

Assignment 4 Introduction to Computational Logic, SS 2005

Prof. Dr. Gert Smolka, Dr. Lutz Straßburger http://www.ps.uni-sb.de/courses/cl-ss05/

Boolean Equations

Let BA (Boolean Axioms) be the following set of equations:

Commutativity:xy = yxx + y = y + xAssocativity:(xy)z = x(yz)(x + y) + z = x + (y + z)Distributivity:x(y + z) = xy + xzx + yz = (x + y)(x + z)Complements: $x\bar{x} = 0$ $x + \bar{x} = 1$ Identities:1x = x0 + x = x

You will show that the following equations can be deduced from BA.

Idempotence:	xx =	x	x + x	=	x
Dominance:	0x =	0	1 + x	=	1
Absorption:	x(x+y) =	x	x + xy	=	x
Resolution:	$xy + \bar{x}z =$	$xy + \bar{x}z + yz$	$(x+y)(\bar{x}+z)$	=	$(x+y)(\bar{x}+z)(y+z)$
Double negation:	$ar{ar{x}}$ =	X	$ar{ar{x}}$	=	x
Dual identities:	Ī =	0	Ō	=	1
deMorgan:	$\overline{xy} =$	$\bar{x} + \bar{y}$	$\overline{x+y}$	=	$\bar{x}\bar{y}$

We use BL (Boolean Laws) as name for the set of equations mentioned above.

Exercise 4.1 Prove the following:

- a) $BA \vdash xx = x$ Hint: start with xx = xx + 0 and then use complements
- b) $BA \vdash 0x = 0$ Hint: start with 0x = 0x + 0 and then use complements
- c) $BA \vdash x = x(x + y)$ Hint: start with x = x + 0 and then use (b)
- d) $BA \vdash xy + \bar{x}z = xy + \bar{x}z + yz$ Hint: start from left by using (c) (in the form of x = x(x+y) and $\bar{x} = \bar{x}(\bar{x}+y)$); later use (a)

Exercise 4.2 (Uniqueness of Complements) Prove the following:

$$\{xy = 0, x + y = 1\} \vdash^{\mathsf{BA}}_{\vdash \dashv_{\circ}} \{y = \bar{x}\}$$

Hint: The direction $\exists 0$ is easy. For \vdash_0 start from y and then use y = 1y and complements.

Exercise 4.3 Prove the following:

- a) $BA \vdash x = \overline{x}$
- b) $BA \vdash 0 = \overline{1}$
- c) $BA \vdash \bar{x} + \bar{y} = \overline{xy}$

Hint: In each case use an instance of the conservative deductive equivalence from Exercise 4.2.

Exercise 4.4 (Conservative Deduction) Prove the following:

a)
$$\{x = 1, y = 1\} \vdash_{\neg \circ}^{\mathsf{BL}} \{xy = 1\}$$

b) $\{x = 0, y = 0\} \stackrel{\mathsf{BL}}{\vdash} \neg_{\circ} \{x + y = 0\}$

c)
$$\{x \Rightarrow y = 1\} \vdash_{\neg}^{\mathsf{BL}} \{x = xy\}$$

d)
$$\{x = y\} \stackrel{\mathsf{BL}}{\vdash} \neg_{\circ} \{x \Leftrightarrow y = 1\}$$

e)
$$\{x = xy\} \vdash_{\neg_{\circ}}^{\mathsf{BL}} \{y = y + x\}$$

Exercise 4.5 Prove the following:

a)
$$\{0 = 1\} \stackrel{\mathsf{BL}}{\vdash} \{x = y\}$$

b) $\{x = 1, x \Rightarrow y = 1\} \stackrel{\mathsf{BL}}{\vdash} \{y = 1\}$ (Modus Ponens)

Exercise 4.6 Find an equation e such that $Sol_{\mathbb{N}}\{e\} \neq Sol_{\mathbb{Z}}\{e\}$. You can use the constants $+, -, \cdot, 0, 1$ and the variables x, y.

2005-05-06 13:20