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Formalizing syntactic theories with variable binders is not easy. We present Au-
tosubst [1], a library for the Coq proof assistant to automate this process. Given an
inductive definition of syntactic objects in de Bruijn [7] representation augmented
with binding annotations, Autosubst synthesizes the substitution operations and
automatically proves the basic lemmas about substitutions.

Our core contribution is the automation tactic autosubst, which simplifies and
solves equations involving terms and substitutions. This makes the use of substitution
lemmas unnecessary. The tactic is based on current work on a decision procedure for
the equational theory of an extension of the σ-calculus by Adadi et. al. [2].

As in the σ-calculus, we use parallel substitutions. In our setting, a substitution σ
is a function from de Bruijn indices to terms. The application s[σ] of a substitution σ
to a term s replaces every free variable in s according to σ. The parallel substitution
operations admit an elegant recursive definition using the primitives of the σ-calculus.
For instance, consider the untyped lambda calculus

x[σ] = σx

(s t)[σ] = s[σ] t[σ]

(λs)[σ] = λ(s[0 · (σ ◦ ↑)])

(s · σ) 0 = s

(s · σ) (x+ 1) = σx

(σ ◦ τ) x = (σx)[τ]

↑ x = x+ 1

where 0 is the first de Bruijn index and bound by the enclosing lambda, ◦ is the
composition of substitutions, ↑ is the substitution that increases all de Bruijn indices
by one, and · is the cons operation. However, this definition is not structurally recursive.
Following Adams [3], we first restrict the definition to renamings and then obtain the
full substitution application by replacing the problematic recursive call with a renaming.
We hide the renaming operation that can occur after unfolding by eagerly replacing it
with the ordinary substitution application.

As an example for the usage of autosubst, consider the following proof of the
substitutivity of β-reduction in the untyped lambda calculus.

Lemma substitutivity s s’ : s B s’ → ∀ σ, s.[σ] B s’.[σ].
Proof. induction 1; constructor; subst; autosubst. Qed.

1



The interesting subgoal solved by autosubst is the following parallel variant of Baren-
dregt’s substitution lemma [6, Lemma 2.1.16]

s[t · id][σ] = s[0 · (σ ◦ ↑)][t[σ] · id]

where id is the identity substitution. Note that (λs) t reduces to s[t · id]. The same
proof script also works for the substitutivity of System F, both for substitutions that
replace types and terms.

Our usage of parallel substitutions and a decision procedure are the main differences
to related work [10, 9, 8, 5, 11]. To evaluate the impact of these design decisions, we
have conducted the following case studies [1]:

• Progress and type preservation of System F with subtyping. This is the first part of
the POPLmark challenge [4]. Since System F terms contain types and binders for type
variables, we need to substitute terms in terms, types in types and types in terms.
Autosubst supports this, including support in autosubst for the interaction
between the different substitution operations. The whole development fits into less
than 500 line of code. This is about one third of the number of lines used by the
solution of Vouillon [12], which also uses de Bruijn indices in Coq.

• Normalization of call-by-value System F. The proof uses logical relations, which
always require some form of parallel substitutions in the fundamental theorem.
The whole development fits into less than 200 lines.

• Type preservation of a Martin-Löf type theory. This is a technically challenging
proof, which needs a number of related results (e.g. confluence of reduction).

In all of these case studies, the tactic autosubst takes care of all the tedium involving
binders and substitutions. Using parallel substitutions, we obtain simple lemma
statements without arithmetic or shifts.

Autosubst is completely written in Coq. We synthesize the substitution opera-
tions using the meta-programming capabilities of Ltac. That is, we build a recursive
procedure using the tactics fix and destruct. To do so, we need to inspect the
annotations in the inductive definition of the syntax. These are realized as type-level
identity functions. Since the types of the constructors contain the annotations, it
suffices to determine the type of the constructor corresponding to the current subgoal
of destruct. This is possible with the tactic destruct s eqn:E.

As future work, we want to add support for binders with variable arity (e.g., for
pattern matching) and mutually inductive definitions of syntactic objects.
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