
Ref
s = s

Sym
s = t

t = s
Trans

s = s′ s′ = t

s = t

CL
s = s′

st = s′t
CR

t = t′

st = st′
ξ

s = s′

λx.s = λx.s′

β
(λx.s)t = s[x:=t]

η
λx.sx = s

x ∉N s

Figure 2: Deduction rules

4 Equational Deduction

Given an equational specification, one can infer semantically entailed equations

by “replacing equals with equals”, a proof method known as equational deduc-

tion. Equational deduction is a syntactic proof method since it is based on syn-

tactic rules rather than semantic arguments.
Figure 2 shows the so-called deduction rules. Each deduction rule states a

pattern according to which an equation (the conclusion below the bar) can be

obtained from given equations (the premises above the bar). Formally, each rule

describes a set of pairs (E, e) (the instances of the rule) where E is the set of

premises and e is the conclusion. The rules ξ and η, for instance, describe the

following sets of instances:

ξ : { ({s = s′}, λx.s = λx.s′) | x ∈ Var ∧ s, s′ ∈ Ter ∧ τs = τs′ }

η : { (0, λx.sx = s) | s ∈ Ter ∧ x ∉N s }

The rules Ref, Sym and Trans provide the equivalence properties of equality.

The rules CL, CR and ξ provide the so-called congruence properties of equality.

They make it possible to replace equals with equals within a term. Note that

rule ξ exploits the fact that variables are universally quantified (x may occur in s
and s′). Rule β and η provide basic equational properties of abstractions we have

discussed before. The fundamental property of the deuction rules is soundness:

Proposition 4.1 (Soundness) If (E, e) is an instance of a deduction rule, then

E ⊨ e.

A derivation of e from A is a tuple (e1, . . . , en) such that e = en and for every

i ∈ {1, . . . , n}: ei ∈ A or there exists a set E ⊆ {e1, . . . , ei−1} such that (E, ei)

© G. Smolka 25 2006/6/1



is an instance of a deduction rule. We can now define deductive entailment as

follows:

A ⊢ e :⇐⇒ ∃ derivation of e from A A entails e deductively

A ⊢ E :⇐⇒ ∀e ∈ E : A ⊢ e A entails E deductively

Proposition 4.2 (Soundness) A ⊢ e =⇒ A ⊨ e

Deductive equivalence of specifications is defined as follows:

A ⊢⊣ A′ :⇐⇒ A ⊢ A′ ∧ A′ ⊢ A A, A′ deductively equivalent

By the soundness property we know that deductive equivalence implies semantic

equivalence:

Proposition 4.3 A ⊢⊣ A′ =⇒ A ⊨ôA′

Proposition 4.4 (Extensionality)

1. {λx.s = λx.t} ⊢⊣ {s = t}

2. x ∉N (s = t) =⇒ {sx = tx} ⊢⊣ {s = t}

Proof Here is a derivation that proves ⊢ of (1):

λx.s = λx.t

(λx.s)x = (λx.t)x CL

(λx.s)x = s β

s = (λx.s)x Sym

(λx.t)x = t β

s = (λx.t)x Trans

s = t Trans

The other proofs are similar. Exercise! �

Proposition 4.5 (Finiteness) If A ⊢ e, then there exists a finite subset A′ ⊆ A
such that A′ ⊢ e.

Example 4.6 Let fyx = a be an equation where f and a are constants and x
and y are variables such that τx = τy . The following outlines a derivation of

© G. Smolka 26 2006/6/1



fyx = a from {fxy = a}.

fxy = a

⊢ λx.fxy = λx.a ξ

⊢ λyx.fxy = λyx.a ξ

⊢ (λyx.fxy)x = (λyx.a)x CL

⊢ λx′.fx′x = λx.a β, Sym, Trans

⊢ (λx′.fx′x)y = (λx.a)y CL

⊢ fyx = a β, Sym, Trans �

The example suggests that we can deduce from e every instance of e that is

obtained by instantiation of some variables of e. This property is called genera-

tivity. We will make use of the following notation:

Kerθ := {u ∈ Ind | θu ≠ u } Kernel of θ

Proposition 4.7 (Generativity) Kerθ ⊆ Var =⇒ {e} ⊢ Sθe

This proposition can be proven with the following lemma:

Lemma 4.8 0 ⊢ S{x1:=s1, . . . , xn:=sn}t = (λx1 . . . xn. t)s1 . . . sn

Proof By induction on n. �

Deductive generativity implies semantic generativity (by soundness):

Proposition 4.9 (Generativity) Kerθ ⊆ Var =⇒ {e} ⊨ Sθe

A substitution θ is invertible if there exists a substitution ψ such that

Sψ(Sθs) = s for all terms s. A variable renaming is an invertible substitution θ
such that Kerθ ⊆ Var .

Proposition 4.10 (Variable Renaming) θ variable renaming =⇒ {e} ⊢⊣ {Sθe}

Proof Easy consequence of Generativity. �

Another important property of the entailment relations is stability. We say

that a deduction rule is stable if for every instance (E, e) of the rule and every

substitution θ the pair (SθE, Sθe) is an instance of the rule.

Proposition 4.11 All deduction rules but ξ are stable.

We say that a substitution θ is stable for an equation e if it satisfies the

following conditions:

© G. Smolka 27 2006/6/1



1. Kerθ ⊆ Con

2. ∀c ∈N e ∀x ∈N (Sθc) : x ∉N e

We say that a substitution θ is stable for a set of equations E if θ is stable for

every equation in E.

Proposition 4.12 If Kerθ ⊆ Con and θc is closed for all constants c, then θ is

stable for every equation.

Proposition 4.13 (Stability) Let θ be stable for A. Then:

1. A ⊢ e =⇒ SθA ⊢ Sθe

2. A ⊨ e =⇒ SθA ⊨ Sθe

The proof of this proposition is not straightforward.

Example 4.14 By Generativity we know {fax = x} ⊢ fay = y . The substitution

θ = {a := x} is not stable for {fax = x} and in fact {fxx = x} 6⊢ fxy = y
since there is structure A such that A ⊨ fxx = x and A 6⊨ fxy = y . Exercise:

Find such a structure. �

A duality for a specification A is a substitution δ such that:

1. δ stable for A

2. ∀s : A ⊢ Sδ(Sδs) = s

3. A ⊢ SδA

Proposition 4.15 (Duality) Let δ be a duality for A. Then:

1. A ⊢ e ⇐⇒ A ⊢ Sδe

2. A ⊨ e ⇐⇒ A ⊨ Sδe

Proof We proof (1) as follows:

A ⊢ e =⇒ SδA ⊢ Sδe stability

=⇒ A ⊢ Sδe δ duality, (3)

=⇒ SδA ⊢ Sδ(Sδe) stability

=⇒ A ⊢ e δ duality, (3) and (2)

The proof of (2) is similar and exploits soundness. �

Example 4.16 δ = {0:=1, 1:=0, +:=·, ·:=+} is a duality for BA that satisfies

Sδ(BA) = BA and Sδ(Sδs) = s. �

© G. Smolka 28 2006/6/1


	Equational Deduction

