

Assignment 4 Introduction to Computational Logic, SS 2008

Prof. Dr. Gert Smolka, Dr. Chad Brown
www.ps.uni-sb.de/courses/cl-ss08/

Read in the lecture notes: Chapter 5

Exercise 4.1 Prove the following statements without using derived rules.

a)
$$x = y, y = z \vdash x = z$$

b) $\vdash x = y \rightarrow y = z \rightarrow x = z$
c) $s \rightarrow t, s \vdash t$
d) $s_{\perp}^{x}, s_{\top}^{x} \vdash s$
e) $\vdash x \rightarrow y \rightarrow x$
f) $\vdash x \rightarrow (x \rightarrow y) \rightarrow y$

Exercise 4.2 Show that the following proof steps are admissible without using derived rules. (Note: Here \vdash is used as the sequent constructor.)

a)

$$\mathrm{Ded}^{-} \ \frac{A \vdash s \to t}{A, s \vdash t}$$

b)

Lam'
$$\frac{A, s \vdash t}{A, s' \vdash t} s \sim_{\lambda} s'$$

C)

$$\frac{s \vdash t \quad A \vdash s}{A \vdash t}$$

d)

$$\frac{s_1, s_2 \vdash t \quad A \vdash s_1 \quad A \vdash s_2}{A \vdash t}$$

e)

$$\frac{A \vdash s}{A \vdash \theta(s)} \ \theta \text{ admissible for } A$$

2008-05-09 11:58

Exercise 4.3 Prove the following statements. Use BCAR but no other derived rules.

a) $\vdash (x \rightarrow y) \rightarrow (y \rightarrow x) \rightarrow (x \equiv y)$

- b) $\vdash x \rightarrow \neg \neg x$
- c) $\vdash \neg \neg x \rightarrow x$
- d) $\vdash \neg \neg x \equiv x$
- e) The following proof step is admissible:

Contra
$$\frac{A, \neg s \vdash \bot}{A \vdash s}$$

f) $\bot \vdash x$

Exercise 4.4 Prove the following.

a) If $s \vdash t$, then the following proof step is admissible:

$$\frac{A \vdash s}{A \vdash t}$$

b) If $s, t \vdash u$, then the following proof step is admissible:

$$\frac{A \vdash s \quad A \vdash t}{A \vdash u}$$