

Assignment 10 Introduction to Computational Logic, SS 2007

Prof. Dr. Gert Smolka, Mark Kaminski (MSc) www.ps.uni-sb.de/courses/cl-ss07/

Read in the lecture notes: Chapter 7

Exercise 10.1 (Quasi-Instances) Decide for each of the following formulas whether it is a quasi- or even a λ -instance of $fx \to \exists f$, where f, x are variables.

- a) $\overline{fx} \rightarrow \exists x. \overline{fx}$
- b) $fx \vee \exists x. \overline{fx}$
- c) $fx \vee gx \vee \exists x. \overline{fx}$
- d) $fx \vee \overline{\forall x. fx}$
- e) $(\exists f \to x) \to f y \to x$
- f) $(\exists f \rightarrow x \land y) \rightarrow f(gxy) \rightarrow (x \land y \rightarrow z) \rightarrow z$
- g) $\exists f = \exists f \lor f(gx)$

Exercise 10.2 (Leibniz) Prove: $HL \vdash (x = y) = \forall f. fx \rightarrow fy$.

Exercise 10.3 (Dual of Skolem) Prove: $HL \vdash (\exists x \forall y. fxy) = \forall g \exists x. fx(gx)$. Hint: Use the Skolem law shown in the lecture notes.

Exercise 10.4 (Strange Quantification) Let $f:((S \to B) \to B) \to T \to B$.

- a) Determine the type indices for the occurrences of \forall in the formula $\forall f. \forall (f \forall)$.
- b) Prove: $HL \vdash \neg \forall f. \forall (f \forall)$.

Exercise 10.5 (Witnesses) Let $f: T \to T \to \mathbf{B}$. Prove: $\operatorname{HL} \vdash \exists g \forall x \exists h.h(fx) \land \overline{hg}$. Hint: Find witnesses $\theta g, \theta h_1, \theta h_2$ for g, h_1, h_2 such that x does not occur in θg and $\operatorname{HL} \vdash \theta(h_1(fx) \land \overline{h_1g} \lor h_2(fx) \land \overline{h_2g})$.

Exercise 10.6 (Skolem Forms) A Skolem form is a formula of the form $\exists x_1...x_m \forall y_1...y_n.s$, where $m,n \geq 0$ and s contains neither quantifiers nor functional identities. Find for each of the following formulas s a Skolem form t and prove $\mathsf{HL} \vdash s = t$. Try to find Skolem forms with a minimal number of quantifiers.

- a) $\forall f \land \exists g$
- b) $\forall f \rightarrow \exists f$
- c) $\forall x. fx \rightarrow \exists f \land gx$
- d) $\forall x \forall y \exists z. fx yz$
- e) $\exists f \lor \exists g \lor \forall h$ where f, g have the same type