Ref
$$\frac{s=s}{s=s}$$
 Sym $\frac{s=t}{t=s}$ Trans $\frac{s=s'-s'=t}{s=t}$
CL $\frac{s=s'}{st=s't}$ CR $\frac{t=t'}{st=st'}$ $\xi \frac{s=s'}{\lambda x.s=\lambda x.s'}$
 $\beta \frac{s=s'+s}{(\lambda x.s)t=s[x:=t]}$ $\eta \frac{s=s}{\lambda x.sx=s}$ $x \notin \mathcal{N}s$
Figure 2: Deduction rules

4 Equational Deduction

Given an equational specification, one can infer semantically entailed equations by "replacing equals with equals", a proof method known as equational deduction. Equational deduction is a syntactic proof method since it is based on syntactic rules rather than semantic arguments.

Figure 2 shows the so-called **deduction rules**. Each deduction rule states a pattern according to which an equation (the **conclusion** below the bar) can be obtained from given equations (the **premises** above the bar). Formally, each rule describes a set of pairs (*E*, *e*) (the **instances of the rule**) where *E* is the set of premises and *e* is the conclusion. The rules ξ and η , for instance, describe the following sets of instances:

$$\xi: \{ (\{s = s'\}, \lambda x.s = \lambda x.s') \mid x \in Var \land s, s' \in Ter \land \tau s = \tau s' \}$$

$$\eta: \{ (\emptyset, \lambda x.sx = s) \mid s \in Ter \land x \notin \mathcal{N}s \}$$

The rules Ref, Sym and Trans provide the equivalence properties of equality. The rules CL, CR and ξ provide the so-called congruence properties of equality. They make it possible to replace equals with equals within a term. Note that rule ξ exploits the fact that variables are universally quantified (*x* may occur in *s* and *s'*). Rule β and η provide basic equational properties of abstractions we have discussed before. The fundamental property of the deuction rules is soundness:

Proposition 4.1 (Soundness) If (E, e) is an instance of a deduction rule, then $E \models e$.

A **derivation of** e from A is a tuple (e_1, \ldots, e_n) such that $e = e_n$ and for every $i \in \{1, \ldots, n\}$: $e_i \in A$ or there exists a set $E \subseteq \{e_1, \ldots, e_{i-1}\}$ such that (E, e_i)

© G. Smolka

is an instance of a deduction rule. We can now define **deductive entailment** as follows:

 $A \vdash e :\iff \exists$ derivation of *e* from *A* $A \vdash E :\iff \forall e \in E: A \vdash e$ *A* entails *e* deductively *A* entails *E* deductively

Proposition 4.2 (Soundness) $A \vdash e \implies A \models e$

Deductive equivalence of specifications is defined as follows:

 $A \mapsto A' :\iff A \vdash A' \land A' \vdash A$ A, A' deductively equivalent

By the soundness property we know that deductive equivalence implies semantic equivalence:

Proposition 4.3 $A \mapsto A' \implies A \vDash A'$

Proposition 4.4 (Extensionality)

1. $\{\lambda x.s = \lambda x.t\} \mapsto \{s = t\}$ 2. $x \notin \mathcal{N}(s = t) \implies \{sx = tx\} \mapsto \{s = t\}$

Proof Here is a derivation that proves \vdash of (1):

$\lambda x.s = \lambda x.t$	
$(\lambda x.s)x = (\lambda x.t)x$	CL
$(\lambda x.s)x = s$	β
$s = (\lambda x.s)x$	Sym
$(\lambda x.t)x = t$	β
$s = (\lambda x.t)x$	Trans
s = t	Trans

The other proofs are similar. Exercise!

Proposition 4.5 (Finiteness) If $A \vdash e$, then there exists a finite subset $A' \subseteq A$ such that $A' \vdash e$.

Example 4.6 Let fyx = a be an equation where f and a are constants and x and y are variables such that $\tau x = \tau y$. The following outlines a derivation of

fyx = a from $\{fxy = a\}$.

	fxy = a		
\vdash	$\lambda x.fxy = \lambda x.a$	ξ	
\vdash	$\lambda y x. f x y = \lambda y x. a$	ξ	
\vdash	$(\lambda y x.f x y)x = (\lambda y x.a)x$	CL	
\vdash	$\lambda x'.fx'x = \lambda x.a$	β , Sym, Trans	
\vdash	$(\lambda x'.fx'x)y = (\lambda x.a)y$	CL	
\vdash	f y x = a	β , Sym, Trans	

The example suggests that we can deduce from *e* every instance of *e* that is obtained by instantiation of some variables of *e*. This property is called *genera-tivity*. We will make use of the following notation:

 $Ker\theta := \{ u \in Ind \mid \theta u \neq u \}$ Kernel of θ

Proposition 4.7 (Generativity) $Ker\theta \subseteq Var \implies \{e\} \vdash S\theta e$

This proposition can be proven with the following lemma:

Lemma 4.8 $\emptyset \vdash S\{x_1 := s_1, ..., x_n := s_n\}t = (\lambda x_1 ... x_n. t)s_1 ... s_n$

Proof By induction on *n*.

Deductive generativity implies semantic generativity (by soundness):

Proposition 4.9 (Generativity) $Ker\theta \subseteq Var \implies \{e\} \models S\theta e$

A substitution θ is **invertible** if there exists a substitution ψ such that $S\psi(S\theta s) = s$ for all terms *s*. A **variable renaming** is an invertible substitution θ such that $Ker\theta \subseteq Var$.

Proposition 4.10 (Variable Renaming) θ variable renaming $\Rightarrow \{e\} \mapsto \{S\theta e\}$

Proof Easy consequence of Generativity.

Another important property of the entailment relations is *stability*. We say that a deduction rule is **stable** if for every instance (E, e) of the rule and every substitution θ the pair $(\mathbf{S}\theta E, \mathbf{S}\theta e)$ is an instance of the rule.

Proposition 4.11 All deduction rules but ξ are stable.

We say that a substitution θ is **stable** for an equation *e* if it satisfies the following conditions:

© G. Smolka

2006/6/1

1. $Ker\theta \subseteq Con$

2. $\forall c \in \mathcal{N}e \ \forall x \in \mathcal{N}(\mathbf{S}\theta c): x \notin \mathcal{N}e$

We say that a substitution θ is **stable** for a set of equations *E* if θ is stable for every equation in *E*.

Proposition 4.12 If $Ker\theta \subseteq Con$ and θc is closed for all constants c, then θ is stable for every equation.

Proposition 4.13 (Stability) Let θ be stable for *A*. Then:

1. $A \vdash e \implies \mathbf{S}\theta A \vdash \mathbf{S}\theta e$ 2. $A \models e \implies \mathbf{S}\theta A \models \mathbf{S}\theta e$

The proof of this proposition is not straightforward.

Example 4.14 By Generativity we know $\{fax = x\} \vdash fay = y$. The substitution $\theta = \{a := x\}$ is not stable for $\{fax = x\}$ and in fact $\{fxx = x\} \not\vdash fxy = y$ since there is structure A such that $A \models fxx = x$ and $A \not\models fxy = y$. Exercise: Find such a structure.

A **duality** for a specification *A* is a substitution δ such that:

- 1. δ stable for *A*
- 2. $\forall s: A \vdash \mathbf{S}\delta(\mathbf{S}\delta s) = s$

3. $A \vdash \mathbf{S}\delta A$

Proposition 4.15 (Duality) Let δ be a duality for *A*. Then:

1. $A \vdash e \iff A \vdash \mathbf{S}\delta e$ 2. $A \models e \iff A \models \mathbf{S}\delta e$

Proof We proof (1) as follows:

$A \vdash e \implies \mathbf{S}\delta A \vdash \mathbf{S}\delta e$	stability
$\Rightarrow A \vdash \mathbf{S}\delta e$	δ duality, (3)
\Rightarrow S $\delta A \vdash$ S $\delta ($ S $\delta e)$	stability
$\Rightarrow A \vdash e$	δ duality, (3) and (2)

The proof of (2) is similar and exploits soundness.

Example 4.16 $\delta = \{0:=1, 1:=0, +:=\cdot, \cdot:=+\}$ is a duality for BA that satisfies $S\delta(BA) = BA$ and $S\delta(S\delta s) = s$.

© G. Smolka

2006/6/1