
Specification BA

Sorts B

Constants 0,1 : B

¯ : B → B
+, · : B → B → B

Axioms

Commutativity xy = yx x +y = y + x
Assocativity (xy)z = x(yz) (x +y)+ z = x + (y + z)
Distributivity x(y + z) = xy + xz x + yz = (x + y)(x + z)
Identity x1 = x x + 0 = x
Complement xx̄ = 0 x + x̄ = 1

Figure 3: Specification BA

5 Boolean Algebra

Boolean Algebra is a theory that originated with the work of George Boole (Laws

of Thought, 1854). Boole’s goal was an axiomatization of the logical operations

conjunction, disjunction and negation. As it turned out, Boole’s axioms are also

satisfied by the set operations intersection, union and complement. Historically,

Boole’s work was the first investigation of abstract algebras, and it preceded

Cantor’s invention of set theory.

5.1 The Specification

Our starting point is the specification BA in Figure 3, which employs the following
constants:

0,1 : B

¯ : B → B negation

+, · : B → B → B disjunction, conjunction

For + and · we use infix notation, where · takes precedence over +. We also write
st for s · t, which gives us x + yz = x + (y · z) = (+)x((·)yz). This somewhat

daring notation will work fine as long as all variables have type B, which usually

will be the case.

The models of BA are known as Boolean Algebras. The two-valued Boolean

algebra T is the structure that interprets the sort B as B = {0,1}, the constants
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0 and 1 as their names suggest, the functional constant¯as negation, and + and ·
as disjunction and conjunction. It is easy to see that T is a proper model of BA.

We now come to the models of BA that interpret the functional constants as set

operations. To obtain such a model, we start from any set X. Now we interpret

the sort B as the set of all subsets of X (the power set of X). The basic con-

stants 0 and 1 are interpreted as 0 and X. The functional constants ,̄ +, and ·
are interpreted as the set operations complement with respect to X, union and

intersection. The verification that the thus obtained structure PX is a model of

BA is not difficult. The Boolean algebras PX are known as power set algebras.

Exercise 5.1 How would you prove BA 6⊢ 0 = 1?

The symmetric presentation of the axioms of BA in Figure 3 exhibits a prominent

duality of BA:

Proposition 5.2 The substitution δ = {0:=1, 1:=0, +:=·, ·:=+} is a duality of

BA that satisfies Sδ(BA) = BA and Sδ(Sδs) = s.

We will use the notation ŝ := Sδs and call ŝ the dual of s. For equations, the

duals ê are defined analogously. Observe, that BA contains e if and only if it

contains ê.

A Boolean variable is a variable of type B. A Boolean parameter is a constant

of type B that are different from 0, 1. In this chapter, we adopt the following

conventions:

• x, y , z denote Boolean variables.

• a, b, c denote Boolean parameters.

The set BT of Boolean terms is defined recursively as follows:

s ∈ BT ⊆ Ter ::= x | a | 0 | 1 | s̄ | s + s | s · s

A Boolean equation is an equation s = t where s and t are Boolean terms. Note

that every axiom of BA is a Boolean equation. A tautology is a Boolean equation

that is deducible from BA (i.e., BA ⊢ e). Two Boolean terms s, t are equivalent if

s = t is a tautology.

Eventually, we will prove that

BA ⊨ e ⇐⇒ BA ⊢ e ⇐⇒ B ⊨ e

holds for every Boolean equation e and every proper model B of BA. This sur-

prising result says that BA axiomatizes exactly those Boolean equations that are
valid in any non-trivial power set algebra, and also exactly those Boolean equa-

tions that are valid in the two-valued Boolean algebra T . Since T is finite (i.e.,

© G. Smolka 30 2006/6/4



Algebraic Specifications

BA is a typical example of an algebraic specification. Algebraic specifications

make only restricted use of functional types. They have limited expressivity

and enjoy special properties. We define algebraic specifications as follows.

An algebraic constant is a constant whose type has the form

C1 → ·· · → Cn → C

where n ≥ 0 and C1, . . . , Cn and C are sorts. In other words, an algebraic

constant is a constant that doesn’t take functional arguments. An algebraic

variable is a variable with a non-functional type (i.e., a sort). The set of

algebraic terms is defined recursively:

1. Every algebraic variable is an algebraic term.

2. If c : C1 → ·· · → Cn → C is an algebraic constant and s1 : C1, . . . , sn : Cn
are algebraic terms, then cs1 . . . sn is an algebraic term.

An algebraic equation is an equation s = t where s and t are algebraic terms.

An algebraic specification is a specification whose axioms are algebraic.

only two values for Boolean variables), the equivalences also provide us with an

algorithm that decides BA ⊨ e and BA ⊢ e.

A famous result of Boolean Algebra is Stone’s Representation Theorem (1936),

which says that every finite Boolean algebra is isomorphic to a power set algebra,

and that every infinite Boolean algebra is isomorphic to a subalgebra of a power
set algebra.

Exercise 5.3 Is there a Boolean algebra with 7 elements?

The specification BA is not minimal. In J. Eldon Whitesitt’s Boolean Algebra and

its applications (Addison Wesley, 1961) you will find a proof that the assocativity
axioms are deductive consequences of the other axioms.

There exist many equivalent specifications of Boolean Algebra. Here is one due

to Huntington and Robbins (1933) that consists of only four axioms:

x + y = y + x

(x + y)+ z = x + (y + z)

xy = x̄ + ȳ

(x + y)(x + ȳ) = x
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Idempotence xx = x x + x = x
Dominance 0x = 0 1+ x = 1
Absorption x(x + y) = x x + xy = x

Negation 1̄ = 0 0̄ = 1
de Morgan xy = x̄ + ȳ x + y = x̄ȳ
Resolution xy + x̄z = xy + x̄z + yz (x +y)(x̄ + z) = (x +y)(x̄ + z)(y + z)
Involution ¯̄x = x

Figure 4: Some useful tautologies

Let’s call this specification HR. It’s easy to see that BA ⊢ HR (see next section).

However, it took until 1996 that William McCune could prove the other direction
HR ⊢ BA with the help of an automated theorem prover. From this we learn that

deciding whether two specifications are equivalent can be extremely difficult.

You will find lots of interesting information about Boolean algebras in the Web

(start with Wickipedia).

5.2 Boolean Laws

The more tautologies one knows the easier it becomes to deduce new tautolo-

gies. Figure 4 collects some useful tautologies that together with the axioms in

Figure 3 form a collection of equations we call Boolean laws.

This section will show you how the tautologies in Figure 4 can be deduced

from the axioms of BA. This way you get familiar with the deductive structure of

BA. We start with a conversion proof for BA ⊢ xx = x:

xx = xx + 0 Identity

= xx + xx̄ Complement

= x(x + x̄) Distributivity

= x1 Complement

= x Identity

The proof uses the Commutativity and Assocativity tacitly and mentions the use

of the other axioms explicitly. By duality (Proposition 4.15), the proof also shows

that x + x = x is a tautology (since x + x = x is the dual of xx = x).

Exercise 5.4 Show that Dominance, Absorption, and Resolution are deducible

from BA. We offer the following hints:

a) To show 0x = 0, start with 0x = 0x + 0, then use complements.
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b) To show x = x(x + y), start with x = x + 0, then use Dominance and Dis-

tributivity.

c) To show xy + x̄z = xy + x̄z + yz, start from left and use Absorption in

the form of x = x(x + y) and x̄ = x̄(x̄ + y), then use Idempotence and

Complement.

Proposition 5.5 BA, 0=1 ⊢ x=y

Proof Follows with Identity and Dominance. �

The proposition implies that no proper Boolean Algebra equates 0 and 1.

To prove that Negation, de Morgan, and Involution are tautologies, we will em-

ploy a notion of deductive equivalence:

E
BA
⊢⊣ E′ :⇐⇒ BA∪ E ⊢ E′ ∧ BA∪ E′ ⊢ E deductive equivalence in BA

Proposition 5.6 (Uniqueness of Complements (UoC))

ab = 0, a+ b = 1
BA
⊢⊣ ā = b

The proposition is formulated with a notational convenience that omits the curly

braces in the official formulation {ab = 0, a+ b = 1}
BA
⊢⊣ {ā = b}.

Exercise 5.7 Find a proof for UoC.

With UoC, we can prove BA ⊢ s̄ = t by proving BA ⊢ st = 0 and BA ⊢ s + t = 1

(by Stability, Proposition 4.13). Thus to prove that the involution law ¯̄x = x is a

tautology it suffices to show that x̄x = 0 and x̄ +x = 1 are tautologies. This can

be done with the complement laws.

Exercise 5.8 Prove that Negation and de Morgan are tautologies (see Figure 4).

Proposition 5.9 (Zero-One (0-1)) If s is a Boolean term that contains neither
Boolean variables nor Boolean parameters, then BA ⊢ s = 0 or BA ⊢ s = 1.

Proof By induction on |s| with Negation, Identity, Dominance and Commutativ-

ity. �

We arrange the following notations:

s → t ⇝ s̄ + t implication

s ↔ t ⇝ (s → t)(t → s) equivalence

Note that ↔ describes the identity function for B if we take the two-valued
Boolean algebra T as interpretation. To save parentheses, we employ the op-

erator precedence · ≻ + ≻ → ≻ ↔.
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Equation Systems

We can see {ab = 0, a + b = 1} as an equation system where the parame-

ters a and b take the role of unknowns. Because of their generative nature,

variables are not suited as unknowns if more than one equation is involved.

A deductive equivalence E
BA
⊢⊣ E′ tells us that the equation systems E and

E′ have the same solutions for the parameters in a given Boolean algebra.

UoC tells us that the system {ab = 0, a + b = 1} has the same solutions

as {ā = b}. The equivalences (a) and (c) of Exercise 5.11 give us a method

that allows us to transform a finite Boolean equation system E into a single

term s such that E
BA
⊢⊣ {s = 1}.

Exercise 5.10 Show that the following equations are tautologies:

a) 1 → x = x, x → 0 = x̄

b) 0 → x = 1, x → 1 = 1

c) x → x = 1 reflexivity

d) x → y = ȳ → x̄ contraposition

e) x = x̄ → 0 contradiction

f) xy → z = x → y → z Schönfinkel

g) x +y = (x → y)→ y

h) x ↔ y = xy + x̄ȳ

Exercise 5.11 Prove the following deductive equivalences. You may use all

Boolean laws.

a) a = 1, b = 1
BA
⊢⊣ ab = 1

b) a → b = 1
BA
⊢⊣ a = ab

c) a ↔ b = 1
BA
⊢⊣ a = b

Equivalences (a) and (c) state interesting properties of Boolean algebras. They

say that in a Boolean algebra an equation s = t is equivalent to the “normalized”

equation s ↔ t = 1, and that two normalized equations s = 1 and t = 1 can be

combined into the normalized equation s · t = 1.
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