Constraints, , 1-33 ()
© Kluwer Academic Publishers, Boston. Manufactured in Théhiidands.

Ordering Constraints over Feature Trees

MARTIN MULLER http://www.ps.uni-sh.de/mmueller
JOACHIM NIEHREN http://www.ps.uni-sh.de/niehren

Programming Systems Lab, Universitat des Saarlandes,
Stuhlsatzenhausweg 3, D-66041 Saarbriicken, Germany

ANDREAS PODELSKI http://www.mpi-sb.mpg.de/podelski

Max-Planck-Institut fiir Informatik,
Im Stadtwald, D-66123 Saarbriicken, Germany

Received April 14, 1998; Revised September 6, 1998
Editor: Gert Smolka

Abstract. Feature trees are the formal basis for algorithms manipglaecord like structures in constraint
programming, computational linguistics and in concretpligptions like software configuration management.
Feature trees model records, and constraints over feag@® yield extensible and modular record descriptions.
We introduce the constraint system £FDf ordering constraints interpreted over feature treesdedithe view
that feature trees represent symbolic information, thetioei < corresponds to the information ordering (“carries
less information than”). We present two algorithms in cutize, one for the satisfiability problem and one for
the entailment problem of ET. We show that FT has the independence property. We are thus able to handle
negative conjuncts via entailment and obtain a cubic algorithat decides the satisfiability of conjunctions of
positive and negated ordering constraints over featues tfeurthermore, we reduce the satisfiability problem of
Dorre’s weak subsumption constraints to the satisfighjlibblem of FT- and improve the complexity bound for
solving weak subsumption constraints fr@m®) to O(n).

Keywords: feature constraints, tree orderings, weak subsumptidisfiahility, entailment, complexity

1. Introduction

Feature logic is a formalism for describing record struesyiwhich in turn represent ob-
jects — such as addresses or lexical entries — by the valubsiohttributes. Feature logic
has its origin in the three areas of knowledge representatith concept descriptions
frames or Y-terms [13, 34, 35, 1], natural language processing, inqudar approaches
based orunification grammarg26, 24, 45, 43, 39, 42], and constraint (logic) program-
ming [3, 5, 28, 47]. An interesting recent application liassbftware configuration man-
agement, where feature logic is used to denote softwar@wsrand to deduce their mutual
consistency [50, 51].

The first mathematical treatment of record descriptionstivagormalisms ofp-terms[1].

In other approaches)-terms were callefeature structure$40] or feature termg46]. In
contrast to earlier work, the notidieature structurevas mostly used for designating a
record structure itself [14, 39, 42] rather than a recorccdpson. Logical descriptions
of record structures lead to the notionfefture logic[25, 23, 46]. When we call these
descriptiongeature constrainteature unification becomes constraint solving.

2 MARTIN MULLER, JOACHIM NIEHREN, AND ANDREAS PODELSKI

Two main approaches to feature logics should be clearlyndisished. In computational
linguistics [14, 39, 42], a record structure is traditidpalescribed from an internal per-
spective, i.e. by specifying relationships between itsasodVotivated by constraint pro-
gramming, Smolka proposed an alternative approach [6, 9148, 7, 9] based on an
external view in which record structures are described katioms to others. The internal
view was modeled conveniently in termsfefture graphsand constraints with variables
for nodes of a feature graph. In contrast, the external vesd Ito the notion ofeature
trees— instead of more general feature graphs — and feature egristwith variables for
feature trees. Nevertheless, logical theories based ge th@ different views often turned
out to be elementarily equivalent [7, 11, 9].

In this article, we follow the external view based on the ontbf feature trees. We intro-
duce and investigate the constraint systefx of ordering constraints over feature trees
which extends the system FT of equality constraints ovetufearees [6, 11]. Before
presenting these constraint languages, we discuss féedaseand their ordering.

A feature treeis a tree with unordered, labeled edges and labeled nodesedde labels
are called features; features are functional in that eachféatures labeling edges de-
parting from the same node are distinct.

In programming, features correspond to wine

record field selectors and node labels to RS x

record field contents. @ %o

An example of a feature tree is displayed hite Dr.Loosen

on the right. Its root is labeled with the & %
node labelwine and the edges depart- \y y{%
ing at is root are labeled by the features

color andestate.
A feature tree is defined by a tree domain and a labeling fanciihe domain of a feature
treet is the set all words labeling a branch from the root ¢ a node oft. For instance,

the domain of the above tree{s, color, estate, estate country, estate region}.

A feature tree is finite if its tree domain is finite. In genethk domain of a feature tree
may also be infinite in order to model records with cyclic degencies. Notice that every
ground term such asjuare(plus(a,b)) can be considered as a finite feature tree where the
features are just consecutive natural numbers.

Germany Mosel

A feature tree can be seen as a carrier of information. Tleiwpoint gives rise to an or-
dering relation on feature trees in a very natural way thatatEnformation ordering In
the framework of feature al-

gebras the same ordering was o wine
called weak subsumption or- % so* @%z
dering [19]. 2 < © e

. . . . v
The information ordering is Dr.Loosen white Dr.Loosen
illustrated by the example to & s
the right: The smaller tree coo‘\ @@)
is missing some information

Germany Mosel

about the object it represents,

ORDERING CONSTRAINTS OVER FEATURE TREES 3

namely that this object is a white wine and that the estaterolDosen is located at the
Mosel in Germany. In order to have nodes without informatiwa allow for unlabeled
nodes depicted with & Formally, this means that we do not require a labeling fiondb
be total.

Intuitively, a feature tree; is smaller than a feature tregif 11 has fewer edges and node
labels thart,. More precisely, this means that every word of featureserttbe domain of
11 belongs to the tree domain of and that the partial labeling function of is contained
in the labeling function of,. In this case we write; < To.

The feature constraints in the constraint systems FT [6adel tonjunctions of three kinds
of atomic formulas which are built from variablesfeaturesf and node labela:

X=y (“the treesx andy have the same structure”),
a(x) (“the root ofx is labeleda”),

x[f]X (“X is the subtree of accessed via the edge labeled witH).

For instance, the larger tree depicted above is a possihle f@r x in a solution of the con-
straintwine(X) A x[estate]x1 A x1[region]x2 but the smaller one is not. Feature constraints
in FT are modular and extensible in that pieces of infornmatian be added feature by
feature. Note also that no constraint in FT can uniquelyrdgtes a single feature tree.
For instance, there is no way to express in FT that a feateeehtas no edges at all. This
can, however, be stated in CFT by using arity constraints128

In the constraint system FT, we may constrain the values fordy to be equalx =y.

In some situationsg(g, in computational linguistics; see below), we may need akeea
constraint orx andy. We may want to express, for example, taiepresents at least
the information ofx (but possibly more), formallx <y. Or, we may want to say that
andy express compatible information, formakyy. Since this is equivalent to saying that
there exists a common refinement of the informatior ahdy, formally: 3z(x<zA y<z),
compatibility~ can be reduced to the information orderidg

In this article, we introduce the constraint system:F3f information ordering constraints
over feature trees. We obtain the systemxAfom FT [6] by replacing equalities=y by
more general ordering constraiisy. The abstract syntax of ordering constraifits
FT< is defined as follows whereandx’ are variablesf afeatureanda alabel.

¢ n= x<x | XX | &) | $AY

The semantics of ordering constraints is given by integti@b over feature trees where
the symbol< is interpreted as information ordering. Throughout thegoawe consider
two cases, either we interprete in the structure of finitéufiestrees or else in the structure
of arbitrary feature trees.

In contrast with the situation in previous feature constraystems [48, 6, 9], the nodes
of a feature tree in the interpretation domain ofddre possibly unlabeled. This fact is
insignificant when only equality constraints are considerghe first-order theory of FT
does not change when the structure allows for partiallyl@béeature trees [13] In
contrast, when ordering constrainsy are involved, this choice is significant. The first-
order theories of ordering constraints interpreted in thecture of partially labeled feature

4 MARTIN MULLER, JOACHIM NIEHREN, AND ANDREAS PODELSKI

trees differ from the one interpreted in the structure of ptately labeled feature trees. For
instance, the constraifiz(z<xA z<y) is valid over partially labeled feature trees but not
over completely labeled trees. This accounts for the faattttie information orderingt
has a least element, the tree with a single unlabeled nodecHtice of partially labeled
trees in the semantics of EThas algorithmic consequences as wiedl; the correctness of
our algorithms depends on it. There also exists a naturaheidn of the notion of partially
labeled feature trees in terms of completely labeled featees with a partial ordering on
node labels [29].

Itis clear that FT is as expressive as FT since its ordering is antisymmetrécfainally
prove that FT is strictly more expressive than FT by showing that no castin FT can
be equivalent tax<x'.

We present two cubic time algorithms for ETone which solves its satisfiability problem
(“Is ¢ satisfiable in F£?") and one which solves its entailment problem (§is— ¢’
valid in FT<?”). Note carefully that entailment (in contrast to satisfity) becomes much
harder if arity constraints or existential quantificatioa added to the constraint language
FT< [33].

The satisfiability test foFT< can be applied for type inference with record types or ob-
ject types [37], but also for the syntactical treatment afrdination phenomena in natural
language processing [19, 39]. The entailment test mightdedulifor constraint simpli-
fication [41] during record type inference, but it is alsorpruisite for a possible usage
of FT< in modern constraint programming languages with advanoatt@ mechanisms
such as delaying, coroutining, synchronization, commitieoice and local computation
spaces [2, 5, 47, 38].

We furthermore show that EThas the independence property if the set of features pro-
vided by the signature is infinite. Thanks to the independgmoperty, the entailment test
is sufficient for testing conjunctionfsAn —=¢1 A ... A =¢y for satisfiability (namely, by test-
ing that none of the judgmengsi= ¢; holds for all 1< i < n). We are thus able to handle
negative conjuncts via entailment. We can summarize owriggnic results by saying
that the satisfiability problem of conjunctions of positaved negative ordering constraints
dA=d1A ... Ay is decidable in time(nd).

We recall that all our results are worked out for two cases,stihucture of finite feature
trees and the structure of possibly infinite feature trees.

We reduce the satisfiability problem of Dorre’s weak-subption constraints [19] over
feature algebras in linear time to the one inFTrhereby, our algorithm improves on the
best known satisfiability test for weak subsumption comstsavhich uses quite different
techniques based on finite automata and had(ar)-complexity bound [19].

Plan of the Article. Section 2 surveys related work. Section 3 defines the symtdx a
semantics of constraint system £Df ordering constraints over feature trees. Section 4
presents a closure algorithm deciding the satisfiabilipbfgm of F1<. In Section 5, we
show how to test entailment and prove the independence giyofoe FT<. Section 6
shows that FT is strictly more expressive than FT. Section 7 defines weakisuption
constraints and reduces their satisfiability problem tocthe of FT<. Section 8 explains
how to implement the closure algorithm for testing satidfiatin cubic time. Section 9

Ut

ORDERING CONSTRAINTS OVER FEATURE TREES

completes the correctness proofs for the presented shiiisfiand entailment tests and
Section 10 concludes.

2. Related Work

Ines Constraints. In previous work [32], the authors have introduced the aairst
system kes, whose constraints are inclusions between first-orderdenterpreted over
nonempty sets of trees; the satisfiability test farslconstraints is cubic. The satisfiability
test for Fk is inspired by the one fonEs. The entailment problems of ETand hesare
different. Intuitively, the entailment problem of ETis less difficult than the one okis
because a constraint 6T< cannot uniquely describe a single feature tree; in contaast
INES constraint can uniquely describe a constructor tree (iteuryd term) as a singleton
set. For instance, theids constraintxCa describes the singletofa}. As a consequence,
the implicationxCa — aCx holds in Nes. The entailment problem ofuis constraints
is PSPACE-complete in case of an infinite signature and st B&EXPTIME-hard for
a finite signature [36]. Previously, it was already noted tha entailment problem of
INEs constraints is coNP-hard [30]. The algorithm given in [16hbt a complete test of
entailment of kes constraints; the one given in [16] applies to a larger clds®pstraints
for the case of an infinite signature and lies in DEXPTIME.

Feature Constraints. The constraint system CFT [48] extends FT by arity constsain
of the formx{fy,..., fn}, saying that the denotation &fhas subtrees exactly at the fea-
turesfy throughf,. CFT subsumes Colmerauer’s rational tree constraint sy&E [17]
but provides finer-grained constraints. Complete axiamatitins for FT and CFT in case
of an infinite signature have been given in [11] and [9], resigely. Due to complete
axiomatisation, the first-order theory of FT is decidable.

The investigation of ordering constraints over featuredrpresented in this paper is con-
tinued in two follow-up papers. In [31] it is shown how to egps constraints dfT< in
second-order monadic logic (S2S or WS2S). Thereby, anigtigofor solving the entail-
ment problem of FT with existential quantifiers €T< |= ¢ — 3%¢’") was obtained for
afirsttime. Later on, it turned out [33] that the entailmeratigem of F1< with existential
guantifiers is PSPACE-complete (for finite or infinite sigmas, and for finite or possibly
infinite trees). It was also proved in [33] that the first-artieeory of FT< is undecid-
able (in contrast to the first-order theory of FT). The syst€m (sort) extend$T< by
allowing a partial order on labels [29].

The system EF [49] extends CFT by feature constradjyig, providing for first-class fea-
tures. The satisfiability problem of EF constraints is shdN##icomplete. Another exten-
sion of FT is the system RFT which features so-called reqpdéit expressions [8, 10]

(Weak) Subsumption Constraints. The subsumption and the weak subsumption order-
ings can be defined for arbitrary feature algebras [19]. Iniqdar, the structure FT of
feature trees is a feature algebra (called the algebra bffpattions in [19]). As already
proved there, the information ordering on feature treenaidées with the weak subsump-
tion ordering of the feature algebra of feature trees.

The subsumption ordering [21] is a subrelation of the wedlssmption ordering. The

6 MARTIN MULLER, JOACHIM NIEHREN, AND ANDREAS PODELSKI

converse is nottrue. For instance, the weak subsumptiariogidoes hold in the example
given in the picture, whereas the subsumption ordering

does not. This is because the two equal subtrees of = 2 < a
the smaller tree — its leaves — are extended in different f/ \g f/ \g
manners when moving from the left to the right. The a a a a
definition of subsumption, however, requires that equal | g
subtrees are extended in the same manner. a

Subsumption constraints have been considered in the daftexification-based gram-
mars to model coordination phenomena in natural languabel, 44]. There, one wants
to express that two feature structures representing diftgrarts of speech share common
properties. For example, the analysis of “programming” dimguistics” in the phrase

“Feature constraints are good feye{programming] andyp linguistics]”

should share (but might refine differently) the informatmymmon to all noun phrases.
Since the satisfiability of subsumption constraints is widhble [21], Dodrre proposed
weak subsumption constraints as a decidable approximattisuosumption constraints.

Independence. A constraint system has the fundameritedependence propertif
negated conjuncts are independent from each other. Thiasnbatd A -1 A ... A—-bp

is satisfiable if and only if there exists<i < n such thath A —¢; is satisfiable. This is
equivalent to tha = ¢1V ...V =, holds if and only if there exists £ i < n such that
¢ = —¢i. The independence property is important since it allowsusse an entailment
test for solving negative constraints.

The constrain systems RT, FT, CFT have the independencenyap case of an infinite
signature [17, 6, 4, 48]. Apart from these, constraint systevith the independence prop-
erty include linear equations over the real numbers [27infimite boolean algebras with
positive constraints [22], and set constraints with irgeti®ns interpreted over nonempty
sets of trees [32, 16, 36].

3. Syntax and Semantics

In this section, we introduce the syntax and semantics afrorg constraints over feature
trees. We introduce two systems of ordering constraints - &id FTl”— depending on
whether we interpret over finite feature trees or over pogsilinite feature trees.

We assume an infinite set wériablesranged over by, y, z, an infinite set¥ of features
ranged over byf,g and an arbitrary set of labels denoted bw, b containing at least
two distinct elements. The existence of infinitely many deas is fundamental for inde-
pendence and for our entailment algorithm in Section 5 tokwdr is irrelevant for the
satisfiability test in Section 4.

Feature Trees. A path pis a finite sequence of featuresfn Theempty pattis denoted
by € and the free-monoid concatenation of paghand p’ aspp’; we haveep = pe = p.
Given pathsp andq, p’ is called gprefix of pif p= p'p” for some pattp”. A tree domain
is a non-empty prefixed-closed set of paths.

ORDERING CONSTRAINTS OVER FEATURE TREES 7

A feature tree is a pair(D, L) consisting of a tree domaid and a partial labeling function
L:D — L. Given a feature treg, we write D; for its tree domain andl; for its labeling
function. A feature tree is callefihite if its tree domain is finite, anadhfinite otherwise.
Slightly overloading notation, we denote the set of all ieatrees by=T< and the set of
all finite feature trees WitFTl”. If p € Dy we write ast[p] the subtree of at pathp which
is formally defined byDyj; = {p’ | pp € D} andLyy = {(p’, @) | (pp, a) € Lt}

Syntax. An ordering constraint) is defined by the following abstract syntax.
¢ = x<y | aX) [Xfly | x>y | ¢1A¢2

An ordering constraint is a conjunction afomic constraintsvhich are eitheatomic or-
dering constraints Xy, labeling constraints &), selection constraints[X]y, or compat-
ibility constraints x-y. Compatibility constraints are needed in our algorithm eand be
expressed by first-order formulae over ordering constsdsee Proposition 1). We iden-
tify ordering constraints up to associativity and commiuigtof conjunction,i.e., we view
an ordering constraint as a multiset of atomic orderingelialy, selection, and compati-
bility constraints. We writeb in ¢’ if all conjuncts in¢ are contained ip’. Thesize of a
constraint¢ is defined as the number occurrences of features, node |abélsariables in

0.

Semantics. We next define the structuré§< andFTln of feature trees and finite feature
trees respectively. Throughout the paper, we distingwishdases depending on whether

we interpret ordering constraints < or FT‘;”. The signatures of both structures contain
the binary relation symbols and~, for every labeh a unary relation symbd(.), and
for every feature a binary relation symbol [f] . . The domain of the structuf€T< is the
set of possibly infinite feature trees (also calket.), and the domain of the structLWFé’f;”

is the set of finite feature trees (also callé'dl”). The relation symbols are interpreted as
follows:

1<t ff Dy, €Dy, andLy, C Ly,

ulflt, iff Dy, ={p| fpeDy,}andLy, ={(p.b)|(fp,b) € Ly}
a(t) iff (g,a) el

Ti~T2 iff Ly, ULy, is a partial function (oD, U Dy,)

Notice that the relation- is not transitive! For instance, lef, be a tree whose root is
labeled witha, andty a tree whose root is labeled with ande the least tree consisting of
a single unlabeled node. &# b then it holds thata~e ande~Ty, but notta~Ty.

Let @ denote a first-order formula built from ordering constraiwith the usual first order
connectives, i.eP:i=¢ | true |false | "D | P — D' |VXD|IXD | DA D | DV D' We
denote withV (®), L(®), andF (®), respectively, the set of variables occurring fregbin
and the set of labels and features occurringin

Suppose thaf is a structure with the same signature tlfr'd?l” andFT<. A solution of®

in 4 is a variable assignmentinto the domain of2 such that® evaluates to true under
4 anda. We call® satisfiable in7 if there exists a solution foib in 4. A formula® is

8 MARTIN MULLER, JOACHIM NIEHREN, AND ANDREAS PODELSKI

valid in 7 if all variable assignments into the domainffare solutions ofp. We say that
4 is amodelof a set of formulas if all its formulas are valid . A constraint® entails
@' in 4, written® =4 @' if ® — @' isvalid in Z; ® is equivalento @' in 7 if ® < @' is

valid in 4.

PropPoOsITION1 The formulae xy and3z(x<zAy<z) are equivalentinFT< and Ff;”.

Proof: If is sufficient to prove the proposition féfT<. Let o be a variable assignment
into FT< which solves the formuld@iz(x<zAy<z). Sincelgx ULg(y) C Loz andlgy
is a partial functionl(x) ULy is also a partial function. Henaeis a solution ofx~y.
Conversely, ifo is a solution ofk~y thenLg) ULy is a partial function. Thus, the pair
T =def (Dg(x) UDag(y), Lox) ULg(y)) is @ feature tree and every variable assignneemtith
0'(2) = 1,0 (X) = o(x), andad’(y) = a(y) is a solution ok<zAy<z [|

4. Satisfiability Test

We present a set of axioms schemes validRdr< and an extended scheme féﬂﬂ”
which provides for an additional occurs check. We can intgrpoth axiom schemes as
algorithms which solve the satisfiability problems of FndFT™" respectively. Note that
the axiom schemes given here are inspired by those predenteds constraints in [32].

Table 1 contains the axiom schentds- F5 for FT< and the schemdsl-F6 for Fﬂ”. For
instance, the scheme x represents the infinite set of axioms obtained by choosingeso
variable forx. All axioms are of one of the following formsi, ¢ — ¢’, or ¢ — false. The
last two forms are distinct sindelse is not a constraint.

Scheme$1.1 andF1.2 express the reflexivity and transitivity of the informatiordering;
F2 says that it has the decomposition propeRy.1 states the reflexivity of the compati-
bility relation. F3.2 says that ik has less information thanand the information o and
zis compatible, then the information afandz is also compatible. It follows from the
transitivity of the information ordering th&tT< andFTln are models of the axioms 2
(see Proposition 1)F3.3 states the symmetry of the compatibility relatidid. expresses
that the compatibility relation has the decomposition gt Axiom schemé5 states
that two trees cannot be compatible if they carry distinigéla at the root. The last scheme
F6 is a version of the occurs check which holds Riﬂ” but not forFT<.

PROPOSITION2 The structure=T< is a model of the axioms Al — F5 and the structure
FTY' amodel of the axioms iRl — F6.

Proof: By aroutine check. Since it is the most interesting,ave prove the statement for
the schemé3.2, i.e. we show that the formubey A y~z — x~zis valid in FT< for all
XY,z The following implications are valid ifr T<:

X<YAYy~z + x<yAJu(y<uAz<u) Proposition 1
= Ju(x<uAz<Lu) Transitivity
& X~z Proposition 1]

ORDERING CONSTRAINTS OVER FEATURE TREES 9

F1.1 x<Xx

F1.2 x<yAy<z—x<z

F2 X[fIX AXSyAY[fly = X<y

F3.1 Xx~X

F3.2 X<yAy~Z— X~Z

F3.3 X~y — y~X

Fa XX Ax~yAy[fly = X~y

F5 a(x) Ax~yAb(y) — false fora#b

F6 ALixi[filyir1 AXip1<Viy1 — false forxnps1=x (n>1)

Table 1.Axioms of Satisfiability:F1-F5 for FT< andF1-F6 for Ff;”

We next present a sequence of examples to show the conseguehich can be derived
with the given axioms schemes.

ExAaMPLE 1 Itis mostimportant that the following axiom scheme can bevdd from the
scheme$§3.1, F3.2, andF3.3:

XLZAYLZ — X~y

From x<yAx<z, we can derive~z withF3.1 and thus x-z byF3.2, then z2x viaF3.3.
Another application of 3.2 yields y~x such that xy follows formF3.3.

EXAMPLE 2 An inconsistency can be raised by two incompatibleer bounds. For in-
stance, consider:

a(x) Ax<zAy<zA b(y) — false fora#b

As shown in the previous example, we derivg Xrom x<z A y<z by usingF3.1, F3.2,
andF3.3. Hencefalse can be derived witht5.

In contrast to lower boundsipperbounds are always compatible. For instance, the ana-
loguous constraint to above(x) A z<x A z<y A b(y), is satisfiable sincecan be chosen
to denote the least tree consisting of a single unlabeled.nod

ExampPLE 3 The ruleF4 is perhaps the key rule for deriving inconstencies. Thislman
illustrated as follows:

10 MARTIN MULLER, JOACHIM NIEHREN, AND ANDREAS PODELSKI

a(X) AX[gIXA X<ZAY<ZAY[Q)Y Ab(Y) — false fora#b

As shown in Example 1, we can deriveyxfrom x<zAy<z by using=3.1, F3.2, andF3.3.
We can now appl¥4 to Xg]x A x~yAy|g]y in order to derive x-y'. Finally, this allows
us to derivefalse from a(x) Ax~y' A b(y') via F5.

ExAMPLE 4 The constraint]y A x<y is unsatisfiable irFTl” but satisfiable inFT<.
In the first case, we can apply the occurs chBékn order to derivefalse. In the second
case, the occurs check is not valid.

The Algorithm F. In case ofFT<, we defineF to be the set of axiom schemEs-F5,
whereas in case (ﬁTl”, we defineF to be the set of schemé&d — F6. Both sets induce
a closure algorithm that we also c&ll These algorithms input a constraiptand add
iteratively new logical consequencesfof) {¢} to .

More precisely, every step df inputs a constraing and then terminates witfalse, or
terminates withp, or passes over a constraint of the fop ¢’ to the next step. Ter-
mination withfalse occurs if there existg” in ¢ such thatp” — false is an instance of
an axiom scheme iR. Termination withd happens if no new constraint can be added to
¢. Recursion withp A ¢’ is possible if¢’ is an instance of an axiom schemeFrwhich
satisfiesV/(¢’) C V(9), or if there there existg” in ¢ for which¢” — ¢’ is an instance of
an axiom scheme iR.

If G is a subset of the set of axiom schenfrethen we call a constrairt G-closedif no
new consequence can be addedl toy applying an axiom scheme @ (in the way defined
above). We note thdtlse is not a constraint and hence cannofbelosed.

PropPoOsSITION3 If ¢ is a constraint of size m then the algoritHirstarted with inputh
terminates in at mos2- n? steps (wher&1.1 andF3.1 are applied to variables i only).

Proof: SinceF does notintroduce new variables, it may add at m@stew compatibility
constraintsx~y andnm? new atomic ordering constrainty. With respect to not adding
new variables, only the scherf¢.1 andF3.3 are critical. Both of these are of the fogm
such that their application cannot introduce new variabjegefinition.]

ExampPLE 5 AlgorithmF terminates in presence of cyclic constraints liké]x. For in-
stance, the following constraint isL — F5-closed but noE6-closed.

X[FIX A XSYAY[FIYAXSXAYSYAXSXA YY A Xy A YroX

In particular, F2 andF4 do not loop through the cycld #x. This example illustrates the
need of compatibility constraints. Without them one mighhwo apply the following rule
whereby a new variable z is introduced which raises non-itegition:

X[FIX Ax<y — Fz(y[f]zAX <2)

Remark. Notice that Table 1 deliberately leaves out the followinigeste that is perfectly
valid in FT< andeé”. This is done for simplicity only; it would do no harm adding.

ORDERING CONSTRAINTS OVER FEATURE TREES 11

x<yAa(x) — ay)

Definition 1. Let ¢ be a constraint. If algorithrf started withp terminates and returns
a constraint (but ndalse) then we call its result thE-closure ofp and denote it by ¢b).

Note that c{¢) is not defined for alth but alwaysF-closed when defined. Since the def-
inition of F is parametrized by the choice 6T< or FT™" the definition of co) is also
parametrized by one of these structures. It is not posdioever, that ¢lip) differs for
FT< andFTi”. In the worst case, @) exists with respect t&T< but not forFTi”. This
happens ifalse can be derived by applyinp to theF-closure ofp with respect taFT<.

PROPOSITION4 EveryF1 —F5-closed constraint is satisfiable in ETand everyr1 — F6-
closed constraint is satisfiable i ;”.

Proof: See Section 9.2. [|

THEOREM 1 The satisfiability problem ofT< and FT‘;” can be decided (off-line and on-
line) in cubic time in size of the input constraint. Thelosure of a satisfiable constraint
exists and can be computed in cubic time.

Proof: Proposition 2 shows thétis unsatisfiable if algorithrh started withp terminates
with false. Proposition 4 proves thdt is satisfiable ifF started with¢ terminates with

an F-closed constraint. Since terminates for all input constraints (Proposition 3) this
yields an effective decision procedure for testing satidftg and computing thé&-closure

of a satisfiable constraint. The main idea of the complexigopis that one needs at
mostO(n?) steps whera is the size of the input constraint (Proposition 3) each ativh
can be implemented in tim@®(n). The implementation can be organized incrementally
by exploiting the fact that algorithri leaves unspecified the order in which the axioms
are applied. Hence, we obtain that off-line and on-line clexify are the same. The
implementation is detailed in Section 8]

5. Entailment, Independence, Negation

In this section, we give a cubic time algorithm for testinge@iment of ordering constraints

over feature trees. Our algorithm is parametrized by asirae- eithet~T< or FTQ”— and,

depending on the particular parameter, decides entailmégments of the fornp = FT.

¢ ord |=F74m ¢’. The structure chosen is relevant only for a single submeutif the
<

entailment test, which is the satisfiability test presefmetie previous section.

We also prove the independence property for the constranguages FI and FTl”.
Based on the independence property, we show how to solvemctigns of positive and
negative ordering constraingshn —¢1 A ... —~¢n, in time O(n®). Note that all results of this
section depend on the existence of infinitely many featuréise given signature.

12 MARTIN MULLER, JOACHIM NIEHREN, AND ANDREAS PODELSKI

. X < . X < . . < X
f f ‘f ‘f
x < <y <y <

IN
<

Table 2. The respective graphs of a constraint which suppottg| f], x? f]<y, or X f]y syntactically.

For the rest of this section, we fix either of the structurds or FT we write ¢ |= ¢’

! !
rather tharp |:,:-rS ¢’ ord |:F74;n ¢’
We denote withu an atomic constraint, i.eu is always a conjunction free ordering con-
straint (1 ::= x<y | x~y | a(x) | x[f]y). Note that an entailment judgmept= ¢’ holds
if and only if the entailment judgmengs= p hold for all atomic constraintg in¢’. Next
we characterize entailment problegn$= p syntactically. For atomic constraingsof the
form x<y, x~y, ora(x), we say that a constraifptsyntactically supports,pwritten ¢ F
if one of the following holds:

dFa(x) if existsx suchthat'<xAa(xX)in¢
dFx<y if x<Z<yindorx=y
dFx~y if X~yindorx=y

The definition of syntactic support of selection constigtt x[f]y, is slightly more
involved. For its definition, we make use of two simple formhawxiliary path constraints
x<y[f] andx?[f]<y. A path constraint of the first form<y[f] requires that the tree fgr
have featurd and that its subtree dtbe greater than the tree fer A path constraint of
the second fornx?[f]<y reads as follows: if the tree forhas featuref then its subtree
at f is smaller than the tree for We next define the notions of syntactic support for path
constraints and selection constraints; this definitiofiustrated graphically in Table 2.

¢ - x<y[f] if existx,y such thak<xX AY[f]X AY<yin¢
o Fx?f]<y if existX,y suchthak<x AX[fly Ay <yind
¢ - x[fly if ¢Fy<xf]anddFx?fl<y

PROPOSITIONS (CORRECTNESS For all F-closed constraintsp and atomic con-
straints p:¢ - p implies$ |= p.

Proof: The cases fou being of the formsa(x), x<y, or x~y are obvious. Now, we
consider the case thgtis a selection constraint, sayf]y. If ¢ - pthen¢ - y<x[f] and
¢ - x?f]<yhold. Leta be a solution ofh. Because ob - y<x[f] it holds thatf € Dqy
anda(y)<a(x)[f]. The assumptio - x?[f]<y yieldsa(x)[f]<a(y) if f € Dg(x. We
already know thatf € Dyy is valid; thusa(y)<a(x)[f]<a(y) holds. So far, we have
provedf € Dy anda(y) = a(x)[f], i.e. thata is a solution of[f]y.]

ORDERING CONSTRAINTS OVER FEATURE TREES 13

We show next that syntactic support is strong enough to cteniae entailment (Proposi-
tion 6) and investigate the complexity of deciding syntastipport (Lemma 2). In combi-
nation with the cubic satisfiability test of the previoustgat, we obtain a cubic entailment
test (Theorem 3).

The most difficult claim to show is that syntactic supportasnplete with respect to en-
tailment: That is, that no atomic constrajnis entailed by a constraigtif pis not already
supported inh. To show this we assume thfadoes not suppogt syntactically and define
a solution of¢ that contradictgl. As we show, there even exists a single solution that
contradicts all built from symbols inp at the same timeWe prove this by giving a satis-
fiable formula that strengtherpsand entails the negation of all relevarg. We call such
a formulasaturated

LEMMA 1 (EXISTENCE OF ASATURATED FORMULA) For every satisfiable con-
straint ¢, there exists a formul&@at¢), called asaturationof ¢, with the following
properties.

1. Sa(¢) is satisfiable.

2. Satg) = ¢.
3. forall pifV(p) CV(¢) and F(p) C F(¢) thend I/ pimpliesSatd) = —p.

Proof: The proofis postponed to the end of Section 9.3.]

THEOREM 2 (INDEPENDENCH If the set of features is infinite then both languages FT

and FT‘;” of ordering constraints over feature trees have the indepene property: For
every n> 1 and constraint®, ¢1,...,¢n:

n
if ¢=\/0i then ¢ |=¢; forsome je{1,...,n}.
i=1

Proof: Assumep = \/{L1¢i. If ¢ is unsatisfiable we are done. Also,difA ¢ is non-
satisfiable for somg, then:

o=\ iff o= \/ o

i=1 i=1i#]

Hence we can, without loss of generality, assume¢hatdd A ¢; are satisfiable for all,
and thatp is F-closed. If there exists arsuch thath - 1 for all atomic constraintg in ¢;,
then¢ |= ¢; by correctness of syntactic support (Proposition 5) and ieedane. Other-
wise, for alli there existgy; in ¢; such thath I/ 1. Let Satd) be the formula postulated by
Lemma 1. Without loss of generality, we can assume @) C V(¢) for all i. Hence
V(1) CV(¢i) implies Safd) = —; by Property 3, such that:

n

Sat¢) = /\ -0i.

i=1

14 MARTIN MULLER, JOACHIM NIEHREN, AND ANDREAS PODELSKI

Since Safp) is satisfiable and entaits (Properties 1 and 2), this contradicts our assump-
tion thatd = /i, ¢i. [

ExaMPLE 6 Independence fails in case of a finite set of features. Rastilhtion, assume
F = {f,g}. If the set of node labels is finite, say= {a,b} then following entailment
judgments holds:

X flzaxigzay(flzayldz - a(x)Vb(x)Vx<y
But neither of the disjunctions on the right hand side is éadbby the left hand side.

EXAMPLE 7 For a finite set of features and an infinite set of node labels,can still
construct a counter example for independence in cas€Taf which does however not
apply to FT™. In fact, the following counter example applies to all sigmas with & =
{f,g} and L # 0:

X[fIxAx[glx A y[flyAy[agly
Z[[f]]z/\ z[[g]]z A x[g]y/\ a([y)] = y<xVx<z
To see this, notice thaf #x A x[g]x implies that the tree for x is homogeneously labeled
(i.e., either completely unlabeled or labeled with the sayrabol at all nodes). The same
holds for the trees for y and z. If the tree for x is completeliabeled then Xz follows.
Otherwise, the tree for x must be labeled with a at all nodestdu<y A a(y) such that
the trees for x and y are equal: henc€ y follows.

Independence dfT< or Fﬂ” depends strongly on the fact that these constraint language
do not provide for existential quantification. This is iliceted by the following example.

If, say L = {a, b}, then every feature tree is labeled witlor with b unless it is unlabeled.
Therefore, the following entailment judgment holds fordall

¢ = a(x) v b(x) Vv unlabeled(x)

Or course, none of the conjuncts of the right hand side isledtavhen choosing the left
hand sidep to bex<x. Furthermore, the formulanlabeled(x) can be expressed with
existential quantification:

unlabeled(x) < Jy3z(x~yAa(y) Ax~zAb(2))

Hence, a language of ordering constraints over feature geended by existential quan-
tification doesnot have the independence property. This failure can be iregtggdras a
first hint to that entailment which existential quantificatis much harder to decide than
without. In fact, the entailment problems Bff< and Fﬂ"with existential quantification
are both PSPACE-complete as shown in [33]. N

PROPOSITIONG (CHARACTERIZATION) The notions of entailment and of syntactic sup-
port coincide for atomic constraints, in the sense that i F-closed and p an atomic
constraint therp = piff ¢ - p.

ORDERING CONSTRAINTS OVER FEATURE TREES 15

Proof: Syntactic support semantically correcby Proposition 5. It remains to show that
syntactic support isemantically completé.e., ¢ = pimplies$ - . So, assume |= L.

If V() Z V() thenpis of the formx<x or x~x such thath - p is trivial. Otherwise,
assume/ () C V(). Now let Safd) be the saturation formula postulated by Lemma 1.
By Property 2, |= uimplies Satd) = p. With Property 1, this yields S@f) ~= -, and
Property 3 implieg F .]

LEMMA 2 Given anF-closed constraing of size n, we can compute a representation of
¢ in time Q(n?) that allows for testing syntactic suppdrt- p in time Qn?).

Proof: As a representation for tlieclosed constraing, we can use 4 arrays of size
O(n?), each of which gives access to one form of atomic constraintsndexing over
variables and features (for details see Section 8). Theagsacan be allocated in time
O(n?) and support a test of membershigptéor an atomic constraint in tim@(1). Hence,
we can check syntactic support for atomic ordering and cdifvipty constraints in time
O(1). For testingd - a(x), we have to find alk’ with x<x' in ¢ and then to test whether
onex satisfiesa(X') in ¢; this can be done in tim@&(n).
For checkingp - x<y[f], we first compute in tim©(n) the set of alk' such thak<x' in ¢.
From this set, we deduce in tin@(n?) the set of ally’ such thaty'[f]x in ¢ for some
X computed above. Finally, we check in tin@¥n) whethery'<yin¢ for at least one
y. The procedures for testinfy+ x?[f]<y and¢ + X[f]y can be organized in analogy.
|

THEOREM 3 (ENTAILMENT) If the set of features is infinite, then entailment judgments
of the form$ =7 ¢’ andd = eqin ¢’ can be tested in cubic time in the sizepof ¢'.
= <

Proof: Letn be the size ofh A¢’. To decidep = ¢, we first test whether or ndf is
satisfiable, and return ifs-closure c{¢) in case of satisfiability. By Theorem 1 this can
be done in timeD(n%). If ¢ is not satisfiable then entailment holds trivially. Othesgyiit
suffices to test whether(dl) = ¢’ holds. According to Proposition 6 this is equivalent to
that cl¢) - pholds for allp in¢’. Since there ar®(n) suchu each of which can be tested
in time O(n?) by Lemma 2, syntactic support for allin ¢’ is decidable in timeD(n).
Hence, the overall time for testing entailment is aBm?®).]

COROLLARY 1 (NEGATION) The satisfiability inFT< or FTZn of conjunctions of positive
and negative ordering constraints of the fom —d1 A ... A ~dx can be tested in time
O(n3) where n is the size of the considered formula.

Proof: If ¢ is non-satisfiable thef A (/\ik:pq)i) is trivially non-satisfiable. By Proposi-
tion 1, satisfiability of is decidable in time(n®) wheren is the size ofy. Now assume
¢ to be satisfiable. By Theorem 2 on independerjce,(AK_—6i) is non-satisfiable if
and only if ¢ = ¢; for some 1< i < k. This is equivalent to saying that, for some
Kin ¢; implies$ |= i By Proposition 6 it thus suffices to test- p for all pin ¢; and all
1 <i <k. Overall, there ar®©(n) suchy’s to be tested for syntactic support. By Lemma
2,¢ F pcan be tested in tim@®(n?) such that the total complexity sums up to ti@én?®).

|

16 MARTIN MULLER, JOACHIM NIEHREN, AND ANDREAS PODELSKI

6. Expressiveness

We show thaFT< is strictly more expressive thdfir [6, 11] but does not generalize CFT
[48, 12] in that it cannot express conjunctions of arity andkoing constraints.

The constraint systemAT is the language of equality constraints interpreted in theture
of completely labeled feature trees. A constramf FT has the following form:

n:=x=ylax |xay|nAn

As for ordering constraints, we can distinguish two case& 1", we interpret over finite
feature trees and iRT over possibly infinite ones. For simplicity, we only congi@g in
this section; our results, however, hold f6f'" in analogy.

The constraint syster@FT extendsFT by arity constraints. Ararity constrainthas the
form x{f1,..., fa} and holds ifx denotes a tree which has direct subtrees exactly at the
featuresf; throughfp.

In the light of the complete axiomatization of the first-artleeories ofFT and CFT[11,
12] (which apply for infinite sets of features and labels) weefy permit ourselves to
interpret constraints of T over partially labeled feature trees (rather than over detaly
labeled ones). When doing so, every constrairffbtan trivially be expressed iRT<.

In order to be precise, we define what it means for a formulexfressa predicate on
feature trees. Our definition is well known in mathematiogits and was investigated for
feature logics by Backofen [7]: An-ary predicateP is ann-ary relation between feature
trees. We writeP(1y,...,Tn) if (T1,...,Tn) € P. We denote a formul@ with free variables
X1,--.,X by @(x1,...,%,) whereby an ordering on the variables®fs fixed.

Definition 2. An n-ary predicate? is expressed by a formul(x,...,X,) with free
variables«, ..., x, if for all feature treeqy,...,Tn:

there exists a solutiom of ®(xq,...,X)

P(1y,...,Tn) holds iff { such thati(x;) —T1.... (%) — Tn

PROPOSITION7 There is no constraint iff T< which expresses the fact that a variable x
denotes the least feature tregi.e., if a# b then there is no constraint equivalent to:

X{} Ax~yAx~zAaly) Ab(z)
Proof: If ¢ were such an ordering constraintf< then as well as it -closure would
entailx<y for all variablesy. This contradicts Proposition 6 for all thogavith y ¢ V (¢)

andx # y (because ifp - x<ythenx =y orx,y € V(¢)). Trivially, a variabley ¢ V(¢)
exists sinc&/(¢) is finite. [|

LEMMA 3 If nis a constraint ofFTthen n = x<y holds iff n = y<x s valid.

Proof: Letn be a constraint oF T and letd be the ordering constraint obtained from
n by replacing all equalitieg=y in n by an ordering constraik<y Ay<x. Hence, for

ORDERING CONSTRAINTS OVER FEATURE TREES 17

all x,y it holds thatx<y in ¢ iff y<xin¢. Since the closure algorithfi preserves this
property of¢, it also holds for dl¢). Thus, the claim follows from Proposition 6 again.
[|

PROPOSITIONS If X #y then there is no equality constraint BT equivalentto xXy.

Proof: This follows immediately from Lemma 3 and Proposité]

7. Weak Subsumption Constraints

We next compare the constraint langudgk: to the system of weak subsumption con-
straints as introduced in [19]. We show that the satisfighdroblem of weak subsump-
tion constraints is subsumed by the onefdk . Here, interpretation over possibly infinite
feature trees is crucial.

Syntax and Semantics. Following [19], a weak subsumption constraint is an ordgrin
constraintd without compatibility constraints. Since the latter rggton is not crucial
we here consider weak subsumption constraints extendadaitpatibility constraints in
order to simplify our comparison.

Weak subsumption constraints are interpreted over the ofaall feature algebras, each
of which induces a weak subsumption ordering (see belowfeature algebrag with
features# and node label€ consists of a sedlom™ that is called thelomainof 4, a
unary relatiora(.)? on dom? for every node labeh € £, and a binary relatior{f]?. on
dom™ for every feature € F2. The relations of a feature algebfsatisfy the following
properties for alb, o, a” € dom?, node labels, a1, ay € £, and feature$ € F:

1. ifa[f]?a’ anda[f]2a” thena' = a”
2. ifa(a)? anday(a)? thena; = ap

In the literature [46, 19] a slightly different notion of fie@e algebra was considered that
we callfeature algebras with constanitere. We will give a formal comparison at the end
of the section.

Again overloading notation, |6€T be the structure of feature trees with featufesand
node labels., but with a restricted signature in which the relation sytalo and~ are
not provided.

PrROPOSITION9 The structure~T of feature trees is a feature algebra.

Proof: Property 1 of a feature algebra follows fréand property 2 fronfr 5.]

Given a feature algebrd, we define the weak subsumption orderidg as follows. A
simulation for4 is a binary relatiors C dom” x dom” that satisfies the following prop-
erties for all labels, featuresf, and all elementa, oy, a), aj € dom™:

1. If aiAas, a(ap)? thena(az)?.

18 MARTIN MULLER, JOACHIM NIEHREN, AND ANDREAS PODELSKI

2. If oqAay, aq[f]?a) then existr), : ay[f]?a) anda)Aas,.

The weak subsumption ordering? of 4 is the greatest simulation relation fat. The
weak subsumption relation of induces a compatibility relation”? through:

a;~Ta, iff existsa such thati;<?a anda,<?a

A feature algebr&Z induces a structure with the same signaturég=as in which < is
interpreted as the weak subsumption orderitiy ~ as the compatibility relation~7.,
a(.) asa(.)?, and.[f]. as.[f]?..

PROPOSITION10 (DORRE[20]) The structure=T< coincides with the structure induced
by the feature algebr&T.

Proof: Itis sufficient to prove that the weak subsumptioreoirty of the feature algebra
FT coincides with the information ordering oiT<. The proof in the case of feature
algebras with constants can be found in [20] on page 24 (Satml6Satz 7). There, the
structure of feature trees has been called algebra of pattifuns. We recall the proof for
sake of completeness. The information ordering is a siruldor FT< due to the axioms
in F1 — F5 and hence smaller than the weak subsumption orderirfglet Conversely,
we show that every simulation oiT< is smaller than its information ordering. LAt
be a simulation and;, T feature trees such thaiAt,. We have to show that; < To.
This is equivalent td®, C Dy, andLy, C Ly, and can be proved by induction on paths.
]

THEOREM4 An ordering constraind is satisfiable ovefFT< if and only if¢ is satisfiable
over the structure induced by some feature algefra

Proof: If ¢ is satisfiable ifFT< then it is satisfiable in the structure inducedml(which
is FT<). Conversely, every structure induced by a feature algistaranodel of the axioms
in F1 —F5. Thus, if¢ is satisfiable in such a structure then it is equivalent té A F5-
closed constraint (and nétise) and hence satisfiable ovEil< .]

Alternative Notions of Feature Algebras. In the literature [46, 19] a restricted notion
of feature algebras has been considered that wédezlire algebras with constanitsthe
sequel. The notion of a feature algebra with constants leadsrestricted satisfiability
problem. This shows that the presented results propergneihe results in [19].

A feature algebra with constanis a feature algebra with satisfies the following additional
property for all labels and feature :

if a(a)”? then nota[f]?a’

This means that nodes labels behave like constants in tdmwsder to handle this new
property we consider the following mapping of weak subsuomptonstraints over. and
F to weak subsumption constraints oveand ¥ U {label} wherelabel is a new feature
not contained irnf .

ORDERING CONSTRAINTS OVER FEATURE TREES 19

la()]=3y(labellyraly) [X[flyl=xfly [X<y] = x<y
[x~yl = x~y [0 AYT=T0TAI¢']

PROPOSITION11 A constraintd is satisfiable in the structure induced by some feature
algebra if and only iff ¢] is satisfiable in the structure induced by some feature atgeb
with constants.

Proof: If[¢]is satisfiable over a feature algelstavith constants and featurgsJ {label}
then¢ is satisfiable over the feature algelffa- with featuresf. Given a solutioro’ of
[®] over4 a solutiono of ¢ overFT< can be defined as follows where we wiitg. . . f;]*
for [fi]%o...o[fn]Rif f1...fh € F7.

Do(x) {p | existsa in the domain of2: ¢’ (x)[p]*a andp € F*}

Loy = {(p,a) | existsa in the domain of4 : ¢’ (x)[p label]*a anda(a)?}

Conversely, leth be satisfiable for some feature algetta Then¢ is satisfiable inFT<

by Theorem 4. We define a feature algebra with const&fts" and show thaf ¢] is
satisfiable oveFT®". The labels and features BT*°"areL and ¥ U{label}, respectively.
The domain ofFT°" contains all feature treeswithout labeled inner nodes, where a
labeled inner nodef 1 is a pathp such thatp € D, existsa with (p, a) € L; and existsf
with pf € D;. The selection and labeling relationsff" are those oF T < restricted to
trees without labeled inner nodes. Obviou#lfc°" satisfies all three axioms of a feature
algebra with constants. Now letbe a solution ofp in the structure induced bhf. Then
the variable assignmeist mappingx on ¢’(x) as given below is a solution §]in the
structure induced byFTe°",

Doy = DgxU{plabel | existsae L:(p,a) € Lgry }
Loy = {(plabel,a) | (p,a) € Lo(x)} u

8. Implementing the Closure Algorithm

We present an implementation of the closure algorithfor testing satisfiability, thereby
proving the complexity statement left open in the proof ok®fem 1. Recall that the
algorithmF computes the closure of a constraint whenever it exists vigpect to the
axioms schemes in Table A1 — F5 in case ofFT< andF1 — F6 for FTZ”.

PROPOSITION12 The closure algorithnk can be implemented (fdfT< and Ffi”, on-

line and off-line) such that it terminates in time(i®) where n is the size of the input
constraint.

Proof: We organize the algorithm as a reduction relationgenda-store-pairs dalse.
An agendas a finite multiset of atomic constraints andtarea constraind satisfying the
following conditions:

20 MARTIN MULLER, JOACHIM NIEHREN, AND ANDREAS PODELSKI

1. Foreveryandf there exists at most one varialylsuch thai[f]y belongs tap.
2. For every there exists at most one node labeduch thag(x) belongs to the store.
3. Every constraint belongs to the store at most once.

The first condition is crucial since it allows us to store sé constraintg|[f]y in a table

of quadratic size. The idea is that we never have to add twstraintsx[f]y; andx[f]y.

to the store. Instead, we add the first of these constrainsstpe consequencegs<y, and
y2<Yy1 which are derivable witlk2.

Let ¢g be the input constraint. Initially, the agenda containsatdimic constraints g
(which may be fed incrementally in the online case). Thdah#tore contains the con-
straint A{Xx<x | x € V(do)} A A{X~X | x € V(do)}. Reduction preserves the invariant
that the conjunction of the agenda-store pair is alwamapletdn that all one-step conse-
guences of the store with respecEtdo either belong to the store itself or the agenda. Also,
all agenda-store pairs computed by the algorithm startdddwiare equivalent (when con-
sidered as a conjunction of constraints).

The algorithm terminates false is derived or if the agenda becomes empty. In the first
case, the input constrait is proved unsatisfiable, and in the second one, the final store
contains arF-closed constraint equivalent §oy. It may happen, however, that the final
store differs from thd--closure ofdpg since the store does not contain atomic constraints
multiply; more importantly, it also does not contain allesgtion constraints belonging to
$o. However, the atomic constraintsdaf which are missing in the final store can be added
to it a posteriori without losingr -closedness.

Reduction can be implemented by iteratively executing tieWing sequence of instruc-
tions, which we calthe loopin the sequel:

1. Select and delete an atomic constraifitom the agenda. Ifiis already in the store
then skip.

2. If pis not already in the store then do the following:

(A) For every rule schemEg of the form¢ — [/, compute all instances of the form
UA$" — | such thath’ belongs to the store. For all thggedo the following: Test
whethen!' is new, meaning that # | and’ does not belong to the agenda nor to
the store. Ifi is new then add it to the agenda, otherwise skip.

(B) If there exists a scheme fwhich has an instance of the fon ¢ — false such
thatd is in the store then retufalse and exit the loop.

3. If pis an atomic ordering, labeling, or compatibility consttahen addi to the store.
If pis a selection constrainxf]y such that the store does not contajii|z for all z,
then addu to the store; otherwise skip.

We first discuss the necessary data structures for impléngeagenda-store pairs in the
off-line case, where the input constraipyg is completely known at start time. Then we
argue how to lift the result to the on-line case.

ORDERING CONSTRAINTS OVER FEATURE TREES 21

The Off-line Case. Letn be the size of the input constraipg, n, be the number of its
variables anchs be the number of its features. The agenda can be implememtbdisat
it provides for the following operations in tint@(1).

e select and delete an atomic constraint from the agenda.
¢ add an atomic constraint to the agenda.

e test membership of atomic ordering, labeling, or comptijbtonstraints in the
agenda.

A simple stack or queue is sufficient for ensuring the first tequirements. The third
requirement can be satisfied by using three additional afi@ymemorizing respectively
the atomic ordering, labeling, or compatibility consttaiim the agenda.

The store can be implemented by using four arrays: An arrayzefn, for labeling con-
straintsa(x) indexed byx (at most one per variable), a table of sigen| for the selection
constraints¢[f]y indexed byx and f (at most one per variabbeand featuref), and two
tables of sizen for the constraints<y andx~y respectively. The store can support the
following operations all in timé(1):

e givenx test whether there existssuch that the store contaiatx); in case of success
return the unique node labahith this property.

e givenxandf test whether there exisyssuch tha|f]y belongs to the store. In case of
success, return the unigue variaphith this property.

e testthe membership aKy or x~y in the store.

The initialization phase of the algorithm needs ti®@?) for allocating the tables for store
and agenda and tim@(n) for adding the start-up constraints to the agenda and the.sto
After initialization, every atomic constraiptis added at most once to the agenda. Since no
new variable is created, a complete run of the algorithm canea most 2 nZ constraints

of the formsx<y andx<y to the agenda. This means that the loop is traversed at most
O(n?) many times.

We next verify that each run of the loop needs at most @e). Once this its shown, it
follows that the overall run time of the algorithm is boundsdO(n®). For example, let

us compute all possible applications of schdfie? for transitivityx<y A y<z — x<zto

an atomic constraini<v. We may either instantiate<y or y<zto u<v. Both cases are
symmetric. In the first case, we have to findzaduch thatv<z belongs to the store. This
needs timé(ny). From the latter set of variables, we have to filter out alk#for which
u<zis new, i.e. neither in the agenda, nor in the store, nor eguatu. Again this can

be done in timeéD(ny). Last not least, we add all new ordering constraints to tlemdg in
time O(ny).

The arguments for the remaining rules schemes are simitzpexor the occurs check
schemé-6 (which is only needed foIFﬂ"). In the off-line case, we can perform the occurs
check a posteriori, by a simple graph reachability testerlatively, we can introduce new
reachability formulas of the form~+ y. A reachability formulax ~» y is supported by a

22 MARTIN MULLER, JOACHIM NIEHREN, AND ANDREAS PODELSKI

constraintp if ¢ contains a conjunction of the forfy_; xi[fi]yi+1 A Xi+1<yi+1 such that
x1 = X andyn11 =Y. Support of reachability formulas can be administratecherfly when
using a table of siz®(n?).

The On-line Case. In an on-line algorithm, we can feed the input constrainpiece-
wise to the agenda. Note that our algorithm is already inseaso the order in which
primitive constraints are picked from the agenda. The &ttt complication is that the
numbern, andns of symbols ind are not known statically. However, by replacing the
static tables and arrays by dynamically extensible hadegake can still guarantee the
complexity estimations on the access operations [18]. Nuwé an on-line implemen-
tation of the occurs check cannot be done a posteriori. Amemental occurs check
can, however, be implemented based on the reachabilityulasx ~+ y. So, the al-
gorithm has arincrementaltime complexity ofO(n®), both in case oFT< and Fﬂ”.

[|

9. Proofs

We prove the completeness of the satisfiability and entaitrtessts presented in section
4 and 5. In particular, we show that evemyclosed constraint is satisfiable according to
Proposition 4 and that all of them can be saturated as ptstuilaLemma 1.

9.1. Path Reachability

In both proofs we need the following notion. For all paghend two variableg,y we define

a path constrainf the formx<y[p| generalizing the path constraixt y[f] and atomic
constraintg/<x. A variable assignmermt into FT< (resp.FTi”) is a solution ox<y[p] in
the respective structure ff € Dy () anda(y)<a(x)[p]. We generalize the judgments for
syntactic support defined so far ¢o y<x[p], which we read asy'is reachable fronx
over pathpin ¢”:

o Fy<xe] if y<xin¢

o Fy<x(f] if xflyin¢,
o Fy<x(pq if ¢F z<x[p]andd F y<zq] for somez.

We also need path constraints of the faa(w[p]) a solution of which is a variable assign-
menta satisfying(p,a) € Lq(x. Again, we need a notion of syntactic supppit a(x[p])
which reads as "the node lakeels reachable i from x over pathp™:

dFa(x[p]) if ¢Fy<x/p|]anda(y)in ¢ for somey,
For example, ifp is the constraimt<yAa(y) AX[fluAx[g]zA Z[f]xAb(z) then the following

reachability propositions holds - x<y[e], ¢ F z<X[g], ¢ F x<y[gf], ¢ F x<x[gf], etc, as
well asd - a(y[e]), ¢ - b(x[g]), ¢ - b(x{gfg]), etc

ORDERING CONSTRAINTS OVER FEATURE TREES 23

LEMMA 4 If ¢ F z<x[fp] holds then there exist variable$ ¥ such that F X' <x[e],
X[fly € ¢, and¢ - z<y'[p).

9.2. Completeness of the Satisfiability Test
We next prove the following proposition stated without grimoSection 4.

PrRoOPOSITION4 EveryF1 —F5 closed constraint is satisfiable over ETeveryF1 — F6
closed constraint is satisfiable ovEﬂg”.

Proof: The proof is in four steps elaborated in this sectibinst, we define a syntactic
property of a constraint, called path consistency. Secardargue that a path consistent
constraint is satisfiable if i1 — F2-closed (Lemma 5). Third, we show that BR&-F5-
closed constraint is path consistent (Lemma 6). In the tagt sve verify that the solution
constructed in step two is finite féi6-closed constraints.]

DEeFINITION (PATH CONSISTENCY) We call a constraing path consisterit the following
two conditions hold for all X, y, p, a, and b.

1. If¢Fax[p]) andd - b(x[p]) then a=b.
2. IfdoFaxp)), x~yiné, andd - b(y[p]) then a=b.

Apparently, condition 2 implies condition 1 f¢13.1-closed constraints. We require the
first condition nevertheless, since we which to split theopioto two lemmas (Lemma 5
and Lemma 6) where we assume ohly-F2-closedness for the first lemma.

LEMMA 5 EveryF1-F2-closed and path consistent constragnis satisfiable inFT<; if
¢ is F6-closed in addition then it is also satisfiablemﬂ”.

Furthermore, the following variable assignmenmt, (.) is the least solution of af-closed
constraintd. For all x € V(¢):

Dingy) = {P|® - y<x[p] for some ¥
Lmin¢(x) = {(p7 a)\d)l—a(x[p])}

Proof: Let¢ beF1-F2-closed and path consistent. The first condition of pathisterscy
implies thaﬂ_min¢(x) is a partial function. Thuming(x) is a feature tree i T<.

If ¢ is alsoF6-closed then it is not possible thait- x<x[p|] holds for some patip # €.
Hence, for all,y, p with ¢ - y<x[p] it holds that the length gb is bounded by the number
of variables ing (since for each prefig of p there must be a distinct variat#esuch that
¢ - z<x(q)). Thus, if¢ is F6-closed therminy (x) belongs toFT;”.

We next verify thatin,, is a solution ofp in FT< i.e. thatmin, is a solution of all atomic
constraints irp:

24 MARTIN MULLER, JOACHIM NIEHREN, AND ANDREAS PODELSKI

e Lety<xind. Forallz if ¢ - z<y[p] thend F z<x[p] by the definition of syntactic
support. Thusti%(y) C Dmi%(x). For allaif ¢ - a(y[p]) then¢ F a(x[p]) by the
definition of syntactic support. Thubmi%(y) C Lmi%(x), i.e., ming (Y)<ming (X).

e Considerx[f]y in . We prove the following equivalences for all z, andb:
¢ Fz<x(fp] iff ¢Fz<yl[p] and ¢ Fb(X[fp]) iff ¢ b(y[p])

The first equivalence implie@mi%(y) ={p| fpe Dmin¢(x)} and the second one is
equivalent tOL ming(y) = {(p,b) | (fp,b) € Lmi%(x)}. We start by proving the first
equivalence. I F z<y[p| thend - z<x[f p] sincex[fly in ¢. Suppose + z<X[f p].
By Lemma 4 there existe andy’ such that

b F X <X, X[fly in ¢, o Fz<y[pl.

TheF1.2-closedness af and¢ F X' <x[g] impliesxX<x in ¢. TheF2-closedness en-
suresy' <y in ¢ such thatp - z<y[p| holds. We now prove the second equivalence
above. If¢ - b(x[f p]) then there existssuch thath - z<x[f p] andb(z) € . The first
equivalence implieg F z<y[p] and thusp - b(y[p]). The converse is analogous.

e Leta(x) in ¢. Reflexivity (F1.1-closedness) implies<xin¢. Thus¢ - a(x[g]) and
hence(e, a) € L ning (x)-

e Letx~yin ¢. We have to show that the Seing (x) U Lming (y) is a partial function. If
(p,a) € Lmi%(x) and(p, b) € Lmin¢(y) then¢ + a(x[p]) andé F b(y[p]). The second
condition of path consistency fgrimpliesa = b.]

LEMMA 6 EveryF3-F5-closed constraint is path consistent.

Proof: Letd beF3,F4,F5-closed. As mentioned before, the first condition of pathst®n
tency follows from the second one aR8l.1-closedness. The proof of the second condition
is by induction on pathg. We assume, y, a, andb such thath - a(x[p]), x~y in ¢, and

¢ - b(y[p]). If p=¢, then there exist,m> 0, X1,...,Xn, Y1, ..Ym Such that:

a(Xn) AXn<Xn—1A... AX3<Xino,
and b(Ym) AYm<Ym-1A...Ay1<yinéd.

F3-closedness implies thath~ymin ¢ (F3.2 yieldsx~yjin ¢, ..., Xx~ymin¢. There-
fore yn~xin¢ by F3.3-closedness, and hengg~x1in ¢, ..., ym~X,in ¢ by F3.2-
closedness.) HencE5-closedness implies = b.

In the case = gp/, Lemma 4 yields the existencexf y, X, andy’such that:

¢ - X<xe], X[gXing, ¢FaXp]),
and ¢ -y<yle], Y[gying, ¢Fb(Hp]).

Sincex~y in ¢ we havex'~y in ¢ by F3-closedness (as above). Thur-closedness
implies X~y in ¢ such thata=b follows by induction hypothesis (fror - a(X[p']), ¢ -
b(¥[p]) andx~§ in ¢).

ORDERING CONSTRAINTS OVER FEATURE TREES 25

Lemmas 5 and 6 yield a further result on entailment which meagftits own interest.

COROLLARY 2 Let¢ be anF-closed constraint. Thed = 3y(x[fly) if and only if there
exists a variable z such that- z<x[f].

Proof: Assume tha$ - z<x[f] does not hold for alz. According to Lemmas 6 and
5n it holds for the least solutioming of anF-closed constraint that ¢ Dming(x- Hence

b £ Iy (X[f]y). u
9.3. Saturation

We prove the existence of a saturated formula{daas postulated in Lemma 1. This
formula contradicts all (relevant) atomic constraints ewtiailed by simultaneously.

We construct Séb) by means of two operatofg andl"; on constraints. The operatbds

is such that™»(¢) disentails all atomic constraints of the formsx~y, x<y, anda(x)
(but not selection constraints) which are not syntactjcstipported irp (Lemma 9). The
operatof 1 is necessary to also disentail selection constraints.rGiveonstraing, 1 (¢)
extendsp such that 2("1(¢)) disentails all relevant. In a sensel 1 is a “preprocessor
for M.

DEFINITION OF "1 Let be a constraint. For all e V(¢) and fe F(¢) let ws be a
fresh variable. Depending on this choice of variables, wigné¢ 1 (¢) to be the following
F-closure whenever it exists afglse otherwise.

Fi¢) = cl@AA{Xfw | xeV($) and feF(9)})

DEFINITION OF '; Let ¢ be a constraint. Letyand w be distinct fresh variables,1a
and & be distinct labels, and for every pair of variableyx V(¢) and f€ L(¢) let w be
a fresh variable and letyfand £y be fresh features. We define a first-order formityéd)
depending on Vo, ay, @y, fx, fxy, and \ as follows:

M2(9) = & A AXfve A =3y (VIIY) | 9 1/ X<y, x,y € V($)} (1)
A NXEeyve A Yl Tglva [@ 77 Xy, Xy e V() } (2)
A AN{X~v1 A X~vo |forallael: ¢l/a(x), xeV(d)} (3)

AN al(vl) AN az(Vz) (4)

ExAamMPLE 8 For illustration of "1 andTl2 consider the constrairi equal to %f]xAy<x
which does not entail[X]y if we assume ¥ y. The constraing can beF-closed forFT<
(but not forFT™") by adding the following trivial atomic CoNStraintsax A y~x A X~X A
y~y A Xx<x A y<y which we omit for sake of simplicity. In order to disentdil]y we first

26 MARTIN MULLER, JOACHIM NIEHREN, AND ANDREAS PODELSKI

computel1(¢) by adding %f]ws and yf]vy+ to ¢ and computing thé-closure. Now,
I1(¢) is (up to trivial and compatibility constraints):

ri(0) X[FIXAYSXAX[vy AY[Flvy A
1 p—
Vyf SVt AVxf SXAXS Vi A YV AVyp<IX

Observe thal 1(¢) does not containy <y; thatis,1(d I/ vk <y. Nowl2(I1(¢)) disen-
tails v <y due to clausél) which asserts thatyy allows selection at feature,f while 'y
does not (sincexy|[fu [V, A =32(Vyi[fw,]2) in T2(T1(¢))). Hencel2(T1(¢9)) also dis-
entails % fly.

Note that Example 8 does also illustrates why a two step ai@dur procedure is needed:
The key idea is that the featufg, allows to contradict entailment aff]y for ally € V(¢)
such thatp 7 x[f]y. This featurefy,, is introduced in the second step on the basis of the
variablevk; which is added freshly in the first step.

LEMMA 7 (PROPERTIES OH ;) Let¢ be anF-closed (and hence satisfiable) constraint.
Thenl1(¢) is satisfiable and satisfies the following two properties dratomic con-
straints [, variables y and features f:

(P1) If ¢ 1/ 1, and V(W) € V/(9), thenT'1(9) i .
(P2) Ifx.y €V(9), f € F(9), andd i X[fly, thenl 1(9) i/ y<wr or F1(9) I vxs<y.

Proof: We first show thalf1(¢) is satisfiable and then show (P1) and (P2). For prov-
ing the satisfiability of" 1(¢), we give an inductive construction 6f (¢) and show that

all constraints in this construction are satisfiable. hdbe the cardinality of the set
V ={w | xeV(d), f € F(¢)} and fix an enumeratiomar : {1,...,n} =V, i.e. var

is a function that is one-to-one and onto. Then, we consiteifdllowing sequence of
constraints for K i < n:

bo = ¢

O = cl(di_g AX[f]vr) if var(i) = vt

Of course, we have to show that all of the above closures.eKisto then, apparently,
it follows that"1(¢) = ¢n. We show the existence of the closures in the definitiof;of
by induction oni. For the induction step, we assume fox0 < n with var(i) = vys that
di_1 exists, and show that the constrafitdefined below if-closed. Sincéh; contains
di AX[f]wxs this shows that the closure(dl_1 A X[f]vys) exists.

@ =1 A X[f]VXf AVt <Vyf A Vxf~Vyf (4.1)
AN MNzEwe | §ima B z<X[f]} (4.2)
A A {wi<z] di—1 Fx?[f]<z} (4.3)

A N{xi~ZAZ~Ve | ex Y 0img F X f]<yandy~zindi_1} (4.4)

A AN{Wxf~ZAZ~vg5 | ex.y: diog F z<y[f] andy~xin$i_1} (4.5)

ORDERING CONSTRAINTS OVER FEATURE TREES 27

It is clear thatd; is contained inb;, hence it suffices to show that; is F-closed. Ther-
closedness af; is proved by a case distinction over the rules schemés itve have only
to consider those instances of schemes wmhich contains the new variablgs. For sake
of readability, we allow us to also denote variables witia w.

F1.1 Reflexivity of the ordering relation holds sineg <vy¢ in §; by clause (4.1).

F1.2 We assuma<v in ¢; andv<w in ¢; and show thau<w in ;. We make a case

F2

distinction depending on which of the variables, w equalvys.

If u,v,w# w;, thenF1.2-closedness dfij_1 yieldsu<w in ¢j_1. Thusu<w in ¢;.

If u=w=wv¢, thenu<w in @; iff v¢<vy; in ¢;, and this follows from clause (4.1).
If u=v=wv, thenu<w in @; iff vs<w in ¢;, and this follows fromv<w in ¢;.

If v=w= v, thenu<w in @; iff u<wvys in ¢;, and this follows formu<v in ¢;.

If u=wys andv,w# ¢, thenvys<vin; and hence;_1 - x?[f]<vby clause (4.3).

By F1.2-closedness dffi_1 (transitivity) it follows thatd;_1 - x?[f]<wand hence,
by clause (4.3) againg:<w in ¢;, i.e. u<win ¢; .

If w= v andu,v# vy. This case is symmetric to the previous one when using
clause (4.2) instead of clause (4.3).

If v= vkt and u,w # v, then, by clauses (4.2) and (4.8),-1 - u<x[f] anddi_1 -
x? f]<w. By F-closedness of;_1 (transitivity and descen£1.2 andF?) it fol-
lows thatu<w in ¢;_1 and hencei<w in ¢;.

We assumel[g]u’ in ¢;, u<vin ¢; andv[g]V in ¢; and show/ <V in §;. If u,v,u’,V €
V(¢i_1) then this follows from thé2-closedness af;_1. Otherwise, at least one of
these variables,v,u',V is equal to the new variablg;:. Sincex|f]v is the only
selection constraint added¢q_, it follows thatvys ¢ {u,v}. Hencews € {U,V'}.

If v = U, thenx=uandg= f.

If ves =V, thenu'<V' in ¢; follows from theF1.1-closedness df; (reflexivity).
If v #V, then ¢i_1 - x?[f]<V and hence it follows from clause (4.3) that
Vi<V in i, i.e. U<V in §;.
If v =V, thenx=vandg=f.
If vgi = U/, thenu'<V in &; follows from theF1.1-closedness dfj; (reflexivity).

If vt # U, then ¢;_1 - U'<x[f] and hence it follows from clause (4.2) that
U <vs in i, i.e.u'<vin ;.

F3.1 Reflexivity of the compatibility relation holds sineg;~vy in §; by clause (4.1).

F3.2 Assumeu<vin ¢; andv~w in ¢;. We have to show that~w in ¢;.

If u,v,w#w;s, thenu~w in ¢; follows fromF-closedness of;_;.
If u=v=wvys, thenv~win §; iff vxs~w in @; iff u~win ;.
If u=w=v¢, thenu~w in ¢; follows from clause (4.1).

28 MARTIN MULLER, JOACHIM NIEHREN, AND ANDREAS PODELSKI

If v=w= v and u# w¢, then, by clause (4.29;_1 F u<x[f]. By F-closedness
of ¢i_1 we havex~xin¢i_1 and hence, by clause (4.5)~V: in §;. Hence
u~v in ¢;.

If u=wsandv,w#vs, then by clause (4.3)$i_1 - x?[f][<v and hence, by
clause (4.4)yxi~w in §j, i.e u~w in §;.

If w=vy; andu,v # vy, thenv~w is equal tov~vyx; and could have been added by
clause (4.4) or clause (4.5).

(4.4) Then, by clause (4.4), existssuch thathj_; F x?[f|<V andv ~v in ¢;_1.
By F3.2 andF3.3-closedness of;_; it holds thatv'~u in ¢j_1 and hence
u~Vxs in §;j by clause (4.4) again, i.e~w in §;.

(4.5) Then, by clause (4.5), exisks such thathi_1 F v<X'[f] andX ~x in ¢j_1.
By F1.2-closedness dfij_; (transitivity), di—1 F u<x'[f] so thatu~vys in §;
by clause (4.5) again, i.e~w in §;.

If v= vy andu,w# v¢, then vws~w could have been added by clause (4.4) or
clause (4.5). The argument is similar to the previous one.

F3.3 Symmetry of the compatibility relation holds since wherrea compatibility con-
straint is added in either (4.1), (4.2), or (4.3) then als@jtmmetric variant is added.

F4 We assumeg]u’ in ¢j, u~v in ¢;, andv[g]V in §; and shows'<V in ¢;. Because of
the F4-closedness af;_; this holds trivially ifu,v,u',v' € V(¢;_1). Otherwise, there
exists at least one of these variables which is equal to thevaeiablevy;. Since
X[f]vxt is the unique selection constraint addedpto; it follows thatvys ¢ {u,v}.
Hencews € {U,V}. We can assume without loss of generality that= u’ since due
to symmetry £3.3-closedness dff;_1) it holds thatv~u in ¢;_; such that the rles af
andv can be exchanged. So we assume= U, x=u, andg = f.

If ¢ =V, thenu'~V' € §; follows from theF3.1-closedness dfi; (reflexivity).

If vt £V, then ¢i_1 F V<V[f] and x~vin¢i_1. Sinced;_; is F3.3-closed we
also havev~xin ¢i_1. Hence it follows from clause (4.5) thag: <V in ¢;, i.e.
u<vin ;.

F5 The clash axioni5 does not apply td; for two reasons: No compatibility constraint
y~z has been added tfp_; for some variabley,z € V(¢i_1), and no labeling con-
straint has been added for the new variaRle

F6 For the case oFﬂ”, we show that if¢; is not F6-closed thenpi_; is also notF6-
closed. Suppose théf is notF6-closed. Hence, there exists a cyclic constraint of the
form AT_y Xj[fj]yj+1 A Xj11<Yj+11n §i wherexn,1 = xg andn > 1. If xj,yj € V($i-1)
forall 1< j <n+ 1then, of coursep;_1 is notF6-closed and we are done. Otherwise,
there exists K j <n+ 1 such thayj = vy (it is not possible thak; = vx¢ since not
Vyt[g]z in§; for all 2). We can assume without loss of generality thayatire distinct
(otherwise there exists a shorter cyclahirwhich can be considered instead). Hence,
the indexj with yj = vy is unique. Without loss of generality, we can asstjraen+1
(since we can shift the indexes of the variables in the cydfepm the definition of

ORDERING CONSTRAINTS OVER FEATURE TREES 29

$i and the fact that,+1<vxs in ¢; it follows that$i_1 - Xn+1<xn[fn]. The definition
of syntactic support together wiffiL.1 — F1.2-closedness dfi;_; yields the existence
of x; andy),,; such that,; 1<y, 1 A X [fa]yn 1 A X, <X in ¢i_1. This implies the
existence of the following cycle i;_; which shows tha;_; is notF6-closed:

n—2

(/\ Xi[FilYir1 A Xj11<Yj1) A (n-a[faa]yn A X0<¥n) A ([falYnis A Xnr1<Yni1)
j=1

Now we check properties (P1) and (P2) claimed in Lemma 7, bpitontraposition.

(P1) Assume thaf'1(¢) -, andV(p) C V(¢). We show thath - p by case distinction
over the forms of atomic constrainis

p=x<yoru=x~y: If1(¢)F pthenpuinli(d) orx=y. If x=y, then trivially$ -
W Otherwise, ifuin1(¢). FromV (u) CV(¢) and the concrete representation of
I1(¢) coming withl"1(¢) = ¢, we can deducp in$. Henced - .

p=a(x): If F1(¢)F a(x)thenthere exists a variabtesuch thag(xX) AX' <x in T 1(4).
Since labeling constraints are not added by the closureatiparone obtains that
a(X) in ¢. The assumptio (p) C V() givesx € V(¢) and hence/(xX'<x) C
V(¢). As already proved in the previous case, this impliesx' <x. Hence, we
concludep + a(x).

p=x[fly: If F1(¢) F x[f]y then there exist variablesu’ andv,Vv such that:

F1(¢) - forall i € {u<x x<v,y<u',V<y},
andu[flu AV[f]V in T1(¢).

By assumptionx,y € V(i) CV(d). Also u,v e V() holds sincel 1(d) = dn
contains no selection constraint of the fozohf]v wherez;, ¢ V(4).

In the casal,v' € V(¢), it follows easily thath - x[f]y. We can without loss of
generality assume thet V' € V(¢). To see why, supposé¢V(¢). Thenu' = vys
by construction of 1(¢) = ¢n: Let var(vwys) =i. Then by Clause (4.2)i_1 -
y<u[f] which means that there must exist variables/ € V(¢i_1) such that
y<w Aw[flw Aw<xind;_1. Hence, we can replacew for u,u’ above and
obtain the same situation up to renaming. By induction ae&(v,:) we find a
replacement fou’ in V(). The argument fov' is dual.

(P2) Assume thaf'1(¢) F z<vys andlM1(d) F v <zfor some variablex € V(¢) andf €
F(¢). Then by clauses (4.2) and (4.3) there must exist varighléss, u' € V(I'1())
suchthaf 1(¢) Fz<x[f] andl1(¢) F x?[f]<z By definition of syntactic support these
assumptions imply 1(¢) F x[f]zand hence, by case (1) aboge; x[f]z [|

LEMMA 8 (T2 PRESERVESSATISFIABILITY) If ¢ is F-closed, ther»(d) is satisfiable.

Proof: Letdr be the constraint part &% (¢) (i.e., the conjunction of all atomic constraints
in M2(¢) but without the negative formulas added by clause (1). lbisdifficult to show

30 MARTIN MULLER, JOACHIM NIEHREN, AND ANDREAS PODELSKI

that¢r is F-closed up to trivial constraintx€x andx~x) and symmetric compatibility
constraints. Note in particular, that each fresh feafureccurs only once i 2(¢) (and
hence neitheff2 norF4 apply), and that the fresh featurkg occur exactly twice i 2(¢),
namely in selections atandy, for which neithex~y nor, by F3.1-closedness af, x<y
ory<xoccurin¢.

Henceminy_ as defined in Lemma 5 of Section 9.2 is a solutiogpf It suffices to check
thatmin,_ also satisfies the negated selection constraints addeausel) of ['2(¢).
Assume—3y (y[fx]Y') in T2(¢), hence also(fx]vx in T2(¢) and$ I/ x<y. F-closedness
of ¢ andd I/ x<y imply that¢ F x<y[e]. Sincefx has a unique occurrencelia(¢), this
implies thatpr - w<y[fy], and hencdy ¢ Dmi"¢r (y)-]

LEMMA 9 (T2 CONTRADICTS NON-SELECTION CONSTRAINTS) Let ¢ be anF-closed
constraint and let p be an atomic constraint of the foryxx<y, or a(x) with x,y € V(¢).
Thenl2(¢) = —p if and only ifp t .

Proof: IfI'2(¢) = —uthend I wby Lemma 8 and correctness of syntactic support. For
the inverse direction we inspect the definitioTofd).

Clause (1) Ifp I/ x<y, thenl»(¢) disentailsx<y by forcingx to have a featuré whichy
must not have.

Clause (2) If¢ I/ x~y, thenl»(¢) disentailsx~y by forcingx andy to have a common
featurefyy such that the subtrees waindy at fyy are incompatible.

Clauses (3) and (4) Bt/ a(x), thenl,(¢) disentailsa(x) for every sorta by forcingx to
be consistent with two trees with distinct label.]

DEFINITION (SATURATION) Let ¢ be anF-closed constraint. By Lemma 73(¢) is
satisfiable such that we can define a satura&a{$) of ¢ by Sa{d)=geil 2(I1(D)).

LEMMA 10 (SATURATION CHARACTERIZES SYNTACTIC ENTAILMENT) Let ¢ be an
F-closed constraint and i an atomic constraint such thgi)\C V (¢) and F(n) C F(¢).
Then¢ I/ 1 impliesSa(¢) = .

Proof: Let¢ be anF-closed constraint andan atomic constraint such théty) C V(¢)
andF(p) C F(¢). Suppose thap I/ p. Hencel 1(¢) t# p by Property (P1) of Lemma 7.
If wis not a selection constraint thén(I'1(¢)) = - by Lemma 9 and/(p) C V(¢).
Otherwise, letu = x[f]y for somex,y € V(¢) and f € F(¢). Hence,l1(¢) I/ wi<y or
I1(¢) I/ y<w¢ by Property (P2) of Lemma 7. By Lemma 9, eithiexI'1(¢)) | —wi<y
or2(F1(¢)) = —y<wxs holds, and hence again(1(9)) E —. [|

Proof of Lemma 1: We check that $&} has the three postulated properti€4) The
saturation formula Sé&p) entailsg by construction(2) Lemmas 7 and 8 prove that $@j
is satisfiable.(3) By Lemma 10, Sdth) contradicts all atomic constraingswith V() C
V() andF (i) C F(¢) thatd does not support syntactically.

ORDERING CONSTRAINTS OVER FEATURE TREES 31

10. Conclusion

We have presented the constraint syst€fa of ordering constraints over feature trees. We
have shown that the satisfiability problemff< and its entailment problem can be solved
in cubic time and have given correct and complete algorittamisoth. We have proved the
independence property &<, which implies that conjunctions of positive and negative
ordering constraintg A =¢1 A ... A =0, can also be tested for satisfiability in cubic time.
Finally, we have shown that our satisfiability test for pwsitFT< constraints improves
the known complexity of the satisfiability problem for wealbsumption constraints from
O(n°) to O(nd).

Acknowledgments

We would like to thank Jochen Dorre, Gert Smolka, and Radfiffen for discussions on
the topic of this paper. We thank Kartin Erk for having chetkee final manuscript. We
would also like to acknowledge the many helpful remarks ef isferees. The research
reported in this paper has been supported by the Esprit Wipkkroup CCL Il (EP 22457)
and the Deutsche Forschungsgemeinschaft DFG through tBe3%8 at the Universitat
des Saarlandes.

Notes

1. The proof given in [11] assumes infinite sets of featuresraode labels. We conjecture (and this should not
be too difficult to prove) that the first-order theory of FT iseacompletely axiomatizable for finite signatures.

2. Afeature algebra is not an algebra since its featuresgempreted as partial but not total functions

References

1. Hassan Ait-Kaci. An algebraic semantics approach teffieetive resolution of type equatioritheoretical
Computer Sciencel5:293-351, 1986.

2. Hassan Ait-Kaci and R. Nasr. LOGIN: A logic programmiagduage with built-in inheritancelournal
on Lisp and Symbolic Computatio?:51-89, 1989.

3. Hassan Ait-Kaci and Roger Nasr. LOGIN: A logic programgnianguage with built-in inheritancelhe
Journal of Logic Programming3(3):185-215, 1986.

4. Hassan Ait-Kaci and Andreas Podelski. Entailment asdrdailment of order-sorted feature constraints.
In Andrei Voronkov, editorProceedings of the'# International Conference on Logic Programming and
Automated Reasoningolume 698 ol_ecture Notes in Artificial Intelligencgages 1-18. Springer-Verlag,
Berlin, July 1993.

5. Hassan Ait-Kaci and Andreas Podelski. Towards a measfifile. The Journal of Logic Programming
16(3 — 4):195-234, July, August 1993.

6. Hassan Ait-Kaci, Andreas Podelski, and Gert Smolka. auie-based constraint system for logic pro-
gramming with entailmentTheoretical Computer Scienc&22(1-2):263-283, January 1994.

7. Rolf Backofen. Expressivity and Decidability of First-order LanguageseoWeature Trees Doctoral
Dissertation. Universitat des Saarlandes, Technisckelfé®, D—66041 Saarbriicken, 1994.

8. Rolf Backofen. Regular path expressions in feature logparnal of Symbolic Computatipd7:421-455,
1994.

32

©

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

MARTIN MULLER, JOACHIM NIEHREN, AND ANDREAS PODELSKI

Rolf Backofen. A complete axiomatization of a theory wigtature and arity constraintsThe Journal
of Logic Programming 24(1 — 2):37-71, 1995. Special Issue onComputational Uistigs and Logic
Programming.

Rolf Backofen. Controlling functional uncertainty. Wiolfgang Wahlster, editorProceedings ofl2h
European Conference on Artificial Intelligengeages 557-561. John Wiley & Sons, Ltd, 1996.

Rolf Backofen and Gert Smolka. A complete and recursatuire theoryTheoretical Computer Science
146(1-2):243-268, July 1995.

Rolf Backofen and Ralf Treinen. How to win a game with fiees. In Jean-Pierre Jouannaud, editst,
International Conference on Constraints in Computatiohabics Lecture Notes in Computer Science,
vol. 845, pages 320-335, Miinchen, Germany, September $p@ihger-Verlag.

Ronald J. Brachman and Hector J. Levesque. The trattatfilsubsumption in frame-based description
languages. liProceedings of the National Conference on Artificial Ingelhce pages 34-37, August 1984.
Bob CarpenteiThe Logic of Typed Feature Structures - with ApplicationBtdfication Grammars, Logic
Programs and Constraint ResolutioNumber 32 in Cambridge Tracts in Theoretical Computerr®ge
Cambridge University Press, Cambridge, England, 1992.

Witold Charatonik and Andreas Podelski. The indepecelgroperty of a class of set constraints. In
Eugene C. Freuder, editd?roceedings of the™ International Conference on Principles and Practice of
Constraint Programmingvolume 1118 ot ecture Notes in Computer Scienpages 76-90, 1996.

Witold Charatonik and Andreas Podelski. Set conssaivith intersection. IrProceedings of the 12
IEEE Symposium on Logic in Computer Sciemuages 352—-361, Warsaw, Poland, 1997. IEEE Computer
Society Press.

Alain Colmerauer. Equations and inequations on finitkigfinite trees. In ICOT, editoiProceedings of
the 29 International Conference on Fifth Generation Computert&ys pages 85-99. Omsha Ltd., Tokyo
and North-Holland, Amsterdam, 1984.

Martin Dietzfelbinger, Anna Karlin, Kurt Mehlhorn, Edhelm Meyer Auf Der Heide, Hans Rohnert, and
Robert E. Tarjan. Dynamic perfect hashing: Upper and lowamis. SIAM Journal of Computing
23(4):738-761, August 1994.

Jochen Dorre. Feature-logic with weak subsumptiorsttaimts. In M. A. Rosner C. J. Rupp and R. L.
Johnson, editorsConstraints, Languages, and Computatichapter 7, pages 187—203. Academic Press,
1994.

Jochen Dorreleature-Logik und SemiunifikatioNumber 128 in DISKI - Dissertationen zur Kunstlichen
Intelligenz. Infix Verlag, Sankt Augustin, July 1996. In Gem.

Jochen Dorre and William C. Rounds. On subsumption and-anification in feature algebrasournal

of Symbolic Computatiori3:441-461, 1992.

R. Helm, K. Marriott, and M. Odersky. Constraint-baseery optimization for spatial databases. 106"
Annual IEEE Symposium on the Principles of Database Syteages 181-191, May 1991.

Mark Johnson Attribute-Value Logic and the Theory of Grammadumber 16 in CSLI Lecture Notes.
Center for the Study of Language and Information, 1988.

Ronald M. Kaplan and Joan Bresnan. Lexical-functiomalgnar: A formal system for grammatical
representation. In J. Bresnan, editdhe Mental Representation of Grammatical Relatjgmeges 173—
281. The MIT Press, Cambridge, MA, 1982.

Robert T. Kasper and William C. Rounds. A logical sentanfior feature structures. Proceedings of the
Annual Meeting of the Association of Computational Linticss pages 257-265, 1986.

Martin Kay. Functional grammar. In C. Chiarello et atliter, Proceedings of the's Annual Meeting of
the Berkeley Linguistics Societyages 142-158, 1979.

J. Lassez and K. McAloon. Applications of a canonicafrféor generalized linear constraints. Pmoceed-
ings of the 8 International Conference on Fifth Generation Computert&ys pages 703-710, December
1988.

Kuniaki Mukai. Partially specified terms in logic progming for linguistic analysis. IfProceedings of
the 8" International Conference on Fifth Generation Computert&@ys Tokyo, Japan, 1988. ICOT.

Martin Muller. Ordering constraints over feature sr@dth ordered sorts. In P. Lopez, Suresh Manandhar,
and Werner Nutt, editorsComputational Logic and Natural Language Understandibgcture Notes in
Artificial Intelligence. Springer-Verlag, Berlin, to apge Available ahttp://www.ps.uni-sb.de/
“mmueller/papers/cinip.ps.Z .

Martin Miller and Joachim Niehren. Entailment for senstraints is not feasible. Technical report, Pro-
gramming Systems Lab, Universitat des Saarlandes, 1997.//www.ps.uni-sb.de/Papers/
abstracts/inesinfeas.html

ORDERING CONSTRAINTS OVER FEATURE TREES 33

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44,

45.

46.

47.

48.

49.

50.

51.

Martin Muller and Joachim Niehren. Ordering constiiaver feature trees expressed in second-order
monadic logic. In Tobias Nipkow, editointernational Conference on Rewriting Techniques and Ap-
plications volume 1379 ofLecture Notes in Computer Sciengages 196-210, Tsukuba, Japan, 1998.
Springer-Verlag, Berlin.

Martin Mdller, Joachim Niehren, and Andreas Podelskiclusion constraints over non-empty sets of
trees. In Michel Bidoit and Max Dauchet, editof®joceedings of the Theory and Practice of Software
Developmentvolume 1214 ofLecture Notes in Computer Sciengeages 345-356, Lille, France, April
1997. Springer-Verlag, Berlin.

Martin Muller, Joachim Niehren, and Ralf Treinen. Thstforder theory of ordering constraints over
feature trees. IProceedings of the 1BIEEE Symposium on Logic in Computer Scignges 432443,
IEEE Computer Society Press, 1998.

Bernhard NebelReasoning and Revision in Hybrid Representation Systeshsme 422 ol_ecture Notes

in Artificial Intelligence Springer-Verlag, Berlin, 1990.

Bernhard Nebel and Gert Smolka. Representation andmieaswith attributive descriptions. In K.H.
Blasius, U.Hedtstiick, and C.-R. Rollinger, editoBgrts and Types in Atrtificial Intelligenceolume 418

of Lecture Notes in Atrtificial Intelligencgpages 112-139. Springer-Verlag, Berlin, 1990.

Joachim Niehren, Martin Muller, and Jean-Marc Tallintailment of atomic set constraints is PSPACE-
complete, December 1998ww.ps.uni-sb.de/Papers/abstracts/atomic:98.html

Jens Palsberg. Efficient inference of object typeriteedings of the'® IEEE Symposium on Loglc in
Computer Sciencgages 186-185. IEEE Computer Society Press, 1994.

Andreas Podelski and Gert Smolka. Operational sensastticonstraint logic programs with coroutining.
In Leon Sterling, editorProceedings of the 12 International Conference on Logic Programmjmages
449-463, Kanagawa, Japan, 13-18 June 1995. The MIT Prashridge, MA.

Carl Pollard and lvan Saglead-Driven Phrase Structure Grammatudies in Contemporary Linguistics.
Cambridge University Press, Cambridge, England, 1994.

Carl J. Pollard and Ivan A. Sadnformation-based Syntax and Semantics, VolNumber 13 in CSLI
Lecture Notes. Center for the Study of Language and InfdomaStanford University, 1987. Distributed
by University of Chicago Press.

Francois Pottier. Simplifying subtyping constraints Proceedings of the ACM SIGPLAN International
Conference on Functional Programmirgages 122—-133. ACM Press, New York, May 1996.

William C. Rounds. Feature logics. In Johan van BenthathAdice ter Meulen, editorstHandbook of
Logic and Languagepages 475-533. Elsevier Science Publishers B.V. (Nortitahrit), 1997. Part 2:
General Topics.

Steward ShiebeAn Introduction to Unification-based Approaches to Gramm@8LI Lecture Notes No.
4. Center for the Study of Language and Information, 1986.

Steward ShieberParsing and Type Inference for Natural and Computer LanggadSRI International
Technical Note 460, Stanford University, March 1989.

Steward Shieber, Hans Uszkoreit, Fernando Pereiralad. Robinson, and M. Tyson. The formalism
and implementation of PATR-II. In Joan Bresnan, ediiesearch on Interactive Acquisition and Use of
Knowledge SRI International, Menlo Park, California, 1983.

Gert Smolka. Feature constraint logics for unificaticemgmars.The Journal of Logic Programming.2(1
—2):51-87, 1992.

Gert Smolka. The Oz Programming Model. In Jan van Leepeditor, Computer Science Todayolume
1000 ofLecture Notes in Computer Sciengages 324—343. Springer-Verlag, Berlin, 1995.

Gert Smolka and Ralf Treinen. Records for logic programym The Journal of Logic Programming
18(3):229-258, April 1994.

Ralf Treinen. Feature constraints with first-classuiest. In Andrzej M. Borzyszkowski and Stefan
Sokotowski, editors)nternational Symposium on Mathematical Foundations ofm@oter Sciencevol-
ume 711 ofLecture Notes in Computer Scienpages 734—743, Gdansk, Poland, 30 August—3 September
1993. Springer-Verlag, Berlin.

Andreas Zeller and Gregor Snelting. Handling versids #iough feature logic. In W. Schafer and
P. Botella, editorsProceedings of the' European Software Engineering Conferenasiume 989 of_ec-
ture Notes in Computer Sciengeages 191-204, Sitges, Spain, September 1995. Sprirgg)y/Berlin.
Andreas Zeller and Gregor Snelting. Unified versionimpugh feature logic. ACM Transactions on
Software Engineering and Methodolod(4):398-441, October 1997.

