

Assignment 6 Introduction to Computational Logic, SS 2007

Prof. Dr. Gert Smolka, Mark Kaminski (MSc) www.ps.uni-sb.de/courses/cl-ss07/

Read in the lecture notes: Chapter 4,5

Exercise 6.1 (Eta) Let sx = tx be an equation such that the variable x does not occur in s = t.

- a) Give a conversion proof of s = t from $\{sx = tx\}$.
- b) Give a derivation of s = t from $\{sx = tx\}$. You may use ρ , β , η , Ref, Sym and Trans.
- c) Give a derivation of sx = tx from $\{s = t\}$. Use only ρ and β .

Exercise 6.2 (ξ) The ξ -rule

$$\frac{s=t}{\lambda x.s = \lambda x.t} \quad x \in Var$$

requires *x* to be a variable since otherwise the rule would be unsound.

- a) Let a, b be distinct parameters of sort **B**. Argue that $a = b \not\models (\lambda a.a) = (\lambda a.b)$.
- b) Let x, y be distinct variables of sort **B**. Argue that $x = y = (\lambda x. x) = (\lambda x. y)$.

Exercise 6.3 (Contexts) Let *C* be the context $\lambda s \in Ter.Lx(Lys)$. Give the following terms.

- a) *Cx*
- b) Cz where $x, y \neq z$
- c) $[z := x](\lambda x y.z)$ where $x, y \neq z$

Exercise 6.4 (Contexts) Let x be a variable of type **B**. Find a context C such that $C0 \rightarrow C1 \rightarrow Cx$ is a formula that is not semantically entailed by PL.

Hint: Choose C such that $PL \models C0$, $PL \models C1$, $PL \models \neg(Cx)$, and Cx captures x. There is a term t such that $\lambda s \in Ter.At(Lxs)$ is a context as required.

Exercise 6.5 (*IKS*) Let *Com* be the untyped specification

$$I = \lambda x.x \tag{I}$$

$$Ky = \lambda x.y \tag{K}$$

$$Sfg = \lambda x. fx(gx) \tag{S}$$

where I, K, S are parameters and x, y, f, g are variables.

- a) For each of the following terms s, find a combinatorial term t and a conversion proof of s = t from Com.
 - (1) $\lambda x y. y$
 - (2) $\lambda x y z. y$
 - (3) $\lambda x y z.x$
 - (4) $\lambda x. fx(fxx)$
 - (5) $(\lambda f x. f x (f x)) g$
- b) Find a combinatorial specification Com' such that $Com \vdash Com'$.

Exercise 6.6 (BCA) Let s be a formula and x be a variable of type **B**. Find a derivation of $[x := 0]s \to [x := 1]s \to s$ from PL. You may use ρ , β , η , Ref, Sym, Trans and Subst'.

Exercise 6.7 (I0) Find a derivation of $0 \rightarrow x = 1$ from PL. You may use ρ , β , η , Ref, Sym, Trans, Subst, Subst' and Up.

Exercise 6.8 (Generalized BCA) Prove PL $\vdash f(f(fx)) = fx$ where $x : \mathbf{B}$ and $f : \mathbf{B} \to \mathbf{B}$ are variables. Use the tree notation from the lecture.

Exercise 6.9 (Conversion Proofs) Let *Rep* be the following specification:

Constants
$$0, 1 : \mathbf{B}$$

 $\rightarrow : \mathbf{B} \rightarrow \mathbf{B}$
 $= : \mathbf{B} \rightarrow \mathbf{B} \rightarrow \mathbf{B}$
Axioms $(x = y) \rightarrow fx = (x = y) \rightarrow fy$ R1
 $(x = x) = 1$ R2
 $x \rightarrow 1 = 1$ R3

For each of the following terms s find a conversion proof of s = 1 from Rep.

a)
$$(f1 = 1) \rightarrow (f(f(f1)) = f1)$$

b)
$$(f1 = 0) \rightarrow (f0 = 1) \rightarrow (f(f(f1)) = f1)$$

Whenever you use R1, say which term is used for f.

Exercise 6.10 Let *Hoc* be the specification

$$(x = y) \rightarrow fx = (x = y) \rightarrow fy$$

$$x = ((y = 0) \rightarrow x) \land ((y = 1) \rightarrow x)$$

$$(x = x) = 1$$

$$x \land 1 = x$$

$$x \rightarrow 1 = 1$$
BRep
T1
T2
T3
T4

where =, 0, 1, \rightarrow , \wedge are the parameters from PL.

- a) Find a conversion proof of (f(f(f(1))) = f(1)) = 1 from *Hoc*.
- b) Argue that (a) implies $\operatorname{PL} \vdash f(f(f1)) = f1$.