

9. Übungsblatt zu Computationale Logik, SS 2004

Prof. Dr. Gert Smolka, Marco Kuhlmann (MSc) http://www.ps.uni-sb.de/courses/cl-ss04/

Lesen Sie im Skript: Kapitel 7

Aufgabe 9.1 (Schwächste Vorbedingungen) Sei $B = \{Z = X \cdot Y\}$. Geben Sie für die folgenden Programme jeweils eine schwächste Vorbedingung für B an.

- a) X := X
- b) Z := X
- c) if $X \leq Y$ then Z := X + Y else skip
- d) while $X \leq X \text{ do } X := X$

Aufgabe 9.2 (Schwächste Vorbedingungen) Bestimmen Sie die schwächsten Vorbedingungen für

- a) $(X := X + 1)^*$ und $\{X > 5\}$,
- b) $(X := X + 1)^*$ und $\{X < 5\}$,
- c) while $X \le 7$ do X := X + 1 und $\{X \ge 8\}$.

Aufgabe 9.3 (Notwendigkeitsoperator) Beschreiben Sie den Notwendigkeitsoperator $\mathcal N$ für Programme auf drei verschiedene Arten:

- a) mithilfe der Denotationsfunktion \mathcal{R} für Programme,
- b) mithilfe der Funktion \mathcal{N}' ,
- c) mithilfe der durch die Verifikationsregeln definierten Menge IPC.

Aufgabe 9.4 (Partielle Korrektheitsaussagen) Beschreiben Sie die Menge

$$M = \{ ApB \in \mathcal{P}(\Sigma) \times Pro \times \mathcal{P}(\Sigma) \mid \exists A' \subseteq \Sigma \colon A \subseteq A' \land A'pB \in IPC \}$$

auf zwei verschiedene Arten:

- a) mithilfe des Notwendigkeitsoperators $\mathcal N$ für Programme,
- b) mithilfe der Denotationsfunktion \mathcal{R} für Programme.

Aufgabe 9.5 (Zuweisung) Viele Anfänger glauben, dass

$$B(X:=a)B[X:=a]$$

für jede Bedingung B und jede Zuweisung X := a eine gültige partielle Korrektheitsaussage ist. Zeigen Sie mit einem Gegenbeispiel, dass dies nicht der Fall ist.

Aufgabe 9.6 (Until-Schleifen) Leiten Sie eine Verifikationsregel für Until-Schleifen

do
$$p$$
 until $b \stackrel{\text{def}}{=} p$; $(\neg b?; p)^*; b?$

aus den Verifikationsregeln für reguläre Programme ab.

Aufgabe 9.7 (For-Schleifen) Leiten Sie eine Verifikationsregel für For-Schleifen

for *X* to *a* do *p*
$$\stackrel{\text{def}}{=}$$
 $((X \le a)?; p; X := X + 1)^*; (X > a)?$

aus den Verifikationsregeln für reguläre Programme ab.

Aufgabe 9.8 (Quadrieren) Sei das Programm

$$Y := 0$$
; $Z := 0$; while $Z \le X - 1$ do $(Y := Y + Z + Z + 1; Z := Z + 1)$

und die Spezifikation ($\{X \ge 0\}$, $\{Y = X^2\}$) gegegeben.

- a) Geben Sie die Verifikationsbedingungen für das Programm und die Spezifikation an.
- b) Geben Sie eine Invariante an, sodass die Verifikationsbedingungen erfüllt sind.

Aufgabe 9.9 (Multiplizieren) Sei das Programm

$$Z := 0$$
; $C := X + X$; while $C \ge 1$ do $(Z := Z + Y)$; $C := C - 2$

und die Spezifikation ($\{X \ge 0\}, \{Z = X \cdot Y\}$) gegegeben.

- a) Geben Sie die Verifikationsbedingungen für das Programm und die Spezifikation an.
- b) Geben Sie eine Invariante an, sodass die Verifikationsbedingungen erfüllt sind.

Aufgabe 9.10 (Quadratwurzel) Sei das Programm

$$N := 1$$
; (while $N * N \le X$ do $N := N + 1$); $N := N - 1$

und die Spezifikation ($\{X \ge 0\}$, $\{N^2 \le X < (N+1)^2\}$) gegegeben. Wir nehmen an, dass die arithmetischen Ausdrücke für Programme um Multiplikation erweitert sind.

- a) Geben Sie die Verifikationsbedingungen für das Programm und die Spezifikation an.
- b) Geben Sie eine Invariante an, sodass die Verifikationsbedingungen erfüllt sind.
- c) Sei die erste Zuweisung des Programms zu N := 0 verändert. Geben Sie eine Invariante an, sodass die Verifikationsbedingungen für das geänderte Programm und die obige Spezifikation erfüllt sind.