

Assignment 7 Introduction to Computational Logic, SS 2007

Prof. Dr. Gert Smolka, Mark Kaminski (MSc) www.ps.uni-sb.de/courses/cl-ss07/

Read in the lecture notes: Chapter 5

Exercise 7.1 (And) Let *s*, *t* be formulas. Find a derivation that uses no other rules but Taut and MP

- a) of *s* from $\{s \land t\}$,
- b) of $s \wedge t$ from $\{s, t\}$.

Exercise 7.2 (Zero-One Instances) Give all zero-one instances of the following formulas. Decide for each formula whether it is a tautology. Assume that x, y are distinct variables of type **B**.

- a) $x \to fx$
- b) $x \rightarrow y$
- c) $((x \rightarrow y) \rightarrow x) \rightarrow x$

Exercise 7.3 (Propositional Generalizations) Find most specific propositional generalizations for the following formulas. Decide for each formula whether it is tautologous. Assume that f, g have type $\mathbf{B} \rightarrow \mathbf{B}$.

- a) *fx*
- b) $fx \wedge (fx \vee fy)$
- c) $(gx = gy) \rightarrow (gy = gz) \rightarrow (gx = gz)$

Exercise 7.4 (Counterexample) Let x, y be distinct variables of type **B**. Give a context *C* such that $PL \neq (x = y) \rightarrow (Cx = Cy)$.

Exercise 7.5 (Boolean Replacement) Let $s = (x = y) \rightarrow (fx = fy)$ and $t = (x = y) \rightarrow fx \rightarrow fy$ where *f* is a variable of type **B** \rightarrow **B**.

- a) Give a conversion proof of 1 = s from $TL \cup \{1 = t\}$.
- b) Give a conversion proof of 1 = t from $TL \cup \{1 = s\}$.
- c) Prove $s \stackrel{\text{PL}}{\mapsto} t$ with (a) and (b).

Exercise 7.6 (Boolean Replacement) Find a conversion proof of

 $(x = y) \rightarrow ([z \coloneqq x]s = [z \coloneqq y]s) = 1$

from TL and $(x = y) \rightarrow fx \rightarrow fy = 1$ where *f* is a variable of type **B** \rightarrow **B**.

2007-06-11 18:48

Exercise 7.7 (Boolean Expansion) Let the following formulas be given where f is a variable $\mathbf{B} \rightarrow \mathbf{B}$.

BCA :=
$$f0 \rightarrow f1 \rightarrow fx$$

BRep := $(x = y) \wedge fx = (x = y) \wedge fy$
BExp := $fx = \overline{x} \wedge f0 \lor x \wedge f1$

a) Find a conversion proof of BCA = 1 from TL and BExp.

- b) Find a conversion proof of BExp from TL and BRep.
- c) Find a derivation of BCA from BExp. You may use Taut and Sym.

Exercise 7.8 (Tautologies) Acquaint yourself with the tautologies in the lecture notes. Make sure that you can quickly verify/falsify whether a formula is a tautology using decision trees.

Exercise 7.9 (Hypothetical Conversion Proofs) Dieter claims that the following tuple is a conversion proof of 0 = 1 from TL with $\{x = 1\}$. Is he right?

$0 = (\lambda x. x) 0$	β
$= (\lambda x.1)0$	Hyp $x = 1$
= 1	β