

3. Übungsblatt zu Einführung in die Computationale Logik, SS 2003

Prof. Dr. Gert Smolka, Marco Kuhlmann, MSc http://www.ps.uni-sb.de/courses/cl-ss03/

Lesen Sie im Skript: Kapitel 2 und von Kapitel 4 die Abschnitte 4.7 und 4.8

Aufgabe 3.1: Boolesche Mengen Sei $Var = \{X_1, X_2, X_3\}$ eine dreielementige Menge und seien $\sigma_0, \sigma_1 \in \Sigma$ wie folgt gegeben:

$$\sigma_0 = \lambda x \in Var.0$$

$$\sigma_1 = \lambda x \in Var. 1$$

Beschreiben Sie die Boolesche Menge $\{\sigma_0, \sigma_1, \sigma_0 + \sigma_1, \sigma_0 [X_2 := 1]\}$ durch eine Formel.

Aufgabe 3.2: Konditionale Zeigen Sie, dass in jeder Booleschen Algebra gilt:

- (a) (x, y, y) = y
- (b) $\overline{(x, y, z)} = (x, \overline{y}, \overline{z})$
- (c) $(\overline{x}, y, z) = (x, z, y)$
- (d) (x, y, z)u = (x, yu, zu)
- (e) (x, y, z)(x, u, v) = (x, yu, zv)
- (f) $(x, y, z) = (\overline{x} + z)(x + y)$

Verwenden Sie dabei nur die Definition des Konditionals, die Axiome für Boolesche Algebren und die Resolutionsregel (Proposition 4.1.2 (1)).

Aufgabe 3.3: Kompaktheit Wir nehmen an, dass es nur endlich viele Variablen gibt. Eine Menge M von Formeln heißt *unerfüllbar*, wenn es keine Belegung σ mit $\forall A \in M : \sigma \in \mathcal{M}(A)$ gibt. Beweisen Sie, dass zu jeder unendlichen unerfüllbaren Menge M von Formeln eine endliche unerfüllbare Teilmenge $M' \subseteq M$ existiert.

Aufgabe 3.4: Äquivalenz Geben Sie möglichst einfache Formeln A, B an, sodass

$$\emptyset \neq \mathcal{M}(A \Leftrightarrow B) \neq \Sigma.$$

Aufgabe 3.5: Übersetzung Sei M die größte Teilmenge von For, die sich nach $\{0, 1\}$ übersetzen lässt.

- (a) Beschreiben Sie M, ohne den Begriff der Übersetzung zu verwenden: $M = \{ A \in For \mid \dots \}$.
- (b) Gibt es eine Formel in M, die mindestens eine signifikante Variable hat?

Aufgabe 3.6: Positive Formeln Sei For' die Menge aller Formeln, die mit Variablen $X \in Var$ und den Operatoren \land, \lor und \Rightarrow gebildet werden können.

- (a) Geben Sie eine Boolesche Algebra \mathcal{B} und eine Belegung $\sigma \in Var \to |\mathcal{B}|$ an, sodass $\forall A \in For' \colon \mathcal{B}A\sigma = 1^{\mathcal{B}}$. Beweisen Sie diese Eigenschaft durch strukturelle Induktion über A.
- (b) Geben Sie eine Boolesche Menge an, die mit keiner Formel in For' beschrieben werden kann.
- (c) Geben Sie eine Boolesche Funktion an, die mit keiner Formel in For' beschrieben werden kann.

Aufgabe 3.7: Eigenschaften von Äquivalenz Beweisen Sie, dass $\Leftrightarrow^{\mathcal{B}}$ für jede Boolesche Algebra \mathcal{B} kommutativ und assoziativ ist. Sie können verwenden, dass in jeder Booleschen Algebra gilt:

$$x \Leftrightarrow y = xy + \overline{x} \overline{y}$$
.

Aufgabe 3.8: Induktionsbeweis Sei $For' \subseteq For$ die Menge aller Formeln, die mit Variablen und den Operatoren \neg und \land gebildet werden können. Weiter sei $M \subseteq For'$ eine Formelmenge, die die folgenden Eigenschaften erfüllt:

- (1) Wenn $\neg A \in M$, dann $A \notin M$.
- (2) Wenn $\neg \neg A \in M$, dann $A \in M$.
- (3) Wenn $(A_1 \wedge A_2) \in M$, dann $A_1 \in M$ und $A_2 \in M$.
- (4) Wenn $\neg (A_1 \land A_2) \in M$, dann $\neg A_1 \in M$ oder $\neg A_2 \in M$.
 - (a) Geben Sie eine Belegung $\sigma \in \Sigma$ an, für die gilt: $\forall A \in M : \mathcal{T} A \sigma = 1$.
 - (b) Zeigen Sie für Ihr σ die in (a) verlangte Eigenschaft durch Induktion über die Größe von A.
 - (c) Definieren Sie eine Funktion $g \in For' \to \mathbb{N}$, die eine für (b) geeignete "Größe einer Formel" liefert.
 - (d) Warum kann man (b) nicht durch strukturelle Induktion über A zeigen?

Aufgabe 3.9: Substitutionslemma Wir betrachten Variablen und Formeln wie folgt:

$$X, Y \in Var$$
 $A, B \in For ::= X \mid \neg A$

- (a) Definieren Sie die Substitutionsfunktion $subs \in For \rightarrow Var \rightarrow For \rightarrow For$.
- (b) Definieren Sie für jede Boolesche Algebra $\mathcal B$ die Denotationsfunktion

$$\mathcal{B} \in For \to (Var \to |\mathcal{B}|) \to |\mathcal{B}|$$

(c) Sei \mathcal{B} eine Boolesche Algebra, $\sigma \in Var \to |\mathcal{B}|$, $Y \in Var$ und $B \in For$. Zeigen Sie durch strukturelle Induktion, dass für alle $A \in For$ gilt:

$$\mathcal{B}(A[Y := B])\sigma = \mathcal{B}A(\sigma[Y := \mathcal{B}B\sigma])$$

Die dabei vorkommenden Notationen seien wie folgt definiert:

$$A[Y := B] \stackrel{\text{def}}{=} subs A Y B$$

 $\sigma[Y := b] \stackrel{\text{def}}{=} \lambda X \in Var. \text{ if } X = Y \text{ then } b \text{ else } \sigma X$

Aufgabe 3.10: Dualisierung Sei \mathcal{B} eine Boolesche Algebra. Die zu \mathcal{B} duale Boolesche Algebra $\hat{\mathcal{B}}$ ist wie folgt definiert:

$$|\hat{\mathcal{B}}| = |\mathcal{B}|, \quad 0^{\hat{\mathcal{B}}} = 1^{\mathcal{B}}, \quad 1^{\hat{\mathcal{B}}} = 0^{\mathcal{B}}, \quad \neg^{\hat{\mathcal{B}}} = \neg^{\mathcal{B}}, \quad \wedge^{\hat{\mathcal{B}}} = \vee^{\mathcal{B}}, \quad \vee^{\hat{\mathcal{B}}} = \wedge^{\mathcal{B}}$$

Wir betrachten Formeln $A, B \in For$, die mit Variablen $X \in Var$ und den Operatoren $\neg, \land, \lor, \Leftrightarrow, \Rightarrow, -, \bar{\land}, \bar{\lor}$ und $\bar{\Leftrightarrow}$ definiert sind. (Sprich "nand" für $\bar{\land}$, "nor" für $\bar{\lor}$ und "xor" für $\bar{\Leftrightarrow}$.) Die Semantik der Operatoren $\neg, \land, \lor, \Leftrightarrow, \Rightarrow$ und - sei wie üblich definiert. Die Semantik der Operatoren $\bar{\land}, \bar{\lor}$ und $\bar{\Leftrightarrow}$ in einer Booleschen Algebra \mathcal{B} sei wie folgt definiert:

$$x \bar{\wedge}^{\mathcal{B}} y = \neg^{\mathcal{B}} (x \wedge^{\mathcal{B}} y)$$
$$x \bar{\vee}^{\mathcal{B}} y = \neg^{\mathcal{B}} (x \vee^{\mathcal{B}} y)$$
$$x \bar{\Leftrightarrow}^{\mathcal{B}} y = \neg^{\mathcal{B}} (x \Leftrightarrow^{\mathcal{B}} y)$$

- (a) Definieren Sie mithilfe von struktureller Rekursion eine Funktion $\hat{} \in For \to For$, sodass für alle $A \in For$ und jede Boolesche Algebra \mathcal{B} gilt:
 - (i) $\hat{\hat{A}} = A$
 - (ii) $\hat{\mathcal{B}}\hat{A} = \mathcal{B}A$
- (b) Die Gleichung (ii) kann durch strukturelle Induktion über *A* gezeigt werden. Geben Sie den Teilbeweis für die folgende Gleichung an:

$$\widehat{\mathcal{B}}(\widehat{A_1 \wedge A_2}) = \mathcal{B}(A_1 \wedge A_2)$$

(c) Zeigen Sie, dass für jede Boolesche Algebra \mathcal{B} gilt: $\bar{\Leftrightarrow}^{\hat{\mathcal{B}}} = \Leftrightarrow^{\mathcal{B}}$. Verwenden Sie dabei, dass in jeder Booleschen Algebra die Gleichung $x \Leftrightarrow y = (x \land y) \lor (\neg x \land \neg y)$ gilt.

Aufgabe 3.11: (Nicht ganz so) geheime Belegungen Auf dem Computer einer Bank gibt es eine geheime Belegung $\sigma \in Var \to \mathbb{B}$ und eine geheime Variable $X \in Var$. Über das Internet hat Fritz Schlau Zugriff auf ein Programm, das zu jeder Formel A den Wert $\mathcal{T}(X \Leftrightarrow A)\sigma$ liefert. Eine Bankangestellte verrät Fritz in einer Bar, um welche Variable es sich bei X handelt. Für jede Variable $Y \in Var$ ist Fritz jetzt mithilfe nur eines Aufrufes des Programms in der Lage, den Wert $\mathcal{T}(Y)\sigma$ zu ermitteln. Warum?