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hier�ps.uni-sb.deJune 30, 1999Computational linguisti
s has always been a priviledged appli
ation domainfor 
onstraint programming. While attention has traditionally fo
used on fea-ture 
onstraints, set 
onstraints are now emerging as a�ording espe
ially elegantand 
on
ise de
larative formulations that naturally obtain very eÆ
ient opera-tional semanti
s using 
onstraint propagation.In [DG99, DN99℄ we show how to reformulate, in terms of set 
onstraints,the problem of �nding minimal models of tree des
riptions expressed in anextended version of dominan
e logi
. In [Du
99℄ we provide an a

ount ofparsing, in the framework of dependen
y grammar, using set 
onstraints, thatis both a su

in
t de
larative spe
i�
ation of the problem as a CSP and a veryeÆ
ient implementation when regarded as a 
on
urrent 
onstraint program.Both appli
ations 
an be viewed as highly 
ombinatorial 
on�guration problemsand set 
onstraints allow elegant de
larative spe
i�
ations that are also eÆ
ient
onstraint programs for enumerating solutions.In this paper, we propose to des
ribe our appli
ation of set 
onstraints tothe problem of �nding solutions of tree des
riptions. The sets that we 
on-sider are �nite sets of non-negative integers, for whi
h very eÆ
ient 
onstraintprogramming support has been developed in the programming language Oz[Smo95, MC98℄ for the past 3 years.1 Tree Des
riptions in Linguisti
sIn 
omputational linguisti
s it is frequently useful to manipulate des
riptions oftrees rather than trees themselves. [MHF83℄ introdu
ed D-Theory whi
h per-mited to speak about trees in terms of the domination relation rather than theparent relation. The formal framework was elaborated in [RVS92, BRVS95℄.Sin
e then, tree des
riptions have found appli
ations in many areas of 
ompu-tational linguisti
s: in [MHF83℄ for deterministi
 parsing, in [VS92, RVSW95℄for tree-adjoining and D-tree grammars, in [Mus95℄ for underspe
i�
ation insemanti
s and s
ope ambiguities, whi
h [EKNR99℄ extended to parallelism and1



ellipsis, and in [GW98℄ for dis
ourse representation. Yet little was known 
on-
erning the eÆ
ient 
omputational treatment of tree des
riptions.Re
ently, two algorithms were proposed for solving dominan
e 
onstraints:[KNT98℄ proposed a saturation-based method motivated by an appli
ation tounderspe
i�ed semanti
s, while [DG99℄ des
ribed an en
oding into set 
on-straints for a treatment of dis
ourse. We propose to des
ribe the de
larativeaxiomatization into set 
onstraints �rst proposed in [DG99℄. This axiomatiza-tion has a dire
t 
omputational reading as a 
on
urrent 
onstraint program thatimplemements a very eÆ
ient solver.Tree Des
riptions with Dominan
e Constraints. Dominan
e 
onstraintsdes
ribe relations between the nodes of a tree. [KNT98℄ de�nes them as 
on-jun
tions of formulae x C� y stating that a node x dominates a node y,1 andx : f(y1 : : : yn) stating that x is a node labeled with n-ary symbol f and a se-quen
e of immediate daugthers y1; : : : yn. Dominan
e 
onstraint have trees asmodels, i.e. every variable denotes a node of a tree. Figure 1 displays an exam-ple of a tree des
ription with dominan
e 
onstraints: it shows both a formulaand a graphi
al depi
tion of its 
onstraints.� x08u � x1! � x3man � x4varu � x6 � x5 9v � x2^ � x7woman � x8varv � x10love � x11varu � x12 varv � x13 � x9 x0 C� x1 ^ x0 C� x2 ^x1:8u(x3) ^ x2 : 9v(x7) ^x3:imply(x4; x5) ^ x4:man(x6) ^x7:and(x8; x9) ^ x8:woman(x10) ^x6:varu ^ x10:varv ^x5 C� x11 ^ x9 C� x11 ^x11:love(x12; x13) ^x12:varu ^ x13:varvFigure 1: Under spe
i�ed semanti
 representation of \every man loves a woman"Solving Dominan
e Constraints. Sin
e solving dominan
e 
onstraints isNP-
omplete [KNT98℄, we 
annot expe
t any polynomial algorithm for it. Ana��ve generate and test method would enumerate the alternatives given by theformula 8x8y : x C� y_y C� x_x k y. This is 
learly not pra
ti
al: in Figure 1there are 14 variables and hen
e 314�14 = 3196 possible relationships. Insteadour te
hnique takes full advantage of 
onstraint propagation to realize e�e
tivemodel elimination.Appli
ation to Semanti
 Underspe
i�
ation. Semanti
 underspe
i�
a-tion aims to represent possible meanings of a natural language utteran
e in an1x is equal to, or and an
estor of y 2



underspe
i�ed manner. The goal is to avoid 
ombinatorial explosion raised bysemanti
 ambiguities during semanti
 pro
essing.A prototypi
al s
ope-ambiguous senten
e is:Every man loves a woman (1)Its �rst reading is \For every man u, there is a woman v whom u loves":8u(man(u)! 9v(woman(v) ^ love(u; v))) (2)while its se
ond reading is \There is a woman v whom every man u loves":9v(woman(v) ^ 8u(man(u)! love(u; v))) (3)One might �nd the se
ond reading (3) less plausible at �rst sight. But on
e (1)is 
ontinued by (4) only this se
ond reading remains valid.Her name is Mary (4)In (Fig 1), an underspe
i�ed representation of the semanti
s of example (1)is given in terms of dominan
e 
onstraints. The readings of (1) regarded assynta
ti
 representations of predi
ate logi
 formulae 
orrespond to the minimalsolutions of the 
onstraints depi
ted in Fig 1.2 Extended Dominan
e ConstraintsWe will 
onsider the extended language of dominan
e 
onstraints addressed by[DG99℄ and formally examined in [DN99℄. Its formulae are given by the abstra
tsyntax: � ::= x R y j x : f(y1; : : : ; yn)R ::= = j C+ j B+ j k j R [ R j R \ R j :Rwhere C+ indi
ates stri
t dominan
e and k disjointness. The 
lassi
al domi-nan
e relation is de�ned by C� � = [ C+. A model M of a des
ription � is atree T together with an interpretation I mapping ea
h variable in � to a nodein T .When regarded from a spe
i�
 node, a tree is divided into 5 regions: (1) the
urrent node, (2) the nodes above, (3) the nodes below, (4) the nodes to theleft, and (5) the nodes to the right. This is illustrated in (Fig 2).For the purposes of this presentation, we will aggregate the set of nodes tothe left and to the right, and 
all the result the side set. A similar treatment
an trivially be developed that retains the distin
tion; su
h a treatment wouldsupport pre
eden
e 
onstraints.This partitioning of the tree T into 4 disjoint sets of nodes also partitions thevariables of � interpreted by T . This idea forms the foundation of our te
hnique.We write eq(N) for the set of variables interpreted by node N , up(N), down(N)and side(N) for the set of variables interpreted by nodes stri
tly above, belowor to the side of N . 3



EqUp
DownLeft Right

Figure 2: Ea
h node sees a di�erent partition of the tree3 Solving Des
riptions Using Set ConstraintsAs we des
ribed in [DG99℄, the problem of enumerating the minimal models ofa tree des
ription � 
an be en
oded as a 
onstraint satisfa
tion problem on sets.Following our presentation in [DN99℄, we des
ribe the te
hnique by means ofan en
oding s
heme [[�℄℄ whi
h turns a tree des
ription � into a CSP using set
onstraints: [[�℄℄ = [[�℄℄0 ^ [[�℄℄1 (5)[[�℄℄0 produ
es the well-formedness 
onstraints that ensure that the models aretrees, and [[�℄℄1 forms the additional 
onstraints required for these trees to bemodels of �.3.1 Representation And Well-formedness ConstraintsFor ea
h variable x in �, we represent its interpretation Nx by a term:
Nx =def 266666666664

eq : Nxequp : Nxupdown : Nxdownside : Nxsideeqdown : Nxeqdownequp : Nxequplabel : Nxlabelparent : Nxparent
377777777775Where, Nxeq, Nxup, Nxdown, Nxside, Nxeqdown, Nxequp are sets, and Nxlabel, Nxparent areterms refering to other nodes. The sets Nxeq, Nxup, Nxdown, Nxside partition the set4



V of variables of � a

ording to the position of their respe
tive interpretationswith respe
t to Nx: V = Nxeq ℄Nxdown ℄Nxup ℄Nxside (6)In [DN99℄, we improve 
onstraint propagation by introdu
ing Nxeqdown and Nxequpas expli
it intermediate results:V = Nxeqdown ℄Nxup ℄Nxside (7)V = Nxequp ℄Nxdown ℄Nxside (8)Nxeqdown and Nxequp are de�ned byNxeqdown = Nxeq ℄Nxdown (9)Nxequp = Nxeq ℄Nxup (10)Importantly, sin
e x is interpreted by Nx it must be in Nxeq:x 2 Nxeq (11)Models of des
riptions are trees: therefore, we must ensure that the interpre-tations (Nxi) of the variables (xi) of � are arranged in a tree shape. This isrealized by stating a well-formedness 
onstraint. It rests on the following ob-servation: in a tree, two nodes Nx and Ny must stand in one of 4 mutuallyex
lusive relationships: Nx is equal to Ny (Nx = Ny), Nx stri
tly dominatesNy (Nx C+ Ny), Ny stri
tly dominates Nx (Nx B+ Ny), or they o

ur indisjoint subtrees (Nx k Ny).Thus, for every two variables x and y of �, we introdu
e a 
hoi
e variableCxy 2 f1; 2; 3; 4g to expli
itly represent this 
hoi
e. The well-formedness 
ondi-tion is expressed by the following 4 
lauses:Nx = Nx ^ Cxy = 1 _ Cxy 6= 1 ^Nx 6= Ny (12)Nx C+ Ny ^ Cxy = 2 _ Cxy 6= 2 ^Nx :C+ Ny (13)Ny C+ Nx ^ Cxy = 3 _ Cxy 6= 3 ^Ny :C+ Nx (14)Nx k Ny ^ Cxy = 4 _ Cxy 6= 4 ^Nx :k Ny (15)In logi
 programming, disjun
tion is given the operational semanti
s of a 
hoi
epoint. That would be here 
ompletely inappropriate and would lead to verypoor performan
e. Instead, we take advantage of the fa
t that, in 
on
urrent
onstraint programming, disjun
tion 
an be implemented by a 
on
urrent agentthat 
ontinuously and spe
ulatively investigates all alternatives. It dis
ardsalternatives that be
ome in
onsistent. When only one alternative remains, theagent 
ommits, i.e. it is repla
ed by this alternative. Pre
ise semanti
s 
an befound in [Smo95℄. 5



The abstra
t 
onstraints used in 
lauses (12), (13), (14) and (15) are de�nedas follows:Nx = Ny � this is just uni�
ation (16)Nx 6= Ny � Nxeq k Nyeq (17)Nx C+ Ny � Nxdown � Nyeqdown ^Nxequp � Nyup ^Nxside � Nyside (18)Nx :C+ Ny � Nxeq k Nyup ^Nxdown k Nyeq (19)Nx k Nx � Nxeqdown � Nyside ^Nyeqdown � Nxside (20)Nx :k Ny � Nxeq k Nyside ^Nyeq k Nxside (21)We 
an now state the translation s
heme for the well-formedness 
onstraint:[[�℄℄0 = ^x2V(7; 8; 9; 10; 11)x ^x;y2V(12; 13; 14; 15)xy (22)3.2 Translation of Problem Spe
i�
 ConstraintsWe now expli
ate how [[�℄℄1 forms the additional problem spe
i�
 
onstraintsthat further limit the admissibility of well-formed solutions. The en
oding isgiven by 
lauses (23,24,32). [[� ^ �0℄℄1 = [[�℄℄1 ^ [[�0℄℄1 (23)A very ni
e 
onsequen
e of the introdu
tion of 
hoi
e variables Cxy is that anydominan
e 
onstraint x R y 
an be translated as a restri
tion on the possiblevalues of Cxy. For example, x C� y 
an be en
oded as Cxy 2 f1; 2g. Moregenerally: [[x R y℄℄1 = Cxy 2 [[R℄℄2 (24)where [[R℄℄2 turns an extended dominan
e relationship into a set of possiblevalues for the 
hoi
e variable. [[=℄℄2 = f1g (25)[[C+℄℄2 = f2g (26)[[B+℄℄2 = f3g (27)[[k℄℄2 = f4g (28)[[R [ R0℄℄2 = [[R℄℄2 [ [[R0℄℄2 (29)[[R \ R0℄℄2 = [[R℄℄2 \ [[R0℄℄2 (30)[[:R℄℄2 = f1; 2; 3; 4g n [[R℄℄2 (31)Finally, the labeling 
onstraint x : f(y1; : : : ; yn) requires a more 
ompli
atedtreatment. It names the parent x, the 
onstru
tor f , and the immediate daugh-6



ters y1 through yn.[[x : f(y1; : : : ; yn)℄℄1 = Nxlabel = f(Ny1 ; : : : ; Nyn)^i=ni=1 Nyiparent = Nx^ Nxdown = Ny1eqdown ℄ : : : ℄Nyneqdown^i=ni=1 Nyiup = Nxequp (32)
3.3 Sear
hing for Solutions of the CSPGiven the translation s
heme above, the models of � 
an be found by enumer-ating the assignments to the 
hoi
e variables (Cxy)x;y2V 
onsistent with [[�℄℄.Thus, the problem of �nding minimal models of a tree des
ription � is redu
edto that of applying a labeling strategy to the 
hoi
e variables. In pra
ti
e, wehave used �rst-fail with very good results. [DN99℄ suggests a better informedand more e
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