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2 Structure of Mathematical Statements

In this chapter we outline a language for expressing mathematical statements. It

employs functions as it main means of expression. Of particular importance are

higher-order functions taking functions as arguments. The language has much

in common with functional programming languages such as ML and Haskell. It

is formal in the sense that it can be realized on a computer. We distinguish

between the notational, syntactic and semantic level of the language.

2.1 Functions and Lambda Notation

A function is something that takes an argument and yields a result. We capture

this idea by defining a function f as a set of pairs, where (x,y) ∈ f means that

f for the argument x yields the result y . Given this definition, the empty set is

the unique function that for no argument yields a result. Let us go through the

exact definitions we will use.

A binary relation is a set of pairs. If R is a binary relation, we define the

domain and range of R as follows:

DomR := {x | ∃y : (x,y) ∈ R }
RanR := {y | ∃x : (x,y) ∈ R }

A function is a binary relation f such that for every x ∈ Domf there exists

exactly one y ∈ Ranf such that (x,y) ∈ f . Given two sets X and Y , a function

X → Y is a function f such that Domf = X and Ranf ⊆ Y . We use X → Y to

denote the set of all functions X → Y . If f ∈ X → Y and x ∈ X, we write fx for

the unique y such that (x,y) ∈ f . We write fx + 5 for (fx) + 5.

It is often convenient to describe functions with the lambda notation. Here is

an example:

λx∈Z. x2

This notation describes the function Z → Z that squares its argument (i.e.,

yields x2 for x). The following equation holds:

(λx∈Z. x2) = { (x, x2) | x ∈ Z }

3



2 Structure of Mathematical Statements

The equation shows the analogy between the lambda notation and the more com-

mon set notation. In both notations x appears as a bound variable. The equa-

tion also demonstrates another important point: One must distinguish between

an object and its description. One and the same object can have many differ-

ent descriptions. The lambda notation is due to the American logician Alonzo

Church [18].

According to our definition, functions take a single argument. To represent

operations with more than one argument (i.e., addition of two numbers), one of-

ten uses functions that are applied to tuples (x1, . . . , xn) that list the arguments

x1, . . . , xn for the operation. We call such functions cartesian and speak of the

cartesian representation of an operation. The cartesian function representing

addition of integers has the type Z × Z → Z. It takes a pair (x,y) as single

argument and returns the number x +y .

Functions that return functions as results are called cascaded. Lambda no-

tation makes it easy to describe cascaded functions. For example, consider the

definition

plus := λx∈Z. λy∈Z. x +y

which binds the name plus to a function of type Z → (Z → Z). When we apply

plus to an argument a, we obtain a function Z → Z. When we apply this function

to an argument b, we get a+ b as result. With symbols:

(plusa)b = ((λx∈Z. λy∈Z. x +y)a)b = (λy∈Z. a+y)b = a+ b

We say that plus is a cascaded representation of the addition operation for in-

tegers. Cascaded representations are often called Curried representations, after

the logician Haskell Curry. The idea goes back to Frege [27] and was fully de-

veloped in a paper by Moses Schönfinkel [58] on the primitives of mathemati-

cal language. From a logical point of view the cascaded representation has the

advantage that it doesn’t require tuples. Following common practice, we omit

parentheses as follows:

fxy � (fx)y

X → Y → Z � X → (Y → Z)

Using this convenience, we can write plus 3 7 = 10 and plus ∈ Z → Z→ Z.

Exercise 2.1.1 Describe a function f ∈ Z → {0} both with lambda notation and

set notation. How many functions Z→ {0} are there?

Exercise 2.1.2 Which of the following statements are valid?

a) If X ⊆ X′, then (X → Y) ⊆ (X′ → Y).

4 2009/8/2



2.2 Boolean Operations

b) If X ⊆ X′, then (X′ → Y) ⊆ (X → Y).

c) If Y ⊆ Y ′, then (X → Y) ⊆ (X → Y ′).

d) If Y ⊆ Y ′, then (X → Y ′) ⊆ (X → Y).

2.2 Boolean Operations

We use the numbers 0 and 1 as truth values, where 0 may be thought of as

“false” and 1 as “true”. In programming languages, truth values are commonly

called Boolean values. We define the set

B := {0,1}

As in programming languages, we adopt the convention that expressions like

3 ≤ x yield a truth value. This explains the following equations:

(3 < 7) = 1

(7 ≤ 3) = 0

(3 = 7) = 0

The following equations define well-known Boolean operations:

¬x = 1− x Negation

(x ∧y) = min{x,y} Conjunction

(x ∨y) = max{x,y} Disjunction

(x → y) = (¬x ∨ y) Implication

(x ≡ y) = (x = y) Equivalence

We represent Boolean operations as functions. Negation is a function B → B and

the binary operations are functions B → B → B. We use the symbols ¬, ∧, ∨, →,

≡ as names for these functions.

Note that the definition of negation, conjunction, and disjunction does exploit

that truth values are numbers. Here are alternative definitions not exploiting this

fact:

¬x = if x=1 then 0 else 1 Negation

(x ∧y) = if x=1 then y else 0 Conjunction

(x ∨y) = if x=1 then 1 else y Disjunction

George Boole [12] was an English logician who studied the algebraic prop-

erties of negation, conjunction, and disjunction. His system is now known as

2009/8/2 5



2 Structure of Mathematical Statements

Boolean algebra and is acknowledged as the first abstract algebraic system stud-

ied. Boolean algebra does not commit to just two truth values 0 and 1. Working

with just two truth values is common in programming languages and computer

hardware. Two truth values will also be perfect for the logical systems we are

going to consider. But there is research on many-valued logic.

Exercise 2.2.1 Consider the values

0,1 ∈ B
¬ ∈ B → B

∧,∨,→,≡ ∈ B → B → B

With 0 and → one can express 1 as follows: 1 = (0 → 0).

a) Express ¬, ∧, ∨, and ≡ with 0 and →.

b) Express 0, ∧, and → with 1, ¬, and ∨.

2.3 Operator Precedence

In the following an operator will be a symbol for a binary or a unary operation.

There are established conventions that make it possible to write operator appli-

cations without parentheses. For example:

3·x +y � (3 · x)+y

The symbols + and · are said to be infix operators, and the operator · is said to

take its arguments before the operator +. We assume the following precedence

hierarchy for some commonly used operators:

λ lambda

≡ equivalence

→ implication

∨ disjunction

∧ conjunction

¬ negation

= < ≤ > ≥ comparisons

+ − addition, substraction

· multiplication

ordinary application

Symbols appearing lower in the hierarchy take their arguments before symbols

appearing higher in the hierarchy. Note that λ takes its body last and that ordi-

6 2009/8/2



2.4 Terms

nary application (e.g., fx) takes its arguments first. Here are examples of nota-

tions that omit parentheses according to the precedence hierarchy:

x ∨ x ∧y ≡ x � (x ∨ (x ∧y)) ≡ x
¬x = y � ¬(x = y)
¬x ≡ y � (¬x) ≡ y

¬¬x = y ≡ y = x � (¬(¬(x = y))) ≡ (y = x)
3 · fx + 7 � (3 · (fx)) + 7

λx∈X. fxy + 7 � λx∈X. (((fx)y) + 7)

We arrange that all infix operators (but ordinary application) group to the right.

For instance,

x ∧ y ∧ z � x ∧ (y ∧ z)
x → y → z � x → (y → z)

As already stated, ordinary application groups to the left:

fxy � (fx)y

The operator → is used both for implication and function types (see § 2.1), and

both uses group to the right.

We write s ≠ t and s �≡ t as abbreviations for ¬(s = t) and ¬(s ≡ t).

2.4 Terms

We distinguish between notation and syntax. For instance, the notations

x ·y + z and (x · y) + z are different but both describe the the same syntac-

tic object. We call the syntactic objects described by notations terms. In the

following, we will draw terms as trees. For instance, the notation x∧y describes

the term

•
•

∧ x

y

and the notation x ∧y ∨ z describes the term

•
•

∨ •
•

∧ x

y

z

2009/8/2 7



2 Structure of Mathematical Statements

The inner nodes • of the trees represent function applications. The leaves of the

tree are marked with names. Given values for the names appearing in a term,

one can evaluate the term by performing the applications. Of course, the values

involved must have the right types. The value appearing at the left-hand side of

an application must be a function that is defined on the value appearing at the

right-hand side of the application. Binary applications suffice since operations

taking more than one argument are modelled as cascaded functions.

The λ-notation decribes special terms called abstractions or λ-terms. For

instance, the notation λx∈N. x + y decribes the following λ-term:

λx∈N
•

•
+ x

y

The name x acts as argument name. The argument name of a λ-term makes it

possible to refer in the body of the λ-term to the argument of the function the

λ-term decribes.

We distinguish between three levels: the notational level, the syntactic level,

and the semantic level. For instance, λx∈N. 2·x is first of all a notation. This

notation describes a certain λ-term, which is a syntactic object. And the λ-term

decribes a function, which is a semantic object. Terms abstract from the details

of notations. For this reason, there are usually many different notations for the

same term. Operator precedence is an issue that belongs to the notational level.

Since terms are tree-like objects, there is no need for operator precedence at the

syntactic level.

A few words about how we say things. When we say the term λx∈N. 2·x,

we mean the term described by the notation λx∈N. 2·x. And when we say the

function λx∈N. 2·x, we mean the function described by the term described by

the notation λx∈N. 2·x.

Given a semantic object, there are usually many different terms that desribe

it. For instance, the terms 3 and 5 − 2 both describe the number 3. When we

want to describe a semantic object, we can choose a term for the object and then

a notation for the term.

2.5 Locally Nameless Term Representation

λ-terms introduce argument names, which are also called local names. It is

common to speak of argument variables or local variables. Argument names

make it possible to refer in the body of a λ-term to the argument of the function

the λ-term decribes. As an alternative to argument names one can use numeric

8 2009/8/2



2.6 Formulas, Identity Predicates, and Overloading

argument references, which yield a locally nameless term representation. The

locally nameless representation of the term λx∈N. x +y looks as follows:

λN

•
•

+ 〈0〉
y

The idea behind the locally nameless representation becomes clearer, if we look

at the tree representing the term described by the notation λx∈X. λy∈Y . fyx:

λX

λY

•
•

f 〈0〉
〈1〉

An argument reference 〈n〉 refers to a λ-node on the unique path to the root.

The number n says how many λ-nodes are to be skipped before the right λ-node

is reached. For instance, 〈0〉 refers to the first λ-node encountered on the path

to the root, and 〈1〉 to the second.

The locally nameless term representation is useful since it represents the

binding stucture of a term more explicitly than the name-based term represen-

tation. Note that we consider the terms λx∈X.x and λy∈X.y to be different

although they have the same locally nameless representation.

Numeric argument references are common in machine-oriented languages.

For terms, they were invented by the Dutch logician Nicolaas de Bruijn [23]. For

this reason, numeric argument references in terms are often called de Bruijn

indices.

We call two terms α-equivalent if they have the same locally nameless repre-

sentation. There is the intuition that two terms are α-equivalent if and only if

they are equal up to renaming of bound variables.

Exercise 2.5.1 Draw the locally nameless representations of the following terms:

a) λx∈X. (λy∈X. fxy)x
b) λx∈B. λy∈B. ¬x ∨y
c) λx∈X. f(λy∈Y . gyx)xy

2.6 Formulas, Identity Predicates, and Overloading

A formula is a term whose type is B. Here are examples of formulas: 3 < 7,

2 + 3 > 6, and x < 3 ∧ y > 5. We will represent mathematical statements as
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formulas.

For every set X, the identity predicate for X is the following function:

(=X) := λx∈X. λy∈X. x=y

Note that (=X) ∈ X → X → B. Also note that =B and ≡ are different names for

the same function. Identity predicates are important since they make it possible

to represent equations as terms. For instance, the equation x + 0 = x may be

represented as the term x + 0 =Z x.

As it comes to notation, we will be sloppy and mostly write = rather than

the proper name =X . This means that we leave it to the reader to determine the

type of the identitity. We speak of the disambiguation of overloaded symbols.

Typical examples of overloaded symbols are +, −, <, and =. If we write x+2 = y ,

without further information it is not clear how to disambiguate + and =. One

possibility would be the use of +Z and =Z.

Exercise 2.6.1 Draw the tree representations of the following formulas. Disam-

biguate the equality symbol =. Recall the specification of the operator prece-

dences in §2.3.

a) x = 0∨ x ∧y ≡ x
b) ¬¬x = y ≡ y = x ∧ x

2.7 Quantifiers

Mathematical statements often involve quantification. For instance,

∀x ∈ Z ∃y ∈ Z. x +y = 0

Church [20] realized that the quantifiers ∀ and ∃ can be represented as func-

tions, and that a quantification can be represented as the application of a quan-

tifier to a λ-term. We may say that Church did for the quantifiers what Boole [12]

did for the Boolean operations, that is, explain them as functions.

Let X be a set. We define the quantifiers ∀X and ∃X as follows:

∀X ∈ (X → B)→ B universal quantifier

∀Xf = (f = (λx∈X.1))

∃X ∈ (X → B)→ B existential quantifier

∃Xf = (f ≠ (λx∈X.0))
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The statement ∃y ∈ Z. x +y = 0 can now be represented as follows:

∃Z (λy∈Z. x +y = 0)

The usual notation for quantification can be obtained at the notational level:

∀x∈X.t := ∀X (λx∈X.t)
∃x∈X.t := ∃X (λx∈X.t)

Frege and Russell understood quantifiers as properties of properties. If we un-

derstand under a property on X a function X → B, then a property on properties

on X has the type (X → B)→ B. And in fact, this is the type of the quantifiers ∀X
and ∃X . Note the quantifiers are higher-order functions (i.e., functions taking

functions as arguments).

Exercise 2.7.1 Draw the locally nameless tree representation of the term

(∀x∈X. fx ∧ gx) ≡ ∀f ∧∀g.

2.8 Sets and Relations as Predicates

A predicate is a function X1 → ·· · → Xn → B. Roughly speaking, a predicate is a

function that after taking all its arguments returns a truth value. The Boolean op-

erations, the quantifiers, and of course the identitity predicates are examples of

predicates. It turns out that sets and relations can be represented as predicates.

Let X be a set. The subsets of X can be expressed as predicates X → B. We

will represent a subset A ⊆ X as the predicate λx∈X. x∈A, which yields 1 if its

argument is an element of A. This function is called the characteristic predicate

of A in X. The following examples illustrate how set operations can be expressed

with characteristic predicates:

x ∈ A � Ax

A∩ B � λx∈X. Ax ∧ Bx
A∪ B � λx∈X. Ax ∨ Bx

Given the representation of sets as predicates, there is no need that a functional

language provides special primitives for sets. Note that subsets of X as well as

properties on X are expressed as functions X → B.

Let R ⊆ X × X be a binary relation. Then we can represent R through its

characteristic predicate λx∈X.λy∈X.(x,y)∈R. The representation extends to

relations with more than 2 arguments.
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Exercise 2.8.1 Let X be a set. We use P(X) as abbreviation for X → B. Express

the following set operations with the logical operations ¬, ∧, ∨, and ∀X . To

give you an idea what to do, here is how one would express set intersection

∩ ∈ P(X) → P(X) → P(X): ∩ = λf∈P(X). λg∈P(X). λx∈X. fx ∧ gx.

a) Union ∪ ∈ P(X) → P(X) → P(X)

b) Difference − ∈ P(X) → P(X) → P(X)

c) Subset ⊆ ∈ P(X) → P(X) → B

d) Disjointness ‖ ∈ P(X) → P(X) → B

e) Membership (∈) ∈ X → P(X) → B

2.9 Choice Functions

Sometimes one wants to define an object as the unique x such that a certain

property holds. Such definitions can be expressed with choice functions. A

choice function for a set X is a function (X → B) → X that yields for every non-

empty subset A of X an element of A. For the empty set a choice function for X
yields some element of X. If a choice function for X is applied to a singleton

set {x}, there is no choice and it must return x. This is the most interesting use

for choice functions. Let CZ be a choice function for Z. Then

0 = CZ(λx∈Z. x + x = x)

since 0 is the unique integer such that x+x = x. Moreover, we can describe sub-

traction with addition and choice since x−y is the unique z such that x = y + z:

(−) = λx∈Z. λy∈Z. CZ(λz∈Z. x = y + z)

Exercise 2.9.1 How many choice functions are there for B?

Exercise 2.9.2 Describe the following values with a choice function CN for N,

the Boolean operations ¬, ∧, ∨, →, addition + ∈ N → N → N, and the identity

predicate =N.

a) f ∈ N→ N→ N such that fxy = x − y if x ≥ y .

b) The existential quantifier ∃ ∈ (N → B)→ B.

c) The less or equal test ≤ ∈ N→ N→ B.

d) max ∈ N→ N→ N such that max xy yields the maximum of x, y .

e) if ∈ B → N→ N→ N such that if bxy yields x if b = 1 and y otherwise.
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2.10 Some Logical Laws

Laws are mathematical statements that are universally true. Let us start with the

de Morgan law for conjunction:

¬(x ∧y) ≡ ¬x ∨¬y

The law says that we can see a negated conjunction as a disjunction. Seen syntac-

tically, the law is a formula. It involves the names ¬, ∧, ≡, ∨ and x, y . The names

in the first group are called constants and the names x, y are called variables.

While the meaning of constants is fixed, the meaning of variables is not fixed.

When we say that a law holds or is valid, we mean that the respective formula

evaluates to 1 no matter how we choose the values of the variables. Of course,

every variable comes with a type (here B) and we can only choose values that are

elements of the type (here 0 and 1). By means of universal quantification, we can

express explicitly that the names x and y are variables:

∀x∈B ∀y∈B. ¬(x ∧ y) ≡ ¬x ∨¬y

Leibniz’ law says that two values x, y are equal if and only if y satisfies every

property x satisfies:

x=Xy ≡ ∀p∈X→B. px → py

At first view, Leibniz’ law is quite a surprise. Seen logically, it expresses a rather

obvious fact. If x = y , then the right-hand of the equivalence obviously eval-

uates to 1. If x ≠ y , we choose p = λz. z=x to see that the right-hand of the

equivalence evaluates to 0. Leibniz’ law tells us that a language that can express

implication and quantification over properties can also express identities.

Henkin’s law says that a language that can express identities and universal

quantification over functions B→B→B can also express conjunction:

x ∧ y ≡ ∀f∈B→B→B. fxy = f11

If x = y = 1, then the equivalence obviously holds. If not both x and y are 1,

we choose f = (∧) to see that the right-hand of the equivalence evaluates to 0.

The Boolean extensionality law says that two truth values are equal if they

imply each other:

(x → y)∧ (y → x) → x = y

The functional extensionality law says that two functions are equal if they agree

on all arguments:

(∀x∈X. fx = gx) → f = g
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The extensionality law holds since functions are sets of pairs. The left hand side

of the law just says that the sets f and g consist of exactly the same pairs. Given

the extensionality laws, we can express equality of truth values and functions as

follows:

x = y ≡ (x → y) ∧ (y → x)

f = g ≡ ∀x∈X. fx = gx

The de Morgan law for universal quantification says that a negated universal

quantification can be seen as an existential quantification:

¬(∀x∈X. s) ≡ ∃x∈X. ¬s

Seen logically, this law is very different from the previous laws since s is a vari-

able that ranges over formulas, that is, syntactic objects. We will avoid such

syntactic variables as much as we can. A regular formulation of de Morgan’s law

for universal quantification looks as follows:

¬(∀x∈X. fx) ≡ ∃x∈X. ¬fx

Here f is a variable that ranges over functions X → B.

Exercise 2.10.1 (Boolean Formulas) Decide whether the following formulas are

valid for all values of the variables x,y, z ∈ B. In case a formula is not valid, find

values for the variables for which the formula does not hold.

a) 1→ x ≡ x

b) (x → y) → (¬y → ¬x) ≡ 1

c) x ∧ y ∨¬x ∧ z ≡ y ∨ z

Exercise 2.10.2 (Quantifiers and Identity Predicates) Given some logical opera-

tions, one can express many other logical operations. This was demonstrated by

Leibniz’ and Henkin’s law. Express the following:

a) ∀X with =X→B and 1.

b) ∃X with ∀X and ¬.

c) ∀X with ∃X and ¬.

d) =X→Y with ∀X and =Y .

e) =B with ≡.

f) =X with ∀X→B and →.

Exercise 2.10.3 (Henkin’s Reduction) In a paper [36] published in 1963, Leon

Henkin expressed the Boolean operations and the quantifiers with the identities.
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a) Express 1 with =B→B.

b) Express 0 with 1 and =B→B.

c) Express ¬ with 0 and =B.

d) Express ∀X with 1 and =X→B.

e) Express ∧ with 1, =B, and ∀B→B→B.

f) Express ∧ with 1 and =(B→B→B)→B.

g) Express ∨ with 0, ¬, =B, and ∀B→B→B.

h) Express → with 0, 1, ¬, =B, and ∀B→B→B.

2.11 Laws for the Lambda Notation

The η-law for functions looks as follows:

f = λx∈X. fx
The η-law holds since functions are sets of pairs. The α-law for functions looks

as follows:

(λx∈X. fx) = (λy∈X. fy)
It is a straightforward consequence of the η-law.

Finally, we look at the β-law. The β-law is a syntactic law whose formulation

requires the notion of substitution. Here are instances of the β-law:

(λx∈N.x + 2)5 = 5+ 2

(λx∈N.x + 2)(x +y) = (x +y)+ 2

The general form of the β-law is as follows:

(λx∈X. s)t = sxt

Both s and t are syntactic variables that range over terms. The notation sxt stands

for the term that we obtain from s by replacing every free occurrence of the vari-

able x with the term t. The syntactic operation behind the notation sxt is called

substitution. As it turns out, substitution is not a straightforward operation. To

say more, we need the formal treatment of terms presented in the next chapter.

2.12 Remarks

The outlined logical language is largely due to Alonzo Church [20]. It is asso-

ciated with logical systems known as simple type theory or simply-typed higher-

order logic. Church started with an untyped language [18] to describe computa-

tional functions and later used a typed language [20] to describe mathematical
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functions. Types originated with Bertrand Russell [57]. A logical language with

quantification was first studied by Gottlob Frege [26].

One distinguishes between metalanguage and object language. The metalan-

guage is the language one uses to explain an object language. Our object lan-

guage has many features in common with the metalanguage we use to explain

it. Still, it is important to keep the two languages separate. For some constructs

that appear in both languages we use different notations. For instance, implica-

tion and equivalence are written as �⇒ and ⇐⇒ at the metalevel and as → and ≡
at the object level. Moreover, at the metalevel we write quantifications with a

colon (e.g., ∃x∈N : x < 5) while at the object level we write them with a dot (e.g.,

∃x∈N. x < 5).

In the theory of programming languages one calls concrete syntax what we

call notation and abstract syntax what we call syntax.

Sometimes one speaks of the intension and the extension of a notation. While

the intension refers to the syntactic object decribed by the notation, the exten-

sion refers to the semantic object described by the notation.
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In this chapter we study syntax and ignore semantics as much as we can. The

syntactic system we study is known as lambda calculus and concerns terms with

lambda abstractions. We first consider untyped terms.

3.1 Untyped Terms

We assume that a set Nam of names is given and a bijection Nam � N. We could

choose Nam = N, but requiring this equality only up to bijection gives us more

flexibility. The set of terms Ter is defined inductively:

1. Every name is a term.

2. If s and t are terms, then st is a term.

3. If x is a name and s is a term, then λx.s is a term.

We understand the definition such that every term is exactly one of the following:

a name x, an application st, or an abstraction λx.s To be concrete, we represent

a term as a pair (i, γ) where the variant number i ∈ {1,2,3} says whether the

term is a name (i = 1), an application (i = 2), or a λ-term (i = 3). For names we

have γ ∈ N, for applications γ ∈ Ter×Ter, and for λ-terms γ ∈ Nam×Ter. Note

that (λx.x) ≠ λy.y if x ≠ y . The definition of terms can be summarized with

the grammar s ::= x | ss | λx.s.
We will use the letters x, y , z for names and the letters s, t, u, v for terms.

An abstraction λx.s may also be called a λ-term. Given an abstraction λx.s, we

call x the argument name and s the body of the abstraction. Argument names

may also be referred to as local names. As it comes to notation, we follow the

conventions introduced in § 2.3. For instance:

stu � (st)u

λx.st � λx.(st)

λxy.s � λx.λy.s

λxyz.s � λx.λy.λz.s

The locally nameless representation (LNR) of a term uses numeric argument

references instead of local names. For instance, the LNR of λfxy.fyzx looks

as follows:

17
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λ

λ

λ

•
•

•
〈2〉 〈0〉

z

〈1〉

An argument reference 〈n〉 refers to the (n + 1)th λ-node encountered on the

path to the root. Note that λx.x and λy.y have the same LNR:

λ

〈0〉
The size |s| of a term s is the number of nodes in its tree representation. The

formal definition is recursive and looks as follows:

|_| ∈ Ter → N

|x| = 1

|st| = 1+ |s| + |t|
|λx.s| = 1+ |s|

For instance, |λfxy.fyzx| = 10. The free names of a term are the names that

appear in the LNR of the term. The formal definition looks as follows:

N ∈ Ter → P(Nam)

Nx = {x}
N (st) =N s ∪N t

N (λx.s) =N s − {x}

For instance, N (λfxy.fyzx) = {z} if we assume that z is different from

f , x, y . We say that x is free in s if x ∈ N s. A term s is closed if N s = �, and

open otherwise.

3.2 Contexts and Subterms

Informally, a context is a term with a hole. Formally, we define contexts as

follows:

C ::= [] | Cs | sC | λx.C
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3.3 Substitution, Capturing, and Renaming

The instantiation C[t] of a context C with a term t yields the term that is ob-

tained from C by replacing the hole [] with t. For instance, if C = λxy.f[], then

C[gxy] = λxy.f(gxy). Formally, we define context instantiation inductively:

[][t] = t
(Cs)[t] = (C[t])s
(sC)[t] = s(C[t])

(λx.C)[t] = λx.C[t]
A term s is a subterm of a term t if there exists a context C such that t = C[s].
We say that a term s contains a term t or that t occurs in s if t is a subterm of s.
A term is λ-free if none of its subterms is a λ-term.

Exercise 3.2.1 Give all subterms of the term λx.fxx. For each subterm give a

corresponding context. Is there a subterm with more than one corresponding

context?

Exercise 3.2.2 Is x a subterm of λx.y?

Exercise 3.2.3 Determine all pairs C , s such that C[s] = xxxx and s is a appli-

cation.

Exercise 3.2.4 We say that a name x occurs bound in a term s if s has a subterm

λx.t such that x is free in t. Give a term s such that x is free in s and also occurs

bound in s.

3.3 Substitution, Capturing, and Renaming

Substitution is a syntactic operation. We have encountered substitution first in

§ 2.11 when we formulated the β-law. In its simplest form, substitution is an

operation sxt that replaces the free occurrences of the name x in the term s with

the term t:

(fxy)xz = fzy
(fxy)xfxy = f(fxy)y
(λx.fxy)xz = λx.fxy

(λx.fxyy)yz = λx.fxzz
There is a complication known as capturing. Consider (λx.y)yx where the y in

λx.y must be replaced with x. If we do this naively, we obtain λx.x, which

means that the external occurrence of x has been captured by the binder λx as

a local argument reference. To meet the needs of the β-law, substitution must

be defined such that capturing does not happen.
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Example 3.3.1 Consider the notation λx∈B.λy∈B.x which describes a function

that takes two arguments and yields the first argument. Obviously,

(λx∈B.λy∈B.x)y ≠ (λy∈B.y)

for every y ∈ B since on the left we have the function λz∈B.y that returns y for

every argument while on the right we have the identity function λy∈B.y that

returns different results for different arguments. From this we learn that the

substitution (λy.x)xy must not yield λy.y but a term like λx.y or λz.y . Note

that the names x, y , and z are assumed to be different. �

If we define substitution on the locally nameless representation of terms, the

capturing problem completely disappears since there are no local names. For

instance, if s = λy.xy and we want to obtain sxy , naive replacement of x with y
yields exactly what we want:

λ

•
x 〈0〉

� λ

•
y 〈0〉

Thus the no-capture requirement for substitution can also be derived from the

requirement that substitution on the term level should be compatible with sub-

stitution on the LNR level.

In summary we can say that substitution must be defined such that it pre-

serves the binding structure of a term.

To avoid capturing, we will define substitution such that it may rename (i.e.,

replace) local names. For instance, (λx.y)yx may yield λz.x, which does de-

scribe the function we want to obtain. Renaming of local names is referred to as

α-renaming.

How should substitution choose names if it has to rename local names? It is

helpful to first consider a simplified problem: How can we choose local names

for the λ-nodes of an LNR such that we obtain a term whose LNR is the given

one? For instance, consider the LNR

λ

•
•

x y

〈0〉

To obtain a term for this LNR, we can choose any local name that is different

from the free names x and y . For instance, we may choose z, which yields the

term λz.xyz. If we choose x or y as local name, the local name will capture a

free name, which results in a different LNR.
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Now consider a term λx.s. Which local names can we use in place of x without

changing the LNR? If you think about it you will see that all names that are not

free in λx.s are ok. The names that are free in λx.s are not ok since using such

a name as argument name would capture the free occurrences of this name.

3.4 Substitution Operators

It is best to define the substitution operation such that it can replace more than

one name. To do so, we will define a substitution operator S that applies a

substitution θ to a term s. A substitution θ will be a function that for each name

gives a term that should replace the name. Replacing all names is no problem

since θx = x means that x will be replaced by x, which is the same as not

replacing x.

Definition. A substitution is a function Nam → Ter. The carrier of a substitu-

tion θ is the set Cθ := {x ∈ Nam | θx ≠ x }. We use ι to denotes the identity

substitution λx∈Nam. x. Moreover, we use the notation [x1:=s1, . . . , xn:=sn]
to denote the substitution θ such that Cθ ⊆ {x1, . . . , xn} and θxi = si for

i ∈ {1, . . . , n}. We may also use [] to denote the identity substitution ι.

If we apply a substitution θ to a term λx.s, we may have to rename the argu-

ment name x. For this we require a renaming function ρ that provides us with

a safe name that we can use instead of x. If it is safe to keep x, the renaming

function may of course yield x.

Definition. We say that a name y is safe for θ, x, s if there is no z ∈ N (λx.s)
such that y ∈ N (θz). A renaming function ρ is a function (Nam → Ter) →
Nam → Ter → Nam such that ρθxs is safe for all θ, x, s. For every renaming

function ρ we define inductively a substitution operator S:

Sθx = θx
Sθ(st) = (Sθs)(Sθt)

Sθ(λx.s) = λy. S(θxy)s where y = ρθxs

The notation θxy describes the substitution that is like θ except that it maps x
to y .

Proposition 3.4.1 For every substitution operator S:

If s is λ-free, then Sιs = s.

Proposition 3.4.2 (Free Names) For every substitution operator S:

N (Sθs) = ∪{N (θx) | x ∈N s }.
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A renaming function ρ is conservative if ρθxs = x whenever x is safe for θ,

x, s. A substitution operator S is conservative if it is obtained with a conserva-

tive renaming function.

Proposition 3.4.3 For every conservative substitution operator S:

Sθs = s if no name in the carrier of θ is free in s.

We fix some conservative substitution operator S0 and define the notation

sxt := S0[x:=t]s. Note that [x:=t] = λy∈Nam. if y = x then t else y .

Proposition 3.4.4

1. (λx.s)xt = (λx.s)
2. (λx.s)yt = (λx.syt ) if x ≠ y and x ∉N t

3. sxt = s if x ∉N s

Exercise 3.4.5 Apply the following substitutions.

a) ((λx.y)y)yx
b) (λx.y)yfxy
c) (λx.y)xfxy

Exercise 3.4.6 Let x ≠ y . Find C such that (C[x])xy ≠ C[y]. Hint: Exploit that

C[x] may capture x.

Exercise 3.4.7 Give the carrier of the identity substitution.

Exercise 3.4.8 Find a renaming function ρ such that Sι(λx.x) ≠ S[x:=y](λx.x)
for the corresponding substitution operator S. Assume that x and y are differ-

ent.

3.5 Alpha Equivalence

Two terms are α-equivalent if they have the same LNR. This sentence gives the

right intuition but doesn’t suffice for a formal definition since the LNR of terms is

not formally defined. Fortunately, there is a substitution operator that provides

for an elegant formal definition of α-equivalence.

Let ρα be the renaming function such that ραθxs is the least name that is

safe for θ, x, s (for the order we exploit the bijection Nam � N). Moreover, let

Sα be the substitution operator obtained with ρα. Note that ρα and Sα are not

conservative. We define α-equivalence as follows:

s ∼α t :⇐⇒ Sαιs = Sαιt
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This definition works since Sαιs yields a variant of s where all local names are

renamed to be the least possible ones. Here are examples (x � 0, y � 1):

Sαι(λx.x) = λx.x
Sαι(λy.y) = λx.x

Sαι(λyx.xy) = λxy.yx

Proposition 3.5.1 If s ∼α t, then N s =N t.

With the help of α-equivalence we can state three important properties of

substitution.

Proposition 3.5.2 For all substitution operators S and S′:

Preservation Sθs ∼α s if no name in the carrier of θ is free in s

Coincidence Sθs ∼α S′θ′s′ if s ∼α s′ and θx ∼α θ′x for all x ∈N s

Renaming Sθ(λx.s) ∼α λy.S(θxy)s if y not free in Sθ(λx.s)

From the coincidence property we learn that all substitution operators are

equal up to α-equivalence.

There are many substitution operators S such that s ∼α t ⇐⇒ Sιs = Sιt. To

better understand this fact, we define a class of substitution operators that have

this property. A renaming function ρ is strict if ρθxs = ρθ′x′s′ whenever⋃
y∈N (λx.s)

N (θy) =
⋃

y∈N (λx′.s′)
N (θ′y)

A substitution operator S is strict if it is obtained with a strict renaming function.

Note that ρα and Sα are strict. Informally, we can understand a strict renaming

function as a renaming function that bases its choice of a name only on the

absolutely necessary information, which is the set of unsafe names.

Proposition 3.5.3 For every strict substitution operator S:

1. Sι(Sιs) = Sιs
2. s ∼α t ⇐⇒ Sιs = Sιt

Exercise 3.5.4 Which of the following terms are α-equivalent?

λxyz.xyz, λyxz.yxz, λzyx.zyx, λxyz.zyx, λyxz.zxy

Exercise 3.5.5 Determine Sαιt for the following terms t. Assume x � 0, y � 1,

and z � 2.
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a) λz.z

b) λyx.yx

c) λxy.yx

d) λxy.y

e) λzxy.xyz

f) λz.x

Exercise 3.5.6 Find counterexamples that falsify the following statements.

a) λx.s ∼α λy.t ⇐⇒ ∃z : sxz ∼α tyz
b) λx.s ∼α λy.t ⇐⇒ sxy ∼α t

Exercise 3.5.7 Are there conservative substitution operators that are strict?

Exercise 3.5.8 Prove Proposition 3.5.1.

3.6 Alpha Normality

Two α-equivalent terms will always denote the same semantic object. Since an

LNR describes a term up to α-equivalence, we could use LNRs rather than terms

to describe semantic objects. We could also insist that for every abstraction λx.s
the argument name x is the least name that is not free in λx.s. Terms with this

property are called α-normal. The official definition is as follows.

The set of α-normal terms is defined inductively:

1. Every name is α-normal.

2. st is α-normal iff s and t are α-normal.

3. λx.s is α-normal iff s is α-normal and x is the least name that is not free

in λx.s.

The next proposition states that LNRs are in one-to-one correspondence with

α-normal terms.

Proposition 3.6.1 For every term s there is exactly one α-normal term t such

that s ∼α t. This term is Sαιs.

A substitution θ is α-normal if θx is an α-normal term for every name x.

Proposition 3.6.2 If θ is α-normal, then Sαθs is α-normal.

Proof By induction on the inductive definition of Sα. We have to verify the claim

for each of the three defining equations. The three equations correspond to the
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three clauses of the inductive definition of α-normality. For the first equation

the claim follows from the α-normality of θ, for the second equation the claim

follows by inductive hypothesis, and for the third equation the claim follows by

inductive hypothesis and the fact that the fresh name y is chosen with ρα. �

Here is an algorithm that, given an LNR L, computes an α-normal term s such

that L is the LNR of s.

1. If L contains no unassigned λ-node, return the term described by L.

2. Otherwise, choose a topmost λ-node v in L. To v assign the least name x that

does not occur in the subtree rooted by v . Replace all argument references

to v with x.

3. Continue until no unassigned λ-node is left.

Exercise 3.6.3 Assume x � 0, y � 1, and z � 2. Give α-normal terms whose

LNRs look as follows:

λ

λ

•
•

〈1〉 〈0〉
y

λ

•
x λ

•
y 〈0〉

λ

•
x λ

•
〈1〉 〈0〉

Exercise 3.6.4 Give an α-normal term s and a substitution θ such that Sαθs is

not α-normal.

3.7 Beta Reduction and Beta Equivalence

The β-law introduced in § 2.11 says that the term (λx.s)t describes the same

value as the term sxt . Hence we can replace a term (λx.s)t with the seemingly

simpler term sxt . Such a replacement is known as a β-reduction. Here is an

example:

(λfx.f(fx))(λx.x)

→β λx.(λx.x)((λx.x)x)

→β λx.(λx.x)x

→β λx.x

We need some definitions concerning β-reduction. A term of the form (λx.s)t is

called a β-redex.1 A term is β-normal if it contains no β-redex. We write s →β t

1 Redex is an artificial word introduced by Church that abbreviates reducible expression.
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if s = C[(λx.u)v] and t = C[uxv] for some context C and some term (λx.u)v .

By Proposition 3.4.2 we haveN s ⊇N t if s →β t.
Consider the term ω := λx.xx and the β-reduction ωω →β ωω. From this

example we learn that there are untyped terms for which β-reduction does not

terminate.

We define β-equivalence ∼β as the least equivalence relation on terms con-

taining the relations ∼α and →β. In other words, ∼β is the least equivalence

relation on terms such that s ∼β t if s ∼α t or s →β t. A term t is a β-normal

form of a term s if s ∼β t and t is β-normal. Not every term has a β-normal form

(e.g., ωω).

To decide s ∼β t, we may apply β-reduction to s and t. If we are lucky, we

obtain two β-normal terms s′ and t′. The next theorem tells us that s ∼β t iff

s′ ∼α t′.
Theorem 3.7.1 (β-Normal Form)

Let s and t be β-normal. Then s ∼β t ⇐⇒ s ∼α t.

The normal form theorem follows from a more general result known as con-

fluence of β-reduction [42, 7]. Confluence of β-reduction was first shown in 1935

by Church and Rosser.

Corollary 3.7.2 A term has at most one β-normal form (up to α-equivalence).

Exercise 3.7.3 Use β-reduction to derive β-normal forms for the following terms.

a) (λxy.fyx)ab

b) (λfxy.fyx)(λxy.yx)ab

c) (λx.xx)((λxy.y)((λxy.x)ab))

d) (λxy.y)((λx.xx)(λx.xx))a

e) (λxx.x)yz

Exercise 3.7.4 Determine all pairs C , s such that C[s] = (λf .fx)((λfx.fx)(λx.x))
and s is a β-redex.

Exercise 3.7.5 Find terms as follows.

a) A term that has no β-normal form.

b) A term that has a β-normal form but on which β-reduction does not terminate.

c) A term s0 such that there exists an infinite derivation s0 →β s1 →β s2 →β . . .
such that |sn| < |sn+1| for all n ∈ N.

Exercise 3.7.6 We did define α-normal terms inductively and β-normal terms

non-inductively. It is also possible to define α-normal terms non-inductively and

β-normal terms inductively.
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a) Give an inductive definition of the set of β-normal terms.

b) Give a non-inductive definition of α-normal terms. Define a suitable notion of

α-redex first.

Example 3.7.7 (Explosive Terms) There are small terms that require an enor-

mous number of β-reductions until a β-normal form is reached. Consider the

closed terms I := λx.x and T := λfx.f(fx) (identity and twice). It takes 4 steps

to obtain a β-normal form of TII:

TII →β (λx.I(Ix))I →β I(II) →β II →β I

For a β-normal form of TTII we need 12 steps:

TTII →2
β T(TI)I →2

β TI(TII) →4
β TII →4

β I

For TTTII we need 54 steps:

TTTII →2
β T(TT)II →2

β TT(TTI)I →2
β TT(T(TI))I →2

β T(T(T(TI)))I

→2
β T(T(TI))(T(T(TI))I) →2

β T(T(TI))(T(TI)(T(TI)I))

→2
β T(T(TI))(T(TI)(TI(TII))) →4

β T(T(TI))(T(TI)(TII))

→4
β T(T(TI))(T(TI)I) →2

β T(T(TI))(TI(TII)) →4
β T(T(TI))(TII)

→4
β T(T(TI))I →2

β T(TI)(T(TI)I) →2
β T(TI)(TI(TII)) →4

β T(TI)(TII)

→4
β T(TI)I →2

β TI(TII) →4
β TII →4

β I

For TTTTII the explosion gets worse, and for TTTTTII it gets out of hand. One

can show that TTTTII requires at least 216 β-reductions, and that TTTTTII
requires at least 2216 β-reductions. Note that 16 = 222

, so there are as many 2’s

as there are T ’s. �

Exercise 3.7.8 Express I and T as polymorphic procedures in ML and checkout

how long it takes to evaluate TTTTII and TTTTTII.

3.8 Eta Reduction and Beta-Eta Equivalence

The η-law says that a term λx.sx describes the same value as the term s if x
is not free in s. The corresponding simplification rule is known as η-reduction.

Here is an example:

(λx.fx)(λxy.gxy)

→η f(λxy.gxy)

→η f(λx.gx)

→η fg
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In contrast to β-reduction, η-reduction terminates. An η-redex is a term of the

form λx.sx where x is not free in s. A term is η-normal it it contains no η-redex.

We write s →η t if s = C[λx.ux], t = C[u], and x is not free in u.

Proposition 3.8.1 η-reduction preserves β-normality. That is, if s is β-normal

and s →η t, then t is β-normal.

We define βη-equivalence ∼βη as the least equivalence relation on terms con-

taining →β and →η. βη-equivalence provides for α-renaming. Given an abstrac-

tion λx.s and a name y that is not free in s, we have

λx.s ←η λy.(λx.s)y →β λy.sxy

and hence λx.s ∼βη λy.sxy .

Proposition 3.8.2 ∼α ⊆ ∼β ⊆ ∼βη.

A term is βη-normal if it is β-normal and η-normal. A term t is a βη-normal

form of a term s if s ∼βη t and t is βη-normal.

Theorem 3.8.3 (βη-Normal Form)

Let s and t be βη-normal. Then s ∼βη t ⇐⇒ s ∼α t.

Exercise 3.8.4 Use β- and η-reduction to derive βη-normal forms of the follow-

ing terms.

a) λxy.fx

b) λxy.fy

c) λxy.fxy

d) λy.(λx.fxy)x

3.9 Compatibility and Stability

We have defined several binary relations on terms: ∼α, ∼β, ∼βη, →β, and →η.

They all have two properties known as compatibility and stability. A binary rela-

tion R ⊆ Ter× Ter is

• compatible if (C[s], C[t]) ∈ R whenever (s, t) ∈ R.

• stable if (Sθs,Sθt) ∈ R whenever (s, t) ∈ R.

Proposition 3.9.1 ∼α, ∼β, ∼βη, →β, and →η are compatible and stable.

Proposition 3.9.2 If n ≥ 1 and x1, . . . , xn are pairwise distinct, then

S[x1:=s1, . . . , xn:=sn]t ∼β (λx1 . . . xn.t)s1 . . . sn.
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B : (Nam → Ter)→ Ter → Ter

Bθx = θx
Bθ(λx.s) = λy.B(θxy)s where y = ρθxs
Bθ(st) = B[x:=Bθt]u if Bθs = λx.u
Bθ(st) = (Bθs)(Bθt) otherwise

Figure 3.1: The normalization procedure

Exercise 3.9.3 Prove the following:

a) λx.s ∼β λx.t ⇐⇒ s ∼β t
b) λx.s ∼βη λx.t ⇐⇒ s ∼βη t
c) sx ∼βη tx ⇐⇒ s ∼βη t if x not free in s or t

3.10 Normalization

We now consider a procedure that given a term tries to compute a β-normal form.

The procedure proceeds by β-reducing the term as long as it is possible. If the

normalization process terminates, a β-normal form of the initial term has been

obtained. Since there are terms for which β-reduction does not terminate, the

procedure will not always succeed. However, it will turn out that the procedure

always succeeds for typed terms. Given a renaming function ρ, we define the

normalization procedure B as shown in Figure 3.1. B works like the substitution

procedure S except that after processing an application it checks whether a β-

redex is obtained. If this is the case, B does not return the β-redex but recursively

attempts to compute its normal form.

A substitution θ is β-normal if θx is β-normal for every name x.

Proposition 3.10.1 Let B terminate on θ, s. Then:

1. Bθs ∼β Sθs.
2. If θ is β-normal, then Bθs is β-normal.

Proof Both claims follow by procedural induction. We verify the first claim for

each of the defining equations of B. By coincidence (Proposition 3.5.2) we can as-

sume without loss of generality that B and S use the same renaming function ρ.

1. equation. The claim holds since Sθx = θx.

2. equation. Let y = ρθxs. Then Sθ(λx.s) = λy.S(θxy)s ∼β λy.B(θxy)s by the

definition of S, the inductive hypothesis, and compatibility (Proposition 3.9.1).
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3. equation. Let Bθs = λx.u. Then Sθ(st) = (Sθs)(Sθt) ∼β (Bθs)(Bθt) =
(λx.u)(Bθt) →β uxBθt ∼α S[x:=Bθt]u ∼β B[x:=Bθt]u by the definition of S,

the inductive hypothesis and compatibility, coincidence, and once more the

inductive hypothesis.

4. equation. Sθ(st) = (Sθs)(Sθt) ∼β (Bθs)(Bθt) by the definition of S, the

inductive hypothesis, and compatibility.

The verification of the second claim is left as an exercise. �

Corollary 3.10.2 Let B terminate on ι, s. Then Bιs is a β-normal form of s.

Exercise 3.10.3 Find a term s such that B does not terminate on ι, s. Try to find

such a term that has a β-normal form.

Exercise 3.10.4 How would you modify B so that Bιs is a βη-normal term if B
terminates on ι, s?

Exercise 3.10.5 Let Bα be the normalization procedure that is obtained with the

renaming function ρα. Find a term s such that Bα terminates on ι, s with a term

that is not α-normal.

Exercise 3.10.6 Prove Proposition 3.10.1 (2).

3.11 Disgression: Computable Functions

In the 1930’s Church was the first researcher who gave an explicit mathematical

definition of the class of computable functions. His tool was the untyped lambda

calculus, which is the system given by untyped terms and β-reduction. Church

represented the natural numbers as the terms

0̄ := λfx.x, 1̄ := λfx.fx, 2̄ := λfx.f(fx), 3̄ := λfx.f(f(fx)), . . .

and defined a function f ⊆ N×N to be λ-computable if there is a closed term s
such that the following conditions hold for all m,n ∈ N:

1. f is defined on m iff sm̄ has a β-normal form.

2. fm = n iff sm̄ ∼β n̄.

We can see the term s as a procedure that computes the function f . Church’s

student Turing showed that a function is λ-computable if and only if it is com-

putable with a Turing machine. This gave rise to the Church-Turing thesis, which

states that the informal idea of computable function is captured by the formal

definition based on lambda calculus or Turing machines. Given the link between

β-equivalence and computability, we have the following theorem.
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Theorem 3.11.1 (Undecidability) β-equivalence of terms is undecidable.

The terms 0̄, 1̄, 2̄, . . . representing the natural numbers are known as Church

numerals. Church numerals are β-normal closed terms that can be understood

as procedures. The Church numeral n̄ is a procedure that takes a procedure f
and a value x as arguments and applies f n-times to x. Based on this intuition,

we can formulate procedures for addition, multiplication, and exponentiation of

Church numerals:

add := λmnfx.mf(nfx) m+n
mul := λmnfx.m(nf)x m ·n
exp := λmnfx.nmfx mn

On first view this looks like magic, but it is just higher-order functional program-

ming where the natural numbers are represented as procedures. A programming-

oriented explanation can be found in Pierce [54].

There is a connection with Example 3.7.7. The term T there is the Church

numeral for 2. Now observe that exp m̄ n̄ ∼βη n̄ m̄. Thus TT ∼βη 22, TTT ∼βη
222 , and so on. This informally explains why β-reduction of TTTTTII takes so

many steps.

In the lambda calculus, both procedures and values are expressed as closed

terms. Since every closed term can be understood as a procedure, every value

is expressed as a procedure. An interpreter for the lambda calculus takes a

closed term st1 . . . tn and attempts to compute a β-normal form, where s is a

procedure and t1, . . . , tn are the arguments the procedure is applied to. As an

interpreter, the normalization procedure Bι is flawed since it does not terminate

for all terms that have a β-normal form. If we analyse the execution of Bιu, we

obtain a reduction sequence u →β u1 →β u2 →β . . . where always the leftmost

innermost β-redex is reduced. Curry proved in 1958 that leftmost-outermost

β-reduction has the property that it always yields a normal form if there is one

(see the quasi-leftmost-reduction theorem in Hindley-Seldin [42]).

Exercise 3.11.2 Write a procedure L : (Nam → Ter) → Ter → Ter such that Lι
yields a β-normal form for every term that has a β-normal form.

3.12 Typed Terms

We now consider typed terms. Like terms types will be defined as syntactic ob-

jects. Every name will be equipped with a type. Following the inductive definition

of terms, we obtain a unique type for every well-formed term. While names and

abstractions are always well-formed, an application st is only well-formed if the
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type of s is a function type whose argument type is the type of t. We will show

that the normalization procedure terminates for every typed term. Hence every

typed term has a β-normal form.

We start from a nonempty set of base types and define the set Ty of types

inductively:

1. Every base type is a type.

2. If σ and τ are types, then στ is a type.

Types of the form στ are called function types. We omit parentheses according

to στμ� σ(τμ). A function type στ may also be written as σ → τ . We reserve

the letter β for base types and the letters σ , τ , μ for types. The size |σ | of a

type σ is defined inductively:

|_| ∈ Ty → N

|β| = 1

|στ| = 1+ |σ | + |τ|
We assume that a set Nam of names is given and a bijection Nam � N × Ty.

Due to the bijection every name has a unique type, and for every type there are

infinitely many names that have this type. We now define the set Ter of typed

terms inductively, where every term is equipped with a unique type:

1. Every name of type σ is a term of type σ .

2. If x is a name of type σ and s is term of type τ , then λx.s is a term of type στ .

3. If s is a term of type τμ and t is a term of type τ , then st is a term of type μ.

We write s : σ if s is a term of type σ . Using this notation, we can summarize

the definition of typed terms with the following rules:

x : σ
x has type σ

x : σ s : τ

λx.s : στ

s : τμ t : τ

st : μ

We use Terσ to denote the set of all terms of type σ . When we write term in the

following, we always mean typed term. We reserve the letters x, y , z for names

and the letters s, t, u, v for terms.

The definitions we made for untyped terms all carry over to typed terms. The

LNR of a typed term records the types of the local names at its λ-nodes. For

instance, if f : στ and x : σ , the LNR of λfx.fxy looks as follows:

στ

σ

•
•

〈1〉 〈0〉
y

32 2009/8/2



3.13 Termination of Typed Normalization

Every subterm of a typed term is a typed term. As it comes to substitutions, we

only admit type-preserving functions θ ∈ Nam → Ter, that is, that is, θx must

have the same type as x for every name x. Moreover, every renaming function ρ
must be type-preserving, that is, ρθxs must have the same type as x. As a

consequence, the substitution and normalization operators become well-defined

for typed terms and are themselves type-preserving functions.

Proposition 3.12.1 (Type Preservation)

1. If s : σ , then Sθs : σ .

2. If B terminates on θ, s and s : σ , then Bθs : σ .

3. If s : σ and s →β t or s →η t, then t : σ .

4. If s : σ and s ∼α t or s ∼β t or s ∼βη t, then t : σ .

Exercise 3.12.2 Find closed typed terms that have the following types.

a) σσ

b) στσ

c) (στ)(τμ)σμ

d) σ(στ)τ

Exercise 3.12.3 For each of the following terms find types for the names occur-

ring in the term such that the term becomes a well-formed typed term.

a) λxy.x

b) λf .fyx

c) λfgx.fx(gx)

3.13 Termination of Typed Normalization

We will now show that the normalization procedure B defined in Figure 3.1 ter-

minates for typed terms. As stated before, we assume that B is only applied

to type-preserving substitutions θ and that the underlying renaming function

is type-preserving. Given these assumptions, it is easy to check that B is well-

defined and type-preserving as stated in Proposition 3.12.1 (2).

We call terms of the form xs1 . . . sn concrete (n ≥ 0). We refer to the name x
as the head of the term. Given a term s, we use τs to denote the size of the type

of s. Given a concrete term s whose head is x, we have τx ≥ τs.

Theorem 3.13.1 (Termination)

B terminates on β-normal type-preserving substitutions and typed terms.
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Proof Given a β-normal type-preserving substitution θ and a typed term s, we

define three natural numbers:

• The sign of s, which is 0 if s is β-normal and 1 otherwise.

• The power of θ, which is the maximal number τx such that x ∈ N s and θx
is an abstraction. If no such name x exists, the power of θ is 0.

• The size of s.

The corresponding lexical order is a termination order for B. We verify the claim

for each of the defining equations of B.

1. equation. The claim is trivial since there is no recursive call.

2. equation. The claim holds since the sign and the power are preserved and the

size is decreased.

3. equation. The recursive calls Bθs and Bθt obey the termination order since

the sign and the power are not increased, and the size is decreased. Let

Bθs = λx.u. It remains to show that the recursive call B[x:=Bθt]u obeys

the termination order. Case analysis.

– st not β-normal. Then the sign is decreased since u is β-normal (Proposi-

tion 3.10.1).

– st is β-normal. Then s is concrete. Since Bθs = λx.u, θ must replace the

head of s with an abstraction. Hence the power of θ is at least τs. Since B
is type-preserving (Proposition 3.12.1) and Bθs = λx.u, we have τs > τx.

Hence the power of θ is greater than the power of [x:=Bθt]. The claim

follows since the sign is preserved and the power is decreased.

4. equation. The claim holds since the sign and the power are not increased, and

the size is decreased. �

Corollary 3.13.2 (Weak Normalization) Every typed term has a β- and a βη-

normal form.

Proof Let s be a typed term. Since ι is type-preserving, we know by Theo-

rem 3.13.1 that B terminates on ι, s. Hence we know by Proposition 3.10.1 that

Bιs is a β-normal form of s. Next we apply η-reduction to Bιs. Since η-reduction

terminates and preserves β-normality, we obtain a βη-normal term that is βη-

equivalent to s. �

Corollary 3.13.3 β- and βη-equivalence of typed terms are decidable.

Proof Follows from Corollary 3.13.2 and the normal form theorems 3.7.1

and 3.8.3. �
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3.14 Remarks

Statman [63] shows that deciding β-equivalence of typed terms has non-

elementary complexity.

One can show that β-reduction terminates on typed terms no matter how

the reduction steps are applied. This result is known as strong normalization.

Strong normalization is much harder to prove than weak normalization. Several

proofs of strong normalization appeared around 1967 (see [7] for references).

The proof that generalizes best to richer systems is due to Tait [65]. You can

find Tait’s proof in [42]. Weak normalization was first shown by Turing [29].

Exercise 3.13.4 Identify where the proof of the termination theorem breaks if

we drop the assumption that θ is β-normal.

Exercise 3.13.5 Modify the normalization procedure B such that it yields β-

normal terms even if θ is not β-normal. Give a termination proof for the modified

procedure. Hint: Define the sign of θ to be 0 if θx is β-normal for all x ∈ N s
and 1 otherwise.

Exercise 3.13.6 Write a normalization procedure L as asked for in Exer-

cise 3.11.2 and prove that it terminates for all type-preserving substitutions and

all typed terms.

3.14 Remarks

Syntactic systems based on terms with lambda abstractions are known as lambda

calculi. We have looked at the untyped lambda calculus and the simply typed

lambda calculus. Both systems originated with Church [18, 20]. There are

lambda calculi with much richer type systems [8]. Hindley-Seldin [42] is an excel-

lent textbook that covers both the untyped and the simply typed lambda calculus

and gives many historical references. Other books on lambda calculus are Baren-

dregt [7] and Hindley [41].

The lambda calculus is an essential cornerstone of the theory of programming

languages. Pierce [54] gives a programming languages oriented introduction to

the lambda calculus. A more advanced textbook on the theory of programming

languages that covers lambda calculus is Mitchell [50].

The formal definition of α-equivalence based on Sα is due to Stoughton [64].

In this paper you find a careful study of Sα with complete proofs. We have

generally omitted proofs since they require considerable technical detail. You

find proofs of the basic properties of the lambda calculus in Hindley-Seldin [42].

One can formalize LNRs and work with LNRs rather than terms. The ad-

vantage of LNRs is that the definition of substitution is straightforward and that

α-equivalence is not needed. As it comes to the semantic interpretation of terms,
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3 Terms and Types

the representation of local names is redundant. However, the LNR approach has

also drawbacks. The notions of subterm and context need to be revised. If you

look at the tree representation, its clear that we need to admit LNRs with dan-

gling argument references to account for the β-reduction of subterms that occur

below λ-nodes. What one ends up with is de Bruijn’s representation [23], which

was conceived as an implementation of terms.

36 2009/8/2



4 Interpretation and Specification

We now formalize the semantic interpretation of types and typed terms. We will

define formulas and logical interpretations and say what it means that an inter-

pretation satisfies a formula. This way we obtain simple type theory, the logic we

will be working with. Simple type theory can specify the natural numbers, and

we will use this example to study the method of logical specification.

4.1 Interpretations

Recall that Ty is the set of all types and Ter is the set of all typed terms. We

assume that Ty and Ter are disjoint. We will only consider typed terms.

We start with the interpretation of types. Every base type is interpreted as a

nonempty set. Moreover, a function type στ is interpreted as a set of functions

from the interpretation of σ to the interpretation of τ .

Definition. A frame is a function D defined on Ty that maps every type to a

nonempty set and satisfies D(στ) ⊆ (Dσ → Dτ) for every function type στ .

A standard frame is a frame D where D(στ) = (Dσ → Dτ) for every function

type στ .

We now come to the interpretation of names. The interpretation of a name must

respect its type, that is, a name must be interpreted as an element of the inter-

pretation of its type.

Definition. An assignment into a frame D is a function I defined on Ty ∪ Nam

such that D ⊆ I and Ix ∈ Iσ for every name x : σ .

Given an assignment I into a frame D we have Iσ = Dσ for all types σ . Thus

an assignment builds in the frame.

Given an assignment I , we are able to evaluate every λ-free term t : σ to an

element of Iσ . This follows from the equations

Îx = Ix
Î(st) = (Îs)(Ît)

and a straightforward inductive proof. Note that the evaluation function Î is

obtained from the assignment I by induction on terms.
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To discuss the evaluation of abstractions we need a definition. Let I be an

assignment into a frame D, x : σ be a name, and a ∈ Iσ . Then Ixa denotes

the assignment into D that agrees everywhere with I but possibly on x where it

yields a.

It seems that we can extend the definition of the evaluation function to abstrac-

tions using the following equation:

Î(λx.s) = λa∈Iσ. Îxas if λx.s : στ

The function at the right-hand side certainly exists (s is smaller than λx.s, so

we know by induction that Îxas is defined). We also know that it is a function

Iσ → Iτ . However, if may be that I(στ) does not contain the function if the

frame of I is nonstandard. So we learn that an assignment into a non-standard

frame may fail to evaluate all terms because certain abstractions may describe

functions that are not in the frame. Such nonstandard frames are unwanted and

we will exclude them. To do so with a rigorous definition, we first define possibly

partial evaluation functions for all assignments.

Definition. LetD be a frame. We define a functionˆthat maps every assignment I
into D into a function Î ⊆ { (s, a) | ∃σ : s ∈ Terσ ∧ a ∈ Dσ }:

Îx := Ix
Î(st) := fa if Îs = f and Ît = a

Î(λx.s) := f if λx.s : στ , f ∈ D(στ), and ∀a ∈ Dσ : Îxas = fa

The definition is by induction on terms. We call Î the evaluation function of I .
We say that an assignment I evaluates a term s if Î is defined on s.

Definition. An interpretation is an assignment that evaluates every term. A stan-

dard interpretation is an interpretation whose restriction to types is a standard

frame. A frame D is admissible if every assignment into D is an interpretation.

Proposition 4.1.1 Every standard frame is admissible.

Proposition 4.1.2 (Coincidence) Let I and J be assignments that agree on all

types and on the free names of s. Then the evaluation functions Î and Ĵ agree

on s (either both yield the same value or both are undefined).

Proof By induction on s. �

Proposition 4.1.3 A frame D is admissible if there is an assignment into D that

evaluates every closed term.
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Proof By Proposition 4.1.2 we know that every assignment into D evaluates ev-

ery closed term.

Let I be an assignment that evaluates every closed term. We show by in-

duction on |N s| (the number of free names) that I evaluates every term s. If

|N s| = 0, the claims follows by assumption since s is closed. Otherwise, let

x ∈ N s. By the inductive hypothesis we know that there is a function f such

that Î(λx.s) = f . Hence we have Î((λx.s)x) = f(Ix). By the definition of Î for

abstractions we know that ÎxIx is defined on s. Hence Î is defined on s. �

Given an admissible frame, all assignments into the frame evaluate all terms

according to the evaluation equations we have for standard interpretations.

Proposition 4.1.4 For every interpretation I :
1. Îx = Ix
2. Î(st) = (Îs)(Ît)
3. Î(λx.s) = λa∈Iσ. Îxas if x : σ

If two interpretations agree on all free names of a term, they don’t necessarily

evaluate the term to the same value. Consider for instance the term λx.x and

two interpretations that disagree on the type of x. From this example we learn

that we have to look at the types of bound names if we want to formulate a

coincidence property for interpretations. We define the footprint of a term s
to be the set N s ∪ Σ where Σ is the set of all types σ such that s contains an

abstraction λx.t such that x : σ .

Proposition 4.1.5 (Coincidence)

Îs = Ĵs provided I and J are interpretations that agree on the footprint of s.

Proof By induction on s. �

The definition of interpretations and evaluation could be much simplified if

we only considered standard frames. In fact, as it comes to mathematical state-

ments (see Chapter 2), standard frames suffice. However, we will need admissible

nonstandard frames for the formulation of some of the main technical results.

Exercise 4.1.6 Argue that all assignments into a frame are interpretations if at

least one assignment into the frame is an interpretation.

Exercise 4.1.7 Let D and E be frames such that D(στ) ⊊ E(στ) for some func-

tion type στ . Explain why D((στ)μ) and E((στ)μ) are disjoint sets.
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4.2 Semantic Equivalence

We define semantic equivalence of terms as follows:

s ≈ t :⇐⇒ s and t have the same type and Îs = Ît for every interpretation I

In words, two terms are semantically equivalent if they have the same type and

yield the same value for every interpretation. Semantically equivalent terms can-

not be distinguished through interpretations.

Theorem 4.2.1 s ≈ t ⇐⇒ s ∼βη t

The theorem states that semantic equivalence coincides with βη-equivalence.

This means that the β- and η-law are valid for semantic equivalence and together

fully capture semantic equivalence. For now we are happy to state the theorem;

a proof is beyond the scope of this chapter.

The two directions of the theorem are known as soundness and complete-

ness. Soundness is the direction ⇐� , that is ∼βη ⊆ ≈. Completeness is the

direction �⇒, that is ≈ ⊆ ∼βη. Soundness is the property we used to justify the

α-, β- and η-law. We also used soundness to argue that substitution must not

capture. Hence it is no surprise that soundness holds. Completeness, on the

other hand, says that the β- and η− law capture all properties of the λ-notation

as it comes to semantic equivalence. This is an interesting and non-obvious fact.

One can show that two terms of the same type are semantically equivalent

if and only if they evaluate to the same value in every standard interpretation

(Friedman’s theorem [28]). Hence there is no need to consider nonstandard in-

terpretations as it comes to semantic equivalence.

Corollary 4.2.2 Two λ-free terms are semantically equivalent if and only if they

are identical.

Proof Let s and t be λ-free terms that are semantically equivalent. Then s and t
are βη-normal and βη-equivalent. By Theorem 3.8.3 we know that s and t are

α-equivalent. Since s and t are λ-free, they must be identical. �

Exercise 4.2.3 Argue that from the results stated it follows that semantic equiv-

alence is decidable.

Exercise 4.2.4 Argue that from the results stated it follows that semantic equiv-

alence is compatible and stable.

Exercise 4.2.5 Find terms s and t such that s ≈ t and s 	β t.
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Io = {0,1}
I⊥ = 0

I� = 1

I¬ = λa∈Io. if a=0 then 1 else 0

I(∨) = λa∈Io. λb∈Io. if a=0 then b else 1

I(∧) = λa∈Io. λb∈Io. if a=0 then 0 else b

I(→) = λa∈Io. λb∈Io. if a=0 then 1 else b

I(=σ ) = λa∈Iσ. λb∈Iσ. if a=b then 1 else 0

I(∃σ ) = λf∈I(σo). if f=(λa∈Iσ.0) then 0 else 1

I(∀σ ) = λf∈I(σo). if f=(λa∈Iσ.1) then 1 else 0

Figure 4.1: Requirements for logical interpretations

4.3 Simple Type Theory

We are now ready to define the logic we will be working with. We fix a base type o
for the truth values and names for the logical operations:

⊥,� : o

¬ : oo

∧,∨,→ : ooo

=σ : σσo for every type σ

∀σ ,∃σ : (σo)o for every type σ

We call the names for the logical operations logical constants, and all other

names variables. Since there are no other constants but logical constants, we

often just say constant if we mean logical constant. Terms whose type is o are

called formulas. The base type o is pronounced like the latin letter o. We refer

to the base types that are different from o as sorts and reserve the letter α for

sorts. We fix a sort ι (pronounced like the latin letter i) to be used in examples.

A logical interpretation is an interpretation that interprets o as the set {0,1}
and the constants as one would expect. Formally, we require that a logical inter-

pretation I satisfies the conditions stated in Figure 4.1. Given a logical interpre-

tation, formulas express mathematical statements about the objects provided by

the interpretation. Given a formula s and a logical interpretation I , we say s is

true in I if Îs = 1, and s is false in I if Îs = 0.
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4 Interpretation and Specification

We have now set up a logic that represents mathematical statements as terms

and accounts for their meaning through interpretations. In particular, we have

a formal definition of what it means that a mathematical statement is true. The

logic agrees with the presentation in Chapter 2. There the notion of an inter-

pretation is not explicit, but the way the interpretations of types and names are

described certainly agrees with the notion of a logical standard interpretation.

We call the logical language given by typed terms, formulas and logical inter-

pretations STT, which abbreviates simple type theory. The name simple type

theory originated with Church [20], who presented the first STT-like logic.

Proposition 4.3.1 (Logical Coincidence) Îs = Ĵs provided I and J are logical

interpretations that agree on all types and all variables in the footprint of s.

Proof Straightforward consequence of Proposition 4.1.5. �

We now define a variety of technical terms and notations that will be useful in

the following. We useV s to denote the set of all variables that are free in S. Note

thatN s−V s contains exactly the constants that occur in s. We use the notations

Nσ s := {x ∈ N s | x : σ } and Vσs := {x ∈ V s | x : σ }. We use ≡ to denote

the constant =o. The constants ⊥, �, ¬, ∧, ∨, →, ≡ are called propositional

constants, the constants =σ are called identities, and the constants ∀σ and ∃σ
are called quantifiers. A formula is called identity-free if it contains no identity,

and quantifier-free if it contains no quantifier. Formulas of the form s =σ t are

called equations. The constants =στ , ∀στ , and ∃στ where σ and τ are types

are referred to as higher-order constants. Note that high-order identities tests

identity of functions, and that higher-order quatifiers quantify over functions. A

higher-order formula is a formula that contains a higher-order constant.

A relational type is a type that can be obtained with the grammar σ ::= β |
σ . . .σo where β ranges over base types. Roughly speaking, relational types do

not involve functions into sorts, but just functions into o. A type of the form

σ1 . . . σnα where n ≥ 1 is always non-relational. A relational name is a name

whose type is relational. Note that all propositional constants are relational. The

identity =ιι and the quantifier ∀ιι are examples for non-relational constants. A

term is relational if its type is relational and all its free names are relational.

We use the word model as a synonym for logical interpretation. By a standard

model we mean a logical standard interpretation, and by a nonstandard model

we mean a logical nonstandard interpretation. We write I � s if and only if I is a

model and s is a formula that is true in I . Given a model I and a formula s, either

I � s or I � ¬s, and I 
 s if and only if I � ¬s. We express I � s equivalently by

saying I satisfies s, or I is a model of s.
Let A be a set of formulas. We say a logical interpretation I is a model of A

if I satisfies every formula s ∈ A. We write I � A to say that I is a model of A.
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Moreover, we use the notations

NσA := {x | ∃s ∈ A : x ∈Nσ s }
VσA := {x | ∃s ∈ A : x ∈ Vσs }

If the context suffices for disambiguation, we omit the type subscripts of =σ ,

∃σ , and ∀σ . We write s ≠ t for ¬(s = t), ≡ for =o, and s �≡ t for ¬(s ≡ t).
Moreover, we adopt the notational conventions stated in § 2.3 and arrange the

following conventions for the quantifiers:

∀x.s � ∀(λx.s) ∃x.s � ∃(λx.s)
∀xy.s � ∀(λx.∀(λy.s)) ∃xy.s � ∃(λx.∃(λy.s))
∀x∃y.s � ∀(λx.∃(λy.s)) ∃x∀y.s � ∃(λx.∀(λy.s))

Exercise 4.3.2 Find formulas that satisfy the following properties.

a) A logical interpretation satisfies the formula if and only if it interprets the

sort ι as a set that has exactly one element.

b) A logical interpretation satisfies the formula if and only if it interprets the

sort ι as a set that has at most two elements.

Exercise 4.3.3 Let x : ι, y : ι, z : ι, and f : ιo be different variables. Say for each

of the following formulas what it means that a logical standard interpretation

satisfies it.

a) fx → fy

b) x≠y → fx → fy → fz

Why is the meaning of the formulas not obvious for logical interpretations that

are not standard?

Exercise 4.3.4 Let U : (σo)o be a variable and I be a logical interpretation that

satisfies the formulas U(λx.�) and ∀fx. Uf → fx.

a) Is the function IU uniquely determined?

b) Can you describe the function IU explicitly?

Exercise 4.3.5 Let U, E : (σo)o be variables. Find formulas that employ no other

constants but ⊥, �, ¬, →, and =(σo)σo and satisfy the following properties. Take

Exercise 4.3.4 for inspiration.

a) An interpretation satisfies the formula if and only if it interprets U as the

universal quantifier at σ .

b) An interpretation satisfies the formula if and only if it interprets E as the

existential quantifier at σ .
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Exercise 4.3.6 STT comes with a redundant set of constants.

a) Specify ⊥, ¬, �, ∀σ , ∃σ , ∧, ∨, and → just using the identities =σ . That is,

find terms that use no other constants but identities and that every logical

interpretation evaluates to the values the listed constants are evaluated to.

b) Assume → and ∀σo and specify =σ .

Hint: Review Chapter 2.

4.4 Specification of the Natural Numbers

STT provides a fair collection of logical operations but comes without the nat-

ural numbers. We will now show that STT can specify (i.e., express) the natural

numbers for standard interpretations. The specification will use ideas that first

appeared in 1889 in Peano’s axiomatization of the natural numbers [53]. Read

the article Peano axioms in Wikipedia to know more.

We start from infinite graphs of the form ◦→◦→◦→· · · which we call chains.

Each chain is a faithful representation of the natural numbers: The initial node

is 0, the successor of the initial node is 1, and so on. We formalize chains as

follows.

A chain is a triple (N, o, S) such that N is an infinite set, o ∈ N , S ∈ N → N , and

N = {o, So, S(So), . . . }. We call o the origin and S the successor function of the

chain.

Here are two examples for how we can construct a chain:

1. N = N, o = 0, S = λn∈N. n+ 1.

2. N = {�, {�}, {{�}}, . . .}, o = �, S = λn∈N. {n}.
The definition of chains is not in a form that can be expressed in simple type

theory. Thus we need an equivalent characterization of chains that can be ex-

pressed in simple type theory. Given a function f ∈ X → X, we call a set P ⊆ X
f -closed if fx ∈ P whenever x ∈ P . Given a chain, a set of nodes is S-closed if

and only if it is closed under reachability.

Proposition 4.4.1 Let o ∈ N and S ∈ N → N . Then (N, o, S) is a chain if and

only if o ∉ RanS, S is injective, and P = N for every S-closed set P ⊆ N that

contains o.

Proof We can picture (N, o, S) as a graph. Since S is a function N → N , every

node has exactly one outgoing edge. The condition o ∉ RanS means that o has

no incoming edge, and injectivity of S means that every node has at most one

incoming edge. Hence we know that the nodes reachable from o yield a chain.
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The third condition makes sure that there are no nodes that are not reachable

from o. �

The new characterization of chains translates directly into STT. We fix a sortN
and names o : N and S : NN and obtain the formula chain as the conjuction of

three formulas:

1. ∀x. Sx≠o
2. ∀xy. Sx=Sy → x=y
3. ∀p. po → (∀x. px → p(Sx)) → (∀x.px)
We say that the formula chain specifies chains and refer to the three subformulas

of chain as the axioms of the specification.

Proposition 4.4.2 A logical standard interpretation I satisfies the formula chain
if and only if (IN, Io, IS) is a chain.

The third axiom of chain is known as the induction axiom since it justifies

natural induction: To show that a property p holds for all numbers, show that it

holds for 0 and that it holds for x + 1 whenever it holds for x ∈ N.

Given o and S, it is easy to specify addition. We choose a name + : NNN and

specify addition by the conjunction of two formulas:

1. ∀y. o +y = y
2. ∀xy. Sx +y = x + Sy
The formulas specify addition by induction on the first argument. The specifica-

tion exploits that every natural number has either the form o or Sx, and that we

can express the sum Sx +y as the sum x + Sy whose first argument is smaller

(i.e., closer to the origin). From the perspective of programming, one would say

that one has defined a procedure for addition that computes by recursion on

its first argument. Inductive definitions have been used in mathematics for a

long time. They are also fundamental for programming, where one speaks of re-

cursive definitions (i.e., recursive procedures, recursive data types). In case you

don’t feel comfortable with inductive definitions, get yourself acquainted with

functional programming. (There are plenty of textbooks, ML and Haskell are the

most popular languages.)

Given addition, we can write a term leq : NNo that evaluates to a predicate

that tests whether its first argument is less or equal than its second argument:

leq := λxy. ∃z. x + z = y

Now we can write a term finite : (No)o that evaluates to a predicate that tests

whether a set of natural numbers is finite:

finite := λp. ∃x∀y. py → leqy x
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Exercise 4.4.3 (Multiplication) Specify multiplication · : NNN using addition.

Exercise 4.4.4 (Order) Specify the less-or-equal predicate ≤: NNo for natural

numbers in three different ways:

a) Inductively using ∀N .

b) With ∃N using addition.

c) With ∀No quantifying over S-closed sets.

Exercise 4.4.5 (Induction Axiom) From the proof of Proposition 4.4.1 you know

that the induction axiom in the specification of chains is needed to exclude nodes

that are not reachable from the origin (so-called junk nodes).

a) Draw examples of graphs that satisfisfy the first and second axiom for chains

but contain junk nodes.

b) The induction axiom can be replaced by other formulas. One possibility is

∀p.∃p → (∀x.p(Sx) → px) → p0. Draw pictures to understand what sets

of nodes this formula excludes.

c) Can you think of other formulas that can replace the induction axiom?

d) Explain why∀p. (∀x.p(Sx) → px)→ p0 cannot replace the induction axiom.

Exercise 4.4.6 (Finiteness) Let f : σσ be a variable.

a) Find a term injective : (σσ)o such that a logical standard interpretation sat-

isfies the formula injectivef if and only if it interprets f as an injective func-

tion.

b) Find a term surjective : (σσ)o such that a logical standard interpretation

satisfies the formula surjectivef if and only if it interprets f as a surjective

function.

c) Find a formula finite that is satisfied by a logical standard interpretation if

and only if it interprets the type σ as a finite set. Hint: A set X is finite if and

only if every injective function X → X is surjective.

Exercise 4.4.7 Find an infinite set A of formulas such that every finite subset

of A has a standard model but A does not have a standard model.

Exercise 4.4.8 (Transitive Closure) Let R ⊆ X × X. The transitive closure of R is

R+ := { (x,y) ∈ X × X | ∀R′ ⊆ X ×X : R′ transitive ∧ R ⊆ R′ �⇒ (x,y) ∈ R′ }.
In words we can say that R+ is defined as the intersection of all transitive rela-

tions that contain R. One can show that R+ is the least transitive relation that

contains R.

In STT we represent relations as functions ιιo. Give a term TC : (ιιo)ιιo that in

logical standard interpretations evaluates to a function that yields the transitive

closure of a relation. Use the variables x,y, z : ι and r , r ′ : ιιo.
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Exercise 4.4.9 (Termination) A binary relation R is terminating if there exists

no infinite sequence x0, x1, x2, . . . such that (xn, xn+1) ∈ R for all n ∈ N. Let r :

σσo be a variable. Find a term terminates : (σσo)o such that a logical standard

interpretation satisfies the formula terminatesr if and only if it interprets r
as the characteristic function of a terminating relation. Do not use the natural

numbers. Hint: A relation R does not terminate if and only if there exists a

nonempty R-closed subset of DomR.

Exercise 4.4.10 (Pairs) Let variables pair : στα, fst : ασ , and snd : ατ be given.

Find a formula that is satisfied by a logical standard interpretation I if and only

if Iα is in bijection with the set Iσ × Iτ and pair, fst, and snd are interpreted as

the pairing and projection functions.

Exercise 4.4.11 (Lists) Let variables nil : α, cons : σαα, hd : ασ , and tl : αα
be given. Find a formula that is satisfied by a logical standard interpretation if

and only if α represents all lists over σ and nil, cons, hd, and tl represent the list

operations. Make sure α contains only elements that are reachable from nil by

finitely many applications of cons.

4.5 Validity, Satisfiability, Logical Equivalence

A formula is valid if it is true in every logical interpretation, and satisfiable if it

is true is some logical interpretation. A formula is unsatisfiable if it is not satis-

fiable. Valid formulas express logical laws (e.g. ¬¬x = x). A satisfiable formula

expresses a fact that is true in at least one logical interpretation. An unsatisfiable

formula expresses a statement that is false in every logical interpretation (e.g.,

¬x = x).

Proposition 4.5.1 A formula s is valid iff its negation ¬s is unsatisfiable.

Valid formulas express properties of the logical operations. Since we can

specify domains like, for instance, the natural numbers with formulas, we can

express properties of specifiable domains as validity properties. For instance,

take the formula chain, which specifies the natural numbers, and a formula s
that expresses some property that involves the natural numbers. We know the

following:

1. If the formula chain→ s is valid, s is true in every standard model of chain.

2. If the formula chain→ ¬s is valid, s is false in every standard model of chain.

3. Up to representation a standard model of chain interprets N as the set of

natural numbers, o as zero, and S as the successor function λn∈N. n+ 1.
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Thus, if we have an algorithm that verifies the validity of formulas, we can use

this algorithm to verify properties of the natural numbers.

A formula is weakly valid if it is true in every standard model. Clearly, every

valid formula is weakly valid. On the other hand, we will show in § 10.2 that

there are weakly valid formulas that are not valid.

Two terms are logically equivalent if they have the same type and evaluate to

the same value for every logical interpretation. Note that semantically equivalent

terms are always logically equivalent. Logic equivalennce reduces to validity.

Proposition 4.5.2 Let s and t be terms of the same type. Then s and t are logi-

cally equivalent iff the formula s = t is valid.

Proposition 4.5.3 Logic equivalence is a compatible and stable relation on terms.

Exercise 4.5.4 Find an unsatisfiable formula sx such that ∃s is satisfiable.

Exercise 4.5.5 Find an unsatisfiable formula sx≠tx such that s≠t is satisfiable.

Exercise 4.5.6 Find a satisfiable formula that has no free variable and is not

valid.

Exercise 4.5.7 Find terms that are logically equivalent but not semantically

equivalent.

Exercise 4.5.8 Argue the semantic equivalence of the formulas ∀f and ∀x.fx.

Exercise 4.5.9 Determine for each of the following statements whether it is true

or false. If the statement is false, give a counterexample.

a) Either s is satisfiable or ¬s is satisfiable.

b) Either s is valid or ¬s is valid.

c) Either s is valid or ¬s is satisfiable.

d) If s and t are valid, then s ∧ t is valid.

e) If s and t are satisfiable, then s ∧ t is satisfiable.

f) If s ∧ t is satisfiable, then both s and t are satisfiable.

g) If s ∨ t is satisfiable, then s is satisfiable or t is satisfiable.

h) If s ∨ t is valid, then s is valid or t is valid.

i) If s → t is satisfiable and s is satisfiable, then t is satisfiable.

j) If ∃s is satisfiable, then sx is satisfiable if x not free in s.

k) If ∀s is satisfiable, then st is satisfiable.
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l) If ∀s is valid, then st is valid.

m) If st ≠ su is satisfiable, then t ≠ u is satisfiable.

n) If s � t is satisfiable, then s and ¬t are satisfiable or t and ¬s are satisfiable.

o) If s ≠ t is satisfiable, then sx ≠ tx is satisfiable if x that is not free in s ≠ t.

Exercise 4.5.10 Express validity in terms of logic equivalence and logic equiva-

lence in terms of validity.

4.6 Propositional Logic

Propositional logic is a straigthforward logic that has numerous applications in

Computer Science. We will obtain propositional logic as a subsystem of simple

type theory. The formulas of propositional logic are obtained with the proposi-

tional constants ⊥, �, ¬, ∧, ∨, →, ≡ and variables of type o. With propositional

formulas one can express the de Morgan Law ¬(x ∧ y) = ¬x ∨¬y for conjunc-

tion and the Contraposition Law x → y ≡ ¬y → ¬x for implication. We give a

rigorous definition of propositional formulas as formulas of simple type theory.

Definition. A propositional variable is a variable of type o. A propositional for-

mula is a λ-free formula where every free name is either a propositional variable

or a propositional constant. A tautology is a valid propositional formula.

The de Morgan Law and the Contraposition Law stated above are examples of

equational tautologies. Peirce’s Law ((x → y) → x) → x is an example of a

nonequational tautology.

Proposition 4.6.1 A formula is propositional if and only if it can be obtained

with the grammar s ::= x | ⊥ | � | ¬s | s ∧ s | s ∨ s | s → s | s ≡ s where x ranges

over propositional variables.

When we evaluate a propositional formula, we only need to know the values

of the propositional variables occurring in the formula. Thus to determine the

satisfiability and validity of a formula s, there is no need to consider full-blown

logical interpretations. Rather it suffices to consider the functions V s → {0,1}.
Since V s is finite, there are only finitely many such functions, and thus satisfia-

bility and validity of propositional formulas are decidable. In fact, satisfiability

of propositional formulas is the canonical NP-complete problem.

Proposition 4.6.2 Satisfiability of propositional formulas is NP-complete.
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4.7 First-Order Predicate Logic

First-order predicate logic extends propositional logic by adding the quantifiers

∀α and ∃α, the identities =α, and variables of type α1 . . . αnβ where n ≥ 0. Recall

that β ranges over base types and α ranges overs sorts (all base types but o).

What makes first-order predicate logic first-order is the fact that quantifiers and

identities are only available for sorts, and that functional variables can only have

sorts as argument types. The first and the second axiom of the specification of

chains are formulas of first-order predicate logic. The third axiom is not since it

quantifies over a function type αo.

Definition. A first-order variable is a variable whose type has the form α1 . . . αnβ
where n ≥ 0, α1, . . . , αn are sorts and β is a base type. A first-order formula is a

formula s that can be obtained with the grammar

x ::= first-order variable

t ::= xt . . . t
s ::= t | ⊥ | � | ¬s | s ∧ s | s ∨ s | s → s | s ≡ s | t =α t | ∀αx.s | ∃αx.s

where α ranges over sorts. Note that the pattern xt . . . t subsumes x, and hence

first-order variables are terms of category t. Also note that the grammar only

generates typed terms. Every first-order formula is β-normal since abstractions

can only appear as arguments of quantifications.

An example of a first-order formula is (¬∀x.px(fx)) ≡ ∃x.¬px(fx) where

x : ι, f : ιι, and p : ιιo are first-order variables. The induction axiom of § 4.4

is not first-order since it contains the higher-order quantifier ∀No. There are

formulas that contain neither quantifiers nor identities and are not first-order.

An example is x ∧ px.

A first-order formula is pure if it is relational and identity-free. Note that a

first-order formula is relational if and only if it contains no variables of a type

α1 . . . αnα where n ≥ 1. A first-order constant is either a propositional constant

or one of the constants =α,∀α, ∃α where α ranges over sorts. A first-order name

is a first-order constant or a first-order variable. A first-order term is a λ-free

term s such that the type of s is a sort and every name that occurs in s is a

first-order variable.

Exercise 4.7.1 Give a β-normal formula that contains only first-order names but

is not first-order.

Exercise 4.7.2 The following formulas are all valid. For each formula determine

the types of the occurring variables. Moreover, decide for each of the formulas

whether it is propositional and whether it is first-order. For first-order formulas

also decide whether they are pure.
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a) f(f(fx)) → fx

b) ∀αxy. x=y → y=x
c) (∀αx. fx ∧ gx) ≡ (∀αx. fx) ∧ (∀αy. gy)
d) (∀αx. fx ∧ gx) ≡ (∀α f)∧ (∀αg)
e) x=α y ≡ ∀f . fx → fy

f) ∃x.x

Exercise 4.7.3 Find a first-order formula that is logically equivalent to f =αβ g.

Exercise 4.7.4 Find a propositional formula that is logically equivalent to the

higher-order formula ∀p. pxy ∨¬pxy .

4.8 Remarks

Simple type theory originated in 1940 with Church [20]. Ten years later

Henkin [35] introduced nonstandard interpretations and showed that Church’s

proof system can prove exactly the valid formulas. A textbook covering sim-

ple type theory is Andrews [3]. Simple type theory is a prominent example of

a higher-order logic. There are higher-order logics with more expressive type

systems [8]. Simple type theory provides the logical base of the proof assistants

Isabelle [52] and HOL [34].

The usual accounts of first-order logic and type theory (e.g., Andrews [3])

distinguish between logical constants, nonlogical constants, and variables. In

contrast, we just have logical constants and variables. Our variables act both as

nonlogical constants and as variables in the proper sense. Given a term, its free

variables act as nonlogical constants and its bound variables act as variables in

the proper sense. The unification of nonlogical constants and variables simplifies

the semantic definitions.
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In Chapter 3 we learned how to write (simply typed) terms. In Chapter 4 we

learned how to give these terms meaning using logical interpretations. In this

chapter we will begin learning to reason deductively. The process of reasoning

we introduce will be mechanical and will apply only to syntax (terms). On the

other hand, we must take care that the reasoning process respects semantics

(logical interpretations).

Formulas (terms of type o) are interpreted either as 0 (false) or 1 (true) in

any logical interpretation. A formula can either be valid (1 in all logical inter-

pretations), satisfiable (1 in some logical interpretation), or unsatisfiable (1 in no

logical interpretations). Suppose we want to determine a formula s is valid. We

could introduce a proof system for validity. On the other hand, s is valid if and

only if ¬s is unsatisfiable. For this reason we can instead give a proof system

for unsatisfiability. Accordingly we will define a tableau refutation calculus for

finite sets of β-normal formulas A. In order for the calculus to correspond to the

semantics, we must establish two facts:

• Refutation Soundness: If A is refutable, then A is unsatisfiable. (In particular,

if ¬s is refutable, then s is valid.)

• Completeness: If A is unsatisfiable, then A is refutable. (In particular, if s is

valid, then ¬s is refutable.)

Refutation soundness will be easy to justify since it will follow from soundness

of each rule. Completeness will be more challenging.

In this chapter we will focus on tableaux for the propositional fragment of

simple type theory. Propositional formulas are formulas where the only free

names are propositional constants (⊥, �, ¬, ∨, ∧ and ≡) and variables of type

o. There is an easy naive algorithm for deciding satisfiability of a propositional

formula: Consider each possible assignment of values 0,1 to each variable p : o
that occurs in the formula. The formula is satisfiable if and only if one of these

assignments leads to evaluating the formula as 1. Satisfiability of propositional

formulas (SAT) is a well-known example of an NP-complete problem. In fact,

SAT was the first problem shown to be NP-complete [21]. Since satisfiability is

decidable, validity and unsatisfiability are decidable as well.

Tableaux will consider a different algorithm for deciding unsatisfiability of

finite sets of propositional formulas. Tableaux will scale to larger fragments of
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simple type theory.

5.1 An Example: Peirce’s Law

Let us consider an interesting formula called Peirce’s Law:

((p → q) → p) → p

Here we assume p, q : o are (distinct) names. We can argue that Peirce’s Law is

valid by considering logical interpretations.

Let I be any logical interpretation. The interpretation I(→) of implication

must be the function in B → B → B such that

I(→)ab =

{
0 if a = 1 and b = 0

1 if a = 0 or b = 1

for a, b ∈ B. The following proposition is obvious.

Proposition 5.1.1 For any formulas s and t and any logical interpretation I :
• If I � s → t, then I � t or I � ¬s.
• If I � ¬(s → t), then I � s and I � ¬t.

Assume Peirce’s Law were not valid. Then there must be some logical inter-

pretation I such that

I � ¬(((p → q)→ p) → p).

Consequently,

I � ¬p

and

I � ((p → q) → p.

Hence either I � p or I � ¬(p → q). We cannot have I � p since this contradicts

I � ¬p. So we must have I � ¬(p → q). This means I � ¬q and I � p, which

again contradicts I � ¬p. Therefore, there can be no such logical interpretation

I . In other words, Peirce’s Law is valid. We summarize this argument in the

form of a tree in Figure 5.1. This tree is our first example of a tableau. The root

of the tree contains the negation of Peirce’s Law. Each child node represents a

consequence of its ancestors. We represent the case split by splitting the main

branch into two branches.
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¬(((p → q)→ p)→ p)
(p → q) → p

¬p

p
¬(p → q)

p
¬q

Figure 5.1: Tableau for Peirce’s Law

T→
s → t

t | ¬s T¬→
¬(s → t)

s,¬t T¬
¬s, s

Figure 5.2: Tableau rules for implication

5.2 Tableau Rules: Implication

A branch is a finite set of β-normal formulas. We sometimes refer to a single

formula s as a branch, by which we mean the singleton branch {s}. Note that

Figure 5.1 contains two branches. The construction of the tableau in Figure 5.1

starting from the branch containing only the negation of Peirce’s Law requires

the three rule schemas shown in Figure 5.2. These are the first three rule schemas

of what will be our tableau refutation calculus TaS for simple type theory. The

remaining rules will be given throughout the chapter.

Each branch in Figure 5.1 is clearly unsatisfiable because each branch contains

both p and ¬p.

In general, a tableau rule (or rule) is a tuple 〈A,A1, . . . , An〉 of branches with

n ≥ 0 such that A ⊊ Ai for each i ∈ {1, . . . , n}. We can also write this tuple in

the form
A

A1 · · · An

We refer to A as the head of this tableau rule and refer to each Ai as an alterna-

tive of the rule. If n ≥ 2 we say the rule is branching.

We usually indicate a certain set of tableau rules by giving a rule schema. For

example T→ in Figure 5.2 is the set of rules 〈A,A1, A2〉 where for some s, t : o we

have s → t ∈ A, t ∉ A, ¬s ∉ A, A1 = A ∪ {t} and A2 = A ∪ {¬s}. We say a rule

applies to A if A is the head of the rule.

From an operational point of view, the tableau rule T→ can be applied to A
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whenever s → t is in A, t ∉ A and ¬s ∉ A. Applying T→ in such a situation yields

two branches A∪ {t} and A∪ {¬s}.
While schemas like T→ and T¬→ are technically sets of rules, we will often

refer to them simply as rules.

A tableau calculus is given by a set of tableau rules. Relative to a tableau

calculus, we say a branch A is closed if 〈A〉 is a rule in the calculus. T¬ is an

example of such a rule and explains technically why we can say both branches of

the tableau in Figure 5.1 are closed. If a branch is not closed, we say it is open.

A branch is maximal if it is either closed or no rule applies to it.

Given a tableau calculus T we can define the set of T -refutable branches

inductively.

• If 〈A,A1, . . . , An〉 is a rule in T and Ai is T -refutable for all i ∈ {1, . . . , n},
then A is T -refutable.

(The base case of this inductive definition is when n = 0.) We will simply say

refutable when the tableau calculus T is clear in context.

We will often consider fragments of the full language. A fragment F is simply

a set of β-normal terms. An F -branch is a branch that only contains formulas

from F . We refer to the set of all β-normal terms as the full fragment.

We can now define soundness and completeness of a tableau calculus T rel-

ative to a fragment F .

• Refutation Soundness: T is refutation sound with respect to F if every

refutable F -branch is unsatisfiable.

• Completeness: T is complete with respect to F if every unsatisfiable F -

branch is refutable.

We can also define a related notion.

• Verification Soundness: T is verification sound with respect to F if every

maximal open F -branch is satisfiable.

A tableau rule is sound if either A is unsatisfiable or Ai is satisfiable for some

i ∈ {1, . . . , n}. (When n = 0, this simply means that A is unsatisfiable.) We

will only consider sound tableau rules. Most tableau rules will satisfy a stronger

property: If I � A, then I � Ai for some i ∈ {1, . . . , n}.

Proposition 5.2.1 Let R be a tableau rule

A
A1 · · · An

Suppose for any logical interpretation I , if I � A, then I � Ai for some i ∈
{1, . . . , n}. Then the rule R is sound.

Exercise 5.2.2 Prove Proposition 5.2.1.
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¬((q → p) → p)
q → p
¬p

p ¬q

Figure 5.3: Tableau with a maximal open branch

Exercise 5.2.3 a) Is the tableau rule 〈�〉 sound?

b) Let A be a branch. Let s : o be such that s ∉ A and ¬s ∉ A. Is the tableau rule

〈A,A∪ {s}, A∪ {¬s}〉 sound?

Exercise 5.2.4 Let 〈A,A1, . . . , An〉 be any tableau rule. Argue that if Ai is satisfi-

able for some i ∈ {1, . . . , n} then A is satisfiable. (Hint: It is extremely easy.)

A set of rules is sound if every rule in the set is sound. Soundess of the rule

sets T→ and T¬→ follow from Propositions 5.1.1 and 5.2.1.

Exercise 5.2.5 Prove soundness of the rule set T¬ using Proposition 5.2.1.

Proposition 5.2.6 Let T be a tableau system. If every rule in T is sound, then T
is refutation sound with respect to the full fragment.

Proof Suppose sound tableau rules have been used to extend a branch A to

closed branches A1, . . . , An. If A were satisfiable, then there would be some i ∈
{1, . . . , n} such that Ai is satisfiable, which is impossible since the rules defining

closedness are also sound. �

Since we will only include sound rules in our tableau calculi, all of our tableau cal-

culi will be refutation sound with respect to the full fragment. Hence our tableau

calculi will be refutation sound with respect to any fragment. Consequently, it

was not necessary to define refutation soundness with respect to fragments. On

the other hand, completeness and verification soundness will depend strongly

on the fragment in question.

We will primarily be interested in using tableaux to show unsatisfiability of a

branch A. In some special cases we will be able to use tableau to show satisfiabil-

ity of a branch A. Consider the formula (q → p) → p. To show that this formula

is not valid, we must find a logical interpretation I such that I � ¬((q → p)→ p).
Consider the tableau in Figure 5.3. The right branch is a maximal open branch.

Note that any interpretation I such that Ip = 0 and Iq = 0 will satisfy all the

formulas on the right branch, including ¬((q → p) → p).
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T⊥
⊥

T¬�
¬�

T¬
¬s, s

T¬¬
¬¬s
s

T∧
s ∧ t
s, t

T¬∧
¬(s ∧ t)
¬s | ¬t

T∨
s ∨ t
s | t T¬∨

¬(s ∨ t)
¬s,¬t T→

s → t

t | ¬s T¬→
¬(s → t)

s,¬t

Tbq
s ≡ t

s, t | ¬s,¬t Tbe
¬(s ≡ t)
s,¬t | t,¬s

Figure 5.4: Propositional tableau rules (TaP)

5.3 Tableau Rules: Propositional Connectives

We have given enough rules to reason about formulas that only involve implica-

tion and variables of type o. In this section we give rules which suffice to reason

about formulas using the propositional constants ⊥, �, ¬, ∨, ∧ and ≡. The rules

for ⊥ are given by

T⊥
⊥

That is, any branch containing ⊥ is closed.

We have already given a rule schema T¬ involving negation. This is not yet

enough to completely reason about negation. For example, we cannot yet refute

the unsatisfiable formula ¬¬⊥. Just as T¬→ applies to negated implications, we

will need rules for reasoning about negations in front of each logical constant.

In particular, we need a rule for a negation in front of a negation.

T¬¬
¬¬s
s

For the remaining propositional connectives, there is one rule for the connec-

tive and one rule for a negation in front of the connective. These rules (along

with all previous rules) are summarized in Figure 5.4. These rules define our

tableau system TaP for propositional logic. We will soon show this tableau sys-

tem terminates, is verification sound and is complete. This implies TaP gives a

decision procedure for propositional logic.

Exercise 5.3.1 For each of the rules in Figure 5.4 give true statements analogous

to the statements in Proposition 5.1.1 so that soundness of each rule schema
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a∨ c
¬(b ∧ d)
c → d

¬(b → a)
b,¬a

a
c

¬b ¬d
d ¬c

Figure 5.5: Tableau refutation

follows from Proposition 5.2.1. For example, the statement corresponding to the

T∧ rule is:

• If I � s ∧ t, then I � s and I � t.

Consider the following example. Fix distinct variables a, b, c, d : o. We infor-

mally associate these variables with four sentences.

• a means “Alice is happy.”

• b means “Bob is happy.”

• c means “Carol is happy.”

• d means “Dave is happy.”

Suppose either Alice or Carol is happy: a∨c. Suppose Bob and Dave cannot both

be happy: ¬(b ∧ d). Finally suppose Dave is happy whenever Carol is happy:

c → d. The tableau refutation in Figure 5.5 demonstrates that Alice is happy

whenever Bob is happy: b → a. That is, the branch with a ∨ c, ¬(b ∧ d), c → d
and ¬(b → a) is unsatisfiable.

Exercise 5.3.2 Let a, b, c : o be variables. Give tableau refutations of the follow-

ing branches.

a) a � a

b) {a ≡ b, b � a}
c) {a ≡ b, b ≡ c, a � c}
d) (a∧ b → c) � (a → b → c)

e) (a → b) � (¬b → ¬a)
f) ¬(a∧ b) � ¬a∨¬b
g) ¬(a∨ b) � ¬a∧¬b
h) ¬((a → b)∨ (b → a))
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5.4 Termination

Given a tableau system T and a fragment F , a T -F -chain is a finite or infinite

sequence of F -branches

A0 ⊊ A1 ⊊ A2 ⊊ · · ·

where for each i there is some rule in T with Ai as its head and Ai+1 as one of

its alternatives. We will simply say chain when T and F are clear in context. The

notion of a chain allows us to define termination.

• Termination: T is terminating with respect to F if there is no infinite chain.

Completeness follows from termination and verification soundness.

Lemma 5.4.1 Suppose T is a tableau system that is terminating and verification

sound. If a branch A is unsatisfiable and not refutable, then there is some branch

A′ where A′ is not refutable and some rule in T with A as head and A′ as an

alternative.

Proof A is not closed since it is not refutable. A is not a maximal open branch

since it is unsatisfiable and T is verification sound. Hence some rule in T has

the form 〈A,A1, . . . , An〉 with n ≥ 1. If Ai were refutable for every i ∈ {1, . . . , n},
then A would be refutable. Hence there is some i ∈ {1, . . . , n} such that Ai is not

refutable. Choose A′ to be this Ai. �

Proposition 5.4.2 Suppose T is a tableau system that is terminating and verifi-

cation sound. Then T is complete.

Proof Let A be an unsatisfiable branch. Assume A is not refutable. We will

inductively construct an infinite chain

A0 ⊊ A1 ⊊ A2 ⊊ · · ·

contradicting termination. We will further ensure that each An is unsatisfiable

and not refutable. Let A0 be A. Assume we have

A0 ⊊ A1 ⊊ A2 ⊊ · · · ⊊ An

Since An is unsatisfiable and not refutable, we can apply Lemma 5.4.1 to obtain

An+1 which is unsatisfiable (since An ⊊ An+1) and not refutable and such that

A0 ⊊ A1 ⊊ A2 ⊊ · · · ⊊ An ⊊ An+1

is a chain. We inductively obtain an infinite chain, contradicting termination. �
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We will now show TaP terminates (on the full fragment). For the termination

proof it helps to define a finite superset of a branch A that none of the TaP rules

can escape. For this reason, we define the subterm universe SU(A) of a branch

A to be the set

{s|s : o is a subterm of some t ∈ A} ∪ {¬s|s : o is a subterm of some t ∈ A}

Clearly A ⊆ SU(A).

Exercise 5.4.3 Let A be a branch. Argue that each rule 〈A′, A1, . . . , An〉 in TaP is

such that if A′ ⊆ SU(A), then Ai ⊆ SU(A) for all i ∈ {1, . . . , n}.

We now show TaP terminates.

Proposition 5.4.4 TaP terminates.

Proof Suppose there were an infinite chain

A0 ⊊ A1 ⊊ A2 ⊊ · · ·

Clearly A0 ⊆ SU(A0). By Exercise 5.4.3 we know Ai ⊆ SU(A0). Hence we have

A0 ⊊ A1 ⊊ A2 ⊊ · · · ⊆ SU(A0)

This is impossible since SU(A0) is finite. �

5.5 Propositional Examples

In this section we give the construction of several tableau refutations in full

detail. The reader should understand how the final tableau in each example is

constructed and why every branch in the final tableau is closed.

Example 5.5.1 We refute the following branch:

a→ c ∧ d
¬c
a

The rule T→ applied to a→ c ∧ d gives

a→ c ∧ d
¬c
a

c ∧ d ¬a
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We apply T∧ to c ∧ d and obtain

a→ c ∧ d
¬c
a

c ∧ d
c
d

¬a

Example 5.5.2 We refute the following branch:

a∧ b → c ∧ d
¬(¬c → ¬a∨¬b)

The rule T¬→ applied to ¬(¬c → ¬a∨¬b) gives

a∧ b → c ∧ d
¬(¬c → ¬a∨¬b)

¬c
¬(¬a∨¬b)

We apply T¬∨ to ¬(¬a∨¬b) and obtain

a∧ b → c ∧ d
¬(¬c → ¬a∨¬b)

¬c
¬(¬a∨¬b)

¬¬a
¬¬b

Applying T→ to a∧ b → c ∧ d we obtain

a∧ b → c ∧ d
¬(¬c → ¬a∨¬b)

¬c
¬(¬a∨¬b)

¬¬a
¬¬b

c ∧ d ¬(a∧ b)
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The rule T∧ applied to c ∧ d gives

a∧ b → c ∧ d
¬(¬c → ¬a∨¬b)

¬c
¬(¬a∨¬b)

¬¬a
¬¬b

c ∧ d
c
d

¬(a∧ b)

We apply T¬∧ to ¬(a∧ b) and obtain

a∧ b → c ∧ d
¬(¬c → ¬a∨¬b)

¬c
¬(¬a∨¬b)

¬¬a
¬¬b

c ∧ d
c
d

¬(a∧ b)
¬a ¬b

Example 5.5.3 We refute the following branch:

a∧ (a → b) � a∧ b

The rule Tbe applied to a∧ (a → b) � a∧ b gives

a∧ (a → b) � a∧ b
a∧ (a → b)
¬(a∧ b)

a∧ b
¬(a∧ (a → b))

We apply T∧ to a∧ (a → b) and obtain

a∧ (a → b) � a∧ b
a∧ (a → b)
¬(a∧ b)

a
a→ b

a∧ b
¬(a∧ (a → b))
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Applying T→ to a → b we obtain

a∧ (a → b) � a∧ b
a∧ (a → b)
¬(a∧ b)

a
a→ b
b ¬a

a∧ b
¬(a∧ (a → b))

The rule T¬∧ applied to ¬(a∧ b) gives

a∧ (a → b) � a∧ b
a∧ (a → b)
¬(a∧ b)

a
a→ b
b

¬a ¬b ¬a

a∧ b
¬(a∧ (a → b))

We apply T∧ to a∧ b and obtain

a∧ (a → b) � a∧ b
a∧ (a → b)
¬(a∧ b)

a
a→ b
b

¬a ¬b ¬a

a∧ b
¬(a∧ (a → b))

a
b

Applying T¬∧ to ¬(a∧ (a → b)) we obtain

a∧ (a → b) � a∧ b
a∧ (a → b)
¬(a∧ b)

a
a→ b
b

¬a ¬b ¬a

a∧ b
¬(a∧ (a → b))

a
b

¬a ¬(a → b)
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The rule T¬→ applied to ¬(a → b) gives

a∧ (a → b) � a∧ b
a∧ (a → b)
¬(a∧ b)

a
a→ b
b

¬a ¬b ¬a

a∧ b
¬(a∧ (a → b))

a
b

¬a ¬(a → b)
¬b

Example 5.5.4 We refute the following branch:

a → b � ¬a∨ b

The rule Tbe applied to a → b � ¬a∨ b gives

a → b � ¬a∨ b
a→ b

¬(¬a∨ b)
¬a∨ b
¬(a → b)

We apply T¬∨ to ¬(¬a∨ b) and obtain

a → b � ¬a∨ b
a→ b

¬(¬a∨ b)
¬¬a
¬b

¬a∨ b
¬(a → b)

Applying T→ to a → b we obtain

a → b � ¬a∨ b
a→ b

¬(¬a∨ b)
¬¬a
¬b

b ¬a

¬a∨ b
¬(a → b)

The rule T¬→ applied to ¬(a → b) gives

a → b � ¬a∨ b
a→ b

¬(¬a∨ b)
¬¬a
¬b

b ¬a

¬a∨ b
¬(a → b)

a
¬b
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We apply T∨ to ¬a∨ b and obtain

a → b � ¬a∨ b
a→ b

¬(¬a∨ b)
¬¬a
¬b

b ¬a

¬a∨ b
¬(a → b)

a
¬b

¬a b

Example 5.5.5 We refute the following branch:

a ≡ ¬b
a ≡ b

The rule Tbq applied to a ≡ b gives

a ≡ ¬b
a ≡ b
a
b

¬a
¬b

We apply Tbq to a ≡ ¬b and obtain

a ≡ ¬b
a ≡ b
a
b

¬b ¬a
¬¬b

¬a
¬b

Applying Tbq to a ≡ ¬b we obtain

a ≡ ¬b
a ≡ b

a
b

¬b ¬a
¬¬b

¬a
¬b

a ¬¬b
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5.6 Completeness of the Implication Fragment

Let TaP→ be the tableau system given by the rules T→, T¬→, T¬¬ and T¬. We

define the set PropImp of propositional implication formulas by the grammar

s ::= p | ¬s | s → s

p : o is a variable

In this section we will prove the following completeness result.

Theorem 5.6.1 (Restricted Propositional Completeness)

1. TaP→ is verification sound with respect to PropImp.

2. TaP→ is complete with respect to PropImp.

By Proposition 5.4.4 we know TaP→ terminates. Hence by Proposition 5.4.2

part (2) of Theorem 5.6.1 follows from part (1). We dedicate the rest of this

section to proving part (1).

To prove the verification soundness we must construct an interpretation. Re-

call our attempt to refute ¬((q → p) → p ending with the tableau in Figure 5.3.

The right branch

A = {¬((q → p) → p), (q → p),¬p,¬q}

is open and maximal. Is A satisfiable? In other words, is there a logical interpre-

tation I such that I � A? Yes, as mentioned above, any logical interpretation I
such that Ip = 0 and Iq = 0 will satisfy A. We can use a similar idea to prove

the following general result.

For any set A of formulas and logical interpretation I we say I respects A if

Ip =
{

1 if p ∈ A
0 if p ∉ A

for all variables p : o. The following proposition is obvious.

Proposition 5.6.2 For any set A there is a logical interpretation I which respects

A.

Suppose I respects A. Clearly I � p for names p ∈ A. We cannot in general

conclude I � A (i.e., I � s for all s ∈ A). However, we will soon define a property

of sets A of formulas which will guarantee I � A if A contains only PropImp-

formulas.

We define the following evidence conditions of a set A of formulas:

E¬ If ¬s ∈ A, then s ∉ A.
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E¬¬ If ¬¬s ∈ A, then s ∈ A.

E→ If s → t ∈ A, then ¬s ∈ A or t ∈ A.

E¬→ If ¬(s → t) ∈ A, then s ∈ A and ¬t ∈ A.

We say a set A of formulas is PropImp-evident if it satisfies these four evidence

conditions. (For the rest of this section we will simply say evident for PropImp-

evident.)

We will prove two lemmas.

Lemma 5.6.3 Let A be a branch. If A is open and maximal with respect to TaP→,

then A is evident.

Lemma 5.6.4 Let A be an evident set of formulas and I be a logical interpretation

which respects A. For all s ∈ PropImp, we have the following:

1. If s ∈ A, then Îs = 1.

2. If ¬s ∈ A, then Îs = 0.

The first part of Theorem 5.6.1 follows from these two lemmas. Suppose A
is open and maximal. Let I be a logical interpretation which respects A. By

Lemma 5.6.3 it is evident. By Lemma 5.6.4 I � A. Hence A is satisfiable.

We now prove the two lemmas. The proof of the first lemma is very easy.

Proof (Proof of Lemma 5.6.3) We verify each of the four properties.

E¬ Assume E¬ does not hold. Then {s,¬s} ⊆ A for some formula s. In this case

T¬ applies and A is closed, contradicting our assumption.

E¬¬ Assume E¬¬ does not hold. We must have ¬¬s ∈ A and s ∉ A. In this case

T¬¬ applies, contradicting our assumption that A is maximal.

E→ Assume E→ does not hold. We must have s → t ∈ A, ¬s ∉ A and t ∉ A. In

this case T→ applies, contradicting our assumption that A is maximal.

E¬→ Assume E¬→ does not hold. We must have ¬(s → t) ∈ A and {s,¬t} �⊆ A.

In this case T¬→ applies, contradicting our assumption that A is maximal. �

The proof of the second lemma is by mutual induction on s ∈ PropImp. That

is, we will prove both parts of the lemma at the same time, and we are allowed

to use the induction hypothesis from either part if the formula is smaller.

Proof (Proof of Lemma 5.6.4) We need to prove for every s ∈ PropImp the two

properties hold:

(1s ) If s ∈ A, then Îs = 1.

(2s ) If ¬s ∈ A, then Îs = 0.

68 2009/8/2



5.7 Completeness of the Propositional Fragment

There are three kinds of formulas in PropImp: variables p, negations ¬s and

implications s → t. We consider each case.

For the base case of the induction we consider a variable p ∈ PropImp.

(1p): Assume p ∈ A. We must prove Ip = 1. This is trivial since Ip was defined

to be 1.

(2p): Assume ¬p ∈ A. We must prove Ip = 0. By E¬ we know p ∉ A. By

definition Ip = 0.

Next we consider ¬s ∈ PropImp. Our inductive hypothesis is that both (1s)

and (2s) hold.

(1¬s): Assume ¬s ∈ A. We must prove Î(¬s) = 1. By (2s ) we know Îs = 0 and so

Î(¬s) = 1.

(2¬s): Assume ¬¬s ∈ A. We must prove Î(¬s) = 0. By E¬¬ we have s ∈ A. By

(1s) we know Îs = 1 and so Î(¬s) = 0.

Finally we consider s → t ∈ PropImp. Our inductive hypothesis is that (1s ),

(2s ), (1t) and (2t) hold.

(1s→t): Assume s → t ∈ A. We must prove Î(s → t) = 1. By E→ either ¬s ∈ A or

t ∈ A. If ¬s ∈ A then Îs = 0 by (2s ) and so Î(s → t) = 1. If t ∈ A then Ît = 1

by (1t) and so Î(s → t) = 1. In either case we have the desired result.

(2s→t) Assume ¬(s → t) ∈ A. We must prove Î(s → t) = 0. By E¬→ both s ∈ A
and ¬t ∈ A. By (1s ) and (2t) we have Îs = 1 and Ît = 0. Hence Î(s → t) = 0. �

5.7 Completeness of the Propositional Fragment

We define the set Prop of propositional formulas by the grammar

s ::= p | ⊥ | � | ¬s | s → s | s ∧ s | s ∨ s | s ≡ s
p : o is a variable

We can now state the completeness result we want to prove.

Theorem 5.7.1 (Propositional Completeness)

1. TaP is verification sound with respect to Prop.

2. TaP is complete with respect to Prop.

We will use the an interpretation I which respects A. We will also use two

lemmas. Since there are more tableau rules we need to expand our notion of

evident to include more evidence conditions.

We will say A is Prop-evident if the following 12 evidence conditions hold:
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E¬ For all formulas s, s ∉ A or ¬s ∉ A.

E⊥ ⊥ ∉ A.

E¬� ¬� ∉ A.

E¬¬ If ¬¬s ∈ A, then s ∈ A.

E→ If s → t ∈ A, then ¬s ∈ A or t ∈ A.

E¬→ If ¬(s → t) ∈ A, then s ∈ A and ¬t ∈ A.

E∨ If s ∨ t ∈ A, then s ∈ A or t ∈ A.

E¬∨ If ¬(s ∨ t) ∈ A, then ¬s ∈ A and ¬t ∈ A.

E∧ If s ∧ t ∈ A, then s ∈ A and t ∈ A.

E¬∧ If ¬(s ∧ t) ∈ A, then ¬s ∈ A or ¬t ∈ A.

Ebq If s ≡ t ∈ A, then {s, t} ⊆ A or {¬s,¬t} ⊆ A.

Ebe If ¬(s ≡ t) ∈ A, then {s,¬t} ⊆ A or {¬s, t} ⊆ A.

Note that this includes the four evidence conditions from the previous section.

For the remainder of this section we will simply say evident for Prop-evident.

Lemma 5.7.2 Let A be a branch. If A is open and maximal with respect to TaP,

then A is evident.

Lemma 5.7.3 Let A be an evident set of formulas and I be a logical interpretation

which respects A. For all propositional formulas s, we have the following:

1. If s ∈ A, then Îs = 1.

2. If ¬s ∈ A, then Îs = 0.

We can prove Lemmas 5.7.2 and 5.7.3 using the same techniques as Lem-

mas 5.6.3 and 5.6.4. We sketch the proofs and leave the reader to check the

details.

Proof (Proof of Lemma 5.7.2) E¬,E⊥,E¬� since A is open.

E¬¬ since T¬¬ does not apply.

E→ since T→ does not apply.

E¬→ since T¬→ does not apply.

E∨ since T∨ does not apply.

E¬∨ since T¬∨ does not apply.

E∧ since T∧ does not apply.

E¬∧ since T¬∧ does not apply.

Ebq since Tbq does not apply.

Ebe since Tbe does not apply. �
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Proof (Proof of Lemma 5.7.3) The proof is by induction on the propositional

formula s:

• For variables p use E¬.

• For � use E¬�.

• For ⊥ use E⊥.

• For ¬s use E¬¬.

• For s → t use E→ and E¬→.

• For s ∨ t use E∨ and E¬∨.

• For s ∧ t use E∧ and E¬∧.

• For s ≡ t use Ebq and Ebq. �

Finally, we can prove propositional completeness.

Proof (Proof of Theorem 5.7.1) The first part of Theorem 5.7.1 follows from

Lemmas 5.7.2 and 5.7.3. Suppose A is open and maximal. Let I be a logical

interpretation which respects A. By Lemma 5.7.2 it is evident. By Lemma 5.7.3

I � A. Hence A is satisfiable.

As with Theorem 5.6.1, the second part of Theorem 5.7.1 follows from the

first part and termination via Propositions 5.4.2 and 5.4.4. �

Implicit in the proof above is the fact that any search for a refutation will

either terminate with a refutation or with a satisfiable set of propositional for-

mulas extending the set we intended to refute. Consequently, we have a decision

procedure for propositional formulas.

5.8 Remarks
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6 Tableaux with Quantifiers

In Chapter 5 we gave rules for the propositional logical constants and proved

the corresponding calculus is complete for propositional logic. In this chapter

we will give tableau rules for quantifiers ∀ and ∃. The given calculus will be

complete for pure first-order formulas. In the next chapter we will give the final

tableau rules for handling equality. Note, however, that we can already reason to

some degree with equality once we have quantifiers by using Leibniz equality.

6.1 Tableau Rules for Quantifiers

We will give a tableau system TaQ for quantifiers by including all of the tableau

rules from TaP (see Figure 5.4) and adding rules for quantifiers. In particular, a

branch A will be closed (with respect to TaQ) if and only if ⊥ ∈ A, ¬� ∈ A, or

{s,¬s} ⊆ A for some s.
Let p : τo, f : στ , x : σ and y : τ be distinct variables. Consider the branch

A0 with two formulas: ∃x.p(fx) and ∀y.¬py . Clearly A0 is unsatisfiable: Sup-

pose I were a model of A0. Let P be Ip and F be If . Since I � ∃x.p(fx),
there must be some X ∈ Iσ such that P(FX) = 1. On the other hand, since

I � ∀y.¬py we must have PY = 0 for all Y ∈ Iσ . Choosing Y to be FX we have

a contradition.

How can we model this semantic argument using tableau rules? Suppose we

add p(fx) to the branch A0 to obtain

A1 = A0 ∪ {p(fx)}

Next suppose we add ¬p(fx) to A1 to obtain

A2 = A1 ∪ {¬p(fx)}

Since p(fx) and ¬p(fx) are in A2, A2 will be closed. Our quantifier rules will

be such that 〈A0, A1〉 and 〈A1, A2〉 are rules of TaQ. Hence Figure 6.1 will be a

TaQ-refutation of A0.

Let us first consider the rule 〈A1, A2〉 and the following schema.

∀σ s
st

t : σ
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∃x.p(fx)
∀y.¬py
p(fx)
¬p(fx)

Figure 6.1: Tableau refutation with quantifiers

This schema indicates a set of rules including 〈A,A′〉 whenever ∀σ s ∈ A, t : σ ,

st ∉ A and A′ is A ∪ {st}. Is the rule 〈A1, A2〉 a member of this set of rules?

Recall that ∀y.¬py is notation for ∀τ(λy.¬py). Hence the rule schema would

allow us to add (λy.¬py)(fx) to the branch A1. This would not yield A2, as we

desired. We instead would like to obtain the β-normal form ¬p(fx).
Let [s] denote Bιs. Recall from Chapter 3 that Bιs yields a β-normal form for

s which is unique up to ∼α. Now we can give the appropriate rule schema T∀:

T∀
∀σ s
[st]

t : σ

The reader should check that 〈A1, A2〉 in our example is in the set of rules given

by this schema. (Hint: The particular type σ will be τ .) Soundness of each rule

in T∀ follows from Proposition 5.2.1 and the following fact:

• For any logical interpretation, if I � ∀σ s, then I � [st].
Next we turn to the rule 〈A0, A1〉. Here we used the formula ∃x.p(fx) to

justify adding p(fx) to the branch. The idea is that if there is some element

satisfying a property, then we can use the variable x to name such an element.

The correct rule schema T∃ justifying this step is

T∃
∃σ s
[sx]

x : σ fresh

We say a variable x is fresh for a set A if there is no term t ∈ A such that x is

free in t. Note that x is fresh in A0 so that 〈A0, A1〉 is a rule generated by T∃. We

say a variable x is free in a set A if there is a term t ∈ A such that x is free in t.
Consider the following simpler (and incorrect) rule schema without the fresh-

ness condition:

∃σ s
[sx]

x : σ

Using this rule, we could refute the branch {∃x.px, ¬px} even though this

branch is clearly satisfiable. That is, one rule in the incorrect schema is 〈A,A′〉

74 2009/8/2



6.1 Tableau Rules for Quantifiers

where A is {∃x.px, ¬px} and A′ is {∃x.px, ¬px, px}. Since A is satisfiable

and A′ is unsatisfiable, we know that the rule 〈A,A′〉 is not sound. Since we only

want sound rules in our tableau system, we require the freshness restriction.

Is every rule in the schema T∃ sound?

For all previous rules we have argued soundness by showing the stronger

property that a model of the head of the rule is also a model of one of the alter-

natives and applied Proposition 5.2.1. In this case we do not have this stronger

form of soundness. Consider the branch A = {∃ιp} where p : ιo and x : ι are

variables. Let I be a logical interpretation with Iι = {0,1}, Ix = 0, Ip0 = 0 and

Ip1 = 1. Clearly I � A. On the other hand, I �� px.

Every rule given by T∃ is sound, but this must be proven by returning to the

definition of soundness. A rule is sound if either the head is unsatisfiable or

one of the alternatives is satisfiable. Let 〈A,A ∪ {[sx]}〉 be a rule given by T∃
where ∃σ s ∈ A and x is fresh for A. Suppose the head A is satisfiable. Let I be

a logical interpretation with I � A. In particular, I � ∃s. Consequently, there is

some a ∈ Iσ such that Îsa = 1. Since x is fresh for A, we can apply Coincidence

(Proposition 4.1.2) to conclude Îxa t = Ît = 1 for all t ∈ A. Coincidence also

means that Îxa (sx) = Îsa = 1. Therefore, Ixa � A∪ {[sx]} and the alternative is

satisfiable, as desired.

As usual, we also have tableau rules for the negated version of the logical

constants.

T¬∀
¬∀σ s
¬[sx] x : σ fresh T¬∃

¬∃σ s
¬[st] t : σ

Note the similarity between the schemas T∀ and T¬∃ as well as between the

schemas T∃ and T¬∀. Combining these rules with the ones defining TaP, we

obtain a tableau calculus TaQ. All the rules defining TaQ are generated by the

schemas in Figure 6.2.

Example 6.1.1 We often must apply T∀ several times to the same formula with

different terms t. (The same is true for T∃.) For a simple example of this, we

show the formula (∀x.px) → pa ∧ pb is valid (where p : σo and x,a, b : σ are

variables) by refuting its negation. After applying T¬→ and T¬∧ we have

¬((∀x.px) → pa∧ pb), ∀x.px, ¬(pa∧ pb)
¬pa ¬pb

We close the left branch by applying T∀ to ∀x.px with a.

¬((∀x.px) → pa∧ pb), ∀x.px, ¬(pa∧ pb)
¬pa, pa ¬pb
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T⊥
⊥

T¬�
¬�

T¬
¬s, s

T¬¬
¬¬s
s

T∧
s ∧ t
s, t

T¬∧
¬(s ∧ t)
¬s | ¬t

T∨
s ∨ t
s | t T¬∨

¬(s ∨ t)
¬s,¬t T→

s → t

t | ¬s T¬→
¬(s → t)

s,¬t

Tbq
s ≡ t

s, t | ¬s,¬t Tbe
¬(s ≡ t)
s,¬t | t,¬s T∀

∀σ s
[st]

t : σ

T∃
∃σ s
[sx]

x : σ fresh T¬∀
¬∀σ s
¬[sx] x : σ fresh T¬∃

¬∃σ s
¬[st] t : σ

Figure 6.2: Tableau rules for TaQ

We close the right branch using T∀ applied to ∀x.px with b.

¬((∀x.px) → pa∧ pb), ∀x.px, ¬(pa∧ pb)
¬pa, pa ¬pb, pb

Clearly TaQ does not terminate. For a simple example let x : σ be a variable

and x0, x1, x2, . . . be an infinite sequence of distinct variables of type σ . Consider

the infinite chain

A0 ⊊ A1 ⊊ A2 ⊊ · · ·

where A0 is {∀x.px} and each Ai+1 is Ai ∪ {pxi}.

Proposition 6.1.2 TaQ does not terminate (on the full fragment).

The example above is somewhat unsatisfying. Technically we have given a

chain and proven nontermination. However, there was no real motivation for

applying T∀ to ∀x.px with each xi. Likewise, we could have applied T∃ to

∃x.px infinitely many times (with fresh xi) to obtain a chain. In the examples

above we obtained a refutation by applying T∃ at most once and T∀ only with

terms that only contain variables that occur free in the branch. Such restrictions

would rule out the infinite chain above. However, such a restriction on T∀ would

be a bit too strong, as the next example demonstrates.

Example 6.1.3 [Drinker’s Paradox] Consider the valid formula

∃x.dx → ∀y.dy
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where d : ιo and x,y : ι are variables. This is sometimes called the “Drinker’s

Paradox” (see Wikipedia), though it is not really a paradox. One can translate

the formula into natural language as follows: In every bar, there is someone who,

if he drinks, then everyone drinks. We show the Drinker’s Paradox is valid by

refuting it’s negation.

¬∃x.dx → ∀y.dy

Note that there are no variables of type ι free in the branch. If we were only

allowed to apply T¬∃ to terms containing free names in the branch, then we

would be stuck. However, if we apply T¬∃ using x, then we have

¬∃x.dx → ∀y.dy
¬(dx →∀y.dy)

Applying a few more rules we obtain

¬∃x.dx → ∀y.dy
¬(dx → ∀y.dy), dx, ¬∀y.dy, ¬dy

We now apply T¬∃ to ¬∃x.dx →∀y.dy again, this time using y .

¬∃x.dx → ∀y.dy
¬(dx → ∀y.dy), dx, ¬∀y.dy, ¬dy

¬(dy →∀y.dy)

Applying T¬→ to ¬(dy → ∀y.dy) adds dy to the branch completing the refu-

tation.
¬∃x.dx → ∀y.dy

¬(dx → ∀y.dy), dx, ¬∀y.dy, ¬dy
¬(dy →∀y.dy), dy

We will revisit restricting the T∀ and T∃ to only use variables free in the

branch later. Examples such as Example 6.1.3 will be dealt with by allowing the

use of a fixed default variable of the right type if no variable of the right type

occurs free in the branch. For now we will informally describe why the tableau

system would still not terminate even with such a restriction.

Consider the formula

∀x∃y.rxy
The only free variable is r , which is clearly of a different type than x. Suppose

x0 is the default variable we are allowed to use in such a situation. Applying T∀
with x0 we add ∃y.rx0y to the branch. Applying T∃ with a fresh variable x1 we

add rx0x1 to the branch. Now since x1 is free in the branch we can apply T∀
and obtain ∃y.rx1y . Clearly we can keep applying rules in this manner forever.
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6.2 First-Order Examples

In this section we give a number of examples of tableau refutations restrict-

ing ourselves to first-order formulas (without equality). Since the formulas are

first-order, all quantifiers will be over a sort α. For simplicity assume all bound

variables are of a particular sort ι.

Example 6.2.1 We refute the following branch:

∀x∃y.rxy
¬∀x∃yz.rxy ∧ ryz

T¬∀ applied to ¬∀x∃yz.rxy ∧ ryz using x gives

∀x∃y.rxy
¬∀x∃yz.rxy ∧ ryz
¬∃yz.rxy ∧ ryz

We apply T∀ to ∀x∃y.rxy with x and then T∃ to ∃y.rxy with y to obtain

∀x∃y.rxy
¬∀x∃yz.rxy ∧ ryz

¬∃yz.rxy ∧ ryz, ∃y.rxy, rxy
T¬∃ applied to ¬∃yz.rxy ∧ ryz using y gives

∀x∃y.rxy
¬∀x∃yz.rxy ∧ ryz

¬∃yz.rxy ∧ ryz, ∃y.rxy, rxy
¬∃z.rxy ∧ ryz

We now revisit ∀x∃y.rxy this time instantiating with y to add ∃y′.ryy′ to

the branch. Notice that substituting y for x in ∃y.rxy required renaming the

bound variable y to be y′. Applying T∃ to ∃y′.ryy′ with z we obtain

∀x∃y.rxy
¬∀x∃yz.rxy ∧ ryz

¬∃yz.rxy ∧ ryz, ∃y.rxy, rxy
¬∃z.rxy ∧ ryz, ∃y′.ryy′, ryz

We complete the refutation by applying T¬∃ to ¬∃z.rxy∧ryz using z followed

by T¬∧.
∀x∃y.rxy

¬∀x∃yz.rxy ∧ ryz
¬∃yz.rxy ∧ ryz, ∃y.rxy, rxy
¬∃z.rxy ∧ ryz, ∃y′.ryy′, ryz

¬(rxy ∧ ryz)
¬rxy ¬ryz
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Example 6.2.2 We prove (∀x.px ∧ qx)→ ∀x.px by refuting its negation using

the following tableau.

¬((∀x.px ∧ qx) →∀x.px)
∀x.px ∧ qx, ¬∀x.px, ¬px, px ∧ qx, px, qx

Example 6.2.3 We refute the following branch:

∀x.px → qx, ∀x.px, ¬∀x.qx

Applying T¬∀ with x and T∀ to both universally quantified formulas with x we

obtain the refutation.

∀x.px → qx, ∀x.px, ¬∀x.qx, ¬qx, px, px → qx
qx ¬px

Example 6.2.4 The equation (∃x.px∧q) ≡ (∃x.px)∧q is valid. Below we show

the refutation of one direction, leaving the full equivalence as an exercise.

∃x.px ∧ q
¬((∃x.px) ∧ q), px ∧ q, px, q

¬∃x.px, ¬px ¬q

Example 6.2.5 (Russell’s Law/Turing’s Law) How would you answer the follow-

ing questions?

1. On a small island, can there be a barber who shaves everyone who doesn’t

shave himself?

2. Does there exist a Turing machine that halts on the representation of a Turing

machine y if and only if y does not halt on the representation of y?

3. Does there exist a set that contains a set y as element if and only if y ∉ y? �

The answer to all 3 questions is no, and the reason is purely logical.

Russell’s or Turing’s Law: Let f : ιιo be a name and x,y : ι be names. We can

prove ¬∃x∀y.fxy ≡ ¬fyy by refuting its negation.

∃x∀y.fxy ≡ ¬fyy
∀y.fxy ≡ ¬fyy
fxx ≡ ¬fxx
fxx
¬fxx

¬fxx
¬¬fxx
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Exercise 6.2.6 Prove the validity of each of the following formulas by giving a

TaQ tableau refutation of its negation.

a) (∀x.px ∧ qx) ≡ (∀x.px) ∧∀x.qx
b) (∀x.px) ∨ (∀x.qx) → ∀x.px ∨ qx
c) (∃x.px ∨ qx) ≡ (∃x.px) ∨ ∃x.qx
d) (∃x.px ∧ qx)→ (∃x.px) ∧ ∃x.qx
e) (∃x.px ∧ q) ≡ (∃x.px)∧ q
f) (∀x.px ∨ q) ≡ (∀x.px) ∨ q
g) pa∨ pb → ∃x.px
Exercise 6.2.7 Give a TaQ tableau refutation of the branch with the three formu-

las
∀xy.rxy → ryx

∀xyz.rxy → ryz → rxz
¬∀x.(∃y.rxy) → rxx

6.3 Higher-Order Examples

We now consider a few higher-order examples. Many of these examples make

use of Leibniz equality.

Example 6.3.1 Let f : σσ , p : σo and x : σ be variables. We prove

∃f .∀xp.p(fx) → px by refuting its negation. Essentially we want to prove

that there is a function f such that for all x, fx is equal to x (in the sense of

Leibniz). In the first step we must give an instantiation term for the T¬∃ rule. We

use λx.x as this term. In this case, normalization will reduce

(λf .∀xp.p(fx) → px)(λx.x)

to

∀xp.px → px

Hence we obtain the following branch:

¬∃f∀xp.p(fx) → px
¬∀xp.px → px

Using the obvious rules we complete the refutation.

¬∃f∀xp.p(fx) → px
¬∀xp.px → px
¬∀p.px → px
¬(px → px)

px
¬px
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Example 6.3.2 Next we prove that ⊥ is not Leibniz equal to �. We start with a

formula asserting that ⊥ and � are Leibniz equal.

∀p.p⊥ → p�

The rule T∀ applied to ∀p.p⊥ → p� using ¬ gives

∀p.p⊥ → p�
¬⊥ → ¬�

We complete the refutation using propositional rules.

∀p.p⊥ → p�
¬⊥ → ¬�

¬� ¬¬⊥,⊥

We next give two tableau refutations which prove Leibniz equality is symmet-

ric. In both cases, we will refute the following branch:

∀p.pa → pb
¬∀p.pb → pa

That is, we begin by assuming a is Leibniz equal to b, but b is not Leibniz equal

to a.

Example 6.3.3 (Symmetry of Leibniz, Proof I) The rule T¬∀ applied to

¬∀p.pb → pa using p followed by T¬→ gives

∀p.pa → pb
¬∀p.pb → pa

¬(pb → pa), pb, ¬pa

Applying T∀ with λx.¬px followed by T→ we obtain the refutation

∀p.pa → pb
¬∀p.pb → pa

¬(pb → pa), pb, ¬pa, ¬pa → ¬pb
¬pb ¬¬pa

Example 6.3.4 (Symmetry of Leibniz, Proof II) We begin again with the branch

∀p.pa → pb
¬∀p.pb → pa
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This time instead of applying T¬∀ we start by applying T∀ using λx.∀p.px →
pa gives

∀p.pa → pb
¬∀p.pb → pa

(∀p.pa → pa)→ ∀p.pb → pa

We apply T→ to (∀p.pa → pa) →∀p.pb → pa and obtain

∀p.pa → pb
¬∀p.pb → pa

(∀p.pa → pa)→ ∀p.pb → pa
∀p.pb → pa ¬∀p.pa → pa

Note that the left branch is closed already. Two more rule applications close the

right branch.

∀p.pa → pb
¬∀p.pb → pa

(∀p.pa → pa)→ ∀p.pb → pa

∀p.pb → pa
¬∀p.pa → pa

¬(pa → pa), pa, ¬pa

Our final higher-order example of this section is a version of Cantor’s Theo-

rem. Consider a type σ . The type σo corresponds to sets of elements of type

σ . Cantor’s Theorem states that there are always more elements of σo than

there are elements of σ . One way to express this precisely is to say there is no

surjection from σ onto σo. The following formula

¬∃f∀g∃x.fx = g

where f : σσo, g : σo and x : σ are variables expresses Cantor’s Theorem. How-

ever, this formula contains an identity =σo at a type other than o. Consequently,

we cannot currently prove this version of Cantor’s Theorem. On the other hand,

we know that two functions are equal if they give the same result for any inputs.

Hence we can express Cantor’s Theorem as the formula

¬∃f .∀g.∃x.∀y.fxy ≡ gy

where y : σ is a variable distinct from x. We refute the negation of this version

of Cantor’s Theorem.

Example 6.3.5 (Cantor’s Theorem, Version I) We refute the following branch:

∃f∀g∃x∀y.fxy ≡ gy

82 2009/8/2



6.3 Higher-Order Examples

The rule T∃ applied to ∃f∀g∃x∀y.fxy ≡ gy using f gives

∃f∀g∃x∀y.fxy ≡ gy
∀g∃x∀y.fxy ≡ gy

We now want to apply T∀ with a term of type σo. We use the term λx.¬fxx.

We then apply T∃ to obtain

∃f∀g∃x∀y.fxy ≡ gy
∀g∃x.∀y.fxy ≡ gy
∃x∀y.fxy ≡ ¬fyy
∀y.fxy ≡ ¬fyy

We complete the refutation by applying T∀ to ∀y.fxy ≡ ¬fyy using x fol-

lowed by Tbq.

∃f∀g∃x∀y.fxy ≡ gy
∀g∃x∀y.fxy ≡ gy
∃x∀y.fxy ≡ ¬fyy
∀y.fxy ≡ ¬fyy
fxx ≡ ¬fxx
fxx
¬fxx

¬fxx
¬¬fxx

Exercise 6.3.6 (Cantor’s Theorem, Version II) Prove the validity of the follow-

ing version of Cantor’s Theorem by refuting its negation.

¬∃f∀g∃x∀p.p(fx) → pg

where f : ιιo, g : ιo, p : (ιo)o and x : ι are variables.

Exercise 6.3.7 Let f : ιιo, g : ιo, x : ι and h : (ιo)o be variables. Consider the

formula

∃g∀x∃h.h(fx) ∧¬hg

Determine if this formula is valid, unsatisfiable or neither. If it is unsatisfiable,

give a TaQ tableau refutation of it. If it is valid, give a TaQ tableau refutation of

its negation. If it is neither valid nor unsatisfiable, go to the next problem.

Exercise 6.3.8 Recall the Peano axiom of induction (where N is a sort and o : N ,

S : NN , p : No and x : N are variables):

∀p. po → (∀x. px → p(Sx)) → (∀x.px)
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Let induction refer to the Peano axiom of induction. The following formula says

that any nonempty set that is closed under predecessor must contain zero:

∀p.(∃x.px) ∧ (∀x.p(Sx) → px) → po

Let induction2 refer to this formula. Prove induction and induction2 are equiva-

lent by giving a TaQ refutation of

{induction,¬induction2}

and a TaQ refutation of

{¬induction, induction2}

Exercise 6.3.9 Give TaQ tableau refutations of the following formulas.

a) ∀p.(p¬) → p(λx.�) where p : (oo)o and x : o are variables.

b) ∀p.(p¬) → p(λx.⊥) where p : (oo)o and x : o are variables.

6.4 Completeness for Pure First-Order Formulas

Recall that pure first-order formulas are first-order formulas which contain no

equations and no variables of a type α1 . . . αnα where n ≥ 1. For simplicity we

will restrict our attention to one sort ι and the constants ¬, ∧ and ∀ι. We can

directly describe this fragment of pure first-order formulas by the grammar

s ::= px · · ·x | ¬s | s ∧ s | ∀ιx.s

where p : ι · · · ιo and x : ι are variables. We say A is a pure first-order branch if

it is a branch containing only formulas in this fragment.

Our goal in this section is to prove completeness of TaQ with respect to

the pure first-order fragment. We will actually prove completeness of a more

restricted tableau system TaQf where the applicability of T∀ and T¬∀ are re-

stricted.

Gödel is generally credited as the first to prove a completeness theorem for

first-order logic [31]. One could argue that Skolem was the first to prove com-

pleteness in [60]. Henkin later proved a completeness theorem for simple type

theory [35] and realized he could use some of the ideas to give a simpler com-

pleteness theorem for first-order logic [37]. Smullyan generalized Henkin’s tech-

niques to give a very modular proof of completeness. We use Smullyan’s abstract

consistency method for proving completeness of TaQf for pure first-order logic.

We will later use this same method to prove completeness of a tableau system

for simple type theory.
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T¬
¬s, s

T¬¬
¬¬s
s

T∧
s ∧ t
s, t

T¬∧
¬(s ∧ t)
¬s | ¬t

T f
∀

∀ιs
[sy]

y ∈H (A), A branch

T f
¬∀

¬∀ιs
¬[sy] y : ι fresh, (¬∀x.s) not evident on branch

Figure 6.3: Tableau rules for TaQf

Fix a variable x0 of type ι. This variable x0 will act as a default variable for

applying the T∀ rule when there is no variable of type ι free in the branch.

Let A be a set of formulas. We make the following definitions.

• Let VιA denote the set of variables x : ι free in A.

• For any set A of formulas, let H (A) be defined as follows:

H (A) :=
{
VιA if VιA �= �
{x0} otherwise.

We call H (A) the Herbrand universe of A. Note that the Herbrand universe

of A is always nonempty by construction.

• We say a formula ¬∀ιx.s is evident in A if ¬sxy ∈ A for some variable y : ι.

We now define TaQf to be the tableau calculus given by Figure 6.3. The fol-

lowing proposition is obvious.

Proposition 6.4.1 If a branch A is TaQf -refutable, then it is also TaQ-refutable.

Proof Every rule in TaQf is also a rule in TaQ. (The reader should verify this.) �

6.4.1 Termination of the Bernays-Schönfinkel Fragment

Clearly TaQf does not terminate on the pure first-order fragment. Consider the

formula

∀x.¬∀y.rxy

We can apply T f
∀ and T f

¬∀ in sequence to add formulas of the form ¬rx0x1,

¬rx1x2, and so on.
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On the other hand, TaQf does terminate if A is a branch only containing pure

first-order formulas of the form

∀x1 · · ·∀xn.s

where s is quantifier-free. This is easy to see: The Herbrand universe of A is

finite and will not become bigger as we apply rules. Hence the T f
∀ rule can only

be applied finitely many times. It is also easy to see that we could use the same

technique if A only contained formulas of the form

∃y1 · · · ∃ym∀x1 · · ·∀xn.s

where s is quantifier-free (assuming we include a rule like T∃ but restricted like

T f
¬∀).

This fragment is known as the Bernays-Schönfinkel fragment of first-order

logic. For this fragment we can show completeness simply by showing verifica-

tion soundness. As before, verification soundness follows by proving a Model

Existence Theorem for evident sets.

6.4.2 Evident Sets and Model Existence

As in the propositional case, we will describe evidence conditions that a set E
of formulas may satisfy.

E¬ If ¬s ∈ E, then s ∉ E.

E¬¬ If ¬¬s ∈ E, then s ∈ E.

E∧ If s ∧ t ∈ E, then s ∈ E and t ∈ E.

E¬∧ If ¬(s ∧ t) ∈ E, then ¬s ∈ E or ¬t ∈ E.

Ef∀ If ∀ιs ∈ E, then [sy] ∈ E for all y ∈H (E).

Ef¬∀ If ¬∀ιs ∈ E, then ¬[sy] ∈ E for some y : ι.

We say E is pure first-order evident (or simply evident) if it satisfies these evi-

dence conditions.

In analogy with the propositional case, we can prove the existence of a model

of any evident set.

Theorem 6.4.2 (Pure First-Order Model Existence) Let E be a set of pure first-

order formulas. If E is pure first-order evident, then there is a (standard) model

of E.

Proof Let I be a standard interpretation with

Iι =HE
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Ix = x

for each x ∈HE and

Ipx1 · · ·xn =
{

1 if px1 · · ·xn ∈ E
0 otherwise

for each variable p : ι · · · ιo and x1, . . . , xn ∈ HE. We will prove I � E by

inductively proving for every pure first-order s we have

(1s ) If s ∈ E, then I � s.
(2s ) If ¬s ∈ E, then I �� s.
Since every s ∈ E is pure first-order, the first fact ensures I � E.

We first consider s of the form px1 · · ·xn.

(1px1···xn ) Assume px1 · · ·xn ∈ E. By the choice of Ip we know I � px1 · · ·xn.

(2px1···xn ) Assume ¬px1 · · ·xn ∈ E. By E¬ we have px1 · · ·xn ∉ E. By the

choice of Ip we know I �� px1 · · ·xn.

We next consider s of the form ¬t.
(1¬t) Assume ¬t ∈ E. The inductive hypothesis (2t) implies I �� t and so I � ¬t.
(2¬t) Assume ¬¬t ∈ E. By E¬¬ we have t ∈ E and so I � t by the inductive

hypothesis (1t). Hence I �� ¬t.
We now consider s of the form t ∧u.

(1t∧u) Assume (t ∧ u) ∈ E. By E∧ we have t ∈ E and u ∈ E. By inductive

hypotheses (1t) and (1u) we have I � t and I � u and so I � t ∧u.

(2t∧u) Assume ¬(t ∧ u) ∈ E. By E¬∧ we have ¬t ∈ E or ¬t ∈ E. If ¬t ∈ E, then

I �� t by inductive hypothesis (2t) and so I �� t ∧u. If ¬u ∈ E, then I �� u by

inductive hypothesis (2u) and so I �� t ∧u.

We finally consider s of the form ∀ιx.t.
(1∀x.t) Assume (∀x.t) ∈ E. In order to prove I � ∀x.t we must prove (I)xy � t

for every y ∈ Iι. Let y ∈ Iι be given. That is, y ∈ H (E). By Ef∀ we know

txy ∈ E. By inductive hypothesis (1txy ) we have I � txy . This implies (I)xy � t as

desired.

(2∀x.t) Assume ¬(∀x.t) ∈ E. We first argue that there is some z ∈ H (E) such

that ¬txz ∈ E. By Ef¬∀ there is some y such that ¬txy ∈ E. If y ∈ H (E),
then we take z to be this y . Otherwise, x is not free in t and we take any

z ∈ H (E). (If x is not free in t, txy is the same as txz for any z.) By inductive

hypothesis (2txz ) we have I �� txz . Hence Ixz �� t and so I �� ∀x.t. �

Verification soundness follows immediately from the Model Existence Theo-

rem and the fact that open maximal branches are evident. Since we do not have
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C¬ If ¬s is in A, then s is not in A.

C¬¬ If ¬¬s is in A, then A∪ {s} is in Γ .

C∧ If s ∧ t is in A, then A∪ {s, t} is in Γ .

C¬∧ If ¬(s ∧ t) is in A, then A∪ {¬s} or A∪ {¬t} is in Γ .

Cf∀ If ∀ιs is in A, then A∪ {[sy]} is in Γ for all y ∈H (A).

Cf¬∀ If ¬∀ιs is in A, then A∪ {¬[sy]} is in Γ for some y .

Figure 6.4: Pure first-order abstract consistency conditions (must hold for

every A ∈ Γ )

termination, we cannot yet conclude completeness. A new idea (abstract consis-

tency) is required.

6.4.3 Abstract Consistency and the Extension Lemma

We say a branch A is TaQf -consistent (or consistent) if it is not TaQf -refutable.

Ultimately we will show completeness by showing every consistent branch is sat-

isfiable. Due to the Model Existence Theorem we know that it is enough to show

every consistent branch can be extended to an evident set. In particular, we are

interested in ways consistent sets can be extended while remaining consistent.

A (pure first-order) abstract consistency class is a set Γ of branches such

that every branch A ∈ Γ satisfies the conditions in Figure 6.4.

Lemma 6.4.3 (Extension Lemma) Let Γ be a pure first-order abstract consistency

class and A ∈ Γ . Then there exists a pure first-order evident set E such that

A ⊆ E.

Proof Let u0, u1, u2, . . . be an enumeration of all pure first-order formulas. We

construct a sequence A0 ⊆ A1 ⊆ A2 ⊆ · · · of branches such that every An ∈ Γ .
Let A0 := A. We defineAn+1 by cases. If there is no B ∈ Γ such that An∪{un} ⊆ B,

then let An+1 := An. Otherwise, choose some B ∈ Γ such that An∪{un} ⊆ B. We

consider two subcases.

1. If un is of the form ¬∀ιx.s, then choose An+1 to be B ∪ {¬sxy} ∈ Γ for some

variable y : ι. This is possible since Γ satisfies Cf¬∀.

2. Otherwise, then let An+1 be B.

Let E :=
⋃
n∈N

An. Note that HE ⊆
⋃
n∈N

HAn. (It is possible that H (An) = {x0}
for some n but that x0 ∉HE.) We show that E is evident.
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E¬ If ¬s and s are in E, then ¬s and s are in An for some n, contradicting C¬.

E¬¬ Assume ¬¬s is in E. Let n be such that un = s and r ≥ n be such that ¬¬s
is in Ar . Since An ∪ {s} ⊆ Ar ∪ {s} ∈ Γ (using C¬¬), we have s ∈ An+1 ⊆ E.

E∧ Assume s∧ t is in E. Let n,m be such that un = s and um = t. Let r ≥ n,m
be such that s ∧ t is in Ar . By C∧, Ar ∪{s, t} ∈ Γ . Since An ∪{s} ⊆ Ar ∪{s, t},
we have s ∈ An+1 ⊆ E. Since Am ∪ {t} ⊆ Ar ∪ {s, t}, we have t ∈ Am+1 ⊆ E.

E¬∧ Assume ¬(s ∧ t) is in E. Let n,m be such that un = s and um = t. Let

r ≥ n,m be such that ¬(s∧t) is in Ar . By C¬∧, Ar∪{¬s} ∈ Γ or Ar∪{¬t} ∈ Γ .
In the first case, An ∪ {¬s} ⊆ Ar ∪ {¬s} ∈ Γ , and so ¬s ∈ An+1 ⊆ E. In the

second case, Am∪{¬t} ⊆ Ar ∪{¬t} ∈ Γ , and so ¬t ∈ Am+1 ⊆ E. Hence either

¬s or ¬t is in E.

E∀ Assume ∀ιx.s is in E. Let y ∈ H (E) be given. Let n be such that un =
sxy . Let r ≥ n be such that ∀x.s is in Ar and y ∈ H (Ar ). By C∀ we have

Ar ∪ {sxy} ∈ Γ . Since An ∪ {un} ⊆ Ar ∪ {sxy}, we have sxy = un ∈ An+1 ⊆ E.

E¬∀ Assume ¬∀ιx.s is in E. Let n be such that un = ¬∀x.s. Let r ≥ n be such

that ¬∀x.s is in Ar . Since An ∪ {¬∀x.s} ⊆ Ar ∈ Γ , we have sxy ∈ An+1 ⊆ E
for some y by construction. �

6.4.4 Completeness

Let Γ fTaQ be the set of all branches A which are not TaQf -refutable. We will prove

Γ fTaQ is a pure first-order abstract consistency class and use this to prove TaQf is

complete with respect to pure first-order branches.

Lemma 6.4.4 Γ fTaQ is a pure first-order abstract consistency class.

Proof We must check six conditions.

C¬ Suppose ¬s, s ∈ A ∈ Γ fTaQ. Then we can refute A using T¬. Contradiction.

C¬¬ Let ¬¬s ∈ A ∈ Γ fTaQ. Suppose A∪{s} is not in Γ fTaQ. Then A∪{s} is refutable

and so A is refutable by T¬¬, a contradiction.

C∧ Let (s ∧ t) ∈ A ∈ Γ fTaQ. Suppose A ∪ {s, t} is not in Γ fTaQ. Then A ∪ {s, t} is

refutable. Hence A can be refuted using T∧. Contradiction.

C¬∧ Let ¬(s ∧ t) ∈ A ∈ Γ fTaQ. Suppose A ∪ {¬s} and A ∪ {¬t} are not in Γ fTaQ.

Then A∪{¬s} and A∪{¬t} are refutable. Hence A can be refuted using T¬∧.

Contradiction.

Cf∀ Let ∀ιx.s ∈ A ∈ Γ fTaQ. Suppose A ∪ {sxy} ∉ Γ fTaQ for some y ∈ H (A). Then

A∪ {sxy} is refutable. Hence A can be refuted using T f
∀ .
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Cf¬∀ Let ¬∀ιx.s ∈ A ∈ Γ fTaQ. Suppose A ∪ {¬sxy} ∉ Γ fTaQ for every y : ι. Then

A∪{¬sxy} is refutable for every y : ι. Hence A is refutable using T f
¬∀ and the

finiteness of A. Contradiction. �

Theorem 6.4.5 (Pure First-Order Completeness) TaQf is complete with respect

to pure first-order branches.

Proof Assume A is a pure first-order branch which is not TaQf -refutable. Then

A ∈ Γ fTaQ. By Lemma 6.4.4 Γ fTaQ is a pure first-order abstract consistency class. By

the Extension Lemma (Lemma 6.4.3) there is a pure first-order evident set E such

that A ⊆ E. By the Model Existence Theorem (Theorem 6.4.2) E is satisfiable.

Hence A is satisfiable. �

6.5 Remarks

In Exercise 6.2.6 the validity of certain quantifier laws such as

(∃x.px ∧ q) ≡ (∃x.px)∧ q

and

(∀x.px ∨ q) ≡ (∀x.px) ∨ q
have been established. Using quantifier laws such as these it is easy to transform

any first-order formula into a prenex form:

Q1x1 · · ·Qmxm.s

where each Qi is ∀ or ∃ and s is quantifier-free. Note that the prenex formula

∀x∃y.rxy

is satisfiable if and only if

∀x.rx(fx)
is satisfiable. In automated theorem proving, the new variable f is called a

Skolem function since Skolem considered such formulas in [60]. In this way,

we can reduce satisfiability of sets of first-order formulas to satisfiability of first

order formulas of the form

∀x1 · · ·∀xm.s
where s is quantifier-free.

Given a set A of first-order formulas, one may naturally consider the terms

generated by the grammar

t ::= ft · · · t
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where f : α1 · · ·αmα (withm ≥ 0) is free in A. This is the natural generalization

of the Herbrand universe H (A) from the pure first-order case to the general

first-order case. For simplicity, let us assume that for each sort α there is some

x : α free in A. In the general first-order case it makes sense to refine the

Herbrand universe to be Hn(A) by iteratively defining

H0(A) := {x : α|x is free in A}

and

Hn+1(A) := {ft1 · · · tm|t1, . . . , tm ∈Hn(A), f is free in A,m ≥ 0}.

Both Skolem [60] and Herbrand [38] considered such terms, so we could just as

well call it the Skolem universe.

In [60] Skolem showed that if A is a set of first-order formulas of the form

∀x1 · · ·∀xm.s

where s is quantifier-free, then there is some n such that unsatisfiability of A be-

comes clear by considering terms fromHn(A). Herbrand showed related results

in [38]. Taken together, the results in [60] and [38] can be taken as a proof of

completeness of first-order logic. (As noted earlier, the first proof of complete-

ness was given by Gödel [31].) Certainly the techniques of Skolem and Herbrand

in [60] and [38] had a significant impact years later in the field of automated

deduction [25]. The Herbrand Award for Distinguished Contributions to Auto-

mated Deduction is named after Herbrand.

Henkin’s proof of completeness [37] primarily consisted of extending a con-

sistent set to a maximally consistent set. This is the essence of the proof of the

Extension Lemma (Lemma 6.4.3). A set is maximally consistent if adding any

new closed formula to the set would make the set inconsistent. Once one has a

maximally consistent set, obtaining a model of this set is easy.

In [43] Hintikka showed how to give a model of a set which may not be max-

imally consistent. It is enough to have a set that satisfies certain closure condi-

tions. Hintikka called such a set a model set. We have called such a set evident.

The fact that evident sets are satisfiable is sometimes called Hintikka’s Lemma

(e.g., in [61]). We have called it the Model Existence Theorem (Theorem 6.4.2).

While Henkin argued using consistency, Smullyan recognized that the tech-

nique only relied on certain properties of sets of formulas. Smullyan made these

properties explicit giving a notion of abstract consistency [62] (see also [61]).

Given some notion of abstract consistency and some abstractly consistent set, it

can be extended to be an evident set (a Hintikka set in Smullyan’s terminology; a
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model set in Hintikka’s terminology). This is what we have proven in our Exten-

sion Lemma (Lemma 6.4.3). Combining this with the Model Existence Theorem

we conclude completeness.

In the context of simple type theory the completeness result (relative to stan-

dard models) can be extended to fragments that extend first-order logic by al-

lowing λ-abstractions and embedded formulas [15]. The construction of a model

is significantly different in this extended first-order (EFO) fragment.
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In this chapter we give the final tableau rules defining the refutation calculus TaS
which is complete for STT. The final rules allow us to reason about equations

and disequations. They also allow us to reason about embedded formulas via

disequations.

7.1 Functional Equality

We must give rules for equations and disequations at function type. The rules

are similar to the quantifier rules.

Tfq

s =στ t
[su] = [tu] Tfe

s ≠στ t

[sx] ≠ [tx]
x fresh

As a simple example, we refute the branch with f = g and g �= f where

f , g : ιo. The rule Tfe applied to g �= f using x (which is fresh) allows us to add

gx � fx to the branch. We apply Tfq to f = g with x and add fx ≡ gx to the

branch. The refutation is completed using Tbe and Tbq.

f = g, g �= f , gx � fx, fx ≡ gx
gx, ¬fx
fx ¬gx

fx, ¬gx
gx ¬fx

Using Tfq we can prove the following version of Cantor’s Theorem:

¬∃f∀g∃x.fx = g

where f : σσo, g : σo and x : σ are variables. We begin the refutation using the

T∃ and T∀ with the instantiation term λx.¬fxx. This results in the branch

∃f∀g∃x.fx = g
∀g∃x.fx = g

∃x.fx = λx.¬fxx
fx = λx.¬fxx
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The rule Tfq applied to fx = λx.¬fxx using x allows us to add fxx ≡ ¬fxx
to the branch. The refutation is finished using Tbq as usual.

∃f∀g∃x.fx = g
∀g∃x.fx = g

∃x.fx = λx.¬fxx
fx = λx.¬fxx
fxx ≡ ¬fxx

fxx, ¬fxx ¬fxx
¬¬fxx

7.2 Mating, Decomposition and Confrontation

Although we have now given rules for all of the logical constants, we do not yet

have a complete system. Consider the following example.

Let p : oo, x : o and y : o be variables. Consider the branch A with the

formulas x, y , px and ¬py . The set A is unsatisfiable. Suppose I were a model

of A. We must have Ix = 1 and Iy = 1. Hence Ix = Iy . Thus Î(px) = Î(py),
which is impossible since Î(px) = 1 and Î(py) = 0.

We have not yet given any rule which applies to this A. The rule we give will

be, in some ways, a generalization of the rule T¬. Consider the formulas px and

¬py . If x and y were the same variable, then T¬ would apply and close the

branch. In other words, we can conclude from px and ¬py that x and y must

be different. We need a rule which will allow us to add the disequation x �= y to

the branch. If x �= y is on the branch, then the rest of the refutation is clear:

x, y, px, ¬py, x � y
¬y ¬x

In general a mating rule Tmat is given by the scheme

Tmat
xs1 . . . sn , ¬xt1 . . . tn
s1 ≠ t1 | · · · | sn ≠ tn

Here we have two formulas xs1 · · · sn and ¬xt1 · · · tn on the branch where

x : σ1 · · ·σno is a variable. In such a case we know there must be some

i ∈ {1, · · · , n} such that si and ti must be different. For each i we create a

branch with the disequation si �= ti.
Note that we include the possibility that n = 0 as a mating rule. In such a case

we have x and ¬x on the branch and no alternatives. Hence a mating rule with

n = 0 is a rule that closes a branch. The mating rule when n = 0 is a special case

of T¬. While we will keep T¬ in our calculus, it turns out that one only needs
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the special case where there is a variable x such that x and ¬x is on the branch.

That is, T¬ can be replaced by mating (in the presence of all the other rules of

TaS.

Exercise 7.2.1 Let a, b : o and p : oo be given. Refute the following branches

using the mating rule and TaQ rules.

• a ≡ b, pa, ¬pb
• pa, pb, ¬p(a∧ b)
• p(a∧ b), ¬p(b ∧ a)

Exercise 7.2.2 Let f : oo and x : o be variables. Prove f(f(fx)) ≡ fx by

refuting its negation using only Tmat (mating) and Tbq.

Until now, we have no rules for equations and disequations at a sort. In par-

ticular, we cannot refute x �= x when x : α. A decomposition rule is generated

by the following scheme

Tdec
xs1 . . . sn ≠α xt1 . . . tn
s1 ≠ t1 | · · · | sn ≠ tn

Here we have a disequation between xs1 · · · sn and xt1 · · · tn on the branch

where x : σ1 · · ·σnα. As in the mating rule we create a branch with the disequa-

tion si �= ti for each i ∈ {1, . . . , n}. If n = 0, this means the branch is closed. In

particular, any branch with a formula x �= x for a variable x : α is closed.

As a nontrivial example of the decomposition rule, consider a branch with

x, y, fx �= fy where x,y : o and f : oα are variables. Using Tdec we add x � y
to the branch. The refutation is finished with Tbe.

x, y, fx �= fy, x � y
¬y ¬x

Exercise 7.2.3 Using only decomposition and Tfe, refute f �= f where f : ι(ιι)ι
is a variable.

Our final rules are confrontation which applies when there is both an equa-

tion and a disequation of a sort α on the branch. The schema for confrontation

is

Tcon
s =α t , u ≠α v

s ≠ u , t ≠ u | s ≠ v , t ≠ v
As a single example of confrontation consider a branch with x = y and y �= x

with x,y : α. Confronting x = y against y �= x gives

x = y, y �= x
x �= y, y �= y x �= x
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T⊥
⊥

T¬�
¬�

T¬
¬s, s

T¬¬
¬¬s
s

T∧
s ∧ t
s, t

T¬∧
¬(s ∧ t)
¬s | ¬t

T∨
s ∨ t
s | t T¬∨

¬(s ∨ t)
¬s,¬t T→

s → t

t | ¬s T¬→
¬(s → t)

s,¬t Tbq
s ≡ t

s, t | ¬s,¬t

Tbe
¬(s ≡ t)
s,¬t | t,¬s T∀

∀σ s
[st]

t : σ T∃
∃σ s
[sx]

x : σ fresh

T¬∀
¬∀σ s
¬[sx] x : σ fresh T¬∃

¬∃σ s
¬[st] t : σ Tfq

s =στ t
[su] = [tu]

Tfe

s ≠στ t

[sx] ≠ [tx]
x : σ fresh Tmat

xs1 . . . sn , ¬xt1 . . . tn
s1 ≠ t1 | · · · | sn ≠ tn

Tdec

xs1 . . . sn ≠α xt1 . . . tn
s1 ≠ t1 | · · · | sn ≠ tn

Tcon

s =α t , u ≠α v
s ≠ u , t ≠ u | s ≠ v , t ≠ v

Figure 7.1: Tableau system TaS

Both branches are closed by decomposition (with n = 0).

Exercise 7.2.4 Using only mating, decomposition and confrontation, refute the

branch with the formulas c = d, qc and¬qdwhere c, d : ι and q : ιo are variables.

7.3 The Full Tableau System

Figure 7.1 gives all the rules of our tableau system TaS.

The following example uses mating, confrontation and decomposition.

Example 7.3.1 Let D : (ιo)ι, x,y, z : ι and p : ιo be variables. We will refute the

following branch.

∀z.D(λy.y = z) = z
px

∀y.py → y = x
¬p(Dp)
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Mating (Tmat) px with ¬p(Dp) gives

∀z.D(λy.y = z) = z, px
∀y.py → y = x, ¬p(Dp), x �= Dp

We apply T∀ to ∀z.D(λy.y = z) = z with x and obtain

∀z.D(λy.y = z) = z, px
∀y.py → y = x, ¬p(Dp), x �= Dp

D(λy.y = x) = x

Applying Tcon (confrontation) to D(λy.y = x) = x and x �= Dp yields

∀z.D(λy.y = z) = z, px
∀y.py → y = x, ¬p(Dp), x �= Dp

D(λy.y = x) = x
D(λy.y = x) �= x, x �= x D(λy.y = x) �= Dp

Decomposing (Tdec) D(λy.y = x) �= Dp yields

∀z.D(λy.y = z) = z, px
∀y.py → y = x, ¬p(Dp), x �= Dp

D(λy.y = x) = x

D(λy.y = x) �= x, x �= x D(λy.y = x) �= Dp
(λy.y = x) �= p

We apply Tfe to (λy.y = x) �= p with y and obtain

∀z.D(λy.y = z) = z, px
∀y.py → y = x, ¬p(Dp), x �= Dp

D(λy.y = x) = x

D(λy.y = x) �= x, x �= x
D(λy.y = x) �= Dp
(λy.y = x) �= p
y = x � py

Applying Tbe to y = x � py we obtain

∀z.D(λy.y = z) = z, px
∀y.py → y = x, ¬p(Dp), x �= Dp

D(λy.y = x) = x

D(λy.y = x) �= x
x �= x

D(λy.y = x) �= Dp
(λy.y = x) �= p
y = x � py

y = x
¬py

py
y �= x
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Mating ¬py with px gives

∀z.D(λy.y = z) = z, px
∀y.py → y = x, ¬p(Dp), x �= Dp

D(λy.y = x) = x

D(λy.y = x) �= x
x �= x

D(λy.y = x) �= Dp
(λy.y = x) �= p
y = x � py

y = x
¬py
y �= x

py
y �= x

We apply T∀ to ∀y.py → y = x with y followed by T→ to finish the refutation.

∀z.D(λy.y = z) = z, px
∀y.py → y = x, ¬p(Dp), x �= Dp

D(λy.y = x) = x

D(λy.y = x) �= x
x �= x

D(λy.y = x) �= Dp
(λy.y = x) �= p
y = x � py

y = x
¬py
y �= x

py, y �= x
py → y = x
y = x ¬py

Exercise 7.3.2 Let h : oι be given. Prove h(h� = h⊥) = h⊥ is valid by giving a

TaS-refutation of its negation.

Exercise 7.3.3 Use TaS to refute the branch

x, y, p(fx), ¬p(fy)

where x,y : o, f : oι and p : ιo are variables.

Exercise 7.3.4 Let p : ιo, C,D : (ιo)ι and x,y : ι be variables. Use TaS to refute

the branch
∀p.(∃x.px) → p(Cp)

¬∃D∀p.(∃x.px ∧∀y.py → x = y) → p(Dp)

Exercise 7.3.5 Let f : ιι, r : ιιo and x,y, z : ι be variables. Use TaS to refute the

branch

∀r .(∀x∃y.rxy) → ∃f∀x.rx(fx)
¬∀r .(∀x∃y.rxy ∧∀z.rxz → y = z)→ ∃f∀x.rx(fx)
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Exercise 7.3.6 Let C : (ιo)ι, p : ιo, r : ιιo, f : ιι and x,y : ι be variables. Use TaS
to refute the branch

∃C∀p.(∃x.px) → p(Cp)
¬∀r .(∀x∃y.rxy) → ∃f∀x.rx(fx)

Exercise 7.3.7 Prove with TaS that px ≡ ∀y.y=x → py with x : ι is valid.
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In this chapter we give a number of examples showing how to represent concepts

in STT and prove things about them using tableau. We will also give an extended

tableau system TaS+ which makes proving more practical.

8.1 Example: A Formal Proof by Induction

Here we give a formal proof by induction on the natural numbers. First we give

the informal proof. For every natural number n, let Sn denote the successor of

n (i.e., n+ 1). The following is the first inductive proof given in Landau [48].

Proposition 8.1.1 For every natural number n, Sn �= n.

Proof The proof is by induction on n.

Base case: S0 �= 0 since no successor of a natural number is 0.

Inductive case: Assume the inductive hypothesis: Sn �= n. We will prove

S(Sn) �= (Sn). Assume S(Sn) = Sn. Since the successor function is injective,

Sn = n, contradicting the inductive hypothesis. �

We now repeat this informal proof in the formal setting of simple type theory.

Example 8.1.2 Recall the formula chain from Chapter 4. This was the conjunc-

tion of the three formulas

1. ∀x. Sx≠o
2. ∀xy. Sx=Sy → x=y
3. ∀p. po → (∀x. px → p(Sx)) → (∀x.px)
where N is a sort and o : N , S : NN , x,y : N and p : No are variables. (These for-

mulas come from Peano’s axioms for the natural numbers in 1889.) We prove the

desired result by including the three formulas of chain and the negated formula

¬∀x.Sx �= x. That is, we refute the branch

∀x.Sx �= o
∀xy.Sx = Sy → x = y

∀p.po ∧ (∀x.px → p(Sx)) → ∀x.px
¬∀x.Sx �= x
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The fact that we will prove the result by induction corresponds to applying the

rule T∀ to ∀p.po ∧ (∀x.px → p(Sx)) → ∀x.px using the instantiation term

λx.Sx �= x. The result is the branch.

∀x.Sx �= o
∀xy.Sx = Sy → x = y

∀p.po ∧ (∀x.px → p(Sx)) → ∀x.px
¬∀x.Sx �= x

So �= o∧ (∀x.Sx �= x → S(Sx) �= Sx) → ∀x.Sx �= x

We apply T→ to the new formula. Note that the left branch is now closed.

∀x.Sx �= o
∀xy.Sx = Sy → x = y

∀p.po ∧ (∀x.px → p(Sx)) → ∀x.px
¬∀x.Sx �= x

So �= o∧ (∀x.Sx �= x → S(Sx) �= Sx) → ∀x.Sx �= x
∀x.Sx �= x ¬(So �= o ∧∀x.Sx �= x → S(Sx) �= Sx)

Applying T¬∧ gives us two open branch corresponding to the base case and the

inductive case.

∀x.Sx �= o
∀xy.Sx = Sy → x = y

∀p.po ∧ (∀x.px → p(Sx)) → ∀x.px
¬∀x.Sx �= x

So �= o∧ (∀x.Sx �= x → S(Sx) �= Sx) → ∀x.Sx �= x

∀x.Sx �= x ¬(So �= o ∧∀x.Sx �= x → S(Sx) �= Sx)
¬So �= o ¬∀x.Sx �= x → S(Sx) �= Sx

The rule T∀ applied to ∀x.Sx �= o using o results in a closed branch. This

corresponds to the base case.

∀x.Sx �= o
∀xy.Sx = Sy → x = y

∀p.po ∧ (∀x.px → p(Sx)) → ∀x.px
¬∀x.Sx �= x

So �= o∧ (∀x.Sx �= x → S(Sx) �= Sx) → ∀x.Sx �= x

∀x.Sx �= x
¬(So �= o ∧∀x.Sx �= x → S(Sx) �= Sx)
¬So �= o
So �= o ¬∀x.Sx �= x → S(Sx) �= Sx

We next prove the inductive case. Lety be a natural number for which we assume

Sy �= y . We must prove S(Sy) �= Sy . Technically, we apply T¬∀ to ¬∀x.Sx �=
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x → S(Sx) �= Sx followed by T¬→.

∀x.Sx �= o
∀xy.Sx = Sy → x = y

∀p.po ∧ (∀x.px → p(Sx)) → ∀x.px
¬∀x.Sx �= x

So �= o∧ (∀x.Sx �= x → S(Sx) �= Sx) → ∀x.Sx �= x

∀x.Sx �= x

¬(So �= o ∧∀x.Sx �= x → S(Sx) �= Sx)

¬So �= o
So �= o

¬∀x.Sx �= x → S(Sx) �= Sx
¬(Sy �= y → S(Sy) �= Sy)

Sy �= y
¬S(Sy) �= Sy

The rule T∀ applied to ∀xy.Sx = Sy → x = y (injectivity of successor) using

Sy and then y gives

∀x.Sx �= o
∀xy.Sx = Sy → x = y

∀p.po ∧ (∀x.px → p(Sx)) → ∀x.px
¬∀x.Sx �= x

So �= o∧ (∀x.Sx �= x → S(Sx) �= Sx) → ∀x.Sx �= x

∀x.Sx �= x

¬(So �= o ∧∀x.Sx �= x → S(Sx) �= Sx)

¬So �= o
So �= o

¬∀x.Sx �= x → S(Sx) �= Sx
¬(Sy �= y → S(Sy) �= Sy)

Sy �= y
¬S(Sy) �= Sy

∀y′.S(Sy) = Sy′ → Sy = y′
S(Sy) = Sy → Sy = y

Applying T→ to we finish the tableau refutation.

∀x.Sx �= o
∀xy.Sx = Sy → x = y

∀p.po ∧ (∀x.px → p(Sx)) → ∀x.px
¬∀x.Sx �= x

So �= o∧ (∀x.Sx �= x → S(Sx) �= Sx) → ∀x.Sx �= x

∀x.Sx �= x

¬(So �= o ∧∀x.Sx �= x → S(Sx) �= Sx)

¬So �= o
So �= o

¬∀x.Sx �= x → S(Sx) �= Sx
¬(Sy �= y → S(Sy) �= Sy), Sy �= y

¬S(Sy) �= Sy
∀y′.S(Sy) = Sy′ → Sy = y′
S(Sy) = Sy → Sy = y
Sy = y S(Sy) �= Sy
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The attentive reader will note that although there are many identities =N we

have not used any tableau rules that explicitly reason about identities. The same

refutation would work if =N were uniformly replaced by a variable r : NNo. �

8.2 Skolem’s Law and the Axiom of Choice

For types σ and τ let Skolemσ,τ be the formula

∀r .(∀x∃y.rxy) → ∃f∀x.rx(fx)
where r : στo, f : στ , x : σ and y : τ are variables. When Skolemσ,τ holds

we can commute universal and existential quantifiers. Skolem [59] used this

technique to reduce satisfiability of first-order formulas to satisfiability of first-

order formulas of the form ∀x1 · · ·xn.s where s is quantifier-free (see § 9.9).

For every type σ let Choiceσ be the formula

∃C∀p.(∃x.px) → p(Cp)

where C : (σo)σ , p : σo and x : σ are variables. Choiceσ formulates the axiom of

choice in simple type theory (see § 10.1). It turns out that a logical interpretation

satisfies Skolemσ,τ for all types σ and τ iff it satisfies Choiceσ for every type σ .

We prove this in two steps using tableau. For any types σ and τ we will show

Skolemσ,τ holds if Choiceτ holds. For any type σ we will show Choiceσ holds if

Skolemσo,σ holds.

Choiceσ and Skolemσ,τ are weakly valid but not valid (see § 10.1 and § 10.2).

Example 8.2.1 Let σ and τ be types. We refute the branch containing Choiceτ
and the negation of Skolemσ,τ . After applying T¬∀, T¬→ and T∃ we have

∃C∀p.(∃z.pz) → p(Cp)
¬∀r .(∀x∃y.rxy) → ∃f∀x.rx(fx)
¬((∀x∃y.rxy) → ∃f∀x.rx(fx))

∀x∃y.rxy
¬∃f∀x.rx(fx)

∀p.(∃z.pz) → p(Cp)

The rule T¬∃ applied to ¬∃f∀x.rx(fx) using λx.C(rx) gives

∃C∀p.(∃z.pz) → p(Cp)
¬∀r .(∀x∃y.rxy) → ∃f∀x.rx(fx)
¬((∀x∃y.rxy) → ∃f∀x.rx(fx))

∀x∃y.rxy
¬∃f∀x.rx(fx)

∀p.(∃z.pz) → p(Cp)
¬∀x.rx(C(rx))
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Applying T¬∀ with x and T∀ with rx we obtain

∃C∀p.(∃z.pz) → p(Cp)
¬∀r .(∀x∃y.rxy) → ∃f∀x.rx(fx)
¬((∀x∃y.rxy) → ∃f∀x.rx(fx))

∀x∃y.rxy
¬∃f∀x.rx(fx)

∀p.(∃z.pz) → p(Cp)
¬∀x.rx(C(rx)), ¬rx(C(rx))

(∃z.rxz)→ rx(C(rx))

The rest of the refutation is unsurprising.

∃C∀p.(∃z.pz) → p(Cp)
¬∀r .(∀x∃y.rxy) → ∃f∀x.rx(fx)
¬((∀x∃y.rxy) → ∃f∀x.rx(fx))

∀x∃y.rxy
¬∃f∀x.rx(fx)

∀p.(∃z.pz) → p(Cp)
¬∀x.rx(C(rx)), ¬rx(C(rx))

(∃z.rxz)→ rx(C(rx))

rx(C(rx))
¬∃z.rxz

∃y.rxy, rxy, ¬rxy

For the other direction we will make use of an extra (sound) rule in the schema

T¬α:

T¬α
¬s, s′

s ∼α s′

We leave it to the reader to find a TaS-refutation (without making use of the extra

rule).

Example 8.2.2 Let σ be a type. We refute the branch containing Skolemσo,σ and

the negation of Choiceσ .

∀r .(∀x∃y.rxy) → ∃f∀x.rx(fx)
¬∃C∀p.(∃z.pz) → p(Cp)

The rule T∀ applied using λxy.(∃z.xz) → xy gives

∀r .(∀x∃y.rxy) → ∃f∀x.rx(fx)
¬∃C∀p.(∃z.pz) → p(Cp)

(∀x∃y.(∃z.xz) → xy) → ∃f∀x.(∃z.xz) → x(fx)
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We apply T→ to (∀x∃y.(∃z.xz) → xy) → ∃f∀x.(∃z.xz) → x(fx) and obtain

∀r .(∀x∃y.rxy) → ∃f∀x.rx(fx)
¬∃C∀p.(∃z.pz) → p(Cp)

(∀x∃y.(∃z.xz) → xy) → ∃f∀x.(∃z.xz) → x(fx)
∃f∀x.(∃z.xz) → x(fx) ¬∀x∃y.(∃z.xz) → xy

Note that the left branch is closed by T¬α. The remainder of the refutation is

similar to the Drinker’s Paradox (Example 6.1.3).

∀r .(∀x∃y.rxy) → ∃f∀x.rx(fx)
¬∃C∀p.(∃z.pz) → p(Cp)

(∀x∃y.(∃z.xz) → xy) → ∃f∀x.(∃z.xz) → x(fx)

∃f∀x.(∃z.xz) → x(fx)

¬∀x∃y.(∃z.xz) → xy
¬∃y.(∃z.xz) → xy
¬((∃z.xz) → xy)
∃z.xz, ¬xy, xz

¬((∃z.xz) → xz), ¬xz

8.3 An Extended Tableau System

The tableau system TaS is complete for STT. For now we will state this result and

leave the proof for a future chapter.

Theorem 8.3.1 TaS is complete with respect to the full fragment of STT.

Of course, TaS is also refutation sound. Consequently, we have the following

results.

Corollary 8.3.2 For any branch A, A is TaS-refutable iff A is unsatisfiable.

Corollary 8.3.3 Let T be any tableau system such that every rule of TaS is a rule

of T and every rule of T is sound. For any branch A the following are equivalent.

1. A is T -refutable.

2. Some subset A′ of A is T -refutable.

3. A is unsatisfiable.

4. A is TaS-refutable.

Corollary 8.3.3 motivates the definition of an extended tableau system TaS+

for which proving is easier. We define TaS+ by adding four sets of rules to the
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rules of TaS. First the schema T¬α is a generalization of T¬ that allows us to

close a branch when there are complementary formulas up to ∼α.

T¬α
¬s, s′

s ∼α s′

Next the schema T≠α allows us to close a branch when a formula conflicts with

reflexivity of equality (up to ∼α).

T≠α
s �=σ s′

s ∼α s′

The schema Tsym allows us to close a branch when two formulas are comple-

mentary equations up to symmetry of equality and ∼α.

Tsym
s =σ t, t′ �=σ s′

s ∼α s′,t ∼α t′

Finally, a cut rule Tcut allows us to consider two cases s or ¬s (for a formula s)
at any point during a proof.

Tcut s | ¬s

Now TaS+ is the set of rules given by TaS, T¬α, T≠α, Tsym and Tcut.

From Corollary 8.3.3 we have the following results.

Proposition 8.3.4 For any branch A the following are equivalent.

1. A is TaS+-refutable.

2. A is unsatisfiable.

3. A is TaS-refutable.

Proposition 8.3.5 (Weakening) A branch A is TaS+-refutable iff some subset of

A is TaS+-refutable.

In the remainder of this chapter we will use the word refutable to mean

TaS+-refutable and give examples of TaS+-refutattions. By weakening (Propo-

sition 8.3.5) we can conclude that a branch A is refutable whenever a subset A′

has already been refuted. Consequently, we make the convention that a branch

can be closed by a reference to an earlier refutation of a subset of the branch.

The following example shows how the new rules and conventions can simplify

proving.
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Example 8.3.6 Let a, b : o and q : o · · ·oo be variables where q expects n argu-

ments. We can refute the branch with a, b, qa · · ·a and ¬qb · · ·b using only

the rules from TaS. The tableau has 2n branches. If we first refute the branch

with a, b and a �= b and then use this (via weakening) we only need to show n
branches. Finally, if we use weakening and use Tcut with Leibniz equality of a
and b, then we can refute the branch showing only 3 branches (independent of

n). �

8.4 Transitive Closure

Suppose R is a binary relation on a set X. We can define the transitive closure

R+ inductively as follows:

1. If (x,y) ∈ R, then (x,y) ∈ R+.

2. If (x,y) ∈ R+ and (y, z) ∈ R+, then (x, z) ∈ R+.

We often describe R+ as the least transitive relation which contains R. In this

section we will show how to define the transitive closure of a relation in STT

and prove that it is indeed the transitive closure. We will furthermore prove an

inversion principle.

In simple type theory we represent binary relations using a type of the form

στo. For any σ and τ , let ⊆σ,τ be the term

λrr ′.∀xy.rxy → r ′xy

for some variables r , r ′ : στo, x : σ and y : τ . When the types σ and τ are clear

in context, we write simply ⊆. As usual, we use infix notation and write s ⊆ t for

⊆ applied to s and t.
To represent transitivity we must assume σ and τ are the same type. Given

variables r : σσo and x,y, z : σ transitivity can be represented as

λr .∀xyz.rxy → ryz → rxz

Let transσ (or simply trans) be this term.

Given these conventions and variables r , r ′ : σσo and x,y : σ we can repre-

sent transitive closure as

λrxy.∀r ′.r ⊆ r ′ → trans r ′ → r ′xy

For any term s : σσo let s+ stand for the normal term

[(λrxy.∀r ′.r ⊆ r ′ → trans r ′ → r ′xy)s]
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Now we consider a relation over the specific sort ι. Let r , r ′, s : ιιo and x,y, z :

ι be variables. Note that r+ is the term

λxy.∀r ′.[r ⊆ r ′]→ [trans r ′] → r ′xy

We will prove r+ contains r and r+ is transitive. Furthermore, we will prove that

r+ is the least such relation.

We first prove [r ⊆ r+].

Example 8.4.1 We show r+ contains r as follows.

¬[r ⊆ r+]
¬∀y.rxy → [r+xy]

¬(rxy → [r+xy]), rxy, ¬[r+xy]
¬∀r ′.[r ⊆ r ′]→ [trans r ′]→ r ′xy

¬([r ⊆ r ′]→ [trans r ′]→ r ′xy), [r ⊆ r ′]
¬([trans r ′] → r ′xy), [trans r ′], ¬r ′xy

∀y.rxy → r ′xy, rxy → r ′xy
r ′xy ¬rxy

We now turn to proving r+ is transitive.

Example 8.4.2 We show r+ is transitive as follows.

¬[trans r+]
¬∀yz.[r+xy] → [r+yz]→ [r+xz]
¬∀z.[r+xy] → [r+yz]→ [r+xz]

¬([r+xy] → [r+yz] → [r+xz]), [r+xy]
¬([r+yz] → [r+xz]), [r+yz], ¬[r+xz]

¬∀r ′.[r ⊆ r ′]→ [trans r ′]→ r ′xz
¬([r ⊆ r ′] → [trans r ′] → r ′xz), [r ⊆ r ′]
¬([trans r ′]→ r ′xz), [trans r ′], ¬r ′xz

∀yz.r ′xy → r ′yz → r ′xz
∀z.r ′xy → r ′yz → r ′xz
r ′xy → r ′yz → r ′xz
r ′yz → r ′xz
r ′xz ¬r ′yz ¬r ′xy

Now we prove r+ is the least transitive relation extending r .

2009/8/2 109



8 Tableaux Examples

Example 8.4.3 We prove r+ is the least transitive relation extending r by refut-

ing the branch with [r ⊆ s], [trans s] and ¬[r+ ⊆ s].

[r ⊆ s]
[trans s]
¬[r+ ⊆ s]

¬∀y.[r+xy] → sxy
¬([r+xy] → sxy), [r+xy], ¬sxy

[r ⊆ s] → [trans s] → sxy
[trans s]→ sxy
sxy ¬[trans s]

¬[r ⊆ s]

Inductively defined sets and relations satisfy a property commonly called an

inversion principle corresponding to their definition. In the case of transitive

closure, the inversion principle corresponds to the fact that if I � [r+xy] then

either I � rxy or I � ∃w.[r+xw] ∧ [r+wy] (where w : ι is a variable). Deduc-

tively, this means the branch with [r+xy] and ¬(rxy ∨ ∃w.[r+xw]∧ [r+wy]
is refutable.

Let inv stand for the formula

λxy.rxy ∨ ∃w.[r+xw] ∧ [r+wy]

We refute the branch with [r+xy] and ¬[invxy] in a series of steps.

Note that inv corresponds to a binary relation. This relation contains r and

is transitive. Once we have proven these facts we can conclude the inversion

principle by applying the definition of r+ to inv.

First we show inv contains r .

Example 8.4.4 ¬[r ⊆ inv] is refutable.

¬[r ⊆ inv]
¬∀y.rxy → [invxy]

¬(rxy → [invxy]), rxy
¬(rxy ∨ ∃z.[r+xz]∧ [r+zy]), ¬rxy

¬∃z.[r+xz]∧ [r+zy]

We now turn to proving inv is transitive. We do this in the next four examples.

Example 8.4.5 We refute the branch with ∃w.[r+xw] ∧ [r+wy] and ¬[r+xy]
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using Tcut with [trans r+].

∃w.[r+xw]∧ [r+wy], ¬[r+xy], [r+xw]∧ [r+wy], [r+xw], [r+wy]
[trans r+]

∀yz.[r+xy] → [r+yz] → [r+xz]
∀z.[r+xw]→ [r+wz] → [r+xz]
[r+xw] → [r+wy] → [r+xy]
[r+wy] → [r+xy]
[r+xy] ¬[r+wy] ¬[r+xw]

¬[trans r+]
(8.4.2)

Example 8.4.6 We refute ¬[inv ⊆ r+] using Tcut with [r ⊆ r+].

¬[inv ⊆ r+]
¬∀y.[invxy] → [r+xy]
¬([invxy] → [r+xy])

rxy ∨ ∃z.[r+xz]∧ [r+zy]
¬[r+xy]

rxy
[r ⊆ r+]

∀y.rxy → [r+xy]
rxy → [r+xy]
[r+xy] ¬rxy

¬[r ⊆ r+]
(8.4.1)

∃z.[r+xz]∧ [r+zy]
(8.4.5)

Example 8.4.7 We refute the branch with [r+xy], [r+yz], and ¬[invxz].

[r+xy], [r+yz], ¬(rxz ∨ ∃z′.[r+xz′]∧ [r+z′z])
¬rxz

¬∃z′.[r+xz′]∧ [r+z′z]
¬([r+xy]∧ [r+yz])
¬[r+xy] ¬[r+yz]
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Example 8.4.8 We refute ¬[trans inv] using cut (Tcut) with [inv ⊆ r+].

¬[trans inv]
¬∀xyz.[invxy]→ [invyz] → [invxz]
¬∀yz.[invxy] → [invyz] → [invxz]
¬∀z.[invxy] → [invyz] → [invxz]

¬([invxy] → [invyz] → [invxz]), [invxy]
¬([invyz]→ [invxz]), [invyz], ¬[invxz]

[inv ⊆ r+]
∀xy.[invxy] → [r+xy]
∀y.[invxy] → [r+xy]
[invxy] → [r+xy]
[r+xy]

∀y′.[invyy′] → [r+yy′]
[invyz] → [r+yz]

[r+yz]
¬[invyz]

(8.4.7)

¬[invxy]

¬[inv ⊆ r+]

We can now refute the original branch to prove the inversion principle.

Example 8.4.9 We prove the inversion principle by refuting the branch with

[r+xy] and ¬[invxy].

[r+xy], ¬[invxy]
[r ⊆ inv] → [trans inv] → [invxy]
[trans inv] → [invxy]

[invxy]
¬[trans inv]

(8.4.8)

¬[r ⊆ inv]
(8.4.4)
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In this chapter we look at deduction rules that derive valid formulas from valid

formulas. A famous example is modus ponens

s → t s

t

a deduction rule that appeared in Aristotle’s philosophical writings more than

two thousand years ago. We call rules that derive valid formulas from valid

formulas basic deduction rules to distinguish them from tableau rules and other

types of deduction rules. Proof systems obtained with basic deduction rules are

known as Hilbert systems.

We will use basic deduction rules as a means to formulate basic reasoning

principles. We will also list a variety of logical laws that express important prop-

erties of the logical operations. As a special form of basic deduction we will

consider rewriting with equational laws and apply it to obtain prenex forms and

negation normal forms.

9.1 Substitution Rule

We start with a deduction rule that does not depend on the presence of logical

constants. If a formula s is valid, then every substitution instance Sθs of s is

valid. We express this fact with the substitution rule

Sub
s

Sθs

where s ranges over formulas, S over substitution operators, and θ over substi-

tutions. Here is an instance of the substitution rule:

x ∨¬x
(x → y)∨¬(x → y)

The substitution rule is sound since if s is valid, then s evaluates to true no

matter how the values of the free variables of s are chosen, and a substitution

instance Sθs just takes away some of the freedom there is for choosing values.
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Formally, a basic rule is a tuple 〈s1, . . . , sn, s〉 of formulas where n ≥ 0. A

basic rule 〈s1, . . . , sn, s〉 is sound if the conclusion s is valid whenever all of the

premises s1, . . . , sn are valid. We specify basic rules through schematic rules like

Sub and speak of the instances of a schematic rule. Rules without premises (i.e.,

n = 0) are called initial, and rules with premises are called proper. A Hilbert

system is a set of basic rules. A Hilbert system is sound if all its rules are sound,

and complete if it can derive all valid formulas.

Given a Hilbert system, it is common to call the schemes for the initial rules

logical axioms and the schemes for the proper rules inference rules. We may

also refer to the schemes for the initial rules as laws.

9.2 Replacement Rule

Equality is a basic primitive in mathematical reasoning. In STT equality appears

through the identity predicates =σ : σσo. The main deduction principle for

equality is replacement of equals with equals. We formalize this principle with

the schematic rule

Rep
s = t C[s]

C[t]

One possible instance is

x ≡ x ∨ x ∀x. x ≡ ¬¬x
∀x. x ≡ ¬¬(x ∨ x)

As the instance shows, obtaining C[t] from C[s] may involve capture. This is

sound since the validity of s = t means that s and t evaluate to the same value

no matter which values their free variables take. We can combine Sub and Rep

into a new rule

SR
s = t C[Sθs]

C[Sθt]

which give us the instance

x ≡ x ∨ x ∀x. x ≡ ¬¬x
∀x. x ≡ ¬¬x ∨¬¬x

We say that SR is a derived rule since it can be derived from Sub and Rep:

s = t
Sθs = Sθt Sub

C[Sθs]
C[Sθt] Rep
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Note that the soundness of a derived rule follows from the soundness of the

rules in its derivation.

Here are rules that account for the reflexivity, symmetry, transitivity, and

compatibility (see § 3.9) of equality:

Ref
s = s Sym

s = t
t = s Tra

s = t t = u
s = u Com

s = t
C[s] = C[t]

Sym, Tra, and Com can be derived from Ref and Rep. The derivation of Sym is as

follows:

s = t s = s Ref

t = s Rep

Exercise 9.2.1

a) Derive Com from Ref and Rep.

b) Derive Tra from Rep. Convince yourself that every instance of Tra is an in-

stance of Rep.

9.3 Beta and Eta

We formulate the β- and η-law with the following rules:

β
(λx.s)t = sxt

η
(λx.sx) = s x ∉N s

One can show that the deduction system given by the rules Rep, β and η can

derive an equation s = t if and only if the terms s and t are βη-equivalent. The

subsystem consisting of Rep and β can derive Ref

(λx.s)x = s β
(λx.s)x = s β

s = s Rep

and a special case of the substitution rule:

Sub=
s = t
sxu = txu

The full system consisting of Rep, β, and η can derive the following rules:

FE
sx = tx
s = t x ∉N (s=t) α

(λx.s) = λy.sxy
y ∉N s
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Rule FE accounts for functional extensionality (see § 2.10), and Ruleα formulates

the α-law.

We can simplify the basic deduction system consisting of Rep, β and η by

replacing η with a more constrained rule η′

Rep
s = t C[s]

C[t]
β
(λx.s)t = sxt

η′
(λx.fx) = f

where x and f range over variables. This does not give away deductive power

since Sub= can be derived from Rep and β and η can be derived from η′ and

Sub=.

We may also have an intial rule known as λ-conversion:

λ
s = t s ∼βη t

The soundness of λ-conversion follows from Theorem 4.2.1. Note that λ-conver-

sion subsumes Ref, α, β, and η.

Note that the deduction system we have introduced so far can only prove

equations since for all rules the conclusion is an equation whenever all the

premises are equations.

Exercise 9.3.1

a) Derive Sub= with Com, β, Sym, and Tra.

b) Derive FE from Com, η, and Rep.

c) Derive α from η, β, Sym, and Rep. Hint: See § 3.8.

d) Derive η from η′ and Sub=.

9.4 Modus Ponens and Generalization

Hilbert systems for first-order predicate logic typically come with two proper

rules called modus ponens and generalization:

MP
s → t s

t
Gen

s

∀x.s

With modus ponens we can derive proper rules from initial rules. For instance,

given the initial rule

Tra′
s=t → t=u→ s=u
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we can derive the proper rule Tra:

s=t → t=u→ s=u Tra′
s=t

t=u→ s=u MP
t=u

s=u MP

For STT there are complete Hilbert systems whose only proper rule is Rep.

Suppose we have a system with Rep and β and the following initial rules:

�≡
s=� ≡ s �→ �→s ≡ s ∀�

(∀x.s) ≡ s x ∉N s

This system is quite powerful. It can derive MP and Gen. It can also derive Sub

and a normalizing substitution rule NS:

Sub
s

Sθs NS
s

Bθs

Below is a derivation of the modus ponens rule MP. We exploit that Sym is deriv-

able from Rep and β.

�→t ≡ t �→

s=� ≡ s �≡

s ≡ s=� Sym
s

s ≡ � Rep
s → t

�→t Rep

t
Rep

Exercise 9.4.1 Derive Gen with �≡, ∀�, Sym, and Rep.

Exercise 9.4.2 Derive the substitution rule
s

sxt
from �≡, Sym, Sub=, and Rep.

Exercise 9.4.3 Recall that we can derive Sub= with Rep and β. Hence weaker

versions of �≡, �→, and ∀� suffice where the metavariable s is replaced by

some fixed variable x0 : o. Give the formulations with x0. For ∀� the side

condition x ≠ x0 is necessary.

Exercise 9.4.4 The generalization rule Gen is sound. On the other hand, there

are formulas s such that the formula s →∀x.s is not valid. Give such a formula s
and explain why Gen is sound.

2009/8/2 117



9 Basic Deduction

9.5 Important Tautologies

We now look at equational tautologies that express important properties of the

propositional constants. Recall that a tautology is a valid propositional formula.

A Boolean equation is a propositional formula s ≡ t where s and t contain

no other constants but ⊥, �, ¬, ∧, and ∨. A Boolean identity is a valid Boolean

equation. Figure 9.1 shows the most prominent Boolean identities. Note that

every Boolean identity is a tautology.

The identities in Figure 9.1 exhibit a symmetry known as duality: If we take a

boolean identity and apply the substitution

[⊥ := �, � := ⊥, (∧) := (∨), (∨) := (∧) ]

to it, we obtain another Boolean identity. The duality between ∧ and ∨ and �
and ⊥ also shows in the de Morgan laws.

It turns out that the Boolean identities are laws that also hold for the basic set

operations. Take a set X and interpret ⊥ as the empty set �, � as the full set X,

¬ as set complement with respect to X, ∧ as intersection ∩, and ∨ as union ∪.

Then the Boolean identities hold for all subsets of X. A general interpretation

of the Boolean identities is known as Boolean algebra. A main result says that a

Boolean equation s ≡ t is valid in a nontrivial Boolean algebra if and only if it is a

tautology. The study of Boolean algebras originated in 1847 with George Boole’s

book An Investigation of the Laws of Thought [12]. Whitesitt [68] is a more recent

textbook on elementary Boolean algebra.

Figure 9.2 shows tautologies that express important properties of implication

and equivalence.

9.6 Boolean Case Analysis and Boolean Expansion

Consider the deduction system given by Rep, β, η, and the initial rule

Taut
s
s tautology

that proves all tautologies.1 One may hope that this system can prove all valid

formulas that contain no non-propositional constants. This is not the case. Here

are valid formulas the system cannot prove:

f⊥ → f� → fx Boolean case analysis

fx ≡ ¬x ∧ f⊥∨ x ∧ f� Boolean expansion

f(f(fx)) ≡ fx Kaminski’s equation

1 Recall that it is decidable whether a formula is a tautology.
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x ∧ (y ∧ z) ≡ (x ∧y) ∧ z associativity

x ∨ (y ∨ z) ≡ (x ∨y) ∨ z
x ∧y ≡ y ∧ x commutativity

x ∨y ≡ y ∨ x
x ∧ x ≡ x idempotence

x ∨ x ≡ x
x ∧ (y ∨ z) ≡ (x ∧y) ∨ (x ∧ z) distributivity

x ∨ (y ∧ z) ≡ (x ∨y) ∧ (x ∨ z)
x ∧ (x ∨y) ≡ x absorption

x ∨ (x ∧y) ≡ x
x ∧� ≡ x identity

x ∨⊥ ≡ x
x ∧⊥ ≡ ⊥ dominance

x ∨� ≡ �
x ∧¬x ≡ ⊥ complement

x ∨¬x ≡ �
¬(x ∧y) ≡ ¬x ∨¬y de Morgan

¬(x ∨y) ≡ ¬x ∧¬y
¬� ≡ ⊥
¬⊥ ≡ �
¬¬x ≡ x double negation

Figure 9.1: Boolean identities
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x → y ≡ ¬y → ¬x contraposition

x → y → z ≡ x ∧y → z Schönfinkel

x → y → z ≡ y → x → z exchange

x → x ≡ �
⊥ → x ≡ �
� → x ≡ x
x → ⊥ ≡ ¬x
x → � ≡ �
x → y ≡ ¬x ∨y
x → y ≡ (x ≡ x ∧y)

(x ≡ y) ≡ (y ≡ x) commutativity

(x ≡ (y ≡ z)) ≡ ((x ≡ y) ≡ z) associativity

(x ≡ y) ≡ (¬x ≡ ¬y) contraposition

(x ≡ x) ≡ �
(x ≡ ¬y) ≡ (x � y)
(x ≡ ⊥) ≡ ¬x
(x ≡ �) ≡ x
(x ≡ y) ≡ (x → y) ∧ (y → x) Boolean extensionality

(x ≡ y) ≡ (x ∧y) ∨ (¬x ∧¬y)
(x � y) ≡ (x ∧¬y) ∨ (¬x ∧y)

(x ≡ x ∧y) ≡ (y ≡ x ∨y) golden rule

(x → y)∧ x ≡ x ∧y modus ponens

(x ≡ y)∧ x ≡ x ∧y

(x ∨y)∧ (¬x ∨ z)→ (y ∨ z) resolution

(y ∧ z)→ (x ∧ y)∨ (¬x ∧ z)

Figure 9.2: Tautologies for implication and equivalence
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We can fix the problem by adding the initial rule

BCA
f⊥ → f� → fx

where f : oo and x : o are fixed variables. To demonstrate the power of BCA we

derive the rule

BCR
sx⊥ sx�

s

The derivation of BCR is as follows:

1. f⊥ → f� → fx with BCA.

2. (λx.s)⊥ → (λx.s)� → (λx.s)x with Sub

(Sub for [f := (λx.s)] is derivable with Taut, see Exercise 9.4.2).

3. sx⊥ → sx� → s with β and Rep.

4. s from sx⊥ and sx� with MP (MP is derivable with Taut).

We will not investigate the system with Taut and BCA further. It can prove

Boolean expansion and Kaminski’s equation, but finding the proofs is tedious.

Exercise 9.6.1 Prove the validity of the following formulas with tableaux.

a) f⊥ → f� → fx

b) fx ≡ ¬x ∧ f⊥∨ x ∧ f�
c) (x ≡ y)∧ fx ≡ (x ≡ y)∧ fy

9.7 Quantifier Laws

Figure 9.3 shows the most important equational quantifier laws. The laws are

schemes that produce valid formulas. The schemes are necessary so that the

laws can address quantification at all types. We can see a law as a scheme for

sound and initial basic rules. In fact, laws and schemes for sound and initial

basic rules are the same thing.

We call a law monomorphic if its logical content can be expressed with a

single formula. All the laws for the propositional constants we have stated so

far are monomorphic. A law is polymorphic if it is not monomorphic. Most laws

in Figure 9.3 are polymorphic. An example is the instantiation law ∀σf → fx.

Polymorphism is needed so that the law can address quantification at different

types σ . The elimination law (∀ox.x) ≡ ⊥ is an example of a monomorphic law

since only quantification at o is concerned.
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∀f → fx instantiation

fx → ∃f

(∀x.y) ≡ y if x ≠ y elimination

(∃x.y) ≡ y if x ≠ y

(∀x.x) ≡ ⊥ Boolean quantifiers

(∃x.x) ≡ �
(∀x.fx) ≡ f⊥∧ f�
(∃x.fx) ≡ f⊥∨ f�
(∀x.px) ≡ ∀x.p(¬x)
(∃x.px) ≡ ∃x.p(¬x)

(∀xy. fxy) ≡ ∀yx. fxy commutativity

(∃xy. fxy) ≡ ∃yx. fxy

(∀xx. fx) ≡ ∀x. fx idempotence

(∃xx. fx) ≡ ∃x. fx

¬(∀x. fx) ≡ ∃x.¬fx de Morgan

¬(∃x. fx) ≡ ∀x.¬fx

(∀x. fx) ∧y ≡ ∀x. fx ∧y if x ≠ y scope extension

(∃x. fx) ∨y ≡ ∃x. fx ∨y if x ≠ y

(∀x. fx) ∨y ≡ ∀x. fx ∨y if x ≠ y

(∃x. fx) ∧y ≡ ∃x. fx ∧y if x ≠ y

(∀x. fx) → y ≡ ∃x. fx → y if x ≠ y

(∃x. fx) → y ≡ ∀x. fx → y if x ≠ y

y → (∀x. fx) ≡ ∀x.y → fx if x ≠ y

y → (∃x. fx) ≡ ∃x.y → fx if x ≠ y

(∀x. fx) ∧ (∀y.gy) ≡ ∀x. fx ∧ gx distributivity

(∃x. fx) ∨ (∃y.gy) ≡ ∃x. fx ∨ gx
(∀x. fx) → (∃y.gy) ≡ ∃x. fx → gx

Figure 9.3: Quantifier laws
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For each σ , the quantifiers ∀σ and ∃σ are dual to each other. This shows in

the de Morgan laws. It also shows in the fact that most laws come in pairs where

the paired laws are dual to each other.

From the instantiation laws (see Figure 9.3) one can derive corresponding

instantiation rules for the quantifiers:

∀I
∀x.s
sxt

∃I
sxt
∃x.s

Here is a derivation of the universal instantiation rule ∀I:

(λx.s)t = sxt
β

∀f → fx
Law

(∀x.s) → (λx.s)t
Sub ∀x.s

(λx.s)t
MP

sxt
Rep

Russell’s law and Cantor’s law are two nonequational quantifier laws whose

validity was already established with tableaux:

¬∃x∀y. pxy ≡ ¬pyy Russell’s law

¬∃f∀g∃x. fx = g where f : σσo Cantor’s law

Both laws say that certain values do not exist. Russell’s law yields the undecid-

ability of the halting problem for Turing machines, and Cantor’s law yields the

uncountability of the power set of the natural numbers. Here are Skolem’s law

and the axiom of choice:

(∀x∃y.pxy) ≡ ∃f∀x.px(fx) Skolem’s law

∃C∀p. ∃p → p(Cp) Choice

Both laws are weakly valid but not valid (see § 10.1 and § 10.2). Using tableaux,

in § 8.2 we have shown that Skolem and Choice are equivalent in the sense that

an interpretation satisfies all instances of Skolem iff it satisfies all instances of

Choice. The dual of Skolem’s law is also weakly valid:

(∃x∀y.pxy) ≡ ∀f∃x.px(fx) dual of Skolem’s law

Exercise 9.7.1 Derive the existential instantiation rule ∃I.

Exercise 9.7.2 Derive the idempotence laws for quantifiers from the elimination

laws for quantifiers.
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Exercise 9.7.3 Identify all monomorphic laws in Figure 9.3. Hint: A law is

monomorphic if the types of the quantifiers occurring in the law are fixed.

Exercise 9.7.4 Prove the quantifier laws with tableaux. If the laws are polymor-

phic, assume sorts for the type parameters. For instance, prove ∀f → fx for

specific variables f : αo and x : α.

Exercise 9.7.5 Give interpretations in which the following formulas are false:

a) (∀x. fx ∨ gx)→ (∀x. fx) ∨ (∀x.gx)
b) (∃x. fx) → (∃x.gx) → ∃x. fx ∧ gx
c) (∀x. fx → gx)→ (∃x. fx) → (∀x.gx)

Exercise 9.7.6 (Unique Existential Quantification ∃!) Let ∃! := λp.∃x.p ≡ (=)x.

The predicate ∃! checks in every interpretation whether its argument is a sin-

gleton set. We can also see ∃!x.s as a quantification that holds if and only if

there is a unique x such that s holds. Show that ∃! is not commutative, that

is, that the equivalence (∃!x∃!y.pxy) ≡ ∃!y∃!x.pxy is not weakly valid. Hint:

Consider ∃! : (oo)o.

Exercise 9.7.7 Skolem’s law and its dual are logically equivalent. To show this,

assume p : α1α2o and prove with tableaux that the formulas

∀p. (∀x∃y.pxy) ≡ ∃f∀x.px(fx)
∀p. (∃x∀y.pxy) ≡ ∀f∃x.px(fx)

are logically equivalent.

9.8 Normal Forms and Rewriting

To decide the validity of a formula s, we may first employ a normalization step

that translates s into a logically equivalent formula s′ and then decide the validity

of s′. The decision procedure for validity can then assume that the formulas it

works with are in a certain normal form. Here are properties we may require of

such a normal form:

1. The formula does not contain a β-redex (β-normal form).

2. Every negated subterm ¬s of the formula has the property that s has the form

xs1 . . . sn where x is a variable or an identity (negation normal form).

3. The formula has the form Q1x1 . . .Qnxn.s where n ≥ 0, Q1, . . . ,Qn are quan-

tifiers, and s is a quantifier-free formula (prenex form).
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Often, the normal form can be obtained by rewriting the formula with equational

laws. Here is an example that rewrites a formula to negation normal form:

¬∀x∃y. py ∨ qxy initial formula

≡ ∃x.¬∃y. py ∨ qxy rewrite with ¬(∀x. fx) ≡ ∃x.¬fx
≡ ∃x∀y.¬(py ∨ qxy) rewrite with ¬(∃x. fx) ≡ ∀x.¬fx
≡ ∃x∀y.¬py ∧¬qxy rewrite with ¬(x ∨y) ≡ ¬x ∧¬y

The rewrite steps are obtained from the laws by first applying NS (normalizing

substitution) and then possibly Com (compatibility). For the first rewrite step we

have

¬(∀x. fx) ≡ ∃x.¬fx Law

¬(∀x∃y. py ∨ qxy) ≡ ∃x.¬∃y. py ∨ qxy NS, f = λx.∃y.py ∨ qxy

For the second rewrite step we have

¬(∃y. fy) ≡ ∀y.¬fy Law

¬(∃y. py ∨ qxy) ≡ ∀y.¬(py ∨ qxy) NS, f = λy.py ∨ qxy

(∃x.¬∃y. py ∨ qxy) ≡ ∃x∀y.¬(py ∨ qxy) Com, C = ∃x.•

Finally, the third rewrite step can be obtained as follows:

¬(x ∨y) ≡ ¬x ∧¬y Law

¬(py ∨ qxy) ≡ ¬py ∧¬qxy NS, x := py , y := qxy

(∃x∀y.¬(py ∨ qxy)) ≡ ∃x∀y.¬py ∧¬qxy Com, C = ∃x∀y.•

To obtain the equivalence between the initial and the final formula, the three

rewrite steps are combined with two applications of Tra (transitivity). We can

obtain the rewrite steps by a new rewrite rule

Rew
s = t

C[Bθs] = C[Bθt]
that combines NS and Com.

Here is an example that rewrites a formula to prenex form:

¬(∀x.px) ∨∀x∃y.qxy initial formula

≡ (∃x.¬px) ∨∀x∃y.qxy rewrite with ¬(∀x. fx) ≡ ∃x.¬fx
≡ ∀x.(∃x.¬px) ∨ ∃y.qxy rewrite with y ∨∀x. fx ≡ ∀x.y ∨ fx
≡ ∀x∃y.¬py ∨ qxy rewrite with (∃x. fx) ∨ (∃y.gy) ≡ ∃y. fy ∨ gy
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As it comes to the laws we use, we take the laws given in this section up to minor

changes such as α-renaming and commutativity of ∧ and ∨.

Following algebraic tradition, we call valid equations s = t identities. Recall that

we use the word identity also for the constants =σ . Thus you have to understand

the context to know what we mean.

A BSR formula is a relational first-order formula that is in ∃∗∀∗-prenex form,

that is, in prenex form where existential quantifiers do not occur below uni-

versal quantifiers. An example of a BSR formula is ∃x∀y.pxy → x=y . BSR

formulas matter since their satisfiability is decidable, a fact that was discov-

ered by Bernays, Schönfinkel, and Ramsey (hence the acronym BSR). A Bernays-

Schönfinkel formula is an identity-free BSR formula. The satisfiability of BSR

formulas can be decided with a terminating tableau system. For Bernays-

Schönfinkel formulas such a system was discussed in § 6.4.1. If one has to decide

the satisfiability of a formula that is not BSR, one may try to rewrite the formula

into an equivalent BSR formula using the quantifier elimination and scope exten-

sion laws. If this succeeds, one can decide the satisfiability of the formula. See

Exercise 9.8.6.

Exercise 9.8.1 Look at the rewrite steps of the derivation of a prenex form given

above: ¬(∀x.px) ∨ ∀x∃y.qxy ≡ · · · ≡ ∀x∃y.¬py ∨ qxy . For each rewrite

step give the context C and the substitution θ to be used with the rule Rew.

Exercise 9.8.2 Give a set of identities so that every formula can be rewritten into

negation normal form. Hint: You need one identity per logical constant.

Exercise 9.8.3 Give a set of identities so that every formula can be rewritten

into a logically equivalent formula containing no other constants but → and the

universal quantifiers ∀σ . Hint: Recall Leibniz’ law.

Exercise 9.8.4 Give a set of identities so that every first-order formula can be

rewritten into prenex form. Assume the identities

x ∧ y ≡ y ∧ x
x ∨ y ≡ y ∨ x
x → y ≡ ¬x ∨y
x = y ≡ x ∧y ∨¬x ∧¬y

Six additional rules suffice (for each of the constants ¬, ∧, ∨ one rule for ∀ and

one rule for ∃).
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Exercise 9.8.5 Rewrite each of the following formulas to a logically equivalent

formula that is in prenex and negation normal form. Annotate each step with the

law you use. Keep the number of quantifiers as small as possible by prefering

distributivity laws over scope extension laws. For (c) three quantifiers suffice.

a) pxy →∀xy.pxy
b) ¬(∃x∀y.pxy) ∨∀x. qx
c) (¬(∃x∀y.pxy) ∨∀x. qx)∧∀xy. fxy

Exercise 9.8.6 Rewrite the formula ∀y∃x.px → py into an equivalent BSR for-

mula. Hint: Use the scope extension laws to first push the quantifiers inside and

then pull them out in reverse order.

Exercise 9.8.7 A first-order formula is monadic if it does not contain identities

and its free variables all have types of the formα or αo. An example of a monadic

first-order formula is ∀y∃x.px → py . Show that for every monadic first-order

formula one can obtain a logically equivalent monadic first-order formula that

is in ∃∗∀∗-prenex form (Bernays-Schönfinkel form). The trick is to first push

all quantifiers inside as much as possible (so-called miniscoping) and then pull

them out in the right order. With miniscoping one can reach for monadic for-

mulas a form where quantifiers are not nested and where quantified formulas

don’t have free variables (i.e., ∀x.px ∨¬qx). One exploits that a quantifier-free

first-order formula can be rewritten into CNF and DNF. One starts at innermost

quantifications.

9.9 Skolemization

Two formulas s and t are equi-satisfiable if s is satisfiable if and only if t is

satisfiable. Logically equivalent formulas are always equi-satisfiable, but there

are equi-satisfiable formulas that are not logically equivalent.

Proposition 9.9.1 Let ∃x.s be a formula. Then ∃x.s and s are equi-satisfiable.

A formula is in universal prenex form if it has the form ∀x1 . . .∀xn. s
where s is quantifier-free (prenex form with universal quantification only). Uni-

versal prenex form is also known as ∀∗-prenex form or Skolem form. Most

automated provers for first-order logic employ universal prenex form. The fol-

lowing theorem is due to Skolem [59].

Theorem 9.9.2 (Skolem) For every first-order formula there exists an equi-

satisfiable first-order formula in universal prenex form.
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Proof Let s be a first-order formula. Then there exists a logically equivalent

first-order formula t in prenex form. By rewriting with Skolem’s law we obtain a

formula u in ∃∗∀∗-prenex form (existential quantifiers before universal quanti-

fiers) such that t is satisfiable in a standard model iff u is satisfiable in a stan-

dard model. By dropping the existential quantifiers of u we obtain a first-order

formula v in universal prenex form such that u and v are equi-satisfiable (Propo-

sition 9.9.1). By Proposition 10.4.3 it follows that s and u are equi-satisfiable. �

The translation process from prenex form to universal prenex form described

in the proof of the proposition is called Skolemization, and the functional vari-

ables introduced by rewriting with Skolem’s law are called Skolem functions.

As an example, consider the first-order formula ∀x∃y.pxy . Rewriting with

Skolem’s law yields ∃f∀x.px(fx). Now we drop the existential quantifier and

obtain the first-order formula ∀x.px(fx). This formula contains the Skolem

function f and is equi-satisfiable to the initial formula ∀x∃y.pxy .

Exercise 9.9.3 Find equi-satisfiable first-order formulas in universal prenex form

for the following first-order formulas. Try to minimize the number of quantifiers

and Skolem functions.

a) (∀x.px) ∧ ∃x. qx
b) (∀x.px) → ∃x. qx
c) ∀x. px → qx ∧ ∃x. fx
d) ∀xy∃z. pxyz
e) (∃x.px)∨ (∃x. qx)∨∀x. fx
f) ∃x∀y∃z∀a∃b. py ∧ qa→ b = x ∨ z = a

9.10 Equality Laws

Figure 9.4 shows the most important laws for equality. Note that α, β and η are

special in that they are polymorphic with respect to types and terms.

An equational law s ≡ t gives us two implicational laws s → t and t → s.
We say that the equational law has two directions. Often one direction is more

important than the other. This is the case for functional equality, where the

direction (∀x. fx = gx) → f = g is known as functional extensionality. It is

also the case for Leibniz, where (∀p.px → py) → x = y is the more significant

direction.

Exercise 9.10.1 Give a set of identities so that every formula can be rewritten

into a logically equivalent formula containing no other constants but identi-

ties =σ .
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x = x reflexivity

(x = y) ≡ (y = x) symmetry

x = y → y = z → x = z transitivity

x = y → fx = fy functionality

(∀x. fx = gx) → f = g functional extensionality

(∀x. f(fx) = x) → ((∀x.p(fx)) ≡ ∀x.px) autoinversion

f = g ≡ ∀x. fx = gx functional equality

x = y ≡ ∀p.px → py Leibniz

x = y → fx ≡ x = y → fy internal replacement

x ∧y ≡ ∀f . fxy ≡ f�� Henkin

∀f ≡ f = λx.�
∃f ≡ f ≠ λx.⊥

(λx.s) = λy.sxy if y ∉N (λx.s) α

(λx.s)t = sxt β

(λx.sx) = s if x ∉N s η

Figure 9.4: Equality laws

Exercise 9.10.2 Show by rewriting that x∧y ≡ (λf . fxx) = (λf . f��) is valid.

Exercise 9.10.3 There is a single monomorphic law in Figure 9.4. Find it.

Exercise 9.10.4 Except for α, β, and η, all laws in Figure 9.4 can be proven with

tableaux. Make sure you can do this.

9.11 Andrews’ System

Andrews [3] studies a small Hilbert system for STT and shows its completeness.2

His system takes Rew as its only proper rule. All other rules are initial and appear

in Figure 9.5.

2 Andrews [3] actually considers a system for STT with description. His completeness proof
carries over to STT without description.
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� ≡ (=o) = (=) D�
⊥ ≡ (λx.�) = λx.x D⊥
¬ ≡ (=)⊥ D¬
∧ = λxy. (λf . fxy) = λf . f�� D∧
∨ = λxy. ¬(¬x ∧¬y) D∨
→ = λxy. x ≡ x ∧y D→
∀ = (=)(λx.�) D∀
∃ = λf .¬∀x.¬fx D∃

(∀x.fx) ≡ f⊥∧ f� BUQ

(f = g) ≡ ∀x. fx = gx FEQ

x = y → fx = fy Fun

(λx.x)s = s β1

(λx.st)u = (λx.s)u((λx.t)u) β2

(λx.s)t = s if x ∉Ns β3

(λxy.s)t = λy.(λx.s)t if y ∉N t ∪ {x} β4

Figure 9.5: Initial rules of Andrews’ system

Andrew’s system takes the identities as its primary constants. All other con-

stants can be eliminated using Rew and the first 8 rules. In fact, we can say that

the first 8 rules define the non-equational constants in terms of the identities.

Andrews’ system does not employ a substitution operator. Instead, the

basic properties of substitution and β-reduction are provided by the rules

β1, β2, β3, β4.

If we only consider formulas with identities, Rew, β, and the three rules ob-

tained from BUQ, FEQ, and Fun by eliminating the non-equational constants ac-

cording to the definitional rules suffice for a complete system.

All rules but Fun are stated as equations. Fun be stated equivalently as the

equational rule x=y ≡ x=y ∧ fx=fy . This can be shown with D→, Rew, and

the βi-laws.

Andrews’ system constitutes a surprisingly compact account of the logical

assumptions STT is based upon. Since it is sound and complete, we can see it

as an inductive definition of the set of valid formulas. We can also see it as an
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algorithm that enumerates the valid formulas.

To start working with Andrews system, it suffices to understand how we can

obtain formulas from the initial rules and the proper rule Rew. No understanding

of substitution or β-reduction is needed. This means that checking proofs is

easy. However, finding proofs is difficult in Andrews’ system. The situation is

comparable with a machine language where execution is easy but programming

is difficult. In fact, Andrews’ erects on his primitive Hilbert system a more high-

level deductive system and shows how high-level proofs can be compiled into

low-level proofs.

Exercise 9.11.1 Derive Ref in Andrews’ system.

Exercise 9.11.2 Derive β1, β2, β3, β4 with Ref and β. Use Proposition 3.4.4.

Exercise 9.11.3 Derive the formula x=y ≡ x=y ∧ fx=fy with Fun, D→, Rew,

and the βi-laws. Conversely, derive Fun with the βi-laws, Rew, and D→ from the

initial rule x=y ≡ x=y ∧ fx=fy .

9.12 Remarks

Hilbert systems were the first proof systems systematically investigated. They

are obtained with rules that derive valid formulas from valid formulas. Finding

proofs in Hilbert systems is a difficult and unrewarding task. Clearly, tableau

systems are much better suited for proof search.

The first substantial Hilbert system was given by Gottlob Frege [26] in 1879

for a logic that became first-order predicate logic. The first completeness result

for first-order predicate logic was obtained by Gödel [31] for a Hilbert system.

Church’s [20] initial presentation of simple type theory expressed equality with

Leibnz’ law and came with a Hilbert system with 6 proper rules. A slightly re-

vised version was shown complete by Henkin [35] in 1950. In 1963, Henkin [36]

switched to simple type theory with primitive equality and the replacement rule.

For simple type theory with primitive equality Andrews’ devised and proved com-

plete a surprisingly small Hilbert system.
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There are many formulas s such that neither s nor ¬s is valid. To show that

this is the case for a formula s, we need to construct two models, one in which s
is true and one in which s is false. For first-order formulas standard models

suffice, but in general nonstandard models are needed. We will introduce the

logical relation technique for constructing nonstandard models.

10.1 Description and Choice

The function types of nonstandard models may not contain all functions that

exist for this type. As a consequence, formulas that assert the existence of func-

tions may be false in some nonstandard models although they are true in all

standard models. We will now consider such formulas. For every type σ we

define the following formulas:

∃C∀σop. ∃p → p(Cp) Choiceσ

∃D∀σx. D(=x) = x Descσ

∀σxy∃f . fx=y ∧ fy=x Swapσ

Choiceσ asserts the existence of a choice function C : (σo)σ that for every

nonempty subset of σ returns one of its elements. Descσ asserts the existence

of a description function D : (σo)σ that for every singleton subset set of σ
returns its single element. Finally, Swapσ asserts for all x,y : σ the existence of

a swapping function f : σσ that swaps x and y . Note that the variables x and

y in Swapσ are chosen to be different from each other.

Proposition 10.1.1 The formulas Choiceσ → Descσ and Descσ → Swapσ are

valid for every type σ .

Proof Both claims can be shown with tableaux. The first claim follows with

the instantiation D := C , and the second claim follows with the instantiation

f := λa.D(λb. (a=x → b=y) ∧ (a=y → b=x)). �

Proposition 10.1.2 If Swapσ is invalid, then Descσ and Choiceσ are invalid.

Proof Straightforward consequence of Proposition 10.1.1. �
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We have defined a frame D to be standard if D(στ) is the set of all func-

tions Dσ → Dτ . If we assume the so-called axiom of choice for the underlying

set theory, Choiceσ is true in every standard model for every type σ . In 1904,

Zermelo used the axiom of choice to prove that every set can be well-ordered.

This result came as a surprise and made clear that the notion of infinite sets is

far from straightforward. In response to criticism of his proof, Zermelo carefully

spelled out the assumptions about sets he was using in his proof, thus founding

set theory. It turned out that one can have different set theories. In particular,

one can have a set theory where the axiom of choice is assumed.

Proposition 10.1.3 The formulas Swapσ , Descσ , and Choiceσ are weakly valid

for every type σ .

Proof The weak validity of Choiceσ follows from the axiom of choice which we

assume for the underlying set theory. The weak validity of Descσ and Swapσ
follows with Propositions 10.1.1. �

Exercise 10.1.4 One can show that Choiceσ is valid whenever the type σ is con-

structed using only the base type o.

a) Show with tableaux that Choiceo is valid.

b) Give a term of type ((oo)o)oo that evaluates to a choice function for sets of

functions of type oo.

Exercise 10.1.5 Show with tableaux that Choiceσ → Descσ is valid.

Exercise 10.1.6 Show with tableaux that Descσ → Swapσ is valid.

10.2 A Nonstandard Model

We will now construct a nonstandard model in which Swapα is false for every

sort α. Consequently, Swapα is not valid. Thus, by Proposition 10.1.1 Descα and

Choiceα are not valid. The construction uses an inductive technique known as

logical relations technique.

First we construct an admissible frame D. We define sets Dσ and relations

�σ ⊆ Dσ ×Dσ by induction on types:

Dβ := {0,1}
D(στ) := {f ∈ Dσ →Dτ | ∀a, b ∈ Dσ : a �σ b �⇒ fa �τ fb }
a �o b :⇐⇒ true

a �α b :⇐⇒ a = 0∨ a = b
f �στ g :⇐⇒ ∀a, b ∈ Dσ : a �σ b �⇒ fa �τ gb
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The definition first fixes for every base type β the set Dβ and the rela-

tion �β. Then, step by step, it first obtains the set D(στ) and then the relation

�στ⊆ D(στ)×D(στ). We can think of D(στ) as the set of all monotone func-

tions Dσ →Dτ . Note that all sets Dσ are finite since Dβ is finite for all base

types β.

The relations �σ are examples of what is known as logical relations. The

characteristic features of logical relations is their definition by induction on

types and the particular way �στ is obtained from �σ and �τ .

Lemma 10.2.1 a �σ a for all a ∈ Dσ .

Proof If σ is a base type, the claim is obvious. Otherwise let σ = τμ, f ∈ D(τμ),
and a �τ b. By the definition of �τμ it suffices to show that fa �μ fb. This

follows by f ∈ D(τμ) and the definition of D(τμ). �

Lemma 10.2.2 D is a frame.

Proof We have to show that D maps every type to a nonempty set. We show this

by induction on types. For the base types the claim is obvious. For a functional

type στ we know by the inductive hypothesis that there is some b ∈ Dτ . Let

f = λa∈Dσ.b . Clearly, f ∈ Dσ →Dτ . By Lemma 10.2.1 we have b �τ b. Hence

f ∈ D(στ) by the definition of D(στ). �

It’s now easy to see that D(αα) does not contain the swapping function

{(0,1), (1,0)} since it is not monotonic. Hence D is a nonstandard frame.

Lemma 10.2.3 For every sort α: {(0,1), (1,0)} ∈ (Dα→Dα)−D(αα).

Lemma 10.2.4 D(σo) = (Dσ →Do) and D(στo) = (Dσ → (Dτ →Do)).

Proof Easy. Follows from the fact that �o is always satisfied. �

Lemma 10.2.5 D admits logical assignments, that is, contains the values needed

for the logical constants.

Proof The interpretation for ⊥ and � are available since Do = {0,1}. The types

of the remaing logical constants are of the form σo and στo. By Lemma 10.2.4

we know that D provides all functions for these types. Hence the logical opera-

tions are available. �

It remains to show that D is admissible, that is, that every assignment into D
can evaluate every term. This is the most delicate part of the construction. We

define a relation � on the assignments into D:

I � J :⇐⇒ ∀σ ∈ Ty ∀x ∈ Namσ : Ix �σ Jx

2009/8/2 135



10 Models

Lemma 10.2.6 Let s : σ be a term and I and J be assignments into D such that

I � J . Then s ∈ Dom Î ∩ Dom Ĵ and Îs �σ Ĵs.

Proof By induction on s. Let s : σ be a term and I and J be assignments into D
such that I � J . Case analysis.

Let s = x. Then the claim is obvious from the definitions.

Let s = tu where t : μσ . By the inductive hypothesis we have Ît �μσ Ĵt and

Îu �μ Ĵu. Hence (Ît)(Îu) �σ (Ĵt)(Ĵu) by the definition of �μσ . The claim

follows by the definition of evaluation functions.

Let s = λx.t : μτ = σ . By the inductive hypothesis we have t ∈ Dom Îxa ∩
Dom Ĵxa for all a ∈ Dμ. Also by the inductive hypothesis we have Îxat �τ Îxbt
whenever a �μ b. Hence (λa∈Iμ. Îxat) ∈ Dσ . Thus s ∈ DÎ by the definition of

evaluation. Analogously, s ∈ DĴ. To show Îs �σ Ĵs, let a �μ b. It suffices to

show Îsa �τ Ĵsb. This holds since Îsa = Îxat �τ Ĵxbt = Ĵsb by the definition of

evaluation and the inductive hypothesis. �

Lemma 10.2.7 D is an admissible frame that admits logical interpretations.

Proof By Lemmas 10.2.2 and 10.2.5 we know that D is a frame that admits logi-

cal assignments. Let I be a logical assignment into D. By Lemma 10.2.1 we have

I � I . By Lemma 10.2.6 we know that I can evaluate every term. Hence I is a

logical interpretation. �

Theorem 10.2.8 The formulas Swapα, Descα, and Choiceα are not valid.

Proof By Lemma 10.2.7 we have a logical interpretation I into D. By

Lemma 10.2.3 we know that Swapα is not true in I . Hence Swapα is invalid.

The invalidity of Descα and Choiceα follows with Proposition 10.1.1. �

Exercise 10.2.9 Answer the following questions.

a) Does Descι have a standard model?

b) Is Swapι satisfiable?

c) Is ¬Choiceι satisfiable?

d) Is ¬Descι satisfiable?

e) Is ¬Swapι satisfiable?

f) Is Descι ∧¬Swapι satisfiable?
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Exercise 10.2.10 A function f ∈ A → B is called a constant function if there is

some b ∈ B such that fa = b for all a ∈ A. Let D be the frame defined by

induction on types as follows:

Dβ := {0,1}
D(στ) := {f ∈ Dσ →Dτ | f is a constant function }

a) Is D admissible?

b) Does D admit logical assignments?

Exercise 10.2.11 Let D be the frame defined by induction on types as follows:

Dβ := {0,1}
D(στ) := {f ∈ Dσ →Dτ | ∀a, b ∈ Dσ : a �σ b �⇒ fa �τ fb }
a �β b :⇐⇒ a = 0∨ a = b
f �στ g :⇐⇒ ∀a, b ∈ Dσ : a �σ b �⇒ fa �τ gb

a) Is D admissible?

b) Does D admit logical assignments?

10.3 Simple Type Theory with Description or Choice

If we define the set of valid formula with a smaller class of models, we obtain

more valid formulas. Seen this way, restricting the class of models means to

weaken the notion of validity. Here are four obvious model classes:

1. All models.

2. Models that satisfy Descσ for every type σ .

3. Models that satisfy Choiceσ for every type σ .

4. Standard models.

By Propositions 10.1.1 and 10.1.3 we know that every model that satisfies (3)

satisfies (2), and that every model that satisfies (4) satisfies (3). Thus the condi-

tions required of the models get increasingly stronger, and the respective sets

of valid formulas get increasingly larger. By constructing suitable nonstandard

models one can show that this increase is strict, both as it comes to models and

as it comes to formulas. Hence each of the four model classes yields a different

notion of validity.

We have already seen proof systems that are complete for the class of all

models. These proof systems can be extended so that they become complete for

the class with description or the class with choice. Complete proof systems for

the class of standard models are impossible (see § 11.3).
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The extension of Andrews’ system (§ 9.11) to description or choice is straight-

forward. One justs adds one initial rule:

Desc
Descσ

Choice
Choiceσ

In fact, Andrews’ [3] only considers simple type theory with description.

The extension of our tableau system TaS to the presence of description or

choice functions is also straightforward: One adds rules that look exactly as

the rules for Andrews’ system. However, as tableau rules Desc and Choice are

peculiar since they have no premises. Recall that all rules of TaS have premises.

The addition of Desc and Choice destroys termination even for propositional

formulas. Moreover, Choice subsumes the cut rule (§ 8.3), as is shown by the

following tableau.

∃C∀p. ∃p → p(Cp) Choice rule

∀p. ∃p → p(Cp)
(∃x.s) → s p := λx.s where x ∉N s
s ¬∃x.s

¬s

10.4 First-Order Validity

We will now show that a first-order formula is valid if and only if it is weakly

valid. Thus for first-order formulas there is no need to consider nonstandard

interpretations. First we show that the coincidence proposition can be strength-

ened for first-order formulas.

Proposition 10.4.1 (First-Order Coincidence) Îs = Ĵs holds for every first-order

formula s and all logical interpretations I and J that agree on all variables and

all sorts in the footprint of s.

Proof By induction on s. Let s = xs1 . . . sn be a first-order formula and I and J
be logical interpretations that agree on all variables and all sorts in the footprint

of s. Case analysis.

• x is a first-order variable. Then s1, . . . , sn are first-order terms. Since s1, . . . , sn
are λ-free, their footprints do not contain sorts. Thus Îsi = Ĵsi for all i ∈
{1, . . . , n} by Proposition 4.1.5. Hence Îs = Ĵs since Ix = Jx by assumption.

• x is a propositional constant. Then s1, . . . , sn are first-order formulas. Thus

Îsi = Ĵsi for all i ∈ {1, . . . , n} by the inductive hypothesis. Hence Îs = Ĵs
since I and J agree on propositional constants.
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• x = (=α). Then n = 2 and s1 and s2 are first-order terms. Analogous to the

case where x is a first-order variable we obtain Îs1 = Ĵs1 and Îs2 = Ĵs2. Thus

no matter how I and J interpret α, we have Îs = Ĵs.
• s = ∀αx.t. By assumption we have Iα = Jα. By the inductive hypothesis

we have Îxat = Ĵxat for every a ∈ Iα = Jα. Hence Î(λx.t) = Ĵ(λx.t). Thus

Î(∀α(λx.t)) = Ĵ(∀α(λx.t)).
• s = ∃αx.t. Analogous. �

Lemma 10.4.2 Let D be a frame and F be a standard frame that agrees with D
on all base types. Then D(β1 . . . βn) ⊆ F(β1 . . . βn) for all n ≥ 1 and all base

types β1, . . . , βn.

Proof By induction on n. For n = 1 the claim holds by assumption. Other-

wise, let σ = β2 . . . βn. By the inductive hypothesis we have Dσ ⊆ Fσ . Hence

D(β1σ) ⊆ (Dβ1 →Dσ) = (Fβ1 →Dσ) ⊆ (Fβ1 → Fσ) = F(β1σ). �

Theorem 10.4.3 Every satisfiable first-order formula has a standard model.

Proof Let I � s and s be first-order. We choose a standard interpretation J
that agrees with I on all sorts and all variables that are free in s. This is pos-

sible since all variables that are free in s are first-order and hence have a type

α1 . . . αnβ which satisfies I(α1 . . . αnβ) ⊆ J(α1 . . . αnβ) by Lemma 10.4.2. By

Proposition 10.4.1 we have J � s. �

Corollary 10.4.4 A first-order formula is valid if and only if it is weakly valid.

Proof Let s be a weakly valid first-order formula and suppose s is not valid. Then

¬s is satisfiable. By Theorem 10.4.3 we know that ¬s has a standard model.

Hence there is a standard interpretation in which s is false. Contradiction. The

other direction is trivial. �

One can show that Theorem 10.4.3 and Corollary 10.4.4 also holds for the

larger class of EFO formulas [15]. An EFO formula is a formula that does not

contain identities and quantifiers for function types.

Exercise 10.4.5 Give a satisfiable formula that has no standard model.

10.5 Remarks

Andrews [2, 1] seems to be the first who published actual constructions of non-

standard models. In [1], Andrews constructs a nonstandard model using logical
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relations that shows a problem with Henkin’s [35] original definition of interpre-

tations. The construction of nonstandard models by means of logical relations

is further developed by Brown [13].

The technically most involved aspect of completeness proofs are model ex-

istence theorems that assert the satisfiability of evident sets. For the model

constructions in the proofs of the model existence theorems the logical relations

technique can be used, both for the construction of standard and nonstandard

models [16, 15, 14].
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11.1 Undecidability

In the late 1920’s, Hilbert and Ackermann formulated the Entscheidungsprob-

lem [40]: Is there an algorithm that decides the satisfiability of first-order for-

mulas? Here is a famous quote from their textbook Grunzüge der theoretischen

Logik [40] where they write that the Entscheidungsproblem is the most impor-

tant problem of mathematical logic.

Das Entscheidungsproblem ist gelöst, wenn man ein Verfahren kennt, das

bei einem vorgelegten logischen Ausdruck durch endlich viele Operationen

die Entscheidung über die Allgemeingültigkeit bzw. Erfüllbarkeit erlaubt.

(...) Das Entscheidungsproblem muss als das Hauptproblem der mathema-

tischen Logik bezeichnet werden.

As it turned out, the answer to the Entscheidungsproblem is negative: There

is no algorithm that decides the satisfiability of first-order formulas. To show

this, a formal notion of computability had to be established. One possibility are

μ-recursive functions as developed by Herbrand, Gödel, and Kleene. In 1936,

Alonzo Church put forward a bold thesis: The computable functions from

the natural numbers to the natural numbers are exactly the μ-recursive func-

tions. Based on this assumption he proved the undecidability of the Entschei-

dungsproblem [19]. In 1937, Alan Turing put forward a similiar thesis: A func-

tion from strings to strings is computable if and only if it can be computed with

a Turing machine. Based on this assumption he again showed the undecidabil-

ity of the Entscheidungsproblem [66]. The equivalence of Church’s and Turing’s

thesis was quickly established.

Theorem 11.1.1 (Church 1936) Validity of first-order formulas is undecidable.

11.2 Completeness and Semi-Decidability

A complete proof system gives us an algorithm for enumerating all valid for-

mulas. Since there are complete proof systems, validity and unsatisfiability are

semi-decidable. The first completeness result was established by Kurt Gödel [31]
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in 1930 for a basic deduction system for first-order logic devised by Ackermann

and Hilbert [40]. Combined with Church’s undecidability result this implies that

the set of satisfiable (first-order) formulas is not semi-decidable. The first com-

pleteness result for simple type theory was obtained by Leon Henkin [35] in 1950.

Complete tableau systems for simple type theory are a recent achievement [14].

The tableau system TaS introduced in § 7.3 is complete [14].

Theorem 11.2.1 (Henkin 1950) Validity of formulas is semi-decidable.

Exercise 11.2.2 Answer the following questions.

a) Is the set of satisfiable first-order formulas semi-decidable?

b) Is the set of valid formulas semi-decidable?

c) Is the set of unsatisfiable first-order formulas decidable?

11.3 Limited Expressivity

The semi-decidability of validity means that the expressivity of valid formulas

is limited. For instance, there cannot be an algorithm that for every Turing ma-

chine produces a formula that is valid iff the Turing machine does not halt on a

particular input since the respective problem for Turing machines is not semi-

decidable. This principal limitation of expressivity was first recognized by Kurt

Gödel who in 1931 proved a spectacular result known as Gödel’s first incom-

pleteness theorem [32]. To state Gödel’s result we need a few definitions.

We fix a sort N and variables o : N , S : NN , + : NNN , and · : NNN . An

interpretation is arithmetic if it is logical and interprets (N, o, S,+, ·) as the nat-

ural numbers with zero, the successor function, addition, and multiplication.

A formula is arithmetic if it is first-order and each of its free names is either

a propositional constant or one of =N , ∀N , ∃N , o, S, +, · . We call a formula

arithmetically valid if it is arithmetic and true in some arithmetic standard in-

terpretation. By first-order coincidence we know that an arithmetic formula is

arithmetically valid if it is true in every arithmetic interpretation. Using the no-

tion of semi-decidability (which did not exist in 1931), we can formulate Gödel’s

result as follows.

Theorem 11.3.1 (Gödel)

The set of arithmetically valid formulas is not semi-decidable.

Proposition 11.3.2 There is a formula s such that for every arithmetic formula t
the formula s → t is weakly valid if and only if t is arithmetically valid.
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In the light of § 4.4 the proposition looks straightforward since we can specify

the natural numbers in standard models. However, the specification is up to rep-

resentation and thus a rigorous proof of the proposition is technically involved.

Theorem 11.3.3 The set of weakly valid formulas is not semi-decidable.

Proof By contradiction. Suppose the set of weakly valid formulas is semi-

decidable. By Proposition 11.3.2 it follows that arithmetic validity is semi-

decidable. This contradicts Theorem 11.3.1. �

We can now say why we care about nonstandard interpretations: While stan-

dard interpretations alone give us a noncomputational notion of validity, adding

nonstandard interpretations gives us a computational notion of validity. Semi-

decidability of validity is crucial since otherwise complete proof systems do not

exist.

Theorem 11.3.4 There is no formula s such that for every arithmetic formula t
the formula s → t is valid if and only if t is arithmetically valid.

Proof By contradiction. Suppose there is such a formula. Since validity is semi-

decidable, it follows that arithmetic validity is semi-decidable. This contradicts

Theorem 11.3.1. �

In conclusion we can say that weak validity subsumes arithmetic validity while

validity does not, and that subsumption of arithmetic validity is not an option

for a logical system since it must be paid for by non-semi-decidability.

Exercise 11.3.5 Argue that logical equivalence of formulas is semi-decidable.

Exercise 11.3.6 Argue that there is no formula stand such that a logical inter-

pretation I satisfies stand if and only if I is a standard interpretation.

11.4 First-Order Reduction Classes

A first-order reduction class is a set R of first-order formulas such that there

is an algorithm that computes for every first-order formula an equi-satisfiable

formula that is in R.

Proposition 11.4.1 Let R be a first-order reduction class. Then it is undecidable

whether a formula in R is satisfiable.

Proof By contradiction. Suppose there is an algorithm that decides satisfiability

for R. Since R is a reduction class we have an algorithm that decides satisfiability

of first-order formulas. Thus we have an algorithm that decides validity of first-

order formulas. Contradiction with Church’s Theorem 11.1.1. �
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Proposition 11.4.2 First-order formulas in universal prenex form are a first-

order reduction class.

Proof Skolemization, see § 9.9. �

In 1915, Leopold Löwenheim [49] found a first-order reduction class that

shows that equations and most functional types can be translated away. In 1936,

László Kálmar [47] sharpened Löwenheim’s result such that only variables of

type ι and a single variable of type ιιo (a binary predicate) is needed.

Theorem 11.4.3 (Löwenheim-Kálmar) Pure first-order formulas obtained with

variables of type ι and a single variable of type ιιo are a first-order reduction

class.

11.5 Decidability Results

In 1928, Bernays and Schönfinkel [9] showed that the satisfiability of pure first-

order formulas in universal prenex form is decidable. The result was sharped by

Ramsey [55] in 1930 so that equations are allowed. We defined formulas of this

form as BSR formulas (§ 9.8).

Theorem 11.5.1 (Bernays-Schönfinkel-Ramsey)

Satisfiability of BSR formulas is decidable.

The satisfiability of BSR formulas can be decided with a terminating tableau

system. For Bernays-Schönfinkel formulas such a system is presented in § 6.4.1.

When extended with the confrontation rule, the system still terminates and de-

cides the satisfiability of BSR formulas [15]. This gives us a straightforward proof

of Theorem 11.5.1.

A basic formula is a lambda-free formula that contains only quantifiers and

identities at base types. Two examples of basic non-first-order formulas are

px → py → p(x ∧ y) and px = p(p(px)) (both are valid). One can show that

TaS terminates on basic formulas [16, 15]. Thus TaS decides the satisfiability of

basic formulas. One can also show that a basic formula is valid if and only if it

is weakly valid [16, 15].

Theorem 11.5.2 (Brown-Smolka) Satisfiability of basic formulas is decidable.

Basic formulas include quantifier-free first-order formulas. Thus satisfiability

of quantifier-free first-order formulas is decidable. Using results on congruence

closure [51] one can show that satisfiability of quantifier-free first-order formulas

is NP-complete.
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Exercise 11.5.3 For each of the following claims find out how it follows from the

results stated.

a) Satisfiability of quantifier-free first-order formulas is decidable.

b) Satisfiability of formulas ∃x1 . . . xn. s where s is BSR or basic is decidable.

c) Validity of formulas ∀x1 . . . xn. s where s is basic is decidable.

d) Validity of formulas ∀x1 . . . xn∃y1 . . . ym. s where s is a quantifier-free rela-

tional first-order formula is decidable.

11.6 Remarks

There are many decidable fragments of first-order logic. The monograph by

Börger, Grädel and Gurevich [17] is dedicated to the classical first-order decision

problem and is a valuable source of information.
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In 1935 Gentzen [30] published a paper creating two new kinds of proof systems:

natural deduction calculi and sequent calculi. In this chapter we consider natural

deduction calculi. The goal of natural deduction is to have a system whose proof

rules are natural in the sense that they formalize proof patterns used in mathe-

matical practice. Natural deduction calculi are of both theoretical and practical

importance. Different natural deduction calculi can be found in many modern

proof assistants (e.g, Isabelle/HOL [52], TPS [4] and Coq [10]).

12.1 Abstract Proof Systems

Before considering another deductive system, we define abstract proof systems

and illustrate how Hilbert systems and tableaux calculi are instances of abstract

proof systems. Natural deduction calculi will also be instances. Abstract proof

systems give us the opportunity to explain the notion of formal proof.

An abstract proof system is given by a set of propositions and a set of proof

steps. A proof step is a pair ({x1, . . . , xn}, x), which may be written as

x1 . . . xn
x

where x1, . . . , xn, x are propositions. The objects x1, . . . , xn are the premises

and the object x is the conclusion of the proof step. A proof step is initial if it

has no premises.

Proof steps carry their premises as a set, so there is no order between the

premises. Specifying an order for the premises is not essential.

Given a proof system S and a set P of propositions, the closure S[P] is defined

inductively:

1. If x ∈ P , then x ∈ S[P].
2. If (Q,x) ∈ S and Q ⊆ S[P], then x ∈ S[P].
Due to the inductive definition of closures, we obtain proof trees that verify
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statements of the form x ∈ S[P]. The proof tree

x1 x2

x4

x3

x5

x6

verifies the statement x6 ∈ S[{x2}] provided the following pairs are proof steps

of S: (�, x1), (�, x3), ({x1, x2}, x4), ({x3}, x5), ({x4, x5}, x6). Obviously, we

have x ∈ S[P] if and only if there is a proof tree that verifies x ∈ S[P].
Proposition 12.1.1 Let S be a proof system. Then:

1. P ⊆ S[P]
2. P ⊆ Q �⇒ S[P] ⊆ S[Q]
3. Q ⊆ S[P] �⇒ S[P ∪Q] = S[P]

A proposition x is derivable in a proof system S if x ∈ S[�]. A proof step

(P, x) is derivable in a proof system S if x ∈ S[P]. Derivability of a proof step

means that it can be simulated with proof steps that are in S. If we extend a

proof system with derivable steps, the closures do not change. However, we may

obtain smaller proof trees for given x and P . A proof tree that uses derivable

rules can always be compiled into a proof tree just using basic rules.

Let V be a set. A proof step (P, x) applies to V if P ⊆ V . A proof step (P, x)
is sound for V if x ∈ V whenever (P, x) applies to V . A proof system S is sound

for V if every proof step of S is sound for V . A proof system S is complete for

V if V ⊆ S[�].
Proposition 12.1.2 A proof system S is sound for V if and only if S[V] = V .

Proposition 12.1.3 If a proof system S is sound for V , then S[�] ⊆ V .

If a proof system S is sound and complete for V , we have V = S[�]. If S is

sound and complete for V , we also know that x ∈ V if and only if S has a proof

tree for x.

In practice, proof systems are supposed to be decidable. To this goal a de-

cidable set X of propositions is fixed and S is chosen as a decidable set of proof

steps for X. Given a decidable set P ⊆ X, it is decidable whether a given tree

is a proof tree that verifies x ∈ S[P]. Consequently the closure S[P] is semi-

decidable.

Exercise 12.1.4 Let S be the proof system with N as propositions and proof

steps

{ ({x,y}, z) | x,y, z ∈ N∧ x ·y = z }.
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a) Determine S[�].

b) Determine S[{2}].
c) Give a proof step ({x}, y) ∈ S that has only one premise.

d) Derive the proof step ({2,3},12).

e) Is S sound for the even numbers?

f) Is S sound for the odd numbers?

g) Does S[{2x|x ∈ N}] contain an odd number?

12.1.1 Hilbert systems as Instances of Abstract Proof Systems

A Hilbert system is practically a proof system already. As propositions, we take

formulas. As proof steps, we take all pairs ({s1, . . . , sn}, s) where 〈s1, . . . , sn, s〉 is

a basic rule defining the Hilbert system.

The following result is true, but we will not prove it.

Proposition 12.1.5 Let V be the set of valid formulas, S be the proof system

corresponding to the Andrews system. S is sound and complete for V .

12.1.2 Tableaux Calculi as Instances of Abstract Proof Systems

Recall from Chapter 5 that a branch is a finite set of β-normal formulas. Also, a

tableau rule is a tuple 〈A,A1, · · · , An〉 which is often written

A
A1 · · · An

A tableau calculus is a set of tableau rules.

Let T be a tableau calculus. To see a tableau calculus T as an abstract proof

system, let ST be the abstract proof system where propositions are branches

and proof steps are pairs ({A1, . . . , An}, A), where 〈A,A1, . . . , An〉 ∈ T . In other

words, the proof steps are

A1 . . . An
A

where
A

A1 · · · An

is a rule in T .

The following propositions are not difficult to verify.

Proposition 12.1.6 A branch A is T -refutable iff A ∈ ST [�].
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We know the tableau system TaS is refutation sound. We also claim the

tableau system TaS is refutation complete. Consequently we have the following.

Proposition 12.1.7 Let V be the set of unsatisfiable branches. STaS is sound and

complete for V .

12.2 The Structure of Informal Proofs

Consider the following informal proof of

(∀x.px → qx) → (∀x.px) → ∀x.qx

1. Assume ∀x.px → qx. We will prove (∀x.px) → ∀x.qx.

2. Assume ∀x.px. We will prove ∀x.qx.

3. Let y be given. We will prove qy .

4. By assumption (1) we have ∀x.px → qx.

5. Hence we have py → qy .

6. By assumption (2) we have ∀x.px.

7. Hence we have py .

8. By (5) and (7) we have qy as desired.

There are five kinds of reasoning steps used above. First, when our goal is to

prove a formula s → t, then we assume s and prove the subgoal t (see steps 1

and 2). Second, when our goal is to prove a formula ∀σ s, then we let y : σ be

a (fresh) variable and prove the subgoal [sy] (see step 3). Third, we can always

use an assumption (see steps 4 and 6). Fourth, when we know ∀σ s, then we can

establish [st] for any t : σ (see steps 5 and 7). Finally, when we know s → t and

s, then we can establish t (see step 8). We summarize these reasoning steps as

follows.

implication introduction If our goal is to prove s → t, then it is enough to prove

t under the assumed hypothesis s.

forall introduction If our goal is to prove ∀σ s, then it is enough to prove [sy]
for a fresh variable y : σ .

assumption If we have assumed s, then we know s.

implication elimination If we know s → t and we know s, then we know t.

forall elimination If we know ∀σ s, then we know [st] for any t : σ .

Gentzen gave a natural deduction calculus by defining a set of “permissible

inference figures.” His inference figures handled assumptions by giving each as-

sumption a number and referring to this number to infer the assumption. The
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1

∀x.px → qx

py → qy
∀E

2

∀x.px
py

∀E

qy
→E

∀x.qx ∀Iy

(∀x.px) → ∀x.qx →I2

(∀x.px → qx)→ (∀x.px) → ∀x.qx →I1

Figure 12.1: A natural deduction example

remaining steps were represented by the certain “inference figure schemata:” In

Gentzen’s notation the informal proof above could be written in natural deduc-

tion format as in Figure 12.1. This figure should give the reader some idea of

how Gentzen’s natural deduction calculus represents proofs. In the next section

we give precise definitions. First we consider a few more simple examples.

Let p, q : o be variables. Consider the following informal proofs of p → q → p,

q → p → p, and p → p → p.

Example 12.2.1 We show p → q → p.

1. Assume p. We will show q → p.

2. Assume q. We will show p.

3. We know p by assumption (1). �

The corresponding natural deduction proof is

1

p

q → p
→I2

p → q → p
→I1

Example 12.2.2 We show q → p → p.

1. Assume q. We will show p → p.

2. Assume p. We will show p.

3. We know p by assumption (2). �
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The corresponding natural deduction proof is

2

p

p → p
→I2

q → p → p
→I1

Example 12.2.3 We show p → p → p.

1. Assume p. We will show p → p.

2. Assume p (again). We will show p.

3. We know p either by assumption (1) or by assumption (2). �

Depending on which assumption we use in step 3 we obtain two slightly different

natural deduction proofs. Both are given below.

1

p

p → p
→I2

p → p → p
→I1

2

p

p → p
→I2

p → p → p
→I1

12.3 Natural Deduction as a Proof System

To present natural deduction as an abstract proof system, we first make the

following assumptions and definitions.

We assume Lab is a countably infinite set of labels (i.e., Lab � N). We reserve

the letters a and b to range over labels. A labeled formula is a pair 〈a, s〉 of a

label a and a formula s. We will often write a : s for the labeled formula 〈a, s〉.
An assumption context (or context) Γ is a finite function where every member

of Γ is a pair a : s where a ∈ Lab and s is a β-normal formula. In other words,

Γ is a finite set of labeled β-normal formulas where no label appears more than

once. Note that Dom Γ is the set of labels a such that a : s ∈ Γ for some s. We

say a label a is fresh for Γ if a ∉ Dom Γ . Whenever Γ is a context, a ∉ Dom Γ and

s is a formula, we write Γ , a : s for the context given by Γ ∪{a : s}. We often write

contexts by enumerating the members, e.g., a1 : s1, . . . , an : sn.

A sequent is a pair 〈Γ , t〉 where Γ is a context and t is a β-normal formula.

We often write Γ ⇒ t for the sequent 〈Γ , t〉. We write ⇒ t for sequents where the

context is empty. We say a variable x is fresh for Γ ⇒ t if x ∉ V t and x ∉ V s
for every a : s ∈ Γ .
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Let I be a logical interpretation (a model) and Γ be a context. We write I � Γ
if I � s for every a : s ∈ Γ . A sequent is valid if for every logical interpretation

(model) either I �� Γ or I � t.
A natural deduction calculus N is a proof system where the propositions

are sequents. We will measure soundness and completeness of these proof sys-

tems relative to the set of valid sequents. The following definitions are simple

instances of the notions from abstract proof systems.

• Soundness: A rule
Γ1 ⇒ s1 · · · Γn ⇒ sn

Γ ⇒ s

is sound if either one of the premise sequents not valid or the conclusion

sequent is valid. N is sound if every rule of N is sound. Note that if N is

sound, then every N -derivable sequent Γ ⇒ s is valid.

• Completeness: N is complete if every valid Γ ⇒ s is N -derivable.

We can also inherit the notion of a derivable N rule:

• Derivability: A rule
Γ1 ⇒ s1 · · · Γn ⇒ sn

Γ ⇒ s

is N -derivable if Γ ⇒ s is in the closure

N [{Γ1 ⇒ s1, . . . , Γn ⇒ sn}].

12.4 A Natural Deduction Calculus for ∀ and →
Most of the rules of our natural deduction calculi will be introduction and elimi-

nation rules for logical constants. We will also need a rule for using assumptions.

To formally replay the example proof from the Section 12.2 we need introduction

and elimination rules for → and ∀σ .

We define the natural deduction calculus N∀→ to be the proof system given

by the five rules shown in Figure 12.2.

A is the assumption rule.

→I is the implication introduction rule.

→E is the implication elimination rule.

∀I is the forall introduction rule.

∀E is the forall elimination rule.

In most N -rules the left side of a sequent is the same in the premises and

the conclusion. The exception in Figure 12.2 is →I. The left side of the premise
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Aa
Γ ⇒ s

a : s ∈ Γ ∀Iy
Γ ⇒ [sy]

Γ ⇒∀σ s
y : σ fresh for Γ ⇒ s

→Ia
Γ , a : s ⇒ t

Γ ⇒ s → t
a ∉ Dom Γ ∀E

Γ ⇒ ∀σ s
Γ ⇒ [st]

→E
Γ ⇒ s → t Γ ⇒ s

Γ ⇒ t

Figure 12.2: N∀→ rule schemas with explicit contexts

∀Iy
[sy]

∀σ s
y : σ fresh →Ia

a
s
...

t

s → t
a fresh ∀E

∀σ s
[st]

→E
s → t s

t

Figure 12.3: N∀→ rule schemas without explicit contexts

of →I is Γ , a : s while the left side of the conclusion is Γ . We say the assumption

a : s is discharged by the rule →I.
In N proof trees the context is usually clear. Consequently, we only give

the right side s in the derivation instead of A ⇒ s. In rules such as →I which

discharge an assumption a : s we give the label a with the name of the rule, e.g.,

→Ia. When we use an assumption, we give the label of the assumption over the

formula. We have already seen an example of such a natural deduction proof

previously (Figure 12.1). The reader should reconsider this figure and make sure

the context of each sequent is clear.

We can also use these conventions to present natural deduction rule schema

without explicit contexts. We show the schema defining N∀→ in Figure 12.3. In

this format we omit the assumption rule.

12.4.1 A Reduction to ∀ and →
Every formula of STT can be rewritten to an equivalent formula that only uses the

logical constants → and the universal quantifiers ∀σ . The relevant equivalences

are displayed in Figure 12.4.

The equivalences suggest certain rules which should be N∀→-derivable. For

example, Leibniz equality should be reflexive. This suggests that for any context
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x = y ≡ ∀p.px → py (Leibniz)

� ≡ ∀x.x → x
⊥ ≡ ∀x.x
¬x ≡ x → ⊥

x ∧ y ≡ ∀p.(x → y → p) → p
x ∨y ≡ ∀p.(x → p)→ (y → p) → p

(∃f) ≡ ∀p.(∀x.fx → p)→ p

Figure 12.4: Reduction to → and ∀

Γ , β-normal term s : σ and variable p : σo where p ∉N s the rule

Γ ⇒ ∀p.ps → ps

should be N∀→-derivable. We prove this by giving a proof tree (without explicit

contexts). We use a variable q : σo which is fresh for Γ ⇒ ∀p.ps → ps and a

label a which is fresh for Γ .

a
qs

qs → qs
→Ia

∀p.ps → ps
∀Iq

Leibniz equality should also allow one to replace equals by equals. We prove

N∀→-derivability of the rule

Γ ⇒∀p.ps → pt Γ ⇒ [us]

Γ ⇒ [ut]

where Γ is a context, s, t : σ , u : σo are terms and p : σo is a variable such that

p ∉ N s ∪N t. The following proof tree suffices to establish derivability of the

rule.

∀p.ps → pt

[us → ut]
∀E

[us]

Γ ⇒ [ut]
→E

Exercise 12.4.1 Show the following sequents are N∀→-derivable by giving proof

trees (without explicit contexts).

a) Γ ⇒∀x.x → x
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b) Γ , a : (∀x.x) ⇒ s

c) Γ , a : ∀p.(s → t → p) → p ⇒ s where p ∉N s ∪N t.

d) Γ , a : s, b : t ⇒ ∀p.(s → t → p) → p where p ∉N s ∪N t.

e) Γ , a : ∀p.ps → pt ⇒∀p.pt → ps where s, t : σ , p : σo and p ∉N s ∪N t.

Exercise 12.4.2 Prove the validity of the following equivalences in Figure 12.4

using the tableau system TaS+.

12.4.2 Incompleteness of ∀ and →
The following proposition is easy to show.

Proposition 12.4.3 N∀→ is sound.

Since there are no rules for constants except → and ∀, we cannot expect

N∀→ to be able to derive all valid sequents. One might expect that N∀→ is

complete if we only allow the constants→ and∀. In factN∀→ is incomplete even

with respect to this fragment. There are three reasons for this incompleteness:

functional extensionality, Boolean extensionality, and classical reasoning. We can

represent functional and Boolean extensionality as formulas using only ∀ and→
via Leibniz equality. A simple way of representing classical reasoning using only

∀ and → is using Peirce’s Law. We state the following result without proof.

Proposition 12.4.4 N∀→ is incomplete. In particular, N∀→ cannot derive any of

the following valid sequents.

1. (Boolean Extensionality) ⇒∀xy.(x → y) → (y → x)→ ∀p.px → py

2. (Functional Extensionality) ⇒∀στfg.(∀xp.p(fx) → p(gx)) →∀q.qf → qg

3. (Peirce’s Law) ⇒∀xy.((x → y) → x) → x

There is a simple way to obtain a complete calculus for the fragment with

only → and ∀σ . We would need to add new rules corresponding to each of the

three missing principles. We will not pursue this option here.

12.5 Natural Deduction Rules for �, ⊥, ¬, ∧ and ∨
There is a simple introduction rule for � and a simple elimination rule for ⊥.

�I � ⊥E
⊥
s

We describe these rules in natural language as follows.
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�I: (true introduction) If our goal is to prove �, then we are done.

⊥E: (false elimination) If we know ⊥, then we know anything. (We can only

establish ⊥ if we have inconsistent assumptions.)

Example 12.5.1 We can use the rules for � and ⊥ to give two different natural

deduction proofs of ⇒ ⊥ → � shown below.

� �I

⊥ → � →Ia

a
⊥
� ⊥E

⊥ → � →Ia

We next turn to the introduction and elimination rules for negation.

¬Ia

a
s
...

⊥
¬s a fresh ¬E

¬s s

⊥
We describe these rules in natural language as follows.

¬I: (negation introduction) If our goal is to prove ¬s, then it is enough to prove

⊥ under the assumption s. (That is, we prove it is inconsistent to assume s.)

¬E: (negation elimination) If we know ¬s and s, then we know ⊥.

Example 12.5.2 Consider the sequent Γ ⇒ ¬¬¬s → ¬s for some context Γ and

formula s. To illustrate the rules for negation, we prove the following rule is

derivable from the rules above. First let us give an informal argument.

Assume ¬¬¬s. Our goal is to prove ¬s. Assume s. Our goal is to prove ⊥
(a contradiction). Since ¬¬¬s holds, we will have a contradiction if we show

¬¬s. Our goal is now to show ¬¬s. Assume ¬s holds. This contradicts our

assumption of s.
The following natural deduction proof (without explicit contexts) corresponds

to the informal argument above.

a
¬¬¬s

c
¬s

b
s

⊥ ¬E

¬¬s ¬Ic

⊥ ¬E

¬s ¬Ib

¬¬¬s → ¬s →Ia
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Exercise 12.5.3 Show the following sequents are derivable using the rules �I,
⊥E ¬I, ¬E →I and →E by giving proof trees (without explicit contexts).

a) Γ , a : s ⇒ ¬¬s
b) Γ , a : s → ⊥ ⇒ ¬s
c) Γ , a : ¬s ⇒ s → t

d) Γ , a : s → t ⇒ ¬t → ¬s

We next turn to the natural deduction rules for conjunction. These rules are

easy to understand.

∧I
s t

s ∧ t ∧EL
s ∧ t
s

∧ER
s ∧ t
t

We describe these rules in natural language as follows.

∧I: (conjunction introduction) If our goal is to prove s ∧ t, then it is enough to

prove s and then prove t.

∧EL: (conjunction elimination left) If we know s ∧ t, then we know s.

∧ER: (conjunction elimination right) If we know s ∧ t, then we know t.

The natural deduction rules for disjunction are also easy to understand. The

introduction rules in essence say that in order to prove s ∨ t we must decide

which of the disjuncts to prove. The elimination corresponds to proof by cases.

If we have established a disjunction s ∨ t, then we know we can prove any goal

by separately considering the first case where s holds and the second case where

t holds.

∨IL
s

s ∨ t ∨IR
t

s ∨ t ∨Ea,b
s ∨ t

a
s
...

u

b
t
...

u

u
a,b fresh

We describe these rules in natural language as follows.

∨IL: (disjunction introduction left) If our goal is to prove s∨t, then it is enough

to prove s.

∨IR: (disjunction introduction right) If our goal is to prove s ∨ t, then it is

enough to prove t.

∨E: (disjunction elimination) If we know s ∨ t and our goal is to prove u, then

it is enough to prove u under the assumption s and also prove u under the

assumption t. (This is a form of proof by cases.)
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Example 12.5.4 We illustrate the use of the rules for conjunction and disjunc-

tion by proving the sequent Γ ⇒ s∨(t∧u)→ (s∨t)∧(s∨u) where Γ is a context

and s, t, u : o are formulas. This is, in fact, an example used by Gentzen [30].

Consider first the informal argument.

Assume s ∨ (t ∧u). We must show (s ∨ t) ∧ (s ∨u). We consider two cases.

In the first case we assume s holds. Since s holds, s ∨ t and s ∨ u hold so we

are done. In the second case we assume t ∧ u holds. Hence both t and u hold.

Hence both s ∨ t and s ∨u hold, and we are done.

a
s ∨ (t ∧u)

b
s

s ∨ t ∨IL

b
s

s ∨u ∨IL

(s ∨ t)∧ (s ∨u) ∧I

c
t ∧u
t

∧EL

s ∨ t ∨IR

c
t ∧u
u

∧ER

s ∨u ∨IR

(s ∨ t)∧ (s ∨u) ∧I

(s ∨ t)∧ (s ∨u) ∨Eb,c

s ∨ (t ∧u)→ (s ∨ t)∧ (s ∨u) →Ia

Exercise 12.5.5 Let a be a label. Find a context Γ and formulas s, t, u such that

a is fresh for Γ and the following rule is unsound.

s ∨ t

a
s
...

u

u

12.6 Natural Deduction Rules for ∃

∃I
[st]

∃σ s
∃Ea,y

∃σ s

a
[sy]

...

t

t
a,y fresh

We describe these rules in natural language as follows.

∃I: If our goal is to prove ∃σ s, then it is enough to prove [st] for a particular

term t : σ .

∃E: If we know ∃σ s and our goal is to prove t, then it is enough to prove t under

the assumption that [sy] holds for a fresh y : σ .
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Example 12.6.1 We illustrate the use of the rules for quantifiers by proving ⇒
(∃x∀y.pxy) → ∀y∃x.pxy where x : σ , y : τ and p : στo are variables. This

is another example used by Gentzen [30]. Consider first the informal argument.

Assume ∃x∀y.pxy . We will prove ∀y∃x.pxy . Let z be fresh and assume

∀y′.pzy′. (Note that if we happen to choose z to be the same as y , renaming

will be required.) Let w also be fresh. We will prove ∃x′.px′w. Using our

assumption we have pzw which is enough to conclude ∃x′.px′w.

a
∃x∀y.pxy

b
∀y′.pzy′

pzw
∀E

∃x′.px′w ∃I

∀y∃x.pxy ∀Iw

∀y∃x.pxy ∃Eb,z

(∃x∀y.pxy) → ∀y∃x.pxy →Ia

12.7 Natural Deduction Rules for Equality

The introduction and elimination rules for equality correspond to reflexivity and

replacement of equals by equals. Replacement is formulated in a restricted way

using a term u instead of a context. Consequently, unlike basic deduction, we

do not allow capture while applying the rule. In fact, allowing capture would no

longer be sound since we have a context of assumptions.

=I
s = s =E

s = t [us]

[ut]

We describe these rules in natural language as follows.

=I: If our goal is to prove s = s, then we are done.

=E: If we know s = t and [us], then we know [ut].

As an example we prove symmetry of equality. The application of =E below

uses the term λx.x = s.

a
s = t s = s =I

t = s =E

s = t → t = s →Ia
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12.8 An Incomplete Natural Deduction Calculus for STT

At this point, we have given rules for every logical constant. Let N−
STT be the

natural deduction proof system with these rules. To be precise, let N−
STT be the

natural deduction proof system consisting of the rules �I, ⊥E, ¬I, ¬E, →I, →E,

∧I, ∧EL, ∧ER, ∨IL, ∨IR, ∨E, ∀I, ∀E, ∃I, ∃E, =I and =E. These rules are given

(along with three extra rules not included in N−
STT) in Figures 12.5 and 12.6.

This proof system is sound, but is not complete.

Proposition 12.8.1 N−
STT is incomplete. In particular, N−

STT cannot derive any of

the following valid sequents.

1. (Boolean Extensionality) a : x → y,b : y → x ⇒ x ≡ y .

2. (Functional Extensionality) a : ∀x.fx = gx) ⇒ f = g where f , g : στ .

3. (Peirce’s Law) ⇒ ((x → y) → x) → x

4. (Excluded Middle) ⇒ x ∨¬x
5. (Double Negation) ⇒ ¬¬x → x

There are essentially three reasons N−
STT is incomplete. First, Boolean extension-

ality is not provable. Second, functional extensionality is not provable. Third,

the calculus is intuitionistic instead of classical. If the calculus were classical

we would be able to prove Peirce’s Law, excluded middle and double negation.

One can prove using N−
STT that all three of these principles are equivalent. We

will not pursue this in detail.

Exercise 12.8.2 Show the following sequents are N−
STT-derivable using by giving

proof trees (without explicit contexts).

a) Γ , a : s ∧ (t ∨u)⇒ (s ∧ t)∨ (s ∧u)
b) ⇒ ∃σσf .∀x.fx = x

Exercise 12.8.3 Use N−
STT to prove excluded middle implies double negation by

proving the sequent a : ∀x.x ∨¬x ⇒ ∀x.¬¬x → x.

Exercise 12.8.4 Use N−
STT to prove Cantor’s Theorem:

⇒ ¬∃f∀g∃x.fx = g

where f : σσo, g : σo and x : σ .

12.9 A Complete Natural Deduction Calculus for STT

We now add three rules giving us classical logic and both forms of extensionality.

Classical reasoning is reflected by a proof-by-contradiction rule Con. Boolean
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extensionality is given by a rule BE and functional extensionality is given by a

rule FE.

We describe these rules in natural language as follows.

Con: If our goal is to prove s, then it is enough to prove ⊥ under the assumption

¬s. (This corresponds to proof by contradiction.)

BE: If our goal is to prove s ≡ t, then it is enough to prove s → t and t → s.

FE: If our goal is to prove s =στ t, then it is enough to prove ∀x.[sx] =τ [tx].
Let NSTT be the natural deduction calculus given by all the rules in Fig-

ure 12.5. We also show the rules with explicit contexts in Figure 12.6.

Exercise 12.9.1 Give an NSTT-derivation (without explicit contexts) for the se-

quent Γ ⇒ ¬¬s → s where Γ is a context and s : o is a formula.

Exercise 12.9.2 Show the following sequent is NSTT-derivable using by giving

proof trees (without explicit contexts).

Γ , a : pq ⇒ p(λx.¬¬(qx))

where p : (σo)o and q : σo are variables.

12.10 Remarks
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�I � ⊥E
⊥
s

¬Ia

a
s
...

⊥
¬s a fresh ¬E

¬s s

⊥ →Ia

a
s
...

t

s → t
a fresh

→E
s → t s

t
∧I

s t

s ∧ t ∧EL
s ∧ t
s

∧ER
s ∧ t
t

∨IL
s

s ∨ t

∨IR
t

s ∨ t ∨Ea,b
s ∨ t

a
s
...

u

b
t
...

u

u
a,b fresh ∀Iy

[sy]

∀σ s
y : σ fresh

∀E
∀σ s
[st]

∃I
[st]

∃σ s
∃Ea,y

∃σ s

a
[sy]

...

t

t
a,y fresh =I

s = s

=E
s = t [us]

[ut]
Cona

a
¬s
...

⊥
s
a fresh BE

s → t t → s

s ≡ t

FE
∀x.[sx] = [tx]

s =στ t

Figure 12.5: The natural deduction system NSTT without explicit contexts
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Aa
Γ ⇒ s

a : s ∈ Γ �I
Γ ⇒ � ⊥E

Γ ⇒ ⊥
Γ ⇒ s

¬Ia
Γ , a : s ⇒ ⊥
Γ ⇒ ¬s a ∉ Dom Γ

¬E
Γ ⇒ ¬s Γ ⇒ s

Γ ⇒ ⊥ →Ia
Γ , a : s ⇒ t

Γ ⇒ s → t
a ∉ Dom Γ →E

Γ ⇒ s → t Γ ⇒ s

Γ ⇒ t

∧I
Γ ⇒ s Γ ⇒ t

Γ ⇒ s ∧ t ∧EL
Γ ⇒ s ∧ t
Γ ⇒ s

∧ER
Γ ⇒ s ∧ t
Γ ⇒ t

∨IL
Γ ⇒ s

Γ ⇒ s ∨ t

∨IR
Γ ⇒ t

Γ ⇒ s ∨ t ∨Ea,b
Γ ⇒ s ∨ t Γ , a : s ⇒ u Γ , b : t ⇒ u

Γ ⇒ u
a,b ∉ Dom Γ

∀Iy
Γ ⇒ [sy]

Γ ⇒ ∀σ s
y : σ fresh for Γ ⇒ s ∀E

Γ ⇒ ∀σ s
Γ ⇒ [st]

∃I
Γ ⇒ [st]

Γ ⇒ ∃σ s

∃Ea,y
Γ ⇒ ∃σ s Γ , a : [sy] ⇒ t

Γ ⇒ t
a ∉ Dom Γ , y : σ fresh for Γ ⇒ t

=I
Γ ⇒ s = s =E

Γ ⇒ s = t Γ ⇒ [us]

Γ ⇒ [ut]
Cona

Γ , a : ¬s ⇒ ⊥
Γ ⇒ s

a ∉ Dom Γ

BE
Γ ,⇒ s → t Γ ⇒ t → s

Γ ⇒ s ≡ t FE
Γ ⇒∀x.[sx] = [tx]

Γ ⇒ s =στ t

Figure 12.6: The natural deduction system NSTT with explicit contexts
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13 Proof Terms

In this chapter we consider proof terms corresponding to proofs in natural de-

duction. We will first associate derivations in N∀→ with proof terms. Once we

have a notion of proof term, we can discuss equivalence of proofs. We will also

discuss proof checking. That is, we can give an algorithm which determines if a

given proof term corresponds to a proof of a given sequent Γ ⇒ s.
In a context, a proof term may have a formula as its type. The idea of having

formulas play the role of types is referred to as the Curry-Howard correspon-

dence or Curry-Howard isomorphism [44, 24]. The mathematician de Bruijn was

the driving force behind the Automath project [22, 69] which designed languages

and proof checkers based on similar principles. For this reason the idea is some-

times called the Curry-Howard-de Bruijn correspondence.

13.1 Proof Terms

Recall that in Chapter 3 we first defined a set of untyped terms before restricting

ourselves to those terms that are well-formed and hence have a type. For untyped

terms we defined substitution, ∼α and ∼β. We will reuse all these definitions by

defining proof terms as certain untyped λ-terms.

When we introduced typed names, we assumed that our set of names Nam

is such that Nam � N × Ty. Consequently each name had a unique associated

type and for each type there were infinitely many names with this type. For this

chapter, we weaken the assumption to allow labels to be used as untyped names.

Recall from Chapter 12 that Lab is a countably infinite set of labels. Assume

Lab ⊆ Nam and

(Nam − Lab) � N× Ty

We refer to names in Nam− Lab as typed names.

Once we have fixed a set of names, we obtain a set Ter of terms by induction

(exactly as in Chapter 3).

1. Every name is a term.

2. If s and t are terms, then st is a term.

3. If x is a name and s is a term, then λx.s is a term.
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13 Proof Terms

With respect to these terms, we have well-defined notions of substitution, ∼α,

→β, ∼β and so on.

Just as before, we have obtain a subset of well-formed terms. Each well-

formed term has a unique type.

1. If x is a typed name with type σ , then x is a well-formed term with type σ .

2. If s is a well-formed term with type στ and t is a well-formed term with type

σ , then st is a well-formed term with type τ .

3. If x is a typed name with type σ and t is a well-formed term with type τ , then

λx.t is a well-formed term with type στ .

From now on in this chapter, we revert to our use of s, t to range over well-

formed terms and x,y to range over typed names. As before, some of the typed

names are logical constants while the remaining typed names are variables.

Now that we consider labels as names, we can define a set Pf of proof terms.

We will use D and E to range over proof terms. The set of proof terms is the

least set of terms satisfying the following conditions.

1. If a is a label, then a is a proof term.

2. If D and E are proof terms, then DE is a proof term.

3. If D is a proof term and s is a well-formed term of type σ , then Ds is a proof

term.

4. If a is a label and D is a proof term, then λa.D is a proof term.

5. If x : σ is a variable and D is a proof term, then λx.D is a proof term.

Note that in our definition of proof terms, there are two ways to form a proof

term using application and two ways to form a proof term using λ-abstraction.

We can represent the set of proof terms as a grammar as follows.

D,E ∈ Pf ::= a | DE | D s | λa.D | λx.D proof terms

Again, since Pf is a subset of the set of all terms, we inherit the notions of

substitution, ∼α, →β and so on.

13.2 A Calculus with Proof Terms

A proof term sequent is a triple 〈Γ ,D, t〉 where Γ is a context, D is a proof term

and t is a β-normal formula. We write such a proof term sequent as Γ ⇒D : t.
We say a variable y : σ is fresh for Γ ⇒ D : t if y is fresh for Γ ⇒ t and

y ∉ND. We say a label a is fresh for Γ ⇒D : t if a ∉ Dom Γ ∪ND.

We define a proof system N p
∀→ for proof term sequents corresponding to

N∀→. The propositions of N p
∀→ are proof term sequents. The rules of N p

∀→ are

given in Figure 13.1. The reader should compare this to the rules for N∀→ in
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13.2 A Calculus with Proof Terms

Aa
Γ ⇒ a : s

a : s ∈ Γ ∀Iy
Γ ⇒Dz

y : [sy]

Γ ⇒ λz.D : ∀σ s
y : σ fresh for Γ ⇒ λz.D : ∀σ s

→Ia
Γ , a : s ⇒Db

a : t

Γ ⇒ λb.D : s → t
a ∉ Dom Γ ∪N (λb.D) ∀E

Γ ⇒D : ∀σ s
Γ ⇒Dt : [st]

→E
Γ ⇒D : s → t Γ ⇒ E : s

Γ ⇒DE : t

Figure 13.1: N p
∀→ rule schemas

Figure 12.2. In fact, we use the same names for the corresponding rules in N∀→
and N p

∀→.

Note that in the two rules∀Iy and→Ia we allow for the possibility of changing

the name of a λ-bound name in the proof term. In most cases, the following

special cases of ∀Iy and →Ia will suffice.

∀Iy
Γ ⇒D : [sy]

Γ ⇒ λy.D : ∀σ s
y : σ fresh for Γ ⇒ s →Ia

Γ , a : s ⇒D : t

Γ ⇒ λa.D : s → t
a ∉ Dom Γ

We introduce two convenient notations. We write Γ  s if the sequent Γ ⇒ s
is N∀→-derivable. We write Γ  D : s if the proof term sequent Γ ⇒ D : s is

N p
∀→-derivable. When the context is empty we write  s or  D : s. An easy

induction can be used to prove the following result.

Proposition 13.2.1 Γ  s iff there is some proof term D such that Γ  D : s.

We illustrate Proposition 13.2.1 by considering examples.

Example 13.2.2 Following Example 12.2.3 we can give two different proofs of

⇒ p → p → p. Again, we omit contexts.

a
p

p → p
→Ib

p → p → p
→Ia

b
p

p → p
→Ib

p → p → p
→Ia

The corresponding N p
∀→ derivations reveal the related proof terms.

a : p

λb.a : p → p
→Ib

λab.a : p → p → p
→Ia

b : p

λb.b : p → p
→Ib

λab.b : p → p → p
→Ia
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13 Proof Terms

Note that the two proof terms λab.a and λab.b are different. Of course, if we

had simply used different labels than a and b, then we would obtain different

proof terms. The important fact is that the two proof terms are not α-equivalent.

That is, λab.a �∼α λab.b.

Are there any other proof terms D (neither α-equivalent to λab.a nor λab.b)

such that  D : p → p → p? Yes, there are. Consider the proof term λab.(λc.c)a
and derivation below.

c : p

λc.c : p → p
→Ic

a : p

(λc.c)a : p
→E

λb.(λc.c)a : p → p
→Ib

λab.(λc.c)a : p → p → p
→Ia

This is a roundabout proof of ⇒ p → p → p. Also, notice that the proof term

λab.(λc.c)a has a β-redex. If we reduce the proof term to β-normal form we

obtain λab.a, one of the first two proof terms.

Up to ∼α, λab.a and λab.b are the only β-normal proof terms D such that

 D : p → p → p? �

Exercise 13.2.3 Let p : o be a variable. Find three β-normal proof terms D1, D2,

D3 none of which are α-equivalent to another such that

 Di : (p → p) → p → p

holds for i ∈ {1,2,3}.

Exercise 13.2.4 Let p, q, r : o be variables. For each problem below, find a β-

normal proof term D satisfying the given condition.

a)  D : p → q → p

b)  D : (q → r)→ (p → q)→ p → r

c)  D : (p → q → r)→ (p → q)→ p → r

Exercise 13.2.5 For each of the following proof terms D find a formula s such

that  D : s.

a) λa.a

b) λxa.ax where x : σ .

c) λxa.axx where x : σ .

d) λya.a(y → y)(ay) where y : o.

Exercise 13.2.6 Find a proof term D and a formula s such that  (DD) : s.
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Exercise 13.2.7 Consider the proof term (λa.aa)(λa.aa). Argue that there is

no context Γ and formula s such that Γ  (λa.aa)(λa.aa) : s.

Exercise 13.2.8 Let r : σσo and x,y, z : σ be variables and let a, b be distinct

labels. Let Γ be the context with the two elements

• a : ∀xy.rxy → ryx and

• b : ∀xyz.rxy → ryz → rxz.

a) Find a β-normal proof term D such that Γ  D : ∀xy.rxy → rxx.

b) Using your solution D to part a consider the proof term λxyc.Dyx(axyc).
Find a formula s such that Γ  λxyc.Dyx(axyc) : s.

c) Compute the β-normal form of λxyc.Dyx(axyc).

13.3 Bidirectional Checking of Normal Proof Terms

We define two sets of proof term sequents by induction. We then reason that

this gives a proof checking algorithm.

We write Γ  D ⇑ s when the proof term sequent Γ ⇒ D : s is in the first set.

We write Γ  D ⇓ s when the proof term sequent Γ ⇒ D : s is in the second set.

These two sets are defined inductively as follows.

1. If Γ  Dx
y ⇑ [sy] for a fresh variable y , then Γ  λx.D ⇑ ∀σ s.

2. If Γ , a : s  Db
a ⇑ t for a fresh label a, then Γ  λb.D ⇑ s → t.

3. If Γ  D ⇓ s, then Γ  D ⇑ s.
4. If a : s ∈ Γ , then Γ  a ⇓ s.
5. If Γ  D ⇓ ∀σ s and t : σ is a term, then Γ  Dt ⇓ [st].
6. If Γ  D ⇓ s → t and Γ  E ⇑ s, then Γ  DE ⇓ t.

We now describe the two sets as a proof checking algorithm for β-normal

proof terms. Given Γ ⇒D : s, we need to be able to test whether or not Γ  D ⇑ s
holds. As a mutually recursive procedure, we will also need to be able to ask

whether there is some s such that Γ  D ⇓ s whenever D is β-normal concrete

proof term. Recall that we call a term concrete if it is not a λ-abstraction.

We summarize the cases of the procedure. In the description below, we as-

sume all proof terms are β-normal.

1. Goal: Test if Γ  λz.D ⇑ s. If s is not of the form ∀t, then Γ � λz.D ⇑ s. If s
is of the form ∀t, choose some fresh variable y and test if Γ  Dz

y ⇑ [ty].
2. Goal: Test if Γ  λb.D ⇑ s. If s is not of the form t → u, then Γ � λb.D ⇑ s.

If s is of the form t → u, choose some fresh label a and test if Γ , a : t  Db
a ⇑

[u].
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13 Proof Terms

Γ  Dz
y ⇑ [sy]

Γ  λz.D ⇑ ∀σ s
y : σ fresh

Γ , a : s  Db
a ⇑ t

Γ  λb.D ⇑ s → t
a fresh

Γ  D ⇓ s
Γ  D ⇑ s

Γ  a ⇓ s a : s ∈ Γ
Γ  D ⇓ ∀σ s
Γ  Dt ⇓ [st]

Γ  D ⇓ s → t Γ  E ⇑ s
Γ  DE ⇓ t

Figure 13.2: Proof checking algorithm

3. Goal: Test if Γ  D ⇑ s where D is concrete. Try to compute some t such that

Γ  D ⇓ t. If either no such t exists or s and t are different, then Γ � D ⇑ s.
Otherwise Γ  D ⇑ s.

4. Goal: Compute some s such that Γ  a ⇓ s. If a ∉ Dom Γ , then there is no

such s. Otherwise, a : s is in Γ (for a unique s) and we have Γ  a ⇓ s for this

s.

5. Goal: Compute some s such that Γ  Dt ⇓ s. First compute some term u such

that Γ  D ⇓ u. If no such u exists or u is not of the form ∀σv , then there

is no such s. Otherwise, u has the form ∀σv and we have Γ  Dt ⇓ [vt] and

so we take s to be [vt].

6. Goal: Compute some s such that Γ  DE ⇓ s. First compute some term u
such that Γ  D ⇓ u. If no such u exists or u is not of the form u1 → u2, then

there is no such s. Otherwise, u has the form u1 → u2. Check if Γ  E ⇑ u1.

If Γ � E ⇑ u1, then there is no such s. Otherwise, Γ  DE ⇓ u2 and so we

take s to be u2.

We give a nice summarization of the six cases of these algorithm in Figure 13.2

by abusing our notation for rules.

Example 13.3.1 Let x,y : o be variables and a, b be distinct labels. We verify

 λabx.axb ⇑ (∀x.y → x)→ y → ∀x.x

Using the algorithm we reduce this to checking

a : (∀x.y → x), b : y  axb ⇑ x

Given this context and the proof term axb, we use the algorithm to compute

that x is the formula such that

a : (∀x.y → x), b : y  axb ⇓ x

as desired. �
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Exercise 13.3.2 Let p : σo, x,y : σ be variables and let D be the proof term

a(λy.∀p.py → px)(λpb.b)

where b is a label different from a. Compute the formula s such that

a : ∀p.px → py  D ⇓ s

holds. Give the corresponding N∀→-derivation.

13.4 Proof Terms as Programs

Let s, t be β-normal formulas. We can think of s and t as types and s → t as the

type of functions taking data of type s to data of type t. To avoid confusion with

our types σ , let us use the word datatype for such β-normal formulas.

Suppose we have proof terms λa.D and E such that  λa.D : s → t and

 E : s. This means λa.D has the datatype of a function from type s to type t.
Since E has type s, we have  (λa.D)E : t. This is a β-redex with reduct Da

E .

In this way β-normal formulas give the datatype of certain functional programs

and β-reduction of proof terms corresponds to computation of these programs.

In addition to function datatypes s → t, we also have product and sum

datatypes. We obtain these constructions using Girard’s expression of conjunc-

tion and disjunction in terms of implication and universal quantification:

x ∧y ≡ ∀p.(x → y → p)→ p

x ∨y ≡ ∀p.(x → p) → (y → p)→ p

Let

× be the term λxy.∀p.(x → y → p) → p

and

+ be the term λxy.∀p.(x → p)→ (y → p)→ p.

We write × and + in infix notation. Note that the Girard equivalences can be

expressed as

x ∧y ≡ [x ×y] and x ∨y ≡ [x +y]
Let s, t be β-normal formulas.

• Let pair be the proof term λabpc.cab. The reader can check that

 pair ⇑ s → t → [s × t]

• Let fst be the proof term λc.cs(λab.a). The reader can check that

 fst ⇑ [s × t] → s
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• Let snd be the proof term λc.ct(λab.b). The reader can check that

 snd ⇑ [s × t]→ t

Let →∗
β be the reflexive transitive closure of →β. We claim that for any proof

terms D and E,

fst (pairDE) →∗
β D

and

snd (pairDE) →∗
β E

We show the first case and leave the second case to the reader.

fst (pairDE) →∗
β (pairDE)s(λab.a) →∗

β (λab.a)DE →∗
β D

Exercise 13.4.1 Check the following facts:

a)  pair ⇑ s → t → [s × t]
b)  fst ⇑ [s × t]→ s

c)  snd ⇑ [s × t] → t

d) snd(pairDE) →∗
β E

We next turn to sum datatypes. Again, we fix β-normal formulas s and t.

• Let inl be the proof term λapbc.ba. The reader can check that

 inl ⇑ s → [s + t]

• Let inr be the proof term λapbc.ca. The reader can check that

 inr ⇑ t → [s + t]

• For each β-normal formula u let caseu be the proof term λabc.aubc. The

reader can check that

 caseu ⇑ [s + t]→ (s → u)→ (t → u)→ u

We claim that for any proof terms D, E1 and E2,

caseu (inlD)E1E2 →∗
β E1D

and

caseu (inrD)E1E2 →∗
β E2D

We leave these computations as exercises.
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Exercise 13.4.2 Check the following facts:

a)  inl ⇑ s → [s + t]
b)  inr ⇑ t → [s + t]
c)  caseu ⇑ [s + t]→ (s → u)→ (t → u)→ u

d) caseu (inlD)E1E2 →∗
β E1D

e) caseu (inrD)E1E2 →∗
β E2D

13.5 Adding Signatures

Assumption contexts allow us to reason with a finite dynamic set of assumptions.

In this section we model a static set of axioms which may be infinite. We do this

using the notion of a signature. A signature is similar to an assumption context,

except that it may be infinite.

A signature Σ is a function such that every member is a pair a : s where

a ∈ Lab and s is a β-normal formula with no free variables (i.e., V s = �). We call

a signature Σ admissible if Lab−DomΣ is infinite. We only consider admissible

signatures Σ so that we always have an infinite supply of labels that are fresh

with respect to the Σ.

We can now generalize the notion of a proof term sequent to include a sig-

nature. A proof term sequent over Σ is a 4-tuple written as Γ ⇒Σ D : s where Σ
is an admissible signature, Γ is an assignment context with DomΣ∩ Dom Γ = �,

D is a proof term and s is a β-normal formula. The cases we have considered

previously are special cases where the signature is empty. When the intended

signature is clear we may still sometimes write Γ ⇒D : s for Γ ⇒Σ D : s.
We can now generalize our proof system N p

∀→ to be a proof system N p
Σ for

proof term sequents over Σ in the obvious way. The rules for N p
Σ are given in

Figure 13.3. These are essentially the same as the rules for N p
∀→ in Figure 13.1

except for two modifications. First, freshness of a label a also means that a ∉
DomΣ. Second, there is a new base case for deriving Γ ⇒Σ a : s when a : s ∈ Σ.

We write Γ  Σ D : s where Γ ⇒Σ D : s is N p
Σ derivable.

We now generalize the proof checking algorithm to perform checking given

a signature Σ. As before we define two sets by mutually recursion. This time

both sets are sets of proof term sequents over over Σ. We write Γ  Σ D ⇑ s when

Γ ⇒Σ D : s is in the first set and write Γ  Σ D ⇓ s. when Γ ⇒Σ D : s is in the second

set. The cases for the algorithm are given in Figure 13.4.

The algorithm works as before. If Σ, Γ , D (β-normal) and s are given, we can

check if Γ  Σ D ⇑ s holds. If Σ, Γ andD (β-normal concrete), then we can compute

an s (if one exists) such that Γ  Σ D ⇓ s holds.

The following propositions ensure correctness of the algorithm.
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Sa
Γ ⇒Σ a : s

a : s ∈ Σ Aa
Γ ⇒Σ a : s

a : s ∈ Γ

∀Iy
Γ ⇒Σ Dz

y : [sy]

Γ ⇒Σ λz.D : ∀σ s
y : σ fresh for Γ ⇒Σ λz.D : ∀σ s

→Ia
Γ , a : s ⇒Σ Db

a : t

Γ ⇒Σ λb.D : s → t
a ∉ DomΣ∪Dom Γ ∪N (λb.D) ∀E

Γ ⇒Σ D : ∀σ s
Γ ⇒Σ Dt : [st]

→E
Γ ⇒Σ D : s → t Γ ⇒Σ E : s

Γ ⇒Σ DE : t

Figure 13.3: N p
Σ rule schemas

Proposition 13.5.1 Let Σ be an admissible signature, Γ be an assumption context

with DomΣ ∩ Dom Γ = � and D be a β-normal concrete proof term. There is at

most one formula s such that Γ  Σ D ⇓ s holds.

Proof This follows by induction on the definition of Γ  Σ D ⇓ s. The base cases

follow by our assumptions on Σ and Γ . The inductive cases are easy. �

Proposition 13.5.2

1. If Γ  Σ D ⇑ s holds, then D is β-normal and Γ  Σ D : s holds.

2. If Γ  Σ D ⇓ s holds, then D is β-normal and concrete and Γ  Σ D : s holds.

Proof These two facts follow from an easy mutual induction on the definitions

of Γ  Σ D ⇑ s and Γ  Σ D ⇓ s. �

Proposition 13.5.3

1. If D is β-normal and Γ  Σ D : s holds, then Γ  Σ D ⇑ s holds.

2. If D is β-normal and concrete and Γ  Σ D : s holds, then Γ  Σ D ⇓ s holds.

Proof The two facts follow by induction on the definition of Γ  Σ D : s. �

13.6 Proof Terms for NSTT

By giving an appropriate signature ΣSTT we can assign proof terms to all NSTT

natural deduction proofs. This will give us a notion of proof term that corre-

sponds to a complete natural deduction calculus. To accomplish this, we choose
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Γ  Σ Dz
y ⇑ [sy]

Γ  Σ λz.D ⇑ ∀σ s
y : σ fresh

Γ , a : s  Σ Db
a ⇑ t

Γ  Σ λb.D ⇑ s → t
a fresh

Γ  Σ D ⇓ s
Γ  Σ D ⇑ s

Γ  Σ a ⇓ s
a : s ∈ Σ

Γ  Σ a ⇓ s
a : s ∈ Γ

Γ  Σ D ⇓ ∀σ s
Γ  Σ Dt ⇓ [st]

Γ  Σ D ⇓ s → t Γ  Σ E ⇑ s
Γ  Σ DE ⇓ t

Figure 13.4: Proof checking algorithm with signatures

a fixed an infinite number of labels which we will use to model the rules in NSTT

but not in N∀→. Of course we make sure to leave infinitely many labels un-

touched so that the signature will be admissible. For each of the fixed labels we

pair it with a β-normal formula with no free variables. Each such formula will

correspond to a rule.

• Fix truei ∈ Lab. This will correspond to �I.
• Fix false ∈ Lab. This will correspond to ⊥E.

• Fix noti ∈ Lab. This will correspond to ¬I.
• Fix note ∈ Lab. This will correspond to ¬E.

• Fix andi , andel , ander ∈ Lab. These will correspond to ∧I, ∧EL and ∧ER.

• Fix oril ,orir ,ore ∈ Lab. These will correspond to ∨IL, ∨IR and ∨E.

• For each type σ , fix exiσ , exeσ ∈ Lab. These will correspond to ∃I and ∃E.

• Fix each type σ , fix eqiσ , eqeσ ∈ Lab. These will correspond to =I and =E.

• Fix con ∈ Lab. This will correspond to Con.

• Fix be ∈ Lab. This will correspond to BE.

• For all types στ , fix feστ ∈ Lab. This will correspond to FE.

Each label will be used to give proof terms for corresponding rules. Let ΣSTT

be the signature with the labels above associated with formulas as listed in Ta-

ble 13.1. We also show the corresponding rules.

Finally, we show how one can assign ΣSTT proof terms to NSTT derivations in

Figures 13.5 and 13.6. Note that the rules in these figures do not define the set

of derivable proof term sequents over ΣSTT. This set has already been defined in

Figure 13.3. Figures 13.5 and 13.6 indicate how to annotate NSTT derivations to

obtain appropriate proof terms.
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Label Formula Corresponding Rule

truei � �I
false ∀p.⊥ → p ⊥E
noti ∀p.(p → ⊥)→ ¬p ¬I
note ∀p.¬p → p → ⊥ ¬E
andi ∀pq.p → q → p ∧ q ∧I
andel ∀pq.p ∧ q → p ∧EL
ander ∀pq.p ∧ q → q ∧ER
oril ∀pq.p → p ∨ q ∨IL
orir ∀pq.q → p ∨ q ∨IR
ore ∀pqr .p ∨ q → (p → r)→ (q → r)→ r ∨E
exiσ ∀px.px → ∃σp ∃I
exeσ ∀pq.∃σp → (∀x.px → q)→ q ∃E
eqiσ ∀x.x =σ x =I
eqeσ ∀xyp.x =σ y → px → py =E
con ∀p.(¬p → ⊥)→ p Con

be ∀pq.(p → q)→ (q → p)→ p ≡ q BE

feστ ∀fg.(∀x.fx = gx) → f =στ g FE

Table 13.1: Labeled formulas in ΣSTT

Not all proof terms will correspond directly to NSTT derivations. For an easy

example, consider the proof term false�. We clearly have  ΣSTT
false� : ⊥ → �.

On the other hand, any NSTT derivation of ⇒ ⊥ → � must use →I.
Example 13.6.1 Let p : o be a variable. An NSTT derivation of ⇒ p∨¬p (making

a vital use of the rule Con) is given below:

a
¬(p ∨¬p)

a
¬(p ∨¬p)

b
p

p ∨¬p ∨IL

⊥ ¬E

¬p ¬Ib

p ∨¬p ∨IR

⊥ ¬E

p ∨¬p Cona

The corresponding proof term D is

con (p ∨¬p)λa.E
where E is

note (p ∨¬p)a(orirp(¬p)(notipλb.note (p ∨¬p)a(orilp(¬p)b)))
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�I
truei :� ⊥E

D :⊥
false sD :s

¬Ia

a
s
...

D :⊥
noti s(λa.D) :¬s a fresh

¬E
D :¬s E :s

note sDE :⊥ →Ia

a
s
...

D :t

λa.D :s → t
a fresh →E

D :s → t E :s

DE :t

∧I
D :s E :t

andi stDE :s ∧ t ∧EL
D :s ∧ t

andel stD :s
∧ER

D :s ∧ t
ander stD :t

∨IL
D :s

oril stD :s ∨ t ∨IR
D :t

orir stD :s ∨ t

∨Ea,b
D :s ∨ t

a
s
...

E1 :u

b
t
...

E2 :u

ore stuD(λa.E1)(λb.E2) :u
a,b fresh ∀Iy

D :[sy]

λy.D :∀σ s
y : σ fresh

∀E
D :∀σ s
Dt :[st]

∃I
D :[st]

exiσ stD :∃σ s
∃Ea,y

D :∃σ s

a
[sy]

...

E :t

exeσ stD(λya.E) :t
a,y fresh

=I
eqiσ s :s =σ s

=E
D :s =σ t E :[us]

eqeσ stuDE :[ut]

Figure 13.5: Obtaining proof terms from NSTT derivations, part 1
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Cona

a
¬s
...

D :⊥
con s(λa.D) :s

a fresh BE
D :s → t E :t → s

be stDE :s ≡ t

FE
D :∀x.[sx] = [tx]
feστ stD :s =στ t

Figure 13.6: Obtaining proof terms from NSTT derivations, part 2

The reader should verify that

 ΣSTT
D ⇑ p ∨¬p

in fact holds for this proof term. �

Exercise 13.6.2 Let f : oo be a variable. Construct an NSTT derivation of ⇒
∃f .f⊥ ∧¬f� and then find a corresponding proof term D such that

 ΣSTT
D ⇑ ∃f .f⊥ ∧¬f�

Exercise 13.6.3 Let p : o be a variable. Construct an NSTT derivation of

⇒ ¬∃p.p ∧¬p and then find a corresponding proof term D such that

 ΣSTT
D ⇑ ¬∃p.p ∧¬p

Exercise 13.6.4 Let p : o be a variable. Construct an NSTT derivation of

⇒ p ≡ ¬¬p

and then find a corresponding proof term D such that

 ΣSTT
D ⇑ p ≡ ¬¬p

13.7 Remarks
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In this chapter we study logical equivalence of propositional formulas. We ob-

serve that every propositional formula denotes a Boolean function and that two

propositional formulas are logically equivalent if and only if they denote the

same Boolean function. Boolean functions matter since they are used for the

logical specification of computer circuits. We identify a class of canonical propo-

sitional formulas such that every propositional formula is logically equivalent to

exactly one canonical formula. The canonical form is based on decision trees.

Decision trees are represented as nodes of graphs known as BDDs (for binary de-

cision diagrams). The data structures and algorithms presented in this chapter

have many applications, including computer-aided design of computer hardware

and verification of finite state systems. The essential ideas are due to Randal

Bryant [56].

14.1 Boolean Functions

An important building block of the hardware of computers are functional cir-

cuits. A functional circuit maps some inputs x1, . . . , xm to some outputs

y1, . . . , yn. Inputs and outputs are two-valued. Every output is determined as

a function of the inputs. This leads to the notion of a Boolean function, an ab-

straction that is essential for hardware design.

Let X be a nonempty and finite set of propositional variables. The following

definitions are taken with respect to X.

An assignment (σ ) is a function X → B. A Boolean function (ϕ) is a function

(X → B)→ B. Seen from the circuit perspective, an assignment σ provides values

σx for the inputs x ∈ X, and a Boolean function decribes how an output is ob-

tained from the inputs. Some authors call Boolean functions switching functions.

Sometimes it is helpful to see a Boolean function as a set of assignments.

In order to design a functional circuit, one must know which Boolean func-

tions (one per output) it ought to compute. So how can electrical engineers spec-

ify Boolean functions? A simple-minded approach are truth tables. For instance,
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14 Decision Trees

given x,y ∈ X, we can see the truth table

x y ϕσ
0 0 0

0 1 1

1 0 1

1 1 0

as a specification of the Boolean function that returns 1 if and only if its inputs

x and y are different. A more readable and more compact specification of this

Boolean function would be the propositional formula x �≡ y . Clearly, if there are

many relevant inputs, the specification of a Boolean function with a formula can

be more compact than the specification with a truth table.

Let PF be the set of all propositional formulas containing only variables

from X. We define a function F ∈ PF → (X → B) → B such that Fs is the

Boolean function specified by the formula s:

F⊥σ = 0

F�σ = 1

Fxσ = σx
F(¬s)σ = 1−Fsσ

F(s ∧ t)σ =min{Fsσ , Ftσ}
F(s ∨ t)σ =max{Fsσ , Ftσ}
F(s → t)σ =max{1−Fsσ , Ftσ}
F(s ≡ t)σ = (Fsσ =Ftσ)

Proposition 14.1.1 Let s ∈ PF, I be a logical interpretation, and σ be the unique

assignment such that σ ⊆ I . Then Is = Fsσ .

Proof By induction on s. �

From the proposition it’s clear that assignments can play the role of logical in-

terpretations for propositional formulas. While logical interpretations come with

redundant and irrelevant information, assignments only contain the information

that is necessary for the evaluation of propositional formulas.

Often it is necessary to decide whether two formulas s, t ∈ PF represent the

same Boolean function. For instance, s might be the specification of a Boolean

function and t may describe the implementation of this function in terms of

more primitive functions. Then the implementation is correct if and only if

Fs = Ft.

Proposition 14.1.2 Let s, t ∈ PF. Then Fs = Ft iff s = t is a tautology.
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Proof Fs = Ft holds if s, t evaluate to the same value with every assignment,

and s = t is a tautology if s, t evaluate to the same value with every logical

interpretation. Thus the claim follows with Proposition 14.1.1. �

Given Proposition 14.1.2, we can say that the function F constitutes a seman-

tics for propositional formulas. Since there are only finitely many assignments,

the semantics provided by F is effective in that it gives us a naive algorithm for

deciding whether a propositional formula is a tautology. The algorithm may even

be practical if a formula is not a tautology and we implement it with heuristics

that find a falsifying assignment quickly. On the other hand, if we want to show

that a formula is a tautology, the tableau method seems more promising.

Proposition 14.1.3 Let s, t ∈ PF. Then the following statements are equivalent:

1. s and t are logically equivalent.

2. s = t is a tautology.

3. Fs = Ft.

Proof Follows with Propositions 4.5.2 and 14.1.2. �

F illustrates an important semantic idea that we have not seen so far. The

interesting thing about F is that it gives us a denotational characterization of

propositional logic equivalence: Two propositional formulas are logically equiv-

alent if and only if they denote the same semantic object (i.e., a Boolean function).

Let’s return to Boolean functions. Can every Boolean function be represented

by a propositional formula? The answer is yes.

Proposition 14.1.4 Let ϕ be a Boolean function. Then:

ϕ = F

⎛⎜⎜⎜⎝ ∨
σ∈X→B
ϕσ=1

∧
x∈X

if σx = 1 then x else ¬x

⎞⎟⎟⎟⎠
Proof Let σ be an assignment. It suffices to show that the left hand side yields 1

for sigma if and only if the right hand side does. This is easy to verify. Remark:

if the index set of the disjunction is empty, it represents ⊥. �

Exercise 14.1.5 We require that X is finite so that every Boolean function can be

represented by a formula. Suppose X is infinite. How can we obtain a Boolean

function that cannot be represented by a propositional formula?
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14.2 Decision Trees and Prime Trees

Every Boolean function can be represented by many different propositional for-

mulas. Given a Boolean function, formulas can represent it more or less explic-

itly. For instance � and ¬¬x → x both represent the same Boolean function.

Of course, in general it is not clear what more or less explicit means. However,

the following question is meaningful: Can we find a class of canonical proposi-

tional formulas such that every Boolean function can be represented by one and

only one canonical formula, and such that canonical formulas are informative

representations of Boolean functions?

In the following we will study a system of canonical propositional formulas

that is based on the notion of a decision tree. We start with the notation

(s, t, u) := ¬s ∧ t ∨ s ∧u

and call formulas of this form conditionals. The following proposition states

properties of conditionals that are familiar from programming.

Proposition 14.2.1 The following formulas are valid:

1. (⊥, x, y) ≡ x
2. (�, x, y) ≡ y
3. (x,y,y) ≡ y
4. f(x,y, z) ≡ (x, fy, fz)
5. f(x,y, z)u ≡ (x, fyu, fzu)
6. f(x,y, z)(x,y′, z′) ≡ (x, fyy′, fzz′)
7. fx ≡ (x, f⊥, f�)

Decision trees are defined inductively:

1. ⊥ and � are decision trees.

2. (x, s, t) is a decision tree if x is a propositional variable and s and t are

decision trees.

As the name suggests, decision trees can be thought of as trees. For instance,

(x,�, (y, (z,⊥,�),⊥)) may be seen as the tree

x

� y

z

⊥ �
⊥

To compute Fsσ for a decision tree s, we start at the root of s and follow the

path determined by σ where σx = 0 means “go left” and σx = 1 means “go
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x

⊥ �
x

x

� ⊥
¬x

x

⊥ y

⊥ �
x ∧y

x

y

⊥ �
�

x ∨y

x

y

� ⊥
y

⊥ �
x ≡ y

Figure 14.1: Prime trees for some simple formulas

right”. If we reach a leaf, the result is determined by the label of the leaf (0 for ⊥
and 1 for �).

Proposition 14.2.2 Let (x, s0, s1) ∈ PF. Then:

F(x, s0, s1)σ = if σx=0 then Fs0σ else Fs1σ

Proposition 14.2.3 (Coincidence)

Let s ∈ PF and σx = σ ′x for all x ∈ V s. Then Fsσ = Fsσ ′.
Proof By induction on s. �

Given decision trees, it is straightforward to define a canonical subclass. A

decision tree is reduced if none of its subtrees has the form (x, s, s). We assume

a linear order on the set of all propositional variables and write x < y if x is

smaller than y . A decision tree is ordered if the variables get larger as one goes

down on a path from the root to a leaf. The example tree shown above is ordered

if and only if x < y < z. A prime tree is a reduced and ordered decision tree.

Formally, we define prime trees inductively:

1. ⊥ and � are prime trees.

2. (x, s, t) is prime tree if s and t are different prime trees (i.e., s ≠ t) and x is a

propositional variable that is smaller than every variable that occurs in s or t.

We will show that every propositional formula is logically equivalent to exactly

one prime tree. Figure 14.1 shows the prime trees for some simple formulas.

Exercise 14.2.4 Find tableau proofs for the formulas in Proposition 14.2.1.

Exercise 14.2.5 Derive the formulas in Proposition 14.2.1 with basic deduction

rules. Make use of BCR.

14.3 Existence of Prime Trees

First we outline an algorithm that computes for a propositional formula a logi-

cally equivalent prime tree. The algorithm is based on the following proposition.1

1 Claude Shannon showed in his famous 1937 master’s thesis done at MIT that the arrangement
of the electromechanical relays then used in telephone routing switches could be analyzed with
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Proposition 14.3.1 (Shannon Expansion) For every formula s and every propo-

sitional variable x the formula s ≡ (x, sx⊥ , sx�) is valid.

Proof By Proposition 14.2.1 we know that fx ≡ (x, f⊥, f�) is valid. The rest

follows with basic deduction. Substitution gives us the validity of (λx.s)x ≡
(x, (λx.s)⊥, (λx.s)�). The claim follows with β and Replacement. �

The algorithm works by recursion on the number of propositional variables

occurring in s. If s contains no propositional variables, s can be evaluated to

⊥ or �. Otherwise, the algorithm determines the least propositional variable

x occurring in s and obtains prime trees s0, s1 for sx⊥ and sx� by recursion. If

s0 ≠ s1, we obtain the prime tree (x, s0, s1), otherwise s0 does the job. We show

the correctness of the algorithm by proving the relevant properties.

A term s is variable-free if V s = �.

Proposition 14.3.2 (Evaluation) Let s be a variable-free propositional formula.

Then either the formula s≡⊥ or the formula s≡� is valid.

Proof Follows with logical coincidence (Proposition 4.3.1). �

Lemma 14.3.3 Let s be a propositional formula and x be the least variable that

occurs in s. Let s0 and s1 be prime trees that are logically equivalent to sx⊥ and

sx� , respectively. Moreover, let V s0 ⊆ V sx⊥ and V s1 ⊆ V sx� . Then:

1. If s0 = s1, then sx⊥ is a prime tree that is logically equivalent to s.

2. If s0 ≠ s1, then (x, s0, s1) is a prime tree that is logically equivalent to s.

Proof Follows with Proposition 14.3.1 and Proposition 14.2.1. �

Proposition 14.3.4

For every propositional formula s there exists a logically equivalent prime tree t
such that V t ⊆ V s.

Proof Follows with Lemma 14.3.3 by induction on the number of variables oc-

curring in s. �

Exercise 14.3.5 Draw all prime trees containing no other variables but x and y .

Assume x < y . For each tree give a logically equivalent propositional formula

that is as simple as possible.

Exercise 14.3.6 Let s be the propositional formula x = (y = z). Assume

x < y < z. Draw the prime trees for the following formulas: s, ¬s, s ∧ s, s → s.

Boolean algebra.
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14.4 Example: Diet Rules

On a TV show a centenarian is asked for the secret of his long life. Oh, he says,

my long life is due to a special diet that I started 60 years ago and follow by every

day. The presenter gets all excited and asks for the diet. Oh, that’s easy, says the

old gentleman, there are only 3 rules you have to follow:

1. If you don’t take beer, you must have fish.

2. If you have both beer and fish, don’t have ice cream.

3. If you have ice cream or don’t have beer, then don’t have fish.

Let’s look at the diet rules from a logical perspective. Obviously, the diet is only

concerned with three Boolean properties of a meal: having beer, having fish,

and having ice cream . We can model these properties with three propositional

variables b, f , i and describe the diet with a propositional formula that evaluates

to 1 if the diet is satisfied by a meal:

(¬b → f) ∧ (b ∧ f → ¬i) ∧ (i∨¬b → ¬f)

The formula is one possible description of the diet. A more abstract represen-

tation of the diet is the Boolean function decribed by the formula. Yet another

representation of the diet is the prime tree that is logically equivalent to the

initial formula:

b

⊥ f

� i

� ⊥
The prime tree is more explicit than the initial formula. It tells us that the diet is

observed if and only if the following rules are observed:

1. Always drink beer.

2. Do not have both fish and ice cream.

Clearly, the prime tree represents the diet much more explicitly than the initial

formula obtained form the rules given by the gentleman.

Exercise 14.4.1 Four girls agree on some rules for a party:

i) Whoever dances which Richard must also dance with Peter and Michael.

ii) Whoever does not dance with Richard is not allowed to dance with Peter and

must dance with Christophe.

iii) Whoever does not dance with Peter is not allowed to dance with Christophe.

Express these rules as simply as possible.
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a) Describe each rule with a propositional formula. Do only use the variables c
(Christophe), p (Peter), m (Michael), r (Richard).

b) Give the prime tree that is logically equivalent to the conjunction of the rules.

Use the order c < p < m < r .

14.5 Uniqueness of Prime Trees

We use σxb to denote the assignment that is like σ except that it maps x to b.

Lemma 14.5.1 If s, t ∈ PF are different prime trees, then Fs and Ft are different

Boolean functions.

Proof By induction on |s| + |t|. Let s, t be different prime trees. We show that

there is an assignment σ such that Fsσ ≠ Ftσ .

Case s, t ∈ {⊥,�}. Every σ does the job.

Case s = (x, s0, s1) and x ∉ V t. By induction we have an assignment σ such that

Fs0σ ≠ Fs1σ . Since x occurs neither in s0 nor s1, we have Fsσx0 ≠ Fsσx1 since

Fsσx0 = Fs0σx0 = Fs0σ ≠ Fs1σ = Fs1σx1 = Fsσx1 . But Ftσx0 = Ftσx1 since x
does not occur in t. Hence Fsσx0 ≠ Ftσx0 or Fsσx1 ≠ Ftσx1 .

Case t = (x, t0, t1) and x ∉ V s. Analogous to previous case.

Case s = (x, s0, s1) and t = (x, t0, t1). Then s0 ≠ t0 or s1 ≠ t1. By induction

there exists an assignment σ such that Fs0σ ≠ Ft0σ or Fs1σ ≠ Ft1σ . By

coincidence Fs0σx0 ≠ Ft0σx0 or Fs1σx1 ≠ Ft1σx1 . Hence Fsσx0 ≠ Ftσx0 or

Fsσx1 ≠ Ftσx1 .

To see that the case analysis is exhaustive, consider the case where both s and t
are non-atomic trees with the root variables x and y . If x < y , then x does

not occur in t since all variables in t are greater or equal than y and hence are

greater that x. If y < x, then y does not occur in s since all variables in s are

greater or equal than x and hence are greater than y . �

Theorem 14.5.2 (Prime Tree) For every propositional formula there exists ex-

actly one logically equivalent prime tree.

Proof The existence follows with Proposition 14.3.4. To show the uniqueness,

assume that s is a propositional formula and t1, t2 are different prime trees

that are logically equivalent to s. Without loss of generality we can assume

that t1, t2 ∈ PF (because we can choose X = V t1 ∪ V t2). Hence Ft1 ≠ Ft2
by Lemma 14.5.1. Hence t1, t2 are not logically equivalent by Proposition 14.1.3.

Contradiction since t1, t2 are both logically equivalent to s. �
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14.6 Properties of Prime Trees

For every propositional formula s we denote the unique prime tree that is logi-

cally equivalent to s with πs. We call πs the prime tree for s.

Proposition 14.6.1 Let s and t be propositional formulas.

1. s is logically equivalent to πs.

2. V (πs) ⊆ V s.
3. s, t are logically equivalent if and only if πs = πt.
4. s is a tautology if and only if πs = �.

Proof Claim (1) follows by definition of πs. Claim (2) follows with Proposi-

tion 14.3.4 and Theorem 14.5.2. Claim (3) follows with (1) and Theorem 14.5.2.

For Claim (4) first note that s is a tautology iff s = � is a tautology. By Proposi-

tion 14.1.3 this is the case iff s and � are logically equivalent. By Claim (3) this

is the case iff πs = π�. Now we are done since π� = �. �

A propositional variable is significant for a propositional formula if it occurs

in the prime tree of the formula. A variable x ∈ X is significant for a Boolean

function ϕ if there exists an assignment σ such that ϕσx0 ≠ ϕσ
x
1 . We speak of

the significant variables of propositional formulas and Boolean functions. We

will show that the significant variables of a propositional formula are exactly the

significant variables of the Boolean function described by the formula.

Proposition 14.6.2 If a propositional variable x is significant for a propositional

formula s, then x occurs in s.

Proof Follows with Proposition 14.6.1. �

Lemma 14.6.3 Let s ∈ PF, x ∈ X, and σ be an assignment.

Then Fsσx0 = F(sx⊥)σ .

Proof By induction on s. �

Lemma 14.6.4 Let s ∈ PF be a prime tree and x ∈ V s. Then there exists an

assignment σ such that Fsσx0 ≠ Fsσx1 .

Proof By contradiction. Assume Fsσx0 = Fsσx1 for every assignment σ .

Lemma 14.6.3 gives us Fsσ = Fsσx0 = F(sx⊥)σ for every assignment σ . Thus

Fs = F(sx⊥) and hence πs = π(sx⊥) by Propositions 14.1.3 and 14.6.1. Since s is

a prime tree, we have s = πs = π(sx⊥). Since x ∈ V s we have x ∈ V (π(sx⊥)) and

hence x ∈ V (sx⊥) by Proposition 14.6.1. Contradiction. �
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Proposition 14.6.5 Let s ∈ PF and x ∈ X. Then x is significant for s if and only

if x is significant for Fs.

Proof Since Fs = F(πs) we assume without loss of generality that s is a prime

tree. The left-to-right direction follows with Lemma 14.6.4. To see the other

direction, let Fsσx0 ≠ Fsσx1 . By Coincidence we have x ∈ V s. Since s is a prime

tree, x is a significant variable of s. �

Boolean functions andF are defined with respect to a finite set of variables X.

In contrast, the definition of the prime tree representation πs and of the signifi-

cant variables of s does not depend on X. In principle, it is possible to fix X as the

set of all propositional variables, with the consequence that not every Boolean

function can be described by a propositional formula. In this case, prime trees

are a perfect representation for the finitary Boolean functions.

Prime trees are a canonical representation for propositional formulas. Given

a set S of syntactic objects and an equivalence relation on these objects, a canon-

ical representation is a set C ⊆ S such that for every object in S there is exactly

one equivalent object in C .

Exercise 14.6.6

a) Find a propositional formula s that contains the variables x, y , z and has x
as its only significant variable.

b) Determine the significant variables of the formula (x → y)∧(x∨y)∧(y∨z).

14.7 Prime Tree Algorithms

Given two prime trees s and t, how can we efficiently compute the prime trees

for ¬s, s ∧ t, s ∨ t and so on? It turns out that there are elegant algorithms that

perform well in practice. Here we will develop the algorithms for negation and

conjunction. The algorithms for the other operations can be obtained along the

same lines.

We formulate the algorithms for negation and conjunction as procedures that

compute the following function:

not ∈ PT → PT and ∈ PT→ PT → PT

not s = π(¬s) and s t = π(s ∧ t)
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Let DT be the set of all decision trees. Here is a procedure that computes not:

not : PT → DT

not ⊥ = �
not � = ⊥

not(x, s, t) = (x, not s, not t)

It is easy to see that the defining equations of the procedure not are well-typed,

exhaustive, and terminating. To show that the procedure not computes the func-

tion not it remains to show that the function not satisfies the defining equations

of the procedure not. For the first two equations this is obvious. We argue that

the function not satisfies the third equation not(x, s, t) = (x, not s, not t). Given

the definition of the function not, this boils down to showing that the equation

π(¬(x, s, t)) = (x, π(¬s), π(¬t))

holds for every prime tree (x, s, t). Let (x, s, t) be a prime tree. By Proposi-

tions 14.2.1 and 14.6.1 we know that the propositional formula

¬(x, s, t) ≡ (x, π(¬s), π(¬t))

is valid. Hence it suffices to show that (x, π(¬s), π(¬t)) is a prime tree. Since

V (π(¬s)) ⊆ V s, V (π(¬t)) ⊆ V t and (x, s, t) is a prime tree, we know that

(x, π(¬s), π(¬t)) is an ordered decision tree. It remains to show that π(¬s)
and π(¬t) are different. By Proposition 14.6.1 this is the case if ¬s and ¬t are

not logically equivalent. Suppose ¬s and ¬t are logically equivalent. Then ¬¬s
and ¬¬t and hence s and t are logically equivalent (compatibility amd double

negation). Contradiction by Proposition 14.6.1 since πs ≠ πt since (x, s, t) is a

prime tree.

Next we devise a procedure for conjunction. We base the procedure on the

following tautologies (verify!):

⊥∧y ≡ ⊥
�∧y ≡ y

(x,y, z)∧ (x,y′, z′) ≡ (x,y ∧y′, z∧ z′)
(x,y, z)∧u ≡ (x,y ∧u, z∧u)

Moreover, we exploit the commutativity of ∧. We also use an auxiliary function

red ∈ DT → DT

red ⊥ = ⊥
red � = �
red(x, s, t) = if s = t then s else (x, s, t)
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Next we verify that the following equations hold:

π(⊥∧ t) = ⊥
π(�∧ t) = t

π((x, s0, s1)∧ (x, t0, t1)) = red(x,π(s0 ∧ t0), π(s1 ∧ t1))
π((x, s0, s1)∧ t) = red(x,π(s0 ∧ t), π(s1 ∧ t))

if t = (y, t0, t1) and x < y

The correctness of the equations is established in 2 steps. First one verifies that

for each equation the formula on the left is logically equivalent to the formula

on the right. Since π and red yield logically equivalent formulas, we can erase

their applications. Now we are left with instances of the above tautologies. For

the second step we show that the formulas on the right are prime trees, provided

the arguments on the left hand side are prime trees. This is easy and explains

the condition x < y coming with the last equation. Now we have the following

procedure:

and : PT→ PT → DT

and ⊥ t = ⊥
and � t = t
and s ⊥ = ⊥
and s � = s

and (x, s0, s1) (x, t0, t1) = red(x, and s0 t0, and s1 t1)

and (x, s0, s1) t = red(x, and s0 t, and s1 t)

if t = (y, t0, t1) and x < y

and s (y, t0, t1) = red(y, and s t0, and s t1)

if s = (x, s0, s1) and x > y

The procedure and computes the function and since the following properties are

satisfied:

1. The defining equations are well-typed, exhaustive, and terminating.

2. The defining equations hold for the function and. This is the case since the

equations reduce to the equations verified before (exploiting commutativity

of ∧) if we replace the functions and and red with their definitions.

You now know enough so that you can devise algorithms for the other Boolean

operations. Things are as before since by Proposition 14.2.1 the following for-
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mulas are valid for every name ◦ : ooo (◦ is written as infix operator):

(x,y, z) ◦ (x,y′, z′) ≡ (x,y ◦y′, z ◦ z′)
u ◦ (x,y′, z′) ≡ (x,u ◦y′, u ◦ z′)
(x,y, z) ◦u ≡ (x,y ◦u, z ◦u)

Exercise 14.7.1 Develop an algorithm that for two prime trees s, t yields the

prime tree for s ≡ t. Implement the algorithm in Standard ML. Proceed as follows:

a) Complete the following equations so that they become tautologies on which

the algorithm can be based.

(x ≡ �) ≡
(⊥ ≡ ⊥) ≡

((x,y, z) ≡ (x,y′, z′)) ≡
((x,y, z) ≡ u) ≡

b) Complete the declarations of the procedures red and equiv so that equiv com-

putes for two prime trees s, t the prime tree for s ≡ t. The variable order is

the order of int. Do not use other procedures.

type var = int

datatype dt = F | T | D of var * dt * dt

fun red x s t =

fun equiv T t =

| equiv s T =

| equiv F F =

| equiv F (D(y,t0,t1)) =

| equiv (D(x,s0,s1)) F =

| equiv (s as D(x, s0, s1)) (t as D(y, t0, t1)) =

if x=y then

else if x<y then
else

Exercise 14.7.2 Let decision trees be represented as in Exercise 14.7.1, and let

propositional formulas be represented as follows:

datatype pf = FF | TT | V of var | NEG of pf | AND of pf * pf

| OR of pf * pf | IMP of pf * pf | EQ of pf * pf

Write a procedure pi : pf → dt that yields the prime tree for a propositional for-

mula. Be smart and only use the prime tree algorithm for implication (all propo-

sitional connectives can be expressed with → and ⊥).

Exercise 14.7.3 Find two prime trees (x, s0, s1) and t such that:

i) (x,π(s0 → t), π(s1 → t)) is not a prime tree.

ii) ∀y∈V t : x < y .
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Figure 14.2: A BDD and the decision tree represented by the topmost node

14.8 BDDs

Trees can be represented as nodes of graphs. Graphs whose nodes represent

decision trees are called BDDs (binary decision diagrams). Binary decision dia-

grams (BDD) were introduced by Lee (Lee 1959), and further studied and made

known by Akers (Akers 1978) and Boute (Boute 1976).

Figure 14.2 shows a BDD. The node labeled with the variable x represents

the decision tree shown to the right. Dotted edges of the graph lead to left

subtrees and solid edges to right subtrees. Subtrees that occur more than once

in a decision tree need only be represented once in a BDD (so-called structure

sharing). In our example BDD the node labeled with z represents a subtree that

occurs twice in the decision tree on the right.

Let Varo be the set of all propositional variables. Formally, a BDD is a func-

tion γ such that there exists a natural number N ≥ 1 such that

1. γ ∈ {2, . . . , N} → Varo × {0, . . . , N} × {0, . . . , N}.
2. ∀ (n, (x,n0, n1)) ∈ γ : n > n0 ∧ n > n1.

The nodes of γ are the numbers 0, . . . , N . The nodes 0 und 1 represent the

decision trees ⊥ and �. A node n ≥ 2 with γn = (x,n0, n1) carries the label

x and has two outgoing edges pointing to n0 and n1, where the edge to n0

is dotted and the edge to n1 is solid. Note that the second condition in the

definition of BDDs ensures that BDDs are acyclic. The BDD drawn in Figure 14.2

is the following function (in table representation):

2 (z,1,0)
3 (y,0,2)
4 (x,2,3)
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For every BDD γ we define the function

Tγ ∈ {0,1} ∪ Domγ → DT

Tγ0 = ⊥
Tγ1 = �
Tγn = (x,Tγn0,Tγn1) if γn = (x,n0, n1)

which yields for every node n of γ the decision tree represented by γ and n.

A BDD is minimal if different nodes represent different trees. The BDD in

Figure 14.2 is minimal.

Proposition 14.8.1 (Minimality) A BDD is minimal if and only if it is injective.

Proof Let γ be a BDD such that Domγ = {2, . . . , n}. That minimality implies

injectivity follows by contraposition. For the other direction assume that γ is

injective. We show the minimality of γ by induction on n. For n = 1 the claim

is obvious. Otherwise, let γn = (x,n0, n1). Assume γ is not minimal. Then

the exists a k ≠ n such that Tγk = Tγn. Hence γk = (x, k0, k1) such that

Tγk0 = Tγn0 and Tγk1 = Tγn1. By induction we know that the restriction of γ
to {2, . . . , n− 1} is minimal. Hence k0 = n0 and k1 = n1. Hence γk = γn. Since

k ≠ n this contradicts the assumption that γ is injective. �

Given the table representation of a BDD, it is very easy to see whether it is

minimal: The BDD is minimal if and only if no triple (x,n0, n1) occurs twice in

the right column of the table representation.

Note that there is exactly one minimal BDD that represents all subtrees of

a given prime tree. All nodes of this BDD are reachable from the node that

represents the given subtree. Note that this root appears as last node in the

table representation.

Techniques that represent terms as numbers that identify entries in tables

are know as term indexing. BDDs are a typical example of term indexing.

Exercise 14.8.2 Let s be the propositional formula (x ∧ y ≡ x ∧ z) ∧ (y ∧ z ≡
x ∧ z). Assume the variable order x < y < z.

a) Draw the prime tree for s.

b) Draw a minimal BDD whose nodes represent the subtrees of the prime tree

for s.

c) Give the table representation of the BDD. Label each non-terminal node of

your BDD with the number representing it.
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Exercise 14.8.3 (Parity Function) Let the propositional variables x1 < x2 <
x3 < x4 be given. The parity function for these variables is the Boolean func-

tion that yields 1 for an assignment σ iff the sum σx1 + σx2 + σx3 + σx4 is an

even number. Draw the minimal BDD whose root represents the prime tree for

the parity function. Observe that it is easy to obtain a minimal BDD for parity

functions with additional variables (x4 < x5 < x6 < · · · ). Observe that the prime

tree represented by the root node of the BDD is exponentially larger than the

BDD.

Exercise 14.8.4 (Impact of Variable Order) The size of the BDD representing

the parity function in Exercise 14.8.3 does not depend on the chosen variable

order. In general, this is not the case. There may be an exponential blow up if an

unfortunate variable order is chosen. Consider the formula

(x1 ∨ x2)∧ (x3 ∨ x4)∧ · · · ∧ (x2n−1 ∨ x2n)

The minimal BDD for this formula has 2n + 2 nodes if we choose the order

x1 < x2 < · · · < x2n. Draw it for n = 2. If we choose the order

x1 < x3 < · · · < x2n−1 < x2 < x4 < · · · < x2n

the minimal BDD has 2n+1 nodes. Draw it for n = 2.

14.9 Polynomial Runtime through Memorization

With the BDD representation it is possible to implement the prime tree algo-

rithms for the Boolean connectives with the runtime O(||m|| · ||n||) where m
and n are the nodes representing the prime trees and ||m|| and ||n|| are the

numbers of nodes reachable from m and n, respectively. The basic observation

is that every call of the procedure will take as arguments two nodes m′ and n′

that are reachable from m and n, respectively. Hence, if we memorize for each

call already done that is was done and what result it returned, we can avoid

computing the same call more than once. Without this dynamic programming

technique prime tree algorithms like and have exponential worst-case complex-

ity. The memorization is implemented with hashing. For this it is essential that

the trees are represented as numbers.

14.10 Remarks

Decision trees and graph representations of decision trees have been known for

a long time, but the canonical representation with ordered and reduced decision
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trees and minimal graph representations were discovered only in 1986 by Randal

Bryant [56]. You will find his famous paper in the Internet. Huth and Ryan’s

textbook [45] gives a detailed presentation of BDDs. You will also find useful

information in the Wikipedia entry for binary decision diagrams.

2009/8/2 195



14 Decision Trees

196 2009/8/2



15 Modal Logic

Modal logics are specialized logic languages that talk about transition systems.

Modal logics have applications as ontology languages (description logics) in se-

mantic web technology and as specification languages (temporal logics) in system

verification. Modal logics are attractive for applications since they combine high

expressivity with decidability. In this chapter we present a modal logic known

as ALC. As we did for propositional logic and first-order logic, we present modal

logic as a sublogic of simple type theory.

15.1 Transition Systems

Transition systems are labelled graphs that may serve as models of computa-

tional systems. A well-known class of transition systems are the finite-state

automata used with regular string languages. There are many possible ways

transition systems can be represented formally. We represent transition systems

as sets of formulas.

A transition system is a nonempty set of formulas where each formula has the

form rxy or px where r : ιιo, p : ιo, x : ι and y : ι range over variables. Given

a transition system T , we call the variables x ∈ VιT the states of T , and the

formulas rxy ∈ T the transitions of T .

We consider the transition system {r1xy, r2yz, r1zx, r3zx, py, qy, pz} as an

example. This system has 3 states and 4 transitions. It is illuminating to draw

the transition system as a graph:

y : p,q

x z : p

r1 r2

r1, r3

Seen from the graph perspective, the individual variables x, y , z act as nodes,

the unary predicate variables p and q act as labels of nodes, and the binary

predicate variables r1, r2, and r3 act as labels of edges. The transition system

has three states x, y , z, where x is unlabelled, y is labelled with p and q, and z
is labelled with p. Moreover, the system has 4 transitions: An r1-transition from

x to y , an r2-transition from y to z, and both and r1- and an r3-transition from

z to x.
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⊥̇ = λx. ⊥
�̇ = λx. �
¬̇ = λpx. ¬px
∧̇ = λpqx. px ∧ qx
∨̇ = λpqx. px ∨ qx
→̇ = λpqx. px → qx

# = λpqx. px ≡ qx
� = λrpx. ∀y. rxy → py

♦ = λrpx. ∃y. rxy ∧ py

Figure 15.1: Defining equations for the modal constants

Finite automata for strings can be seen as transition systems. In this case

we would label edges with characters and distinguish initial and accepting states

with labels. Given the above system, if q labels intial states and p label accept-

ing states, the system accepts the strings "", "r2", "r2r1r1", "r2r3r1", "r2r1r1r2",

"r2r3r1r2", and so on.

Exercise 15.1.1 Draw the transition system {rxy, ryy, ryz, px, qy}.

15.2 Modal Constants and Modal Interpretations

Modal languages obtain their expressivity with λ-free terms of type ιo. Such

terms, which we call modal expressions, describe unary predicates on the states

of transition systems. Modal expressions are obtained with modal constants

that hide λ-abstractions and quantifications. Syntactically, modal constants are

names different from the logical constants (§ 4.3). We fix the following modal

constants:

⊥̇, �̇ : ιo

¬̇ : (ιo)ιo

∧̇, ∨̇, →̇,# : (ιo)(ιo)ιo

�,♦ : (ιιo)(ιo)ιo

The semantics of the modal constants is given by the equations in Figure 15.1.

These equations define the modal constants in terms of the logical constants.
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The modalities � and ♦ (read box and diamond) are specialized quantifiers that

can be explained as follows:

• �rpx is true if every r -successor of x satisfies p.

• ♦rpx is true if there is an r -successor of x that satisfies p.

The other modal constants lift the propositional constants from truth values

(type o) to properties (type ιo).

The modal constants ∧̇, ∨̇, →̇, # are written with infix notation. Notationally,

the modal constants #, →̇, ∨̇, ∧̇, ¬̇ act as operators that take their arguments

according to the following precedence hierarchy:

#
→̇
∨̇
∧̇
¬̇

Modal operators take their arguments after ordinary application and before the

operators for the logical constants. The modal operators group to the right.

For instance, the notation ¬̇�rt = ♦r(�r ¬̇t) is to be read as (¬̇(�rt)) =
(♦r(�r(¬̇t))).

From now on, a constant will be either a logical constant as introduced in

§ 4.3 or a modal constant as defined above. A variable will be any name that is

not a constant.

A modal interpretation is a logical interpretation that satisfies the defining

equations of the modal constants. When we talk about modal logic, we will only

consider modal interpretations. A formula is modally valid if it is satisfied by

every modal interpretation, and modally satisfiable if it is satisfied by some

modal interpretation. Figure 15.2 shows some modally valid equations.

Since the modal constants are defined in terms of the logical constants, we

can use our existing methods to prove that formulas are modally valid or satis-

fiable. Let M be the conjunction of the equations defining the modal constants

(Figure 15.1).

Proposition 15.2.1 Let s be a formula. Then:

1. s is modally valid if and only if M → s is valid.

2. s is modally satisfiable if and only if M ∧ s is satisfiable.

When we prove modal validity with tableaux, making use of the defining equa-

tions for the modal constants turns out to be tedious. Proofs become more

pleasant if we use the sound tableau rule

s=t , [us]
[ut]
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¬̇¬̇p = p

¬̇(p ∧̇q) = ¬̇p ∨̇ ¬̇q
¬̇(p ∨̇q) = ¬̇p ∧̇ ¬̇q
¬̇�rp = ♦r ¬̇p
¬̇♦rp = �r ¬̇p
¬px ≡ (¬̇p)x
¬∀p ≡ ∃(¬̇p)
¬∃p ≡ ∀(¬̇p)
p →̇q = ¬̇p ∨̇q
p#q = (p →̇q) ∧̇(q →̇p)
p=q ≡ ∀(p#q)
rxy ≡ ♦r(=y)x

�r(p ∧̇q) = �rp ∧̇�rq
♦r(p ∨̇q) = ♦rp ∨̇♦rq
♦r(p →̇q) = �rp →̇♦rq

♦r ⊥̇ = ⊥̇
�r �̇ = �̇

Figure 15.2: Some modally valid equations

as additional rule.

Example 15.2.2 Here is a tableau that proves that the formula ¬̇¬̇p = p is

modally valid.

(¬̇) = λpx.¬px
¬̇¬̇p ≠ p

(¬̇¬̇p)x � px
¬(¬̇p)x � px
¬¬px � px

¬¬px ¬¬¬px
¬px px

¬px

�
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Exercise 15.2.3 Prove with tableaux that some of the equations in Figure 15.2

are modally valid. You may eliminate all modal constants before you start.

Exercise 15.2.4 Decide for each of the following formulas whether it is modally

valid.

a) ∀ (♦r(p ∧̇q) →̇ ♦rp)

b) ∀ (�r(p ∧̇q) →̇�rp)
c) ♦r ⊥̇ = �̇
d) ♦r �̇ = �rp →̇♦rp

Exercise 15.2.5 (First-Order Translation) For each of the following modal for-

mulas s find a first-order formula t not containing modal constants such that

s ≡ t is true in every modal interpretation. Hint: Eliminate the modal constants

using their defining equations and apply β-reduction.

a) (p ∨̇q)x
b) ∀(p →̇q)
c) ∃(�r(p →̇♦rp))
d) ∀(♦r(�r(♦r ¬̇p)))

15.3 Modal Expressions and Modal Formulas

A modal variable is a variable whose type is either ι or ιo or ιιo. If not said

otherwise, the following letters will range over modal variables with the specified

type:

x,y, z : ι individual variables

p, q : ιo property variables

r : ιιo relation variables

A modal expression is a term of type ιo that can be obtained with the grammar

s ::= p | ⊥̇ | �̇ | ¬̇s | s ∧̇ s | s ∨̇ s | s →̇ s | s# s | �rs | ♦rs

where p and r range over variables of type ιo and ιιo. A modal formula is a

formula that can be obtained with the grammar

t ::= sx | rxx | ∀s | ∃s | ¬t | t ∧ t | t ∨ t | t → t | t ≡ t

where s ranges over modal expressions and x ranges over variables of type ι. A

modal term is a modal expression or a modal formula.
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To evaluate a modal term s with a modal interpretation I , it suffices to know

how I interprets the sort ι and the modal variables that occur in s. We will now

see that there is a relationship between transition systems and modal interpre-

tations. Eventually, it will turn out that a modal formula is modally satisfiable if

and only if it is satisfied by some finite transition system.

An interpretation I agrees with a transition system T if it satisfies the fol-

lowing conditions:

1. Iι = VιT
2. Ix = x for every x ∈ VιT
3. Ipx = 1 ⇐⇒ px ∈ T for every variable p : ιo

4. Irxy = 1 ⇐⇒ rxy ∈ T for every variable r : ιιo

Note that a transition system fully determines the interpretation of the sort ι
and the interpretation of all modal variables of type ιo and ιιo. Moreover, the

interpretation of all individual variables that occur in T is determined.

Proposition 15.3.1 For every transition system there is a modal interpretation

that agrees with it. Moreover, if a logical interpretation agrees with a transition

system, it satisfies every formula of the system.

Proposition 15.3.2 (Modal Coincidence) Let I and J be modal interpretations

that agree with a transition system T . Then Î and Ĵ agree on all modal terms s
such that Vιs ⊆ VιT .

Proof By induction on s. �

A transition system T satisfies a modal formula s if Vιs ⊆ VιT and there

is a modal interpretation I that agrees with T and satisfies s. By the preceding

propositions we know that there always is an agreeing interpretation and that it

does not matter which of the agreeing interpretations we take.

Proposition 15.3.3 (Model Checking) It is decidable whether a finite transition

system satisfies a modal formula.

Exercise 15.3.4 Give a recursive procedure check that for a finite transition sys-

tem and a modal formula decides whether the system satisfies the formula. Hint:

You need equations for the different forms of modal formulas. The equations

for modal formulas of the form ∀s and s ∧ t are as follows.

check T (∀s) = if ∀x ∈ VιT : check T (sx) = 1 then 1 else 0

check T (s ∧ t) = if check T s = 1 then check T t else 0
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Exercise 15.3.5 For each of the following modal formulas draw a finite transition

system that satisfies the formula.

a) ∀(♦r ¬̇p ∧̇�r(♦r(♦rp)))
b) px ∧∀(p#¬̇q) ∧̇∀(♦rq)
c) ∀((p →̇♦rq) ∧̇(q →̇♦rp) ∧̇(p ∨̇q))
d) px ∧ qx ∧∀(♦r �̇)∧∀(�r(p#¬̇q))

Exercise 15.3.6 For each of the following modal formulas draw a transition sys-

tem that does not satisfy the formula.

a) ∀(♦rp →̇♦rq →̇♦r(p ∧̇q))
b) ∃(�r(p ∨̇q) →̇�rp ∨̇�rq)

Exercise 15.3.7 Let s and t be modal expressions and x : ι be a variable. Give a

modal expression u such that ux is not modally satisfiable if and only if∀(s →̇ t)
is modally valid.

15.4 Main Results

There are two important results about modal formulas:

1. A modal formula is modally satisfiable if and only if it is satisfied by a finite

transition system.

2. There is an algorithm that decides for every modal formula s whether there is

a finite transition system that satisfies s. Whenever such a transition system

exists, the algorithm constructs one.

The first result says that the abstract semantics provided by modal interpreta-

tions coincides with the concrete semantics provided by finite transition systems.

It also says that modal formulas have the finite model property. The second re-

sult tells us that many properties of modal formulas are decidable.

We will prove the above results only for modal expressions and modal formu-

las that can be obtained with the grammar

s ::= p | ¬̇p | s ∧̇ s | s ∨̇ s | �rs | ♦rs
t ::= sx | rxx | ∀s | ∃s

We refer to such expressions and formulas as simple modal expressions and

simple modal formulas. Our proof can be extended to all modal expressions

and all modal formulas. The treatment of modal formulas containing negative

occurrences of formulas rxy requires some thought.

Exercise 15.4.1 Give a set of equations so that every modal expression can be

rewritten into a simple modal expression. Every equation must be modally valid.
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px , (¬̇p)x (s ∧̇ t)x
sx , tx

(s ∨̇ t)x
sx | tx

�rsx , rxy

sy

♦rsx

rxy , sy
y fresh

♦rsx not realized in A

∀s
sx

x ∈ VιA
∃s
sx

x fresh

∃s not realized in A

Figure 15.3: Rules of the tableau system T

15.5 Terminating Tableau System

The decision algorithm for simple modal formulas comes as a terminating

tableau system, which constructs for every modally satisfiable formula a finite

transition system satisfying it. We start with some definitions.

A branch is a set A of simple modal formulas such that A contains either a

formula of the form ∃s or a formula that contains a variable of type ι. A modal

interpretation satisfies a branch A if it satisfies every formula s ∈ A. A formula

∃s is realized in a branch A if sx ∈ A for some variable x. A formula ♦rsx is

realized in a branch A if there exists a transition rx′y ∈ A such that sy ∈ A
and �rtx′ ∈ A whenever �rtx ∈ A. More formally, ♦rsx is realized in A if and

only if

∃x′∃y : rx′y ∈ A∧ sy ∈ A∧∀t : �rtx ∈ A �⇒ �rtx′ ∈ A

The tableau system T operates on branches as defined and employs the rules

shown in Figure 15.3.

Example 15.5.1 We want to show that the formula

s := ∀(♦r(p ∨̇q) →̇♦rp ∨̇♦rq)

is modally valid. We do this by showing that ¬s is not modally satisfiable. Using

the equations in Figure 15.2 we can rewrite ¬s to the modally equivalent for-

mula ∃(♦r(p ∨̇q) ∧̇�r ¬̇p ∧̇�r ¬̇q). A refutation of this formula with T looks
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as follows:

∃(♦r(p ∨̇q) ∧̇�r ¬̇p ∧̇�r ¬̇q)
(♦r(p ∨̇q) ∧̇�r ¬̇p ∧̇�r ¬̇q)x

♦r(p ∨̇q)x, �r(¬̇p)x, �r(¬̇q)x
rxy, (p ∨̇q)x,
(¬̇p)y, (¬̇q)y
py qy

�

Exercise 15.5.2 Refute the following modal formulas with the tableau system T .

a) ∃(�r(p ∧̇q) ∧̇♦r ¬̇p)
b) ∃(♦(p ∨̇q) ∧̇�r(¬̇p ∧̇ ¬̇q))

15.5.1 Refutation Soundness

For refutation soundness we have to show for every rule A/A1 . . .An of T and

every modal interpretation that satisfies A there exists an i ∈ [1, n] such that

there exists a modal interpretation that satisfies Ai. This is easy to verify.

Proposition 15.5.3 T is refutation sound.

15.5.2 Termination

Let A be a branch. We use MA to denote the set of all modal expressions that

occur as a subterm in a formula of A. The key observation for the termination

proof is that a tableau expansion does not create new modal expressions. That

is, every rule A/A1 . . .An of T satisfies MA =MA1 = · · · = MAn.

We now assume that the intial branch A0 is finite and that we only talk about

branches that can be obtained from A0 by finitely many applications of the rules

of T .

A modal expression s is realized in a branch A if sx ∈ A for some variable x.

We observe that every application of the ∃-rule realizes a modal expression s ∈
MA0 that was not realized before. Since extension of a branch with new formulas

preserves realization of modal expressions and MA0 is finite, we can ignore the

∃-rule when we prove termination.

A pattern is a set {♦rs,�rt1, . . .�rtn} of modal expressions. A pattern

{♦rs,�rt1, . . .�rtn} is realized in a branch A if there exist x and y such that

{rxy, sy,�rt1x, . . .�rtnx} ⊆ A. We observe that every application of the ♦-rule

realizes a pattern P ⊆ MA0 that was not realized before. Since extension of a

branch with new formulas preserves realization of patterns and MA0 is finite,

we can ignore the ♦-rule when we prove termination.
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The remaining rules do not introduce new names. We consider the closure

CA := A∪ { sx | s ∈MA, x ∈ VιA }

that is finite if the branchA is finite. Every remaing ruleA/A1 . . .An ofT satisfies

CA = CA1 = · · · = CAn. Since all reachable branches are subsets of CA0 and

CA0 is finite, the remaining rules terminate (we assume that the ∃-rule and the

♦-rule are not applied).

Proposition 15.5.4 T terminates on finite branches.

15.5.3 Verification Soundness

For every branch A we define the associated transition system TA as follows:

TA := {px | px ∈ A } ∪ { rxy | {r , x,y} ⊆ VA∧∀t : �rtx ∈ A �⇒ ty ∈ A }

Note that TA is finite if A is finite. The formulas rxy ∈ TA are called safe

transitions.

Example 15.5.5 Let A = {♦rpx,♦r(¬̇p)x,�rqx,py, qy, (¬̇p)z, qz}. Then

♦rpx and ♦r(¬̇p)x are realized in A. Moreover, TA = {py, qy, qz, rxy, rxz}.�

Proposition 15.5.6 Let A be a branch that is maximal and open for T . Then A is

satisfied by the transition system TA.

Proof First observe that TA contains for every formula ♦rsx a transition rxy
such that sy ∈ A and ty ∈ A whenever �rtx ∈ A. Let I be a modal inter-

pretation that agrees with TA. We show by induction on s that I satisfies every

formula s ∈ A. Let s ∈ A. Case analysis.

Let s = px or s = rxy . Then s ∈ TA and is thus satisfied by I .
Let s = ∀t. Then tx ∈ A and Ix = x for all x ∈ Iι. By induction hypothesis

we know that I satisfies tx for every x ∈ Iι. Thus I satisfies ∀t.
To be completed. �

Exercise 15.5.7 Use the tableau system T to construct finite transition systems

satisfying the following modal formulas.

a) ∃(♦rp ∧̇�r(♦r ¬̇p))
b) ¬̇px ∧∀(♦r(♦rp))

Exercise 15.5.8 (Challenge) Give the additional tableau rules needed so that all

modal expressions can be handled. Make sure that the resulting tableau system

is refutation sound, terminating, and verification sound.
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15.6 Remarks

Modal logic is an active research area and there are many modal logics. The text-

book [11] is an excellent introduction to modal logic in general and gives a good

overview of the field. The handbook of description logics [5] focusses on appli-

cations of modal logic in knowledge representation. The textbook [33] covers

dynamic logic, a branch of modal logic developed for programm verification. For

temporal logic you may consult the textbook [6].

The modal logic considered in this chapter is the essentially the description

logic ALC. Deciding satisfiability of ALC formulas is exptime-complete [5]. Our

terminating tableau system is derived from a terminating tableau system devised

by Kaminski and Smolka [46].

Most modal logics are decidable and have the finite model property. Termi-

nating tableau systems can be used as decision procedures and are the most

efficient choice as it comes to description logics.

We conclude with some historical remarks.

• Modal logic was conceived as an extension of propositional logic that can

express additional modes of truth: necessarily true and possibly true.

• In 1918, C.I. Lewis published a deductive system for modal logic. His system

was improved by Kurt Gödel in 1933.

• In 1963, Saul Kripke gave the by now standard semantics for modal logic and

showed soundness and completeness.

• Before computer scientist got involved, modal logic was mainly developed by

logicians from philosophy.

• Temporal logic is an extension of modal logic. Major contributions were made

by the philosophers Arthur Prior (1967) and Hans Kamp (1968).

• In 1977, Amir Pnuelli realized that temporal logics could be used for specify-

ing and reasoning about concurrent programs. The temporal logics LTL and

CTL are now in wide use.

• In 1976, Vaughan Pratt invented dynamic logic, which is an extended modal

logic to be used for program verification.

• In 1991, Klaus Schild discovers that terminological logics, then developed for

knowledge representation, are in fact modal logics. Nowadays, terminological

logics are known as description logics [5]. Description logic is the basis for the

web ontology language OWL (see Wikipedia). There is a connection between

dynamic logic and description logic.
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