

Assignment 7 Introduction to Computational Logic, SS 2005

Prof. Dr. Gert Smolka, Dr. Lutz Straßburger http://www.ps.uni-sb.de/courses/cl-ss05/

Exercise 7.1 (Sequent Calculus and Peirce's Law) Prove the sequent

 $\varnothing \Rightarrow ((x \to y) \to x) \to x$

in the symmetric sequent calculus used for the completeness proof of ND.

Exercise 7.2 (Combinatorial Proofs) Consider the propositional type $t = X \rightarrow X$.

- a) Find two different closed $\beta\eta$ -normal proof term for *t*.
- b) Find an ND proof for t.
- c) Find a closed combinatorial proof term for t.
- d) Find a combinatorial proof for t.

Exercise 7.3 (ND-Proofs) Consider now the Boolean term $t = ((x \rightarrow 0) \rightarrow x) \rightarrow x$.

- a) Show by rewriting with respect to BL that t is valid.
- b) Find a closed proof term for the propositional type corresponding to t.
- c) Find an ND-proof for t.
- d) The validity of t means that we can assume \bar{s} when we try to prove s. We can formulate this insight with the ND-proof rule

$$\frac{C, s \to 0 \Rightarrow s}{C \Rightarrow s}$$

Show that this rule can be simulated with the rules defining $\stackrel{\mathsf{N}}{\vdash}$.

Exercise 7.4 (Church numerals) Consider the propositional type

$$t = (X \to X) \to X \to X$$

We call a proof term *nice* if it is closed, $\beta\eta$ -normal, and does not contain δ .

- a) Give nice proof terms of type t. Explain how the nice proof terms of type t correspond to the natural numbers.
- b) Convince yourself that $\beta\eta$ -reduction transforms an application pq of two nice proof terms p, q into a nice proof term.
- c) Give a nice proof term of type $t \rightarrow t \rightarrow t$ that corresponds to addition of natural numbers.

Exercise 7.5 (Proof Terms) Instead of the constants

$$\delta_t: \bar{\bar{t}} \to t$$

one can also have the constants

$$\phi_{s,t}: (\bar{s} \to \bar{t}) \to (\bar{s} \to t) \to s$$

where \bar{t} abbreviates $t \to 0$.

- a) Find a closed proof term for $\tau(\phi_{s,t})$ that does not use ϕ . (Recall that $\tau(p)$ is the type of p.)
- b) (Challenge!) Find a closed proof term for $\tau(\delta_t)$ that does not use δ but uses ϕ .

Exercise 7.6 (Properties of $\stackrel{\mathsf{N}}{\vdash}$) We consider sequents that may contain the constants \rightarrow and 0. Prove the following:

a) $C, s \Rightarrow t \xrightarrow{\mathsf{N}} C \Rightarrow s \to t$ b) $\forall C.(C \Rightarrow s \xrightarrow{\mathsf{N}} C \Rightarrow t) \quad \text{iff} \quad \xrightarrow{\mathsf{N}} s \Rightarrow t$

Exercise 7.7 (Higher-order Boolean Logic) Prove the following:

- a) $\mathsf{HB} \vdash x \land fx = x \land f1$
- b) $\mathsf{HB} \vdash \bar{x} \land fx = \bar{x} \land f0$
- c) $\mathsf{HB} \vdash fx = \bar{x} \land f0 + x \land f1$
- d) $\mathsf{HB} \vdash f0 \land f1 \rightarrow fx = 1$
- e) For all *s*, *t* of type *B*:

$$\mathsf{HB} \vdash s = t \iff \mathsf{HB} \vdash s[x := 0] = t[x := 0]$$
$$\land \mathsf{HB} \vdash s[x := 1] = t[x := 1]$$

2005-06-01 21:26

Recall that $HB = BA \cup \{BRep\}$, where BRep is

$$x \leftrightarrow y \wedge fx = x \leftrightarrow y \wedge fy$$

Exercise 7.8 (Higher-order Boolean Logic) Let *A* be a set of equations such that $BA \subseteq A$ and for all *s*, *t* of type *B*:

$$s = 1 \stackrel{A}{\vdash_{\circ}} t = 1 \quad \Rightarrow \quad A \vdash s \to t = 1$$

Prove $A \vdash x \leftrightarrow y \land fx \to fy = 1$. (Recall the operator precedence in the lecture notes.)

Exercise 7.9 (Higher-order Boolean Logic) Let \mathcal{D} be an interpretation that satisfies BA and also $fx = \bar{x} \wedge f0 + x \wedge f1$ (f and x are variables with types $B \rightarrow B$ and B, respectively). Prove $\mathcal{D}B = \{\mathcal{D}0, \mathcal{D}1\}$.