for e.g. “headless” constructions, (d)
integrate a constraint-based treatment of se-
mantics (Egg et al., 1998) with our treatment
of syntax.

6 Conclusion

In this article, we contributed a new presenta-
tion of dependency grammar that follows mod-
ern linguistic practice, and provided an ax-
iomatization of syntactic well-formedness whose
economy and elegance accrues primarily from
the expressivity of set and selection constraints.
This axiomatization regards dependency pars-
ing as a configuration problem and expresses it
as a CSP.

Within the paradigm of concurrent constraint
programming, our axiomatization also has a di-
rect computational reading as a program. As
could be observed in Figure 1, this program is
quite efficient in two respects:

1. Constraint propagation is very effective at
pruning the search space. The example of
(Fig 1) makes precisely once choice to enu-
merate the two possible readings of the sen-
tence. In (Fig 4), parsing of an 18 word
sentence with ambiguous PP attachment
is demonstrated. Again, constraint prop-
agation is strong enough to permit optimal

-8 Oz Vandow

sub.jest™

peter hat dem richter mit dem kind mit dem fahrrad zu gestehen versucht das buch gelesen zu haben

wp_past

Explorer Move Search Nodes Hide Options ‘

VR
nE_

X
N
Y Eporer R
det"
£

=

=]

Quit ||peler hat dem richter mit dem kind mit dem fahrrad zu gestehen versucht das buch gelesen zu haben|

|Clear|Parse|N 1

Time: 910ms (@89 WO Deptn: 5

Figure 4: Enumerating PP Attachments

enumeration of all parses without any fail-
ure.

2. Absolute performance is also quite satis-
factory, even without any sort of optimiza-
tion: the two readings of (Fig 1) are enu-
merated in 190ms and the 9 readings of
(Fig 4) in 910ms. Our preliminary results
appear to be typically about 1 order of
magnitude faster than those reported by
Harper (Harper et al., 1999). We intend
to look into this more closely.

We described an effective treatment of ambigu-
ity resting on set and selection constraints. In
particular we showed how selection constraints
provided a CP account of dependent disjunc-
tions with the added benefits of constructive
disjunction.

In closing, it is our hope that this paper will
help promote awareness of recent advances in
concurrent constraint technology and of their
relevance to computational linguistics, and that
the techniques we described will find applica-
tions in other grammatical frameworks.

Acknowledgements. The author is espe-
cially grateful to Joachim Niehren for his exten-
sive help in revising and improving this paper.

References

Abderrahamane Aggoun, David Chan, Pierre
Dufresne, Eamon Falvey, Hugh Grant,
Alexander Herold, Geoffrey Macartney,
Micha Meier, David Miller, Shyam Mu-
dambi, Bruno Perez, Emmanuel Van
Rossum, Joachim Schimpf, Periklis An-
dreas Tsahageas, and Dominique Henry
de Villeneuve. 1995. ECL'PS® 3.5. User
manual, European Computer Industry Re-

search Centre (ECRC), Munich, Germany,
December.

Patrick Blackburn. 1995. Introduction: Static
and dynamic aspects of syntactic structure.
Journal of Logic Language and Information,
4:1-4.

Philippe Codognet and Daniel Diaz. 1996.
Compiling constraints in ¢1p(FD). The Jour-
nal of Logic Programming, 27(3):185-226,
June.

Mehmet Dincbas, Pascal Van Hentenryck,
Helmut Simonis, Abderrahamane Aggoun,
Thomas Graf, and F. Berthier. 1988.
The constraint logic programming language
CHIP. In Proceedings of the International
Conference on Fifth Generation Computer
Systems FGCS-88, pages 693-702, Tokyo,
Japan, December.

Jochen Doérre and Andreas Eisele. 1990. Fea-
ture logic with disjunctive unification. In
COLING-90, volume 2, pages 100-105.

Denys Duchier and Claire Gardent. 1999. A
constraint-based treatment of descriptions.
In Proceedings of the 3rd International Work-
shop on Computational Semantics (IWCS-3),
Tilburg.

Markus Egg, Joachim Niehren, Peter Ruhrberg,
and Feiyu Xu. 1998. Constraints over
lambda-structures in semantic underspecifi-
cation. In Proceedings of the 17th Inter-
national Conference on Computational Lin-
guistics and 36th Annual Meeting of the
Association for Computational Linguistics
(COLING/ACL’98), pages 353-359, Mon-
treal, Canada, August.

Dale Gerdemann. 1991. Parsing and Genera-
tion of Unification Grammars. Ph.D. thesis,
University of Illinois.

Carmen Gervet. 1995. Set Intervals in
Constraint-Logic Programming: Definition
and Implementation of a Language. Ph.D.
thesis, Université de France-Compté, Septem-
ber. European Thesis.

John Griffith. 1990. Modularizing contexted
constraints. In COLING-96.

Mary P. Harper, Stephen A. Hockema, and
Christopher M. White. 1999. Enhanced con-
straint dependency grammar parsers. In Pro-
ceedings of the TASTED International Con-
ference on Artificial Intelligence and Soft
Computing, Honolulu, Hawai USA, August.

Johannes Heinecke, Jiirgen Kunze, Wolfgang
Menzel, and Ingo Schroder. 1998. Elimina-
tive parsing with graded constraints. In Pro-
ceedings of the Joint Conference COLING-
ACL, pages 526-530.

Randall A. Helzerman and Mary P. Harper.
1993. Muse csp: An extension to the con-
straint satisfaction problem. Journal of Arti-
ficial Intelligence Research, 1.

Christian Holzbaur. 1990. Specification of
Constraint Based Inference Mechanisms
through Eztended Unification. Ph.D. thesis,
Technisch-Naturwissenschaftliche Fakultat
der Technischen Universitat Wien, October.

ILOG. 1996. ILOG Solver: User manual, July.
Version 3.2.

Ronald M. Kaplan and Joan Bresnan. 1982.
Lexical-functional grammar: A formal sys-
tem for grammatical representation. In Joan
Bresnan, editor, The Mental Representation
of Grammatical Relations, pages 173-281.
MIT Press.

Vincenzo Lombardo and Leonardo Lesmo.
1996. An earley-type dependency parser for
dependency grammar. In COLING 96, pages
723-728, Kyoto, Japan.

Hiroshi Maruyama. 1990. Constraint depen-
dency grammar. Research Report RT0044,
IBM Research, Tokyo, March.

John T. Maxwell and Ronald M. Kaplan. 1989.
An overview of disjunctive constraint satisfac-
tion. In Proceedings of the Internation Work-
shop on Parsing Technologies, pages 18-27.

John T. Maxwell and Ronald M. Kaplan. 1998.
Unification-based parsers that automatically
take advantage of context freeness. in prepa-
ration.

Wolfgang Menzel and Ingo Schréder. 1998.

Decision procedures for dependency parsing
using graded constraints. In Proceedings of
the COLING-ACL9Y98 Workshop “Processing
of Dependency-based Grammars”.

Wolfgang Menzel. 1998. Constraint satisfaction
for robust parsing of spoken language. Jour-
nal of Experimental and Theoretical Artificial
Intelligence, 10(1):77-89.

The Mozart Consortium. 1998. The Mozart
Programming System. http://www.mozart-
oz.org/.

Tobias Miiller and Martin Miller. 1997. Fi-
nite set constraints in Oz. In Francois
Bry, Burkhard Freitag, and Dietmar Seipel,
editors, 13. Workshop Logische Program-
mierung, pages 104-115, Technische Univer-
sitdt Miinchen, 17-19 September.

Peter Neuhaus and Norbert Broker. 1997. The
complexity of recognition of linguistically ad-
equate dependency grammars. In Proceeding
of the 85th Annual Meeting of the ACL and
the 8th Conference of the EACL, pages 337—
343, Madrid.

Carl Pollard and Ivan Sag. 1987. Information-
Based Syntar and Semantics, volume 1 of
CSLI Lecture Notes. CSLI.

Mike Reape. 1994. Domain union and word or-
der variation in german. In John Nerbonne,
Klaus Netter, and Carl Pollard, editors, Ger-
man in Head-Driven Phrase Structure Gram-
mar, number 46. CSLI Publications.

Vijay A. Saraswat, Martin Rinard, and Prakash
Panangaden. 1991. Semantic foundations of
concurrent constraint programming. In Con-
ference Record of the Eighteenth Annual ACM
Symposium on Principles of Programming
Languages, pages 333-352, Orlando, Florida,
January 21-23,. ACM SIGACT-SIGPLAN,
ACM Press. Preliminary report.

Gert Smolka. 1995. The Oz Programming
Model. In Computer Science Today, volume
1000 of LNCS, pages 324-343.

