

Assignment 12 Introduction to Computational Logic, SS 2008

Prof. Dr. Gert Smolka, Dr. Chad Brown www.ps.uni-sb.de/courses/cl-ss08/

Read in the lecture notes: Chapter 9

Exercise 12.1 (Herbrand Models) In his dissertation submitted in 1929, Jacques Herbrand introduces syntactic models for first-order logic that are now known as Herbrand models. Kripke sets are in fact Herbrand models for modal logic. Herbrand models are interesting for first-order logic since a first-order formula is satisfiable if and only if it is satisfied by a Herbrand model. Herbrand models can be constructed with the tableau method.

- a) A Herbrand model for propositional logic is a set of Boolean variables. Let H be a set of Boolean variables. Define the evaluation function \hat{H} that assigns to every propositional formula a Boolean value. Hint: Follow the definition of the evaluation function for Kripke sets and the grammar for propositional formulas.
- b) Explain how the tableau method can be used to construct finite Herbrand models for satisfiable propositional formulas.
- c) Find a Herbrand model for the propositional formula $\neg x \land (x \rightarrow y \lor z)$.
- d) A Herbrand model for PLN is a set of PLN-formulas of the form $px_1...x_n$ where $n \ge 0$. Let H be such a set. Define the evaluation function \hat{H} that assigns to every PLN-formula a Boolean value.
- e) Find finite Herbrand models for the following PLN-formulas:
 - (i) $rxy \land qx \land (rxy \rightarrow rxx)$ (ii) $\forall x \exists y, rxy$

Exercise 12.2 Prove the following interderivability facts:

- **Contra** $A \stackrel{.}{\vdash} s \parallel A, \neg s \stackrel{.}{\vdash} \bot$
- **Ded** $A \stackrel{.}{\vdash} s \rightarrow t \parallel A, s \stackrel{.}{\vdash} t$
- Gen $A \stackrel{.}{\vdash} \forall x.s \parallel A \stackrel{.}{\vdash} s$ if $x \notin \mathcal{N}A$
- **Rep** $A, s \vdash \bot \parallel A, t \vdash \bot$ if $A \vdash s = t$
- **Rep** $A \vdash s \parallel A \vdash t$ if $A \vdash s = t$

Exercise 12.3 Show the following facts about the closure $[PLN]_{\emptyset}$.

- a) \perp is in [PLN]_{\emptyset}.
- b) For all $s \in PLN$, $\neg s \in [PLN]_{\emptyset}$. (Hint: Do induction on *s*.)

2008-07-09 18:26

- c) $[PLN]_{\emptyset}$ is closed under \rightarrow .
- d) Prove that $\forall x.s$ is in the closure if *s* is in the closure and x : I is an individual name (possibly a parameter).

Exercise 12.4 Reduce the following problems to modal refutability (analogous to Proposition 9.6.2). Prove the correctness of your reductions.

- a) M, $A \vdash \neg tx$
- b) M, $A \vdash \neg \forall t$
- c) M, $A \vdash \exists t$
- d) M, $A \vdash t_1 \neq t_2$ where $t_1, t_2 : IB$
- e) M, $A \vdash \neg rxy$
- f) M, $A \vdash \forall x. t_1 x \rightarrow t_2 x$

Exercise 12.5 Show that the following proof step for \Box is derivable.

$$\frac{A, ty \vdash \bot}{A, rxy, \Box rtx \vdash \bot}$$

(Assume $M \subseteq A$.)

Exercise 12.6 Extend the tableau rules to modal formulas that are not negation-normal. Give the corresponding proof steps.

Exercise 12.7 Refute the following sets with modal tableau proofs.

- a) $\Diamond r(q \lor \neg q)x$, $\Box rpx$, $\Box r(\neg p)x$
- b) $\Box r(q \land \neg q) x$, $(\Diamond r(\neg p) \lor \Diamond rp) x$
- c) $(\neg (\Diamond r(q \lor \neg q) \equiv \Box rp \to \Diamond rp))x$

Exercise 12.8 Prove the validity of the following modal formulas by reduction to modal refutability (Proposition 9.6.2) and modal tableaux.

- a) $\forall (\Box r(p \land q) \rightarrow \Box rp \land \Box rq)$
- b) $\forall (\Diamond rp \lor \Diamond rq \to \Diamond r(p \lor q))$
- c) $\forall (\Diamond r(p \lor q) \rightarrow \Diamond rp \lor \Diamond rq)$

Exercise 12.9 Use the tableau rules to construct an evident set that contains the modal formula $((\Diamond rp \land \Diamond rq) \land \Box r(\neg p \lor \neg q))x$. Explain why the evident set gives you a Kripke set that satisfies the formula.

2008-07-09 18:26