
2 An Axiomatization of Terms

Terms are a complex data structure. The main complications are:

1. The choice of argument variables does not matter. For instance, λx.x = λy.y .
To put it plain, we don’t get what we see.

2. An application st can only be formed if the types of s and t match.

There are two complementary methods for giving a precise definition of terms:

1. The constructive approach: Give a construction of terms in set theory.1

2. The axiomatic approch: Give an axiomatization of terms in set theory.2

The real numbers are a good example for a mathematical data structure defined

with the axiomatic approach. A well-known construction of the real numbers

uses so called Dedekind cuts and was devised by Richard Dedekind around 1860.

Another construction of the real numbers employs equivalence classes of ratio-

nal Cauchy sequences.

To validate an axiomatization, at least one model (i.e., a construction satisy-

ing the axioms) has to be devised. The added value that comes with an axiom-

atization is the fact that it doesn’t commit us to a particular model. Rather, an

axiomatization gives us the freedom to work with different models, as long as

they satisfy the axioms.

An axiomatization saves as basis for proofs. Proofs based on an axiomatiza-
tion are automatically valid for all models of the axiomatization.

We will now develop an axiomatization of terms that we will use as the base

for all proofs and algorithms to come. The axiomatization captures the syntactic

aspects of terms. The semantic interpretation of terms will be defined on top of

the axiomatization.

2.1 Types

We start with an axiomatization of types.

2.1.1 Axiomatization

We assume two sets

Sor ⊆ Ty

1 Constructions are related to implementations in programming.
2 Axiomatizations are related to abstract data types (ADTs) in programming.

© G. Smolka 10 2006/5/17

whose elements we call sorts and types, respectively. Types that are not sorts

are called functional types. Furthermore, we assume two functions:

F ∈ Ty → Ty → Ty function type

| · | ∈ Ty → N size

and arrange the following notations:

C,D ∈ Sor sorts

S, T ∈ Ty types

S → T ⇝ FST

The first and the second notational line introduce so-called meta-variables. The

first notational line states that the meta-variables C , D will always denote sorts,

if not said otherwise. Similiarly, the second notational line states that the meta-

variables S , T will always denote types. Finaly, the last line says that we may

write S → T in place of FST .

We assume that types satisfy the following axioms (i.e., basic properties):

Par For every type T , exactly one of the following conditions is satisfied:

(1) T ∈ Sor (2) ∃S, S′ : T = S → S′

CS |C| = 1

CF |S → T | = 1+ |S| + |T |

IF S → T = S′ → T ′ ⇐⇒ S = S′ ∧ T = T ′

Inf Sor ≅ N

Axiom Par says that a type is either basic or functional, and that there is no

type that is both basic and functional. The axiom CF says that every functional
types can be obtained in finitely many steps from sorts. Together, Par and CF

make it possible to prove claims about types by induction on |T |. Axioms IF says

that two functional types are equal if both their argument types and their result

types are equal. The final axiom Inf says that we may think of sorts as natural

numbers. Formally, X ≅ Y means that there is a bijection between the set X and

the set Y .

We insist on infinitly many sorts since we see sorts as names that may or may

not be given a fixed meaning by an interpretation. Interpretations capture the

semantic aspects of terms and will be defined later.

Every axiom holds for all possible values of the unquantified meta-variables

occurring in it (so-called universal interpretation). For instance, the axiom CS
holds for all sorts C , and the axiom CF holds for all types S and T . Written

explicitly, axioms CS and CF look as follows:

© G. Smolka 11 2006/5/17

CS ∀C ∈ Sor : |C| = 1

CF ∀S, T ∈ Ty : |S → T | = 1+ |S| + |T |

2.1.2 Standard Model

We obtain a model of the axiomatization of types by defining the sets Sor and

Ty as follows:

Sor := {1} ×N

Ty := Sor ∪ ({2} × (Ty × Ty))

The equation for Ty is to be interpreted recursively, that is, Ty contains only
those pairs that can be obtained in finitely many steps from Sor . The definition

of F and | · | is now straightforward:

FST := (2, (S, T))

|(1, n)| := 1

|(2, (S, T))| := 1+ |S| + |T |

Note that the definition of | · | is recursive since the definition of Ty is recursive.

2.2 Terms

We continue with an axiomatization of terms.

2.2.1 Axiomatization

The axiomatization of terms assumes three sets

Var ⊆ Ind ⊆ Ter

whose elements are called variables, individual names and terms, respectively.
Individual names that are not variables are called constants. We assume

Ty ∩ Ter = 0

and arrange the following notations:

x,y, z ∈ Var variables

u,v ∈ Ind individual names

s, t ∈ Ter terms

Con ⇝ Ind − Var constants

a,b, c ∈ Con constants

Nam ⇝ Sor ∪ Ind names

© G. Smolka 12 2006/5/17

We assume the following functions

A ∈ Ter ⇀ Ter ⇀ Ter application

L ∈ Var → Ter → Ter abstraction

τ ∈ Ter → Ty type

| · | ∈ Ter → N size

N ∈ (Ty ∪ Ter)→ P(Nam) names

S ∈ Sub → Ter → Ter substitution

and arrange the following notations:

st ⇝ Ast

λx.t ⇝ Lxt

t:T ⇝ τt = T

Sub ⇝ {f ∈ Ind → Ter | ∀u : τ(fu) = τu } substitutions

θ ∈ Sub

s[x := t] ⇝ S (λy ∈ Var . if x = y then t else y) s

The functions A and L provide for the construction of applications and abstrac-

tions. Note that A is a partial function. This reflects the fact that applicative

terms can only be formed if a type constraint is satisfied. The function τ yields

the type of a term. The existence of τ formalizes the assumption that every term

has exactly one type and that individual names come with a built-in type. The

size function provides for the axiomatization of the fact that every term can be

constructed in finitely many steps from individual names. The functionN yields

all names that occur in a term. The function S provides for substitution.

Here are the axioms for terms:

DA1 Dom A = { t | τt functional}

DA2 Dom (At) = { s | ∃T : τt = τs → T }

Par For every term t, exactly one of the following conditions is satisfied:

(1) t ∈ Ind (2) ∃s, s′ : t = ss′ (3) ∃x, s : t = λx.s

IA st = s′t′ ⇐⇒ s = s′ ∧ t = t′

IL λx.t = λx′.t′ ⇐⇒ x′ ∉N (λx.t) ∧ t′ = t[x := x′]

TA τt = τs → τ(ts)

TL τ(λx.t) = τx → τt

© G. Smolka 13 2006/5/17

CN |u| = 1

CA |ts| = 1+ |t| + |s|

CL |λx.t| = 1+ |t|

NS NC = {C}

NF N (S → T) =N S ∪NT

NN Nu = {u}

NA N (ts) =N t ∪N s

NL N (λx.t) =N (τx)∪ (N t − {x})

SN Sθu = θu

SA Sθ(ts) = (Sθt)(Sθs)

SL (∀u ∈N (λx.t) : x ∉N (θu)) =⇒ Sθ(λx.t) = λx.S(θ[x := x])t

Inf ∀T : {x | τx = T } ≅ N ∧ { c | τc = T } ≅ N

Most of the axioms are obvious given an intuitive understanding of terms. We

will say more about the axioms IL, SL and Inf.

IL states under which conditions two descriptions λx.t and λx′.t′ yield the

same term. Read from right to left, IL makes precise which variables can be used
as argument variable in the description of an abstraction, and how the choice of

the argument variable affects the body of the description.

Inf states that there are infinitly many variables and constants for every type.

SL states how substitution applies to abstractions. As we will see, the precon-

dition of SL can always be satisfied by choosing a suitable argument variable.

If an axiom contains an application of the partial function A or S, the axiom

holds only for those values of the meta-variables that make the applications of A
and S well-defined. For instance, the axiom TA holds only for those terms s and t
such that t is functional and s ∈ Dom (At). Written explicitly, axioms

TA τt = τs → τ(ts)

TL τ(λx.t) = τx → τt

look as follows:

TA ∀s, t ∈ Ter : t ∈ Dom A ∧ s ∈ Dom (At) =⇒ τt = F(τs)(τ(Ats))

TL ∀x ∈ Var ∀t ∈ Ter : τ(Lxt) = F(τx)(τt)

Note that the meta-variable x used in the compact formulation of TL is not bound

by the preceeding λ. Make sure you understand why this is the case.

© G. Smolka 14 2006/5/17

2.2.2 Standard Model

The standard model for terms extends the standard model for types. The defini-

tion of variables, constants and individual names is easy:

Con := {3} × (N× Ty)

Var := {4} × (N× Ty)

Ind := Con∪ Var

The definition of the set Ter requires more ingenuity. We will first define recur-

sively a larger set whose elements we call quasi-terms:

QT := Ind ∪ ({5} × (QT ×QT)) ∪ ({6} × (Ty ×QT)) ∪ ({7} ×N)

Applications are modeled as pairs starting with 5, abstractions as pairs starting

with 6, and argument references (de Bruijn indices) as pairs starting with 7.

Let X be a set. We use X∗ denote the set of all tuples whose components are

in X. The elements of X∗ may be thought of as strings or vectors. We use the

following notations for v ∈ X∗:

• v.n denotes the (n+ 1)-th component of v. For instance, 〈3,7,4〉.1 = 7.

• x :: v denotes the tuple obtained from v by adding x as leftmost component.

For instance, 9 :: 〈3,7,4〉 = 〈9,3,7,4〉.

To define the set Ter ⊆ QT of terms, we will first define an admissibiliy relation

R ⊆ Ty∗ ×QT × Ty. Given R, we define the set of terms as follows:

Ter := { t ∈ QT | ∃T : (〈〉, t, T) ∈ R }

Intuitively, this definition may be read as follows: a quasi-term t is a term if it

doesn’t contain dangling de Bruijn indices and if it is well-typed.

For the definition of R we introduce the following notations:

st ⇝ (5, (s, t))

λT.t ⇝ (6, (T , t))

We define R recursively by the following inference rules, where we assume

Γ ∈ Ty∗, n ∈ N, S, T ∈ Ty, and s, t ∈ Ter .

c = (3, (n, T))

(Γ , c, T) ∈ R

x = (4, (n, T))

(Γ , x, T) ∈ R

i = (7, n) Γ .n = T

(Γ , i, T) ∈ R

(Γ , t, S → T) ∈ R (Γ , s, S) ∈ R

(Γ , ts, T) ∈ R

(S :: Γ , t, T) ∈ R

(Γ , λS.t, S → T) ∈ R

It remains to define the functions A, L, τ, | · |, N , and S. The definition of A,
τ, | · |, and N is straightforward, while L and S require more ingenuity. It also

remains to verify that the axioms are satisfied, which in some cases is tedious.

© G. Smolka 15 2006/5/17

2.3 Proof of Basic Properties

Based on the axioms, we can now prove properties that are satisfied by every

model of axiomatization of terms.

In the following, we assume that some model is given. Since we don’t make

any special assumptions about this model, the following propositions will hold

for all models.

Proposition 2.1 NT is a finite set.

Proof Exercise. �

Proposition 2.2 N t is a finite set.

Proof By induction on |t|. Case analysis according to Par.

Case t = u. Then N t = {u} by NN.

Case t = ss′. Then N t = N s ∪ N s′ by NA. Hence N t finite by induction

hypothesis.

Case t = λx.s. Then N t = N (τx) ∪ (N s − {x}) by NL. Hence N t finite by

Proposition 2.1 and induction hypothesis. �

Proposition 2.3 (Type Preservation) τ(Sθt) = τt

Proof By induction on |t|. Case analysis according to Par.

Case t = u. Then τ(Sθt) = τ(θu) = τu = τt by SN.

Case t = ss′. Then

Sθt = (Sθs)(Sθs′) SA

τ(Sθs) = τ(Sθs′)→ τ(Sθt) TA

τs = τs′ → τ(Sθt) induction hypothesis

Since τs = τs′ → τt by TA, we have τ(Sθt) = τt by IF.

Case t = λx.s. By Proposition 2.2, Inf and IL we can assume x ∉N (θu) for all

u ∈N t. Hence

τ(Sθt) = τ(λx.S(θ[x := x])s) SL

= τx → τ(S(θ[x := x])s) TL

= τx → τs induction hypothesis

= τt TL �

© G. Smolka 16 2006/5/17

Proposition 2.4 (Coincidence) (∀u ∈N t : θu = θ′u) =⇒ Sθt = Sθ′t

Proof Exercise. �

Proposition 2.5 S(λu∈Ind.u)t = t

Proof Exercise. �

2.4 Renaming

Proposition 2.6 (Renaming) y ∉N t =⇒ (t[x:=y])[y :=s] = t[x:=s]

Proposition 2.7 v ∈N (Sθt) ⇐⇒ (∃u ∈N t : v ∈N (Sθu))

Proposition 2.8 t′ = t[x:=x′] =⇒ (t = t′[x′:=x] ⇐⇒ x′ ∉N (λx.t))

Proposition 2.9 λx.t = λx′.t′ ⇐⇒ t = t′[x′:=x] ∧ t′ = t[x:=x′]

2.5 Beta and Phi

We fix a function

β ∈ Ter → Ter → Ter

such that

β(λx.t)s = t[x:=s]

for every variable x and all terms s, t such that τx = τs. The existence of β
follows from IL and Proposition 2.6.

Exercise 2.10 Explain why the existence of β is not obvious.

Proposition 2.11 (Beta) For every abstraction t : S → T and every variable x : S,

the following equivalence holds:

t = λx.s ⇐⇒ x ∉N t ∧ s = βtx

Proof Let t : S → T be an abstraction and x:S be a variable. Since t is an abstrac-
tion, there exist x′ and s′ such that t = λx′.s′. Since βtx = s′[x′:=x] it remains

to show that

λx′.s′ = λx.s ⇐⇒ x ∉N t ∧ s = s′[x′:=x]

for ever term s. This property is an instance of Axiom IL. �

© G. Smolka 17 2006/5/17

There are exactly as many ways to describe an abstraction t : S → T with λ as

there are variables x : S such that x ∉N t. Often it is convenient to have a fixed

λ-description for every abstraction. To this purpose we fix a function

ϕ ∈ Ter → Var

such that ϕt ∉N t and ϕt : S for every abstraction t : S → T . The existence of

such a function follows from Proposition 2.2 and Inf.

Proposition 2.12 (Unique Decomposition) Let t be an abstraction and x = ϕt.
Then there exists one and only one term s such that t = λx.s.

© G. Smolka 18 2006/5/17

	An Axiomatization of Terms
	Types
	Axiomatization
	Standard Model

	Terms
	Axiomatization
	Standard Model

	Proof of Basic Properties
	Renaming
	Beta and Phi

