
Introduction to
Computational Logic

Lecture Notes SS 2008

July 14, 2008

Gert Smolka and Chad E. Brown

Department of Computer Science

Saarland University

Copyright © 2008 by Gert Smolka, All Rights Reserved

Contents

1 Introduction 1

2 Structure of Mathematical Statements 3

2.1 Functions and Lambda Notation . 3

2.2 Boolean Operations . 4

2.3 Operator Precedence . 5

2.4 Terms . 6

2.5 Locally Nameless Term Representation 7

2.6 Formulas, Identities, and Overloading 8

2.7 Quantifiers . 9

2.8 Sets as Functions . 9

2.9 Choice Functions . 10

2.10 Some Logical Laws . 11

2.11 Remarks . 13

3 Terms and Types 15

3.1 Untyped Terms . 15

3.2 Contexts and Subterms . 16

3.3 Substitution . 17

3.4 Alpha Equivalence . 19

3.5 Confluence and Termination . 20

3.6 Beta and Eta Reduction . 22

3.7 Typed Terms . 24

3.8 Remarks . 26

4 Interpretation and Specification 29

4.1 Interpretations . 29

4.2 Semantic Equivalence . 31

4.3 Formulas and Models . 31

4.4 Specification of the Natural Numbers 33

5 Formal Proofs 37

5.1 Abstract Proof Systems . 37

5.2 Deducible Sequents . 38

iii

Contents

5.3 Derived Rules for Turnstile and Implication 41

5.4 Derived Rules for Identities . 42

5.5 BCA and Tautologies . 44

5.6 Natural Deduction . 46

5.7 Predicate Logic and Completeness . 49

5.8 Natural Language Proofs and Natural Deduction Proofs 49

5.9 More Derivations . 53

5.10 Simplifying Lam and Sub . 54

5.11 Remarks . 55

5.12 Bonus: Equational Deduction . 56

6 Tableau Proofs 61

6.1 An Example: Peirce’s Law . 61

6.2 Refutations . 65

6.3 Tableaux . 66

6.4 Refutation Rules for Propositional Logic 68

6.5 Quantifiers . 76

6.6 Termination and Completeness with Restrictions 84

6.7 Cantor’s Theorem . 94

6.7.1 Russell’s Law/Turing’s Law . 97

6.7.2 More about the Lambda rule . 97

6.8 Equality . 98

6.9 Excluded Middle as a Rule . 99

6.10 Examples . 100

6.10.1 Expressing Universal Quantification in terms of Existential . 100

6.10.2 Expressing Equality using Higher-Order Quantifiers 101

6.10.3 Solving Easy Equations . 102

6.10.4 Expressing Conjunction with → and ⊥ 103

6.10.5 Expressing Conjunction with Higher-Order Quantification . . 104

6.10.6 Kaminski Equation . 105

6.10.7 Choice . 106

7 A Taste of Set Theory 109

8 Decision Trees 117

8.1 Boolean Functions . 117

8.2 Decision Trees and Prime Trees . 120

8.3 Existence of Prime Trees . 121

8.4 Example: Diet Rules . 122

8.5 Uniqueness of Prime Trees . 123

8.6 Properties of Prime Trees . 124

iv 2008/7/14

Contents

8.7 Prime Tree Algorithms . 126

8.8 BDDs . 130

8.9 Polynomial Runtime through Memorization 132

8.10 Remarks . 132

9 Modal Logic 133

9.1 Modal Terms . 134

9.2 A Knowledge Base . 136

9.3 Kripke Sets . 137

9.4 Some Deducible Facts . 141

9.5 Modal Completeness . 142

9.5.1 Interderivability . 142

9.5.2 Theories . 142

9.5.3 Pure First-Order Logic . 143

9.5.4 Defined Constants . 144

9.5.5 The Main Result . 145

9.6 Modal Refutability . 145

9.7 A Tableau System for Modal Formulas 146

9.7.1 Falsification Soundness . 147

9.7.2 Refutation Soundness . 148

9.7.3 Verification Soundness . 149

9.8 Termination . 150

9.8.1 Termination for ∀-Free Clauses 151

9.8.2 Termination with Rp
♦ . 152

9.9 Remarks . 155

Tautologies 157

Bibliography 158

2008/7/14 v

Contents

vi 2008/7/14

1 Introduction

1

1 Introduction

2 2008/7/14

2 Structure of Mathematical Statements

We outline a language for expressing mathematical statements. It employs func-

tions as it main means of expression. Of particular importance are higher-order

functions taking functions as arguments. The language has much in common

with functional programming languages such as ML and Haskell. It is formal

in the sense that it can be realized on a computer. We distinguish between the

notational, syntactic and semantic level of the language.

2.1 Functions and Lambda Notation

Everyone knows that a function is something that takes an argument and yields

a result. Nowadays, functions are defined as sets of pairs. If (x,y) ∈ f , then the

application of the function f to the argument x yields the result y . Here is the

precise definition.

Let X and Y be sets. A function X → Y is a set f ⊆ X × Y such that

1. ∀x ∈ X ∃y ∈ Y : (x,y) ∈ f
2. (x,y) ∈ f ∧ (x,y′) ∈ f �⇒ y = y′
We use X → Y to denote the set of all functions X → Y . If f ∈ X → Y and x ∈ X,

we write fx for the unique y such that (x,y) ∈ f . We write fx+5 for (fx)+5.

The canonical means for describing functions is the lambda notation devel-

oped by the American logician Alonzo Church [9]. Here is an example:

λx∈Z. x2

This notation describes the function Z → Z that squares its argument (i.e.,

yields x2 for x). The following equation holds:

(λx∈Z. x2) = { (x, x2) | x ∈ Z }

It shows the analogy between the lambda notation and the more common set

notation.

According to our definition, functions take a single argument. To represent

operations with more than one argument (i.e., addition of two numbers), one

3

2 Structure of Mathematical Statements

often uses functions that are applied to tuples (x1, . . . , xn) that contain the ar-

guments x1, . . . , xn for the operation. We call such functions cartesian and speak

of the cartesian representation of an operation. The cartesian function repre-

senting addition of integers has the type Z×Z→ Z. It takes a pair (x,y) as single

argument and returns the number x +y .

Functions that return functions as results are called cascaded. Lambda no-

tation makes it easy to describe cascaded functions. As example, consider the

definition

plus := λx∈Z. λy∈Z. x +y

which binds the name plus to a function of type Z → (Z → Z). When we apply

plus to an argument a, we obtain a function Z → Z. When we apply this function

to an argument b, we get a+ b as result. With symbols:

(plusa)b = ((λx∈Z. λy∈Z. x +y)a)b = (λy∈Z. a+y)b = a+ b

We say that plus is a cascaded representation of the addition operation for in-

tegers. Cascaded representations are often called Curried representations, after

the logician Haskell Curry. The idea goes back to Frege [14]. It was fully de-

veloped in a paper by Moses Schönfinkel [35] on the primitives of mathematical

language. We prefer the cascaded representation over the cartesian representa-

tion since the cascaded representation doesn’t require tuples. Following common

practice, we omit parentheses as follows:

fxy � (fx)y

X → Y → Z � X → (Y → Z)

Using this convenience, we can write plus 3 7 = 10 and plus ∈ Z → Z→ Z.

2.2 Boolean Operations

We use the numbers 0 and 1 as Boolean values, where 0 may be thought of as

“false” and 1 as “true”. We define

B := {0,1}

As in programming languages, we adopt the convention that expressions like

3 ≤ x yield a Boolean value. This explains the following equations:

(3 < 7) = 1

(7 ≤ 3) = 0

(3 = 7) = 0

4 2008/7/14

2.3 Operator Precedence

The following equations define well-known Boolean operations:

¬x = 1− x Negation

(x ∧y) = min{x,y} Conjunction

(x ∨y) = max{x,y} Disjunction

(x → y) = (¬x ∨ y) Implication

(x ≡ y) = (x = y) Equivalence

We represent Boolean operations as functions. Negation is a function B → B and

the binary operations are functions B → B → B. We use the symbols ¬, ∧, ∨, →,

≡ as names for these functions.

Exercise 2.2.1 Consider the values

0,1 ∈ B
¬ ∈ B → B

∧,∨,→,≡ ∈ B → B → B

With 0 and → one can express 1 as follows: 1 = (0 → 0).

a) Express ¬, ∧, ∨, and ≡ with 0 and →.

b) Express 0, ∧, and → with 1, ¬, and ∨.

2.3 Operator Precedence

An operator is a symbol for a binary operation. There are established conven-

tions that make it possible to write operator applications without parentheses.

For example:

3·x +y � (3 · x)+y

The symbols + and · are said to be infix operators, and the operator · is said to

take its arguments before the operator +. We assume the following precedence

hierarchy for some commonly used operators:

≡
→
∨
∧
¬

= < ≤ > ≥
+ −
·

2008/7/14 5

2 Structure of Mathematical Statements

Symbols appearing lower in the hierarchy take their arguments before symbols

appearing higher in the hierarchy. Here are examples of notations that omit

parentheses according to the precedence hierarchy:

x ∨ x ∧y ≡ x � (x ∨ (x ∧y)) ≡ x
¬¬x = y ≡ y = x � ¬(¬(x = y)) ≡ (y = x)

We write s ≠ t and s �≡ t as abbreviations for ¬(s = t) and ¬(s ≡ t).

2.4 Terms

We distinguish between notation and syntax. For instance, the notations

x ·y + z and (x · y) + z are different but both describe the the same syntac-

tic object. We call the syntactic objects described by notations terms. Terms can

be represented as trees. For instance, the notation x ∧y describes the term

•
•

∧ x

y

and the notation x ∧y ∨ z describes the term

•
•

∨ •
•

∧ x

y

z

The inner nodes • of the trees represent function applications. The leaves of the

tree are marked with names. Given values for the names appearing in a term,

one can evaluate the term by performing the applications. Of course, the values

involved must have the right types. The value appearing at the left-hand side of

an application must be a function that is defined on the value appearing at the

right-hand side of the application. Binary applications suffice since operations

taking more than one argument are seen as cascaded functions.

The λ-notation decribes special terms called λ-abstractions or λ-terms. For

instance, the notation λx∈N. x + y decribes the following λ-term:

λx∈N
•

•
+ x

y

6 2008/7/14

2.5 Locally Nameless Term Representation

The name x acts as argument name. The argument name of a λ-term makes it

possible to refer in the body of the λ-term to the argument of the function the

λ-term decribes.

We distinguish between three levels: the notational level, the syntactic level,

and the semantic level. For instance, λx∈N. 2·x is first of all a notation. This

notation describes a certain λ-term, which is a syntactic object. And the λ-term

decribes a function, which is a semantic object. Terms abstract from the details

of notations. For this reason, there are usually many different notations for the

same term. Operator precedence is an issue that belongs to the notational level.

Since terms are tree-like objects, there is no need for operator precedence at the

syntactic level.

A few words about how we say things. When we say the term λx∈N. 2·x,

we mean the term described by the notation λx∈N. 2·x. And when we say the

function λx∈N. 2·x, we mean the function described by the term described by

the notation λx∈N. 2·x.

2.5 Locally Nameless Term Representation

λ-terms introduce argument names, which are also called local names. It is

common to speak of argument variables or local variables. Argument names

make it possible to refer in the body of a λ-term to the argument of the function

the λ-term decribes. As an alternative to argument names one can use numeric

argument references, which yield a locally nameless term representation. The

locally nameless representation of the term λx∈N. x +y looks as follows:

λN

•
•

+ 〈0〉
y

The idea behind the locally nameless representation becomes clearer, if we look

at the tree representing the term described by the notation λx∈X. λy∈Y . fyx:

λX

λY

•
•

f 〈0〉
〈1〉

An argument reference 〈n〉 refers to a λ-node on the unique path to the root.

The number n says how many λ-nodes are to be skipped before the right λ-node

2008/7/14 7

2 Structure of Mathematical Statements

is reached. For instance, 〈0〉 refers to the first λ-node encountered on the path

to the root, and 〈1〉 to the second.

The locally nameless term representation is useful since it represents the

binding stucture of a term more explicitly than the name-based term represen-

tation. Note that we consider the terms λx∈X.x and λy∈X.y to be different

although they have the same locally nameless representation.

Numeric argument references are common in machine-oriented languages.

For terms, they were invented by the Dutch logician Nicolaas de Bruijn [12]. For

this reason, numeric argument references in terms are often called de Bruijn

indices.

Exercise 2.5.1 Draw the locally nameless representations of the following terms:

a) λx∈X. (λy∈X. fxy)x
b) λx∈B. λy∈B. ¬x ∨y
c) λx∈X. f(λy∈Y . gyx)xy

2.6 Formulas, Identities, and Overloading

A formula is a term whose type is B. Here are examples of formulas: 3 < 7,

2 + 3 > 6, and x < 3 ∧ y > 5. We will represent mathematical statements as

formulas.

For every set X, the identity for X is the following function:

(=X) := λx∈X. λy∈X. x=y

Note that (=X) ∈ X → X → B. Also note that =B and≡ are different names for the

same function. Identities are important since they make it possible to represent

equations as terms. For instance, the equation x + 0 = x may be represented as

the term x + 0 =Z x.

As it comes to notation, we will be sloppy and mostly write = rather than

the proper name =X . This means that we leave it to the reader to determine the

type of the identitity. We speak of the disambiguation of overloaded symbols.

Typical examples of overloaded symbols are +, −, <, and =. If we write x+2 = y ,

without further information it is not clear how to disambiguate + and =. One

possibility would be the use of +Z and =Z.
Exercise 2.6.1 Draw the tree representations of the following formulas. Disam-

biguate the equality symbol =. Recall the specification of the operator prece-

dences in §2.3.

a) x = 0∨ x ∧y ≡ x
b) ¬¬x = y ≡ y = x ∧ x

8 2008/7/14

2.7 Quantifiers

2.7 Quantifiers

Mathematical statements often involve quantification. For instance,

∀x ∈ Z ∃y ∈ Z. x +y = 0

Church [10] realized that the quantifiers ∀ and ∃ can be represented as func-

tions, and that a quantification can be represented as the application of a quan-

tifier to a λ-term. We may say that Church did for the quantifiers what Boole [7]

did for the Boolean operations, that is, explain them as functions.

Let X be a set. We define the quantifiers ∀X and ∃X as follows:

∀X ∈ (X → B)→ B universal quantifier

∀Xf = (f = (λx∈X.1))

∃X ∈ (X → B)→ B existential quantifier

∃Xf = (f ≠ (λx∈X.0))

The statement ∃y ∈ Z. x +y = 0 can now be represented as follows:

∃Z (λy∈Z. x +y = 0)

The usual notation for quantification can be obtained at the notational level:

∀x∈X.t := ∀X (λx∈X.t)
∃x∈X.t := ∃X (λx∈X.t)

Frege and Russel understood quantifiers as properties of properties. If we un-

derstand under a property on X a function X → B, then a property on properties

on X has the type (X → B)→ B. And in fact, this is the type of the quantifiers ∀X
and ∃X . Note the quantifiers are higher-order functions (i.e., functions taking

functions as arguments).

Exercise 2.7.1 Draw the locally nameless tree representation of the term

(∀x∈X. fx ∧ gx) ≡ ∀f ∧∀g.

2.8 Sets as Functions

Let X be a set. The subsets of X can be expressed as functions X → B. We

will represent a subset A ⊆ X as the function λx∈X. x∈A, which yields 1 if its

argument is an element of A. This function is called the characteristic function

2008/7/14 9

2 Structure of Mathematical Statements

of A with respect to X. The following examples illustrate how set operations

can be expressed with characteristic functions:

x ∈ A � Ax

A∩ B � λx∈X. Ax ∧ Bx
A∪ B � λx∈X. Ax ∨ Bx

Given the representation of sets as functions, there is no need that a functional

language provides special primitives for sets. Note that subsets of X as well as

properties on X are expressed as functions X → B.

Exercise 2.8.1 Let X be a set. We use P(X) as abbreviation for X → B. Express

the following set operations with the logical operations ¬, ∧, ∨, and ∀X . To

give you an idea what to do, here is how one would express set intersection

∩ ∈ P(X) → P(X) → P(X): ∩ = λf∈P(X). λg∈P(X). λx∈X. fx ∧ gx.

a) Union ∪ ∈ P(X) → P(X) → P(X)

b) Difference − ∈ P(X) → P(X) → P(X)

c) Subset ⊆ ∈ P(X) → P(X) → B

d) Disjointness ‖ ∈ P(X) → P(X) → B

e) Membership (∈) ∈ X → P(X) → B

2.9 Choice Functions

Sometimes one wants to define an object as the unique x such that a certain

property holds. This kind of definitions can be expressed with choice functions.

A choice function for a set X is a function (X → B) → X that yields for every

non-empty subset A of X an element of A. If a choice function for X is applied

to a singleton set {x}, there is no choice and it must return x. Let CZ be a choice

function for Z. Then

0 = CZ(λ∈Z. x + x = x)

since 0 is the unique integer such that x+x = x. Moreover, we can describe sub-

traction with addition and choice since x−y is the unique z such that x = y + z:

(−) = λx∈Z. λy∈Z. CZ(λz∈Z. x = y + z)

Exercise 2.9.1 How many choice functions are there for B?

Exercise 2.9.2 Describe the following values with a choice function CN for N, the

Boolean operations ¬, ∧, ∨, →, addition + ∈ N→ N→ N, and the identity =N.

10 2008/7/14

2.10 Some Logical Laws

a) f ∈ N→ N→ N such that fxy = x − y if x ≥ y .

b) The existential quantifier ∃ ∈ (N → B)→ B.

c) The less or equal test ≤ ∈ N→ N→ B.

d) max ∈ N→ N→ N such that max xy yields the maximum of x, y .

e) if ∈ B → N→ N→ N such that if bxy yields x if b = 1 and y otherwise.

2.10 Some Logical Laws

Laws are mathematical statements that are universally true. Let us start with the

de Morgan law for conjunction:

¬(x ∧y) ≡ ¬x ∨¬y

The law says that we can see a negated conjunction as a disjunction. Seen syntac-

tically, the law is a formula. It involves the names ¬, ∧, ≡, ∨ and x, y . The names

in the first group are called constants and the names x, y are called variables.

While the meaning of constants is fixed, the meaning of variables is not fixed.

When we say that a law holds or is valid, we mean that the respective formula

evaluates to 1 no matter how we choose the values of the variables. Of course,

every variable comes with a type (here B) and we can only choose values that are

elements of the type (here 0 and 1). By means of universal quantification, we can

express explicitly that the names x and y are variables:

∀x∈B ∀y∈B. ¬(x ∧ y) ≡ ¬x ∨¬y

Leibniz’ law says that two values x, y are equal if and only if y satisfies every

property x satisfies:

x=Xy ≡ ∀f∈X→B. fx → fy

At first view, Leibniz’ law is quite a surprise. Seen logically, it expresses a rather

obvious fact. If x = y , then the right-hand of the equivalence obviously eval-

uates to 1. If x ≠ y , we choose f = λz. z=x to see that the right-hand of the

equivalence evaluates to 0. Leibniz’ law tells us that a language that can express

implication and quantification over properties can also express identities.

Henkin’s law says that a language that can express identities and universal

quantification over functions X→X→B can also express conjunction:

x ∧ y ≡ ∀f∈X→X→B. fxy = f11

If x = y = 1, then the equivalence obviously holds. If not both x and y are 1,

we choose f = (∧) to see that the right-hand of the equivalence evaluates to 0.

2008/7/14 11

2 Structure of Mathematical Statements

The extensionality law for functions says that two functions are equal if they

agree on all arguments:

(∀x∈X. fx = gx) → f = g

The η-law for functions expresses a similar fact:

f = λx∈X. fx

Both laws hold since functions are sets of pairs. The α-law for functions looks

as follows:

(λx∈X. fx) = λy∈X. fy

It is a straightforward consequence of the η-law.

The de Morgan law for universal quantification says that a negated universal

quantification can be seen as an existential quantification:

¬(∀x∈X. s) ≡ ∃x∈X. ¬s

Seen logically, this law is very different from the previous laws since s is a vari-

able that ranges over formulas, that is, syntactic objects. We will avoid such

syntactic variables as much as we can. A regular formulation of de Morgan’s law

for universal quantification looks as follows:

¬(∀x∈X. fx) ≡ ∃x∈X. ¬fx

Here f is a variable that ranges over functions X → B.

Finally, we look at the β-law. The β-law is a syntactic law for functions. Here

are instances of the β-law:

(λx∈N.x + 2)5 = 5+ 2

(λx∈N.x + 2)(x +y) = (x +y)+ 2

The general form of the β-law is as follows:

(λx∈X. s)t = sxt

Both s and t are syntactic variables that range over terms. The notation sxt stands

fo the term that we obtain from s by replacing every free occurrence of the vari-

able x with the term t. The syntactic operation behind the notation sxt is called

substitution. As it turns out, substitution is not a straightforward operation. To

say more, we need the formal treatment of terms presented in the next chapter.

12 2008/7/14

2.11 Remarks

Exercise 2.10.1 (Boolean Formulas) Decide whether the following formulas are

valid for all values of the variables x,y, z ∈ B. In case a formula is not valid, find

values for the variables for which the formula does not hold.

a) 1→ x ≡ x

b) (x → y) → (¬y → ¬x) ≡ 1

c) x ∧ y ∨¬x ∧ z ≡ y ∨ z

Exercise 2.10.2 (Quantifiers and Identities) Given some logical operations, one

can express many other logical operations. This was demonstrated by Leibniz’

and Henkin’s law. Express the following:

a) ∀X with =X→B and 1.

b) ∃X with ∀X and ¬.

c) ∀X with ∃X and ¬.

d) =X→Y with ∀X and =Y .

e) =B with ≡.

f) =X with ∀X→B and →.

Exercise 2.10.3 (Henkin’s Reduction) In a paper [21] published in 1963, Leon

Henkin expressed the Boolean operations and the quantifiers with the identities.

a) Express 1 with =B→B.

b) Express 0 with 1 and =B→B.

c) Express ¬ with 0 and =B.

d) Express ∀X with 1 and =X→B.

e) Express ∧ with 1, =B, and ∀B→B→B.

f) Express ∧ with 1 and =(B→B→B)→B.

2.11 Remarks

The outlined logical language is mainly due to Alonzo Church [10]. It is asso-

ciated with logical systems known as simple type theory or simply-typed higher-

order logic. Church started with an untyped language [9] but technical difficulties

forced him to switch to a typed language [10]. Types originated with Bertrand

Russell [34]. A logical language with quantification was first studied by Gottlob

Frege [13].

One distinguishes between metalanguage and object language. The metalan-

guage is the language one uses to explain an object language. Our object lan-

guage has many features in common with the metalanguage we use to explain

it. Still, it is important to keep the two languages separate. For some constructs

2008/7/14 13

2 Structure of Mathematical Statements

that appear in both languages we use different notations. For instance, implica-

tion and equivalence are written as �⇒ and ⇐⇒ at the metalevel and as → and

≡ at the object level. Moreover, at the metalevel we write quantifications with a

colon (e.g., ∃x∈N : x < 5) while at the object level we write them with a dot (e.g.,

∃x∈N. x < 5).

In the theory of programming languages one calls concrete syntax what we

call notation and abstract syntax what we call syntax.

Sometimes one speaks of the intension and the extension of a notation. While

the intension refers to the syntactic object decribed by the notation, the exten-

sion refers to the semantic object described by the notation.

14 2008/7/14

3 Terms and Types

In this chapter we study syntax and ignore semantics. We first consider untyped

terms.

3.1 Untyped Terms

We start from a set Nam of names that is bijective to N. In principle, we could

choose Nam = N, but saying that Nam is bijective to N gives us more flexibility.

The set of terms Ter is obtained recursively from Nam:

x,y ∈ Nam � N names

s, t ∈ Ter ::= x | s t | λx.s terms

We understand the definition such that every term is exactly one of the following:

a name x, an application st, or a λ-term λx.s. Moreover, we assume Nam ⊆ Ter.

To be concrete, we represent a term as a pair (i, γ) where the variant number

i ∈ {1,2,3} says whether the term is a name (i = 1), an application (i = 2), or

a λ-term (i = 3). For names we have γ ∈ N, for applications γ ∈ Ter × Ter,

and for λ-abstractions γ ∈ Nam × Ter. Note that our definition implies that

(λx.x) ≠ λy.y if x ≠ y .

The locally nameless representation (LNR) of a term uses numeric argument

references instead of local names. For instance, the LNR of λfxy.fyzx looks

as follows:

λ

λ

λ

•
•

•
〈2〉 〈0〉

z

〈1〉

An argument reference 〈n〉 refers to the n+1-th λ-node encountered on the path

to the root. Note that λx.x and λy.y have the same LNR:

15

3 Terms and Types

λ

〈0〉
The size |s| of a term s is the number of nodes in its tree representation. The

formal definition is recursive and looks as follows:

|_| ∈ Ter → N

|x| = 1

|st| = 1+ |s| + |t|
|λx.s| = 1+ |s|

For instance, |λfxy.fyzx| = 10. The free names of a term are the names that

appear in the LNR of the term. The formal definition looks as follows:

N ∈ Ter → P(Nam)

Nx = {x}
N (st) =N s ∪N t

N (λx.s) =N s − {x}

For instance, N (λfxy.fyzx) = {z} if we assume that z is different from

f , x, y . We say that x is free in s if x ∈ N s. A term s is closed if N s = �, and

open otherwise.

3.2 Contexts and Subterms

Informally, a context is a term with a hole. Formally, we define contexts as

follows:

C ::= [] | Cs | sC | λx.C

The instantiation C[t] of a context C with a term t yields the term that is ob-

tained from C by replacing the hole [] with t. For instance, if C = λxy.f[], then

C[gxy] = λxy.f(gxy). Formally, we define context instantiation recursively:

[][t] = t
(Cs)[t] = (C[t])s
(sC)[t] = s(C[t])

(λx.C)[t] = λx.C[t]

A term s is a subterm of a term t if there exists a context C such that t = C[s].
We say that a term s contains a term t or that t occurs in s if t is a subterm of s.
A term is called combinatorial if none of its subterms is a λ-term.

16 2008/7/14

3.3 Substitution

Exercise 3.2.1 Give all subterms of the term λx.fxx. For each subterm give a

corresponding context. Is there a subterm with more than one corresponding

context?

Exercise 3.2.2 Determine all pairs C , s such that C[s] = xxxx and s is a appli-

cation.

Exercise 3.2.3 We say that a name x occurs bound in a term s if s has a subterm

λx.t such that x is free in t. Give a term s such that x is free in s and also occurs

bound in s.

3.3 Substitution

A substitution is a function θ ∈ Nam → Ter. There is an operation S ∈
(Nam → Ter) → Ter → Ter that applies a substitution to a term. If s is com-

binatorial, then Sθs is obtained from s by replacing every occurrence of a name

x in s with the term θx. This can be expressed with two equations:

Sθx = θx
Sθ(st) = (θs)(θt)

For instance, Sθ(fxy) = (λxy.x)yx if θf = (λxy.x), θx = y , θy = x.

The recursion equation for Sθ(λx.s) is not straightforward. It is clear that

the local name x must not be replaced in s. However, there is a second, more

servere complication known as capturing. Consider Sθ(λx.y) where x ≠ y and

θy = x. Then the y in λx.y must be replaced with x. If we do this naively, we

obtain λx.x, which means that the external x has been captured as local name.

To obtain the right semantic properties, substitution must be defined such that

capturing does not happen. This can be done by of renaming local names, also

known as α-renaming.

We say that capture-free substitution preserves the binding structure of a

term. The binding structure of a term is expressed best by its LNR. The substi-

tution operation S must be defined such that the LNR of the term Sθs can be

obtained by replacing every name x in the LNR of s with the LNR of θx. For

instance, if s = λx.yx and θy = x, we want the following:

λ

•
y 〈0〉

� λ

•
x 〈0〉

Consequently, Sθs cannot be the term λx.xx but must be some term λz.xz.

2008/7/14 17

3 Terms and Types

How should the substitution operation choose names if it has to rename local

names? Its best to first consider a simplified problem: How can we choose local

names for an LNR such that we obtain a term whose LNR is the given one. For

instance, consider the LNR

λ

•
•

x y

〈0〉

To obtain a term with this LNR, we can choose any local name that is different

from x and y . For instance, λz.xyz. If we choose x or y as local name, the local

name will capture a free name, which results in a different LNR.

Consider a term λx.s. Which local names can we use in place of x without

changing the LNR? If you think about it you will see that all names that are not

free in λx.s are ok. The names that are free in λx.s are not ok since using such

a name as argument name would capture the free occurrences of this name.

A choice function is a function ρ ∈ Nam → Pfin(Nam) → Nam such that

ρxN ∉ N for all x and N . Pfin(Nam) is the set of all finite subsets of Nam. A

choice function ρ is conservative if ρxN = x whenever x ∉ N . Given a choice

function ρ, the following recursion equations yield a substitution operation S:

Sθx = θx
Sθ(st) = (Sθs)(Sθt)

Sθ(λx.s) = λy. S(θ[x:=y])s where y = ρx(∪{N (θz) | z ∈N (λx.s) })

The notation θ[x:=y] describes the substitution that is like θ except that it

maps x to y . We call a substitution operation S conservative if it is obtained

with a conservative choice function.

Proposition 3.3.1 For every substitution operation S:

1. N (θs) = ∪{N (θx) | x ∈N s }
2. (∀x ∈N s : θx = θ′x) �⇒ Sθs = Sθ′s coincidence

Proposition 3.3.2 For every conservative substitution operation S:

(∀x∈N s : θx = x) �⇒ Sθs = s.

We fix some conservative substitution operator S and define the notation

sxt := S (λy∈Nam. if y = x then t else y) s

Proposition 3.3.3

18 2008/7/14

3.4 Alpha Equivalence

1. (λx.s)xt = (λx.s)
2. (λx.s)yt = (λx.syt) if x ≠ y and x ∉N t

3. sxt = s if x ∉N s

Exercise 3.3.4 Apply the following substitutions.

a) ((λx.y)y)yx
b) (λx.y)yfxy
c) (λx.y)xfxy

Exercise 3.3.5 Let x ≠ y . Find C such that (C[x])xy ≠ C[y]. Hint: Exploit that

C[x] may capture x.

3.4 Alpha Equivalence

Two terms are α-equivalent if the have the same LNR. This doesn’t suffice for a

formal definition since the LNR of terms is not formally defined. It turns out that

there is a non-conservative substitution operator that provides for an elegant

formal definition of α-equivalence.

Let ρ0 be the choice function such that ρ0xN is the least name that is not in N
(we exploit a bijection between Nam and N for the order). Moreover, let S0 be the

substitution operation obtained with ρ0. Finally, let ε be the identity substitution

such that εx = x for all names x. We define α-equivalence as follows:

s ∼α t :⇐⇒ S0εs = S0εt

Intuitively, this definition works since S0εs yields a variant of s where all local

names are chosen to be the least possible ones. Here are examples (x � 0, y � 1):

S0ε(λx.x) = λx.x
S0ε(λy.y) = λx.x

S0ε(λyx.xy) = λxy.yx

A careful study of S0 with complete proofs of its basic properties can be found

in a paper by Allen Stoughton [36].

Proposition 3.4.1

1. S0ε(S0εs) = S0εs

2. S0εs ∼α s

Proposition 3.4.2 Let z be a name that is not free in λx.s or λy.t. Then λx.s ∼α
λy.t ⇐⇒ sxz ∼α tyz .

2008/7/14 19

3 Terms and Types

Proposition 3.4.3 λx.s ∼α λy.t ⇐⇒ y ∉N (λx.s) ∧ t = sxy

Proposition 3.4.4 Alpha equivalence ∼α is an equivalence relation on Ter satis-

fying the following properties:

1. s ∼α t �⇒ C[s] ∼α C[t] compatibility

2. s ∼α t �⇒ Sθs ∼α Sθt stability

Since we will see several other relations on the set of terms that are compatible

and stable, we define these properties in a general way. A binary relation R on

the set of all terms is

• compatible if ∀(s, t) ∈ R ∀C : (C[s], C[t]) ∈ R
• stable if ∀(s, t) ∈ R ∀θ : (Sθs,Sθt) ∈ R

Exercise 3.4.5 Which of the following terms are α-equivalent?

λxyz.xyz, λyxz.yxz, λzyx.zyx, λxyz.zyx, λyxz.zxy

Exercise 3.4.6 Determine S0εt for the following terms t. Assume x � 0, y � 1,

and z � 2.

a) λz.z

b) λyx.yx

c) λxy.yx

d) λxy.y

e) λzxy.xyz

f) λz.x

Exercise 3.4.7 Find counterexamples that falsify the following statements.

a) λx.s ∼α λy.t ⇐⇒ ∃z : sxz ∼α tyz
b) λx.s ∼α λy.t ⇐⇒ sxy ∼α t

3.5 Confluence and Termination

We define some notions for binary relations that we need for α-equivalence and

other relations on terms. Read Chapter 2 of Baader and Nipkow [3] to learn more.

Let X be a non-empty set and → ⊆ X × X. We write x → y if and only

if (x,y) ∈ →. Moreover, we write x →∗ y if there exist x1, . . . , xn such that

x = x1 → ·· · → xn = y . We use →∗ to denote the corresponding reflexive and

transitive relation. We write x ↓ y and say that x and y are →-joinable if there

exists a z such that x →∗ z and y →∗ z. We use ↓ to denote the corresponding

20 2008/7/14

3.5 Confluence and Termination

relation. We say that x is →-normal if there is no y such that x → y . We say

that y is a →-normal form of x if x →∗ y and y is →-normal. We say that → is

confluent if for all x, y , z: x →∗ y ∧ x →∗ z �⇒ y ↓ z.

Proposition 3.5.1 If→ is confluent, then no x has more than one→-normal form.

Proposition 3.5.2 If → is confluent, then ↓ is the least equivalence relation ∼
on X such that → ⊆ ∼.

Proposition 3.5.3 → is confluent if and only if ↓ is an equivalence relation.

We say that → terminates on x if there is no infinite chain x → x1 → x2 → ·· · .

We say that → is terminating if there is no x on which → doesn’t terminate.

Proposition 3.5.4 If→ terminates, every x has a→-normal form. If→ terminates

and is confluent, every x has a unique →-normal form.

We now return to α-equivalence of terms. The α-rule

λx.s → λy.sxy if y ∉N (λx.s) and y < x

replaces the local name of a λ-term with a smaller name. We define α-reduction

as the binary relation →α on Ter satisfying the following condition:

s →α t ⇐⇒ ∃C,x,u,y : s = C[λx.u] ∧ t = C[λy.uxy] ∧ y ∉N (λx.u)∧ y < x

Proposition 3.5.5 →α is confluent an terminating. Moreover, ↓α = ∼α.

Thus, two terms are α-equivalent if and only if they have the same α-normal

form (i.e., →α-normal form).

Hint for the exercises: Draw finite relations as graphs.

Exercise 3.5.6 Give finite relations → such that:

a) → is confluent but not terminating.

b) → is terminating but not confluent.

c) → is not confluent and not terminating.

d) → is confluent, does not terminate on x, and y is a →-normal form of x.

Exercise 3.5.7 Consider the relation → := { (x,y) ∈ N2 | 2 ≤ 2y ≤ x }.
a) Is → terminating?

b) Is → confluent?

c) Give a →-normal form of 7.

d) Give all →-normal n ∈ N.

Exercise 3.5.8 A relation → is locally confluent if for all x, y , z: x → y ∧
x → z �⇒ y ↓ z. Find a finite relation that is locally confluent but not confluent.

2008/7/14 21

3 Terms and Types

3.6 Beta and Eta Reduction

A β-redex is a term of the form (λx.s)t (i.e., an application whose left-hand side

is a λ-term). The β-rule

(λx.s)t → sxt

rewrites a β-redex (λx.s)t to the term sxy . We define β-reduction as the binary

relation →β on Ter satisfying the following condition:

s →β t ⇐⇒ ∃C,x,u, v : s = C[(λx.u)v] ∧ t = C[uxv]

A term is β-normal if it doesn’t contain a β-redex. We say that t is a β-normal

form of s if s →∗
β t and t is β-normal. Here is an example:

(λxy.y)((λx.x)y)z →β (λxy.y)yz

→β (λy.y)z

→β z

Note that the term z is a β-normal form of (λxy.y)((λx.x)y)z. Since the term

(λxy.y)((λx.x)y)z contains two β-redexes, we can reduce it also as follows:

(λxy.y)((λx.x)y)z →β (λy.y)z →β z

Consider the term ω := λx.xx. We have ωω →β ωω. Hence ωω is a term that

has no β-normal form.

Proposition 3.6.1

1. s →β t �⇒ C[s] →β C[t] compatibility

2. s →β t �⇒ Sθs →β Sθt stability

3. s1 ∼α s2 ∧ s1 →β t1 �⇒ ∃t2 : s2 →β t2 ∧ t1 ∼α t2 α-compatibility

Two terms s1, s2 are β-joinable if there exist terms t1, t2 such that s1 →∗
β t1,

s2 →∗
β t2, and t1 ∼α t2.

Theorem 3.6.2 (Confluence) If s →∗
β t1 and s →∗

β t2, then t1 and t2 are

β-joinable.

The Confluence Theorem was first shown in 1936 by Church and Rosser. The

proof is not straightforward. You find it in Barendregt [5].

Corollary 3.6.3 If a term has a β-normal form, then it is unique up to α-

equivalence.

22 2008/7/14

3.6 Beta and Eta Reduction

An η-redex is a term of the form λx.sx where x ∉N s. The η-rule

λx.sx → s if x ∉N s

rewrites an η-redex λx.sx to the term s. We define η-reduction as the binary

relation →η on Ter satisfying the following condition:

s →η t ⇐⇒ ∃C,x,u : s = C[λx.ux] ∧ t = C[u] ∧ x ∉Nu

A term is η-normal if it doesn’t contain an η-redex. We say that t is a η-normal

form of s if s →∗
η t and t is η-normal. Here is an example:

λxy.fxy →η λx.fx →η f

Note that the term f is an η-normal form of λxy.fxy . Also note that λxy.fyx
is η-normal.

Proposition 3.6.4 →η is terminating.

Proposition 3.6.5 If s →η t and s is β-normal, then t is β-normal.

The relation →βη := →β ∪ →η is called βη-reduction. βη-normal forms are

defined as one would expect. Confluence modulo α-equivalence also holds for

βη-reduction. Finally, we define λ-reduction: →λ := →α ∪→β ∪→η.

Theorem 3.6.6 (Confluence) →λ is confluent.

The equivalence relation ∼λ := ↓λ is called λ-equivalence or lambda equiva-

lence.

Proposition 3.6.7 →λ and ∼λ are compatible and stable relations.

Proposition 3.6.8 Lambda equivalence is the least relation R on the set of terms

such that R is symmetric, transitive and →β ∪→η ⊆ R.

Proof One direction is straightforward. For the other direction, let R be a rela-

tion with the required properties. Let s be a term. Then (s, s) ∈ R since λx.s →β s
for all x and R is symmetric and transitive. It remains to show →α ⊆ R. Let

y ∉ N (λx.s). Then λy.(λx.s)y →η λx.s and λy.(λx.s)y →β λx.sxy . Hence

(λx.s, λy.(λx.s)y) ∈ R since R is symmetric and transitive. �

Exercise 3.6.9 Give the β-normal forms of the following terms.

a) (λxy.fyx)ab

b) (λfxy.fyx)(λxy.yx)ab

2008/7/14 23

3 Terms and Types

c) (λx.xx)((λxy.y)((λxy.x)ab))

d) (λxy.y)((λx.xx)(λx.xx))a

e) (λxx.x)yz

Exercise 3.6.10 Give the βη-normal forms of the following terms.

a) λxy.fx

b) λxy.fy

c) λxy.fxy

Exercise 3.6.11 Determine all pairs C , s such that C[s] = λxyz.(λx.x)yxz
and s is a β- or η-redex.

Exercise 3.6.12 Find terms as follows.

a) A term that has no β-normal form.

b) A term that has a β-normal form but is not terminating.

Exercise 3.6.13

a) Find a term that has more than one β-normal form.

b) Find a term s such that there infinitely many terms t such that s →∗
β t.

c) Find terms s, t such that s →β t, s contains no η-redex, and t contains an

η-redex.

3.7 Typed Terms

Types are syntactic objects like terms. We define them as follows:

α,β ∈ Sor � N sorts

σ, τ ∈ Ty ::= α | σ τ types

Sorts are primitive types. We assume Sor ⊆ Ty. Types of the form στ are called

functional. Here are examples of functional types: αβ, (αβ)β, ((αβ)β)β. We

omit parentheses according to σ1σ2σ3 � σ1(σ2σ3). You can see a type as a

binary tree whose leaves are labeled with sorts. Typed terms are defined as

follows:

x,y ∈ Nam � N× Ty names

s, t ∈ Ter ::= x | s t | λx.s terms

The difference to untyped terms is that typed terms employ typed names. Every

name x comes with unique type τx. By definition there are infinitely many

names for every type. We define a typing relation (:) ⊆ Ter × Ty that relates

terms and types. The definition is recursive:

24 2008/7/14

3.7 Typed Terms

1. If x is a name, then x : τx.

2. If s : στ and t : σ , then st : τ .

3. If x : σ and s : τ , then λx.s : στ .

The definition of the typing relation can also be formulated with inference rules:

x : σ
τx = σ

s : στ t : σ

st : τ

x : σ s : τ

λx.s : στ

A term s is well-typed if there exists a type σ such that s : σ . Terms that are not

well-typed are called ill-typed. A substitution θ is well-typed if θx : τx for all

names x.

For typed terms (not necessarily well-typed) the choice function ρxN for the

substitution operation must be restricted such that it returns a name that has

the same type as x. Moreover, α-reduction must replace the local name of a

λ-term with a name of the same type. All other definitions for untyped terms

carry through to typed terms without change.

Proposition 3.7.1

1. s : σ ∧ s : τ �⇒ σ = τ
2. If s is well-typed, then every subterm of s is well-typed.

3. If θ is well-typed and s : σ , then θs : σ .

4. If s →λ t and s : σ , then t : σ .

In words, the proposition states the following:

• The type of a well-typed term is unique.

• Application of a well-typed substitution to a well-typed term preserves the

type of the term.

• Lambda reduction preserves the type of a term.

Consider the termω = λx.xx. This term is ill-typed. We prove this by contradic-

tion. Suppose ω is well-typed. Then, by the above proposition, the subterm xx
is well-typed. Hence there is a type στ such that στ = σ . This is a contradiction

since the type σ is smaller than the functional type στ .

Theorem 3.7.2 (Termination) →λ terminates on well-typed terms.

The Termination Theorem was first shown in 1967 by Tait [37]. The proof is not

straightforward and can be found in [17].

Corollary 3.7.3 Every well-typed term has a unique λ-normal form and a

β-normal form that is unique up to α-equivalence.

2008/7/14 25

3 Terms and Types

Proof The existence of a normal form follows from the Termination Theorem.

The uniqueness follows with the Confluence Theorem. �

Corollary 3.7.4 Lambda equivalence of well-typed terms is decidable.

Proof Follows with the Confluence and the Termination Theorem. The decision

algorithm computes the λ-normal forms of the given terms and checks whether

they are equal. �

Exercise 3.7.5 For each of the following terms finds types for the names occur-

ring in the term such that the term becomes well-typed.

a) λxy.x

b) λf .fyx

c) λfgx.fx(gx)

Exercise 3.7.6 Find closed terms that have the following types.

a) αα

b) αβα

c) (αβ)(βγ)αγ

d) α(αβ)β

Exercise 3.7.7 Find terms s, t such that s →β t, s is ill-typed, and t is well-typed.

3.8 Remarks

We have defined terms and types as syntactic objects. We have stated many

propositions and two famous theorems. We have not given proofs. The proofs

are typically inductive. The proofs of the propositions are not difficult but re-

quire technical details and care. The proofs of the theorems are non-trivial.

The system based on untyped terms is known as untyped lambda calculus,

and the system based on typed terms is known as simply typed lambda calcu-

lus. Both systems originated with Church [9, 10]. Church’s final account of the

untyped lambda calculus can be found in [11]. Nowadays, the standard refer-

ence for the untyped lambda calculus is Barendregt [5]. A textbook introducing

the untyped and the typed lambda calculus is Hindley [22]. The lambda calcu-

lus is essential in the theory of programming languages. Pierce [31] contains a

programming languages oriented introduction to the lambda calculus. A more

advanced textbook is Mitchell [28].

One can formalize LNRs and work with LNRs rather than terms. The advan-

tage of LNRs is that the definition of substitution is straightforward and that α-

equivalence is not needed. As it comes to the semantic interpretation of terms,

26 2008/7/14

3.8 Remarks

the representation of local names is redundant. However, the LNR approach

has also drawbacks. The notions of subterm and context need to be revised. If

you look at the tree representation, its clear that we need to admit LNRs with

dangling argument references to account for the β-reduction of subterms that

occur below λ-nodes. What one ends up with is de Bruijn’s representation [12],

which was conceived for an implementation of terms. Currently, the adequate

formalization of terms is a hot research topic and there are several competing

approaches (e.g., [39, 2, 27]). Following Barendregt [5], most modern presenta-

tions of the lambda calculus sweep the problems under the carpet by saying that

α-equivalent terms are identified.

2008/7/14 27

3 Terms and Types

28 2008/7/14

4 Interpretation and Specification

In this chapter we define the semantics of well-typed terms and set up simple

type theory, the logic we will be working with. The highlight of this chapter is a

specification of the natural numbers in simple type theory.

We tacitly assume that all terms and substitutions are well-typed and that rela-

tions like ∼α, →β, and ∼λ are restricted to well-typed terms. Moreover, Ter will

denote from now on the set of all well-typed terms.

4.1 Interpretations

If we associate with every sort a non-empty set, every type describes a non-empty

set. We require that a functional type στ describes the set of all functions A → B
where A is the set described by σ and B is the set described by τ .

If we associate with every name x an element of the set described by the

type of x, every well-typed term s describes a value that is an element of the

set described by the type of s. The well-typedness condition for applications st
ensures that s describes a function that is defined for the value described by t.

The interpretation of types and terms is something you are familiar with

through years of mathematical training, maybe with the exception of λ-terms.

Since we have a formal account of terms and types, we can also formalize their

interpretation. We will do this in the following.

We assume that the sets Ty (all types) and Ter (all well-typed terms) are dis-

joint. We distinguish between interpretations and evaluations. An interpretation

is a function that assigns a set to every type and a value to every name. An evalu-

ation is a function that assigns a value to every term. Every interpretation yields

a unique evaluation.

For interpretations and evaluation we need a general notion of function. A

function f is a set of pairs such that for no pair (x,y) ∈ f there is a z ≠ y
such that (x, z) ∈ f . The domain and the range of a function f are defined as

follows:

Dom f := {x | ∃y : (x,y) ∈ f }
Ran f := {y | ∃x : (x,y) ∈ f }

An interpretation is a function I such that:

29

4 Interpretation and Specification

1. Dom I = Ty∪Nam

2. Iα is a non-empty set for all sorts α

3. I(στ) = {ϕ |ϕ function Iσ → Iτ } for all types σ , τ

4. Ix ∈ I(τx) for all names x

Proposition 4.1.1 (Coincidence) Two interpretations are equal if they agree on

all sorts and all names.

Given an interpretation I , a name x, and a value v ∈ I(τx), we use Ix,v to denote

the interpretation I[x:=v] (I[x:=v] is like I but maps x to v).

Proposition 4.1.2 (Evaluation) For every interpretation I there exists exactly one

function Î such that:

1. Dom Î = Ter

2. s : σ �⇒ Îs ∈ Iσ for all terms s and all types σ

3. Îx = Ix for all names x

4. Î(st) = (Îs)(Ît) for all applications st

5. Î(λx.s) = λv∈I(τx). Îx,v s for all terms λx.s

Given an interpretation I and a substitution θ, we use Iθ to denote the interpre-

tation satisfying the following equations:

Iθσ = Iσ for every type σ

Iθx = Î(θx) for every name x

Lemma 4.1.3 (Substitution) Î(Sθs) = Îθs.

The lemma says that substitution and interpretation interact smoothly. The

lemma is of great technical importance. If substitution was not defined capture-

free, the lemma would not hold.

The atoms of a term are all sorts and names the interpretation of the term

depends on. For instance, the atoms of λx.x are all sorts that occur in τx.

Formally, we define the atoms occurring in a type or term as follows:

Atomα = {α}
Atom (στ) = Atomσ ∪Atomτ

Atom (x) = {x} ∪Atom (τx)

Atom (st) = Atom s ∪Atom t

Atom (λx.s) = Atom (τx)∪ (Atom s − {x})
If an atom occurs in a term or type, we also say that the term or type contains

the atom or depends on the atom.

Proposition 4.1.4 (Coincidence) If I and I′ agree on Atom s, then Îs = Î′s.

30 2008/7/14

4.2 Semantic Equivalence

4.2 Semantic Equivalence

We define semantic equivalence of terms as follows:

s ≈ t :⇐⇒ (∃σ : s : σ ∧ t : σ) ∧ ∀I : Îs = Ît

In words, two terms are semantically equivalent if they have the same type and

yield the same value for every interpretation. Semantically equivalent terms can-

not be distinguished through interpretations.

Proposition 4.2.1 (Soundness) s ∼λ t �⇒ s ≈ t

Theorem 4.2.2 (Completeness) s ≈ t �⇒ s ∼λ t

Together, soundness and completeness say that lambda equivalence (a syn-

tactic notion) and semantic equivalence (a semantic notion) coincide. Soundness

says that lambda reduction rewrites a term in such a way that its denotation does

not change, no matter how the interpretation is chosen. Completeness says that

lambda reduction is powerful enough to decide semantic equivalence of terms.

For the Soundness Proposition one has to show the soundness of β-reduction

(→β ⊆ ≈) and the soundness of η-reduction (→η ⊆ ≈). For the soundness of

β-reduction the Substitution Lemma 4.1.3 is essential. The Completeness Theo-

rem was first shown by Harvey Friedman [15] in 1975. A simpler proof by Gordon

Plotkin [32] uses Tait’s termination theorem.

4.3 Formulas and Models

We fix a sort B (read bool) and choose names for the logical operations (cf.

Chapter 2):

⊥,� : B

¬ : BB

∨,∧,→ : BBB

=σ : σσB for every type σ

∃σ ,∀σ : (σB)B for every type σ

Terms whose type is B are called formulas. Formulas of the form s =σ t are

called equations. If the context suffices for disambiguation, we omit the type

subscripts of =σ , ∃σ , and ∀σ . We write s ≠ t for ¬(s = t), ≡ for =B , and s �≡ t
for ¬(s ≡ t). The operator precedences stated in § 2.3 apply.

A logical interpretation is an interpretation that interprets B as B, ⊥ as 0, �
as 1, and every name for a logical operation o as the operation o. In particular,

2008/7/14 31

4 Interpretation and Specification

� ≡ (λx.x) =BB λx.x
⊥ ≡ (λx.x) =BB λx.�
¬ = λx. x=⊥
∀σ = λf . f=λx.�
∃σ = λf . f≠λx.⊥
∧ = λxy. ∀f . fxy ≡ f��
∨ = λxy. ¬(¬x ∧¬y)
→ = λxy. ¬x ∨y

Figure 4.1: Henkin Equations

we have I(=σ) = λv1∈Iσ. λv2∈Iσ. (v1=v2) for every logical interpretation I
and every type σ .

An interpretation I satisfies a formula s if I is logical and Îs = 1. A formula

is satisfiable if there is a logical interpretation that satisfies it, and valid if it

satisfied by every logical interpretation. A formula is unsatisfiable if it is not

satisfiable. An interpretation is a model of a formula if it satisfies the formula.

We write I � s if s is a formula and I satisfies s. We say that s holds in I if I � s.
Figure 4.1 shows a set of valid equations, which we will refer to as Henkin

equations (cf. Exercise 2.10.3). The equations are stated with schemes, where

a scheme parameterized with a type σ describes an equation for every type σ .

The Henkin equations can be taken as definitions of the logical operations that

appear at the left.

Proposition 4.3.1 A formula s is valid if and only if ¬s is unsatisfiable.

The language given by well-typed terms, formulas and logical interpretations

is called simple type theory. It originated 1940 with Church [10]. Major con-

tributions came from Leon Henkin [20, 21]. Andrews [1] is the best availble

textbook that introduces simple type theory in Church-Henkin style. Simple

type theory provides the logical base for proof assistants like Isabelle [29] and

HOL [19]. Simple type theory is one prominent example of a higher-order logic,

but often higher-order logic or HOL are used as synonyms for simple type theory.

The decomposition of simple type theory into the simply typed lambda calculus

(interpretations) and the logic component (logical interpretations) introduced in

this section is not standard although obvious. The syntactic part of the (sim-

ply typed) lambda calculus has become the base of the theory of programming

languages [31, 28].

32 2008/7/14

4.4 Specification of the Natural Numbers

In the following we will mostly use simple type theory as the underlying

framework. To simplify our language we will refer to logical interpretations sim-

ply as interpretations.

4.4 Specification of the Natural Numbers

Can we specify the natural numbers in simple type theory? Yes, we can. To

see how, let’s first ask another question: What are the natural numbers? For

centuries, mathematicians have just assumed that the natural numbers exist and

where happy to study their properties. Nowadays, sets are taken as starting

point and hence we can define the natural numbers. Given sets, we have many

possibilities to construct the natural numbers. Maybe the most straightforward

possibility is to see the natural numbers as the sets

�, {�}, {{�}}, {{{�}}}, . . .

where � is taken as 0, {�} as 1, and so on. Based on this construction, one can

define addition, multiplication, and the order relation.

In simple type theory, we cannot mimic the set-theoretic construction of N.

However, a different, more abstract approach works that you may know from

abstract data types. We start with a sort N and two names O : N and S : NN .

Our goal is a formula nat such that every interpretation that interprets N as N,

O as 0, and S as λn∈N.n+1 satisfies nat. We call such interpretations canonical.

The function λn∈N.n+ 1 is known as successor function.

We need to require more of nat since the formula � satisfies what we have

said so far. What we need in addition is that for every formula s the formula

nat → s is valid if and only if s is satisfied by every canonical model of nat.
Since O≠SO is satisfied by every canonical model but � → O≠SO is not valid, �
doesn’t suffice for nat.

We cannot expect to find a formula nat whose models are exactly the canonical

models. The reason is that formulas cannot distinguish the many equivalent

constructions of the natural numbers. We call an interpretation quasi-canonical

if it is a canonical up to the fact that it uses a different construction of N.

So what is a construction of the natural numbers? We require that we are

given a set N , a value O ∈ N , and a function S ∈ N → N such that two conditions

are satisfied:

1. The values O, SO, S(SO), S(S(SO)), . . . are pairwise distinct.

2. N = {O, SO, S(SO), S(S(SO)), . . . }
The second condition says that every x ∈ N can be obtained from O by apply-

ing S a certain number of times. The first condition says that S each time yields

a new value in N . This ensures that N is infinite.

2008/7/14 33

4 Interpretation and Specification

It is not difficult to express the first condition in simple type theory. It suffices

to say that S is injective and always yields a value that is different from O:

∀xy. Sx=Sy → x=y
∀x. Sx≠O

The second condition requires an insight. We need to say that every element of

N is reachable from O with S. We can do this by saying that every subset of N
that contains O and is closed under S is the full set N :

∀p. pO ∧ (∀x. px → p(Sx)) →∀x.px

This formula was first given by Guiseppe Peano in 1889 [30] and is known as

induction axiom. Read the article Peano axioms in Wikipedia to know more. The

conjunction of the three formulas stated above yields the formula nat we were

looking for.

So far, we have the natural numbers just with O and S. Given O and S, it is

straightforward to specify addition + : NNN :

∀y. O +y = y
∀xy. Sx + y = x + Sy

The two formulas specify the meaning of the name + by recursion over the first

argument. Recursion is a fundamental programming technique that has been

used by mathematicians for a long time. In case you don’t feel comfortable with

recursion, get yourself acquainted with functional programming (there are plenty

of textbooks, ML and Haskell are the most popular languages).

Exercise 4.4.1 (Multiplication) Extend the specification of the natural number

with a formula that specifies the name · : NNN as multiplication.

Exercise 4.4.2 (Pairs) Let the names pair : στP , fst : Pσ , and snd : Pτ be given.

Find a formula that is satisfied by a logical interpretation I if and only if IP �
Iσ × Iτ and pair, fst, and snd are interpreted as the pairing and projection

functions.

Exercise 4.4.3 (Termination) Let r : ααB be a name. Find a formula that is

satisfied by a logical interpretation I if and only if Ir is the functional coding of

a terminating relation.

Exercise 4.4.4 (Finiteness) Let f : σσ be a name.

a) Find a term injective : (σσ)B such that a logical interpretation satisfies the

formula injectivef if and only if it interprets f as an injective function.

34 2008/7/14

4.4 Specification of the Natural Numbers

b) Find a term surjective : (σσ)B such that a logical interpretation satisfies the

formula surjectivef if and only if it interprets f as a surjective function.

c) Find a formula finite that is satisfied by a logical interpretation I if and only

if Iσ is a finite set.

Exercise 4.4.5 (Lists) Let the names nil : L, cons : σLL, hd : Lσ , and tl : LL be

given. Find a formula that is satisfied by a logical interpretation I if and only if L
represents all lists over σ and nil, cons, hd, and tl represent the list operations.

Make sure that L contains no junk elements.

2008/7/14 35

4 Interpretation and Specification

36 2008/7/14

5 Formal Proofs

There are two essential requirements for a proof system:

• Soundness: If a formula has a proof, the formula must be valid.

• Decidability: Given a proof object p and a formula s, it must be algorithmically

decidable whether p is a proof of s.

The first proof system was devised by Frege in 1879 [13]. Fifty years later,

Gentzen [16] invented the now predominant sequent-based proof systems.

5.1 Abstract Proof Systems

We start with an abstract notion of proof system. A proof step is a pair

({x1, . . . , xn}, x), which may be written as

x1 . . . xn
x

The objects x1, . . . , xn are the premises and the object x is the conclusion of

the proof step. A proof step is primitive if it has no premises. A proof system

is a set of proof steps. The premises and the conclusions of the steps of a proof

system are jointly refered to as propositions. Given a proof system S and a set P ,

the closure S[P] is defined recursively:

1. If x ∈ P , then x ∈ S[P].
2. If (Q,x) ∈ S and Q ⊆ S[P], then x ∈ S[P].
Due to the recursive definition of closures, we obtain proof trees that verify

statements of the form x ∈ S[P]. The proof tree

x1 x2

x4

x3

x5

x6

verifies the statement x6 ∈ S[{x2}] provided the following pairs are proof steps

of S: (�, x1), (�, x3), ({x1, x2}, x4), ({x3}, x5), ({x4, x5}, x6). Obviously, we

have x ∈ S[P] if and only if there is a proof tree that verifies x ∈ S[P].

37

5 Formal Proofs

Proposition 5.1.1 Let S be a proof system. Then:

1. P ⊆ S[P]
2. P ⊆ Q �⇒ S[P] ⊆ S[Q]
3. Q ⊆ S[P] �⇒ S[P ∪Q] = S[P]

In practice, proof systems are supposed to be decidable. To this goal a de-

cidable set X of propositions is fixed and S is chosen as a decidable set of proof

steps for X. Given a decidable set P ⊆ X, it is decidable whether a given tree

is a proof tree that verifies x ∈ S[P]. Consequently the closure S[P] is semi-

decidable.

A proposition x is derivable in a proof system S if x ∈ S[�]. A proof step

(P, x) is derivable in a proof system S if x ∈ S[P]. Derivability of a proof step

means that it can be simulated with proof steps that are in S. If we extend a

proof system with derivable steps, the closures do not change. However, we may

obtain smaller proof trees for given x and P . A proof tree that uses derivable

rules can always be compiled into a proof tree just using basic rules.

Let V be a set. A proof step (P, x) applies to V if P ⊆ V . A proof step (P, x)
is sound for V if x ∈ V if (P, x) applies to V . A proof system S is sound for V if

every proof step of S is sound for V .

Proposition 5.1.2 A proof system S is sound for V if and only if S[V] = V .

Proposition 5.1.3 If S is sound for V , then S[�] ⊆ V .

Exercise 5.1.4 Let the proof system S = { ({x,y}, z) | x,y, z ∈ N ∧ x · y = z }
be given.

a) Determine S[�].

b) Determine S[{2}].
c) Give a proof step ({x}, y) ∈ S that has only one premise.

d) Derive the proof step ({2,3},12).

e) Is S sound for the even numbers?

f) Is S sound for the odd numbers?

g) Does S[{2x|x ∈ N}] contain an odd number?

5.2 Deducible Sequents

Our goal are formal proofs for the validity of formulas. The obvious approach

is to establish a proof system for formulas that is sound for the set of valid

formulas. Systems of this kind are known as Hilbert systems. The first such

38 2008/7/14

5.2 Deducible Sequents

system was developed by Frege [13]. Hilbert systems have the disadvantage that

their proof trees are difficult to construct. The reason is that with Hilbert systems

one cannot obtain proof trees whose structure resembles natural proofs.

Natural proofs work with assumptions. For instance, if we want to proof an

implication s ⇒ t, we say “assume s” and then prove t under the assumption s.
Similarly, to prove a statement ∀x∈X : s, we say “let x ∈ X” and then prove s
under the assumption x ∈ X. Gerhard Gentzen [16] was the first who designed

proof systems that maintain assumptions in the way natural proofs do. To make

this possible, Gentzen uses sequents rather than formulas as propositions.

A sequent is a pair A �̇ s where A is a finite set of formulas and s is a formula.

The formulas in A are called the assumptions of the sequent, and s is called

the claim of the sequent. A sequent is valid if every logical interpretation that

satisfies all assumptions of the sequent also satisfies the claim of the sequent.

We write � for the set of all valid sequents, and A � s if A �̇ s is valid.

Proposition 5.2.1

1. A formula s is valid if and only if the sequent � �̇ s is valid.

2. A sequent {s1, . . . , sn} �̇ s is valid if and only if the formula s1 → ·· · → sn → s
is valid.

We refer to the names for the logical operations (cf. § 4.3) as constants. All other

names are called variables. From now on we tacitly assume the following:

• Constants are not used as local names.

• Substitutions leave constants unchanged. That is, θc = c for every constant c
and every substitution θ.

• Interpretations are always logical.

Some conventions and definitions:

• A always denotes a finite set of formulas.

• A context C captures a name x if C ’s hole is in the scope of a λx. For instance,

the context λx.(λy.[])x captures x and y but no other name.

• A context C is admissible for A if C captures no x ∈NA.

• A substitution θ is admissible for A if θx = x for all x ∈NA.

• θs := Sθs
• θA := {θs | s ∈ A }
We define the following notations for sequents:

• �̇ s for � �̇ s.
• A, s �̇ t for A∪ {s} �̇ t.
• s, t �̇ u for {s, t} �̇ u.

2008/7/14 39

5 Formal Proofs

Triv
A, s � s Weak

A � s
B � s A ⊆ B Sub

A � s
θA � θs Lam

A � s
A � t s ∼λ t

Ded
A, s � t
A � s → t

MP
A � s → t A � s

A � t

Ref
A � s=s Rew

A � s=t A � C[s]
A � C[t] C admissible for A

D� � � ≡ ⊥→⊥ D¬ � ¬x ≡ x→⊥

D∨ � x∨y ≡ ¬x→y D∧ � x∧y ≡ ¬(¬x∨¬y)

D∀ � ∀f ≡ f=λx.� D∃ � ∃f ≡ ¬∀x.¬fx

BCA f⊥, f� � fx Choice � ∃c.∀f . ∃f → f(cf)

Figure 5.1: The basic proof system B defining �

Figure 5.1 defines a proof system B for sequents. We refer to this system as

basic proof system. The proof steps of B are described by means of schemes

called rules. Given a rule, the proof steps described by the rule are obtained

by taking the sequents above the horizontal line as premises and the sequent

below the horizontal line as conclusion. The rules Lam and Rew come with side

conditions that constrain the obtainable proof steps. Starting with D¬, we omit

the horizontal line for primitive rules (i.e., rules without premises). Following

a common abuse of notation, we write the sequents appearing as premises and

conclusions of the rules with � rather than �̇. Every rule comes with a name that

appears to its left.

Proposition 5.2.2 The proof system B is sound for �.

Proof We have to check for every rule in Figure 5.1 that the conclusion is valid

if all the premises are valid. It is ok to think of A as a formula and of �̇ as

implication. With this provisio the soundness of most rules should be intuitively

clear. The soundness of Lam follows with Proposition 4.2.1. �

We define � := B[�] and write A � s for (A �̇ s) ∈ �. A sequent A �̇ s is

deducible if A � s. Since B is sound for �, deducible sequents are valid and

� ⊆ �. The symbol � originated with Frege and is pronounced turnstile.

40 2008/7/14

5.3 Derived Rules for Turnstile and Implication

It is important to distinguish between the set � of deducible sequents and the

proof system B defining it. The set � is canonical and we will work with it for a

long time. The proof system B is not canonical. The set of deducible sequents

can be defined with many other proof systems.

We will study B and � by deriving more and more useful proof steps. We start

with some remarks on the rules given in Figure 5.1. The first line lists general

rules that are not committed to particular logic operations. The rules Ded and

MP in the second line concern implication. Next follow the rules Ref and Rew,

which concern identities. The next 6 rules act as equational definitions of �, ¬,

∨, ∧, ∀, and ∃. The final two rules BCA and Choice state properties that cannot

be obtained with the previous rules. BCA says that a function f : BB that yields

� for both ⊥ and � yiels � for every x : B. Choice states the existence of choice

functions.

The full names of the rules are as follows: Triviality, Weakening, Substitution,

Lambda, Deductivity, Modus Ponens, Reflexivity, Rewriting, and Boolean Case

Analysis. The D stands for definition.

Example 5.2.3 Here is a proof tree that verifies (x→x)→x � x:

(x→x)→x � (x→x)→x Triv
(x→x)→x, x � x Triv

(x→x)→x � x→x Ded

(x→x)→x � x MP

5.3 Derived Rules for Turnstile and Implication

The rules in the first 2 lines of Figure 5.1 constitute the kernel of the basic proof

system. They fix the basic properties of � and →. Figure 5.2 shows additional

rules that are derivable from this set of basic rules. A rule is derivable if all its

proof steps are derivable.

Derivation of Ded−

Ded− acts as the inverse of Ded. It is derivable with the following proof tree:

A � s→t
A, s � s→t Weak

A, s � s Triv

A, s � t MP

The best way to construct and understand a proof tree is backwards, that is,

from the root to the leaves. To prove a sequent, one looks for a rule that yields

2008/7/14 41

5 Formal Proofs

Ded−
A � s→t
A, s � t Lam’

A,u � t
A, s � t u ∼λ s Cut

A � s A, s � t
A � t

Cut
s � t A � s

A � t Cut
s1, s2 � t A � s1 A � s2

A � t

MP’
A � s A, t � u
A, s→t � u MP’

A, t � u
A, s, s→t � u

Figure 5.2: Derived rules for � and →

the sequent from hopefully weaker premises. One then continues recursively

with proving the premises.

Derivation of Cut

The first cut rule is derivable as follows:

A, s � t
A � s→t Ded

A � s
A � t MP

It’s best to read the cut rules backwards. The first cut rule says that A � t can be

proven by using a “lemma” A � s and proving the weaker statement A, s � t.

Exercise 5.3.1 Show that Lam’ is derivable. Exploit that with Ded− assumptions

can be shifted to the right of �, and that with Ded they can be shifted back.

Exercise 5.3.2 Prove the second and the third cut rule.

Exercise 5.3.3 Prove MP’.

Exercise 5.3.4 Let θ be admissible for A and A � s. Show A � θs.

Exercise 5.3.5 Show x � (x→⊥)→⊥.

5.4 Derived Rules for Identities

We now look at the basic rules Ref and Rew which handle identities. Figure 5.3

shows the most important derived rules for identities.

42 2008/7/14

5.4 Derived Rules for Identities

Sym
A � s=t
A � t=s Trans

A � s=t A � t=u
A � s=u

Con
A � s=t

A � C[s]=C[t] C admissible for A

Rep
A � s=t A � C[θs]

A � C[θt] C, θ admissible for A

Rep
A � s=t A � C[θt]

A � C[θs] C, θ admissible for A

Rep
A � s=u A,C[θs] � t

A, C[θu] � t C, θ admissible for A

Rep
A � s=u A,C[θu] � t

A, C[θs] � t C, θ admissible for A

FE
A � sx=tx
A � s=t x ∉NA∪N (s=t)

Abs
A � fx=s
A � f=λx.s x ∉NA Abs

A � fxy=s
A � f=λxy.s x,y ∉NA

Figure 5.3: Derived rules for identities

Derivation of Sym

A � s=t A � s=s Ref

A � t=s Rew

Derivation of Con

A � s=t A � C[s]=C[s] Ref

A � C[s]=C[t] Rew

2008/7/14 43

5 Formal Proofs

Top � � BCAR
A � sx⊥ A � sx�

A � s Bot ⊥ � s

Equiv
A, s � t A, t � s

A � s≡t Eq � x ≡ x = � DN � ¬¬x ≡ x

Contra
A,¬s � ⊥
A � s Contraposition � x→y ≡ ¬y→¬x Icon x, ¬x � y

N⊥ � ¬⊥ ≡ � N� � ¬� ≡ ⊥ N≡ � x �≡y ≡ x=¬y

Figure 5.4: Derived Rules for � and ¬

Derivation of FE
A � sx=tx

A � (λx.sx)=λx.tx Con

A � s=t Lam

Exercise 5.4.1 Prove x=y � y=x with the basic rules.

Exercise 5.4.2 Show that Trans, Rep, and Abs are derivable.

5.5 BCA and Tautologies

A formula is propositional if it can be obtained with the following grammar:

s ::= ⊥ | � | p | ¬s | s → s | s ∧ s | s ∨ s | s ≡ s
p : B is a variable

A tautology is a propositional formula that is valid. Typical examples of tautolo-

gies are � and x∧y ≡ y∧x. We will show that all tautologies are deducible. For

this result the rule BCA is essential.

Figure 5.4 shows rules that are derivable in B with BCA.

Derivation of Top

� � ≡ ⊥→⊥ D�
⊥ � ⊥ Triv

� ⊥→⊥ Ded

� � Rep

44 2008/7/14

5.5 BCA and Tautologies

Derivation of BCAR

The sequent sx⊥, sx� � s can be derived as follows:

f⊥, f� � fx BCA

(λx.s)⊥, (λx.s)� � (λx.s)x Sub

sx⊥ , s
x
� � (λx.s)x

Lam’, Lam’

sx⊥ , s
x
� � s

Lam

Now BCAR can be derived with Cut.

Derivation of Bot

⊥ � ⊥ Triv
� � Top

⊥ � � Weak

⊥ � x BCAR

⊥ � s Sub

Derivation of Equiv

With Sub, Cut, and Ded we can derive Equiv from � (x→y) → (y→x) → x≡y .

This sequent can be derived with BCAR from the four instances obtained by

replacing x and y with ⊥ and �. Two of the instances will end with trivial

equations and can thus be obtained with Ded and Ref. Here is a derivation of

one of the remaining instances:

� � Top ⊥ � ⊥ Triv

�→⊥ � ⊥ MP’

�→⊥ � ⊥≡� Bot, Cut

� (⊥→�)→ (�→⊥)→ ⊥≡� Weak, Ded, Ded

Derivation of DN

Here is a proof tree for DN that has one open premise.

� ((x→⊥)→⊥)→ x

(x→⊥)→⊥ � x Ded−

⊥ � ⊥ Triv

x, x→⊥ � ⊥ MP’

x � (x→⊥)→⊥ Ded

� (x→⊥)→⊥ ≡ x Equiv

� ¬x→⊥ ≡ x Rep with D¬

� ¬¬x ≡ x Rep with D¬

2008/7/14 45

5 Formal Proofs

The open premise can be shown with BCAR.

Exercise 5.5.1 Prove � ((x→⊥)→⊥)→x with BCAR. Don’t use DN.

Derivation of Contra
A, ¬s � ⊥
A � ¬s→⊥ Ded

A � ¬¬s Rep with D¬

A � s Rep with DN

Exercise 5.5.2 Derive � ¬s ≡ s=⊥.

5.6 Natural Deduction

We already mentioned that sequent-based proof systems were invented by

Gentzen [16]. His goal was a system whose proof rules are natural in the

sense that they formalize proof patterns used in mathematical proofs. Fig-

ure 5.5 shows a proof system ND for sequents that closely corresponds to

one of Gentzen’s systems. ND is a well-known proof system of theoretical

and practical importance. Its rules can be found in most proof assistants (e.g,

Isabelle/HOL [29]).

Proposition 5.6.1 The proof steps of ND are derivable in B.

We will derive some of the rules of ND, but this is not our main interest. Rather,

we want to explain the structure behind the rules and how the rules relate to

mathematical proof patterns.

First, we observe that �, negation, and identities do not explicitly occur in

ND. Consequently, ND is weaker than B in that it can prove less sequents. The

omission of � and negation is not essential since they can be treated as abbre-

viations for ⊥ → ⊥ and s → ⊥ (cf. D¬ and D� in Figure 5.1). The omission

of identities, however, forgives expressive power and important proof patterns.

The obmission of identities is typical for natural deduction-like proof systems.

ND has exactly two rules for each of the logical operations →, ∧, ∨, ∀, and ∃.

Let’s refer to these operations as regular. An important modularity property

of ND is the fact that the rules for a regular operation do not employ other

operations. For every regular operation the basic proof steps are thus provided

by exactly two rules that don’t employ the other operations. The exception to

this pattern is the rule CB, which employs ⊥ and implication. CB is the only rule

that employs ⊥. Note that CB is a variant of the Contra rule.

46 2008/7/14

5.6 Natural Deduction

Triv
A, s � s Weak

A � s
B � s A ⊆ B

Ded
A, s � t
A � s→t MP

A � s→t A � s
A � t

I∧
A � s1 A � s2
A � s1∧ s2

E∧
A � s1∧ s2
A � si

I∨
A � si

A � s1∨ s2
E∨

A � s1∨ s2 A, s1 � t A, s2 � t
A � t

I∀
A � sxy
A � ∀x.s y ∉NA∪N (∀x.s) E∀

A � ∀x.s
A � sxt

I∃
A � sxt
A � ∃x.s E∃

A � ∃x.s A, sxy � t
A � t y ∉NA∪N (∃x.s)∪N t

CB
A, s→⊥ � ⊥

A � s

Figure 5.5: The natural deduction system ND

One distinguishes between introduction and elimination rules. For every reg-

ular operation, ND has one introduction and one elimination rule. In Figure 5.5,

the introduction rules appear left and the elimination rules appear right. For

implication, the introduction rule is Ded and the elimination rule is MP. For ev-

ery regular operation o, the introduction rule formalizes the natural pattern for

proving formulas built with o. The corresponding elimination rule formalizes a

natural pattern for making use of an already proven formula built with o. Note

that the logical operations appear exclusively in the claims of the sequents ap-

pearing as premises and conclusions of the introduction and elimination rules.

The introduction rules can be paraphrased as follows:

• To prove s → t, assume s and prove t.

• To prove s1 ∧ s2, prove both s1 and s2.

• To prove s1 ∨ s2, prove either s1 or s2.

• To prove ∀x.s, prove sxy for some fresh name y .

2008/7/14 47

5 Formal Proofs

• To prove ∃x.s, prove sxt for some term t. The term t is referred to as witness.

We now see why one speaks of natural deduction: The introduction rules in fact

formalize common proof patterns from mathematical proofs. This is also the

case for the elimination rules, which can be paraphrased as follows: If you have

already proven

• s → t, you can prove the claim t by proving s.

• s1 ∧ s2, you have also proven s1 and s2.

• s1∨ s2, you can prove a claim t by case analysis: first with the assumption s1,

then with the assumption s2.

• ∀x.s, you have also proven every instance sxt .

• ∃x.s, you can prove a claim t with the additional assumption sxy where y is a

fresh name.

Proposition 5.6.2 Ded−, Cut, and MP’ are derivable in ND.

Proof Follows with proof trees for B in § 5.3 since only the common rules Triv,

Weak, Ded, and MP are used. �

Proposition 5.6.3 Sub is derivable in ND.

Proof We show how Sub can be derived if only one variable is replaced.

s � t
� s→t Ded

� ∀x. s→t I∀

� sxu→txu
E∀

sxu � txu
Ded−

The proof can be generalized to the case where several variables are replaced. �

Which rules do we have to add to ND so that we can derive all rules of B? One

can show that Lam, Ref, Rew, BCA, and Choice do the job. If we add BCA, we can

drop CB since CB can be derived with ND and BCA (see the derivation of Contra

in B in § 5.5). We now see that we can account for the operations ∧, ∨, ∀ and ∃
in two ways: through defining equations as done by B, or through proof rules as

done by ND.

Exercise 5.6.4 Consider the sequent f(x→x) � f(y→y). This sequent cannot

be proven in ND. Sketch a proof in B. Derived rules are fine.

48 2008/7/14

5.7 Predicate Logic and Completeness

5.7 Predicate Logic and Completeness

A formula is called first-order if it can be obtained with the following grammar:

s ::= ⊥ | � | p t . . . t | t = t |
¬s | s → s | s ∧ s | s ∨ s | s ≡ s | ∀x.s | ∃x.s

t ::= f t . . . t

where p : α . . .αB, x : α, and f : α . . .αα are variables and α ≠ B

The logic obtained with propositional formulas is called propositional logic, and

the one obtained with first-order formulas is called (first-order) predicate logic.

Gentzen devised his natural deduction system for predicate logic without equal-

ity (i.e., without identities). Predicate logic was studied long before the more

general simple type theory was invented. In a native account of predicate logic,

both quantifiers act as variable binders, hence there is no need for lambda terms.

A sequent is propositional [first-order] if all its formulas are propositional

[first-order]. A proof tree is propositional [first-order] if it only involves propo-

sitional [first-order] sequents.

Theorem 5.7.1 (Completeness) For every valid sequent S that doesn’t contain

�, ¬ and identities, the following statements hold:

1. If S is first-order, then S can be derived with a first-order ND proof tree.

2. If S is propositional, then S can be derived with a propositional ND proof tree.

A theorem of this type was first shown by Gentzen [16]. The first completeness

theorem for first-order formulas was shown by Gödel [18] (for a Hilbert system).

A proof system that is complete for all valid sequents cannot exist since the

set of valid formulas is not semi-decidable. This follows from the fact that we

can construct for every Turing machine M a formula s such that M holds for all

inputs if and only if s is valid.

5.8 Natural Language Proofs and Natural Deduction

Proofs

In this section we give examples of provable sequents, natural language proofs

of the sequents, and the corresponding ND proof trees. We begin with a very

simple example.

Example 5.8.1 � ∀x.px → px where x : α and p : αB.

Natural Language Proof: Let x : α be given. Assume px holds. By assumption,

2008/7/14 49

5 Formal Proofs

px holds, so we are done.

(Instead of writing “we are done” we may also write “QED.”)

Formal Proof:

px � px Triv

� px → px
Ded

� ∀x.px → px
I∀

Let’s consider a similar example involving a quantifier over the type B of

Booleans.

Example 5.8.2 � ∀p.p → p where p : B.

Natural Language Proof: Let p be a Boolean value. Assume p holds. By assump-

tion, p holds. QED.

Formal Proof:

p � p Triv

� p → p
Ded

� ∀p.p → p
I∀

When the sequent has a nonempty set assumptions, then we can make use

of these assumptions in the proof of the conclusion. Let’s consider an example

with a nonempty set of assumptions.

Example 5.8.3 man Socrates,∀x.manx → mortalx � mortal Socrates
Natural Language Proof: Since Socrates is a man and all men are mortal, Socrates

is mortal.

Formal Proof: Let A denote the set {man Socrates,∀x.manx → mortalx}.

A � ∀x.manx → mortalx
Triv

A � man Socrates→ mortal Socrates
E∀

A �man Socrates
Triv

A � mortal Socrates
MP

“Socrates is mortal” is a common example of deductive reasoning dating back

to Aristotle. The proof demonstrates a truth that is independent of the sugges-

tive names man, mortal and Socrates. Reconsider the example with less sugges-

tive names. We still write “x is a p” to mean “px holds.” This makes sense in

the Socrates example, since man Socrates means Socrates is a man. Other ways

to say “px holds” include “x has property p,” “x is in p” and “x satisfies p.”

50 2008/7/14

5.8 Natural Language Proofs and Natural Deduction Proofs

Example 5.8.4 pa,∀x.px → qx � qa
Natural Language Proof: Since a is a p and every p is a q, a is a q.

Formal Proof: Let A be the set {pa,∀x.px → qx}.

A � ∀x.px → qx
Triv

A � pa → qa
E∀

A � pa Triv

A � qa MP

So far we have only shown examples involving ∀ and →. We next consider an

example with ∧ and ∨.

Example 5.8.5 a∨ b ∧ c � (a∨ b)∧ (a∨ c) where a, b, c : B.

Natural Language Proof: By case analysis. Case 1: Assume a holds. In this case

a∨ b and a∨ c both hold. Hence their conjunction holds. Case 2: Assume b∧ c
holds. This means both b and c hold. Consequently, the disjunctions a∨ b and

a∨ c both hold. Thus the conjunction holds and we are done.

Formal Proof: Let A be the set {a∨b∧c} and A′ be the set {a∨b∧c, b∧c, b, c}.
The main proof tree is

A � a∨ b∧ c Triv
(Case 1) (Case 2)

A � (a∨ b)∧ (a∨ c) E∨

where (Case 1) is the proof tree

A,a � a Triv

A,a � a∨ b I∨
A,a � a Triv

A,a � a∨ c I∨

A,a � (a∨ b)∧ (a∨ c) I∧

(Case 2) is the proof tree

A,b∧ c � b ∧ c Triv

A,b∧ c � b E∧

A,b∧ c, b � b ∧ c Triv

A,b∧ c, b � c E∧

A′ � b Triv

A′ � a∨ b I∨
A′ � c Triv

A′ � a∨ c I∨

A′ � (a∨ b)∧ (a∨ c) I∧

A,b∧ c, b � (a∨ b)∧ (a∨ c) Cut

A,b∧ c � (a∨ b)∧ (a∨ c) Cut

We next consider the existential quantifier ∃.

2008/7/14 51

5 Formal Proofs

Example 5.8.6 pa � ∃x.px where x,a : α and p : αB.

Natural Language Proof: We must prove there is some p. We know there is a p
since a is a p.

Formal Proof:

pa � pa Triv

pa � ∃x.px I∃

This example using ∃ was too easy. Let’s consider one that requires a bit more

work.

Example 5.8.7 pa∨ pb,∀x.px → qx � ∃x.qx where x,a, b : α and p, q : αB.

Natural Language Proof: We must prove there is some q. We consider two cases.

Case 1: Assume a is a p. Since every p is also a q, a is a q. Hence there is some

q in this case. Case 2: Assume b is a p. Since every p is also a q, b is a q. Hence

there is some q in this case as well and we are done.

Formal Proof: Let A be {pa∨ pb,∀x.px → qx}. The main proof tree is

A � pa∨ pb Triv
(Case 1) (Case 2)

A � ∃x.qx E∨

where (Case 1) is the proof tree

A,pa � ∀x.px → qx
Triv

A,pa � pa → qa
E∀

A,pa � pa Triv

A,pa � qa MP

A,pa � ∃x.qx I∃

and (Case 2) is the proof tree

A,pb � ∀x.px → qx
Triv

A,pb � pb → qb
E∀

A,pb � pb Triv

A,pb � qb MP

A,pb � ∃x.qx I∃

The next example shows how to use an existential assumption.

52 2008/7/14

5.9 More Derivations

Example 5.8.8 ∃z.pz,∀x.px → q(fx) � ∃y.qy where x,y, z : α, p, q : αB and

f : αα.

Natural Language Proof: We must prove there is some q. We know there is some

p. Let a be a p. We know if x is a p then fx is a q. In particular, fa is a q. We

conclude that there is some q. QED.

Formal Proof: Let A be {∀x.px → q(fx),∃z.pz}.

A � ∃z.pz Triv

A,pa � ∀x.px → q(fx)
Triv

A,pa � pa → q(fa)
E∀

A,pa � pa Triv

A,pa � q(fa) MP

A,pa � ∃y.qy I∃

A � ∃y.qy E∃

Question: Would the proof tree verify A � ∃y.qy if A were {a = a,∀x.px →
q(fx),∃z.pz}? �

The Lam and Ref rules are not part of the ND system. If we add them to the

system, then we can prove the following example.

Example 5.8.9 � ∃f .∀x.fx = x where f : αα and x : α.

Natural Language Proof: We must prove there is some function f such that

fx = x for any x. We can simply take f to be λx.x. Note that for any x,

(λx.x)x is the same as x up to λ-equivalence.

Formal Proof:

� x = x Ref

� ∀x.x = x I∀

� ∀x.(λx.x)x = x Lam

� ∃f .∀x.fx = x I∃

5.9 More Derivations

First we derive I∀ and E∀ in B.

Example 5.9.1 (Universal Generalization, I∀)

A � s
A � s = � Rep with Eq

A � (λx.s) = λx.� Con, x ∉NA

A � ∀x.s Rep with D∀

2008/7/14 53

5 Formal Proofs

Example 5.9.2 (Universal Instantiation, E∀)

A � ∀x.s
A � (λx.s) = λx.� Rep with D∀

A � (λx.s)t = (λx.�)t Con

A � sxt = �
Lam

A � sxt
Rep with Eq

Example 5.9.3 (D∀) While B accomodates ∧, ∨, ∀, and ∃ through defining equa-

tions (the rules starting with D), ND accommodates these operations through

introduction an elimination rules. Both approaches have the same power. We

have just shown that I∀ and E∀ are derivable with D∀. We now show that D∀ is

derivable with I∀ and E∀. Because of Equiv it suffices to show ∀f � f = λx.�
and f = λx.� � ∀f . We show the former and leave the latter as an exercise.

∀x.fx � fx Triv, E∀

∀f � fx Lam’

∀f � fx = � Rep with Eq

∀f � (λx.fx) = λx.� Con

∀f � f = λx.� Lam

Exercise 5.9.4 Derive f = λx.� � ∀f with I∀.

Example 5.9.5 (Extensionality) We have ∀x. fx=gx � f=g. The respective

rule is known as extensionality. Here is a proof tree:

∀x. fx=gx � fx=gx Triv, E∀

∀x. fx=gx � (λx.fx)=λx.gx Con

∀x. fx=gx � f=g Lam

5.10 Simplifying Lam and Sub

The basic proof system can be simplified by replacing Lam and Sub by simpler

rules. This simplification makes it easier to prove soundness. Lam and Sub then

appear as derived rules. Here are the simpler rules:

β � (λx.s)t = sxt η � (λx.fx) = f Eq � x ≡ x=�

First we observe that we can prove Ref with Rew and β:

54 2008/7/14

5.11 Remarks

� (λx.s)x = s β � (λx.s)x = s β

� s = s Rew

So we may also drop Ref. Lam can be derived with Ref, β, η, Con, Sym, and

Trans. To see that Sub is derivable, we first show that the steps
� s = t
� sxu = txu

are

derivable.

(λx.t)u = txu
β

(λx.s)u = sxu
β

s = t
(λx.s)u = (λx.t)u Con

sxu = (λx.t)u
Rew

sxu = txu
Rew

Next we show that the steps
� s
� sxt

are derivable.

� s
� s = � Rew with Eq

� (λx.s)t = (λx.�)t Con

� sxt = �
Lam

� sxt
Rew with Eq

Now we obtain the derivability of Sub with Ded− and Ded.

5.11 Remarks

In the first two chapters of their textbook [23], Huth and Ryan give an elementary

introduction to natural deduction. They use a popular graphical notation for

natural deduction proofs and give many examples. To know more about proof

systems, you may consult the textbook by Troelstra and Schwichtenberg [38]. An

excellent source of historical information on logic is the Stanford Encyclopedia

of Philosophy [41], which is available online. The following text is taken from the

entry The Development of Proof Theory (with minor changes).

Before the work of Frege in 1879 [13], no one seems to have maintained that

there could be a complete set of principles of proof, in the sense expressed by

Frege when he wrote that in his symbolic language, “all that is necessary for a

correct inference is expressed in full, but what is not necessary is generally not

indicated; nothing is left to guesswork.” Even after Frege, logicians such as Peano

2008/7/14 55

5 Formal Proofs

β
(λx.s)t = sxt

η
(λx.fx) = f Rew

s = t C[s]

C[t]

Figure 5.6: The proof system L

kept formalizing the language of mathematical arguments, but without any ex-

plicit list of rules of proof. Frege’s step ahead was decisive for the development

of logic and foundational study.

Russell took up Frege’s logic, but used the notation of Peano, and thus formu-

lated an axiomatic approach to logic. The idea was that the axioms express basic

logical truths, and other logical truths are derived from these through modus

ponens and universal generalization (I∀), the two principles Frege had identi-

fied. Mathematics was to be reduced to logic, so that its proofs would become

presented in the same axiomatic pattern.

In his thesis Untersuchungen über das logische Schliessen (Investigations into

Logical Inference, under the supervision of Bernays, accepted in June 1933 and

published in two parts in 1934-35), Gentzen states that he set as his task the

analysis of mathematical proofs as they occur in practice. Hilbert’s lecture in

Hamburg in 1930 is one obvious source of inspiration for this venture. The first

observation is that actual proofs are not based on axioms expressed in a logical

language, as in Hilbert’s axiomatic proof theory. The most typical feature is

instead that theorems make their claims under some assumptions.

5.12 Bonus: Equational Deduction

The proof system L consists of the proof steps described by the rules in Fig-

ure 5.6. The premises and conclusions of the steps of L are formulas. Note that

every formula in L[�] is an equation.

Proposition 5.12.1 (Soundness)

1. L is sound for { s=t | s ∼λ t }.
2. L is sound for the set of valid formulas.

Proof We have →β ∪ →η ⊆ ∼λ by the definition of lambda equivalence in § 3.6.

Hence the proof steps described by β and η are sound for lambda equivalent

equations. The soundness of the steps described by Rew follows from the com-

patibility, symmetry, and transitivity of lambda equivalence (Proposition 3.6.7).

We omit the soundness proof for valid formulas. �

56 2008/7/14

5.12 Bonus: Equational Deduction

Ref
s = s Sym

s = t
t = s Trans

s = t t = u
s = u Con

s = t
C[s] = C[t]

Sub
s = t
θs = θt α

(λx.s) = λy.sxy
y ∉N (λx.s) Lam

s

t
s ∼λ t

Rep
s = t C[θs]

C[θt]
Rep

s = t C[θt]

C[θs]

App
f = λx.u
fs = uxs

App
f = λxy.u
fst = uxys t

Abs
fx = s
f = λx.s Abs

fxy = s
f = λxy.s

FE
sx = tx
s = t x ∉N (s = t)

Figure 5.7: Rules derivable in L

Figure 5.7 shows some rules that are derivable in L. We give some of the

derivations and leave the others as exercises.

Derivation of Ref

(λx.s)x = s β
(λx.s)x = s β

s = s Rew

Derivation of Sym

s = t s = s Ref

t = s Rew

Exercise 5.12.2 Derive Trans in L.

2008/7/14 57

5 Formal Proofs

Derivation of Con

s = t C[s] = C[s] Ref

C[s] = C[t] Rew

Derivation of Sub

We show how Sub can be derived if only one variable is replaced.

(λx.t)u = txu
β

(λx.s)u = sxu
β

s = t
(λx.s)u = (λx.t)u Con

sxu = (λx.t)u
Rew

sxu = txu
Rew

The derivation can be generalized to the case where several variables are re-

placed.

Derivation of α

(λx.s)y = sxy
β

(λy.fy) = f η

f = λy.fy Sym

(λx.s) = λy.(λx.s)y Sub, y ∉N (λx.s)

(λx.s) = λy.sxy
Rew

Derivation of Lam

Proposition 5.12.3 L[�] = { s=t | s ∼λ t }.

Proof The direction ⊆ follows from the fact that L is sound for lambda equiva-

lent equations (Proposition 5.12.1). To see the other direction, we first observe

that s = t is derivable in L if s →λ t (rules β, η, α, Con). Now the rest follows

from the definition of ∼λ with Ref, Sym, and Trans. �

The derivability of Lam now follows with Rew.

Exercise 5.12.4 Derive Rep, App, Abs, and FE in L.

Equational Deduction with Sequents

The proof system ED consists of the proof steps described by the rules in Fig-

ure 5.8. The premises and conclusions of the steps of ED are sequents.

Proposition 5.12.5 (Soundness) ED is sound for valid sequents.

58 2008/7/14

5.12 Bonus: Equational Deduction

β � (λx.s)t = sxt
η � (λx.fx) = f

Rew
A � s=t A � C[s]

A � C[t] C admissible for A

Triv
A, s � s Weak

A � s
B � s A ⊆ B

Cut
A � s A, s � t

A � t Sub
A � s
θA � θs

Figure 5.8: The proof system ED

Lemma 5.12.6 A proof step ({s1, . . . , sn}, s) is derivable in L if and only if the

proof step ({ �̇ s1, . . . , �̇ sn}, �̇ s) is derivable in ED.

Proof The direction from L to ED is easy. The other direction follows from the

fact that for every step (P,A �̇ s) ∈ ED and every premise (B �̇ t) ∈ P we have

B ⊆ A. Hence a proof tree for a sequent �̇ s will only involve sequents with an

empty assumption set and hence will not involve the rules Triv and Weak. �

Proposition 5.12.7 �̇ s=t derivable in ED if and only if s ∼λ t.

Exercise 5.12.8 Generalize the derived rules in Figure 5.7 to ED. For instance,

Sym generalizes to
A � s=t
A � t=s . Of particular interest are the rules Con, Sub, Rep,

Abs and FE, which need side conditions.

2008/7/14 59

5 Formal Proofs

60 2008/7/14

6 Tableau Proofs

In Chapter 4 we learned about logical interpretations. Logical interpretations

give us a notion of validity. In Chapter 5 we learned about proof systems. The

proof system B gives us a notion of deducibility. Using the basic and derived

proof rules presented in Chapter 5 to deduce a sequent often requires a great

deal of creativity. In this chapter we will make the process of proving a sequent

more mechanical.

6.1 An Example: Peirce’s Law

Before going on, let us consider an interesting formula called Peirce’s Law:

((p → q) → p) → p

Here we assume p, q : B are (distinct) names. We can argue that Peirce’s Law is

valid by considering logical interpretations.

Let I be any logical interpretation. The interpretation I(→) of implication

must be the function in B → B → B such that

I(→)ab equals

{
0 if a = 1 and b = 0

1 if a = 0 or b = 1

for a, b ∈ B. In other words, I � s → t iff (if and only if) either I � ¬s or I � t.
Likewise, I � ¬(s → t) iff both I � s and I � ¬t.

Assume Peirce’s Law were not valid. Then there must be some logical inter-

pretation I such that

I � ¬(((p → q)→ p) → p).

Consequently,

I � ¬p

and

I � ((p → q) → p.

Hence either I � p or I � ¬(p → q). We cannot have I � p since this contradicts

I � ¬p. So we must have I � ¬(p → q). This means I � ¬q and I � p, which

again contradicts I � ¬p. Therefore, there can be no such logical interpretation

61

6 Tableau Proofs

¬(((p → q)→ p)→ p)

(p → q)→ p

¬p
p ¬(p → q)

p

¬q

¬(((p → q)→ p)→ p)
(p → q) → p

¬p

p
¬(p → q)

p
¬q

Figure 6.1: Tableau for Peirce’s Law (in two formats)

I . In other words, Peirce’s Law is valid. We summarize this argument in the form

of a tree (in two formats) in Figure 6.1. Let us call this tree a tableau for Peirce’s

law. (We will soon define the general notion of a tableau.) The root of the tree

contains the negation of Peirce’s Law. Each child node represents a consequence

of its ancestors. We represent the case split by splitting the main branch into

two branches.

Now that we have an idea of why Peirce’s Law is valid, let us attempt to prove

it using the rules from Chapter 5. Our goal is to derive

� ((p → q)→ p) → p.

Applying Ded, we can reduce this to proving

((p → q)→ p) � p.

Using MP and Triv we can reduce this to proving

((p → q) → p) � p → q.

Applying Ded, this reduces to deriving

((p → q)→ p), p � q.

So far we have constructed the following partial proof tree:

62 2008/7/14

6.1 An Example: Peirce’s Law

(p → q)→ p

p

¬q
p ¬(p → q)

p

¬q

((p → q) → p)
p
¬q

p
¬(p → q)

p
¬q

Figure 6.2: Tableau for sequent (6.1) in two formats

(p → q)→ p � (p → q)→ p
Triv

(p → q)→ p,p � q
(p → q)→ p � p → q

Ded

(p → q) → p � p MP

� ((p → q) → p) → p
Ded

It remains to derive the sequent

((p → q)→ p), p �̇ q. (6.1)

It is not clear what we can do to make progress towards deriving (6.1). Instead

of applying more rules, let us consider why the sequent (6.1) might be valid. We

proceed exactly as we did for Peirce’s Law. Assume we have an intepretation I
witnessing that (6.1) is not valid. That is, I � (p → q) → p, I � p and I � ¬q.

Since I � (p → q) → p, we must have either I � p or I � ¬(p → q). In the

second case we must have I � p and I � ¬q. Figure 6.2 represents these steps

as a tableau. We did not reach any contradiction. In fact, if we take I to be a

logical interpretation where Ip = 1 and Iq = 0, then all of the formulas in the

tree are satisfied by I . In this case we have shown that the sequent

((p → q)→ p), p �̇ q

is not valid. As a consequence of soundness, we know there is no proof tree

ending with ((p → q)→ p), p �̇ q.

What happened? We were easily able to argue (using interpretations) that

Peirce’s Law was valid, but we got lost when trying to prove it. We were also

2008/7/14 63

6 Tableau Proofs

Closed
A, s,¬s � ⊥ Imp

A, t � ⊥ A,¬s � ⊥
A � ⊥ s → t ∈ A, t ∉ A, ¬s ∉ A

NegImp
A, s,¬t � ⊥
A � ⊥ ¬(s → t) ∈ A, {s,¬t} �⊆ A

Figure 6.3: Some derivable refutation rules

easily able to show we were “lost” by arguing (again using interpretations) that a

subgoal was not valid. In the latter case, the argument gave us an interpretation

I showing the subgoal is not valid.

Can the argument for validity of Peirce’s Law (as depicted in Figure 6.1) serve

as a guide to proving Peirce’s Law? The answer is yes. In fact, if we have the

derived rules in Figure 6.3, then Figure 6.1 directly corresponds to the proof tree

A,¬p,p � ⊥ Closed
A,¬p,¬(p → q), p,¬q � ⊥ Closed

A,¬p,¬(p → q) � ⊥ NegImp

¬(((p → q)→ p) → p), (p → q)→ p,¬p � ⊥ Imp

¬(((p → q)→ p) → p) � ⊥ NegImp

� ((p → q) → p) → p
Contr

where A = {¬(((p → q) → p) → p), (p → q)→ p}.
Exercise 6.1.1 Prove the following rules are derivable. You may use any of the

basic or derived rules from Chapter 5.

a)

Contra−
A � s

A,¬s � ⊥

b)

I¬
A, s � ⊥
A � ¬s

c)

I¬−
A � ¬s
A, s � ⊥

d) Prove the rules in Figure 6.3 are derivable.

64 2008/7/14

6.2 Refutations

6.2 Refutations

A refutation step is a proof step of the form

A1 � ⊥ . . . An � ⊥
A � ⊥

where n ≥ 0 and A ⊂ Ai (i.e., A ⊆ Ai and A �= Ai) for each i ∈ {1, . . . , n}. A

refutation rule is a schema of refutation steps. We will introduce a number of

refutation rules throughout this chapter by giving a diagram

A1 � ⊥ . . . An � ⊥
A � ⊥ φ

We restrict instances of refutation rules to be refutation steps. We have already

seen three refutation rules in Figure 6.3. Note that

p → q,p, q � ⊥ p → q,p,¬p � ⊥
p → q,p � ⊥

is an instance of the Imp rule. On the other hand,

p → q,¬p, q � ⊥ p → q,¬p � ⊥
p → q,¬p � ⊥

is not an instance of the Imp rule since it is not a refutation step.

Exercise 6.2.1 Which of the following are instances of the refutation rule

NegImp.

a)

¬p,p,¬q � ⊥
¬p,¬(p → q) � ⊥

b)

¬p,¬(p → q), p,¬q � ⊥
¬p,¬(p → q) � ⊥

c)

¬(p → q), p,¬q � ⊥
¬(p → q), p � ⊥

d)

¬(p → q), p,¬q � ⊥
¬(p → q), p,¬q � ⊥

2008/7/14 65

6 Tableau Proofs

A refutation of A is a proof tree for A �̇ ⊥ where each step is a refutation

step. Note that every sequent in a refutation must be of the form A �̇ ⊥.

Each of the refutation rules we give in this chapter will be derivable in the

basic proof system B. Consequently, we will always be assured that if we have a

refutation of A using the refutation rules presented in this chapter, then we also

have A � ⊥.

Note that for any sequent A �̇ s, we can reduce the problem of proving A �̇ s
to the problem of finding a refutation of A,¬s by using the Contra rule.

Also, if we are trying to prove A �̇ ⊥ and apply a refutation rule, then each

new subgoal will be Ai �̇ ⊥ with A ⊂ Ai. Note that any interpretation satisfying

Ai will necessarily satisfy A. We can never end up with a subgoal that is not valid

unless A �̇ ⊥ was not valid to begin with. This is in contrast to the ND system.

We say in the case of Peirce’s Law that applying ND rules such as MP can yield

subgoals that are not valid even if the conclusion is valid. When we search with

ND rules, we may need to backtrack. When we search with refutation rules, we

never need to backtrack.

6.3 Tableaux

Just as the refutation of Peirce’s Law can be viewed as the tree in Figure 6.1, any

refutation can be viewed as such a tree. Suppose we have a refutation rule of the

form

A, P1 � ⊥ . . . A, Pn � ⊥
A � ⊥ P ⊆ A, . . .

Note that each refutation rule (read from bottom to top) allows us to expand

the set of assumptions. Suppose P = {s1, . . . , sm} and Pi = {ti1, . . . , tiki} for each

i ∈ {1, . . . , n}. According to the refutation rule, if we have s1, . . . , sm in our

set of assumptions, then we can split the goal into n cases. In the case ith case

(where i ∈ {1, . . . , n}), we can add ti1, . . . , t
i
ki to our assumptions. As in Figure 6.1,

we include assumptions by extending the relevant branch of the tree and we

distinguish cases by splitting the relevant branch into several branches. Given

this convention, a tableau view of such a rule is shown in Figure 6.4. Figure 6.4

should be read operationally: if a branch contains all the formulas above the

line (and any side condition holds with respect to the branch), then we split the

branch into n branches where we add {ti1, . . . , tiki} to the ith branch. We can

also depict this operation as shown in Figure 6.5: if a branch on the current

tableau contains all the formulas on the solid line, then applying the refutation

rule allows us to extend the tableau by adding the dotted portions (so long as

any side condition holds with respect to the branch).

66 2008/7/14

6.3 Tableaux

s1, . . . , sm
t1
1 , . . . , t

1
k1

· · · tn1 , . . . , t
n
kn

Figure 6.4: Tableau view of a refutation rule

s1

...

sm

t1
1

...

t1
k1

· · · tn1

...

snkn

Figure 6.5: Refutation rule as an operation on a tableau

How do tableaux correspond to refutations? For each branch of a tableau

there is a set A of formulas that occur on the branch. If the tableau has n
branches with corresponding sets of formulas A1, . . . , An, then we have n se-

quents to prove, namely

A1 �̇ ⊥ · · · An �̇ ⊥

For some of the branches, we may be able to apply a refutation rule with no

premisses. One example of such a rule is the Closed rule in Figure 6.3. This rule

is given along with four other refutation rules with no premisses in Figure 6.6.

If one of these rules applies, then we say the branch is closed. In other words, a

branch with a set of formulas A is closed if one of the following holds:

1. {s,¬s} ⊆ A,

2. ⊥ ∈ A,

3. ¬� ∈ A,

4. ¬(s = s) ∈ A, or

5. (s = t),¬(t = s) ∈ A.

Otherwise, we say the other branches are open. At any stage of the proof, our

goal is to prove the sequent A �̇ ⊥ for each open branch with formulas A.

We think of the formulas on a branch conjunctively. We think of the collection

2008/7/14 67

6 Tableau Proofs

Closed
A,⊥ � ⊥ Closed

A,¬� � ⊥ Closed
A, s,¬s � ⊥

Closed¬ =
A,¬(s = s) � ⊥ ClosedSym

A, (s = t),¬(t = s) � ⊥

Figure 6.6: Derivable refutation rules with no premisses

of branches disjunctively. For a logical interpretation I , we say I satisfies a

branch if it satisfies every formula on the branch. We say a branch is satisfiable

if there is some logical interpretation I that satisfies the branch.

Suppose a branch with a set of formulas A is closed. Then A �̇ ⊥ is derivable

(using one of the derived rules in Figure 6.6. By soundness, A is unsatisfiable. In

other words, the branch is unsatisfiable. If every branch of a tableau is closed,

then every branch is unsatisfiable.

Suppose C is a set of formulas such that every formula s ∈ C is on every

branch in the tableau. In this case, if some branch is satisfiable, then C is satisfi-

able.

6.4 Refutation Rules for Propositional Logic

We have already seen refutation rules for → in Figure 6.3. Also, there are two

refutation rules in Figure 6.6 for � and ⊥. In this section we will derivable refu-

tation rules corresponding to the logical constants ¬, ∧, ∨ and =B . We also show

the tableau views of the rules. These rules will be enough to prove any valid for-

mula of propositional logic. That is, we will prove our first completeness results.

Refutation rules for propositional constants (including the two rules for →)

are given in Figure 6.7. In each of the rules we implicitly assume that A is a proper

subset of the left hand side of the sequent in each premiss. The corresponding

tableau views are shown in Figure 6.8. The rules are depicted as operations on

tableaux in Figure 6.9. We say a set of formulas A has a propositional refutation

if there is a refutation of A using only the rules in Figures 6.6 and 6.7.

We can now state the completeness result we want to prove.

Theorem 6.4.1 (Propositional Completeness)

1. If A is an unsatisfiable finite set of propositional formulas, then there is a

propositional refutation of A.

68 2008/7/14

6.4 Refutation Rules for Propositional Logic

DNeg
A, s � ⊥
A � ⊥ ¬¬s ∈ A DeMorgan

A,¬s ∧¬t � ⊥
A � ⊥ ¬(s ∨ t) ∈ A

DeMorgan
A,¬s ∨¬t � ⊥

A � ⊥ ¬(s ∧ t) ∈ A And
A, s, t � ⊥
A � ⊥ s ∧ t ∈ A

Or
A, s � ⊥ A, t � ⊥

A � ⊥ s ∨ t ∈ A Imp
A, t � ⊥ A,¬s � ⊥

A � ⊥ s → t ∈ A

NegImp
A, s,¬t � ⊥
A � ⊥ ¬(s → t) ∈ A

Boolean=
A, s, t � ⊥ A,¬s,¬t � ⊥

A � ⊥ s ≡ t ∈ A

Boolean �=
A, s,¬t � ⊥ A, t,¬s � ⊥

A � ⊥ ¬(s ≡ t) ∈ A

Figure 6.7: Derivable refutation rules for propositional constants

DNeg
¬¬s
s

DeMorgan
¬(s ∨ t)
¬s ∧¬t DeMorgan

¬(s ∧ t)
¬s ∨¬t

And
s ∧ t
s, t

Or
s ∨ t
s t

Imp
s → t
t ¬s NegImp

¬(s → t)
s,¬t

Boolean= s ≡ t
s, t ¬s,¬t Boolean �= ¬(s ≡ t)

s,¬t t,¬s

Figure 6.8: Tableau views of refutation rules for propositional constants

2008/7/14 69

6 Tableau Proofs

DNeg

¬¬s

s

DeMorgan

¬(s ∧ t)

¬s ∨¬t

DeMorgan

¬(s ∨ t)

¬s ∧¬t

And

s ∧ t

s

t

Or

s ∨ t

s t

Imp

s → t

t ¬s

NegImp

¬(s → t)

s

¬t

Boolean=
s =B t

s

t

¬s

¬t

Boolean �=
¬(s =B t)

s

¬t

t

¬s

Figure 6.9: Propositional refutation rules as operations on tableaux

2. If A is a finite set of propositional formulas, s is a propositional formula and

A � s, then A � s.

Since the Contra rule is derived and all the rules in Figures 6.6 and 6.7 are

derived, the second part of Theorem 6.4.1 follows from the first part by consid-

ering the set A,¬s. That is, we only need to prove the first part of Theorem 6.4.1.

We will eventually prove that either A has a refutation or A is satisfiable. We first

prove that if we reach a proof state with subgoal A � ⊥ but none of the refutation

rules apply, then A must be satisfiable.

What does it mean to say none of the refutation rules applies? We mean

that no refutation step which is an instance of one of the refutation rules has

conclusion A � ⊥.

Suppose we are trying to prove � (q → p) → p. This reduces to refuting

{¬((q → p) → p)}. Applying the refutation rules we can construct the following

70 2008/7/14

6.4 Refutation Rules for Propositional Logic

tableau with two branches:
¬((q → p) → p)

q → p
¬p

p ¬q
The left branch is closed since both p and ¬p occur on the branch. The right

branch is open and corresponds to the subgoal A � ⊥ where

A = {¬((q → p) → p), (q → p),¬p,¬q}.

Can we apply any of the refutation rules in Figures 6.6 and 6.7 to reduce A � ⊥
to new subgoals? In other words, does any instance of the refutation rules in

Figures 6.6 and 6.7 have conclusion A � ⊥? Inspecting each of the rules, we

find that no instance of the rules has conclusion A � ⊥. The only rules that

might apply are NegImp since ¬((q → p) → p) ∈ A and Imp since (q → p) ∈ A.

However, NegImp does not apply since {(q → p), (¬p)} ⊆ A and Imp does not

apply since ¬q ∈ A.

Clearly we cannot use the refutation rules in Figures 6.6 and 6.7 to refute

A = {¬((q → p) → p), (q → p),¬p,¬q}.

IsA satisfiable? In other words, is there a logical interpretation I such that I � A?

Yes, there is such a logical interpretation and we define one now. We will also

make use of this interpretation (appropriately modified) to prove that whenever

no instance of the refutation rules in Figures 6.6 and 6.7 has conclusion A � ⊥,

then A is satisfiable.

We define a default interpretation Id as follows. On the sort B, we take

IdB = {0,1}. On every other sort α, we take Idα to be the singleton set {�}. On

function types τσ , Id(τσ) is defined to be the set of functions from Idτ to Idσ .

We can define a default element dτ of each Idτ as follows:

dB = 0 ∈ IdB,

dα = � ∈ Idα for other sorts α,

and

dτσ = (λx ∈ Idτ.dσ) ∈ Id(τσ).
Note that the use of λ above is to describe a function, not a term. We have defined

dτσ as the function in Id(τσ) which takes each element of Idτ to dσ ∈ Idσ . For

each logical constant c of type σ , we define Idc to be the unique element of Idσ
which has the property corresponding to the constant. For variables x of type σ ,

we define Idx = dσ . That is, all variables are interpreted as the default element

of the given type.

2008/7/14 71

6 Tableau Proofs

One can easily see that Id � A since Idp = 0 and Idq = 0. We can use a similar

idea to prove the following general result.

Proposition 6.4.2 Let A be a finite set of propositional formulas. If no instance

of the refutation rules in Figures 6.6 and 6.7 has conclusion A � ⊥, then A is

satisfiable.

For any set A of propositional formulas we can construct a logical interpreta-

tion IA such that

IAp =
{

1 if p ∈ A
0 if p ∉ A

We define IA as follows:

IAσ = Idσ

for all types σ ,

IAp = 1

if p ∈ A (where p is a variable), and

IAa = Ida

for every other name a. Clearly IA � p for names p ∈ A. We cannot in general

conclude IA � A (i.e., IA � s for all s ∈ A). However, we will soon define a

property ∇Prop of sets A of formulas which will guarantee IA � A. Once we

define ∇Prop we will be able to prove two lemmas. Proposition 6.4.2 will follow

from these two lemmas.

Lemma 6.4.3 Let A be a finite set of formulas. If no instance of the refutation

rules in Figures 6.6 and 6.7 has conclusion A � ⊥, then A satisfies ∇Prop.

Lemma 6.4.4 Let A be a set of formulas satisfying ∇Prop. For all propositional

formulas s, we have the following:

1. If s ∈ A, then ÎAs = 1.

2. If ¬s ∈ A, then ÎAs = 0.

To see that Proposition 6.4.1 follows from the two lemmas, we argue as fol-

lows. Suppose A is a finite set of propositional formulas and no instance of the

refutation rules in Figures 6.6 and 6.7 has conclusion A � ⊥. By Lemma 6.4.3 A
satisfies ∇Prop. By the first property in Lemma 6.4.4, IA � A.

The property ∇Prop will be the conjunction of several properties. We will call

these properties Hintikka properties. In order to simplify the presentation, let

72 2008/7/14

6.4 Refutation Rules for Propositional Logic

us first consider the fragment of propositional logic with negation and implica-

tion. Let Prop→ be the set of formulas determined by the grammar

s ::= p | ¬s | s → s

p : B is a variable

We define the following Hintikka properties of a set A of formulas:

∇c For all formulas s, s ∉ A or ¬s ∉ A.

∇¬¬ If ¬¬s ∈ A, then s ∈ A.

∇→ If s → t ∈ A, then ¬s ∈ A or t ∈ A.

∇¬→ If ¬(s → t) ∈ A, then s ∈ A and ¬t ∈ A.

Let ∇Prop→ be the conjunction of these four Hintikka properties.

We now prove the following simplified versions of Lemmas 6.4.3 and 6.4.4.

Lemma 6.4.5 (Simplified version of Lemma 6.4.3) Let A be a finite set of formu-

las. If no instance of the refutation rules in Figures 6.6 and 6.7 has conclusion

A � ⊥, then A satisfies ∇Prop→.

Lemma 6.4.6 (Simplified version of Lemma 6.4.4) Let A be a set of formulas

satisfying ∇Prop→. For all s ∈ Prop→, we have the following:

1. If s ∈ A, then ÎAs = 1.

2. If ¬s ∈ A, then ÎAs = 0.

Proof (Proof of Lemma 6.4.5) We verify each of the four properties. The care-

ful reader will note that we can prove the result even if all we know is that no

instance of the rules Closed, DNeg, Imp or NegImp has conclusion A � ⊥.

∇c Assume ∇c does not hold. Then {s,¬s} ⊆ A for some formula s. In this

case an instance of the rule Closed has conclusion A � ⊥, contradicting our

assumption.

∇¬¬ Assume ∇¬¬ does not hold. We must have ¬¬s ∈ A and s ∉ A. In this case

an instance of DNeg has conclusion A � ⊥ (and premiss A, s � ⊥).

∇→ Assume ∇→ does not hold. We must have s → t ∈ A, ¬s ∉ A and t ∉ A. In

this case an instance of Imp has conclusion A � ⊥ (and premisses A,¬s � ⊥
and A, t � ⊥).

∇¬→ Assume ∇¬→ does not hold. We must have ¬(s → t) ∈ A and {s,¬t} �⊆
A. In this case an instance of NegImp has conclusion A � ⊥ (and premiss

A, s,¬t � ⊥). �

Proof (Proof of Lemma 6.4.6) The proof is by induction on the structure of s ∈
Prop→. We need to prove for every s ∈ Prop→ the two properties hold:

2008/7/14 73

6 Tableau Proofs

(1s) If s ∈ A, then IAs = 1.

(2s) If ¬s ∈ A, then IAs = 0.

There are three kinds of formulas in Prop→: variables p, negations ¬s and

implications s → t. We consider each case.

For the base case of the induction we consider a variable p ∈ Prop→.

(1p): Assume p ∈ A. We must prove IAp = 1. This is trivial since IAp was

defined to be 1.

(2p): Assume ¬p ∈ A. We must prove IAp = 0. By ∇c we know p ∉ A. By

definition IAp = 0.

Next we consider ¬s ∈ Prop→. Our inductive hypothesis is that both (1s) and

(2s) hold.

(1¬s): Assume ¬s ∈ A. We must prove ÎA(¬s) = 1. By (2s) we know ÎAs = 0 and

so ÎA(¬s) = 1.

(2¬s): Assume ¬¬s ∈ A. We must prove ÎA(¬s) = 0. By ∇¬¬ we have s ∈ A. By

(1s) we know ÎAs = 1 and so ÎA(¬s) = 0.

Finally we consider s → t ∈ Prop→. Our inductive hypothesis is that (1s), (2s),

(1t) and (2t) hold.

(1s→t): Assume s → t ∈ A. We must prove ÎA(s → t) = 1. By ∇→ either ¬s ∈ A
or t ∈ A. If ¬s ∈ A then ÎAs = 0 by (2s) and so ÎA(s → t) = 1. If t ∈ A then

ÎAt = 1 by (1t) and so ÎA(s → t) = 1. In either case we have the desired result.

(2s→t) Assume ¬(s → t) ∈ A. We must prove ÎA(s → t) = 0. By ∇¬→ both

s ∈ A and ¬t ∈ A. By (1s) and (2t) we have ÎAs = 1 and ÎAt = 0. Hence

ÎA(s → t) = 0. �

We now define ∇Prop as the conjunction of the following 12 properties of a

set A of formulas:

∇c For all formulas s, s ∉ A or ¬s ∉ A.

∇⊥ ⊥ ∉ A.

∇¬� ¬� ∉ A.

∇¬¬ If ¬¬s ∈ A, then s ∈ A.

∇→ If s → t ∈ A, then ¬s ∈ A or t ∈ A.

∇¬→ If ¬(s → t) ∈ A, then s ∈ A and ¬t ∈ A.

∇∨ If s ∨ t ∈ A, then s ∈ A or t ∈ A.

∇¬∨ If ¬(s ∨ t) ∈ A, then ¬s ∈ A and ¬t ∈ A.

∇∧ If s ∧ t ∈ A, then s ∈ A and t ∈ A.

∇¬∧ If ¬(s ∧ t) ∈ A, then ¬s ∈ A or ¬t ∈ A.

∇≡ If s ≡ t ∈ A, then {s, t} ⊆ A or {¬s,¬t} ⊆ A.

74 2008/7/14

6.4 Refutation Rules for Propositional Logic

∇�≡ If ¬(s ≡ t) ∈ A, then {s,¬t} ⊆ A or {¬s, t} ⊆ A.

Note that this includes the four properties we used to define ∇Prop→. We can

prove Lemmas 6.4.3 and 6.4.4 using the same techniques as Lemmas 6.4.5

and 6.4.6. We sketch the proofs and leave the reader to check the details.

Proof (Proof of Lemma 6.4.3) ∇c ,∇⊥,∇¬� since Closed does not apply.

∇¬¬ since DNeg does not apply.

∇→ since Imp does not apply.

∇¬→ since NegImp does not apply.

∇∨ since Or does not apply.

∇¬∨ since otherwise either DeMorgan or And would apply.

∇∧ since And does not apply.

∇¬∧ since otherwise either DeMorgan or Or would apply.

∇≡ since Boolean= does not apply.

∇�≡ since Boolean �= does not apply. �

Proof (Proof of Lemma 6.4.4) The proof is by induction on the propositional

formula s:

• For variables p use ∇c .
• For � use ∇¬�.

• For ⊥ use ∇⊥.

• For ¬s use ∇¬¬.

• For s → t use ∇→ and ∇¬→.

• For s ∨ t use ∇∨ and ∇¬∨.

• For s ∧ t use ∇∧ and ∇¬∧.

• For s ≡ t use ∇≡ and ∇¬≡. �

Finally, we can prove propositional completeness.

Proof (Proof of Theorem 6.4.1) SupposeA is an unsatisfiable finite set of propo-

sitional formulas and A has no propositional refutation. We will prove a contra-

diction.

First we define the height h(s) of a propositional formula s by induction as

follows:

h(p) = 1 h(�) = 1

h(⊥) = 1 h(¬s) = 1+ h(s)
h(s → t) = 1+max(h(s), h(t)) h(s ∧ t) = 1+max(h(s), h(t))
h(s ∨ t) = 1+max(h(s), h(t)) h(s ≡ t) = 1+max(h(s), h(t))

2008/7/14 75

6 Tableau Proofs

Let H be the maximum height of the propositional formulas in A. There are

only finitely many names in NA and there are only finitely many propositional

formulas s with maximum height H such that N s ⊆NA. Let F be this finite set.

Clearly A ⊆ F .

By Proposition 6.4.2 there is some instance of a rule from Figures 6.6 and 6.7

of the form

A1 � ⊥ . . . An � ⊥
A � ⊥

Since A has no propositional refutation, at least one Ai must have no proposi-

tional refutation. Examining the rules, we also see that Ai ⊆ F since the pre-

misses never have greater height than any formula in the conclusion and every

name occurring free in the premisses must have occurred free in the conclusion.

Also, since A is unsatisfiable and A is a (proper) subset of Ai, Ai is also unsatis-

fiable. Let C0 be A and C1 be A. We will define an infinite sequence of sets Cn

recursively.

Suppose we have an unsatisfiable set Cn ⊆ F which has no propositional refu-

tation. As above, there must be an instance of one of the rules with conclusion

Cn � ⊥ and a premiss Cn+1 � ⊥ where Cn+1 has no propositional refutation.

Again, Cn is a proper subset of Cn+1 and Cn+1 ⊆ F . By induction we have an

infinite chain

C0 ⊂ C1 ⊂ C2 ⊂ · · · ⊂ Cn ⊂ · · ·

Since each inclusion is proper,
⋃
n Cn must be infinite. On the other hand⋃

n Cn is a subset of the finite set F since each Cn ⊆ F . This is a contradiction. �

Implicit in the proof above is the fact that any search for a proof will either

terminate with a refutation or with a satisfiable set of propositional formulas

extending the set we intended to refute. Consequently, we have a decision pro-

cedure for propositional formulas.

6.5 Quantifiers

We now consider refutation rules for quantifiers and the corresponding tableaux.

The refutation rules are shown in Figure 6.10 and corresponding tableau views

are shown in Figure 6.11. As with the propositional case, we include DeMorgan

rules to exchange negation with a quantifier. To apply the Forall rule we must

give a term t of the same type as the bound variable. Discovering the correct t to

use in a given proof often requires creativity. To apply the Exists rule we must

give a variable y of the same type as the bound variable. The only requirement

76 2008/7/14

6.5 Quantifiers

DeMorgan
A,∃x.¬s � ⊥

A � ⊥ ¬(∀x.s) ∈ A

DeMorgan
A,∀x.¬s � ⊥

A � ⊥ ¬(∃x.s) ∈ A Forall
A, sxt � ⊥
A � ⊥ ∀x.s ∈ A

Exists
A, sxy � ⊥
A � ⊥ ∃x.s ∈ A, y ∉NA

Figure 6.10: Derivable refutation rules for quantifiers

DeMorgan
¬∀x.s
∃x.¬s DeMorgan

¬∃x.s
∀x.¬s Forall

∀x.s
sxt

Exists
∃x.s
sxy

where y is fresh

Figure 6.11: Tableau views for quantifier rules

is that y is not free in the conclusion sequent. Note that if the bound variable

x does not occur in the conclusion sequent then we can use x for y . For the

tableau view of the Exists rule in Figure 6.11 we simply say y is fresh to mean

y is not free in any formula on the branch. Again, if x is not free in any formula

on the branch, then we can simply use the same name x.

Combining these rules with the propositional rules will be enough to prove

any first-order sequent. We say a set A has a first-order refutation if A is first-

order and there is a refutation of A using only the rules in Figures 6.6, 6.7

and 6.10.

Unlike the propositional case, applying the rules will not terminate in general.

This is because the Forall rule can be applied infinitely many times (by choosing

different terms t). Consequently, the rules will not give a decision procedure.

Indeed, the set of provable first-order sequents is not decidable. However, we

will be able to argue completeness in a similar way as the propositional case.

Suppose we have a finite set of first-order formulas A for which there is no

first-order refutation. Applying the same procedure as in the proof of proposi-

tional completeness (Theorem 6.4.1) we can argue that either A is satisfiable or

2008/7/14 77

6 Tableau Proofs

some rule must apply. The instance of the rule must have a premiss for which

there is also no first-order refutation. Continuing this process we obtain a chain

of finite sets of formulas

A ⊂ C1 ⊂ · · · ⊂ Cn ⊂ · · · .

This time we will prove that the set
⋃
n Cn is satisfiable.

Before embarking on another completeness result we consider a few exam-

ples.

We first consider two small examples. Let α be a sort different from B and let

p : αB and x,a, b : α be names. We will give a tableau proof of

(pa∨ pb)→ ∃x.px

We first negate the statement (applying Contra) and then apply NegImp to obtain

¬((pa∨ pb)→ ∃x.px)
pa∨ pb
¬∃x.px

After applying DeMorgan we have ∀x.¬px on the branch and after applying Or

we have the following tableau:

¬((pa∨ pb)→ ∃x.px)
pa∨ pb
¬∃x.px
∀x.¬px
pa pb

On the left branch we apply Forall with the term a and this branch is then closed.

On the right branch we apply Forall with the term b and then both branches are

closed. The final tableau is shown in Figure 6.12. The reader is encouraged to

consider other possible tableau proofs by reordering the application of the rules.

By a similar process we can construct a tableau proof of

(∀x.px) → (pa∧ pb)

such as the one shown in Figure 6.13.

Note that in both of these examples we have used the Forall rule, in spite of

the fact that the first example contained ∃ and the second example contained ∀.

We have not yet had an example using the Exists rule.

Consider the following simple example with a name r : ααB and names

x,y, z : α where α is a sort other than B:

(∃x.rxx) → ∃yz.ryz

78 2008/7/14

6.5 Quantifiers

¬((pa∨ pb)→ ∃x.px)
pa∨ pb
¬∃x.px
∀x.¬px
pa
¬pa

pb
¬pb

Figure 6.12: Tableau example with ∃

¬((∀x.px) → pa∧ pb)
∀x.px

¬(pa∧ pb)
¬pa∨¬pb
¬pa
pa

¬pb
pb

Figure 6.13: Tableau example with ∀

After negating this and applying NegImp we have the tableau

¬((∃x.rxx) → ∃yz.ryz)
∃x.rxx
¬∃yz.ryz

We can now apply Exists to ∃x.rxx with any name of type α that is not free in

the branch. Let us simply use x. This adds rxx to the branch. The idea now

is to apply DeMorgan and Forall to ¬∃yz.ryz until we obtain a contradiction.

Each time we apply the Forall rule we use the term x. In the end we obtain the

tableau shown in Figure 6.14 in which the single branch is closed.

We now turn to a larger example. Let α and β be sorts different from B, let

r : αβB, x : α and y : β be names of the given types. Consider the following

formula:

(∃y.∀x.rxy) → ∀x.∃y.rxy (6.2)

Is this formula valid? It may be helpful to translate the formula into everyday

language. Suppose α represents the students taking this class and β represents

various reading materials. Suppose rxy means student x reads y . The left side

of the implication

∃y.∀x.rxy

2008/7/14 79

6 Tableau Proofs

¬((∃x.rxx) → ∃yz.ryz)
∃x.rxx
¬∃yz.ryz

rxx
∀y.¬∃z.ryz
¬∃z.rxz
∀z.¬rxz
¬rxx

Figure 6.14: Tableau example using Exists

means there is some reading material y that every student x reads. This is, of

course, true, because all of you are reading these lecture notes. The right hand

side of the implication

∀x.∃y.rxy
means that every student x reads some material y . This is, of course, a weaker

statement. It only asserts that every students reads something, not that all stu-

dents are reading the same thing. The right hand side of the implication would

still be true even if some student x reads the newspaper but does not read these

lecture notes. This interpretation suggests that (6.2) is a valid statement, but

that the converse implication

(∀x.∃y.rxy) → ∃y.∀x.rxy (6.3)

is not valid.

We construct a tableau proof of (6.2) in a step by step fashion. We first negate

the statement (applying Contra) and then apply NegImp to obtain

¬((∃y.∀x.rxy) →∀x.∃y.rxy)
∃y.∀x.rxy

¬(∀x.∃y.rxy)

According the only branch of this tableau, there is some y that every x reads

but it is not the case that every x reads some y . Since there is some reading

material y that every x reads, we can choose some name to stand for such

reading material. Let us use the name n : β (short for “lecture notes”). Applying

Exists with name n we extend the branch to obtain

¬((∃y.∀x.rxy) →∀x.∃y.rxy)
∃y.∀x.rxy

¬(∀x.∃y.rxy)
∀x.rxn

80 2008/7/14

6.5 Quantifiers

Now we apply DeMorgan to add ∃x.¬(∃y.rxy) to the branch indicating that

some student x does not read anything. We can apply Exists to this rule by

giving a name of type α. We use the name u : α (short for “unfortunate”) to

stand for this student. Following the use of Exists by DeMorgan we obtain

¬((∃y.∀x.rxy) →∀x.∃y.rxy)
∃y.∀x.rxy

¬(∀x.∃y.rxy)
∀x.rxn

∃x.¬(∃y.rxy)
¬(∃y.ruy)
∀y.¬ruy

After a careful look at this tableau, you should recognize that the two formulas

∀x.rxn and ∀y.¬ruy cannot both be true. If every student is reading the

lecture notes, then there cannot by an unfortunate student who reads nothing.

To make the conflict explicit we apply the Forall rule to ∀y.¬ruy with term n
and obtain

¬((∃y.∀x.rxy) →∀x.∃y.rxy)
∃y.∀x.rxy

¬(∀x.∃y.rxy)
∀x.rxn

∃x.¬(∃y.rxy)
¬(∃y.ruy)
∀y.¬ruy
¬run

We have now concluded that the unfortunate student is not reading the lecture

notes. But every student reads the lecture notes. To make this explicit we apply

Forall to ∀x.rxn with term u and obtain the tableau where the only branch is

now closed:
¬((∃y.∀x.rxy) →∀x.∃y.rxy)

∃y.∀x.rxy
¬(∀x.∃y.rxy)

∀x.rxn
∃x.¬(∃y.rxy)
¬(∃y.ruy)
∀y.¬ruy
¬run
run

We have given a first-order refutation of the negation of (6.2) and hence a

(tableau) proof of (6.2). In particular, (6.2) is valid.

2008/7/14 81

6 Tableau Proofs

It is worthwhile to consider the converse implication (6.3) as well. As we

have argued informally above, (6.3) is not valid. If we negate (6.3) and apply the

obvious rules we obtain a tableau

¬((∀x.∃y.rxy) → ∃y.∀x.rxy)
∀x.∃y.rxy

¬(∃y.∀x.rxy)
∀y.¬∀x.rxy

To make progress we must apply the Forall rule to either ∀x.∃y.rxy with some

term of type α or ∀y.¬∀x.rxy with some term of type β. There are no reason-

able terms of either type to use here. Suppose we apply the Forall rule to each

of the two using the names u : α (the unfortunate student) and n : β (the lecture

notes). After applying Forall twice and DeMorgan we obtain

¬((∀x.∃y.rxy) → ∃y.∀x.rxy)
∀x.∃y.rxy

¬(∃y.∀x.rxy)
∀y.¬∀x.rxy
∃y.ruy
¬∀x.rxn
∃x.¬rxn

We may be tempted to apply Exists to ∃y.ruy using name n and ∃x.¬rxn
using name u. If we did this, then the branch would be closed. That would be

a disaster since we would have proven formula (6.3) which was not valid! What

prevents this disaster? Neither application of Exists would be legal since both

n and u occur in the branch. (Neither are fresh.) If we apply Exists using fresh

names n′ and u′, then we obtain

¬((∀x.∃y.rxy) → ∃y.∀x.rxy)
∀x.∃y.rxy

¬(∃y.∀x.rxy)
∀y.¬∀x.rxy
∃y.ruy
¬∀x.rxn
∃x.¬rxn
run′

¬ru′n

which is not closed. Note that we could continue trying to build this tableau by

applying Forall to ∀x.∃y.rxy and ∀y.¬∀x.rxy with other terms (e.g., u′ and

n′). The attempt to close the branch can go on forever but the branch will never

close.

82 2008/7/14

6.5 Quantifiers

Now we turn to another example. Let N be a sort other than B and let s : NNB
and x,y, z : N be names. We can think of sxy as meaning “x has successor y ,”

or “y is the successor of x.” We can express the idea that every element has a

successor with the formula

∀x.∃y.sxy.
If we assume every element has a successor, then we should be able to prove

∀x.∃yz.sxy ∧ syz.
We formulate the statement as the single formula

(∀x.∃y.sxy) → ∀x.∃yz.sxy ∧ syz.
We construct a tableau proof of this. We first negate the statement (applying

Contra) and then apply NegImp and DeMorgan to obtain

¬((∀x.∃y.sxy) →∀x.∃yz.sxy ∧ syz)
∀x.∃y.sxy

¬∀x.∃yz.sxy ∧ syz
∃x.¬∃yz.sxy ∧ syz

We can apply Exists using the name x (since it does not occur free in the branch)

and include

¬∃yz.sxy ∧ syz
on the branch. This new formula says there is no successor y of x which

has a successor z. We can obtain a successor of x using by applying Forall

to ∀x.∃y.sxy with the term x. When we do this we have

∃y.sxy

on the branch. Since y does not occur free on the branch we can apply Exists

with y and include
sxy

on the branch. We now want to use this y . We do this by applying DeMorgan to

¬∃yz.sxy ∧ syz and then Forall to ∀y.¬∃z.sxy ∧ syz to obtain

¬((∀x.∃y.sxy) →∀x.∃yz.sxy ∧ syz)
∀x.∃y.sxy

¬∀x.∃yz.sxy ∧ syz
∃x.¬∃yz.sxy ∧ syz
¬∃yz.sxy ∧ syz

∃y.sxy
sxy

∀y.¬∃z.sxy ∧ syz
¬∃z.sxy ∧ syz

2008/7/14 83

6 Tableau Proofs

Since y is a successor of x we know

¬∃z.sxy ∧ syz

means there is no successor z of y . We also know we can obtain a successor of

anything using ∀x.∃y.sxy . We apply Forall to this formula with y . Note that

when we substitute, the bound y will be renamed to another variable y′ to avoid

capture. Hence we add
∃y′.syy′

to the branch. We can now apply Exists with any variable of type N that does not

occur on the branch. We cannot use x or y . We can use y′ (unless y′ happens

to be x), but a reasonable choice in this context is z. We use z and add

syz

to the branch. We now apply DeMorgan to ¬∃z.sxy ∧ syz, then Forall with this

z, then DeMorgan and Or to obtain

¬((∀x.∃y.sxy) →∀x.∃yz.sxy ∧ syz)
∀x.∃y.sxy

¬∀x.∃yz.sxy ∧ syz
∃x.¬∃yz.sxy ∧ syz
¬∃yz.sxy ∧ syz

∃y.sxy
sxy

∀y.¬∃z.sxy ∧ syz
¬∃z.sxy ∧ syz∃y′.syy′

syz
∀z.¬(sxy ∧ syz)
¬(sxy ∧ syz)
¬sxy ∨¬syz
¬sxy ¬syz

Note that both branches are closed.

Figure 6.15 shows the tableau views of the refutation rules we have intro-

duced so far (except for Closed¬ = and ClosedSym). We will also refer to the

tableau views of such refutation rules as tableau rules.

6.6 Termination and Completeness with Restrictions

We define a restricted set of formulas. Let I be a sort other than B. There are

infinitely many names of type I. Let V and P be two disjoint, infinite sets of

84 2008/7/14

6.6 Termination and Completeness with Restrictions

Closed
s,¬s

Closed
⊥

Closed
¬�

DNeg
¬¬s
s

DeMorgan
¬(s ∨ t)
¬s ∧¬t DeMorgan

¬(s ∧ t)
¬s ∨¬t And

s ∧ t
s, t

Or
s ∨ t
s t

Imp
s → t
t ¬s NegImp

¬(s → t)
s,¬t Boolean= s ≡ t

s, t ¬s,¬t

Boolean �= ¬(s ≡ t)
s,¬t t,¬s DeMorgan

¬∀x.s
∃x.¬s DeMorgan

¬∃x.s
∀x.¬s

Forall
∀x.s
sxt

Exists
∃x.s
sxy

where y is fresh

Figure 6.15: Tableau rules so far

names of type I. In this section we will use the word variable to mean a member

of V and the word parameter to mean a member of P. Disjointness means

V ∩P = �. In words, a name cannot be both a variable and a parameter.

• We use x,y, z for variables.

• We use a, b, c for parameters. We fix one particular parameter a0 ∈ P which

we will use for a special purpose.

• We use w to range over V ∪P.

• For terms s we define

V s =N s ∩V (the variables free in s)

and for sets A of terms we define

VA =NA∩V (the variables free in A).

• For terms s we define

Ps =N s ∩P (the parameters free in s)

and for sets A of terms we define

PA =NA∩P (the parameters free in A).

2008/7/14 85

6 Tableau Proofs

Closed
s,¬s

And
s ∧ t
s, t

Or
s ∨ t
s t

Forall
∀x.s
sxa

where a ∈ P is a parameter on the branch or a0

Exists
∃x.s
sxa

where a ∈ P is fresh and there is no

b ∈ P such that sxb is on the branch.

Figure 6.16: Restricted tableau calculus TPLN

We define the set of PLN-formulas s by the grammar

pw · · ·w | ¬pw · · ·w | s ∨ s | s ∧ s | ∀x.s | ∃x.s

where p is a name of type I · · · IB. Notice that the bound names in PLN-formulas

are all variables (members of V). Note also that each PLN-formula is a first-order

formula (see Section 5.7). Here we are most interested in closed PLN-formulas:

PLNc = {s|s is a PLN-formula and V s = �}.

Along with the restricted set of formulas we also define a restricted calculus.

The restricted tableau calculus TPLN is given by the rules in Figure 6.16.

Suppose A ⊆ PLNc is the finite set of closed PLN-formulas occurring on an

open branch of some tableau. If none of the TPLN-rules apply to the branch, then

the following Hintikka properties hold for A:

∇c For all formulas s, s ∉ A or ¬s ∉ A.

∇∨ If s ∨ t ∈ A, then s ∈ A or t ∈ A.

∇∧ If s ∧ t ∈ A, then s ∈ A and t ∈ A.

∇∀ If ∀x.s ∈ A, then sxa ∈ A for all a ∈ PA∪ {a0}.
∇∃ If ∃x.s ∈ A, then sxa ∈ A for some a ∈ P.

For any set A ⊆ PLNc , if A satisfies these Hintikka properties, then A is satisfi-

able. We record this fact in the following model existence theorem.

Theorem 6.6.1 (Model Existence Theorem) Suppose A ⊆ PLNc and A satisfies

the Hintikka properties ∇c , ∇∨, ∇∧, ∇∀ and ∇∃. There is a logical interpretation

I such that I � s for all s ∈ A.

86 2008/7/14

6.6 Termination and Completeness with Restrictions

Proof We define I on types as follows:

IB = {0,1}
II = PA∪ {a0}
Iα = {�} for sorts α ∉ {B, I}

I(στ) = all functions from Iσ to Iτ .

For each type σ we define a default element dσ ∈ Iσ as follows:

dB = 0

dI = a0

dα = � for sorts α ∉ {B, I}
dστ = the constant function (λx ∈ Iσ.dτ).

For each logical constant c : σ we choose Ic to be the unique element of Iσ with

the property corresponding to the constant. For each name a ∈ PA ∪ {a0} we

take

Ia = a.

For each name p : I · · · IB such that p ∈ NA, we define p ∈ I(I · · · IB) such

that for b1, . . . , bn ∈ II we have

(Ip)b1 · · ·bn =
{

1 if (pb1 · · ·bn) ∈ A
0 otherwise.

For every other name u : σ we take

Iu = dσ .

I is clearly a logical interpretation.

It remains to prove that I � s for every s ∈ A. Rephrased, we prove (by

induction on PLN-formulas) for every s ∈ PLN, if s ∈ A, then Îs = 1. We consider

each case:

• Assume (pb1 · · ·bn) ∈ A. By definition Î(pb1 · · ·bn) = 1.

• Assume (¬pb1 · · ·bn) ∈ A. By ∇c we know (pb1 · · ·bn) ∉ A. Hence

Î(pb1 · · ·bn) = 0 and so Î(¬pb1 · · ·bn) = 1.

• Assume (s1 ∨ s2) ∈ A. By ∇∨ we know s1 ∈ A or s2 ∈ A. By inductive

hypothesis either Îs1 = 1 or Îs2 = 1. Hence Î(s1 ∨ s2) = 1.

• Assume (s1 ∧ s2) ∈ A. By ∇∧ we know s1 ∈ A and s2 ∈ A. By inductive

hypothesis Îs1 = 1 and Îs2 = 1. Hence Î(s1 ∧ s2) = 1.

• Assume (∀x.s) ∈ A. By ∇∀ we know sxa ∈ A for all a ∈ PA ∪ {a0}. By

inductive hypothesis Îsxa = 1 for all a ∈ II. Using Lemma 4.1.3 we know
ˆIx,as = 1 for all a ∈ II. Hence Î(∀x.s) = 1.

2008/7/14 87

6 Tableau Proofs

• Assume (∃x.s) ∈ A. By ∇∃ we know sxa ∈ A for some a ∈ P. By inductive

hypothesis Îsxa = 1. Using Lemma 4.1.3 we know ˆIx,as = 1. Hence Î(∃x.s) =
1. �

Given any restricted tableau calculus T (e.g., TPLN) and set of formulas F
(e.g., PLNc) there are two important issues we will consider: termination and

completeness.

1. Does T terminate on F? Informally, if we start with a finite set A ⊆ F , are

we guaranteed we cannot apply the rules T infinitely often?

2. Is T complete for F? That is, are there T -refutations for finite A ⊆ F when-

ever A is unsatisfiable?

We already have the notion of a terminating relation from Section 3.5. To

apply this notion here, we define a relation
T→ on finite subsets of F by saying

A T→ A′ if there is a refutation step which is an instance of a rule from T where

A � ⊥ is the conclusion of the step and A′ � ⊥ is one of the premisses. Stated in

terms of tableaux, A T→ A′ if we can extend a branch with formulas A to a branch

with formulas A′ (possibly creating other branches as well) using a rule from T .

Note that if A T→ A′ then we know A is a proper subset of A′ (i.e., A ⊂ A′).
Completeness means that we are guaranteed that if a finite set A ⊆ F is

unsatisfiable, then there is a refutation of A using the rules in T . Another way

to say “there is a refutation of A using the rules in T ” is to say that we can

construct a complete tableau using the rules of T starting from a single branch

containing only formulas from A. When we prove a completeness result, we

will actually prove the contrapositive. We will assume there is no refutation of

A using the rules of T and then construct a logical interpretation I satisfying

all the formulas in A. Now that we have the Model Existence Theorem above

(Theorem 6.6.1) we can prove completeness in an even simpler way (assuming

A ⊆ PLNc). Instead of constructing an interpretation of such an A, we need only

find a set H ⊆ PLNc such that A ⊆ H and H satisfies the Hintikka properties ∇c ,
∇∨, ∇∧, ∇∀ and ∇∃.

Suppose we have a set F of formulas such that F ⊆ PLNc . Suppose further

that for any finiteA ⊆ F , ifA TPLN	→ A′, thenA′ ⊆ F . (This condition certainly holds

for the set PLNc .) Then we have completeness whenever we have termination.

Theorem 6.6.2 (Termination implies Completeness) Let F be a set of formulas

such that F ⊆ PLNc . Suppose for any finite A ⊆ F , if A TPLN	→ A′, then A′ ⊆ F . If
TPLN	→ is terminating on F , then

TPLN	→ is complete for F .

Proof Suppose A has no refutation using the TPLN-rules. Then there must be

some finite set H ⊆ PLNc such that A TPLN∗	→ H, H is open (that is, there is no s

88 2008/7/14

6.6 Termination and Completeness with Restrictions

such that s ∈ H and ¬s ∈ H) and there is no A′ such that H TPLN	→ A′. Informally,

H is an open branch such that none of the TPLN-rules applies to H. Since H is

open, ∇c holds for H. Since none of the TPLN-rules applies to H, the remaining

Hintikka conditions ∇∨, ∇∧, ∇∀ and ∇∃ all hold for H. By the Model Existence

Theorem (Theorem 6.6.1) there is a logical interpretation I such that I � s for all

s ∈ H. In particular, I � s for all s ∈ A. �

The restricted tableau calculusTPLN does not terminate on PLNc . Consider the

formula ∀x∃y.rxy . This is clearly in PLNc . We can easily apply the restricted

Forall and Exists rules forever as indicated:

∀x∃y.rxy
∃y.ra0y
ra0a1

∃y.ra1y
ra1a2

∃y.ra2y
ra2a3

...

On the other hand, TPLN will terminate on some subsets of PLNc . For any

s, let Sub(s) be the set of subterms of s of type B. We will call these subterms

subformulas of s. For a set A of formulas, let Sub(A) be
⋃
s∈A Sub(s).

We will prove termination for (hence completeness of) the following three

subsets of PLNc relative to TPLN.

PLNno∃c = {s ∈ PLNc| there is no ∃y.t ∈ Sub(s)}

PLNcl∃c = {s ∈ PLNc| for every ∃y.t ∈ Sub(s) we have V (∃y.t) = �}
PLN∃∗c = {s ∈ PLNc| for every ∃y.t ∈ Sub(s), x ∈ V (∃y.t), x is bound by an ∃}
The phrase “x is bound by an ∃” is informal and possibly misleading. (Recall

that only λ can bind a variable.) When we speak of ∃ or ∀ binding a variable we

actually mean the relevant λ binder occurs as ∃(λx.[]) or ∀(λx.[]). We could

make the phrase “x is bound by an ∃” precise using contexts. The important fact

that we will use is the following: If ∀x.s ∈ PLN∃∗c , a ∈ P and ∃y.t ∈ Sub(sxa),
then ∃y.t ∈ Sub(∀x.s).

Clearly we have

PLNno∃c ⊆ PLNcl∃c ⊆ PLN∃∗c ⊆ PLNc.

It is enough to prove termination of PLN∃∗c , since termination will follow for the

smaller three. However, termination becomes more difficult to prove each time

we include more existential quantifiers.

2008/7/14 89

6 Tableau Proofs

For any set A of formulas we define Stock(A) to be the set

{θs| s ∈ Sub(A), θ : Nam → Ter,
(∀x ∈ V (s).θ(x) ∈ P(A)∪ {a0}),
(∀u ∈ Nam \ V (s).θ(u) = u)}

Note that if A is finite, then Sub(A) is finite, V (s) is finite for each s ∈ Sub(A),
and P(A) ∪ {a0} is finite. Hence if A is finite, then Stock(A) is finite. For finite

A, we define Slack(A) to be the number of elements in Stock(A) \A. That is,

Slack(A) = |Stock(A) \A|.

To prove TPLN terminates on PLNno∃c it suffices to prove that if A TPLN	→ A′, then

Slack(A) > Slack(A′). Suppose A TPLN	→ A′. We consider four cases:

• Assume we applied And with s1 ∧ s2 ∈ A. Here A′ = A ∪ {s1, s2}. Note that

Sub(A) = Sub(A′) and so Stock(A) = Stock(A′). Thus Slack(A) > Slack(A′).

• Assume we applied Or with s1∨s2 ∈ A. Here A′ = A∪{s1} or A′ = A∪{s2}. In

either case Sub(A) = Sub(A′) and so Stock(A) = Stock(A′). Thus Slack(A) >
Slack(A′).

• Assume we applied Forall with ∀x.s ∈ A. Here A′ = A∪ {sxa }. In this case we

do not know Sub(A) = Sub(A′). However, we can still conclude Stock(A) =
Stock(A′). To see this, note that the only new subformulas in Sub(A′) are of

the form txa where t ∈ Sub(A). Any θ(txa) ∈ Stock(A′) was already of the

form θ′t ∈ Stock(A) with θ′ = θ[x := a].
• Assume we applied Exists. This is impossible because we cannot have ∃x.s ∈
A ⊆ PLNno∃c .

Therefore, TPLN terminates on PLNno∃c .

Let us next consider termination of TPLN on PLNcl∃c . If A TPLN	→ A′ using any

rule except Exists, then Slack(A) > Slack(A′). The proof of this fact proceeds

in the same way as above. On the other hand, the Exists rule introduces a fresh

parameter. In this case Stock(A′) may be much larger than Stock(A). Hence

Slack(A′) may be much bigger than Slack(A) after applying Exists.

We can still make use of Slack(A) to justify termination by making it part of a

lexical ordering on two natural numbers. The lexical ordering on pairs of natural

numbers is defined by

(i1, j1) > (i2, j2) iff either i1 > i2 or both i1 = i2 and j1 > j2

Note that if we know i1 > i2, then we clearly have (i1, j1) > (i2, j2). Also if we

know i1 ≥ i2 and j1 > j2, then we have (i1, j1) > (i2, j2). Slack(A) will play the

role of the j in our termination argument. We need only find a value to play the

90 2008/7/14

6.6 Termination and Completeness with Restrictions

role of the i. This value must decrease when we apply Exists and not increase

when we apply the other rules. For any A we define the set ∃(A) to be

{∃x.s ∈ Sub(A)|∀a ∈ P.sxa ∉ A}.

We can take |∃(A)| (the number of elements in ∃(A)) to play the role of i. Clearly

if A TPLN	→ A′ via the Exists rule, then |∃(A)| > |∃(A′)|. It is also easy to check that

if A TPLN	→ A′ via the And or Or rule, then |∃(A)| ≥ |∃(A′)|. Suppose A TPLN	→ A′ via

the Forall rule with ∀x.s ∈ A. Here A′ is of the form A, sxa . In principle we may

have introduced a new ∃y.txa ∈ Sub(A′). However, since ∀x.s ∈ A ⊆ PLNcl∃c ,

we know V (∃y.t) = �. Hence ∃y.txa is the same as ∃y.t which was already in

Sub(A′). We conclude that |∃(A)| ≥ |∃(A′)| in this case as well.

We have now proven that whenever A TPLN	→ A′ one of two things happen:

1. |∃(A)| > |∃(A′)|, or

2. |∃(A)| ≥ |∃(A′)| and Slack(A) > Slack(A′).

Using the lexical ordering we conclude that
TPLN	→ terminates on PLNcl∃c .

We leave the proof of termination of
TPLN	→ on PLN∃∗c as an exercise. A similar

argument with a lexical ordering will work in this case as well.

Exercise 6.6.3 (Termination of TPLN on PLN∃∗c)

a) Define a natural number Power∃(A) for finite sets A ⊆ PLN∃∗c making use of

the set ∃(A).
b) Prove that if A TPLN	→ A′ via the Exists rule, then

Power∃(A) > Power∃(A′)

c) Prove that if A TPLN	→ A′ via the And or Or rule, then

Power∃(A) ≥ Power∃(A′)

d) Prove that if A TPLN	→ A′ via the Forall rule, then

Power∃(A) ≥ Power∃(A′)

e) Conclude that
TPLN	→ terminates on PLN∃∗c .

We now know termination and completeness for each of the fragments

PLNno∃c , PLNcl∃c and PLN∃∗c . We also know TPLN does not terminate on PLNc .

The only question remaining is whether TPLN is complete for PLNc . The answer

is yes and we will spend the rest of this section proving this completeness result.

The information is summarized in Table 6.1.

We say a set C of sets of formulas is a consistency class if it satisfies the

following five properties:

2008/7/14 91

6 Tableau Proofs

TPLN terminates? complete?

PLNno∃c Yes Yes

PLNcl∃c Yes Yes

PLN∃∗c Yes Yes

PLNc No Yes

Table 6.1: Termination and completeness results for TPLN

δc If A ∈ C, then s ∉ A or ¬s ∉ A.

δ∧ If A ∈ C and s1 ∧ s2 ∈ A, then A, s1, s2 ∈ C.

δ∨ If A ∈ C and s1 ∨ s2 ∈ A, then A, s1 ∈ C or A, s2 ∈ C.

δ∀ If A ∈ C and ∀x.s ∈ A, then A, sxa ∈ C for all a ∈ P(A)∪ {a0}.
δ∃ If A ∈ C and ∃x.s ∈ A, then A, sxa ∈ C for some a ∈ P.

We say C is subset closed if A ∈ C whenever A ⊆ A′ and A′ ∈ C.

Lemma 6.6.4 (Extension Lemma) Let C be a subset closed consistency class. For

any A ∈ C with A ⊆ PLNc there is a set H ⊆ PLNc such that A ⊆ H and H satisfies

the Hintikka properties ∇c , ∇∨, ∇∧, ∇∀ and ∇∃.

Proof Suppose A ∈ C and A ⊆ PLNc . Enumerate all formulas in PLNc :

t0, t1, t2, t3, . . .

Let A0 = A ∈ C. For each n we define An+1 ∈ C as follows:

1. If An, tn ∉ C, then let An+1 = An.

2. If An, tn ∈ C and tn is not of the form ∃x.s, then let An+1 = An, tn.

3. If An, tn ∈ C and tn is ∃x.s, then by δ∃ there is some a ∈ P such that

An, tn, sxa ∈ C. In this case, let An+1 = An, tn, sxa .

We have ensured that An ∈ C and An ⊆ PLNc for each n and that we have the

inclusions

A0 ⊆ A1 ⊆ A2 ⊆ · · · ⊆ An ⊆ · · ·

Let H = ⋃n An ⊆ PLNc . Clearly A ⊆ H. We now easily verify that H satisfies the

Hintikka properties ∇c , ∇∨, ∇∧, ∇∀ and ∇∃.

∇c Suppose s,¬s ∈ H. There must be some n such that s,¬s ∈ An contradicting

An ∈ C and δc .

∇∨ Suppose s1 ∨ s2 ∈ H. There exist n,m such that s1 = tn and s2 = tm.

Let r > max(n,m) be big enough that tn ∨ tm ∈ Ar . We can visualize the

situtation as follows:

92 2008/7/14

6.6 Termination and Completeness with Restrictions

�
An
�

tn (s1)

Am
�

tm (s2) tn ∨ tm
∈
Ar

By δ∨ either Ar , tn ∈ C or Ar , tm ∈ C. By subset closure either An, tn ∈ C or

Am, tm ∈ C. Thus tn ∈ An+1 ⊆ H or tm ∈ Am+1 ⊆ H.

∇∧ Suppose tn ∧ tm ∈ H. Let r > max(n,m) be such that tn ∧ tm ∈ Ar . By δ∧
we know Ar , tn, tm ∈ C. By subset closure An, tn ∈ C and Am, tm ∈ C. Hence

tn ∈ H and tm ∈ H.

∇∀ Suppose ∀x.s ∈ H and a ∈ P(H)∪{a0}. There is some n such that tn = sxa .

Let r > n be big enough that ∀x.s ∈ Ar and a ∈ P(Ar) ∪ {a0}. By δ∀ we

know Ar , sxa ∈ C. By subset closure An, tn ∈ C. We conclude that tn ∈ H.

That is, sxa ∈ H.

∇∃ Suppose ∃x.s ∈ H. There is some n such that tn = ∃x.s. Let r > n be big

enough that ∃x.s ∈ Ar . By subset closure An, tn ∈ C. By definition of An+1

there is a parameter a ∈ P such that sxa ∈ An+1 ⊆ H. �

Any consistency class can be extended to a subset closed consistency class.

We leave this as an exercise.

Exercise 6.6.5 (Subset Closure) Let C be a consistency class. Define

C+ = {A|∃A′ ∈ C.A ⊆ A′}.

Prove C+ is a subset closed consistency class.

The set CPLN of all A that cannot be refuted using TPLN form a consistency

class. We define CPLN to be such that A ∈ CPLN iff A is a finite set with A ⊆ PLNc
such that there is no refutation A � ⊥ using TPLN-rules. In terms of tableaux

A ∈ CPLN if it is not possible to construct a complete tableau starting with a

single branch with formulas from A. We leave the verification that CPLN is a

consistency class as an exercise.

Exercise 6.6.6 Prove CPLN is a consistency class.

Using the exercise above we have a subset closed consistency class C+PLN such

that CPLN ⊆ C+PLN. We can now prove completeness.

Theorem 6.6.7 (Completeness) TPLN is complete for PLNc .

Proof Suppose there is no TPLN-refutation of A. Then A ∈ CPLN ⊆ C+PLN. By

Lemma 6.6.4 there is a set H ⊆ PLNc with A ⊆ H such that H satisfies the

Hintikka properties ∇c , ∇∨, ∇∧, ∇∀ and ∇∃. By the Model Existence Theorem

(Theorem 6.6.1) there is a logical interpretation I such that I � s for all s ∈ H.

In particular, I � s for all s ∈ A. �

2008/7/14 93

6 Tableau Proofs

6.7 Cantor’s Theorem

Cantor’s Theorem states that a set X is always smaller than its power set ℘(X).
The powerset ℘(X) is the set of all subsets of X.

How can we express the idea that X is smaller than another set Y ? Clearly

X and Y are the same size if we can find a bijective function from X to Y . This

would mean the elements of X and Y are in one-to-one correspondence with each

other. There are two ways there could fail to be a bijection from X to Y . Either Y
does not have enough elements and so any function g : X → Y must eventually

start repeating values in Y (i.e., g will not be an injection) or Y has too many

elements and any function g : X → Y must miss some elements of Y . We can

express the idea that X is smaller than Y by saying there is no surjection from X
to Y .

How can we express the idea that there is no surjection from X to Y in the

language? If we have types σ, τ such that Iσ = X and Iτ = Y , then we can write

¬∃g.∀v.∃u.gu = v

where g is a name of type στ , v is a name of type τ and u is a name of type σ .

For Cantor’s Theorem, if Iσ = X, then I(σB) is isomorphic to the power set

℘(X). Therefore, Cantor’s Theorem is equivalent to saying there is no surjection

from Iσ onto I(σB). This motivates the following version of Cantor’s Theorem

(for each type σ):

¬∃g.∀f .∃u.gu = f
where g is a name of type σσB, f is a name of type σB and u is a name of type

σ . That is, there is no surjection from σ onto σB.

Informally, we can prove Cantor’s Theorem as follows. Assume there is a

surjection G : X → ℘(X). Consider the set

D = {a ∈ X|a ∉ (Ga)}.

Since D ∈ ℘(X) and G is surjective, there must be some d ∈ X such that G(d) =
D. Is d ∈ D? If d ∈ D, then d ∈ G(d) and so d ∉ D (by the definition of D). On

the other hand, if d ∉ D, then d ∉ G(d) and so d ∈ D (by the definition of D).

That is, d ∈ D iff d ∉ D. This is clearly impossible. Therefore, no such surjection

G can exist.

Can we prove this using the tableau rules introduced so far? We can start

forming a tableau for Cantor’s theorem by writing the negation of the theorem,

then applying DNeg and Exists.

¬¬∃g.∀f .∃u.gu = f
∃g.∀f .∃u.gu = f
∀f .∃u.gu = f

94 2008/7/14

6.7 Cantor’s Theorem

¬¬∃g.∀f .∃u.gu = f
∃g.∀f .∃u.gu = f
∀f .∃u.gu = f

∃u.gu = λx.¬gxx
gd = λx.¬gxx

Figure 6.17: Partial tableau proof for Cantor

The next apparent step is to use Forall with a term of type σB. What is

a reasonable term to use? The key step in proving the set theory version of

Cantor’s Theorem was introducing the set

D = {a ∈ X|a ∉ (ga)}.

In the current context, we would have a ∈ Iσ , g ∈ I(σσB), and ga ∈ I(σB). Let

us use g both as a name of type σσB and its intepretation Ig for the moment.

Instead of writing a ∉ (ga), we need to write ¬(gaa). Also, instead of forming

a set, we form a function in I(σB). The relevant function is the interpretation of

λx.¬gxx.

We apply Forall with this term to add

∃u.gu = λx.¬gxx

to the branch. We can now apply Exists with a name d of type σ to add

gd = λx.¬gxx

to the branch.

Using the tableau rules given so far, we have formed the tableau shown in

Figure 6.17. Is there any way to make progress? No. We need new rules to make

progress.

The first rule is Functional= which will allow us to treat a functional equation

f =στ g as ∀x.fx =τ gx. Another rule Functional �= will allow us to treat

functional disequation f �=στ g as ∃x.fx �=τ gx. These are shown in Figure 6.18.

We can make progress by applying Functional= with some term t to add

gdt =B (λx.¬gxx)t

to the branch. Recall that in the proof of Cantor’s Theorem we asked whether

d ∈ D. In the current context, this corresponds to asking whether or not

(λx.¬gxx)d

2008/7/14 95

6 Tableau Proofs

Functional= s =στ u
st = ut for any term t of type σ

Functional �= s �=στ u
sa �= ua where a is a fresh name of type σ

Figure 6.18: Rules for equality at function types

¬¬∃g.∀f .∃u.gu = f
∃g.∀f .∃u.gu = f
∀f .∃u.gu = f

∃u.gu = λx.¬gxx
gd = λx.¬gxx

gdd = (λx.¬gxx)d
gdd

(λx.¬gxx)d
¬gdd

¬(λx.¬gxx)d

Figure 6.19: Second partial tableau proof for Cantor

Lambda
s
s′

where s ∼λ s′

Figure 6.20: Lambda tableau rule

is true. This motivates applying Functional= with the term d to add

gdd =B (λx.¬gxx)d

to the branch. Since we have an equation at type B, we can apply Boolean= and

split the branches into two branches giving the tableau in Figure 6.19.

Neither of the two branches is closed, but both of the branches would be

closed if we could simply β-reduce (λx.¬gxx)d to be ¬gdd. This motivates

adding the Lambda rule shown in Figure 6.20.

Using the Lambda rule we can close the two branches and we have the tableau

proof for Cantor’s Theorem shown in Figure 6.21.

96 2008/7/14

6.7 Cantor’s Theorem

¬¬∃g.∀f .∃u.gu = f
∃g.∀f .∃u.gu = f
∀f .∃u.gu = f

∃u.gu = λx.¬gxx
gd = λx.¬gxx

gdd = (λx.¬gxx)d
gdd

(λx.¬gxx)d
¬gdd

¬gdd
¬(λx.¬gxx)d

¬¬gdd

Figure 6.21: Tableau proof for Cantor

6.7.1 Russell’s Law/Turing’s Law

How would you answer the following questions?

1. On a small island, can there be a barber who shaves everyone who doesn’t

shave himself?

2. Does there exist a Turing machine that halts on the representation of a Turing

machine x if and only if x does not halt on the representation of x?

3. Does there exist a set that contains a set x as element if and only if x ∉ x?

The answer to all 3 questions is no, and the reason is purely logical. It is the

same idea underlying the proof of Cantor’s theorem.

Russell’s or Turing’s Law: Let f : IIB be a name and x,y : I be names. We

can prove ¬∃f .∃x.∀y.fxy ≡ ¬fyy .

¬¬(∃f .∃x.∀y.fxy ≡ ¬fyy)
∃f .∃x.∀y.fxy ≡ ¬fyy
∃x.∀y.fxy ≡ ¬fyy
∀y.fxy ≡ ¬fyy
fxx ≡ ¬fxx
fxx
¬fxx

¬fxx
¬¬fxx

6.7.2 More about the Lambda rule

Adding the Lambda rule opens many new possibilities. A very simple example

we can now prove ∃f .∀x.fx = x where f : II is a name and x : I is name. The

2008/7/14 97

6 Tableau Proofs

following tableau proves this formula:

¬∃f .∀x.fx = x
∀f .¬∀x.fx = x
¬∀x.(λx.x)x = x

¬∀x.x = x
∃x.x �= x
x �= x

6.8 Equality

We are still missing a few rules. In particular we need rewriting rules so that we

can use equations to replace subterms. Suppose we are attempting to refute

A = {a = b, b = c, a �= c}

where a, b, c are names of the same sort α �= B. At the moment no rule can be

applied to extend the tableau

a = b
b = c
a �= c

We remedy this gap by adding the two tableau rules in Figure 6.22 for rewriting.

For convenience we allow these rules to be applied when the equation is preceded

by a list of universal quantifiers, and we allow the variables to be instantiated

before the replacement is made. Using the rewriting rules it is easy to complete

the tableau above in several different ways:

1. We could use Apply= on a = b and a �= c with context [] �= c to add b �= c to

the branch.

2. We could use Apply= on b = c and a �= c with context a �= [] to add a �= b to

the branch.

3. We could use Apply= on a = b and b = c with context [] = c to add a �= c to

the branch.

4. We could use Apply= on b = c and a = b with context a = [] to add a �= c to

the branch.

Any of these applications will close the branch.

To see an easy example in which we instantiate quantified variables, consider

the formula

(∀xy.fxy = gxy) → fy = gy

98 2008/7/14

6.9 Excluded Middle as a Rule

Apply= ∀xn.s = t, C[θs]
C[θt]

Apply= ∀xn.s = t, C[θt]
C[θs]

where for both versions of the rule θ y = y if y ∉ xn

and C[] is admissible for {∀xn.s = t}

Figure 6.22: Tableau rewriting rules

where x,y : I are names and f , g : III are names. A complete tableau for this is

given by
¬(∀xy.fxy = gxy) → fy = gy

(∀xy.fxy = gxy)
fy �= gy

(λz.fyz) �= λz.gyz
(λz.fyz) �= λz.fyz

Note that in one step we used Lambda to η-expand¬fy = gy into ¬(λz.fyz) =
λz.gyz. In another step we have used Apply= with context (λz.fyz) �= λz.[]
and θ such that θ(x) = y and θ(y) = z.

6.9 Excluded Middle as a Rule

Suppose we are trying to refute the set

A = {pa,¬pb,a, b}

where p : BB is a name and a, b : B are names. Is this set satisfiable? No, it is

not. We are forced to interpret a and b such that Ia = 1 = Ib. This means I(pa)
must equal I(pb). On the other hand, none of the tableau rules given so far can

be applied to
pa
¬pb
a
b

We can remedy this problem by adding the refutation rules (both called XM) in

Figure 6.23. The corresponding tableau views are shown in Figure 6.24.

The XM rule allows us to introduce an arbitrary disjunction of the form s∨¬s
or ¬s∨s onto a branch. Combining this with the Or rule, we can split any branch

2008/7/14 99

6 Tableau Proofs

XM
A, s ∨¬s � ⊥

A � ⊥ XM
A,¬s ∨ s � ⊥

A � ⊥

Figure 6.23: Extra refutation rules

XM
s ∨¬s XM ¬s ∨ s

Figure 6.24: Tableau views of extra refutation rules

into two branches where in one branch we know s holds and in the other we

know ¬s holds. Often this is useful if we know s must be true on the branch (so

that the branch with ¬s will be easy to close) and we believe s will be useful.

Using the XM rule, we can obtain the following complete tableau refuting the

set A above.
pa
¬pb
a
b

a = b ∨ a �= b

a = b
pb

a �= b
a
¬b

b
¬a

On the left branch we have used Apply= and on the right branch we have used

Boolean �= to split into two (closed) branches.

Note that this rule is fundamentally different from the tableau rules we have

shown so far. The new formula s∨¬s need not have any relationship to a formula

already on the branch.

6.10 Examples

6.10.1 Expressing Universal Quantification in terms of Existential

We know we can express the universal quantifier in terms of the existential quan-

tifier using De Morgan’s law. Let all be λf .¬∃x.¬fx. We can easily prove

∀f .allf = ∀x.fx

100 2008/7/14

6.10 Examples

as a tableau. (Note that the steps where we expand the definition of all are

actually applications of Lambda.)

¬∀f .allf = ∀x.fx
∃f .allf �= ∀x.fx

allf �= ∀x.fx

allf
¬∀x.fx
∃x.¬fx
¬∃x.¬fx

∀x.fx
¬allf

¬¬∃x.¬fx
∃x.¬fx
¬fx
fx

6.10.2 Expressing Equality using Higher-Order Quantifiers

We have seen that equality can be expressed using Leibniz’ Law:

λxy.∀f .fx → fy

Here we assume x,y : σ and f : σB are variables. We can use the same idea to

express disequality. Let neq be λxy.∃f .fx ∧¬fy . We can easily prove

∀xy.neqxy ≡ x �= y

with the following tableau.

¬∀xy.neqxy ≡ x �= y)
∃x.¬∀y.neqxy ≡ x �= y
¬∀y.neqxy ≡ x �= y)
∃y.¬(neqxy ≡ x �= y)
¬(neqxy ≡ x �= y)

neqxy
¬x �= y
x = y

∃f .fx ∧¬fy
fx ∧¬fy

fx
¬fy
¬fx

x �= y
¬neqxy

¬∃f .fx ∧¬fy
∀f .¬(fx ∧¬fy)

¬((λy.x = y)x ∧¬(λy.x = y)y)
¬(x = x ∧ x �= y)
x �= x ∨¬x �= y
x �= x ¬x �= y

We can also express equality as the least reflexive relation. Let eq be

λxy.∀r .(∀z.rzz) → rxy where r : σσB is a variable. We prove

∀xy.eqxy = (x = y)

2008/7/14 101

6 Tableau Proofs

with a tableau.

¬∀xy.eqxy = (x = y)
∃x.¬∀y.eqxy = (x = y)
¬∀y.eqxy = (x = y)
∃y.eqxy �= (x = y)

eqxy �= (x = y)

eqxy
x �= y

∀r .(∀z.rzz)→ rxy
(∀z.(λxy.x = y)zz) → (λxy.x = y)xy

(∀z.z = z)→ x = y

x = y
¬∀z.z = z
∃z.z �= z
z �= z

x = y
¬eqxy

¬∀r .(∀z.rzz) → rxy
∃r .¬((∀z.rzz) → rxy)
¬((∀z.rzz) → rxy)

∀z.rzz
¬rxy
rxx
¬rxx

6.10.3 Solving Easy Equations

Sometimes existential theorems can be proven by taking the body as giving a

definition. It is important to recognize when theorems are this easy to prove!

Here are two examples:

We can think of the type σB as the type of sets of elements of type σ . The

membership relation should have type σ(σB)B in this context. Let in : σ(σB)B,

x : σ and f : σB be variables. We can prove the existential theorem

∃in.∀xf .inxf = fx

by using the term

λxf .fx

when we apply the Forall rule to the quantifier binding in in the following tableau.

¬∃in.∀xf .inxf = fx
∀in.¬∀xf .inxf = fx

¬∀xf .(λxf .fx)xf = fx
¬∀xf .fx = fx
∃x.¬∀f .fx = fx
¬∀f .fx = fx
∃f .fx �= fx
fx �= fx

102 2008/7/14

6.10 Examples

We can similarly prove the existence of a set difference function. Let diff :

(σB)(σB)σB, f , g : σB and x : σ be variables. We prove

∃diff : (XB)(XB)XB.∀fgx.difffgx = (fx ∧¬gx)

with the following tableau.

¬∃diff.∀fgx.difffgx = (fx ∧¬gx)
∀diff.¬∀fgx.difffgx = (fx ∧¬gx)

¬∀fgx.(λfgx.fx ∧¬gx)fgx = (fx ∧¬gx)
¬∀fgx.(fx ∧¬gx) = (fx ∧¬gx)
∃f .¬∀gx.(fx ∧¬gx) = (fx ∧¬gx)
¬∀gx.(fx ∧¬gx) = (fx ∧¬gx)
∃g.¬∀x.(fx ∧¬gx) = (fx ∧¬gx)
¬∀x.(fx ∧¬gx) = (fx ∧¬gx)
∃x.(fx ∧¬gx) �= (fx ∧¬gx)
(fx ∧¬gx) �= (fx ∧¬gx)

6.10.4 Expressing Conjunction with → and ⊥

Let x,y : B be variables. Let neg : BB be λx.x → ⊥. Let and : BBB be

λxy.neg(x → negy). We prove ∀xy.andxy = (x ∧y).

¬∀xy.andxy = (x ∧ y)
∃x.¬∀y.andxy = (x ∧ y)
¬∀y.andxy = (x ∧ y)
∃y.andxy �= (x ∧y)

andxy �= (x ∧y)
andxy
¬(x ∧y)
¬x ∨¬y

neg(x → negy)
(x → negy) → ⊥

⊥

¬(x → negy)
x

¬negy

¬x

¬y
¬(y → ⊥)

y
¬⊥

x ∧y
¬andxy

x
y

¬neg(x → negy)
¬((x → negy) → ⊥)

x → negy
¬⊥

negy
y → ⊥
⊥ ¬y

¬x

2008/7/14 103

6 Tableau Proofs

6.10.5 Expressing Conjunction with Higher-Order Quantification

Let x,y : B and g : BBB be variables. Let and : BBB be λxy.∀g.gxy = g��.

We will prove ∀xy.andxy = (x ∧ y). Proving this with one big tableau is

possible, but let’s split it into two lemmas.

First we prove ∀xy.andxy → x ∧y .

¬∀xy.andxy → x ∧ y
∃x.¬∀y.andxy → x ∧ y
¬∀y.andxy → x ∧y
∃y.¬(andxy → x ∧y)
¬(andxy → x ∧ y)

andxy
¬(x ∧y)
¬x ∨¬y

∀g.gxy = g��
(λxy.x ∧y)xy = (λxy.x ∧y)��

(x ∧y) = (�∧�)

x ∧y
�∧�

¬(x ∧y)
¬(�∧�)
¬�∨¬�
¬� ¬�

104 2008/7/14

6.10 Examples

Next we prove ∀xy.x ∧ y → andxy .

¬∀xy.x ∧y → andxy
∃x.¬∀y.x ∧y → andxy
¬∀y.x ∧y → andxy
∃y.¬(x ∧y → andxy)
¬(x ∧y → andxy)

x ∧y
¬andxy

¬∀g.gxy = g��
∃g.gxy �= g��
gxy �= g��

x
y

x = �∨ x �= �
x = �

g�y �= g��
y = �∨y �= �

y = �
g�� �= g��

y �= �
y
¬�

�
¬y

x �= �
x
¬�

�
¬x

Finally we prove ∀xy.andxy = (x ∧y) using these two lemmas.

¬∀xy.andxy = (x ∧ y)
∀xy.andxy → x ∧y
∀xy.x ∧ y → andxy

∃x.¬∀y.andxy = (x ∧ y)
¬∀y.andxy = (x ∧ y)
∃y.andxy �= (x ∧y)

andxy �= (x ∧y)
andxy
¬(x ∧y)

∀y.andxy → x ∧y
andxy → x ∧ y
x ∧y ¬andxy

x ∧y
¬andxy

∀y.x ∧y → andxy
x ∧ y → andxy

andxy ¬(x ∧y)

6.10.6 Kaminski Equation

Let f : BB and x : B be names. We can prove the following equation

f(f(fx)) = fx

2008/7/14 105

6 Tableau Proofs

which we call the Kaminski Equation. A special case of the Kaminski Equation is

f(f(f⊥)) = f⊥

This can be proven by considering whether certain subterms are equal to � or ⊥.

For instance, what if f⊥ = ⊥? In this case we clearly have f(f(f⊥)) = ⊥ = f⊥.

What if f⊥ = �? In this case we have f(f(f⊥)) = f(f�), but does f(f�) = �?

A further case analysis on the value of f� (assuming f⊥ = �) can be used to

prove f(f�) = �, verifying the equation.

Many proofs of the Kaminski Equation are possible.

Exercise 6.10.1 Prove the Kaminski Equation informally and then give a tableau

proof based on your informal proof.

6.10.7 Choice

If C is a choice function at σ , then C(λy.x = y) = x for all x of type σ .

∀p.(∃x.px) → p(Cp)
¬∀x.C(λy.x = y) = x
∃x.C(λy.x = y) �= x
C(λy.x = y) �= x

(∃z.(λy.x = y)z) → (λy.x = y)(Cλy.x = y)
(∃z.x = z)→ x = Cλy.x = y

x = Cλy.x = y
¬∃z.x = z
∀z.x �= z
x �= x

If we assume C is a choice function at type τ , then we can prove the Skolem

principle

((∀x.∃y.rxy) → ∃f .∀x.rx(fx))

where r has type στB.

106 2008/7/14

6.10 Examples

∀p.(∃x.px) → p(Cp)
¬((∀x.∃y.rxy) → ∃f .∀x.rx(fx))

∀x.∃y.rxy
¬∃f .∀x.rx(fx)
∀f .¬∀x.rx(fx)

¬∀x.rx((λx.C(rx))x)
¬∀x.rx(C(rx))
∃x.¬rx(C(rx))
¬rx(C(rx))

(∃z.rxz)→ rx(C(rx))

rx(C(rx))
¬∃z.rxz
∃y.rxy
∃z.rxz

If we have the Skolem principle

((∀x.∃y.rxy) → ∃f .∀x.rx(fx))
where r has type (σB)σB, then we can prove the existence of a choice function

at type σ . We first prove the following lemma:

∀p.∃y.(∃y.py) → py

¬∀p.∃y.(∃y.py) → py
∃p.¬∃y.(∃y.py) → py
¬∃y.(∃y.py) → py
∀y.¬((∃y.py) → py)
¬((∃y.py) → pz)

∃y.py
¬pz
py

¬((∃y.py) → py)
∃y.py
¬py

Now we use the lemma to prove the main result.

∀p.∃y.(∃y.py) → py
¬∃C.∀p.(∃y.py) → p(Cp)

∀r .(∀x.∃y.rxy) → ∃f .∀x.rx(fx)
(∀x.∃y.(λxy.(∃y.xy) → xy)xy) → ∃f .∀x.(λxy.(∃y.xy) → xy)x(fx)

(∀x.∃y.(∃y.xy) → xy) → ∃f .∀x.(∃y.xy) → x(fx)
∃f .∀x.(∃y.xy) → x(fx)
∃C.∀p.(∃y.py) → p(Cp)

¬∀x.∃y.(∃y.xy) → xy
¬∀p.∃y.(∃y.py) → py

2008/7/14 107

6 Tableau Proofs

Note that the last step on each branch is an application of Lambda to α-convert

the next to the last formula on the branch.

108 2008/7/14

7 A Taste of Set Theory

Earlier we saw how to specify the natural numbers by giving a sort N , names

such as O : N and S : NN , and formulas to ensure that the interpretation that

the sort and names have the intended interpretation. We can repeat a similar

process for sets.

We still assume the same situation as the last section. We have the sort I and

the disjoint infinite sets V and P of names of sort I.
Let us suppose I is a logical interpretation and II some a collection of sets.

Let us use X,Y , Z,A, B, C,D, a, b, c,d to range over sets in II.
The basic relation of set theory is membership. Assume we have a name

∈: IIB which we write in infix notation. We write s ∈ t for the term ∈ st. We will

also write s ∉ t as notation for the term ¬(∈ st). Assume ∈ and ∉ have the same

priority as the infix operator =.

Another important relation in set theory is the subset relation. Assume we

have a term ⊆: IIB which we also write in infix notation. Assume ⊆ also has

the same priority as the infix operator =. We can express subset in terms of

membership as follows:

∀xy.x ⊆ y ≡ ∀z.z ∈ x → z ∈ y
We can also write this as the closed PLN-formula

∀xy.(¬x ⊆ y ∨∀z.¬z ∈ x ∨ z ∈ y)∧ (x ⊆ y ∨ ∃z.z ∈ x ∧¬z ∈ y)
though this is more difficult to read. From now on we will not restrict ourselves

to PLN-formulas, but will make the point when formulas can be expanded into

equivalent PLN-formulas. At this point, we could take ⊆: IIB to be a name and

assume

∀xy.x ⊆ y ≡ ∀z.z ∈ x → z ∈ y
as an axiom. Since we are not restricting ourselves to PLN-formulas, it also makes

sense to define ⊆: IIB to simply be notation for the term

λxy.∀z.z ∈ x → z ∈ y.
We take this option.

Which sets would we like to ensure are in II? The first set we consider is the

empty set, denoted �. The empty set has no elements. How can we ensure the

empty set is in II? In fact we can do this with a simple PLN-formula:

109

7 A Taste of Set Theory

• Empty Set Exists: ∃y.∀z.z ∉ y .

Next, any time we have a set X ∈ II we can form the power set of X, denoted

℘(X). The power set of X contains exactly the subsets of X. That is, Y ∈ ℘(X) if

and only if Y ⊆ X. We can ensure the existence of power sets as follows:

• Power Sets Exist: ∀x.∃y.∀z.z ∈ y ≡ z ⊆ x.

This is not a PLN-formula, but could be easily expanded into one.

We are now assured II contains at least �, ℘(�), ℘(℘(�)), ℘(℘(℘(�))), etc. Let

us think about these sets. How many subsets of � are there? Clearly, there is

only one: �. Hence

℘(�) = {�}.
Now how many subsets of {�} are there? There are two: � and {�}, so

℘(℘(�)) = {�, {�}}.

Now how many subsets of {�, {�}} are there? There are four:

℘(℘(℘(�))) = {�, {�}, {{�}}, {�, {�}}}.

In general, if a finite set X has n elements, then ℘(X) will have 2n elements.

Notice that for each X above, X ⊆ ℘(X). Is this always true? No. We say a

set X is called transitive if for every Z ∈ A and A ∈ X, we have Z ∈ X. It is an

easy exercise to prove X ⊆ ℘(X) if and only if X is transitive. It is also easy to

prove that if X is transitive, then ℘(X) is transitive. Warning: This use of the

word “transitive” is distinct from the notation of a “transitive relation.” We are

not in any way suggesting the relation ∈ is transitive!

Exercise 7.0.2 Find a set X such that X �⊆ ℘(X).

Exercise 7.0.3 Prove the following three statements are equivalent:

a) X is transitive.

b) For every A ∈ X we know A ⊆ X.

c) X ⊆ ℘(X).
Hint: Prove (a) implies (b); Prove (b) implies (c); Prove (c) implies (a).

Exercise 7.0.4 If X is transitive, then ℘(X) is transitive.

Combining these facts, we conclude the following inclusions:

� ⊆ ℘(�) ⊆ ℘(℘(�)) ⊆ · · · ⊆ ℘n(�) ⊆ · · ·

We recursively define sets V0 = � and Vn+1 = ℘(Vn). Since we know the size of

Vn grows (quickly!) as n grows we have the more suggestive picture of a “big V”

in Figure 7.1.

110 2008/7/14

�
�
�
�
�
�
�
�
�
�
�
�

�
�

�
�

�
�

�
�

�
�

�
�

V0 = �
V1 = {�}
V2 = {�, {�}}
V3 = {�, {�}, {{�}}, {�, {�}}}
V4 (16 elements)

�

�

�
�

�� � �

� �� �

� � � �

Vn

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

� �

�
�

�

�

�

�

�

�

�

�

�

�
�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

��

�

�

�

�
�

�

�

�

�

�

�

�

��

�

�

�

�

�

�

�
�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

� �

�

�

�

�

�

�

�

�

�

�

�

�
�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�
�

�

�

�
�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�
�

�

�

�

��

�

�

�

�

�

�

�

�

�

�

�

�

�

�
�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�
�

�

�

�

�

�
�

�

�

�

�

�

�

�

�

�

��

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�
�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

Figure 7.1: Sets as a big V

How could we prove ℘(�) exists? The first question is how we express the

claim that ℘(�) exists. A first try might be

∃y.∀z.z ∈ y ≡ z ⊆ �

but � is a set, not a name of type I! We can express the conjecture without using

a name for the empty set. Here is an example how:

∃y.∀z.z ∈ y ≡ ∀w.(∀u.u ∉ w) → z ⊆ w

We will not do this! We want names for our objects and constructors!

Suppose � : I is a name of type I. (Note the overloading. Some occurrences

of � will be a name of type I and others will be the empty set. We already

used such overloading for ∈ and ⊆, without saying so.) To avoid any potential

complications, assume � ∉ V . Now we can state existence of ℘(�) as

∃y.∀z.z ∈ y ≡ z ⊆ �

but have no hope of proving it. Why not? We only assumed an empty set exists,

not that the name � is the empty set. We remedy this:

• Empty Set: ∀z.y ∉ �.

This axiom will guarantee that I� = �. (That is, the interpretation of the name �
is the empty set.)

We now have a name � for the empty set. Why do we not have a term of type I
corresponding to ℘(�)? The problem is the formulation of the Power Sets Exist

axiom. In order to make our lives easier, we assume we have a name Pow : II
where IPowX is (or at least should be) the power set ℘(X). We now assume

2008/7/14 111

7 A Taste of Set Theory

• Power Sets: ∀xz.z ∈ (Powx) ≡ z ⊆ x.

Now the fact that ℘(�) exists is trivial (as it should be!) since Pow� is a term such

that I(Pow�) = ℘(�).
We noted that if we had a set X with n elements, ℘(X) had 2n elements.

Clearly n is smaller than 2n. Is there some way to express the fact that X is a

smaller set than ℘(X) within the language? After we express it, can we prove it?

Unfortunately, we are not in such a simple situation. In our situation X and

Y do not correspond to types, but to members of II. We can give a formulation

that is almost as simple by taking g to be a name of type II, x, y , u and v to be

names of type I, and writing

¬∃g. (∀u.u ∈ x → gu ∈ y)
∧ ∀v.v ∈ y → ∃u.u ∈ x ∧ gu = v

If Ix = X and Iy = Y , then the formula above will be true iff there is a function

from all of II to II which restricts to be a surjection from X to Y . We take

surj : II(II)B to be notation for the term

λxyg. (∀u.u ∈ x → gu ∈ y)
∧ ∀v.v ∈ y → ∃u.u ∈ x ∧ gu = v

Note that we have made use of a higher-order quantifier (∃g where g has type

II). As soon as we quantify over a type other than I, then we have certainly

abandoned PLN-formulas. With some work, we can express the idea that there

is no surjection without quantifying over types other than I. We will not do this

here, but we will sketch the steps.

1. Consider a function as a set of ordered pairs.

2. Define ordered pairs (a, b) ∈ II of a ∈ II and b ∈ II such that

(a, b) = (a′, b′)⇒ a = a′ and b = b′.

A common choice is to use the Kuratowski pair (a, b) of a and b given by

{{a}, {a, b}}.

3. Define Z ∈ II to be a surjection from X to Y if four conditions hold:

a) Every element of Z is of the form (a, b) for some a ∈ X and b ∈ Y .

b) For every a ∈ X, there is some b ∈ Y such that (a, b) ∈ Z .

c) If (a, b) ∈ Z and (a, b′) ∈ Z , then b = b′.
d) For every b ∈ Y , there is some a ∈ X such that (a, b) ∈ Z .

4. Write these conditions as a formula.

112 2008/7/14

We now return to the concept we wanted to define: when a set x is smaller

than y . Now that we have surj, we take ≺ (written in infix, with the same prece-

dence as =) to be notation for the term

λxy.¬∃g.surjxyg

of type IIB. We can now easily express the result about the size of the power set

as

∀x.x ≺ (Powx).

We will delay thinking about proving this result.

So far we have only constructed finite sets. We started with the finite set �. At

each stage, we had a finite set Vn of finite sets and formed Vn+1 = ℘(Vn). Since

any subset of a finite set is finite, Vn+1 only contains finite sets. Also, since a

finite set has only finitely many subsets, Vn+1 is itself finite. How can we form

an infinite set?

We can easily define a sequence of sets which resembles the natural numbers.

Let 0 be �, 1 be {0}, 2 be {0,1}, and so on. In general, we can define n + 1 =
{0, . . . , n}. An easy induction on n proves that n ∉ Vn, n ⊆ Vn and n ∈ Vn+1.

Consider the set ω defined to be

{0,1,2, . . . , n . . .}.

Clearly ω is an infinite set and is not in any Vn.

We can continue the construction of our set theoretical universe by taking

Vω =
⋃
n∈ω

Vn.

This Vω is an infinite set. Is ω ∈ Vω? It cannot be. Every member of Vω is

a member of Vn for some n. Hence Vω only contains finite sets. On the other

hand, ω ⊆ Vω and so ω ∈ ℘(Vω). This motivates continuing our power set

construction: For each n, we take Vω+n+1 to be ℘(Vω+n). Clearly ω ∈ Vω+1 (just

as each n was in Vn+1). Note that we still have a chain

V0 ⊆ V1 ⊆ V2 ⊆ · · · ⊆ Vn ⊆ · · · ⊆ Vω ⊆ Vω+1 ⊆ · · · ⊆ Vω+n ⊆ · · ·

and the even bigger “big V” in Figure 7.2.

Notice that for any n,m ∈ω, we have n <m (as integers) iff n ∈m (as sets).

Now that we have an infinite set ω, we can ask an interesting question. How

does the size of ℘(ω) compare with the size of ω? Clearly ω is countable. In

the case of finite sets we had X ≺ ℘(X). Is this also true of infinite sets? Yes. In

fact, we gave the informal proof in Chapter 6. We repeat it here.

Theorem 7.0.5 (Cantor’s Theorem) For any set X, X ≺ ℘(X).

2008/7/14 113

7 A Taste of Set Theory

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

V0 = �
V1 = {�}
V2 = {�, {�}}
V3 = {�, {�}, {{�}}, {�, {�}}}
V4 (16 elements)

�0
�1

2 �

3 �

...

...

...

�n Vn
Vn+1

�ω Vω
Vω+1

Vω+n

Figure 7.2: Sets, including some infinite sets, as a big V

Proof Assume we have a set X such that X ≺ ℘(X) does not hold. Then there

must be a surjection G : X → ℘(X). Consider the set

D = {a ∈ X|a ∉ (Ga)}.

Since D ∈ ℘(X) and G is surjective, there must be some d ∈ X such that G(d) =
D. Is d ∈ D? If d ∈ D, then d ∈ G(d) and so d ∉ D (by the definition of D). On

the other hand, if d ∉ D, then d ∉ G(d) and so d ∈ D (by the definition of D).

That is, d ∈ D iff d ∉ D. This is clearly impossible. Therefore, no such surjection

G can exist. �

The key idea of the proof of Cantor’s theorem is the choice of D. In order to

mimic the informal proof above in a formal tableau proof, we must be able to

make use of the set D. We can construct a partial tableau of the form

¬(x ≺ (Powx))
...

∀v.v ∈ (Powx)→ ∃u.u ∈ x ∧ (gu) = v

We then need to somehow apply Forall to instantiate v with a term correspond-

114 2008/7/14

ing to the set D. Examine the set D:

D = {a ∈ X|¬(a ∈ (Ga))}

We can imagine writing the body as

¬(y ∈ (gy))

with a variable y , and this body has type B as expected. We can λ-abstract the y
and obtain the term

λy.¬(y ∈ (gy))
but this term has type IB, where we need to instantiate v with a term of type I.
With the axioms and constructors introduced so far, we cannot represent the set

D as a term. What we need to be able to do is take a term of type I representing

a set X and a term of type IB representing a property P of sets and form a term

of type I corresponding to {a ∈ X|Pa = 1}.
Just as we introduced names � and Pow, we introduce a name sep of type

I(IB)I such that for all X ∈ II and P ∈ I(IB) we have

IsepXP = {a ∈ X|Pa = 1}.

The corresponding axiom is the Axiom of Separation:

• Separation: ∀xpz.z ∈ (sepxp) ≡ z ∈ x ∧ px
Remark: In first-order set theory, the separation axiom is restricted to prop-

erties p defined by first-order formulas.

Cantor’s theorem implies that ω is a smaller infinity that ℘(ω). In fact we

have an infinite chain of infinities

ω ≺ ℘(ω) ≺ ℘(℘(ω)) ≺ · · · .

A natural question one could ask is whether there are infinities in between any

of these inequalities. In particular, is there a set X such that ω ≺ X and X ≺
℘(ω)? Cantor’s Continuum Hypothesis states that there are no such sets X. The

Continuum Hypothesis is often stated in the following form:

Continuum Hypothesis (CH) Every infinite subset X of ω is either countable

or has the same cardinality as ℘(ω).
Is this true? Is it false? Is it provable? Is its negation provable?

In 1900 a famous German mathematician and logician named David Hilbert

made a list of 23 important open problems in mathematics. In an address at

the International Congress of Mathematicians in Paris in 1900 he talked about

the first 10 of these problems. The continuum hypothesis was the first of these

problems, so it is also known as Hilbert’s first problem.

CH led to the following interesting results:

2008/7/14 115

7 A Taste of Set Theory

• The fact that the negation of CH is not provable using the usual axioms of set

theory was proven by Gödel in 1940.

• The fact that CH is not provable using the usual axioms of set theory was

proven by Paul Cohen in 1962.

How can we prove something is not provable? The question only becomes

precise once we specify the deductive system. If we have a deductive system,

a notion of a logical interpretation, and soundness result, then we can prove a

formula s is unprovable by constructing a logical interpretation such that Is = 0.

In the case of the results above, the deductive system is first-order logic with

the Zermelo-Fraenkel of set theory with the axiom of choice, which is commonly

referred to as ZFC.

There is much more we could say about set theory, but this is not a course

on set theory! If you want to read more about set theory, try the first chapters

of [26] or [25].

116 2008/7/14

8 Decision Trees

In this section we investgate equivalence of propositional formulas. Two formu-

las s, t are equivalent if the equation s = t is deducible. We identify a class of

canonical propositional formulas such that every propositional formula is equiv-

alent to exactly one canonical formula. The canonical form is based on so-called

decision trees. We obtain an efficient algorithm for equivalence checking by

employing a dynamic programming technique on a minimal graph representa-

tion of decision trees known as binary decision diagram (BDD). The data struc-

tures and algorithms presented in this section have many applications, including

computer-aided design of computer hardware and verification of finite state sys-

tems (i.e., model checking). The essential ideas are due to Randal Bryant [33].

8.1 Boolean Functions

An important building block of the hardware of computers are functional cir-

cuits. A functional circuit maps some inputs x1, . . . , xm to some outputs

y1, . . . , yn. Inputs and outputs are two-valued. Every output is determined as

a function of the inputs. This leads to the notion of a Boolean function, an ab-

straction that is essential for hardware design.

A Boolean variable is a variable of type B. Let X be a nonempty and finite set

of Boolean variables. The following definitions are parameterized with X.

An assignment (σ) is a function X → B. A Boolean function (ϕ) is a function

(X → B)→ B. Seen from the circuit perspective, an assignment σ provides values

σx for the inputs x ∈ X, and a Boolean function decribes how an output is ob-

tained from the inputs. Some authors call Boolean functions switching functions.

Sometimes it is helpful to see a Boolean function as a set of assignments.

In order to design a functional circuit, one must know which Boolean func-

tions (one per output) it ought to compute. So how can electrical engineers spec-

ify Boolean functions? A simple-minded approach are truth tables. For instance,

117

8 Decision Trees

given x,y ∈ X, we can see the truth table

x y ϕσ
0 0 0

0 1 1

1 0 1

1 1 0

as a specification of the Boolean function that returns 1 if and only if its inputs x
and y are different. A more compact specification of this Boolean function would

be the propositional formula x �≡ y . Clearly, if there are many relevant inputs,

the specification of a Boolean function with a formula can be more compact than

the specification with a truth table.

Let PF be the set of all propositional formulas containing only variables

from X. We define a function F ∈ PF → (X → B) → B such that Fs is the

Boolean function specified by the formula s:

F⊥σ = 0

F�σ = 1

Fxσ = σx if x ∈ X
F(¬s)σ = 1−Fsσ

F(s ∧ t)σ =min{Fsσ , Ftσ}
F(s ∨ t)σ =max{Fsσ , Ftσ}
F(s → t)σ =max{1−Fsσ , Ftσ}
F(s ≡ t)σ = (Fsσ =Ftσ)

Proposition 8.1.1 Let s ∈ PF, I be a logical interpretation, and σ be the unique

assignment such that σ ⊆ I . Then Is = Fsσ .

Proof By induction on s. �

From the proposition it’s clear that assignments can play the role of logical in-

terpretations for propositional formulas. While logical interpretations come with

redundant and irrelevant information, assignments only contain the information

that is necessary for the evaluation of propositional formulas.

Often it is necessary to decide whether two formulas s, t ∈ PF represent the

same Boolean function. For instance, s might be the specification of a Boolean

function and t may describe the implementation of this function in terms of

more primitive functions. Then the implementation is correct if and only if

Fs = Ft.

Proposition 8.1.2 Let s, t ∈ PF. Then Fs = Ft iff s = t is a tautology.

118 2008/7/14

8.1 Boolean Functions

Proof Fs = Ft holds if s, t evaluate to the same value with every assignment,

and s = t is a tautology if s, t evaluate to the same value with every logical

interpretation. Thus the claim follows with Proposition 8.1.1. �

Given Proposition 8.1.2, we can say that the function F constitutes a seman-

tics for propositional formulas. Since there are only finitely many assignments,

the semantics provided by F is effective in that it gives us a naive algorithm for

deciding whether a propositional formula is a tautology. The algorithm may even

be practical if a formula is not a tautology and we implement it with heuristics

that find a falsifying assignment quickly. On the other hand, if we want to show

that a formula is a tautology, the tableau method seems more promising.

We say that two terms s, t are equivalent if they have the same type and the

equation s = t is deducible.

Proposition 8.1.3 Let s, t ∈ PF. Then the following statements are equivalent:

1. s and t are equivalent.

2. s = t is a tautology.

3. Fs = Ft.

Proof Follows with Theorem 6.4.1 and Proposition 8.1.2. �

F illustrates an important semantic idea that we have not seen so far. The

interesting thing about F is that it gives us a denotational characterization of

propositional equivalence: Two propositional formulas are equivalent if and only

if they denote the same same semantic object (i.e., a Boolean function).

Let’s return to Boolean functions. Can every Boolean function be represented

by a propositional formula? The answer is yes.

Proposition 8.1.4 Let ϕ be a Boolean function. Then:

ϕ = F

⎛
⎜⎜⎜⎝

∨
σ∈X→B
ϕσ=1

∧
x∈X

if σx = 1 then x else ¬x

⎞
⎟⎟⎟⎠

Proof Let σ be an assignment. It suffices to show that the left hand side yields 1

for sigma if and only if the right hand side does. This is easy to verify. Remark:

if the index set of the disjunction is empty, it represents ⊥. �

Exercise 8.1.5 We require that X is finite so that every Boolean function can be

represented by a formula. Suppose X is infinite. How can we obtain a Boolean

function that cannot be represented by a propositional formula?

2008/7/14 119

8 Decision Trees

8.2 Decision Trees and Prime Trees

Every Boolean function can be represented by infinitely many propositional for-

mulas. Given a Boolean function, formulas can represent it more or less explic-

itly. For instance � and ¬¬x → x both represent the same Boolean function.

Of course, in general it is not clear what more or less explicit means. However,

the following question is meaningful: Can we find a class of canonical proposi-

tional formulas such that every Boolean function can be represented by one and

only one canonical formula, and such that canonical formulas are informative

representations of Boolean functions?

In the following we will study a system of canonical propositional formulas

that is based on the notion of a decision tree. We start with the notation

(s, t, u) := ¬s ∧ t ∨ s ∧u

and call formulas of this form conditionals. The following proposition explains

why we use this name.

Proposition 8.2.1 The following formulas are tautologies:

1. (⊥, x, y) = x
2. (�, x, y) = y
3. (x,y,y) = y

Exercise 8.2.2 Find tableau proofs for the tautologies in Proposition 8.2.1.

Decision trees are defined recursively:

1. ⊥ and � are decision trees.

2. (x, s, t) is a decision tree if x is a Boolean variable and s and t are decision

trees.

As the name suggests, decision trees can be thought of as trees. For instance,

(x,�, (y, (z,⊥,�),⊥)) may be seen as the tree

x

� y

z

⊥ �
⊥

To compute Fsσ for a decision tree s, we start at the root of s and follow the

path determined by σ (σx = 0 means “go left”, and σx = 1 means “go right”).

If we reach a leaf, the result is determined by the label of the leaf (0 for ⊥ and 1

for �).

120 2008/7/14

8.3 Existence of Prime Trees

x

⊥ �
x

x

� ⊥
¬x

x

⊥ y

⊥ �
x ∧y

x

y

⊥ �
�

x ∨y

x

y

� ⊥
y

⊥ �
x ≡ y

Figure 8.1: Prime trees for some simple formulas

Proposition 8.2.3 Let (x, s0, s1) ∈ PF. Then:

F(x, s0, s1)σ = if σx=0 then Fs0σ else Fs1σ

Proposition 8.2.4 (Coincidence)

Let s ∈ PF and σx = σ ′x for all x ∈ V s. Then Fsσ = Fsσ ′.

Given decision trees, it is straightforward to define a canonical subclass. A

decision tree is reduced if none of its subtrees has the form (x, s, s). We assume

a linear order on the set of all Boolean variables and write x < y if x is smaller

than y . A decision tree is ordered if the variables get larger as one goes down on

a path from the root to a leaf. The example tree shown above is ordered if and

only if x < y < z. A prime tree is a reduced and ordered decision tree. Formally,

we define prime trees recursively:

1. ⊥ and � are prime trees.

2. (x, s, t) is prime tree if s and t are different prime trees (i.e., s ≠ t) and x is a

Boolean variable that is smaller than every variable that occurs in s or t.

We will show that every propositional formula is equivalent to exactly one prime

tree. Figure 8.1 shows the prime trees for some simple formulas.

8.3 Existence of Prime Trees

First we outline an algorithm that computes for a propositional formula an equiv-

alent prime tree. The algorithm is based on the following proposition.1

Proposition 8.3.1 (Shannon Expansion)

For every formula s and every Boolean variable x: � s = (x, sx⊥ , sx�).

Proof Straightforward with BCAR and Proposition 8.2.1. �

1 Claude Shannon showed in his famous 1937 master’s thesis done at MIT that the arrangement

of the electromechanical relays then used in telephone routing switches could be analyzed with
Boolean algebra.

2008/7/14 121

8 Decision Trees

The algorithm works by recursion on the number of Boolean variables oc-

curring in s. If s contains no Boolean variables, s can be evaluated to ⊥ or �.

Otherwise, the algorithm determines the least Boolean variable x occurring in s
and obtains prime trees s0, s1 for sx⊥ and sx� by recursion. If s0 ≠ s1, we obtain

the prime tree (x, s0, s1), otherwise s0 does the job.

In the following, we will show the correctness of the algorithm by stating and

proving some essential properties.

We define the free variables of a term s as V s := {x ∈N s | x is a variable }.
A term s is variable-free if V s = �.

Proposition 8.3.2 (Evaluation) Let s be a variable-free propositional formula.

Then � s=⊥ or � s=�.

Proof By induction on s. Straightforward. �

Lemma 8.3.3 Let s be a propositional formula and x be the least variable that

occurs in s. Let s0 and s1 be prime trees that are equivalent to sx⊥ and sx� , respec-

tively. Moreover, let V s0 ⊆ V sx⊥ and V s1 ⊆ V sx�. Then:

1. If s0 = s1, then sx⊥ is a prime tree that is equivalent to s.

2. If s0 ≠ s1, then (x, s0, s1) is a prime tree that is equivalent to s.

Proof Follows with Proposition 8.3.1 and Proposition 8.2.1. �

Proposition 8.3.4

For every propositional formula s there exists an equivalent prime tree t such

that V t ⊆ V s.

Proof Follows with Lemma 8.3.3 by induction on the number of variables occur-

ring in s. �

Exercise 8.3.5 Draw all prime trees containing no other variables but x and y .

Assume x < y . For each tree give an equivalent propositional formula that is as

simple as possible.

Exercise 8.3.6 Let s be the propositional formula x = (y = z). Assume

x < y < z. Draw the prime trees for the following formulas: s, ¬s, s ∧ s, s → s.

8.4 Example: Diet Rules

On a TV show a centenarian is asked for the secret of his long life. Oh, he says,

my long life is due to a special diet that I started 60 years ago and follow by every

day. The presenter gets all exited and asks for the diet. Oh, that’s easy, says the

old gentleman, there are only 3 rules you have to follow:

122 2008/7/14

8.5 Uniqueness of Prime Trees

1. If you don’t take beer, you must have fish.

2. If you have both beer and fish, don’t have ice cream.

3. If you have ice cream or don’t have beer, then don’t have fish.

Let’s look at the diet rules from a logical perspective. Obviously, the diet is only

concerned with three Boolean properties of a meal: having beer, having fish, and

having ice cream . We can model these properties with three Boolean variables

b, f , i and describe the diet with a propositional formula that evaluates to 1 if

the diet is satisfied by a meal:

(¬b → f) ∧ (b ∧ f → ¬i) ∧ (i∨¬b → ¬f)
The formula is one one possible description of the diet. More abstractly, the diet

is represented by the Boolean function decribed by the formula. A related repre-

sentation of the diet is the prime tree that is equivalent to the initial formula:

b

⊥ f

� i

� ⊥
Now we know that the diet is observed if and only if the following rules are

observed:

1. Always drink beer.

2. Do not have both fish and ice cream.

Clearly, the prime tree represents the diet much more explicitly than the initial

formula obtained form the rules given by the gentleman.

Exercise 8.4.1 Four girls agree on some rules for a party:

i) Whoever dances which Richard must also dance with Peter and Michael.

ii) Whoever does not dance with Richard is not allowed to dance with Peter and

must dance with Christophe.

iii) Whoever does not dance with Peter is not allowed to dance with Christophe.

Express these rules as simply as possible.

a) Describe each rule with a propositional formula. Do only use the variables c
(Christophe), p (Peter), m (Michael), r (Richard).

b) Give the prime tree that is equivalent to the conjunction of the rules. Use the

order c < p < m < r .

8.5 Uniqueness of Prime Trees

We use σxb to denote the assignment that is like σ except that it maps x to b.

2008/7/14 123

8 Decision Trees

Lemma 8.5.1 If s, t ∈ PF are different prime trees, then Fs and Ft are different

Boolean functions.

Proof By induction on |s| + |t|. Let s, t be different prime trees. We show that

there is an assignment σ such that Fsσ ≠ Ftσ .

Case s, t ∈ {⊥,�}. Every σ does the job.

Case s = (x, s0, s1) and x ∉ N t. By induction we have an assignment σ such

that Fs0σ ≠ Fs1σ . Since x occurs neither in s0 nor s1, we have Fsσx0 ≠ Fsσx1
since Fsσx0 = Fs0σx0 = Fs0σ ≠ Fs1σ = Fs1σx1 = Fsσx1 . But Ftσx0 = Ftσx1
since x does not occur in t. Hence Fsσx0 ≠ Ftσx0 or Fsσx1 ≠ Ftσx1 .

Case t = (x, t0, t1) and x ∉N s. Analogous to previous case.

Case s = (x, s0, s1) and t = (x, t0, t1). Then s0 ≠ t0 or s1 ≠ t1. By induction

there exists an assignment σ such that Fs0σ ≠ Ft0σ or Fs1σ ≠ Ft1σ . By

coincidence Fs0σx0 ≠ Ft0σx0 or Fs1σx1 ≠ Ft1σx1 . Hence Fsσx0 ≠ Ftσx0 or

Fsσx1 ≠ Ftσx1 .

To see that the case analysis is exhaustive, consider the case where both s and t
are non-atomic trees with the root variables x and y . If x < y , then x does

not occur in t since all variables in t are greater or equal than y and hence are

greater that x. If y < x, then y does not occur in s since all variables in s are

greater or equal than x and hence are greater than y . �

Theorem 8.5.2 (Prime Tree) For every propositional formula there exists ex-

actly one equivalent prime tree.

Proof The existence follows with Proposition 8.3.4. To show the uniqueness,

assume that s is a propositional formula and t1, t2 are different prime trees that

are equivalent to s. Without loss of generality we can assume that t1, t2 ∈ PF

(because we can choose X = V t1 ∪ V t2). Hence Ft1 ≠ Ft2 by Lemma 8.5.1.

Hence t1, t2 are not equivalent by Proposition 8.1.3. Contradiction since t1, t2
are both equivalent to s. �

8.6 Properties of Prime Trees

For every propositional formula s we denote the unique prime tree equivalent

to s with πs. We call πs the prime tree for s.

Proposition 8.6.1 Let s and t be propositional formulas.

1. s is equivalent to πs.

2. V (πs) ⊆ V s.

124 2008/7/14

8.6 Properties of Prime Trees

3. s, t are equivalent if and only if πs = πt.
4. s is a tautology if and only if πs = �.

Proof Claim (1) follows by definition of πs. Claim (2) follows with Proposi-

tion 8.3.4 and Theorem 8.5.2. Claim (3) follows with (1) and Theorem 8.5.2.

For Claim (4) first note that s is a tautology iff s = � is a tautology. By Proposi-

tion 8.1.3 this is the case iff s and � are equivalent. By Claim (3) this is the case

iff πs = π�. Now we are done since π� = �. �

The significant variables of a propositional formula are the variables occur-

ring in its prime tree. The following lemma says that the significant variables of

a prime tree s are significant variables of the Boolean function Fs.

Lemma 8.6.2 Let s ∈ PF be a prime tree and x ∈ V s. Then there exists an

assignment σ such that Fsσx⊥ ≠ Fsσx�.

Proof By contradiction. Assume Fsσx⊥ = Fsσx� for all assignments σ . Then

Fsσ = Fsσx⊥ for all σ . Hence s and sx⊥ are equivalent. Thus πs = π(sx⊥) by

Proposition 8.6.1 (3). Since s is a prime tree, we have s = πs = π(sx⊥). This is

a contradiction since x ∈ V s = V (π(sx⊥)) ⊆ V (sx⊥) by Proposition 8.6.1 (2) and

x ∉ V (sx⊥). �

Proposition 8.6.3 For every propositional formula s:

1. If x is a significant variable of s, then x occurs in s.

2. A Boolean variable x is significant for s if and only if there exists an assign-

ment σ such that Fsσx⊥ ≠ Fsσx�.

Proof Claim (1) follows with Proposition 8.6.1. For Claim (2) we assume without

loss of generality that s is a prime tree (recall that Fs = F(πs) holds for all

propositional formulas). The left-to-right direction follows with Lemma 8.6.2. To

see the other direction, let Fsσx⊥ ≠ Fsσx�. By Coincidence we have x ∈ V s.
Since s is a prime tree, x is a significant variable of s. �

A variable x ∈ X is significant for a Boolean function ϕ if there exists an

assignment σ such that ϕσx⊥ ≠ ϕσx�. By the the proposition just stated we

know that the significant variables of a formula s ∈ PF are exactly the significant

variables of the Boolean function Fs.
Boolean functions andF are defined with respect to a finite set of variables X.

In contrast, the definition of the prime tree representation πs and of the signif-

icant variables of s does not depend on X. In principle, it is possible to fix X
as the set of all Boolean variables, with the consequence that not every Boolean

2008/7/14 125

8 Decision Trees

function can be described by a propositional formula. In this case, prime trees

are a perfect representation for the finitary Boolean functions.

Prime trees are a canonical representation for propositional formulas. Given

a set S of syntactic objects and an equivalence relation on these objects, a canon-

ical representation is a set C ⊆ S such that for every object in S there is exactly

one equivalent object in C . In § 3.7 we have seen a canonical representation for

simply typed terms: Every term is λ-equivalent to exactly one λ-normal term

(Corollary 3.7.3).

Exercise 8.6.4

a) Find a propositional formula s that contains the variables x, y , z and has x
as its only significant variable.

b) Determine the significant variables of the formula (x → y)∧(x∨y)∧(y∨z).

8.7 Prime Tree Algorithms

Given two prime trees s and t, how can we efficiently compute the prime trees

for ¬s, s ∧ t, s ∨ t and so on? It turns out that there are elegant algorithms that

perform well in practice. Here we will develop the algorithms for negation and

conjunction. The algorithms for the other operations can be obtained along the

same lines.

To develop th algorithms for negation and conjunction, we first define the

functions to be computed by the algorithms.

not ∈ PT → PT and ∈ PT→ PT → PT

not s = π(¬s) and s t = π(s ∧ t)

We base the algorithm for negation on the tautologies (verify!)

¬⊥ = �
¬� = ⊥

¬(x,y, z) = (x,¬y,¬z)

With the tautologies one can verify the equations

π(¬⊥) = �
π(¬�) = ⊥

π(¬(x, s, t)) = (x,π(¬s), π(¬t)) if (x, s, t) is a prime tree

The correctness of the first two equations is obvious. For the corectness of the

last equation we show 2 things:

126 2008/7/14

8.7 Prime Tree Algorithms

1. The formula on the left is equivalent to the formula on the right. To ver-

ify this, we can erase all applications of π since π always yields equivalent

formulas. Now we are left with an instance of the third tautology.

2. The formula on the right is a prime tree. Let (x, s, t) be a prime tree. Clearly,

the formula on the right is a decision tree. We need to show that it is ordered

and reduced. Since π(¬s) and π(¬t) contain only variables that are in s and

t and (x, s, t) is a ordered, (x,π(¬s), π(¬t)) is ordered. Since (x, s, t) is a

prime tree, s and t are not equivalent. Hence ¬s and ¬t are not equivalent

(since x=y ≡ ¬x=¬y is a tautology). Hence π(¬s) and π(¬t) are different

prime trees.

Together, the two properties yield the correctness of the equation since for every

formula there is only one equivalent prime tree.

Now we have the following procedure:

not : PT → PT

not ⊥ = �
not � = ⊥

not(x, s, t) = (x, not s, not t)

The equations are exhaustive and terminating. Moreover, they are valid for the

function not (they reduce to the above equations with π by unfolding the defini-

tion of the function not). Hence the procedure not computes the function not.

Next we devise an algorithm for conjunction. This time we employ the follow-

ing tautologies (verify!):

⊥∧y = ⊥
�∧y = y

(x,y, z)∧ (x,y′, z′) = (x,y ∧y′, z∧ z′)
(x,y, z)∧u = (x,y ∧u, z∧u)

Moreover, we exploit the commutativity of ∧. We also use an auxiliary function

red ∈ DT → DT

red ⊥ = ⊥
red � = �
red(x, s, t) = if s = t then s else (x, s, t)

2008/7/14 127

8 Decision Trees

Now we can verify the following equations:

π(⊥∧ t) = ⊥
π(�∧ t) = t

π((x, s0, s1)∧ (x, t0, t1)) = red(x,π(s0 ∧ t0), π(s1 ∧ t1))
π((x, s0, s1)∧ t) = red(x,π(s0 ∧ t), π(s1 ∧ t))

if t = (y, t0, t1) and x < y

As for negation, the correctness of the equations is established in 2 steps. First

one verifies that for each equations the formula on the left is equivalent to the

formula on the right. Since π and red yield equivalent formulas, we can erase

their applications. Now we are left with instances of the above tautologies. For

the second step we show that the formulas on the right are prime trees, provided

the arguments on the left hand side are prime trees. This is easy and explains

the condition x < y coming with the last equation.

Now we have the following procedure:

and : PT→ PT → PT

and ⊥ t = ⊥
and � t = t
and s ⊥ = ⊥
and s � = s

and (x, s0, s1) (x, t0, t1) = red(x, and s0 t0, and s1 t1)

and (x, s0, s1) t = red(x, and s0 t, and s1 t)

if t = (y, t0, t1) and x < y

and s (y, t0, t1) = red(y, and s t0, and s t1)

if s = (x, s0, s1) and x > y

The procedure and computes the function and since the following properties are

satisfied:

1. The equations are exhaustive and terminating.

2. The equations hold for the function and. This is the case since the equations

reduce to the above tautologies (up to commutativity) by using the definitions

of the functions and and red.

You now know enough so that you can devise algorithms for the other Boolean

operations. Things are as before since for every name ◦ : BBB the following

128 2008/7/14

8.7 Prime Tree Algorithms

equations are deducible with BCAR (◦ is written as infix operator):

(x,y, z) ◦ (x,y′, z′) = (x,y ◦y′, z ◦ z′)
u ◦ (x,y′, z′) = (x,u ◦y′, u ◦ z′)

(x,y, z) ◦u = (x,y ◦u, z ◦u)

This follows with BCAR on x and the tautologies of Proposition 8.2.1.

Exercise 8.7.1 Develop an algorithm that for two prime trees s, t yields the

prime tree for s = t. Implement the algorithm in Standard ML. Proceed as fol-

lows:

a) Complete the following equations so that they become tautologies on which

the algorithm can be based.

(x = �) =
(⊥ = ⊥) =

((x,y, z) = (x,y′, z′)) =
((x,y, z) = u) =

b) Complete the declarations of the procedures red and equiv so that equiv com-

putes for two prime trees s, t the prime tree for s = t. The variable order is

the order of int. Do not use other procedures.

type var = int

datatype dt = F | T | D of var * dt * dt

fun red x s t =

fun equiv T t =

| equiv s T =

| equiv F F =

| equiv F (D(y,t0,t1)) =

| equiv (D(x,s0,s1)) F =

| equiv (s as D(x, s0, s1)) (t as D(y, t0, t1)) =
if x=y then

else if x<y then

else

Exercise 8.7.2 Let decision trees be represented as in Exercise 8.7.1, and let

propositional formulas be represented as follows:

datatype pf = FF | TT | V of var | NEG of pf | AND of pf * pf

| OR of pf * pf | IMP of pf * pf | EQ of pf * pf

Write a procedure pi : pf → dt that yields the prime tree for a propositional for-

mula. Be smart and only use the prime tree algorithm for implication (all propo-

sitional connectives can be expressed with → and ⊥).

2008/7/14 129

8 Decision Trees

1 0

z y

x
x

z

� ⊥
y

⊥ z

� ⊥

Figure 8.2: A BDD and the decision tree represented by the topmost node

Exercise 8.7.3 Find two prime tree (x, s0, s1) and t such that:

i) (x,π(s0 → t), π(s1 → t)) is not a prime tree.

ii) ∀y∈V t : x < y .

8.8 BDDs

Trees can be represented as nodes of graphs. Graphs whose nodes represent

decision trees are called BDDs (binary decision diagrams). Binary decision dia-

grams (BDD) were introduced by Lee (Lee 1959), and further studied and made

known by Akers (Akers 1978) and Boute (Boute 1976).

Figure 8.2 shows a BDD. The node labeled with the variable x represents the

decision tree shown to the right. Dotted edges of the graph lead to left subtrees

and solid edges to right subtrees. Subtrees that occur more than once in a deci-

sion tree need only be represented once in a BDD (so-called structure sharing).

In our example BDD the node labeled with z represents a subtree that occurs

twice in the decision tree on the right.

Formally, a BDD is a function γ such that there exists a natural number N ≥ 1

such that

1. γ ∈ {2, . . . , N} → Var × {0, . . . , N} × {0, . . . , N}.
2. ∀ (n, (x,n0, n1)) ∈ γ : n > n0 ∧ n > n1.

The nodes of γ are the numbers 0, . . . , N . The nodes 0 und 1 represent the

decision trees ⊥ and �. A node n ≥ 2 with γn = (x,n0, n1) carries the label x
and has two outgoing edges pointing to n0 and n1, where the edge to n0 is dotted

and the edge to n1 is solid. Note that the second condition in the definition of

BDDs ensures that BDDs are acyclic. The BDD drawn in Figure 8.2 is the following

function (in table representation):

2 (z,1,0)
3 (y,0,2)
4 (x,2,3)

130 2008/7/14

8.8 BDDs

For every BDD γ we define the function

Tγ ∈ {0,1} ∪ Dom γ → DT

Tγ0 = ⊥
Tγ1 = �
Tγn = (x,Tγn0,Tγn1) if γn = (x,n0, n1)

which yields for every node n of γ the decision tree represented by γ and n.

A BDD is minimal if different nodes represent different trees. The BDD in

Figure 8.2 is minimal.

Proposition 8.8.1 (Minimality) A BDD is minimal if and only if it is injective.

Proof Let γ be a BDD such that Dom γ = {2, . . . , n}. That minimality implies

injectivity follows by contraposition. For the other direction assume that γ is

injective. We show the minimality of γ by induction on n. For n = 1 the claim

is obvious. Otherwise, let γn = (x,n0, n1). Assume γ is not minimal. Then

the exists a k ≠ n such that Tγk = Tγn. Hence γk = (x, k0, k1) such that

Tγk0 = Tγn0 and Tγk1 = Tγn1. By induction we know that the restriction of γ
to {2, . . . , n− 1} is minimal. Hence k0 = n0 and k1 = n1. Hence γk = γn. Since

k ≠ n this contradicts the assumption that γ is injective. �

Given the table representation of a BDD, it is very easy to see whether it is

minimal: The BDD is minimal if and only if no triple (x,n0, n1) occurs twice in

the right column of the table representation.

Note that there is exactly one minimal BDD that represents all subtrees of

a given prime tree. All nodes of this BDD are reachable from the node that

represents the given subtree. Note that this root appears as last node in the

table representation.

Techniques that represent terms as numbers that identify entries in tables

are know as term indexing. BDDs are a typical example of term indexing.

Exercise 8.8.2 Let s be the propositional formula (x∧y ≡ x∧z)∧(y∧z ≡ x∧z).
Assume the variable order x < y < z.

a) Draw the prime tree for s.

b) Draw a minimal BDD whose nodes represent the subtrees of the prime tree

for s.

c) Give the table representation of the BDD. Label each non-terminal node of

your BDD with the number representing it.

Exercise 8.8.3 (Parity Function) Let the Boolean variables x1 < x2 < x3 < x4 be

given. The parity function for these variables is the Boolean function that yields 1

2008/7/14 131

8 Decision Trees

for an assignment σ iff the sum σx1+σx2+σx3+σx4 is an even number. Draw

the minimal BDD whose root represents the prime tree for the parity function.

Observe that it is easy to obtain a minimal BDD for parity functions with addi-

tional variables (x4 < x5 < x6 < · · ·). Observe that the prime tree represented

by the root node of the BDD is exponentially larger than the BDD.

Exercise 8.8.4 (Impact of Variable Order) The size of the BDD representing the

parity function in Exercise 8.8.3 does not depend on the chosen variable order.

In general, this is not the case. There may be an exponential blow up if an

unfortunate variable order is chosen. Consider the formula

(x1 ∨ x2)∧ (x3 ∨ x4)∧ · · · ∧ (x2n−1 ∨ x2n)

The minimal BDD for this formula has 2n + 2 nodes if we choose the order

x1 < x2 < · · · < x2n. Draw it for n = 2. If we choose the order

x1 < x3 < · · · < x2n−1 < x2 < x4 < · · · < x2n

the minimal BDD has 2n+1 nodes. Draw it for n = 2.

8.9 Polynomial Runtime through Memorization

With the BDD representation it is possible to implement the prime tree algo-

rithms for the Boolean connectives with the runtime O(||m|| · ||n||) where m
and n are the nodes representing the prime trees and ||m|| and ||n|| are the

counts of the nodes reachable from m and n, respectively. The basic observa-

tion is that every call of the procedure will take as arguments two nodes m′

and n′ that are reachable fromm and n, respectively. Hence, if we memorize for

each call already done that is was done and what result it returned, we can avoid

computing the same call more than once. Without this dynamic programming

technique prime tree algorithms like and have exponential worst-case complex-

ity. The memorization is implemented with hashing. For this it is essential that

the trees are represented as numbers.

8.10 Remarks

Decision trees and graph representations of decision trees have been known for

a long time, but the canonical representation with ordered and reduced decision

trees and minimal graph representations were discovered only in 1986 by Randal

Bryant [33]. You will find his famous paper in the Internet. Huth and Ryan’s

textbook [23] gives a detailed presentation of BDDs. You will also find useful

information in the Wikipedia entry for binary decision diagrams.

132 2008/7/14

9 Modal Logic

• Modal logic was conceived as an extension of propositional logic that can

express additional modes of truth: necessarily true and possibly true.

• In 1918, C.I. Lewis published a deductive system for modal logic. His system

was improved by Kurt Gödel in 1933.

• In 1963, Saul Kripke gave the by now standard semantics for modal logic and

showed soundness and completeness.

• Before computer scientist got involved, modal logic was mainly developed by

logicians from philosophy.

• Temporal logic is an extension of modal logic. Major contributions were made

by the philosophers Arthur Prior (1967) and Hans Kamp (1968).

• In 1977, Amir Pnuelli realized that temporal logics could be used for specify-

ing and reasoning about concurrent programs. The temporal logics LTL and

CTL are now in wide use.

• In 1976, Vaugham Pratt invented dynamic logic, which is an extended modal

logic to be used for program verification.

• In 1991, Klaus Schild discovers that terminological logics, then developed for

knowledge representation, are in fact modal logics. Nowadays, terminological

logics are known as description logics [4]. Description logic is the basis for the

web ontology language OWL (see Wikipedia). There is a connection between

dynamic logic and description logic.

• Modal logics are decidable and have the finite model property. Terminating

tableau systems can be used as decision procedures and are the most efficient

choice as it comes to description logics and OWL.

• We consider a modal logic M that subsumes the basic modal logic K and the

basic description logic ALC. We develop a terminating tableau system for M.

• We study modal logic as a fragment of simple type theory, as we did before

for propositional logic and first-order logic.

133

9 Modal Logic

9.1 Modal Terms

We assume a sort I of individuals and work with three types of variables:

x,y : I individual variables

p, q : IB property variables

r : IIB relation variables

Note that propositions are unary predicates and relations are binary predicates.

The heart of modal logic are terms of type IB describing properties of individu-

als. Modal terms are obtained with the following names called modal constants:

⊥̇, �̇ : IB

¬̇ : (IB)IB

∧̇, ∨̇, →̇, ≡̇ : (IB)(IB)IB

�,♦ : (IIB)(IB)IB

Modal terms and modal formulas are now defined as follows:

t ::= p | ⊥̇ | �̇ | ¬̇t | t ∧̇ t | t ∨̇ t | t →̇ t | t ≡̇ t | �rt | ♦rt modal terms

s ::= tx | rxx | ∀t modal formulas

Note that modal terms and modal formulas are λ-free although they may use the

quantifier ∀I .
The semantics of the modal constants is expressed by the equations in Fig-

ure 9.1. Except for the modalities � and ♦, the semantics of the modal con-

stants is easy to understand: they lift the propositional constants from Booleans

(type B) to properties (type IB). The modalities are specialized quantifiers that

can be explained as follows:

• �rpx holds if every r -successor of x satisfies p.

• ♦rpx holds if there is an r -successor of x that satisfies p.

A modal interpretation is a logical interpretation that satisfies the equations

defining the modal constants. In the context of modal logic, we consider only

modal interpretations and consider the modal constants as a additional logical

constants. All names that are not constants (logical or modal) are called vari-

ables. We assume that p and q only range over names that are different from ⊥̇
and �̇.

We use M to refer to the set of equations in Figure 9.1. The next proposition

states that our modal logic is a translational fragment of PLN.

Proposition 9.1.1 (First-Order Translation) For every modal formula s there ex-

ists a PLN-formula t such that M � s = t.

134 2008/7/14

9.1 Modal Terms

⊥̇ = λx. ⊥
�̇ = λx. �
¬̇ = λpx. ¬px
∧̇ = λpqx. px ∧ qx
∨̇ = λpqx. px ∨ qx
→̇ = λpqx. px → qx

≡̇ = λpqx. px ≡ qx
� = λrpx. ∀y. rxy → py

♦ = λrpx. ∃y. rxy ∧ py

Figure 9.1: Equations defining the modal constants (set M)

Proof Let s be a modal formula. First we eliminate the modal constants by apply-

ing the equations in M. Then we apply β-reduction and eliminate all β-redexes.

Next we apply η-expansion to subterms of the form ∀p to obtain ∀x.px. Finally

we eliminate the propositional constants ⊥, �, →, and ≡, which is straigthfor-

ward. �

Notationally, the modal constants (except ⊥̇ and �̇) act as operators that take

their arguments before = :

=
≡̇
→̇
∨̇
∧̇

¬̇ � ♦

The modal operators ¬̇, �, and ♦ group to the right. For instance, the formula

¬̇�rt = ♦r ¬̇t is to be read as (¬̇(�rt)) = (♦r(¬̇t)).
Exercise 9.1.2 Translate the following modal formulas into first-order formulas:

a) (p ∨̇q)x
b) ∀(p →̇q)
c) (�r(p →̇♦rp))x
d) (�r♦r ¬̇p)x

We call modal formulas of the form px or rxy primitive. Note that the

formulas ⊥̇x and �̇x are not primitive.

2008/7/14 135

9 Modal Logic

married mike mary
haschild mike rob
owns mike x
BMW x
man mike
∀(BMW →̇ car)
∀(man →̇person)
∀(man →̇male)
∀(parent ≡̇person ∧̇♦haschild �̇)
∀(person →̇�haschild person)

Figure 9.2: A knowledge base

9.2 A Knowledge Base

Figure 9.2 shows an example of a knowledge base that demonstrates the use

of modal logic as a knowledge representation language. Every line is a modal

formula. The types of the variables are as follows:

• married, haschild, and owns are relation variables.

• BMW, man, car, person, parent are property variables.

• mike, mary, rob, x are individual variables.

The primitive formulas of the knowledge base provide facts about individuals.

The non-primitive formulas provide so-called terminological information about

predicates like person and haschild. If K is the knowledge base (i.e, a set of

modal formulas) and s is a modal formula, we say that K semantically entails s
if K,M � s (read K,M as K ∪M). For instance:

K,M � person mike

K,M � male mike

K,M � person rob

Intuitively, mary should be person as well, but logically, there is nothing in the

knowledge base that enforces this property. In fact:

K,M �� person mary

K,M �� ¬ person mary

Figure 9.3 lists all primitive formulas that are semantically entailed by the knowl-

edge base in Figure 9.2 in a graphical format we call a transition graph.

136 2008/7/14

9.3 Kripke Sets

mike
man

person
parent

mary

rob
person

x
BMW
car

married

owns

haschild

Figure 9.3: A set of primitive formulas represented as a transition graph

There are many computational services one can associate with a knowlege

base. For instance, one can use modal terms as a query language. Given a knowl-

ege base K and a modal term t, this services yields all names x such that K
semantically entails tx. Here are example queries:

1. person yields mike and rob.

2. car yields x.

3. ♦haschild�̇ yields mike.

4. ♦married person yields nothing.

Exercise 9.2.1 List all the primitive formulas given by the transition graph in

Figure 9.3.

9.3 Kripke Sets

A Kripke set is a set of primitive modal formulas.1 Finite Kripke sets can be

represented as transition graphs. The Kripke set in Figure 9.3 is tree-like. The

Kripke set {rxy, ryz, rzx} has a cyclic transition graph:

y

x

z

r

r

r

We will use Kripke sets as interpretations for modal formulas. Note that every

non-empty Kripke set contains at least one individual variable. To avoid prob-

lems with the empty Kripke set, we fix an individual variable x0 and call it the

1 For experts: Kripke sets can be seen as a syntactic variant of Kripke structures where the states
are individual variables. We can also see Kripke sets as Herbrand models for modal logic.

2008/7/14 137

9 Modal Logic

default variable. We define the carrier CA of a set of modal formulas A as fol-

lows: CA = {x0} if A is empty, and CA = {x ∈NA | x : I } if A is non-empty.

An interpretation I agrees with a Kripke set K if it is modal and satisfies the

following conditions:

1. II = CK
2. Ix = x for all x ∈ CK
3. Ipx = (px ∈ K) for all p : IB and all x ∈ CK
4. Irxy = (rxy ∈ K) for all r : IIB and all x,y ∈ CK
Note that for every Kripke set there are infinitely many interpretations that agree

with it. If an interpretation agrees with a Kripke set K, the interpretations of

property and relation variables are determined by K. Moreover, the interpreta-

tions of the invidual variables in CK is determined by K. As it comes to other

invidual variables, K only requires that they be interpreted as elements of CK.

It turns out that all interpretations that agree with a given Kripke set K also

agree on the interpretation of all modal formulas. We can thus understand a

Kripke set as a specialized interpretation for modal formulas. Given a Kripke

set K, we can define an evaluation function K̂ such that K̂s = Îs for all modal

formulas and all interpretations I that agree with K. Figure 9.4 defines K̂ by

recursion on the size of formulas. Note that K̂ is computable if K is finite. We

can say that finite Kripke sets are a computable semantics for modal formulas.

Proposition 9.3.1 If an interpretation I agrees with a Kripke set K, then Îs = K̂s
for all modal formulas s.

Proof By induction on the size of s. �

A Kripke set K satisfies a modal formula s if K̂s = 1. A Kripke set satisfies

a set of modal formulas if it satisfies every formula of the set. A Kripke model

of a formula [set of modal formulas] is a Kripke set that satisfies the formula

[set]. A formula [set of formulas] is modally satisfiable if it is satisfied by at

least one modal interpretation, and modally valid if it is satisfied by all modal

interpretations.

Proposition 9.3.2 Let s be a modal formula. Then:

1. If s is satisfied by a Kripke set, then s is modally satisfiable.

2. If s is modally valid, then s is satisfied by every Kripke set.

Proof Follows from Proposition 9.3.1 and the fact that for every Kripke set there

is an interpretation agreeing with it. �

138 2008/7/14

9.3 Kripke Sets

K̂(px) = (px ∈ K)
K̂(⊥̇x) = 0

K̂(�̇x) = 1

K̂((¬̇t)x) = ¬K̂(tx)
K̂((t1 ∧̇ t2)x) = (K̂(t1x)∧ K̂(t1x))
K̂((t1 ∨̇ t2)x) = (K̂(t1x)∨ K̂(t1x))
K̂((t1 →̇ t2)x) = (K̂(t1x) �⇒ K̂(t1x))

K̂((t1 ≡̇ t2)x) = (K̂(t1x) = K̂(t1x))

K̂(�rtx) = (∀y : rxy ∈ K �⇒ K̂(ty))

K̂(♦rtx) = (∃y : rxy ∈ K ∧ K̂(ty))
K̂(∀t) = (∀x ∈ CK : K̂(tx))

K̂(rxx) = (rxx ∈ K)

Figure 9.4: Definition of the evaluation function K̂ for a Kripke set K

Later we will show that every modally satisfiable modal formula is satisfied

by a finite Kripke set. The finiteness part of this important result is known as

finite model property.

Due to Proposition 9.3.2 we can use Kripke sets to prove that a modal for-

mula is modally satisfiable or not not modally valid. As an example, consider

the modal formula (�r(p ∨̇q) → �rp ∨̇�rq)x. Is it satisfied by every modal

interpretation? The Kripke set {rxy, py, rxz, qz}

y,p

x

z, q

r

r

shows that this is not the case since it doesn’t satisfy the formula.

Exercise 9.3.3 For each of the following formulas find a finite Kripke set satisfy-

ing it.

a) (�r(p ∨̇q) →̇�rp ∨̇�rq)x
b) ¬(�r(p ∨̇q) →̇�rp ∨̇�rq)x
c) ∀(♦rp ∧̇(p →̇♦rq))

2008/7/14 139

9 Modal Logic

Exercise 9.3.4 For each of the following formulas find a Kripke set that doesn’t

satisfy the formula. Your sets should employ only two individual variables. First

draw the sets as transition graphs and then list them explicity.

a) �r(p ∨̇q) = �rp ∨̇�rq
b) ♦r(p ∧̇q) = ♦rp ∧̇♦rq

Exercise 9.3.5 Which of the following formulas is modally valid? If the formula

is not valid, find a Kripke set that doesn’t satisfy it.

a) ∀ (♦r(p ∧̇q) →̇ ♦rp ∧̇♦rq)
b) ∀ (�r(p ∨̇q) →̇ �rp ∨̇�rq)
c) �r �̇ = �̇
d) ♦r ⊥̇ = �̇
e) ♦r ⊥̇ = ⊥̇
f) ♦r �̇ = �rp →̇♦rp

Exercise 9.3.6 (Herbrand Models) In his dissertation submitted in 1929,

Jacques Herbrand introduces syntactic models for first-order logic that are

now known as Herbrand models. Kripke sets are in fact Herbrand models

for modal logic. Herbrand models are interesting for first-order logic since a

first-order formula is satisfiable if and only if it is satisfied by a Herbrand model.

Herbrand models can be constructed with the tableau method.

a) A Herbrand model for propositional logic is a set of Boolean variables. Let H
be a set of Boolean variables. Define the evaluation function Ĥ that assigns

to every propositional formula a Boolean value. Hint: Follow the definition

of the evaluation function for Kripke sets and the grammar for propositional

formulas.

b) Explain how the tableau method can be used to construct finite Herbrand

models for satisfiable propositional formulas.

c) Find a Herbrand model for the propositional formula ¬x ∧ (x → y ∨ z).
d) A Herbrand model for PLN is a set of PLN-formulas of the form px1 . . . xn

where n ≥ 0. Let H be such a set. Define the evaluation function Ĥ that

assigns to every PLN-formula a Boolean value.

e) Find finite Herbrand models for the following PLN-formulas:

i) rxy ∧ qx ∧ (rxy → rxx)

ii) ∀y∃y. rxy

140 2008/7/14

9.4 Some Deducible Facts

p →̇q = ¬̇p ∨̇q
p ≡̇q = (p →̇q) ∧̇(q →̇p)
¬̇¬̇p = p

¬̇(p ∧̇q) = ¬̇p ∨̇ ¬̇q
¬̇(p ∨̇q) = ¬̇p ∧̇ ¬̇q
¬̇�rt = ♦r ¬̇t
¬̇♦rt = �r ¬̇t

�r(p ∧̇q) = �rp ∧̇�rq
♦r(p ∨̇q) = ♦rp ∨̇♦rq

p=q ≡ ∀(p≡̇q)
¬px ≡ (¬̇p)x

Figure 9.5: Some equations deducible from M

9.4 Some Deducible Facts

Figure 9.4 shows some interesting equations that are deducible from M.

Exercise 9.4.1 Find tableau proofs for the equations in Figure 9.4.

A modal term is propositional if it doesn’t contain � or ♦. If tx is a modal

formula such that t is a propositional modal term, then M � tx if and only if t
seen as a propositional formula is deducible. To turn a propositional modal term

into a propositional formula, do the following:

1. Replace the dotted modal connectives with their propositional counterparts.

2. Replace the property variables with Boolean variables.

Proposition 9.4.2 Let t be a propositional modal term and s be a propositional

formula that corresponds to t. Then M � ∀t iff � s.

Proof Let x : B. It suffices to show M � tx iff � s. By the first-order translation

(Proposition 9.1.1) we obtain a first-order formula u such that M � tx iff � u.

The formula u is like s except that the Boolean variables appear as formulas px.

Hence � u follows from � s by Sub. The other direction follows by Sub and β-

reduction. The substitution θ is chosen such that θp = λx.b for every property

variable p occurring in t and the Boolean variable b corresponding to p. �

2008/7/14 141

9 Modal Logic

Exercise 9.4.3 For each of the following formulas s, show M � s with a tableau

proof.

a) ♦r �̇ = �rp →̇♦rp
b) ¬̇�rt = ♦r ¬̇t
c) ∀(�r(p →̇q) →̇�rp →̇�rq)

9.5 Modal Completeness

We will prove a completeness result for formulas involving modal constants. The

result builds on the completeness result for PLN (Theorem 6.6.7). To show the

result, we need some notions and results that apply to simple type theory in

general.

9.5.1 Interderivability

Let S1, S2 be sequents. We write S1/S2 if the proof step ({S1}, S2) is derivable

in the basic proof system. Moreover, we write S1‖S2 and say that S1 and S2 are

interderivable if S1/S2 and S2/S1.

Proposition 9.5.1 Let S1/S2. Then:

1. If S1 is deducible, then S2 is deducible.

2. If S1 is valid, then S2 is valid.

Proof The first claim is obvious. The second claim holds since the basic proof

system is sound. �

Proposition 9.5.2 Here are some facts that we expressed before with proof rules.

The name Gen stands for generalization.

• Contra A �̇ s ‖ A,¬s �̇ ⊥
• Ded A �̇ s → t ‖ A, s �̇ t
• Gen A �̇ ∀x.s ‖ A �̇ s if x ∉NA

• Rep A, s �̇ ⊥ ‖ A, t �̇ ⊥ if A � s=t
• Rep A �̇ s ‖ A �̇ t if A � s=t

Exercise 9.5.3 Prove Proposition 9.5.2.

9.5.2 Theories

A theory is a pair (S, F) such that S is a finite set of formulas and F is a set of

formulas. We see S as the specification of the theory and F as the formulas of

the theory. Here are examples of theories:

142 2008/7/14

9.5 Modal Completeness

• Propositional logic. Here S = � and F is the set of all propositional formulas.

• First-order logic. Here S = � and F is the set of all first-order formulas.

• Modal logic. Here S = M and F is the set of all modal formulas.

A theory (S, F) is complete if S,A � ⊥ �⇒ S,A � ⊥ for every finite A ⊆ F . A

theory (S, F) is decidable if S,A � ⊥ is dedcidable for finite A ⊆ F . We have

shown that propositional logic is complete and decidable. It is well-known that

first-order logic is complete (Gödel 1929) and undecidable (Church 1936). We

will show that modal logic is complete and decidable.

For a theory (S, F), we define the equivalence closure of F under S as follows:

[F]S := { s | ∃t ∈ F : S � s≡t }

The equivalence closure [F]S consists of all formulas that under S are deduc-

tively equivalent to a formula in F .

Proposition 9.5.4 Let (S, F) be a complete theory. Then (S, [F]S) is complete.

Proof Let A = {s1, . . . , sn} ⊆ [F]S and S,A � ⊥. We show S,A � ⊥. Let

{t1, . . . , tn} ⊆ F such that S � si=ti for all i. Then S, t1, . . . , tn � ⊥ by Rep.

Hence S, t1, . . . , tn � ⊥ by completeness of (S, F). Thus S,A � ⊥ by Rep. �

9.5.3 Pure First-Order Logic

A formula is called a pure first-order formula if it can be obtained with the

following grammar:

s ::= px . . .x | ⊥ | � | ¬s | s → s | s ∧ s | s ∨ s | s ≡ s | ∀x.s | ∃x.s
where x : I and p : I . . . IB are variables

Compared to general first-order formulas, there are three restrictions:

1. Only two sorts B and I.

2. No functional names f : I . . . II.

3. No equations t1 =I t2.

The terms p(fx) and x = y where x,y : I, f : II, and p : IB are examples of

first-order formulas that are not pure. One can show that pure first-order logic is

still undecidable, even if further restricted to a single predicate variable p : IIB
(see [8]). We use PFO to denote the set of all pure first-order formulas.

Proposition 9.5.5 [PFO]M contains all modal formulas.

Proof The claim is a reformulation of Proposition 9.1.1. �

2008/7/14 143

9 Modal Logic

Recall the definition of PLN-formulas in § 6.6. Let PLN be the set of all

PLN-formulas. Clearly, every pure PLN-formula is a pure first-order formula.

However, the opposite is not true. For instance, PLN-formulas do not admit ⊥
and →. Moreover, the definition of PLN doesn’t admit all individual names as

local names. Theorem 6.6.7 states that a subset of PLN that further restricts the

use of individual names is complete. We will now show that this completeness

result extends to pure first-order logic. We assume that every individual name is

in P ∪V (this is consistent with the definition of PLN).

Proposition 9.5.6 PFO ⊆ [PLN]�

Exercise 9.5.7 Show that the closure [PLN]� contains ⊥ and is closed under →.

Moreover, show that ∀x.s is in the closure if s is in the closure and x : I is an

individual name (possibly a parameter).

Proposition 9.5.8 (Renaming) Let s be a formula and θ and θ′ be substitutions

such that θ′(θs) = s. Then �̇ θs ‖ �̇ s.

Proof Follows with Sub. �

The proposition gives us the possibility to rename the free individual names

of a formula to those that are allowed by the subset of PLN for wich Theo-

rem 6.6.7 establishes completeness. If the renaming is invertible, it doesn’t af-

fect deducibility and validity. We thus know that (�, PLN) is complete. The rest

is easy, since every pure first-order formula is in the closure [PLN]�. Hence the

completeness of pure first-order logic follows with Proposition 9.5.4.

Theorem 9.5.9 (Completeness) Pure first-order logic is complete.

9.5.4 Defined Constants

The equational definition of constants can be expressed with a substitution that

maps the constants to their defining terms. We will only consider non-recursive

definitions. Hence we can require that the defined constants do not occur in the

defining terms. This property is equivalent to a property called idempotence.

A substitution θ is idempotent if θx = θ(θx) for all names x. We use [θ] to

denote the set of all equations x=θx such that x is a name and θx ≠ x. We call

a substitution θ finite if [θ] is a finite set of equations. Convince yourself that

the equations in Figure 9.1 yield a finite and idempotent substitution θ such that

[θ] = M. This substitution eliminates the modal constants when it is applied.

Proposition 9.5.10 (Defined Constants) Let θ be finite and idempotent. Then

A, [θ] �̇ s ‖ θA �̇ θs.

144 2008/7/14

9.6 Modal Refutability

Proof The direction from left to right follows with Sub if � θ[θ]. This is the case

since θ[θ] contains only trivial equations u=u since θ is idempotent. The other

direction follows with Rep since [θ] � θt=t for all terms t. �

Lemma 9.5.11 Let (S, F) be complete and θ be a finite and idempotent substitu-

tion such that θS = S, θF ⊆ [F]S , and θ⊥ = ⊥. Then (S ∪ [θ], F) is complete.

Proof Let S, [θ],A � ⊥ and A ⊆ F . We show S, [θ],A � ⊥. Since θS = S and

θ⊥ = ⊥, we have S, θA � ⊥ by Proposition 9.5.10. Since θA ⊆ θF ⊆ [F]S and S
is complete for [F]S (Proposition 9.5.4), we have S, θA � ⊥. Since θS = S and

θ⊥ = ⊥, we have S, [θ],A � ⊥ by Proposition 9.5.10. �

9.5.5 The Main Result

The main result of this section says that we are complete for formulas that can

be translated into pure first-order logic with the equations defining the modal

constants.

Theorem 9.5.12 (Modal Completeness) (M, [PFO]M) is complete.

Proof Let θ be the finite and idempotent substitution such that M = [θ]. By

Proposition 9.5.4 it suffices to show that (M, PFO) is complete. Let s ∈ PFO. By

Lemma 9.5.11 it suffices to show that θs ∈ [PFO]M. By checking the types of

the modal constants one sees that θ can only replace ⊥̇ and �̇ in s. Moreover, ⊥̇
and �̇ can only occur as ⊥̇x and �̇x in s. Hence it suffices to show that (λx.⊥)x
and (λx.�)x are deductively equivalent to pure first-order formulas. This is

obvious. �

Corollary 9.5.13 Modal logic is complete (i.e., the theory consisting of M and the

set of modal formulas).

Proof Follows from Theorem 9.5.12 and Proposition 9.5.5. �

9.6 Modal Refutability

Let A be a finite set of modal formulas. We say that A is modally refutable if

M, A � ⊥.

Proposition 9.6.1 A finite set of modal formulas is modally unsatisfiable if and

only if it is modally refutable.

Proof Follows with soundness and modal completeness (Corollary 9.5.13). �

2008/7/14 145

9 Modal Logic

Many modal decision problems can be reduced to modal refutability. The next

proposition states some of them.

Proposition 9.6.2 (Reduction to Modal Refutability)

1. M, A �̇ tx ‖ A, (¬̇t)x,M �̇ ⊥
2. M, A �̇ ∀t ‖ A, (¬̇t)x,M �̇ ⊥ if x ∉NA∪N t

3. M, A �̇ t1=t2 ‖ A, ¬̇(t1≡̇t2)x,M �̇ ⊥ if x ∉NA∪N (t1≡̇t2)

Proof Follows with Proposition 9.5.2 and some of the deducible equations in

Figure 9.4. �

Note that the interderivabilities stated by Proposition 9.6.2 hold in general, that

is, A may contain non-modal formulas and t, t1, t2 may be non-modal terms of

type IB.

Later we will show that modal logic enjoys the finite model property: a finite

set of modal formulas is modally satisfiable if and only if it is satisfied by a

finite Kripke set. The next proposition states an interesting connection between

completeness and the finite model property.

Proposition 9.6.3 If modal logic has the finite model property, then modal

refutability is decidable.

Proof Let A range over finite sets of modal formulas. We know that M, A � ⊥
is semi-decidable (since � is). Hence it suffices to show that M, A �� ⊥ is semi-

decidable. By modal completeness it suffices to show that M, A �� ⊥ is semi-

decidable. This is the case since the finite model property holds and the finite

Kripke sets are recursively enumerable. �

Exercise 9.6.4 Reduce the following problems to modal refutability (analogous

to Proposition 9.6.2). Prove the correctness of your reductions.

a) M, A � ¬tx
b) M, A � ¬∀t
c) M, A � ∃t
d) M, A � t1≠t2 where t1, t2 : IB

e) M, A � ¬rxy
f) M, A � ∀x. t1x → t2x

9.7 A Tableau System for Modal Formulas

We define negation normal modal terms as follows:

t ::= p | ¬̇p | t ∧̇ t | t ∨̇ t | �rt | ♦rt

146 2008/7/14

9.7 A Tableau System for Modal Formulas

A modal formula is negation normal if every modal terms it contains is negation

normal.

Proposition 9.7.1 For every modal term s there is a negation normal modal

term t such that M � s=t.

Exercise 9.7.2 Give a procedure that yields for every modal term an equivalent

negation normal term. Write the procedure as a system of terminating equations.

A set A of modal formulas is locally consistent if there is no formula tx such

that both tx and (¬̇t)x are in A.

Proposition 9.7.3 A locally inconsistent set of modal formulas is modally unsat-

isfiable.

Our goal is a terminating tableau system that for a finite set A of modal for-

mulas either constructs a finite Kripke set satisfying A or shows that A is modally

refutable. We will only consider negation normal modal formulas.

We can see the tableau system as a recursive procedure that attempts to

construct a satisfying Kripke set for a set of modal formulas. The procedure

emulates the equations defining the evaluation function for Kripke sets (see Fig-

ure 9.4). The equations tell us that a formula holds if certain smaller formulas

derived from it hold. The procedure adds the derived formulas to the set (called

the branch in tableau speak). If this saturation process terminates with a locally

consistent set, then the primitive formulas of this set constitute a satisfying

Kripke set for the initial set.

The outlined plan leads to the tableau system in Figure 9.6. The A in the side

conditions is the set of all formulas on the branch. All rules but R♦ are obvious

from the equations of the evaluation function. For R♦, the two side conditions

need explanation. The side condition y ∉NA is needed for falsification sound-

ness (see below) and is closely related to the freshness condition of the Exists

rule in Figure 6.15. The second side condition of R♦ is needed so that the rule

cannot be applied repeatedly to the same ♦-formula.

9.7.1 Falsification Soundness

A tableau system is falsification sound if the existence of a closed tableau for a

set A implies that A is unsatisfiable. For the falsification soundness of the modal

tableau system we have to show two conditions:

1. If R¬ applies to A, then A is modally unsatisfiable.

2. If a rule applies to A and adds formulas and A is modally satisfiable, then we

can obtain a modal interpretation that satisfies A and the added formulas. In

the case of R∨ only one of the two alternatives must satisfy this requirement.

2008/7/14 147

9 Modal Logic

R¬
(¬̇p)x
�

px ∈ A R∧
(t1 ∧̇ t2)x
t1x, t2x

R∨
(t1 ∨̇ t2)x
t1x | t2x

R∀
∀t
tx

x ∈ CA

R�
�rtx

ty
rxy ∈ A R♦

♦rtx

rxy, ty
y ∉NA ∧ ¬∃z : rxz, tz ∈ A

Figure 9.6: The basic modal tableau system TM

A,px, (¬̇p)x � ⊥
A, t1x, t2x � ⊥
A, (t1 ∧̇ t2)x � ⊥

A, t1x � ⊥ A, t2x � ⊥
A, (t1 ∨̇ t2)x � ⊥

A, tx � ⊥
A,∀t � ⊥

A, ty � ⊥
A, rxy,�rtx � ⊥

A, rxy, ty � ⊥
A,♦rtx � ⊥ y ∉NA∪N (♦rtx)

Proviso: All proof steps assume M ⊆ A.

Figure 9.7: Proof steps for the modal tableau rules

Make sure you understand why the rules in Figure 9.6 satisfy the two conditions

for falsification soundness, and why the two conditions yield falsification sound-

ness.

9.7.2 Refutation Soundness

A set A of formulas is refutable if the sequent A �̇ ⊥ is deducible. A tableau

system is refutation sound if the existence of a closed tableau for a set A implies

that A is refutable. Note that a tableau system is falsification sound if it is

refutations sound. The best way to establish refutation soundness is to show

that the proof steps corresponding to the tableau rules are derivable. The proof

steps for the modal tableau rules are shown in Figure 9.7.

Proposition 9.7.4 The proof steps for the modal tableau rules are derivable.

Exercise 9.7.5 Show that the proof steps for ∨̇ and � are derivable.

Exercise 9.7.6 Extend the tableau rules to modal formulas that are not negation

normal. Give the corresponding proof steps.

148 2008/7/14

9.7 A Tableau System for Modal Formulas

Exercise 9.7.7 Refute the following sets with modal tableau proofs.

a) ♦r(q ∨̇ ¬̇q)x, �rpx, �r(¬̇p)x
b) �r(q ∧̇ ¬̇q)x, (♦r(¬̇p) ∨̇♦rp)x
c) (¬̇(♦r(q ∨̇ ¬̇q) ≡̇ �rp →̇♦rp))x

Exercise 9.7.8 Prove the validity of the following modal formulas by reduction

to modal refutability (Proposition 9.6.2) and modal tableaux.

a) ∀(�r(p ∧̇q) →̇�rp ∧̇�rq)
b) ∀(♦rp ∨̇♦rq →̇♦r(p ∨̇q))
c) ∀(♦r(p ∨̇q) →̇♦rp ∨̇♦rq)

9.7.3 Verification Soundness

Our tableau system is verification sound if every set of negation normal modal

formulas to which no tableau rule applies is modally satisfiable. We define a

class of sets that includes the sets just described. A set A of negation normal

modal formulas is evident if it satisfies the following conditions:

1. If (¬̇p)x ∈ A, then px ∉ A.

2. If (t1 ∧̇ t2)x ∈ A, then t1x ∈ A and t2x ∈ A.

3. If (t1 ∨̇ t2)x ∈ A, then t1x ∈ A or t2x ∈ A.

4. If ∀t ∈ A and x ∈ CA, then tx ∈ A.

5. If �rtx ∈ A and rxy ∈ A, then ty ∈ A.

6. If ♦rtx ∈ A, then there exists a y such that rxy ∈ A and ty ∈ A.

Proposition 9.7.9 Let A be a set of negation normal modal formulas to which no

rule of TM applies. Then A is evident.

Proof Straightforward. Check the definition and check the tableau rules. �

Proposition 9.7.10 (Model Existence) Let A be evident. Then the largest Kripke

set K ⊆ A satisfies A.

Proof Let K be the largest Kripke set such that K ⊆ A. We show by induction

on the size of formulas that K satisfies every formula s ∈ A. Let s ∈ A. Case

analysis.

If s is a primitive formula, the claim is trivial since s ∈ K.

If s = ¬t, then t is a primitive formula and t ∉ K. Hence K̂t = 0 and K̂s = 1.

If s = (t1 ∧̇ t2)x, then t1x and t2x are in A. By induction K̂(t1x) = K̂(t2x) = 1.

Hence K̂s = 1.

2008/7/14 149

9 Modal Logic

If s = ♦rtx, then there exists a y such that rxy and ty are in A. By induction

we have K̂(ty) = 1. Since rxy ∈ K, we have K̂s = 1.

The remaing cases are similiar. �

Exercise 9.7.11 Use the tableau rules to construct an evident set that contains

the modal formula ((♦rp ∧̇♦rq) ∧̇�r(¬̇p ∨̇ ¬̇q))x. Explain why the evident set

gives you a Kripke set that satisfies the formula.

9.8 Termination

A clause is a finite set of negation normal modal terms. A clause is ♦-free if it

doesn’t contain the modal constant ♦, and ∀-free if it doesn’t contain the logical

constant ∀. We write A→ C if A and C are clauses and C can be obtained from A
by a basic modal tableau rule different from R¬. We call a pair (A, C) such that

A → C an expansion step.

Example 9.8.1 Here is diverging TM-derivation starting from a satisfiable clause.

∀(♦rp) initial clause

♦rpx0 R∀

rx0y, py R♦

♦rpy R∀

ryz, pz R♦

. . .

The initial clause is satisfied by the Kripke set {rxx,px}. TM fails to construct

this set since it cannot introduce cyclic transitions rxx. �

The basic modal tableau system TM terminates for ∀-free clauses. Hence it

constitutes a decision procedure for the modal satisfiability of such clauses. If

we constrain R♦ with a further side condition, we obtain a system that termi-

nates for all clauses A. However, we have to rework the proof of verification

soundness since clauses to which no rule of the constrained system applies may

fail to be evident. It turns out that such clauses can always be completed to

evident clauses by adding formulas of the form rxy (so-called safe transitions).

The constrained tableau system thus constitutes a decision procedure for the

satisfiability of modal formulas. The termination of the constrained system also

implies that the basic system can refute every unsatisfiable set of modal formu-

las.

We prepare the termination proofs by defining the necessary terminology. A

term t occurs in A if it is a subterm of a formula in A. Let SubA be the set of all

150 2008/7/14

9.8 Termination

terms that occur in A, and ModA be the set of all modal terms that occur in A.

By definition, ModA ⊆ SubA. A crucial observation for the termination proofs is

the fact that the tableau rules don’t add new modal terms.

Proposition 9.8.2 If A → C , then ModA = ModC .

Exercise 9.8.3 Find A, C such that A→ C and SubC �⊆ SubA.

The height of a clause A is the size of the largest term that occurs in A. If

A → C , then A and C have the same height. In other words, expansion preserves

the height of clauses.

The breadth of a clause A is the number of elements of A (as a set). If A→ C ,

then the breadth of C is larger than the breadth of A. In other words, expansion

increases the breadth of clauses.

The vocabulary of a clause A is the set that contains the default variable x0

and all names that occur in A. If A → C , then the vocabulary of A is a subset of

the vocabulary of C . All rules butR♦ leave the vocabulary of a clause unchanged,

and R♦ adds a new individual variable.

The stock of a clause A consists of all negation normal modal formulas whose

size is at most the height of A and that contain only names that are in the vo-

cabulary of A. The stock of a clause is finite since the vocabulary of a clause is

finite. All rules but R♦ preserve the stock of a clause.

The slack of a clause A is the number of formulas in the stock of A that are

not in A. Every rule but R♦ decreases the slack of a clause. Hence we know that

an infinite derivation must employ R♦.

Proposition 9.8.4 TM terminates for ♦-free clauses.

9.8.1 Termination for ∀-Free Clauses

For this result we look carefully at the new individual variables introduced byR♦.

We call a formula ♦rtx expanded in a clause A if there is a y sucht that

rxy, ty ∈ A. Note that R♦ can only be applied to unexpanded ♦-formulas,

and that R♦ always expands the ♦-formula it is applied to.

Let’s write x ≺ y if y was introduced by R♦ to expand some formula ♦rtx.

If we draw the dependency relation x ≺ y of a clause as a graph, we obtain a

forest where the roots are initial names (i.e., names not introduced by R♦) and

all other nodes are names introduced by R♦. We obtain termination by showing

that the depth and the degree (maximal number of successors of a node) of the

dependency graph of a derived clause are bounded by the initial clause. We call

a clause A admissible if it satisfies the following two conditions:

2008/7/14 151

9 Modal Logic

1. If x ≺ y and ty ∈ A, then there is some formula sx ∈ A such that the term s
is larger than the term t.

2. If x ∈NA, then |{y ∈NA | x ≺ y }| ≤
|{♦rt | ♦rtx ∈ A and ♦rtx expanded in A }| ≤ |ModA|

Proposition 9.8.5 Every initial clause is admissible. Morover, if A is admissible

and A→ C , then C is admissible.

Proposition 9.8.6 Let A be an initial clause, A →∗ C , and ≺ be the dependency

relation of C . Then:

1. The depth of ≺ is bounded by the height of A.

2. The degree of ≺ is bounded by |ModA|.

Proof Follows by Proposition 9.8.5, Proposition 9.8.2, and the definition of ad-

missibility. �

Proposition 9.8.7 TM terminates for ∀-free clauses.

Proof By Proposition 9.8.6 we know that R♦ can only be applied finitely often.

Once R♦ is not applied anymore, the remaining rules all decrease the slack of

the clause and hence must terminate. �

Note that our termination proof relies on an informal notion of dependency

relation. The dependency relation of a clause can be made formal. For this, we

fix the set of initial variables and then obtain the the dependency relation of A
as { (x,y) | ∃r : rxy ∈ A and y not initial }.

9.8.2 Termination with Rp
♦

WithR♦ the dependency relation of a derived clause will always be acyclic. Hence

TM will diverge on satisfiable clauses that cannot be satisfied by a finite and acylic

Kripke set. Example 9.8.1 tells us that such clauses exist. We will now consider

a restricted version Rp
♦ of R♦ such that the tableau system that uses Rp

♦ instead

of R♦ terminates. The restricted sytem may terminate with locally consistent

clauses that are not evident. As it turns out, such clauses can always be com-

pleted to evident clauses by adding formulas of the form rxy . The additional

formulas introduce the cycles needed to obtain a finite Kripke model.

A pattern is a set {♦rt,�rt1, . . . ,�rtn} of modal terms such that n ≥ 0.

A pattern {♦rt,�rt1, . . . ,�rtn} is realized in A if there are names x, y such

that the formulas rxy , ty , and �rt1x, . . . ,�rtnx are in A. A formula ♦rtx is

pattern-expanded in a clause A if the pattern {♦rt} ∪ {�ru | �rux ∈ A } is

realized in A.

152 2008/7/14

9.8 Termination

Proposition 9.8.8 If a diamond formula is expanded in A, then it is pattern-

expanded in A.

We can now define the constrained tableau rule for diamond formulas:

Rp
♦

♦rtx

rxy, ty
y ∉NA and ♦rtx not pattern-expanded in A

We denote the resulting tableau system with T p
M .

Proposition 9.8.9 T p
M terminates and is refutation sound.

Proof Since ModA is invariant and finite, only finitely many patterns can be

obtained with the modal terms of A. Once a pattern is realized, it stays real-

ized. Every application of Rp
♦ realizes a pattern that was not realized before.

Hence Rp
♦ can only be applied finitely often. Since the remaining rules decrease

the slack, T p
M terminates.

Since all proof steps licensed by Rp
♦ are also licensed by the more permis-

sive R♦, we know that every T p
M -tableau is also a TM-tableau. Hence T p

M is refu-

tation sound. �

Example 9.8.10 Here is terminating T p
M -derivation starting from the satisfiable

clause of Example 9.8.1.

∀(♦rp) initial clause

♦rpx0 R∀

rx0y, py Rp
♦

♦rpy R∀

Rp
♦ does not apply to ♦rpy since it is pattern-expanded. Note that the obtained

clause is not evident. �

It remains to show that T p
M is verification sound. We call formulas of the form

rxy transitions. A transition rxy is safe in A if rxy ∈ A or ∀t : �rtx ∈ A �⇒
ty ∈ A. A formula ♦rtx is quasi-expanded in a clause A if there exist y such

that rxy is safe in A and ty ∈ A. A set A of negation normal modal formulas is

quasi-evident if it satisfies all conditions for evidence except that for diamond

formulas s ∈ A it suffices that s is quasi-expanded in A (for evidence expansion

is required). Note that the final clause of Example 9.8.10 is quasi-evident.

Proposition 9.8.11 Let A be a set of negation normal modal formulas to which

no rule of T p
M applies. Then A is quasi-evident.

2008/7/14 153

9 Modal Logic

It remains to show that every quasi-evident set is satisfied by a finite Kripke set.

Proposition 9.8.12

1. If a diamond formula is expanded in A, it is also quasi-expanded in A.

2. If A is evident, A is also quasi-evident.

3. If A is quasi-evident and rxy is safe in A, then A∪ {rxy} is quasi-evident.

Lemma 9.8.13 Let A be quasi-evident and R be the set of all transitions s such

that s is safe in A and N s ⊆NA. Then A∪ R is evident.

Proof Since A is quasi-evident, A satisfies all evidence conditions but possi-

bly (6). Adding the safe transitions does not affect the evidence conditions (1)

to (4). Moreover, since the added transitions are safe, evidence condition (5) re-

mains to hold. It remains to show that every diamond formula in A is expanded

in A∪ R.

Let ♦rtx ∈ A. Since ♦rtx is quasi-expanded in A, there is a transition rxy
such that rxy is safe in A and ty ∈ A. Thus rxy ∈ R. Hence ♦rtx is expanded

in A. �

Example 9.8.14 A = {∀(♦rp), ♦rpx, rxy, py, ♦rpy} is a quasi-evident

clause. Since A contains no box formulas, rxx, rxy , ryy , and ryx are all

safe in A. Adding ryy to A yields an evident clause. �

Theorem 9.8.15 (Model Existence) Let A be a quasi-evident clause. Then there

exists a finite Kripke set that satisfies A.

Proof By Lemma 9.8.13 and Proposition 9.7.10. The finiteness of the Kripke set

follows from the finiteness of A since there are only finitely many transitions s
such that N s ⊆NA. �

Corollary 9.8.16 T p
M is verification sound.

Proof Theorem 9.8.15 and Proposition 9.8.11. �

Theorem 9.8.17 (Decidability) It is decidable whether a finite set of modal for-

mulas is modally satisfiable.

Proof First we obtain an equivalent clause A by translating to negation normal

form (Proposition 9.7.1). Now we apply T p
M to A. The claim follows since T p

M

is terminating, refutation sound, and verification sound (Proposition 9.8.9 and

Corollary 9.8.16). �

154 2008/7/14

9.9 Remarks

Theorem 9.8.18 (Finite Model Property) A finite set of modal formulas is

modally satisfiable if and only if it is satisfied by a finite Kripke set.

Proof First we obtain an equivalent clause A by translating to negation normal

form (Proposition 9.7.1). Now we apply T p
M to A. The set is modally satisfiable if

and only T p
M yields a quasi-evident clause C such that A ⊆ C (follows by Propo-

sition 9.8.9 and Proposition 9.8.11). Now the claim follows by Theorem 9.8.15. �

9.9 Remarks

To know more about modal logic, start with [6] and [24].

2008/7/14 155

9 Modal Logic

156 2008/7/14

Tautologies

Boolean Connectives

x ∧ (y ∧ z) = (x ∧y)∧ z associativity

x ∨ (y ∨ z) = (x ∨y)∨ z
x ∧y = y ∧ x commutativity

x ∨y = y ∨ x
x ∧ x = x idempotence

x ∨ x = x
x ∧ (y ∨ z) = (x ∧y)∨ (x ∧ z) distributivity

x ∨ (y ∧ z) = (x ∨y)∧ (x ∨ z)
x ∧ (x ∨y) = x absorption

x ∨ (x ∧y) = x
x ∧� = x identity

x ∨⊥ = x
x ∧⊥ = ⊥ dominance

x ∨� = �
x ∧¬x = ⊥ complement

x ∨¬x = �
¬(x ∧y) = ¬x ∨¬y de Morgan

¬(x ∨y) = ¬x ∧¬y
¬� = ⊥
¬⊥ = �
¬¬x = x double negation

(x ∨y) ∧ (¬x ∨ z) = (x ∨y)∧ (¬x ∨ z)∧ (y ∨ z) resolution

(x ∧y) ∨ (¬x ∧ z) = (x ∧y)∨ (¬x ∧ z)∨ (y ∧ z)

Implication

Identity

157

Tautologies

158 2008/7/14

Bibliography

[1] P. B. Andrews. An Introduction to Mathematical Logic and Type Theory: To

Truth Through Proof, volume 27 of Applied Logic Series. Kluwer Academic

Publishers, second edition, 2002.

[2] Brian Aydemir, Arthur Charguéraud, Benjamin C. Pierce, Randy Pollack, and

Stephanie Weirich. Engineering formal metatheory. In POPL ’08: Proceed-

ings of the 35th annual ACM SIGPLAN-SIGACT symposium on Principles of

programming languages, pages 3–15. ACM, 2008.

[3] F. Baader and T. Nipkow. Term Rewriting and All That. Cambridge Univer-

sity Press, 1998.

[4] Franz Baader, Diego Calvanese, Deborah L. McGuinness, Daniele Nardi, and

Peter F. Patel-Schneider, editors. The Description Logic Handbook: Theory,

Implementation, and Applications. Cambridge University Press, 2007.

[5] Henk P. Barendregt. The Lambda Calculus: Its Syntax and Semantics, volume

103 of Studies in Logic and the Foundations of Mathematics. North-Holland,

2nd revised edition, 1984.

[6] Patrick Blackburn, Maarten de Rijke, and Yde Venema. Modal Logic. Cam-

bridge University Press, 2001.

[7] George Boole. An Investigation of the Laws of Thought. Walton, London,

1847.

[8] Egon Börger, Erich Grädel, and Yuri Gurevich. The Classical Decision Prob-

lem. Springer, 1997.

[9] Alonzo Church. A set of postulates for the foundation of logic. Annals of

Mathematics, 32:346–366, 1932.

[10] Alonzo Church. A formulation of the simple theory of types. J. Symb. Log.,

5(1):56–68, 1940.

[11] Alonzo Church. The Calculi of Lambda-Conversion. Princeton University

Press, 1941.

159

Bibliography

[12] Nicolas G. de Bruijn. Lambda-calculus notation with nameless dummies: a

tool for automatic formula manipulation with application to the Church-

Rosser theorem. Indag. Math., 34(5):381–392, 1972.

[13] Gottlob Frege. Begriffsschrift, eine der arithmetischen nachgebildete Formel-

sprache des reinen Denkens. Verlag von Luois Nebert, Halle, 1879. Trans-

lated in [40], pp. 1–82.

[14] Gottlob Frege. Grundgesetze der Arithmetik begriffsschriftlich abgeleitet.

Verlag Hermann Pohle, Jena, 1893. Translated in [40].

[15] H. Friedman. Equality between functionals. In R. Parikh, editor, Proceedings

of the Logic Colloquium 72-73, volume 453 of Lecture Notes in Mathematics,

pages 22–37. Springer, 1975.

[16] Gerhard Gentzen. Untersuchungen über das natürliche Schließen I, II. Math-

ematische Zeitschrift, 39:176–210, 405–431, 1935.

[17] Jean-Yves Girard, Paul Taylor, and Yves Lafont. Proofs and types. Cambridge

University Press, 1989.

[18] Kurt Gödel. Die Vollständigkeit der Axiome des logischen Functio-

nenkalküls. Monatshefte für Mathematik und Physik, 37:349–360, 1930.

Translated in [40], pp. 102-123.

[19] John Harrison. HOL Light tutorial (for version 2.20).

http://www.cl.cam.ac.uk/~jrh13/hol-light/tutorial_220.pdf, 2006.

[20] L. Henkin. Completeness in the theory of types. Journal of Symbolic Logic,

15(2):81–91, June 1950.

[21] L. Henkin. A theory of propositional types. Fundamenta Mathematicae,

52:323–344, 1963.

[22] J. R. Hindley. Basic Simple Type Theory, volume 42 of Cambridge Tracts in

Theoretical Computer Science. Cambridge University Press, 1997.

[23] Michael Huth and Mark Ryan. Logic in Computer Science. Cambridge, second

edition, 2004.

[24] Mark Kaminski and Gert Smolka. Terminating tableau systems for

modal logic with equality. Technical report, Saarland University, 2008.

http://www.ps.uni-sb.de/Papers/abstracts/KaminskiSmolka08equality.pdf.

[25] Jean-Louis Krivine. Introduction to Axiomatic Set Theory. Reidel, Dordrecht,

Holland, 1971.

160 2008/7/14

http://www.cl.cam.ac.uk/~jrh13/hol-light/tutorial_220.pdf
http://www.ps.uni-sb.de/Papers/abstracts/KaminskiSmolka08equality.pdf

Bibliography

[26] Azriel Levy. Basic Set Theory. Springer, Berlin - New York, 1979.

[27] Daniel R. Licata, Noam Zeilberger, and Robert Harper. Focusing on binding

and computation. In LICS. IEEE, 2008.

[28] J. C. Mitchell. Foundations for Programming Languages. Foundations of

Computing. The MIT Press, 1996.

[29] T. Nipkow, L. C. Paulson, and M. Wenzel. Isabelle/HOL — A Proof Assistant

for Higher-Order Logic, volume 2283 of LNCS. Springer, 2002.

[30] G. Peano. Arithmetices principia, nova methodo exposita. Turin, 1889.

Translated in [40], pp. 83–97.

[31] B. C. Pierce. Types and Programming Languages. The MIT Press, 2002.

[32] G. D. Plotkin. Lambda-definability in the full type hierarchy. In J. R. Hind-

ley and J. P. Seldin, editors, To H. B. Curry: Essays on Combinatory Logic,

Lambda Calculus and Formalism, pages 365–373. Academic Press, 1980.

[33] Randal E. Bryant. Graph-Based Algorithms for Boolean Function Manipula-

tion. IEEE Transactions on Computers, C-35(8):677–691, August 1986.

[34] Bertrand Russell. Mathematical logic as based on the theory of types. Amer-

ican Journal of Mathematics, 30:222–262, 1908.

[35] Moses Schönfinkel. Über die Bausteine der Mathematischen Logik. Mathe-

matische Annalen, 92:305–316, 1924.

[36] Allen Stoughton. Substitution revisited. Theoretical Computer Science,

59:317–325, 1988. http://people.cis.ksu.edu/~stough/research/subst.ps.

[37] W. Tait. Intensional interpretations of functionals of finite type I. Journal of

Symbolic Logic, 32(2):198–212, 1967.

[38] A.S. Troelstra and H. Schwichtenberg. Basic Proof Theory. Cambridge Uni-

versity Press, second edition, 2000.

[39] Christian Urban, Stefan Berghofer, and Michael Norrish. Barendregt’s vari-

able convention in rule inductions. In CADE, volume 4603 of Lecture Notes

in Computer Science, pages 35–50. Springer, 2007.

[40] J. van Heijenoort, editor. From Frege to Gödel: A Source Book in Mathemati-

cal Logic, 1879–1931. Source Books in the History of the Sciences. Harvard

University Press, 2002.

2008/7/14 161

http://people.cis.ksu.edu/~stough/research/subst.ps

Bibliography

[41] Edward N. Zalta, editor. Stanford Encyclopedia of Philosophy. Metaphysics

Research Lab, CSLI, Stanford University, 2008. http://plato.stanford.edu/.

162 2008/7/14

http://plato.stanford.edu/

	Introduction
	Structure of Mathematical Statements
	Functions and Lambda Notation
	Boolean Operations
	Operator Precedence
	Terms
	Locally Nameless Term Representation
	Formulas, Identities, and Overloading
	Quantifiers
	Sets as Functions
	Choice Functions
	Some Logical Laws
	Remarks

	Terms and Types
	Untyped Terms
	Contexts and Subterms
	Substitution
	Alpha Equivalence
	Confluence and Termination
	Beta and Eta Reduction
	Typed Terms
	Remarks

	Interpretation and Specification
	Interpretations
	Semantic Equivalence
	Formulas and Models
	Specification of the Natural Numbers

	Formal Proofs
	Abstract Proof Systems
	Deducible Sequents
	Derived Rules for Turnstile and Implication
	Derived Rules for Identities
	BCA and Tautologies
	Natural Deduction
	Predicate Logic and Completeness
	Natural Language Proofs and Natural Deduction Proofs
	More Derivations
	Simplifying Lam and Sub
	Remarks
	Bonus: Equational Deduction

	Tableau Proofs
	An Example: Peirce's Law
	Refutations
	Tableaux
	Refutation Rules for Propositional Logic
	Quantifiers
	Termination and Completeness with Restrictions
	Cantor's Theorem
	Russell's Law/Turing's Law
	More about the Lambda rule

	Equality
	Excluded Middle as a Rule
	Examples
	Expressing Universal Quantification in terms of Existential
	Expressing Equality using Higher-Order Quantifiers
	Solving Easy Equations
	Expressing Conjunction with and
	Expressing Conjunction with Higher-Order Quantification
	Kaminski Equation
	Choice

	A Taste of Set Theory
	Decision Trees
	Boolean Functions
	Decision Trees and Prime Trees
	Existence of Prime Trees
	Example: Diet Rules
	Uniqueness of Prime Trees
	Properties of Prime Trees
	Prime Tree Algorithms
	BDDs
	Polynomial Runtime through Memorization
	Remarks

	Modal Logic
	Modal Terms
	A Knowledge Base
	Kripke Sets
	Some Deducible Facts
	Modal Completeness
	Interderivability
	Theories
	Pure First-Order Logic
	Defined Constants
	The Main Result

	Modal Refutability
	A Tableau System for Modal Formulas
	Falsification Soundness
	Refutation Soundness
	Verification Soundness

	Termination
	Termination for -Free Clauses
	Termination with Rp

	Remarks

	Tautologies
	Bibliography

