

Assignment 8 Introduction to Computational Logic, SS 2007

Prof. Dr. Gert Smolka, Mark Kaminski (MSc) www.ps.uni-sb.de/courses/cl-ss07/

Read in the lecture notes: Chapter 5,6

Exercise 8.1 (Type Representation) Prove that for every type T there exist types T_1, \ldots, T_n and a sort S such that $T = T_1 \rightarrow \ldots \rightarrow T_n \rightarrow S$. Hint: Use induction on T.

Exercise 8.2 (Notation) Prove that the terms $\uparrow_T v$, \forall_T , and \approx_T are closed for every type T and every $v \in \hat{T}T$.

Hint: Use mutual induction on *T*.

Exercise 8.3 (Deductive Completeness) Let $\Delta \subseteq \Gamma$. Prove:

A is Γ-complete \Rightarrow *A* is Δ-complete.

Exercise 8.4 (Deductive Completeness) Prove:

A is Γ-complete \iff *A* is $\{s \mid \exists t \in \Gamma: A \vdash s = t\}$ -complete. Hint: To prove one of the directions, Exercise 8.3 may be useful.

Exercise 8.5 (PL without 1) Let $PL_0 := \{E1, E0, I1, BCA\}$.

- a) Give a stable, idempotent substitution θ such that:
 - (i) $\Delta_{\theta(PL_0)} \subseteq \Delta_{PL_0}$,
 - (ii) $\theta(PL_0)$ does not contain the parameter 1,
 - (iii) $PL_0 \models \theta(PL_0)$.
- b) Which parameters occur in $\Delta_{\theta(PL_0)}$?
- c) Prove: PL_0 is Δ_{PL_0} -complete $\iff \theta(PL_0)$ is $\Delta_{\theta(PL_0)}$ -complete. Hint: Look at the proof of Proposition 6.14.
- d) Prove: PL is Δ_{PL} -complete $\iff \theta(PL_0)$ is $\Delta_{\theta(PL_0)}$ -complete. Use (c) and Proposition 6.14.

Exercise 8.6 (Propositional Logic) Take a good look at the chapter on propositional logic (Chapter 5). It will be relevant for a good portion of next week's test.