Set Constraints In Computational Linguistics
— Solving Tree Descriptions —

Denys Duchier
University of the Saarland
duchier@ps.uni-sb.de

June 30, 1999

Computational linguistics has always been a priviledged application domain
for constraint programming. While attention has traditionally focused on fea-
ture constraints, set constraints are now emerging as affording especially elegant
and concise declarative formulations that naturally obtain very efficient opera-
tional semantics using constraint propagation.

In [DG99, DN99] we show how to reformulate, in terms of set constraints,
the problem of finding minimal models of tree descriptions expressed in an
extended version of dominance logic. In [Duc99] we provide an account of
parsing, in the framework of dependency grammar, using set constraints, that
is both a succinct declarative specification of the problem as a CSP and a very
efficient implementation when regarded as a concurrent constraint program.
Both applications can be viewed as highly combinatorial configuration problems
and set constraints allow elegant declarative specifications that are also efficient
constraint programs for enumerating solutions.

In this paper, we propose to describe our application of set constraints to
the problem of finding solutions of tree descriptions. The sets that we con-
sider are finite sets of non-negative integers, for which very efficient constraint
programming support has been developed in the programming language Oz
[Smo95, MC98] for the past 3 years.

1 Tree Descriptions in Linguistics

In computational linguistics it is frequently useful to manipulate descriptions of
trees rather than trees themselves. [MHF83] introduced D-Theory which per-
mited to speak about trees in terms of the domination relation rather than the
parent relation. The formal framework was elaborated in [RVS92, BRVS95].
Since then, tree descriptions have found applications in many areas of compu-
tational linguistics: in [MHF83] for deterministic parsing, in [VS92, RVSW95]
for tree-adjoining and D-tree grammars, in [Mus95] for underspecification in
semantics and scope ambiguities, which [EKNR99] extended to parallelism and

ellipsis, and in [GW98] for discourse representation. Yet little was known con-
cerning the efficient computational treatment of tree descriptions.

Recently, two algorithms were proposed for solving dominance constraints:
[KNT98] proposed a saturation-based method motivated by an application to
underspecified semantics, while [DG99] described an encoding into set con-
straints for a treatment of discourse. We propose to describe the declarative
axiomatization into set constraints first proposed in [DG99]. This axiomatiza-
tion has a direct computational reading as a concurrent constraint program that
implemements a very efficient solver.

Tree Descriptions with Dominance Constraints. Dominance constraints
describe relations between the nodes of a tree. [KNT98] defines them as con-
junctions of formulae z <* y stating that a node z dominates a node y,! and
x: f(y1...yn) stating that x is a node labeled with n-ary symbol f and a se-
quence of immediate daugthers yq,...y,. Dominance constraint have trees as
models, i.e. every variable denotes a node of a tree. Figure 1 displays an exam-
ple of a tree description with dominance constraints: it shows both a formula
and a graphical depiction of its constraints.

.~0~$Q
K To <1* 11 A xg <F T2 A
Yu e z1:Vu(zs) A 2o Ju(zr) A
zz:imply(z4, x5) A z4:man(zg) A
— 3 x7:and(zs, 9) A xg:woman(zig) A
man &7, X5 woman Zevar. A s A
6- u T10-:vary
var, ® g var, Ty <* 111 Axg <F 211 A
-) :12112|0V€(Cl712,£1313) A
love. e . X19:var, A xTy3:vary,
vary, T192 vary 13

Figure 1: Under specified semantic representation of “every man loves a woman”

Solving Dominance Constraints. Since solving dominance constraints is
NP-complete [KNT98], we cannot expect any polynomial algorithm for it. A
naive generate and test method would enumerate the alternatives given by the
formula VzVy : x <* yVy <* £V z || y. This is clearly not practical: in Figure 1
there are 14 variables and hence 3'*!4 = 3196 possible relationships. Instead
our technique takes full advantage of constraint propagation to realize effective
model elimination.

Application to Semantic Underspecification. Semantic underspecifica-
tion aims to represent possible meanings of a natural language utterance in an

Iz is equal to, or and ancestor of y

underspecified manner. The goal is to avoid combinatorial explosion raised by
semantic ambiguities during semantic processing.
A prototypical scope-ambiguous sentence is:

Every man loves a woman (1)
Its first reading is “For every man u, there is a woman v whom u loves”:
Yu(man(u) — Jv(woman(v) A love(u, v))) (2)
while its second reading is “There is a woman v whom every man u loves”:
Ju(woman(v) A Yu(man(u) — love(u, v))) (3)

One might find the second reading (3) less plausible at first sight. But once (1)
is continued by (4) only this second reading remains valid.

Her name is Mary (4)

In (Fig 1), an underspecified representation of the semantics of example (1)
is given in terms of dominance constraints. The readings of (1) regarded as
syntactic representations of predicate logic formulae correspond to the minimal

solutions of the constraints depicted in Fig 1.

2 Extended Dominance Constraints

We will consider the extended language of dominance constraints addressed by
[DG99] and formally examined in [DN99]. Its formulae are given by the abstract
syntax:

¢ == xRy | x:f(yi, - ,Yn)
R == =|<"|>"|||| RUR| RNR | -R

where <1t indicates strict dominance and || disjointness. The classical domi-
nance relation is defined by <* = = U <*. A model M of a description ¢ is a
tree T together with an interpretation I mapping each variable in ¢ to a node
inT.

When regarded from a specific node, a tree is divided into 5 regions: (1) the
current node, (2) the nodes above, (3) the nodes below, (4) the nodes to the
left, and (5) the nodes to the right. This is illustrated in (Fig 2).

For the purposes of this presentation, we will aggregate the set of nodes to
the left and to the right, and call the result the side set. A similar treatment
can trivially be developed that retains the distinction; such a treatment would
support precedence constraints.

This partitioning of the tree T into 4 disjoint sets of nodes also partitions the
variables of ¢ interpreted by T'. This idea forms the foundation of our technique.
We write eq(N) for the set of variables interpreted by node N, up(N), down(N)
and side(N) for the set of variables interpreted by nodes strictly above, below
or to the side of N.

Up

Eq

Left /T\ Right

Down

Figure 2: Each node sees a different partition of the tree

3 Solving Descriptions Using Set Constraints

As we described in [DG99], the problem of enumerating the minimal models of
a tree description ¢ can be encoded as a constraint satisfaction problem on sets.
Following our presentation in [DN99], we describe the technique by means of
an encoding scheme [¢] which turns a tree description ¢ into a CSP using set
constraints:

[4] = [¢]o A Tels (5)

[¢]o produces the well-formedness constraints that ensure that the models are
trees, and [¢]: forms the additional constraints required for these trees to be
models of ¢.

3.1 Representation And Well-formedness Constraints

For each variable = in ¢, we represent its interpretation N* by a term:

(eq : NG
up : NG
down NS
side : NZ
N7 =def d . ngde
eqdown : eqdown
equp t Nequp
label NEa
parent ' Njient
Where, N, Nis Ngowns Nedes Neydown: Nequp are sets, and Nipers Niarent are
terms refering to other nodes. The sets Ngg, Ny, Ny, Ngge Partition the set

V of variables of ¢ according to the position of their respective interpretations
with respect to N*:

V:N;‘LﬂNfownLﬂN:pHﬂ ;de (6)
In [DN99], we improve constraint propagation by introducing N o, and Nég,,
as explicit intermediate results:
V= éfqdown W Nl?p W s?icde (7)
V= Nezqup W N(fown W s?de (8)
Neydown and Ng,, are defined by
ezqdown = Nezq W Ndzown (9)
Nequp = Neg © Ny, (10)
Importantly, since z is interpreted by N it must be in Ng:
T € Ngg (11)

Models of descriptions are trees: therefore, we must ensure that the interpre-
tations (N*i) of the variables (z;) of ¢ are arranged in a tree shape. This is
realized by stating a well-formedness constraint. It rests on the following ob-
servation: in a tree, two nodes N* and N¥ must stand in one of 4 mutually
exclusive relationships: N7 is equal to N¥ (N* = N¥), N® strictly dominates
NY (N® 4t N¥), NY strictly dominates N® (N* >+ NY), or they occur in
disjoint subtrees (N* || NY).

Thus, for every two variables z and y of ¢, we introduce a choice variable
C®Y € {1,2,3,4} to explicitly represent this choice. The well-formedness condi-
tion is expressed by the following 4 clauses:

NT=N*AC™ =1V C* #1AN® #NY
N 9T NYAC™ =2 vV C% £2AN" -t NY
NY 9t N*AC® =3 v C% #3ANY -t N

NZ||NYAC™ =4 v C™ £4AN® —|| NY

12
13
14

)
)
)
15)

(
(
(
(

In logic programming, disjunction is given the operational semantics of a choice
point. That would be here completely inappropriate and would lead to very
poor performance. Instead, we take advantage of the fact that, in concurrent
constraint programming, disjunction can be implemented by a concurrent agent
that continuously and speculatively investigates all alternatives. It discards
alternatives that become inconsistent. When only one alternative remains, the
agent commits, i.e. it is replaced by this alternative. Precise semantics can be
found in [Smo95].

The abstract constraints used in clauses (12), (13), (14) and (15) are defined
as follows:

N?* = NY = this is just unification (16)
N #NY = NZ || N (17)
N* 9* NY = Nioun 2 N goun N Néqup € Né A Ny C Ny, (18)
N® ~at NY = NZ || N% A NZ,. || N, (19)
N* || N* = Negdown € Nefge A Nepgown € Nede (20)
N7 <[NY = Ng || Ngge A N& Il Nejge (21)

We can now state the translation scheme for the well-formedness constraint:

[9lo = A(7.8,9.10,11). A (12,13,14,15), (22)

3.2 Translation of Problem Specific Constraints

We now explicate how [¢]; forms the additional problem specific constraints
that further limit the admissibility of well-formed solutions. The encoding is
given by clauses (23,24,32).

[o Aol =10l AT (23)

A very nice consequence of the introduction of choice variables C*¥ is that any
dominance constraint z R y can be translated as a restriction on the possible
values of C*¥. For example, z <* y can be encoded as C*¥ € {1,2}. More
generally:

[[ZE Ry]]l =C% ¢ [[R]]2 (24)

where [R]» turns an extended dominance relationship into a set of possible
values for the choice variable.

[=]> = {1} (25)

[[<l+]]2 = {2} (26)

[>*]> = {3} (27)

[I]= = {4} (28)

[RUR']s =[R]2U[R']2 (29)

[RNR')s =[R]2 N [R']2 (30)

[-R]> = {1,2,3,4} \ [R]. (31)

Finally, the labeling constraint = : f(y1,...,yn) requires a more complicated

treatment. It names the parent x, the constructor f, and the immediate daugh-

ters y; through y,.

[z flyr,-- oyl = Nigper = f(NV',... N¥) (32)
/\ZE? Nge:rent = N*
/\. Ndzown = Ne%qldown W...4 Ney(;:iown
NP N = Ny

3.3 Searching for Solutions of the CSP

Given the translation scheme above, the models of ¢ can be found by enumer-
ating the assignments to the choice variables (C*Y), , ey consistent with [¢].
Thus, the problem of finding minimal models of a tree description ¢ is reduced
to that of applying a labeling strategy to the choice variables. In practice, we
have used first-fail with very good results. [DN99] suggests a better informed
and more economical alternative.

References

[BRVS95] R. Backofen, J. Rogers, and K. Vijay-Shanker. A first-order axiomatization
of the theory of finite trees. Journal of Logic, Language, and Information,
4:5-39, 1995.

[DGI9] Denys Duchier and Claire Gardent. A constraint-based treatment of de-
scriptions. In Proceedings of IWCS-3, Tilburg, 1999.

[DN99] Denys Duchier and Joachim Niehren. Solving dominance con-
straints with finite set constraint programming. Technical re-
port, Universitit des Saarlandes, Programming Systems Lab, 1999.
http://www.ps.uni-sb.de/Papers/abstracts/DomCP99.html.

[Duc99] Denys Duchier. Axiomatizing dependency parsing using set constraints.
In Sizth Meeting on Mathematics of Language (MOLG6), Orlando, Florida,
July 1999. http://www.ps.uni-sb.de/“duchier/drafts/mol6.ps.gz.

[EKNR99] Markus Egg, Alexander Koller, Joachim Niehren, and Pe-
ter Ruhrberg. Constraints over lambda structures, antecedent
contained deletion, and quantifier identities. Submitted.
http://www.coli.uni-sb.de/"koller/papers/acd.html, 1999.

[GW98] Claire Gardent and Bonnie Webber. Describing discourse semantics. In
Proceedings of the 4th TAG+ Workshop, Philadelphia, 1998. University of
Pennsylvania.

[KNT98] Alexander Koller, Joachim Niehren, and Ralf Treinen. Dominance con-
straints: Algorithms and complexity. In Proceedings of the Third Confer-
ence on Logical Aspects of Computational Linguistics, Grenoble, 1998.

[MC98] The Mozart Consortium. The Mozart Programming System, 1998.
http://www.mozart-oz.org/.

[MHF83] Mitchell P. Marcus, Donald Hindle, and Margaret M. Fleck. D-theory:
Talking about talking about trees. In Proceedings of the 21st ACL, pages
129-136, 1983.

[Mus95] R.A. Muskens. Order-Independence and Underspecification. In
J. Groenendijk, editor, Ellipsis, Underspecification, FEvents and
More in Dynamic Semantics. DYANA Deliverable R.2.2.C, 1995.
http://www.ims.uni-stuttgart.de/ftp/pub/papers/DYANA2/95copy/R2.2.C/Muskens.ps.gz.

[RVS92] James Rogers and K. Vijay-Shanker. Reasoning with descriptions of trees.
In Proc. ACL, 1992.

[RVSW95] Owen Rambow, K. Vijay-Shanker, and David Weir. D-tree grammars. In
Proceedings of ACL’95, pages 151-158, MIT, Cambridge, 1995.

[Smo95] Gert Smolka. The Oz Programming Model. In Computer Science Today,
volume 1000 of LNCS, pages 324-343, 1995.

[VS92] K. Vijay-Shanker. Using descriptions of trees in a tree adjoining grammar.
Computational Linguistics, 18:481-518, 1992.

