
Autosubst Manual

May 20, 2016

Formalizing syntactic theories with variable binders is not easy. We present
Autosubst, a library for the Coq proof assistant to automate this process.
Given an inductive definition of syntactic objects in de Bruijn representa-
tion augmented with binding annotations, Autosubst synthesizes the paral-
lel substitution operation and automatically proves the basic lemmas about
substitutions. Our core contribution is an automation tactic that computes
a normal form for Coq expressions containing substitutions. This allows to
solve equations between such terms. This makes the usage of substitution
lemmas unnecessary. The tactic is based on our current work on a decision
procedure for the equational theory of an extension of the sigma-calculus by
Abadi et. al. The library is completely written in Coq and uses Ltac to
synthesize the substitution operation.

1 Tutorial

We start by importing the Autosubst library.

Require Import Autosubst.

Using de Bruijn Syntax in Coq, the untyped lambda calculus is usually defined as
shown Figure 1. Using Autosubst, we can automatically generate the substitution
operation. To do so, we annotate the positions of binders in the term type, since de Bruijn
indices are interpreted differently if occuring below a binder. The annotated definition

Inductive term : Type :=
| Var (x : nat)
| App (s t : term)
| Lam (s : term).

Figure 1: Usual term definition with
de Bruijn indices

Inductive term : Type :=
| Var (x : var)
| App (s t : term)
| Lam (s : {bind term}).

Figure 2: Term definition for Auto-
subst

1

subst_comp s σ τ : s.[σ].[τ] = s.[σ >> τ]
subst_id s : s.[ids] = s
id_subst x σ : (ids x).[σ] = σ x
rename_subst ξ s : rename ξ s = s.[ren ξ]

Figure 3: Substitution Lemmas in SubstLemmas

is shown in Figure 2. We write {bind term} instead of term for the argument type of
a constructor to indicate that this constructor serves as a binder for the argument. The
type {bind term} is definitionally equal to term and just serves as a tag interpreted
while generating the substitution operation. We also need to tag the constructor that
builds variables. We do so by specifying the type of its single argument as var, which is
definitionally equal to nat.
Using this definition of term, we can generate the substitution operation subst by

declaring an instance of the Subst type class using our custom tactic derive. This is
comparable to the usage of deriving-clauses in Haskell. We also need to define instances
for the two auxiliary type classes Ids and Rename, which define the functions ids and
rename. The function rename is only needed for technical reasons1 and is mostly hidden
from the interface. The function ids is the identity substitution, which is identical to
the variable constructor.

Instance Ids_term : Ids term. derive. Defined.
Instance Rename_term : Rename term. derive. Defined.
Instance Subst_term : Subst term. derive. Defined.

We can now use the pre-defined generic notations to call the just created substitution
operation for term. Given substitutions σ and τ , that is, values of type var → term, we
can now write s.[σ] for the application of σ to the term s and σ >> τ for the composition
of σ and τ . The notation s.[σ] stands for subst σ s. The notation σ >> τ is equal to
σ >>> subst τ , where >>> is function composition, i.e., (f >>> g) x = g(f(x)).

Next, we generate the corresponding substitution lemmas by deriving an instance of
the SubstLemmas type class. It contains the lemmas depiced in Figure 3. The lemma
subst_comp states that instead of applying two substitutions in sequence, you can ap-
ply the composition of the two. This property is essential and surprisingly difficult to
show if done manually. The lemma rename_subst is needed to eliminate occurrences of
the renaming function rename. Renaming can be expressed with ordinary substitutions
using the function ren which lifts a function on variables var → var to a substitution
var → term. It is defined as ren ξ := ξ >>> ids.

Instance SubstLemmas_term : SubstLemmas term. derive. Qed.

1The function rename applies a renaming var → var to a term. Since it is possible to give a direct
structurally recursive definition of rename, we use rename to give a structurally recursive definition
of subst. By simplifying subst and afterwards unfolding up, it is possible to stumble upon an
occurrence of rename. We try to prevent this by eagerly replacing rename ξ with subst (ren ξ) in
our automation and simplification tactics.

2

This was all the boilerplate code needed to start using the library. Let us explore the
behavior of substitution on some examples. All variables are replaced by the respec-
tive value of the substitution. The term (Var x).[σ] simplifies to σ x. Substitution
is extended to application homomorphically. The term (App s t).[σ] simplifies to
App s.[σ] t.[σ]. When going below a binder, the substitution is changed accordingly.
The term (Lam s).[σ] simplifies to Lam s.[up σ]. The substitution up σ is equal to
Var 0 .: (σ >> ren (+1)) where (+1) is the renaming increasing every variable by
one and .: is the stream-cons operator. For a : X and f : var → X, the expression
a .: f has type var → X and satisfies the following equations.

(a .: f) 0 = a

(a .: f) (S n) = f n

So up σ leaves 0 unchanged and for a variable S x, it yields (σ x).[ren(+1)] to account
for the fact that below the binder, the free variables are shifted by 1.

Substitutivity

Let us start to use the term language. We can define the reduction relation of the untyped
lambda calculus as follows.

Inductive step : term → term → Prop :=
| Step_Beta s s’ t : s’ = s.[t .: ids] → step (App (Lam s) t) s’
| Step_App1 s s’ t: step s s’ → step (App s t) (App s’ t)
| Step_App2 s t t’: step t t’ → step (App s t) (App s t’)
| Step_Lam s s’ : step s s’ → step (Lam s) (Lam s’).

The most interesting rule is Step_Beta, which expresses beta reduction using the stream-
cons operator. That is, the term s.[t .: ids] is s where the index 0 is replaced by t
and all other indices are reduced by one. Also note that the rule Step_Beta contains a
superfluous equation to make it applicable in more situations.
Now let us show a property of the reduction relation, the fact that it is closed under

substitutions.

Lemma step_subst s s’ : step s s’ → ∀ σ, step s.[σ] s’.[σ].
Proof. induction 1; constructor; subst; now asimpl. Qed.

The tactic asimpl simplifies expressions containing substitutions using a powerful rewrit-
ing system. This suffices to make all the subgoals trivial. The equational subgoal

s1.[up σ].[t.[σ] .: ids] = s1.[t .: ids].[σ]

created by the application of the constructor Step_Beta gives a good impression of the
power of asimpl. Both sides of the equation are simplified to s1.[t.[σ] .: σ].

3

Type Preservation

We conclude the tutorial with a proof of type preservation for the simply typed lambda
calculus. This example shows how to prove structural properties of a typing relation.
First, we need simple types. We define a base type Base and an arrow type Arr A B

for functions from A to B.

Inductive type :=
| Base
| Arr (A B : type).

Then, we can define the typing judgment.

Inductive ty (Γ : var → type) : term → type → Prop :=
| Ty_Var x A : Γ x = A →

ty Γ (Var x) A
| Ty_Lam s A B : ty (A .: Γ) s B →

ty Γ (Lam s) (Arr A B)
| Ty_App s t A B : ty Γ s (Arr A B) → ty Γ t A →

ty Γ (App s t) B.

We use infinite contexts. This allows us to encode contexts as functions of type var → type,
which coincides with the type of substitutions. Thus we can reuse the operations and
tactics of Autosubst for contexts.

Usually, a type preservation proof starts with a weakening lemma for the typing rela-
tion, which states that you can add a binding to the context. In de Bruijn formalizations,
it is usually stated with an operation that adds a single binding at an arbitrary position
in the context. Using parallel substitutions, we can generalize this to all contexts that
can be obtained by reinterpreting the indices. This avoids ugly shiftings in the lemma
statement. Moreover, this single lemma subsumes weakening, contraction and exchange.

Lemma ty_ren Γ s A: ty Γ s A → ∀∆ ξ,
Γ = (ξ >>> ∆) →
ty ∆ s.[ren ξ] A.

Proof.
induction 1; intros; subst; asimpl; econstructor; eauto.
- eapply IHty. autosubst.

Qed.

For case of typing a lambda expression, the application of autosubst solves the following
equation between contexts.

A .: ξ >>> ∆ = (0 .: ξ >>> (+1)) >>> A .: ∆

This also happens to be a good example for the somewhat complex but efficient prece-
dence of .: and the composition operators. Altough both have the same2 precedence

2Technically, this is not directly possible with the Coq notation mechanism. However, you can achieve
the same effect by giving .: a lower precedence level (that is, higher precedence) and its right
argument the same level as the composition operators. It would be simpler to give everything right
associativity, but this does not work for heterogeneous substitutions.

4

level, the composition operators are left-associative while .: is right associative. So the
given equation is equivalent to the following.

A .: (ξ >>> ∆) = (0 .: (ξ >>> (+1))) >>> (A .: ∆)

Unfortunately, Coq 8.4 contains a bug such that the right-hand side is printed without
parentheses, although this would be parsed as the ill-typed term

0 .: ((ξ >>> (+1)) >>> (A .: ∆)).

By generalizing ty_ren to substitutions, we obtain that we preserve typing if we replace
variables by terms of the same type.

Lemma ty_subst Γ s A: ty Γ s A → ∀ σ ∆,
(∀ x, ty ∆ (σ x) (Γ x)) →
ty ∆ s.[σ] A.

Proof.
induction 1; intros; subst; asimpl; eauto using ty.
- econstructor. eapply IHty.

intros [|]; asimpl; eauto using ty, ty_ren.
Qed.

Again, the only non-trivial subgoal is the typing of a lambda expression. Applying the
inductive hypothesis yields the following subgoal.

∀ x : var, ty (scons A ∆) (up σ x) (scons A Γ x)

We solve it by destructing x with intros [|] and simplifying the resulting terms with
asimpl, which makes them match Ty_Var and ty_ren, respectively.

To show type preservation of the simply typed lambda calculus, we use ty_subst to
justify the typing of the result of the beta reduction. The tactic ainv performs inversion
on all hypothesis where this does not produce more than one subgoal.

Lemma ty_pres Γ s A : ty Γ s A → ∀ s’,
step s s’ →
ty Γ s’ A.

Proof.
induction 1; intros s’ H_step; asimpl;
inversion H_step; ainv; eauto using ty.
- eapply ty_subst; try eassumption.

intros [|]; simpl; eauto using ty.
Qed.

Again, we need to destruct the universally quantified variable in the premise of ty_subst.
This tutorial only covered the basic aspects of Autosubst. For examples of how to use

Autosubst for many-sorted syntax with heterogeneous substitutions or with dependent
contexts, please refer to the case studies distributed with Autosubst.

5

Inductive type : Type :=
| TyVar (x : var)
| Arr (A B : type)
| All (A : {bind type}).

Inductive term :=
| TeVar (x : var)
| Abs (A : type) (s : {bind term})
| App (s t : term)
| TAbs (s : {bind type in term})
| TApp (s : term) (A : type).

Figure 4: Declaration of the syntax of System F

2 Reference Manual

2.1 Defining the Syntax

To start using Autosubst, you first have to define an inductive type of terms with
de Bruijn indices. This should be a simple inductive definition without dependent types.
There must be at most one constructor for variables, aka de Bruijn indices. It must have
a single argument of type var, which is a type synonym for nat. If a constructor acts as
a binder for a variable of the term type T in a constructor argument of type U, then U has
to be replaced by {bind T in U}. We can write {bind T} instead of {bind T in T}.
Figure 4 shows how this looks for the two-sorted syntax of System F.

2.2 Generating the Operations

We need to generate the substitution operations for the used term types and the corre-
sponding lemmas. This is done with instance declarations for the corresponding typeclass
instances and the tactic derive, which is defined as trivial with derive and we have
collected a tactic for every typeclass in the hint database derive. The operations are
summarized in Table 1 and the corresponding lemmas in Table 2.
For example, the syntax of System F needs the declarations shown in Figure 5. It is

important to build the instances in the right order because they depend on each other.
We summarize the dependencies between the type class instances in Table 3.

2.3 Defined Operations

Autosubst defines a number of operations, some of which depend on the generated
operations. They are important not only because they are useful in statements, but
more importantly because our custom tactics incorporate facts about them. They are
summarized in Table 4.

6

Typeclass Function Notation Type

Ids term ids x var → term

Rename term rename ξ s (var → var) →
term → term

Subst term subst σ s s.[σ] (var → term) →
term → term

HSubst term1 term2 hsubst σ s s.|[σ] (var → term1) →
term2 → term2

Table 1: Operations that can be generated with Autosubst

Typeclass Contained Lemmas

SubstLemmas term rename ξ s = s.[ren ξ], s.[ids] = s,
(ids x).[σ] = σ x, s.[σ].[τ] = s.[σ >> τ]

HSubstLemmas term1 term2 s.|[ids] = s, (ids x).|[σ] = ids x,
s.|[σ].|[τ] = s.|[σ >> τ]

SubstHSubstComp term1 term2 s.[σ].|[τ] = s.|[τ].[σ >>| τ]

Table 2: Lemmas that can be generated with Autosubst

Instance Ids_type : Ids type. derive. Defined.
Instance Rename_type : Rename type. derive. Defined.
Instance Subst_type : Subst type. derive. Defined.

Instance SubstLemmas_type : SubstLemmas type. derive. Qed.

Instance HSubst_term : HSubst type term. derive. Defined.

Instance Ids_term : Ids term. derive. Defined.
Instance Rename_term : Rename term. derive. Defined.
Instance Subst_term : Subst term. derive. Defined.

Instance HSubstLemmas_term : HSubstLemmas type term. derive. Qed.
Instance SubstHSubstComp_type_term : SubstHSubstComp type term. derive. Qed.

Instance SubstLemmas_term : SubstLemmas term. derive. Qed.

Figure 5: Declarations to derive the operations and lemmas for System F

7

Typeclass Required Prior Declarations

Ids term none

Rename term none

Subst term Rename term,
HSubst term’ term
if term contains {bind term’ in term}

HSubst term1 term2 Subst term1,
HSubst term3 term4
if term2 contains {bind term3 in term4},

HSubst term1 term3
if term2 contains term3

SubstLemmas term Ids term,
Subst term,
HSubstLemmas term1 term2
and SubstHSubstComp term1 term2
if Subst term requires HSubst term1 term2

HSubstLemmas term1 term2 HSubst term1 term2,
SubstLemmas term1

Table 3: Required Declaration Order of the Typeclass Instances

8

Name Notation Definition Type

funcomp f >>> g fun x ⇒ g(f x) ∀ A B C : Type, (A → B) →
(B → C) →

A → C

scons a .: f fun x ⇒
match x with
| 0 ⇒ a
| S x’ ⇒ f x’
end

∀ X : Type, X →
(var → X) →

var → X

scomp σ >> τ σ >>> subst τ (var → term) →
(var → term) →

var → term

hcomp σ >>| θ σ >>> hsubst θ (var → term1) →
(var → term2) →

var → term1

ren ren ξ ξ >>> ids (var → var) →
var → term

lift (+ n) fun x ⇒ n + x var →
var → var

up up σ ids 0 .: σ >> ren(+1) (var → term) →
var → term

Table 4: Defined Primitives of Autosubst

9

2.4 The Automation Tactics

Autosubst defines two automation tactics: asimpl and autosubst.

asimpl

Normalizes the claim.

asimpl in H

Normalizes the hypothesis H.

asimpl in *

Normalizes the claim and all hypothesis.

autosubst

Normalizes the claim and tries to solve the resulting equation.

Both of them normalize the goal using a convergent rewriting system. But while
the interface and behavior of asimpl mimics simpl, the closing tactic autosubst first
normalizes an equational claim and then tries to prove it. The rewriting system is an
extension of the σ-calculus by Abadi et. al. [1]. Our goal is to solve all equations
that hold without assumptions and are built using only our primitives, application and
variables. At the moment, we hope to achieve this if (+n) is only used with a constant
n. We consider ever real-world example of an unsolvable such equation a bug and invite
you to submit it.
The normalization is done by interleaving the rewriting system with calls to simpl to

incorporate the definitions of the derived operations.

3 Internals

In the following, we describe technical challenges and how we solved them in Coq.

3.1 Normalizing Substitutions

To simplify terms containing substitutions, we use a rewriting system based on the con-
vergent σ-calculus by Abadi et. al. [1]. We extended it to variables for renamings,
heterogeneous substitutions and to lifts (+n) that add an arbitrary natural number n
instead of just 1. To keep the rewriting system small, we base it on function composition
and a stream-cons that works on arbitrary streams. So first, we replace

• σ >> τ with σ >>> subst τ

• σ >>| τ with σ >>> hsubst τ

• ren ξ with ξ >>> ids

• up σ with ids 0 .: σ >>> subst ((+1) >>> ids).

10

and will undo these unfoldings in the end. Also, we make function composition right
associative, which we also undo in the end. These tricks allow us to reason about (+n),
.: and >>> separately from the proper substitution operations.

3.2 Reducible Recursive Type Class Instances

We need the substitution operation to reduce and simplify because there is no other way
how our automation tactics could learn about the behavior of substitution on custom
term types. However, this is challenging since the substitution operations we derive are
instances of a type class. We needed a number of tricks to make this work smoothly.

• We use singleton type classes. So a type class instance is just a definition of the
recursive procedure and the type class function reduces to its instance argument.
This is important for two reasons. First, the guardedness checker does not unfold
the record projections used for non-singleton type classes. Second, when simpl
reduces a definition bound to a fix, it replaces all occurrences of this fix with the
name of the definition afterwards. This also just works for singleton type classes.

• All recursive calls are formulated using the function of the type class with the
procedure name bound in the fix-term serving as the implicit instance argument.
This way, the result of the reduction of a type class function contains again calls
to this type class function.

• The Coq unification algorithm can perform unfoldings that are impossible with
simpl. This can lead to implicit instance arguments being unfolded. In turn,
the type class inference can no longer infer instances depending on the unfolded
instance. Apart from using simpl before using tactics that trigger unification like
apply or constructor, the only way to circumvent this is to revert the unfolding of
instances. We automatically do this in all automation tactics by reinferring implicit
instance arguments using exact _.

3.3 Generating the Operations Using Ltac

We generate the renaming and substitution operations using Ltac. Since these are recur-
sive functions, we use the tactics fix and destruct. Consider the substitution operation
for the term language from the tutorial. Our derive tactic constructs the following
(proof) term.

fix inst (σ : var → term) (s : term) {struct s} : term :=
match s as t return (annot term t) with
| Var x ⇒ σ x
| App s1 s2 ⇒ App s1.[σ] s2.[σ]
| Lam s0 ⇒ Lam s0.[up σ]
end

11

Apart from the return annotation, which is an artifact of our approach, this looks quite
clean. However, the recursive call is hidden in the implicit instance argument to subst.
We can see it if we show all implicit arguments.

fix inst (σ : var → term) (s : term) {struct s} : term :=
match s as t return (@annot Type term term t) with
| Var x ⇒ σ x
| App s1 s2 ⇒ App (@subst term inst σ s1) (@subst term inst σ s2)
| Lam s0 ⇒ Lam (@subst term inst (@up term Ids_term Rename_term σ) s0)
end

To construct this term with Ltac, we start with fix inst 2 to generate the fix-term.
Since we want to use the recursive identifier ident as a typeclass instance, we make it
accessible to the instance inference by changing its type with

change _ with (Subst term) in inst

Next, we need to construct the match, which we can do with a destruct. But then, the
subgoals do not tell us the constructor of the current match case. We get this information
by annotating the goal with s before calling destruct. Then this annotation contains the
current constructor with all its arguments after the destruct. The function annot, which
is the identity on the first argument and ignores the second, allows us to perform the
annotation. So we use the script intros ξ s; change (annot term s); destruct s
and then the claims of the subgoals are

• annot term (Var x)

• annot term (App s1 s2)

• annot term (Lam s0)

So in effect, we have gained access to the patterns of the match. Using a recursive,
value-producing tactic, we can fold over the applied constructor like a list and change
every argument depending on its type. The types of the arguments happen to contain
the binding annotations in the definition of term, so we can use an Ltac-match to read
them and apply substitutions to the arguments accordingly. The type class inference
automatically inserts the recursive call and the guardedness checker is able to unfold
subst to see the applied recursive call.

4 Best Practices

4.1 Extending the Automation

If you want to extend the automation to support equations for a new function, you should
do the following.
First, try to define the new function using function composition or other existing

supported functions. If this is possible, then you should define it using the notation
mechanism to prevent the supported functions from being hidden behind a defined name.

12

Otherwise, you have to extend the built-in tactics autosubst_unfold and fold_comp to
perform the unfolding and folding respectively.
For example, if you want to lift a semantic interpretation to substitutions

subst_interp : (var → value) → (var → term) → var → value

then you should define

Notation subst_interp ρ σ := σ >>> interp ρ.

This automatically adds some limited support. To get full support, you can add the
required lemmas to the autorewrite database autosubst, which is used by the tactics
asimpl and autosubst.

References

[1] Martín Abadi, Luca Cardelli, Pierre-Louis Curien, and Jean-Jacques Lévy. Explicit
substitutions. J. Funct. Program., 1(4):375–416, 1991.

13

	Tutorial
	Reference Manual
	Defining the Syntax
	Generating the Operations
	Defined Operations
	The Automation Tactics

	Internals
	Normalizing Substitutions
	Reducible Recursive Type Class Instances
	Generating the Operations Using Ltac

	Best Practices
	Extending the Automation

