$$
\begin{aligned}
& \text { Ref } \frac{\operatorname{Sym} \frac{s=t}{s=s} \quad \text { Trans } \quad \frac{s=s^{\prime} \quad s^{\prime}=t}{s=t}}{t=s} \quad \text { 有 } \\
& \mathrm{CL} \frac{s=s^{\prime}}{s t=s^{\prime} t} \quad \mathrm{CR} \frac{t=t^{\prime}}{s t=s t^{\prime}} \quad \xi \frac{s=s^{\prime}}{\lambda x . s=\lambda x . s^{\prime}} \\
& \beta \overline{(\lambda x . s) t=s[x:=t]} \quad \eta \frac{}{\lambda x . s x=s} x \notin \mathcal{N} s
\end{aligned}
$$

Figure 2: Deduction rules

4 Equational Deduction

Given an equational specification, one can infer semantically entailed equations by "replacing equals with equals", a proof method known as equational deduction. Equational deduction is a syntactic proof method since it is based on syntactic rules rather than semantic arguments.

Figure 2 shows the so-called deduction rules. Each deduction rule states a pattern according to which an equation (the conclusion below the bar) can be obtained from given equations (the premises above the bar). Formally, each rule describes a set of pairs (E, e) (the instances of the rule) where E is the set of premises and e is the conclusion. The rules ξ and η, for instance, describe the following sets of instances:

$$
\begin{aligned}
& \xi: \quad\left\{\left(\left\{s=s^{\prime}\right\}, \lambda x . s=\lambda x . s^{\prime}\right) \mid x \in \operatorname{Var} \wedge s, s^{\prime} \in \operatorname{Ter} \wedge \tau s=\tau s^{\prime}\right\} \\
& \eta: \quad\{(\emptyset, \lambda x \cdot s x=s) \mid s \in \operatorname{Ter} \wedge x \notin \mathcal{N} s\}
\end{aligned}
$$

The rules Ref, Sym and Trans provide the equivalence properties of equality. The rules CL, CR and ξ provide the so-called congruence properties of equality. They make it possible to replace equals with equals within a term. Note that rule ξ exploits the fact that variables are universally quantified (x may occur in s and s^{\prime}). Rule β and η provide basic equational properties of abstractions we have discussed before. The fundamental property of the deuction rules is soundness:

Proposition 4.1 (Soundness) If (E, e) is an instance of a deduction rule, then $E \vDash e$.

A derivation of e from A is a tuple $\left(e_{1}, \ldots, e_{n}\right)$ such that $e=e_{n}$ and for every $i \in\{1, \ldots, n\}: e_{i} \in A$ or there exists a set $E \subseteq\left\{e_{1}, \ldots, e_{i-1}\right\}$ such that (E, e_{i})
is an instance of a deduction rule. We can now define deductive entailment as follows:

$$
\begin{array}{ll}
A \vdash e: \Longleftrightarrow \exists \text { derivation of } e \text { from } A & \\
A \vdash E: \Longleftrightarrow \forall e \in E: A \vdash e & A \text { entails } e \text { deductively } \\
A \vdash E \text { deductively }
\end{array}
$$

Proposition 4.2 (Soundness) $A \vdash e \Longrightarrow A \vDash e$
Deductive equivalence of specifications is defined as follows:

$$
A \mapsto A^{\prime}: \Longleftrightarrow A \vdash A^{\prime} \wedge A^{\prime} \vdash A \quad A, A^{\prime} \text { deductively equivalent }
$$

By the soundness property we know that deductive equivalence implies semantic equivalence:

Proposition 4.3 $A \mapsto A^{\prime} \Longrightarrow A \boxminus A^{\prime}$

Proposition 4.4 (Extensionality)

1. $\{\lambda x . s=\lambda x . t\} H\{s=t\}$
2. $x \notin \mathcal{N}(s=t) \Longrightarrow\{s x=t x\} H\{s=t\}$

Proof Here is a derivation that proves \vdash of (1):

$$
\begin{array}{lr}
\lambda x . s=\lambda x . t & \\
(\lambda x . s) x=(\lambda x . t) x & \mathrm{CL} \\
(\lambda x . s) x=s & \beta \\
s=(\lambda x . s) x & \text { Sym } \\
(\lambda x . t) x=t & \beta \\
s=(\lambda x . t) x & \text { Trans } \\
s=t & \text { Trans }
\end{array}
$$

The other proofs are similar. Exercise!
Proposition 4.5 (Finiteness) If $A \vdash e$, then there exists a finite subset $A^{\prime} \subseteq A$ such that $A^{\prime} \vdash e$.

Example 4.6 Let $f y x=a$ be an equation where f and a are constants and x and y are variables such that $\tau x=\tau y$. The following outlines a derivation of
$f y x=a$ from $\{f x y=a\}$.

$$
\begin{aligned}
& f x y=a \\
& \vdash \lambda x . f x y=\lambda x . a \quad \xi \\
& \vdash \lambda y x . f x y=\lambda y x . a \quad \xi \\
& \vdash(\lambda y x . f x y) x=(\lambda y x . a) x \quad \text { CL } \\
& \vdash \lambda x^{\prime} . f x^{\prime} x=\lambda x . a \quad \beta \text {, Sym, Trans } \\
& \vdash\left(\lambda x^{\prime} . f x^{\prime} x\right) y=(\lambda x \cdot a) y \\
& \vdash f y x=a \\
& \beta \text {, Sym, Trans }
\end{aligned}
$$

The example suggests that we can deduce from e every instance of e that is obtained by instantiation of some variables of e. This property is called generativity. We will make use of the following notation:

$$
\operatorname{Ker} \theta:=\{u \in \operatorname{Ind} \mid \theta u \neq u\} \quad \text { Kernel of } \theta
$$

Proposition 4.7 (Generativity) $\operatorname{Ker} \theta \subseteq \operatorname{Var} \Longrightarrow\{e\} \vdash \mathbf{S} \theta e$
This proposition can be proven with the following lemma:
Lemma $4.8 \emptyset \vdash \mathbf{S}\left\{x_{1}:=s_{1}, \ldots, x_{n}:=s_{n}\right\} t=\left(\lambda x_{1} \ldots x_{n} . t\right) s_{1} \ldots s_{n}$
Proof By induction on n.
Deductive generativity implies semantic generativity (by soundness):
Proposition 4.9 (Generativity) $\operatorname{Ker} \theta \subseteq \operatorname{Var} \Longrightarrow\{e\} \vDash \mathbf{S} \theta e$
A substitution θ is invertible if there exists a substitution ψ such that $\mathrm{S} \psi(\mathbf{S} \theta s)=s$ for all terms s. A variable renaming is an invertible substitution θ such that $\operatorname{Ker} \theta \subseteq$ Var.

Proposition 4.10 (Variable Renaming) θ variable renaming $\Longrightarrow\{e\} \mapsto\{\mathbf{S} \theta e\}$
Proof Easy consequence of Generativity.
Another important property of the entailment relations is stability. We say that a deduction rule is stable if for every instance (E, e) of the rule and every substitution θ the pair ($\mathbf{S} \theta E, \mathbf{S} \theta e$) is an instance of the rule.

Proposition 4.11 All deduction rules but ξ are stable.
We say that a substitution θ is stable for an equation e if it satisfies the following conditions:

1. $\operatorname{Ker} \theta \subseteq \operatorname{Con}$
2. $\forall c \in \mathcal{N} e \forall x \in \mathcal{N}(\mathbf{S} \theta c): x \notin \mathcal{N} e$

We say that a substitution θ is stable for a set of equations E if θ is stable for every equation in E.

Proposition 4.12 If $\operatorname{Ker} \theta \subseteq C o n$ and θc is closed for all constants c, then θ is stable for every equation.

Proposition 4.13 (Stability) Let θ be stable for A. Then:

1. $A \vdash e \Longrightarrow \mathbf{S} \theta A \vdash \mathbf{S} \theta e$
2. $A \vDash e \Longrightarrow \mathbf{S} \theta A \vDash \mathbf{S} \theta e$

The proof of this proposition is not straightforward.
Example 4.14 By Generativity we know $\{f a x=x\} \vdash f a y=y$. The substitution $\theta=\{a:=x\}$ is not stable for $\{f a x=x\}$ and in fact $\{f x x=x\} \not \forall f x y=y$ since there is structure \mathcal{A} such that $\mathcal{A} \vDash f x x=x$ and $\mathcal{A} \not \vDash f x y=y$. Exercise: Find such a structure.

A duality for a specification A is a substitution δ such that:

1. δ stable for A
2. $\forall s: A \vdash \mathbf{S} \delta(\mathbf{S} \delta s)=s$
3. $A \vdash \mathbf{S} \delta A$

Proposition 4.15 (Duality) Let δ be a duality for A. Then:

1. $A \vdash e \Longleftrightarrow A \vdash \mathbf{S} \delta e$
2. $A \vDash e \Longleftrightarrow A \vDash \mathbf{S} \delta e$

Proof We proof (1) as follows:

$$
\begin{array}{rlr}
A \vdash e & \Rightarrow \mathbf{S} \delta A \vdash \mathbf{S} \delta e & \text { stability } \\
& \Rightarrow A \vdash \mathbf{S} \delta e & \delta \text { duality, (3) } \\
& \Longrightarrow \mathbf{S} \delta A \vdash \mathbf{S} \delta(\mathbf{S} \delta e) & \text { stability } \\
& \Rightarrow A \vdash e & \delta \text { duality, (3) and (2) }
\end{array}
$$

The proof of (2) is similar and exploits soundness.
Example $4.16 \delta=\{0:=1,1:=0,+:=\cdot, \cdot:=+\}$ is a duality for BA that satisfies $\mathbf{S} \delta(\mathrm{BA})=\mathrm{BA}$ and $\mathbf{S} \boldsymbol{\delta}(\mathbf{S} \delta s)=s$.

