
Introduction to

Computational Logic

Lecture Notes SS 2010

July 27, 2010

Gert Smolka and Chad E. Brown

Department of Computer Science

Saarland University

Copyright © 2010 by Gert Smolka and Chad E. Brown, All Rights Reserved

Contents

1 Introduction 1

2 Functions and Types 3

2.1 Values . 3

2.2 Terms . 4

2.3 Type Checking . 5

2.4 Parameters and Definitions . 6

2.5 Notational Conveniences and Type Inference 7

2.6 Alpha Renaming . 8

2.7 Reduction and Normal Forms . 9

2.8 Closing a Section . 12

2.9 Computational Interpretation . 12

2.10 Church Numerals . 13

2.11 Unspecified and Implicit Arguments 15

2.12 Typing Rules . 16

2.13 Remarks . 18

3 Natural Deduction 19

3.1 Propositions and Logical Operations 19

3.2 Proof Rules for Implications . 20

3.3 Basic Intuitionistic Proof Rules . 22

3.4 Quantification over Propositions . 23

3.5 Leibniz Equality . 24

3.6 Representation in the Calculus of Constructions 25

3.7 Remarks . 25

4 Propositions and Proofs 27

4.1 The Logic . 27

4.2 First Steps . 28

4.3 Falsity and Negation . 29

4.4 Proof Diagrams and Proof Scripts . 31

4.5 Let and Assert . 32

4.6 Conjunction . 34

4.7 Equivalence . 35

iii

Contents

4.8 Theorem, Lemma, and Qed . 37

4.9 Disjunction . 37

4.10 Canonicity of Proof Rules . 39

5 Excluded Middle and Basic Laws 41

5.1 Excluded Middle . 41

5.2 Basic Laws . 43

6 Existential Quantification 49

6.1 Functional Representation of Quantification 49

6.2 Existential Quantification . 50

6.3 Inhabitation . 53

6.4 Quantifier Laws . 55

7 Equality 57

7.1 Definition and Basic Rules . 57

7.2 Cantor’s Theorem . 59

7.3 Propositional Extensionality . 60

7.4 More about Tactics . 62

7.5 Functional Extensionality . 65

8 Examples from Set Theory 67

8.1 Sets . 67

8.2 Choice Functions and Skolem Functions 69

8.3 Inverse Functions . 70

8.4 Transitive Closure . 71

9 Inductive Definitions 73

9.1 Bool and Match . 73

9.2 Destruct . 75

9.3 Rules for Matches on Bool . 77

9.4 Propositional Conditional . 78

9.5 Polymorphic Pairs . 79

9.6 Inductive Predicates . 80

9.6.1 Conjunction . 80

9.6.2 Disjunction . 81

9.6.3 True and False . 82

9.6.4 Existential Quantification . 83

9.6.5 Equality . 83

9.7 Coq’s Predefined Logical Operations 84

9.8 Remarks . 87

iv 2010/7/27

Contents

10 Natural Numbers 89

10.1 Definition . 89

10.2 Rules for Matches on Nat . 91

10.3 Structural Recursion . 91

10.4 Inductive Proofs . 93

10.5 Basic Laws for Addition and Multiplication 96

10.6 Generalized Induction . 97

10.7 Primitive Recursion . 98

10.8 Ackermann’s Function . 99

10.9 Reflection . 101

10.10 Impredicative Definitions . 102

10.11 Peano Axioms . 102

10.12 Finiteness . 103

10.13 Transitive Closure with Nat . 105

10.14 Coq’s Predefined Natural Numbers . 106

11 Models and First-Order Logic 107

11.1 Graphs . 107

11.2 Working with particular graphs in Coq 111

11.3 First-Order Logic . 112

11.4 Satisfaction . 115

11.5 Computational Properties . 118

12 First-Order Natural Deduction 121

12.1 Sequents and Sets of Assumptions . 121

12.2 Natural Deduction . 122

12.3 Simulating ND in Coq . 125

12.4 Useful Facts about Provability . 127

12.5 Conclusion . 128

13 First-Order Tableaux 129

13.1 Tableau System . 129

13.2 Relationship to Natural Deduction . 130

13.3 Examples . 131

13.4 Simulating Tableau in Coq . 134

13.4.1 Simulating the Examples in Coq 138

13.4.2 A Similar Simulation of ND in Coq 141

14 First-Order Completeness 145

14.1 Evident Sets and Herbrand Models . 145

14.2 A Decidable Fragment . 147

2010/7/27 v

Contents

14.3 Completeness . 151

Coq Summary 153

A.1 Commands . 153

A.2 Tactics . 154

A.3 Predefined Variables . 156

vi 2010/7/27

1 Introduction

1

1 Introduction

2 2010/7/27

2 Functions and Types

This chapter introduces the calculus of constructions and the proof assistant

Coq. The calculus of constructions is a syntactic system that provides functions

and types in a very expressive format. With the calculus of constructions one

can express mathematical and computational constructions, logical statements,

and proofs. It will be fascinating to see how a calculus with so few primitives can

serve so many concerns.

We will work with the proof assistant Coq. Coq is a widely used software sys-

tem that implements a logical system extending the calculus of constructions.

Coq has been used for large scale mathematical proofs like the four color the-

orem. Coq will be your personal teaching assistant for this course. Working

with Coq is similar to working with an interactive programming system. With

Coq the calculus of constructions turns into a computational reality. Run all the

examples you see with Coq.

2.1 Values

The calculus of constructions is concerned with two disjoint kinds of values

called functions and types. Every type is associated with a set of values called

its elements, and every function is associated with a type called its argument

type. A function assigns a unique value to each element of its argument type.

The functions of the calculus of constructions are different from set-theoretic

functions. Functions of the calculus are more like computational procedures.

Two functions of the calculus can be different although they have the same ar-

gument type and assign the same values to arguments.

There are two disjoint kinds of types, called function types and universes.

The elements of function types are functions, and the elements of universes are

types. Every function is an element of some function type, and every type is an

element of some universe.

The universes are denoted by U0, U1, U2, . . . where there is a own universe Un

for every natural number n. For every n ∈ N, we have that Un is an element of

Un+1, and that every element of Un is an element of Un+1. Moreover, Un is not

an element of Un. Using notation for sets, we have U0 ∈ U1 ∈ U2 ∈ · · · and

U0 ⊊ U1 ⊊ U2 ⊊ · · · . One speaks of a cumulative hierarchy.

3

2 Functions and Types

2.2 Terms

The syntactic expressions of the calculus of constructions are called terms.

There is a decidable typing relation s : t between two terms s and t. If a typing

s : t holds, we say that s has type t or that s is of type t. If s has type t, then t

denotes a type and s denotes an element of t.

A term s is well-formed if there is a term t such that s : t. Only well-

formed terms denote values. There is a type checking algorithm that determines

whether a term is well-formed. For every well-formed term s the type checking

algorithm computes a well-formed term t such that s : t. We call t the principal

type of s or just the type of s.

Terms are obtained with the grammar

s, t ::= U | x | s t | λx : s.t | ∀x : s.t

where U ranges over the universes U0, U1, U2, . . . and x ranges over symbols

called variables. We state the following facts about terms.

1. Terms of the form s t are called applications. A well-formed application s t

denotes the value the function denoted by s assigns to the value denoted by t.

2. Terms of the forms λx : s.t and ∀x : s.t are called abstractions. An abstrac-

tion provides its body t with a local variable x. One says that the abstraction

binds x in t. The term s specifies the type of x.

3. A well-formed term λx : s.t denotes a function. The term s must denote a

type, and t must denote a value for every element x of s. The argument type

of the function is s. To an element x of s the function assigns the value the

term t denotes for x.

4. A well-formed term ∀x : s.t denotes a function type. The terms s and t must

both denote types. The elements of the function type are functions whose

argument type is s, and that assign to an element x of s an element of the

type the term t denotes for x.

5. A term of the form ∀x : s.t may be written as s → t if x does not occur in t.

Function types that can be written as s → t are called simple. Function types

that cannot be written as s → t are called dependent.

6. If s and t denote types in some universe Ui, then ∀x : s.t denotes a type in Ui.

We say that the universes are closed under taking function types.

7. If s denotes a type and t denotes a type in U0, then ∀x : s.t denotes a type

in U0. We say that U0 is closed under quantification.

To ease our language, we sometimes say just “s” when we really should say “the

value denoted by the term s”.

4 2010/7/27

2.3 Type Checking

Because of the cumulative hierarchy a term may have more than one type. For

instance, the term U0 has the types U1, U2, and so on. The type of U0 determined

by the type checking algorithm is U1.

A function that returns a function can be seen as a multi-argument function.

This intuition motivates two notational conventions for terms that save paren-

theses:

s → t → u ⇝ s → (t → u)

s t u ⇝ (s t)u

We distinguish between semantic objects and syntactic objects. Values are

seen as semantic objects, and terms are seen as syntactic objects. Syntactic ob-

jects serve as representations of semantic objects and can be realized on a com-

puter. Semantic objects serve as intuitive objects that help our understanding

of the calculus. The syntactic objects of the calculus will become very concrete

once we start to work with Coq. In the mathematical development of the calculus

the syntactic objects take priority over the semantic objects.

This section contains too much information for a single reading. The idea is

that this section serves as a reference as you read through the chapter.

2.3 Type Checking

It’s high time that we use Coq as a teaching assistant. Here are a few things you

need to know about Coq’s notation:

• Prop is Coq’s notation for the lowest universe U0.

• Type is Coq’s common notation for the higher universes U1, U2, U3,

• fun x : s ⇒ t is Coq’s notation for an abstraction λx : s.t.

• forall x : s, t is Coq’s notation for an abstraction ∀x : s.t.

Coq behaves much like an interactive programming system. With the command

Check one can submit a term and have it checked. If the term is well-formed in

the current environment, Coq prints the type of the term. Otherwise, one gets

an error message. One speaks of type checking because most of the checking

concerns type conditions. We enter three terms that denote functions.

Check fun X : Prop => X.

Prop → Prop

Check fun X : Prop => fun x : X => x.

forall X : Prop, X → X

Check fun X : Prop => fun f : X -> X => fun x : X => f (f x).

forall X : Prop, (X → X) → X → X

2010/7/27 5

2 Functions and Types

Try to understand the derived types. It is not difficult. The first function is

the identity function for Prop. The second function is a polymorphic identity

function that given a type X from the universe Prop returns the identity function

for X. The third function takes a type X : Prop, a function f : X → X, and a value

x : X and returns the value obtained by applying f twice to x. The types of the

second and third function are dependent.

We call a function polymorphic if it takes types as arguments. Dependent

types make it possible to write interesting polymorphic functions.

Every term that is well-formed has a type. Thus there are types for terms that

denote types. Here are examples.

Check Prop.

Type

Check Prop -> Prop.

Type

Check forall X : Prop, X -> X.

Prop

The reasoning for the last example is as follows: Since X has type Prop, X → X

has type Prop; and since X → X has type Prop, ∀X : Prop. X → X has type Prop.

Review statements (6) and (7) of §2.2 to see this.

You can use Check to verify whether two terms are related by the typing

relation (see §2.2):

Check Prop : Type.

Check forall X : Prop, X : Prop.

Check forall X : Prop, X : Type.

Check (fun X : Type => X) (forall X : Prop, X) : Type.

Check (fun X : Type => X) (forall X : Prop, X) : Prop.

All typings but the last are confirmed.

Coq comes with a number of notational conveniences for nested abstractions.

Here are examples. Make sure you can write each example just using the core

notation.

Check fun (X : Prop) (f : X -> X) (x : X) => f (f x).

forall X : Prop, (X → X) → X → X

Check fun (X Y Z : Prop) (f : X -> Y) (g : Y -> Z) (x : X) => g (f x).

forall X Y Z : Prop, (X → Y) → (Y → Z) → X → Z

2.4 Parameters and Definitions

Coq can work with variables whose values are undetermined. Such variables

are called parameters. We open a section Getting_Started and declare two local

6 2010/7/27

2.5 Notational Conveniences and Type Inference

parameters:

Section Getting_Started.

Variable A : Type.

Variable a : A.

The declarations tell Coq that A is a type and that a is an element of A. However,

Coq does not know what kind of type A is and what kind of value a is. We can

use the parameters A and a to construct terms:

Check fun x : A => a.

A → A

Coq also provides for defined variables:

Definition id : A -> A := fun x : A => x.

Definition twice : (A -> A) -> A -> A := fun (f : A -> A) (x : A) => f (f x).

Check twice id (id a).

A

A definition declares a variable, gives it a type, and equates it with a term. This

way the variable denotes the same value the term denotes. We say that a defined

variable names the term it is equated with. When you enter a definition, Coq

checks that everything is well-typed and that the term on the right has in fact

the type the definition specifies for the variable.

2.5 Notational Conveniences and Type Inference

Coq comes with various notational conveniences for definitions.

Definition comp : (A -> A) -> (A -> A) -> A -> A := fun (f g : A -> A) (x:A) => g (f x).

comp : (A → A) → (A → A) → A → A

This is the standard form of a definition. All types are given.

Definition comp1 := fun (f g : A -> A) (x : A) => g (f x).

comp1 : (A → A) → (A → A) → A → A

This definition omits the type of the declared variable. Coq derives the type of

the term at the right-hand side of the definition and assigns it to the variable.

Definition comp2 (f g : A -> A) (x : A) : A := g (f x).

comp2 : (A → A) → (A → A) → A → A

This definition gives all the types but combines the introduction of the argument

variables with the type specification.

2010/7/27 7

2 Functions and Types

Definition comp3 (f g : A -> A) (x : A) := g (f x).

comp3 : (A → A) → (A → A) → A → A

This definition omits the specification of the result type. It is derived by Coq.

Definition comp4 : (A -> A) -> (A -> A) -> A -> A := fun f g x => g (f x).

comp4 : (A → A) → (A → A) → A → A

This definition omits the types for the argument variable of the term at the right-

hand side. They are derived by Coq. One speaks of type inference. All five

definitions equate their variable to the same term. You can check this with the

print command.

Print comp4.

comp4 = fun (f g : A → A) (x:A) ⇒ g (f x)

: (A → A) → (A → A) → A → A

In case of doubt always use the print command for defined variables. It shows

you the type of the variable and the term the variable is equated to.

When you enter terms you may introduce local variables without specifying a

type. Coq will try to infer the missing types. Here are examples:

Check (fun x => x) a.

(fun x : A ⇒ x) a : A

Check (fun x f => f (f x)) a.

(fun (x : A) (f : A -> A) ⇒ f (f x)) a : (A → A) → A

Check (fun X (x : X) => x) A.

(fun (X : Type) (x : X) ⇒ x) A : A → A

Check (forall X, X -> X).

forall X : Type, X → X : Type

2.6 Alpha Renaming

A variable x is free in a term if it has an occurrence in the term that is not in the

body of an abstraction that binds x. Here are examples:

• x is not free in λx :y.x.

• x is free in (λx :y.x)x.

• x is free in λx :x.x.

• x is free in x → x.

• x is not free in ∀x :y. x → x.

8 2010/7/27

2.7 Reduction and Normal Forms

A term is closed if no variable is free in it. Examples of closed terms are U0,

U0 → U0, ∀x : U0. x → x, and λX : U0. λx :X.x. Terms are called open if they are

not closed. A term t is closed up to defined variables if every variable that is

free in t is defined.

Abstractions that are equal up to a renaming of their local variable describe

the same value. Here are examples:

• λx :X.x can be renamed into λy :X.y .

• λx :X.λy :X.fxy can be renamed into λz :X.λy :X.fzy .

• λx :X.λy :X.fxy cannot be renamed into λy :X.λy :X.fyy .

Given a term, we may rename the local variable of an abstraction that occurs

in the term as a subterm. We speak of alpha renaming. Two terms are alpha

equivalent if they are equal up to finitely many alpha renaming steps. Here are

examples:

• λx :X.x and λy :X.y are alpha equivalent.

• λx :X.λy :X.fxy and λx :X.λz :X.fxz are alpha equivalent.

• λx :X.λy :X.fxy and λy :X.λx :X.fyx are alpha equivalent.

• λx :X.λy :X.fxy and λy :X.λx :X.fxy are not alpha equivalent.

One says that two terms are equal up to alpha renaming if they are alpha equiv-

alent. In fact, alpha equivalent terms can be considered equal for almost most

purposes. In particular, value denotation and well-formedness are invariant un-

der alpha renaming. When Coq prints a term, it may take the freedom to alpha

rename it. For instance:

Check fun (x : Prop) (x : x) => x.

fun (x : Prop) (x0 : x) ⇒ x0 : forall x : Prop, x → x

If the local variable of an abstraction does not occur in its body, one may write

the underline character in place of the variable:

Check fun (X : Type) (x : X) (_ : X) => x.

forall X : Type, X → X → X

Exercise 2.6.1 Try the command Check fun X Y : Prop => forall x : X , Y . It

prints the given term as fun X Y : Prop ⇒ X → Y . Explain why this is correct.

2.7 Reduction and Normal Forms

A term of the form (λx : s.t)u is called a beta redex. It represents the application

of an explicitly given function to an argument. A beta redex (λx : s.t)u can be

simplified to the term txu where txu is obtained from t by replacing every free

2010/7/27 9

2 Functions and Types

occurrence of the variable x with the term u. We speak of a beta reduction.

Clearly, a beta redex (λx : s.t)u and the term txu obtained by beta reduction

denote the same value. We can use the command Eval cbv beta in to make Coq

perform beta reductions:

Eval cbv beta in (fun x : A => x) a.

a

Eval cbv beta in (fun x y : A => y) a.

fun y : A ⇒ y

Eval cbv beta in (fun x y : A => x) (id a).

fun _ : A ⇒ id a

Eval cbv beta in (fun (x y : A) (f : A -> A -> A) => f x y) (id a).

fun (y : A) (f : A → A → A) ⇒ f (id a) y

Eval cbv beta in (fun f x => f x) (fun y : A => y).

fun x : A ⇒ x

Eval cbv beta in (fun X (x : X) => x) A.

fun x : A ⇒ x

When we reduce a beta redex (λx : s.t)u where s contains an abstraction whose

local variable x is free in u, we must make sure that the abstraction does not

capture the free occurrence of x in u. This can be done by renaming the local

variable of the abstraction. Here is an example:

Eval cbv beta in (fun (x a : A) (f : A -> A -> A) => f x a) a.

fun (a0 : A) (f : A → A → A) ⇒ f a a0

Besides beta reduction Coq also implements delta reduction. Delta reduction

simply replaces a defined variable with the term it is equated to.

Beta and delta reduction provide a logical form of computation. Given a term,

one can perform beta and delta reduction steps until no further reduction step

is possible. The calculus of constructions is carefully designed such that this

process always terminates. The reduction steps can be applied in any order, and

the term finally obtained is unique up to alpha renaming.

Let s and t be well-formed terms such that s : t. If we apply a reduction step

to s, we always obtain a well-formed term s′ such that s′ : t and s′ denotes the

same value as s. One says that reduction preserves types and denotations.

We say that a term s reduces to a term t if t is alpha equivalent to some term

that can be obtained from s by beta and delta reduction steps. This definition is

to be understood such that s reduces to t also if s and t are alpha equivalent (no

reduction step applied). If s reduces to t and s′ is alpha equivalent to s, then s′

also reduces to t.

10 2010/7/27

2.7 Reduction and Normal Forms

A term is normal if no reduction step applies to it. This is the case if the term

contains neither a beta redex nor a defined variable. A term s is a normal form

of a term t if s is normal and t reduces to s. Since reduction with beta and delta

steps always terminates, every term has a normal form. In fact, a term has a

unique normal form up to alpha renaming. To ease our language, we often speak

of the normal form of a term.

Two terms are convertible if they have a common normal form. Since re-

duction preserves the denotation of a term, convertible terms denote the same

value. If s is well-formed and reduces to t, then s and t are convertible.

In Coq, we can obtain the normal form of a term with the command

Eval cbv in :

Eval cbv in id a.

a

Eval cbv in twice id.

fun x : A ⇒ x

Eval cbv in fun x => id (twice id (id x)).

fun x : A ⇒ x

Let us summarize and name the key properties of reduction in the calculus

of constructions:

• Termination For every well-formed term, reduction with beta and delta

steps terminates. In the literature, the termination property is often referred

to as strong normalization.

• Confluence If a term s reduces to two terms t1 and t2, then there is always

a term u such that both t1 and t2 reduce to u. Confluence is a variant of a

property known as Church-Rosser.

• Type Preservation If s has type t and s reduces to u, then u is always

well-formed and has type t. Type presevation is also known as the subject

reduction property.

Taken together, the three properties guarentee that every well-formed term of

type t has a normal form of the same type that is unique up to alpha renaming.

A precursor of the calculus of constructions is the untyped lambda calculus

studied by Church in the 1930s. The terms of the untyped lambda calculus are

obtained with the grammar s ::= x | λx.s | ss. Consider the term ω := λx.xx
and note that the term ωω reduces in one beta step to itself. From this we

learn that one needs types to make beta reduction terminating. In 1940, Church

presented the simply typed lambda calculus, which has simple function types

and no universes. It took until the late 1960s until termination of the simply

typed lambda calculus was shown by Tait and others.

2010/7/27 11

2 Functions and Types

2.8 Closing a Section

It’s time to close the section Getting_Started we opened in §2.4.

End Getting_Started.

This eliminates the local parameters A and a. However, all definitions survive in

generalized form:

Check id.

forall A : Type, A → A

Check comp.

forall A : Type, (A → A) → (A → A) → A → A

2.9 Computational Interpretation

A canonical term is a well-formed term that is closed and normal. The type

structure of the calculus of constructions is set up such that a canonical term is

either an abstraction λx : s. t or an abstraction ∀x : s. t or a universe Un. Thus a

canonical term denotes either a function or a function type or a universe. Note

that every well-formed term that is closed up to defined variables reduces to a

canonical term that is of the same type and denotes the same value.

The computational interpretation of the calculus of constructions is deter-

mined by two assumptions:

1. Every value is denoted by some canonical term.

2. Two canonical terms that are not alpha equivalent denote different values.

The values of the computational interpretation can be obtained from the canon-

ical terms by taking the quotient with respect to alpha renaming. Given the

computational interpretation, we can identify values and canonical terms up to

alpha renaming.

So let the computational interpretation be in force. Here are three types:

Definition void : Prop := forall X : Prop, X.

Definition unit : Prop := forall X : Prop, X -> X.

Definition bool : Prop := forall X : Prop, X -> X -> X.

One can show that void has no element, unit has exactly one element, and bool

has exactly two elements. Here are the elements of unit and bool:

Definition I : unit := fun _ x => x.

Definition true : bool := fun _ x _ => x.

Definition false : bool := fun _ _ y => y.

12 2010/7/27

2.10 Church Numerals

Note that we make use of type inference. Use the print cammand to see the

complete terms.

Exercise 2.9.1 Convince yourself that you cannot find further elements of void,

unit, and bool.

Exercise 2.9.2 Consider the term (λx : U1. x)(∀x : U0. x). This term has the

type U1. It reduces to the normal term∀x : U0. x, which has the type U0. Consider

the following commands:

Definition foo := fun X : Type => X.

Definition arg := forall X : Prop, X.

Check foo.

Check arg.

Definition test : Prop := foo arg.

Explain why Coq rejects the definition of test.

2.10 Church Numerals

There is a type whose elements are in one-to-one correspondence with the natu-

ral numbers:

Definition nat : Prop := forall X : Prop, X -> (X -> X) -> X.

Definition zero : nat := fun _ x f => x.

Definition one : nat := fun _ x f => f x.

Definition two : nat := fun _ x f => f (f x).

Definition three : nat := fun _ x f => f (f (f x)).

Note that the number n is represented as the polymorphic function that takes

a value x and a function f and applies f n times to x. The functional repre-

sentation of the natural numbers was discovered by Church in the 1930s in the

untyped setting of the lambda calculus. The functions representing the natu-

ral numbers are known as Church numerals. We can say that Church numerals

represent natural numbers as iterators.

It is now straightforward to define functions that compute successors, sums,

products, and powers of Church numerals:

Definition succ (n : nat) : nat := fun X x f => n X (f x) f.

Definition add (m n : nat) : nat := m nat n succ.

Definition mul (m n : nat) : nat := m nat zero (add n).

Definition exp (m n : nat) : nat := n nat one (mul m).

Eval cbv in exp two three.

fun (X : Prop) (x : X) (f : X → X) ⇒ f (f (f (f (f (f (f (f x)))))))

2010/7/27 13

2 Functions and Types

We can also write a function that tests whether a numeral is zero:

Definition iszero (n : nat) : bool := n bool true (fun x => false).

It takes a new idea to write a function that yields the predecessor of a numeral.

Given a number n, we can apply the function

(m,k)֏ (m+ 1,m)

n times to the pair (0,0). For n = 3 this yields

(0,0)֏ (1,0)֏ (2,1)֏ (3,2)

Clearly, the second component of the pair so obtained is the predecessor of n.

For 0 we get 0 as predecessor. It remains to find a representation for pairs of

numerals. Again the idea is due to Church.

Definition pair : Prop := forall X : Prop, (nat -> nat -> X) -> X.

Definition cons (m n : nat) : pair := fun _ f => f m n.

Definition fst (p : pair) : nat := p nat (fun x _ => x).

Definition snd (p : pair) : nat := p nat (fun _ y => y).

Definition pred (n : nat) : nat := snd (n pair (cons zero zero)

(fun p => cons (succ (fst p)) (fst p))).

Exercise 2.10.1 Write a function that subtracts two numerals.

Exercise 2.10.2 Write a function that computes the factorial of a numeral. Do

not use the predecessor function but work directly with pairs.

Exercise 2.10.3 Here is an alternative representation for pairs of naturals:

Definition pair’ : Prop := (nat -> nat -> nat) -> nat.

a) Define functions cons′, fst′, snd′ that construct and decompose pairs.

b) In contrast to pair , pair′ has unwanted elements that cannot be obtained

with cons′. Define a function unwanted : nat → pair′ that yields a different

unwanted element for every Church numeral.

Exercise 2.10.4 Consider the following variant of the type nat:

Definition nat’ : Prop := forall X : Prop, (X -> X) -> X -> X.

It has the problem that it has two elements that represent 1. Find the extra

element.

14 2010/7/27

2.11 Unspecified and Implicit Arguments

2.11 Unspecified and Implicit Arguments

We can define polymorphic pairs as follows:

Definition Pair (X Y : Prop) : Prop

:= forall Z : Prop, (X -> Y -> Z) -> Z.

Definition Cons’ (X Y : Prop) : X -> Y -> Pair X Y

:= fun x y _ f => f x y.

Definition Fst’ (X Y : Prop) : Pair X Y -> X

:= fun p => p X (fun x _ => x).

Definition Snd’ (X Y : Prop) : Pair X Y -> Y

:= fun p => p Y (fun _ y => y).

We can now describe the pair that consists of one and true.

Check Cons’ nat bool one true.

Cons’ nat bool one true : Pair nat bool

Coq can automatically derive type arguments that are determined by other argu-

ments. The first and second argument of Cons′ are derivable. Arguments that

are derivable can be given as an underline “_”.

Check Cons’ _ _ one true.

Cons’ nat bool one true : Pair nat bool

Arguments that are given with underline are called unspecified arguments. Here

is the definition of a function that given a pair returns the pair obtained by

swapping the components.

Definition swap’ (X Y : Prop) : Pair X Y -> Pair Y X

:= fun p => Cons’ _ _ (Snd’ _ _ p) (Fst’ _ _ p).

You can use the print command to see which types Coq derives for the unspeci-

fied arguments.

We can go one step further and get rid of the underlines for the type argu-

ments. To this purpose we define the operations for pairs such that the type

arguments are implicit. This can be done by specifying the type arguments with

curly braces.

Definition Cons {X Y : Prop} : X -> Y -> Pair X Y

:= fun x y _ f => f x y.

Definition Fst {X Y : Prop} : Pair X Y -> X

:= fun p => p X (fun x _ => x).

Definition Snd {X Y : Prop} : Pair X Y -> Y

:= fun p => p Y (fun _ y => y).

Check Cons one true.

Cons one true : Pair nat bool

2010/7/27 15

2 Functions and Types

Definition swap {X Y : Prop} : Pair X Y -> Pair Y X

:= fun p => Cons (Snd p) (Fst p).

Eval cbv in fun (X : Prop) (x y : X) => Fst (swap (Cons x y)).

fun (X : Prop) (_ y : X) ⇒ y

Arguments that are specified with curly braces are called implicit arguments.

When a variable x is defined with implicit arguments, Coq’s frontend replaces

every occurrence of x in a term by the underspecified term @x _ . . . _ where ev-

ery implicit argument contributes an underline and @x is the name for the real

variable. For instance, the term Cons by itself does not type check, but @Cons

does.

Check @Cons.

forall X Y : Prop, X → Y → Pair X Y

Keep in mind that unspecified and implicit arguments are just notational devices

that don’t affect the logical representation of terms.

2.12 Typing Rules

We will now say more about the typing relation (see §2.2). We do this by means

of typing rules. Each typing rule says that certain typings s : t hold if certain

conditions are satisfied. The typing rules are complete in the sense that every

typing that holds can be established with the typing rules. We start with an

obvious typing rule for universes (see §2.1).

Uni
Un : Un+1

The rule says that Un has type Un+1 for every natural number n. The next rule

concerns the typing of λ-abstractions.

Lam
s : Un x : s ⇒ t : u

λx : s. t : ∀x : s.u

It says that a term λx : s. t has type ∀x : s.u if s has type Un for some n and t

has type u under the assumption that the variable x has type s. The next rule

concerns the typing of applications.

App
u : ∀x : s. t v : s

uv : txv

It says that an application uv has type txv if u has type ∀x : s. t and v has type s.

16 2010/7/27

2.12 Typing Rules

We give two rules that describe the typing of ∀-abstractions. The rules corre-

spond to items (6) and (7) in §2.2.

Fun
s : Un x : s ⇒ t : Un

∀x : s. t : Un
Prop

s : Un x : s ⇒ t : U0

∀x : s. t : U0

Rule Prop sets U0 apart from the higher universes by stating that U0 is closed

under taking function types whose argument type is in an arbitrary universe.

One says that U0 is impredicative and that the higher universes are predicative.

The impredicativity of U0 was exploited in §2.10 when we defined the arithmetic

operations on Church numerals (e.g., add). Making one of the higher universes

impredicative or collapsing the hierarchy with U0 : U0 is not an option since it

would forsake termination of reduction and the existence of normal forms.

The remaining typing rules concern alpha renaming, reduction, and the cu-

mulativity of the universes (i.e., U0 ⊆ U1 ⊆ U2 ⊆ · · ·).

Pre
s : t

s′ : t′
s alpha equivalent to s′ and t reduces to t′

Rule Pre says that the validity of a typing is preserved by alpha renaming on ei-

ther side and by reduction on the right-hand side (recall that reduction subsumes

alpha renaming). The next rule says that the validity of a typing is preserved un-

der inverse reduction of the right-hand side:

Red
t : Un s : t′

s : t
t reduces to t′

Rule Red tells us that we can establish the validity of a typing s : t as follows: First

establish t : Un for some n, then reduce t to some t′, and finally establish s : t′.
This rule is essential when we work with defined types (e.g., nat in §2.10).

Finally, there is a rule that accounts for the cumulativity of the universes:

Cum
s : t

s : t′
t ≺ t′

The subtyping relation employed by the rule is defined as follows:

1. Um ≺ Un if m < n.

2. ∀x : s. t ≺ ∀x : s. t′ if t ≺ t′.
The typing rules constitute a definition of the typing relation. Given this

definition, one can prove the following properties:

1. If s : t, then t : Un for some n.

2. If s : t and s reduces to s′, then s′ : t (type preservation).

2010/7/27 17

2 Functions and Types

2.13 Remarks

The original version of the calculus of constructions was formulated in the 1980s

by Gérard Huet and his student Thierry Coquand. Systems with dependent func-

tion types where first studied in the early 1970s by Jean-Yves Girard and Per

Martin-Löf. In 1971, Martin-Löf presented a system with a single universe U0 : U0.

Girard showed that the assumption U0 : U0 leads to a non-terminating system.

Martin-Löf then came up with the cumulative hierarchy of universes to have a

terminating system where every type has a type. The original calculus of con-

structions had just the universes U0 and U1 and did not give a type to U1. The

hierarchy of universes was added by Zhaohui Luo in his extended calculus of

constructions.

The notion of type was invented by Bertrand Russell in 1908 to avoid the

inconsistencies (paradoxes) present in Georg Cantor’s set theory and and Gottlob

Frege’s Begriffsschrift.

Work on Coq started in the 1980s under the direction of Gérard Huet. Two

important precursors of Coq are LCF and Automath. The LCF proof assistant was

developed in the 1970s under the lead of Robin Milner. LCF is based on a simple

type theory without dependent types. The Automath project started in the late

1960s under the lead of Nicholas de Bruijn. The Automath project designed

and implemented a dependently typed language to represent mathematics and

to computer-verify mathematical proofs.

The programming language ML, which pioneered polymorphic types and type

inference, was designed by Robin Milner in the 1970s for use with LCF. At this

time Milner did not know about the work of Martin-Löf and Girard. Coq is imple-

mented in OCaml, a variant of the ML language.

18 2010/7/27

3 Natural Deduction

In this chapter we take a first look at propositions and proofs, two notions famil-

iar from mathematics. A proposition is a statement that may be true or false (e.g.,

“there are infinitely many prime numbers”), and a proof is a rigorous argumen-

tation that a statement is true. We are interested in those apects of propositions

and proofs that are not specific to a particular mathematical theory (e.g., num-

ber theory). These aspects are known as logical aspects and are organized around

syntactical operations called logical operations.

The title of the chapter, natural deduction, refers to the proof theory we

outline in this chapter. Natural deduction originated with the work of Gerhard

Gentzen in the early 1930s and was conceived as a formulation of the basic rules

of mathematical reasoning. In a fascinating process of discovery that started

in the 1960s and led to the calculus of constructions, it turned out that propo-

sitions and proofs as modeled by natural deduction are intimately linked with

types and functions in computational systems.

This chapter outlines our view of propositions and proofs so that you have

an idea where we want to go. The necessary technical details and careful expla-

nations will follow in later chapters. You will profit from rereading this chapter

when you work through the technical chapters.

3.1 Propositions and Logical Operations

A proposition is a statement that expresses a property. In mathematics one

assumes that a proposition is either true or false. Propositions are typically

expressed as a mix of natural language and symbolic notation. The structure

of propositions is determined by logical operations that combine propositions

into more complex propositions. Here is a summary of commonly used logical

operations:

• Conjunction s ∧ t s is true and t is true

• Disjunction s ∨ t s is true or t is true

• Implication s → t if s is true, then t is true

• Negation ¬s s is not true

• Equivalence s ↔ t s is true if and only if t is true

19

3 Natural Deduction

• Universal quantification ∀x : s. t t is true for every x in s

• Existential quantification ∃x : s. t t is true for some x in s

For a systematic study of propositions it is useful to fix two logical constants

that provide canonical notations for the two truth values:

• Falsity ⊥ false

• Truth ⊤ true

To ease our language, we count ⊥ and ⊤ as logical operations. We also count

equality as a logical operation:

• Equality s = t s equals t

The above list gives you an idea of the meaning of the logical operations we

consider. Your mathematical experience will provide you with intuitions and

examples. As we continue, we will become more precise.

Syntactically, propositions will be modelled as terms and logical operations

will appear as functions (with the exception of ⊥ and ⊤). In fact, we will represent

propositions in the calculus of constructions as terms of type Prop. Quantifica-

tions will be represnted with abstractions so that the local variables of quantifi-

cations will appear as local variables of abstractions.

For now, we will not say more about the notion of truth. Instead, we will say

more about proofs.

3.2 Proof Rules for Implications

We are interested in a system of proof rules that establishes a notion of prov-

ability that is faithful to mathematical reasoning. We require that the proof rules

are based on the syntactic structure of propositions and do not make use of the

notion of truth. We are aiming at a system that can be realized on a computer.

There should be algorithms that check whether a proposition is well-formed and

whether the steps of a proof are validated by a given set of proof rules.

A proof rule is a syntactical device for establishing the truth of propositions.

Here is a prominent example of a proof rule:

s → t s

t

This rule is known as modus ponens and was already formulated by the old

Greeks. It says that t is true if both s → t and s are true. Read differently, it

says that t is provable if both s → t and s are provable. We now see that we can

establish a notion of provability by fixing a set of proof rules. To find the right

proof rules, we can look at mathematical proofs and rely on our intuitive idea of

truth.

20 2010/7/27

3.2 Proof Rules for Implications

If we look at the modus ponens rule, we see that it makes use of an already

proven implication s → t. Thus modus ponens tells us how to make use of

implications. What we need in addition is a rule that allows us to establish the

provability of an implication. This rule takes the form

s ⇒ t

s → t

It says that an implication s → t can be proven by assuming that the premise s is

provable and by showing that the conclusion t is provable. So the task of proving

s → t is reduced to the task of proving t under the assumption that s is provable.

We now have two proof rules for implications. The rule that introduces the

premise of an implication as an assumption is called an introduction rule, and

the rule that applies an implication (modus ponens) is called an elimination rule.

Here is an example that shows how the two rules can prove a complex implica-

tion.

1

2

3

4
g

5
f

6
x

X

Y

Z

X → Z
x : X

(Y → Z)→ (X → Z)
g : Y → Z

(X → Y)→ (Y → Z)→ (X → Z)
f : X → Y

Its best to read the proof backwards.

0. Show (X → Y)→ (Y → Z)→ (X → Z).

1. Assume that f is a proof of X → Y . Show (Y → Z)→ (X → Z).

2. Assume that g is a proof of Y → Z . Show X → Z .

3. Assume that x is a proof of X. Show Z .

4. Since g is a proof of Y → Z , it suffices to prove Y .

5. Since f is a proof of X → Y , it suffices to prove X.

6. Since x is a proof of X, we are done.

Note that steps (1), (2), and (3) are validated by the introduction rule for impli-

cations, and that steps (4) and (5) are validated the elimination rule for implica-

tions.

We will see that proofs can be represented as terms in the calculus of con-

structions. The above proof will be represented as the following term:

fun (f : X -> Y) (g : Y -> Z) (x : X) => g (f x)

2010/7/27 21

3 Natural Deduction

Relate the term with the verbal version of the proof. The term introduces the

assumptions with lambda abstractions where the argument variables serve as

names of the assumptions and the types serve as propositions. Modus ponens

is realized in a natural way as function application. The term is a more compact

presentation of the proof than the verbal presentation. Moreover, the term is a

formal representation of the proof that can be checked and manipulated by a

machine.

3.3 Basic Intuitionistic Proof Rules

It turns out that the two rules we have given for implications fully characterize

provability of implications. We can now look at the other logical operations

and think about their basic proof rules. It turns out that we can characterize

provability of each logical operation with just a few proof rules. For some logical

operations it is preferable to define them in terms of other logical operations:

⊤ := ⊥ → ⊥
¬s := s → ⊥

s ↔ t := (s → t)∧ (t → s)

Note that negation is defined with → and ⊥. This means that we prove ¬s by

assuming s and proving ⊥. Since there is no direct proof of ⊥, we can prove ¬s
only if the assumption s leads to a contradiction.

The basic proof rules for the logical operations that are not accomodated by

definition appear in Figure 3.1. These rules are known as the basic intuitionistic

proof rules. Each line gives the rules for one particular logical operation. The

introduction rules appear on the left and the elimination rules appear on the

right. With the exception of ⊥ and ∨, each logical operation appearing in the

figure has one introduction rule and one elimination rule. There are two intro-

duction rules for ∨, and there is no introduction rule for ⊥. The elimination rule

for ⊥ says that every proposition is provable if ⊥ is provable. We need such a

strong elimination rule for ⊥ so that we can express negation with → and ⊥. The

notation txv is to be understood as in the calculus of constructions: It denotes the

term that is obtained from t by replacing every free occurrence of the variable

x with the term v . The rules in Figure 3.1 are accompanied by two additional

proof rules:

1. A proposition s is provable if there is an assumption s.

2. A proposition s is provable if it is provable after alpha renaming.

In addition, one needs typing rules that establish the premise v : s of the elimi-

nation rule for ∀ and the introduction rule for ∃.

22 2010/7/27

3.4 Quantification over Propositions

s ⇒ t

s → t

s → t s

t

x : s ⇒ t

∀x : s. t

∀x : s. t v : s

txv

⊥
u

s t

s ∧ t
s ∧ t s , t ⇒ u

u

s

s ∨ t
t

s ∨ t
s ∨ t s ⇒ u t ⇒ u

u

v : s txv

∃x : s. t

∃x : s. t x : s , t ⇒ u

u
x ∉ FVu

s = s
s = t uxt

uxs

x ∉ FVu means that x is not free in u

Figure 3.1: Basic intuitionistic proof rules

3.4 Quantification over Propositions

In mathematics one quantifies over numbers, vectors, functions and other math-

ematical objects. It also makes sense to quantify over propositions. Quantifica-

tion over propositions makes it possible to express proof rules as propositions.

This feature gives a tremendous boost to a proof system since it is now possible

to use as many proof rules as one likes. To make a new proof rule available, one

formulates it as a proposition and proves it. Proving the proposition formulating

the rule establishes that the rule is derivable from the basic rules. As an example,

2010/7/27 23

3 Natural Deduction

we consider a proof rule known as modus tollens:

s → t ¬t
¬s

The rule translates into the following proposition:

∀X Y : Prop. (X → Y)→ (¬Y → ¬X)

Note that the letters s and t in the rule represent propositions while the letters X

and Y in the proposition represent variables. Here is a proof of the proposition.

g(fx)

X → ⊥ x : X

¬Y → ¬X g : Y → ⊥

(X → Y)→ (¬Y → ¬X) f : X → Y

∀X Y : Prop. (X → Y)→ (¬Y → ¬X) X Y : Prop

With quantification over propositions it is possible to express the logical op-

erations ⊥, ∧, ∨, and ∃ with the operations ∀ and → in such a way that one can

derive their basic intuitionistic proof rules.

⊥ := ∀X : Prop. X

s ∧ t := ∀X : Prop. (s → t → X)→ X

s ∨ t := ∀X : Prop. (s → X)→ (t → X)→ X

∃x : s. t := ∀X : Prop. (∀x : s. t → X)→ X

The trick consists in expressing a proposition u built with a logical operation o

as the elimination rule for o specialized to u. This means that the reduction to∀
and → is already present in the elimination rule for o.

3.5 Leibniz Equality

Two objects x and y are equal if every property that holds for x also holds for y .

This characterization of equality is attributed to Leibniz. The asymmetry of the

characterization is balanced by the presence of sufficiently strong properties. We

can express equality with ∀ and → if we can quantify over predicates (functions

that yield propositions):

s = t := ∀p :u→Prop. pt → ps where s : u

24 2010/7/27

3.6 Representation in the Calculus of Constructions

If a logical system provides equality through the above definition, one says that

the system provides Leibniz equality.

We now see that it suffices to give a proof system for just the logical opera-

tions→ and∀, provided one can quantify over propositions and predicates. This

observation simplifies the construction of proof systems considerably.

3.6 Representation in the Calculus of Constructions

If we now look at the calculus of constructions, we realize that the terms of

type Prop give us all the propositions we could ask for. In addition we make the

discovery that given a proposition t every term s of type t can be seen as a proof

of t that is validated by the basic intuitionistic proof rules for → and ∀.

1. A variable represents the use of an assumption.

2. A lambda abstraction λx : s.t represents an application of an introduction rule

where x : s is the assumption made and t is the remaining proof. This can be

seen from the typing rule for lambda abstractions (§2.12).

Lam
s : Un x : s ⇒ t : u

λx : s. t : ∀x : s.u

3. An application st represents an application of an elimination rule. This be-

comes clear if we look at the typing rule for applications (§2.12).

App
u : ∀x : s. t v : s

uv : txv

3.7 Remarks

The systematic study of popositions and proofs started in the second half of

the 19th century with George Boole and Gottlob Frege. The notion of type was

invented by Bertrand Russell in 1908 to avoid the inconsistencies present in Can-

tor’s set theory and in Frege’s Begriffsschrift. In the early 1930s, Gehard Gentzen

developed the first system of natural deduction. His system is first order in that

it can only quantify over a single type of individuals. The development of higher

order systems that can quantify over propositions and functions started with

Prawitz in the 1960s. The relationship between natural deduction and typed

lambda terms was discoved by Curry and Howard. The technical development of

this discovery was first pursued by Martin-Löf and Girard and finally led to the

development of the calculus of constructions.

2010/7/27 25

3 Natural Deduction

26 2010/7/27

4 Propositions and Proofs

We will now see that the calculus of constructions is an expressive logical sys-

tem. Propositions (i.e., logical statements) are represented as terms that denote

function types, and proofs (i.e., logical argumentations) are represented as terms

that denote functions. Given this representation, a proof s proves a proposition t

if and only if s has type t. Proof checking is thus obtained as type checking.

4.1 The Logic

A proposition is a term that has type Prop. A proof is a term s such that there is

a proposition t such that s has type t. In this case we say that s proves t or that

s is a proof of t. A proposition t is provable if there is a proof s that proves t.

Propositions of the form s → t are called implications, and propositions of the

form ∀x : s. t are called universal quantifications if x is free in t.

If we need the word proof with its general meaning, we will refer to the proofs

of the calculus of constructions as proof terms.

Given our definitions, the typing rules of the calculus of constructions turn

into proof rules. The typing rule for applications, for instance, yields a proof

rule for universal quantifications:

u : ∀x : s. t v : s

uv : txv

It tells us that given a proof of a proposition ∀x : s. t and a term v of type s, we

can obtain a proof of the proposition txv . As a special case of this rule we have a

proof rule for implications:

u : s → t v : s

uv : t

It tells us that given proofs of the propositions s → t and s, we can obtain a proof

of the proposition t. A simplified version of this rule

s → t s

t

27

4 Propositions and Proofs

that omits the proofs is known as modus ponens and dates back to the ancient

Greeks. It should be read as follows: If s → t is provable and s is provable, then

t is provable.

4.2 First Steps

We start with a proposition that is easy to prove:

Definition True : Prop := forall X : Prop, X -> X.

True states that every proposition that is provable is provable. With the defini-

tion

Definition I : True

:= fun _ x => x.

we make Coq check that I is defined as a proof of True. Note that we rely on type

inference. We can ask Coq for the full proof:

Print I

I = fun (X : Prop) (x : X) ⇒ x

Here are proofs of interesting properties of implication.

Definition K {X Y : Prop} : X -> Y -> X

:= fun x y => x.

Definition C {X Y Z : Prop} : (X -> Y) -> (Y -> Z) -> X -> Z

:= fun f g x => g (f x).

Definition com {X Y Z : Prop} : (X -> Y -> Z) -> Y -> X -> Z

:= fun f y x => f x y

Proof K tells us that Y → X is provable if X is provable. Proof C tells us that

X → Z is provable if X → Y and Y → Z are provable. Proof com tells us that

Y → X → Z is provable if X → Y → Z is provable. This means that it doesn’t

matter for provability how we order the premises X1, . . . , Xn of an implication

X1 → ·· · → Xn → X.

Every proposition can be seen as a proof rule, and a proof of a proposition es-

tablishes the soundness of the corresponding proof rule. The proofs I , K , C, and

com establish the soundness of the following proof rules (we use ⊤ as notation

for True):

⊤
s

t → s

s → t t → u

s → u

s → t → u

t → s → u

28 2010/7/27

4.3 Falsity and Negation

Given a rule, we call the propositions above the line premises, and the propo-

sition below the line conclusion. Note that a soundness proof for a proof rule

describes a function that constructs a proof of the conclusion of the rule from

proofs of the premises of the rule.

We use proof rules to convey an operational understanding of propositions.

There is no need to be precise about proof rules. If we want to be precise, we

look at the proposition and its proof, not at the proof rule.

Exercise 4.2.1 Prove the following propositions with Coq.

a) ∀X Y : Prop. X → (X → Y)→ Y

b) ∀X Y : Prop. (X → X → Y)→ X → Y

c) ∀X Y Z : Prop. (X → Y → Z)→ (X → Y)→ X → Z

d) ∀X Y : Prop. X → Y → ∀Z : Prop. (X → Y → Z)→ Z

e) ∀X Y : Prop. (∀Z : Prop. (X → Y → Z)→ Z)→ X

f) ∀X Y : Prop. X → ∀Z : Prop. (X → Z)→ (Y → Z)→ Z

4.3 Falsity and Negation

We define False as the canonical example of a proposition that is not provable:1

Definition False : Prop := forall X : Prop, X.

It is common to refer to False as falsity. The characteristic property of falsity

is that every proposition is provable if falsity is provable. Here is a proof of the

characteristic property:

Definition False_elim {X : Prop} : False -> X

:= fun f => f X.

We define negation as follows:

Definition not (X : Prop) : Prop := X -> False.

If s is a proposition, the negated proposition not s is provable if we can obtain

a proof of falsity from a proof of s. Given the fact that falsity is unprovable,

a proof of not s establishes the fact that s is unprovable. Here are proofs that

establish basic properties of negation:

Definition not_elim {X : Prop} : not X -> X -> False

:= fun f x => f x.

1 For now you have to believe us that False is not provable. A proof of this claim is quite involved.

One first has to show that reduction is terminating, confluent, and type preserving.

2010/7/27 29

4 Propositions and Proofs

Definition not_dn {X : Prop} : X -> not (not X)

:= fun x f => f x.

Definition mt {X Y : Prop} : (X -> Y) -> not Y -> not X

:= fun f g x => g (f x).

To check the proofs, Coq must make use of the definition of the variable not.

This happens by reducing the specified propositions with delta and beta as jus-

tified by the typing rule Red (see § 2.12). Here is a proof that makes use of the

previously established proofs mt and not_dn.

Definition not_tn {X : Prop} : not (not (not X)) -> not X

:= mt not_dn.

This proof relies on syntactic sugar and type inference. The full proof looks as

follows:

Print not_tn.

not_tn = fun X : Prop ⇒ @mt X (not (not X)) (@not_dn X)

We use the notations ⊥ and ¬s for False and not s. Here are the proof rules that

correspond to the proofs False_elim, not_elim, not_dn, not_tn, and mt:

⊥
s

¬s s

⊥
s

¬¬s
¬¬¬s
¬s

s → t ¬t
¬s

The rightmost rule is known as modus tollens.

Exercise 4.3.1 (Triple) Find a proof for∀X : Prop. ¬¬¬X → ¬X that doesn’t use

defined proofs.

Exercise 4.3.2 Find a proof for ∀X : Prop. ¬X → (¬X → X)→ ⊥.

Exercise 4.3.3 (Circuit) Find a proof for ∀X : Prop. (X → ¬X)→ (¬X → X)→ ⊥.

Exercise 4.3.4 Prove that the proposition ¬¬⊥ is not provable.

Exercise 4.3.5 Determine normal forms for the following propositions.

a) ∀X : Prop. ¬X → X → ⊥
b) ∀X : Prop. X → ¬¬X

c) ∀X Y : Prop. (X → Y)→ ¬Y → ¬X

30 2010/7/27

4.4 Proof Diagrams and Proof Scripts

4.4 Proof Diagrams and Proof Scripts

Finding proof terms can be difficult, and proof terms for interesting propositions

may get large. One can ease the construction of proof terms by drawing so-

called proof diagrams. A proof diagram keeps track of the assumptions we

have made (i.e., local variables and their types) and the propositions we still have

to prove. Here is an example of a complete proof diagram for the proposition

∀X : Prop. ¬¬¬X → ¬X.

1

2

f
3

4

gx

⊥
¬¬X g :¬X

⊥
∀X : Prop. ¬¬¬X → ¬X X : Prop, f :¬¬¬X , x : X

Proof diagrams are drawn bottom up. One starts with the initial claim. Then

one either introduces assumptions or applies a proof term obtained with the as-

sumptions. Each step is identified by a horizontal line. In the above diagram,

steps 1 and 3 are introduction steps, and steps 2 and 4 are application steps.

The assumptions introduced appear to the right of the line, and the proof terms

applied appear above the line to the left. The proof term described by a proof

diagram is obtained by translating the introduction steps into λ-abstractions and

the application steps into applications. The above diagram describes the proof

term

fun (X : Prop) (f : not (not (not X))) (x : X) => f (fun g : not X => g x)

Coq comes with a scripting language that makes it possible to construct proof

terms interactively. We can see the commands of the scripting language as com-

mands that construct proof diagrams. Here is a proof script that constructs the

proof diagram and the proof term shown above.

Definition triple {X : Prop} : not (not (not X)) -> not X.

intros X f x. apply f. intros g. apply (g x). Defined.

You can step through the script command by command. At each step you see

the available assumptions and the proposition to prove. One contructs the proof

script interactively by entering command after command. Coq’s user interface

makes it possible to undo and redo commands. This way you can walk through

the proof diagram. Check this out with the above example. Once the proof term

is constructed, you can look at it with the print command.

Print triple.

triple = fun (X : Prop) (f : not (not (not X))) (x : X) ⇒ f (fun g : not X ⇒ g x)

2010/7/27 31

4 Propositions and Proofs

The commands for proof scripts are known as tactics. So far we have seen

two tactics, intros and apply.

With Coq, complex proofs are usually obtained with proof scripts, and the

proof scripts are constructed in interaction with Coq.

Here is a proof diagram for the proposition ∀X : Prop. ¬¬¬X → ¬X that uses

the proofs mt and not_dn defined in §4.3. It consists of one introduction and

two application steps.

mt

not_dn

X → ¬¬X
¬¬¬X → ¬X

∀X : Prop. ¬¬¬X → ¬X X : Prop

Note that the diagram uses mt and not_dn with implicit arguments. The transla-

tion of the diagram into a proof script looks as follows:

Definition triple’ {X : Prop} : not (not (not X)) -> not X.

intros X. apply mt. apply not_dn. Defined.

Print triple’.

triple’ = fun X : Prop ⇒ mt not_dn

Exercise 4.4.1 Consider the propositions of Exercise 4.2.1. Draw proof diagrams

and write proof scripts. Run all proof scripts with Coq. Understand the corre-

spondence between proof diagrams, proof scripts, and proof terms.

4.5 Let and Assert

We will now discuss different proofs of the proposition of Exercise 4.3.3:

Definition Circuit : Prop := forall X : Prop, (X -> not X) -> (not X -> X) -> False.

Here is a proof diagram for Circuit.

f

g

fxx

⊥
¬X x : X

X

g

fxx

⊥
¬X x : X

X

⊥
∀X : Prop. (X → ¬X)→ (¬X → X)→ ⊥ X : Prop, f : X → ¬X , g :¬X → X

Note that the diagram contains the subproof for X twice. The diagram corre-

sponds to the following proof script:

32 2010/7/27

4.5 Let and Assert

Definition circuit_straight : Circuit.

intros X f g. apply f.

apply g. intros x. apply (f x x).

apply g. intros x. apply (f x x).

Defined.

The proof term constructed looks as follows:

Print circuit_straight.

fun (X : Prop) (f : X → not x) (g : not X → X) ⇒ f (g (fun x : X ⇒ f x x)) (g (fun x : X ⇒ f x x))

When we write the proof term, the duplication of the subproof for X can be

avoided with the let notation:

Definition circuit_let : Circuit

:= fun X f g => let x := g (fun x’ => f x’ x’) in f x x.

The let notation is an abbreviation for a beta redex:

let x := s in t ⇝ (fun x ⇒ t) s

The assert tactic gives us the equivalent of the let notation for proof scripts:

Definition circuit_assert : Circuit.

intros X f g.

assert (x := g (fun x’ => f x’ x’)).

apply (f x x).

Defined.

It is also possible to construct the proof term for the local variable with a script.

Definition circuit_assert’ : Circuit.

intros X f g.

assert (x : X). apply g. intros x’. apply (f x’ x’).

apply (f x x).

Defined.

The proof terms circuit_let, circuit_assert, and circuit_assert′ are all identical.

Use the print command to convince yourself.

Here is a proof diagram that simulates the let notation with an explicit beta

redex.

fxx

⊥
X → ⊥ x : X

g

fx′x′

⊥
¬X x′ : X

X

⊥
∀X : Prop. (X → ¬X)→ (¬X → X)→ ⊥ X : Prop, f : X → ¬X , g :¬X → X

There is another elegant proof of Circuit that uses an auxiliary proof R.

2010/7/27 33

4 Propositions and Proofs

Definition R {X Y : Prop} : (X -> X -> Y) -> X -> Y

:= fun f x => f x x.

Definition circuit_R : Circuit

:= fun X f g => R f (g (R f)).

4.6 Conjunction

We will define the conjunction s∧ t of two propositions s and t as a proposition

such that the following proof rules are sound:

s t

s ∧ t
s ∧ t s → t → u

u

The left rule is called an introduction rule since it establishes a conjunction as

provable. It says that s ∧ t is provable if s and t are provable. The right rule is

called an elimination rule since it makes use of a proven conjunction. It says that

given a provable conjunction s ∧ t, we can prove a proposition u by proving the

implication s → t → u. This means that we can prove u under the assumption

that both s and t are provable.

We define conjunction as a function that given two propositions X and Y

yields the elimination rule for X ∧ Y :

Definition and (X Y : Prop) : Prop := forall Z : Prop, (X -> Y -> Z) -> Z.

Given this definition, we prove the soundness of the proof rules for conjunction.

Definition conj {X Y : Prop} : X -> Y -> and X Y

:= fun x y _ f => f x y.

Definition and_elim {X Y Z: Prop} : and X Y -> (X -> Y -> Z) -> Z

:= fun f => f Z.

Next we prove the soundness of two specialized elimination rules:

s ∧ t
s

s ∧ t
t

Definition proj1 {X Y : Prop} : and X Y -> X

:= fun f => f X (fun x _ => x).

Definition proj2 {X Y : Prop} : and X Y -> Y

:= fun f => f Y (fun _ y => y).

We can think of the proof of a conjunction s ∧ t as a pair (u,v) consisting

of a proof u of s and a proof v of t. Under this view, the introduction rule

constructs such a pair, and the elimination rules make the components of such a

34 2010/7/27

4.7 Equivalence

pair available. In fact, the proofs conj, proj1, and proj2 are the operations cons,

fst, and snd for polymorphic pairs (see §2.11).

We prove that conjunction is a commutative operation.

Definition and_com {X Y : Prop} : and X Y -> and Y X.

intros X Y p. apply p. intros x y. apply (conj y x). Defined.

Step carefully through the proof script to understand how it works. The corre-

sponding proof diagram looks as follows.

p _

conj y x

and Y X

X → Y → and Y X
x :X, y :Y

and Y X

∀X Y : Prop. and X Y → and Y X
X Y : Prop, p : and X Y

The diagram reveals the interesting fact that the apply tactic puts in underlines

automatically. Without this feature we would have to write apply(p _) in the

proof script. To see the full truth, look at the proof term constructed by the

script:

Print and_com.

and_com = fun (X Y : Prop) (p : and X Y) ⇒ p (and Y X) (fun (x : X) (y : Y) ⇒ conj y x)

Next we prove that conjunction is associative.

Definition and_asso {X Y Z: Prop} : and X (and Y Z) -> and (and X Y) Z.

intros X Y Z p. apply p. intros x q. apply q. intros y z.

apply (conj (conj x y) z). Defined.

Constructing the proof script in interaction with Coq is straightforward. Con-

structing the proof term by hand is tedious since one has to supply many type

arguments. Print the proof term to see this.

To save parentheses, we follow the common convention that ∧ takes its argu-

ments before →. Thus s ∧ t → u∧ v is to be read as (s ∧ t)→ (u∧ v).

Exercise 4.6.1 Prove the following propositions.

a) ∀X : Prop. X → X ∧ X

b) ∀X Y Z : Prop. (X ∧ Y)∧ Z → X ∧ (Y ∧ Z)

4.7 Equivalence

We define equivalence as follows:

2010/7/27 35

4 Propositions and Proofs

Definition iff (X Y : Prop) := and (X -> Y) (Y -> X).

We write s ↔ t for a proposition iff s t. Note that an equivalence s ↔ t is prov-

able if and only if the implications s → t and t → s are provable. Thus, if s ↔ t

is provable, s is provable whenever t is provable, and t is provable whenever s

is provable. We say that two propositions are provably equivalent if the equiv-

alence s ↔ t is provable.

We adopt the convention that ↔ takes its arguments after →. Thus we read

s → t → u↔ t → s → u as (s → t → u)↔ (t → s → u).

It’s time to use Coq’ notation command. The commands

Notation "~ s" := (not s) : type_scope.

Notation "s /\ t" := (and s t) : type_scope.

Notation "s <-> t" := (iff s t) : type_scope.

establish convenient notations for not, and, and iff that corresponds to the math-

ematical notations we are already using. Here are two proofs involving equiva-

lences. Step through them to see the fine points. Note the use of proof K defined

in §4.2.1.

Definition and_idempotence {X : Prop} : X /\ X <-> X.

intros X. apply conj.

intros p. apply p. apply (K x).

intros x. apply (conj x x).

Defined.

Definition iff_circuit {X : Prop} : ~(X <-> ~X).

intros X e. apply e. intros f g.

assert (x : X). apply g. intros x. apply (f x x).

apply (f x x).

Defined.

Exercise 4.7.1 Prove the following propositions.

a) ∀X : Prop. ⊥ → X ↔ ⊤
b) ∀X : Prop. ⊤ → X ↔ X

c) ∀X : Prop. X → ⊤ ↔ ⊤
d) ∀X : Prop. (X ↔ ⊤)↔ X

e) ∀X : Prop. (X ↔ ⊥)↔ ¬X
f) ∀XY : Prop. X → ¬Y ↔ Y → ¬X
g) ∀X : Prop. X ∧⊥ ↔ ⊥
h) ∀X : Prop. X ∧⊤ ↔ X

36 2010/7/27

4.8 Theorem, Lemma, and Qed

4.8 Theorem, Lemma, and Qed

Coq offers the commands Theorem and Qed as alternatives to the commands

Definition and Defined. Here is an example.

Theorem example_theo (X Y Z : Prop) :

X -> Y -> Z <-> X /\ Y -> Z.

intros X Y Z. apply conj.

intros f g. apply g. apply f.

intros f x y. apply (f (conj x y)).

Qed.

If you use Theorem rather than Definition you must give the proof with a script.

This is the only difference between Definition and Theorem. There is also a dif-

ference between Defined and Qed. While Defined introduces a transparent name

that is subject to delta reduction, Qed introduces an opaque name that cannot

be delta reduced.

Eval cbv in example_theo.

example_theo

With the print command you can display the proof term example_theo is equated

to. Coq offers the keywords Lemma and Corollary as synonyms for the keyword

Theorem. From now on we will state and prove propositions using the keywords

Theorem, Lemma, Corollary, and Qed.

4.9 Disjunction

We will define the disjunction s ∨ t of two propositions s and t as a proposition

such that the following proof rules are sound:

s

s ∨ t
t

s ∨ t
s ∨ t s → u t → u

u

This time there are two introduction rules saying that we can prove a disjunction

s ∨ t if we can prove s or t. The third rule is an elimination rule that provides

for case analysis. It says that given a proof of a disjunction s ∨ t, we can prove a

proposition u by proving the implications s → u and t → u. We define disjunc-

tion as follows:

Definition or (X Y : Prop) : Prop := forall Z : Prop, (X -> Z) -> (Y -> Z) -> Z.

This definition represents a disjunction X ∨ Y as the elimination rule for X ∨ Y .

The soundness proofs for the proof rules are straightforward.

2010/7/27 37

4 Propositions and Proofs

Lemma or_introl {X Y : Prop} : X -> or X Y.

intros X Y x Z f g. apply (f x). Qed.

Lemma or_intror {X Y : Prop} : Y -> or X Y.

intros X Y y Z f g. apply (g y). Qed.

Lemma or_elim {X Y Z : Prop} : or X Y -> (X -> Z) -> (Y -> Z) -> Z.

intros X Y Z p. apply (p Z). Qed.

We can think of the proof of a disjunction s ∨ t as a pair (i,u) where either

i = 1 and u is a proof of s or i = 2 and u is a proof of t. We speak of a tagged

proof and call i the tag of the proof. Under this view, the introduction rules

construct tagged proofs, and the elimination rule decomposes tagged proofs.

We adopt the notational convention that the operator symbol ∨ takes its ar-

guments before → and after ∧. Thus s ∨ t ∧ u → s is read as (s ∨ (t ∧ u)) → s.

We also define a notation with analogous properties in Coq.

Notation "s \/ t" := (or s t) : type_scope.

Here is a proof diagram verifying the commutativity of disjunction:

p _

or_intror

X → Y ∨X
or_introl

Y → Y ∨X
Y ∨X

∀X Y : Prop. X ∨ Y → Y ∨X X Y : Prop, p :X ∨ Y

The corresponding proof script and proof term look as follows:

Lemma or_com {X Y : Prop} : X \/ Y -> Y \/ X.

intros X Y p. apply p. apply or_intror. apply or_introl. Qed.

Print or_com.

fun (X Y : Prop) (p : X \/ Y) ⇒ p (Y \/ X) or_intror or_introl

Here is a proof of the De Morgan law for disjunction:

Lemma or_DeMorgan {X Y : Prop} : ~(X \/ Y) <-> ~X /\ ~Y.

intros X Y. apply conj.

intros f. apply conj.

intros x. apply f. apply (or_introl x).

intros y. apply f. apply (or_intror y).

intros p q. apply p. apply q. Qed.

Exercise 4.9.1 Prove the following propositions.

a) ∀X : Prop. X ∨⊥ ↔ X

b) ∀X : Prop. X ∨⊤ ↔ ⊤
c) ∀X : Prop. X ∨ X ↔ X

38 2010/7/27

4.10 Canonicity of Proof Rules

d) ∀X Y : Prop. X ∨ Y → Y ∨ X

e) ∀X Y Z : Prop. X ∨ (Y ∨ Z)→ (X ∨ Y)∨ Z

f) ∀X Y Z : Prop. X ∧ (Y ∨ Z)↔ X ∧ Y ∨ X ∧ Z

g) ∀X Y Z : Prop. X ∨ Y ∧ Z ↔ (X ∨ Y)∧ (X ∨ Z)

h) ∀X Y : Prop. ¬X ∨¬Y → ¬(X ∧ Y)

4.10 Canonicity of Proof Rules

We have defined the logical operations conjunction and disjunction such that

they validate certain proof rules. It turns out that the proof rules determine

conjunction and disjunction up to equivalence. This means that two disjunctions

that both validate the characteristic rules cannot be distinguished with respect

to provability. We establish the canonicity of the proof rules with the following

section.

Section Canonicity_Disjunction.

Variable or’ : Prop -> Prop -> Prop.

Variable or’_introl : forall X Y : Prop, X -> or’ X Y.

Variable or’_intror : forall X Y : Prop, Y -> or’ X Y.

Variable or’_elim : forall X Y Z : Prop, or’ X Y -> (X -> Z) -> (Y -> Z) -> Z.

Lemma canonicity_disjunction (X Y : Prop) : X \/ Y <-> or’ X Y.

intros X Y. apply conj.

intros H. apply (or’_elim _ _ _ H). apply or_introl. apply or_intror.

intros H. apply H. apply or’_introl. apply or’_intror. Qed.

End Canonicity_Disjunction.

Lemma canonicity_disjunction states that every disjunction operation or′ that

validates the characteristic proof rules for disjunction is equivalent to the dis-

junction operator we have defined. Use the print command to see the external-

ized form of the lemma.

Exercise 4.10.1 Prove that the characteristic proof rules for conjunction deter-

mine conjunction up to equivalence.

2010/7/27 39

4 Propositions and Proofs

40 2010/7/27

5 Excluded Middle and Basic Laws

We study the classical assumption of excluded middle and list the basic laws for

the propositional operations implication, negation, conjunction, disjunction, and

equivalence.

5.1 Excluded Middle

Here are four prominent propositions.

• Law of Excluded Middle ∀X : Prop. X ∨¬X

• Double Negation Law ∀X : Prop. ¬¬X → X

• Contraposition Law ∀X Y : Prop. (¬Y → ¬X)→ X → Y

• Peirce’s Law ∀X Y : Prop. ((X → Y)→ X)→ X

None of these propositions is provable. Neither are the negations of these propo-

sitions provable. However, any two of these propositions are provably equiva-

lent.

The equivalence proofs for the laws are interesting and provide us with ex-

cellent exercises. The proofs are more difficult than what we have seen so far.

If you can synthesize the proof terms without using pencil and paper, you are

a wizard. The rest of us either draws a proof diagram on paper or constructs a

proof script in interaction with Coq. The latter is mor fun since Coq will do the

bookkeeping and ensure the correctness of the proofs obtained. Below are some

of the proofs. To understand the proof scripts, you can either step through them

with Coq or draw the corresponding proof diagrams by hand. You may also ask

Coq to print the proof terms synthesized.

Definition XM : Prop := forall X : Prop, X \/ ~X.

Definition DN : Prop := forall X : Prop, ~~X -> X.

Definition CP : Prop := forall X Y : Prop, (~Y -> ~X) -> X -> Y.

Definition Peirce : Prop := forall X Y : Prop, ((X -> Y) -> X) -> X.

Lemma DN_XM : DN -> XM.

intros dn X. apply dn.

intros f. apply f. apply or_intror.

intros x. apply f. apply (or_introl x). Qed.

41

5 Excluded Middle and Basic Laws

Lemma XM_DN : XM -> DN.

intros xm X f. apply (xm X).

apply I.

intros g. apply (f g X). Qed.

Lemma DN_Peirce : DN -> Peirce.

intros dn X Y f. apply dn. intros g. apply g.

apply f. intros x. apply (g x Y). Qed.

Lemma Peirce_DN : Peirce -> DN.

intros p X. apply (p _ False).

intros f g. apply g. intros x. apply f.apply (K x). Qed.

Note that the command apply(p _ False) in the proof of Peirce_DN contains a

proof term with an unspecified argument. Coq derives the proposition ¬¬X → X

for this argument.

In mathematics, one assumes that every well-formed statement is either true

or false. One also assumes that the law of excluded middle holds and can be

used in proofs. We can make this assumption in Coq by declaring a parameter

that serves as a proof of the law of excluded middle.

One has to be very careful if one assumes provability of propositions. For

instance, if we assume that the law of excluded middle and also the negation of

Peirce’s law are provable, our logic collapses since we can now prove all proposi-

tions (by not_elim since excluded middle and Peirce are provably equivalent). We

call a sequence of parameter declarations consistent if falsity remains unprov-

able. One can show that declaring excluded middle as provable is consistent.

If we want to prove ⊥, a case analysis as provided by excluded middle can be

made without using excluded middle. Here is the proof providing for this case

analysis.

Lemma xm_false (X : Prop) : (X -> False) -> (~X -> False) -> False.

intros X f g. apply (g f). Qed.

An interesting use of xm_false will appear in §7.2.

Exercise 5.1.1 Prove DN ↔ CP .

Exercise 5.1.2 Prove XM ↔ ∀X Y : Prop. (X → Y)→ ¬X ∨ Y .

Exercise 5.1.3 Prove XM ↔ ∀X Y : Prop. ¬(¬X ∧¬Y)→ X ∨ Y .

Exercise 5.1.4 Prove XM ↔ ∀X Y : Prop. X ∨ Y → X ∨¬X ∧ Y .

Exercise 5.1.5 Prove XM ↔ ∀X Y : Prop. (X → Y)→ (¬X → Y)→ Y .

42 2010/7/27

5.2 Basic Laws

Exercise 5.1.6 (Proof by Contradiction) Proof by contradiction is the following

proof principle: To prove s, assume ¬s and derive a contradiction. Under a con-

tradiction we understand the situation that there is a proposition t such that

both t and ¬t can be proven. We can formulate the proof-by-contradiction prin-

ciple with the following proposition:

Contra := ∀X Y : Prop. (¬X → Y)→ (¬X → ¬Y)→ X

Prove that DN and Contra are equivalent.

Exercise 5.1.7 Prove XM → ∀X Y : Prop. ¬(X → Y)↔ X ∧¬Y .

Exercise 5.1.8 Prove the following proposition:

DN → ∀X : Type ∀p : X → Prop. ¬¬(∀x : X .px)→ ∀x : X .¬¬px.

5.2 Basic Laws

In this section we state provable propositions that formulate important proper-

ties of the logical operations we have introduced so far. We refer to the proposi-

tions stated in this section as laws.

We distinguish between intuitionistic laws and classical laws. While intu-

itionistic laws can be shown without using excluded middle, the proofs of clas-

sical laws may use excluded middle. Every intuitionistic law is also a classical

law but not vice versa. Non-intuitionistic laws (i.e., laws that require excluded

middle) are highlighted.

The most basic laws are shown in Figure 5.1. They are all direct consequences

of the definitions of the logical operations. For ⊤, ⊥, ∧, and ∨ we state laws that

formulate the characteristic proof rules. The propositions ⊤ and ⊥ have only

one characteristic rule each, which for ⊤ is an introduction rule and for ⊥ is an

elimination rule.

For readability the laws are stated without the universal quantifications for

the propositional variables x, y , z. The quantifiers for the variables will be

added automatically if the laws are proven in a section like this:

Section Laws.

Variable xm : XM.

Variable x y z : Prop.

prove laws here

End Laws.

This will also add the assumption XM to laws whose proof uses the variable xm.

Figures 5.2 and 5.3 show laws for implications. The laws in Figure 5.3 are

non-intuitionistic. For each of them, the direction from left to right requires

2010/7/27 43

5 Excluded Middle and Basic Laws

x → y ↔ ∀_ :x. y

⊤ ↔ ∀x : Prop. x → x

⊥ ↔ ∀x : Prop. x

x ∧y ↔ ∀z : Prop. (x → y → z)→ z

x ∨y ↔ ∀z : Prop. (x → z)→ (y → z)→ z

¬x ↔ x → ⊥
(x ↔ y) ↔ (x → y)∧ (y → x)

⊤
⊥ → x

x → y → x ∧y
x ∧y → (x → y → z)→ z

x → x ∨y
y → x ∨y

x ∨y → (x → z)→ (y → z)→ z

Figure 5.1: Definitional laws

excluded middle while the other direction is intuitionistic. Figure 5.4 shows laws

for equivalence.

Figure 5.5 shows laws for the Boolean connectives that are known from

Boolean algebra. Three of the laws require excluded middle.

Exercise 5.2.1 Try to prove all laws stated. None of the proofs is really difficult.

44 2010/7/27

5.2 Basic Laws

⊥ → x ↔ ⊤
⊤ → x ↔ x

x → ⊥ ↔ ¬x
x → ⊤ ↔ ⊤
x → x ↔ ⊤

x → x → y ↔ x → y

x → y → z ↔ y → x → z

x → ¬y ↔ y → ¬x
x ∧y → z ↔ y → x → z

x ∧ (x → y) ↔ x ∧y
x ∨y → z ↔ (x → z)∧ (y → z)

x → (y ∧ z) ↔ (x → y)∧ (x → z)

x → y ↔ (x ↔ x ∧y)
x → y ↔ (y ↔ x ∨y)

Figure 5.2: Laws for implication

x → y ↔ ¬x ∨y
¬(x → y) ↔ x ∧¬y
¬y → ¬x ↔ x → y

(x → y)→ y ↔ x ∨y
x ∧y → z ↔ x → ¬y ∨ z
x ∧¬y → z ↔ x → y ∨ z

Figure 5.3: Laws for implication that require XM (from left to right)

2010/7/27 45

5 Excluded Middle and Basic Laws

x ↔ x Refexivity

(x ↔ y) ↔ (y ↔ x) Symmetry

(x ↔ y)→ (y ↔ z)→ (x ↔ z) Transitivity

(x ↔ ⊥) ↔ ¬x
(x ↔ ⊤) ↔ x

(x ↔ ¬x) ↔ ⊥
(x ↔ y) ↔ (x ∧y)∨ (¬x ∧¬y)
(x ↔ y) ↔ (¬x ∨y)∧ (x ∨¬y)

(¬x ↔ ¬y) ↔ (x ↔ y)

¬(x ↔ y) ↔ (¬x ↔ y)

(¬x ↔ y) ↔ (x ↔ ¬y)

Figure 5.4: Laws for equivalence (highlighted laws require XM)

46 2010/7/27

5.2 Basic Laws

¬⊥ ↔ ⊤
¬⊤ ↔ ⊥

⊤∧ x ↔ x Identity

⊥∨ x ↔ x

⊥∧ x ↔ ⊥ Dominance

⊤∨ x ↔ ⊤
x ∧y ↔ y ∧ x Commutativity

x ∨y ↔ y ∨ x
x ∧ (y ∧ z) ↔ (x ∧y)∧ z Associativity

x ∨ (y ∨ z) ↔ (x ∨y)∨ z
x ∧ x ↔ x Idempotence

x ∨ x ↔ x

x ∧ (y ∨ z) ↔ (x ∧y)∨ (x ∧ z) Distributivity

x ∨ (y ∧ z) ↔ (x ∨y)∧ (x ∨ z)
x ∧ (x ∨y) ↔ x Absorption

x ∨ (x ∧y) ↔ x

x ∧¬x ↔ ⊥ Complement

x ∨¬x ↔ ⊤
¬(x ∧y) ↔ ¬x ∨¬y De Morgan

¬(x ∨y) ↔ ¬x ∧¬y
¬¬x ↔ x Double negation

¬¬¬x ↔ ¬x

Figure 5.5: Boolean laws (highlighted laws require XM)

2010/7/27 47

5 Excluded Middle and Basic Laws

48 2010/7/27

6 Existential Quantification

In this chapter we study existential quantification and list the most important

quantifier laws.

6.1 Functional Representation of Quantification

Given a list of definitions in Coq, can we rewrite this list such that universal

quantification is used exactly once? Yes, we can. We simply start the list with

the definition of a function all and then replace every universal quantification

∀x : s.t with the term all (λx : s.t). Note that the use of the lambda abstraction

preserves the bindings that come with the local variable x.

How do we define all ? Let’s first think about the type of all. Its clear that all

returns a proposition and takes a function of type X → Prop as argument, where

X is the type we quantify over. This gives us the type

∀X : Type. (X → Prop)→ Prop

for all. Provided we declare the argument X as implicit (see § 2.11), the term

all (λx : s.t) obtained form a quantification ∀x : s.t will in fact be well-typed. The

definition of all is now straightforward:

Definition all {X : Type} (p : X -> Prop) : Prop := forall x : X, p x.

We can now write all (λx : s. t) in place of ∀x : s. t since the former reduces with

delta and beta to the latter. Let’s consider this reduction in detail:

all (λx : s. t) the term we start with

= @all _ (λx : s. t) making the implicit argument explicit

= @all s (λx : s. t) replacing underline with an inferred type

= (λXp.∀x :X.px) s (λx : s. t) delta reduction of @all

= (λp.∀x : s. px) (λx : s. t) beta reduction

= ∀x : s. (λx : s. t)x beta reduction

= ∀x : s. t beta reduction

For concrete examples you can do the reduction with Coq.

49

6 Existential Quantification

Eval cbv in (all (fun X : Prop, X -> X)).

forall x : Prop, X → X

Exercise 6.1.1 Proof the following lemmas.

Lemma inst X (p : X -> Prop) (x : X) : all p -> p x.

Lemma gen X (p : X -> Prop) (q : Prop) : (forall x, q -> p x) -> q -> all p.

6.2 Existential Quantification

Given the natural deduction rules for existential quantification

v : s txv

∃x : s. t

∃x : s. t ∀x : s. t → u

u

and the functional representation of quantification, the definition of existential

quantification is a matter of routine:

Definition ex {X : Type} (p : X -> Prop) : Prop :=

forall Z : Prop, (forall x : X, p x -> Z) -> Z.

The definition of the deduction rules for existential quantification is now

straightforward.

Lemma ex_intro {X : Type} {p : X -> Prop} (x : X) :

p x -> ex p.

intros X p x a Z f. apply (f x a). Qed.

Lemma ex_elim (X : Type) (p : X -> Prop) (Z : Prop) :

ex p -> (forall x : X, p x -> Z) -> Z.

intros X p Z f. apply f. Qed.

We define convenient notations for existential quantifications.

Notation "’exists’ x : s , t" := (ex (fun x : s => t)) : type_scope.

Notation "’exists’ x , t" := (ex (fun x => t)) : type_scope.

Existential quantification generalizes conjunction. This can be seen from the

natural deduction rules. We formulate this observation with a lemma.

Lemma ex_and (X Y : Prop) : X /\ Y <-> exists x : X, Y.

intros X Y. apply conj. apply I. apply I. Qed.

Note that the proof is so straightforward since the terms X ∧ Y and ∃x :X.Y

reduce to the same normal form.

Exchange Law

The order of existential quantifications does not matter.

50 2010/7/27

6.2 Existential Quantification

Lemma ex_exchange (X Y :Type) (p : X -> Y -> Prop) :

(exists x, exists y, p x y) -> exists y, exists x, p x y.

intros X Y p f.

apply f. intros x g. apply g. intros y a.

apply (ex_intro y). apply (ex_intro x). apply a. Qed.

Exercise 6.2.1 Prove that natural deduction determines ∃ up to equivalence.

Section Canonicity_Exists.

Variable ex’ : forall X : Type, (X -> Prop) -> Prop.

Variable ex’_intro : forall (X : Type) (p : X -> Prop) (x : X),

p x -> ex’ X p.

Variable ex’_elim : forall (X : Type) (p : X -> Prop) (Z : Prop),

ex’ X p -> (forall x : X, p x -> Z) -> Z.

Lemma canonicity_exists (X : Type) (p : X -> Prop) : ex p <-> ex’ X p.

(* your proof *)

End Canonicity_Exists.

Russell’s Law

Russell’s law has many interesting applications. Russell used it to point out

inconsistencies in the theories of Cantor and Frege.

Theorem Russell (X : Type) (p : X -> X -> Prop) :

~ exists x, forall y, p x y <-> ~ p y y.

intros X p f. apply f. intros x g. apply (iff_circuit (g x)). Qed.

Lemma iff _circuit was defined in §4.7. From Russell’s law we immediately get

the following:

1. Halting problem. There is no Turing machine that halts on the coding of a

Turing machine if and only if this machine does not halt on its own coding.

Take for X the set of Turing machines and for pxy the relation “x halts on

the coding of y”.

2. Russell’s problem. Given a set X whose elements are sets, there is no x ∈ X
such that y ∈ x iff y ∉ y for all y ∈ X. Take for pxy the relation y ∈ x.

3. Barber paradox. Suppose there is a town with just one male barber; and

that every man in the town keeps himself clean-shaven: some by shaving

themselves, some by attending the barber. It seems reasonable to imagine

that the barber obeys the following rule: He shaves all and only those men in

town who do not shave themselves. From Russell’s law it follows that such

a barber cannot exist. Take for X the set of men and for pxy the relation

“x shaves y”.

Exercise 6.2.2 Prove ∀X : Type ∀p : X→X→Prop ∀x : X ∃y : X . ¬(pxy ↔ ¬pyy).

2010/7/27 51

6 Existential Quantification

Exercise 6.2.3 Prove the following lemma, which says that a barber who shaves

exactly those males who don’t shave themseves cannot be male.

Lemma Barber (X : Type) (m : X -> Prop) (s : X -> X -> Prop) (b :X) :

(forall x, m x -> (s b x <-> ~ s x x)) -> ~m b.

De Morgan Law for ∃
A negated existential quantification is equivalent to a universal quantification.

Theorem ex_DeMorgan (X : Type) (p : X -> Prop) :

~(exists x, p x) <-> forall x, ~ p x.

intros X p. apply conj.

intros f x a. apply f. apply (ex_intro x a).

intros f g. apply g. intros x a. apply (f x a). Qed.

De Morgan Law for ∀
A negated universal quantification is equivalent to an existential quantification

provided we have excluded middle. We need excluded middle since we have

to establish an existential quantification. For convenience we use DN rather

than XM .

Theorem all_DeMorgan (X : Type) (p : X -> Prop) :

DN -> (~(forall x, p x) <-> exists x, ~ p x).

intros X p dn. apply conj.

intros f. apply dn. intros g. apply f. intros x. apply dn.

intros h. apply g. apply (ex_intro x). apply h.

intros f g. apply f. intros x h. apply (h (g x)). Qed.

Note that DN is used twice for the direction from left to right. For the other

direction DN is not needed.

Exercise 6.2.4 Assume a section with X Y : Type, p : X→Prop, and r : X→Y→Prop.

Prove the following propositions.

a) (∀x.px)→ ¬∃x.¬px

b) (∀x ∃y.¬rxy)→ ¬∃x∀y. rxy

c) ∀x y. px ∨ py → ∃x.px

d) XM → ∀x y ∃z. px ∨ py → pz

Exercise 6.2.5 Prove that the proposition ∃X : Prop. X ∧¬X is not provable.

Exercise 6.2.6 (Irrational Numbers) We prove that there exist two irrational

numbers x and y such that xy is rational. We know that 2 is rational and that

52 2010/7/27

6.3 Inhabitation

√
2 is irrational. Since

(√
2

√
2
)

√
2

= √2

√
2
√

2 = √2
2 = 2, we know that

(√
2

√
2
)

√
2

is

rational. The claim now follows by case analysis: If
√

2
√

2 is a rational number,

then x = y = √2, otherwise x = √2
√

2 and y = √2. Prove the following Lemma,

which captures part of the argument:

Lemma irrat (X : Type) (rat : X -> Prop) (exp : X -> X -> X) (s : X) :

XM -> ~rat s -> rat (exp (exp s s) s) ->

exists x, exists y, ~rat x /\ ~rat y /\ rat (exp x y).

6.3 Inhabitation

We define inhabitation and voidness of types as follows:

Definition inhab (X : Type) : Prop := exists x : X, True.

Definition void (X : Type) : Prop := forall x : X, False.

Inhabitation generalizes provability:

Lemma inhab_provable (X : Prop) :

inhab X <-> X.

intros X. apply conj.

intros f. apply f. intros x _. apply x.

intros x. apply (ex_intro x I). Qed.

Moreover, void generalizes negation:

Lemma void_neg (X : Prop) :

void X <-> ~X.

intros X. apply conj.

intros f. apply f. intros f. apply f. Qed.

A type is void if and only if it is not inhabited.

Lemma void_not_inhab (X : Type) :

void X <-> ~ inhab X.

intros X. apply conj.

intros f g. apply g. intros x _. apply (f x).

intros f x. apply f. apply (ex_intro x I). Qed.

We need excluded middle to show that a type is inhabited if and only if it is not

void. The asymmetry is due to the fact that we have to establish an existential

quantification.

2010/7/27 53

6 Existential Quantification

Lemma equiv_not (X Y : Prop) :

XM -> (X <-> ~Y) -> (Y <-> ~X).

intros X Y xm f. apply f. intros g h. apply conj.

intros y x. apply (g x y).

intro i. apply (xm Y). intros j. apply j. intros j. apply (i (h j)). Qed.

Lemma inhab_not_void (X : Type) :

XM -> (inhab X <-> ~ void X).

intros X xm. apply (equiv_not _ _ xm). apply void_not_inhab. Qed.

Note that the lemma equiv_not is a straightforward consequence of two equiva-

lence laws in Figure 5.4.

Deletion Laws

Here are two quantifier laws that depend on inhabitation.

Lemma all_delete (X : Type) (q : Prop) :

inhab X -> ((forall x : X, q) <-> q).

intros X P inh. apply conj.

apply inh. intros x _ f. apply (f x).

intros a _. apply a. Qed.

Lemma ex_delete (X : Type) (q : Prop) :

inhab X -> ((exists x : X, q) <-> q).

intros X q inh. apply conj.

intros f. apply f. intros _ a. apply a.

apply inh. intros x _ a. apply (ex_intro x a). Qed.

Drinker’s Paradox

Consider a bar that is inhabited by at least one person. Using excluded middle,

we show that we can pick some person in the bar such that everyone in the bar

drinks if this person drinks.

Lemma drinker (X : Type) (d : X -> Prop):

DN -> inhab X -> exists x, d x -> forall x, d x.

intros X d dn inh. apply inh. intros x _.

apply dn. intros f. apply f.

apply (ex_intro x). intros H y. apply dn. intros g.

apply f. apply (ex_intro y). intros a. apply (g a). Qed.

The informal explanation of the drinker’s lemma is straightforward. If everyone

in the bar drinks, the claim is trivial. If not everyone in the bar drinks, we pick a

person x that does not drink. Since x does not drink, the claim is again trivial.

Exercise 6.3.1 Prove the following propositions.

54 2010/7/27

6.4 Quantifier Laws

Section Quantifier_Laws.

Variable xm : XM.

Variable X Y : Type.

Variable inh : inhab X.

Variable p p’ : X -> Prop.

Variable r : X -> Y -> Prop.

Variable q : Prop.

· · ·
Lemma all_imp : (forall x, q -> p x) <-> q -> forall x, p x.

apply conj.

intros f a x. apply (f x a).

intros f x a. apply (f a).

Qed.

Lemma ex_imp : (exists x, q -> p x) <-> q -> exists x, p x.

apply conj.

intros H a. apply H. intros x f. apply (ex_intro _ (f a)).

intros f. apply (xm q).

intros a. apply (f a). intros x b. apply (ex_intro x). apply (K b).

intros g. apply inh. intros x _. apply (ex_intro x). intros a. apply (g a).

Qed.

· · ·
End Quantifier_Laws.

Figure 6.1: Section for quantifier laws

a) ∀X Y : Type. inhab Y → inhab (X → Y).

b) ∀X Y : Type. inhab X → inhab (X → Y)→ inhab Y .

c) ∀X : Type. void X ↔ ∀p : X → Prop ∀x : X . p x

d) ∀X : Type. inhab X ↔ ∀p : X → Prop. (∀x : X .p x)→ ∃x : X .p x

6.4 Quantifier Laws

Figure 6.2 shows the basic laws for universal and existential quantification. The

quantifier laws are to be proven in a section as shown in Figure 6.1. Note

that with mathematical notation one writes a nested quantification such as

∀x : s. ∃y : t. u without the first dot as ∀x : s ∃y : t. u.

Exercise 6.4.1 Prove all the quantifier laws. Use a section as shown in Figure 6.1.

The laws that don’t require assumptions are all easy.

2010/7/27 55

6 Existential Quantification

(∃x :X. px) ↔ ∀Z : Prop. (∀x :X. px → Z)→ Z Definition

∀x :X. (∀x :X.px)→ px Instantiation

∀x :X. px → ∃x :X.px

(∀x :X∀y :Y . rxy) ↔ ∀y :Y ∀x :X. rxy Exchange

(∃x :X ∃y :Y . rxy) ↔ ∃y :Y ∃x :X. rxy

(∀x :X. px ∧ p′x) ↔ (∀x :X. px)∧∀x :X. p′x Distributivity

(∃x :X. px ∨ p′x) ↔ (∃x :X. px)∨ ∃x :X. p′x

(∀x :X. px ∨ q) ↔ (∀x :X. px)∨ q X

(∃x :X. px ∧ q) ↔ (∃x :X. px)∧ q

(∀x :X. q) ↔ q I Deletion

(∃x :X. q) ↔ q I

¬(∀x :X. px) ↔ ∃x :X. ¬px X De Morgan

¬(∃x :X. px) ↔ ∀x :X. ¬px

(∀x :X. q → px) ↔ q → ∀x :X. px Implication

(∃x :X. q → px) ↔ q → ∃x :X. px XI

(∀x :X. px → q) ↔ (∃x :X. px)→ q

(∃x :X. px → q) ↔ (∀x :X. px)→ q XI

(∃x :X. px → p′x) ↔ (∀x :X. px)→ (∃x :X. p′x) X

Highlighted laws require excluded middle (X) and/or inhabitation (I)

as specified on the right

Figure 6.2: Quantifier laws

56 2010/7/27

7 Equality

In this chapter we study equality. We will see several proofs of Cantor’s theorem.

We discuss propositional and functional extensionality, two basic assumptions

commonly made in mathematics. As proofs get more involved, we introduce

more features of Coq’s tactic language to ease the synthesis of proof terms.

7.1 Definition and Basic Rules

Once more we start from the natural deduction rules.

s = s
s = t uxt

uxs

The rules state basic mathematical assumptions: An equation s = s always holds,

and given that an equation s = t holds, we can replace t with s. One speaks of

replacement of equals with equals. We realize equality as follows.

Definition eq {X : Type} (x y : X) := forall p : X -> Prop, p y -> p x.

Notation "s = t" := (eq s t) : type_scope.

Notation "s <> t" := (~eq s t) : type_scope.

Lemma eq_intro {X : Type} (x : X) : x=x.

intros X x p. apply I. Qed.

Lemma eq_elim {X : Type} {x y: X} {p : X -> Prop} : x=y -> p y -> p x.

intros X x y p e. apply e. Qed.

Equality is reflexive, as stated by eq_intro. It is also symmetric and transitive.

Lemma eq_sym {X : Type} {x y : X} : x=y -> y=x.

intros X x y f. apply f. apply eq_intro. Qed.

Lemma eq_trans {X : Type} {x z : X} (y : X) : x=y -> y=z -> x=z.

intros X x y z f g. apply f. apply g. Qed.

When you step through the proofs, you will see that the application of an equa-

tion s = t replaces all occurrences of the term s in the claim with the term t, pro-

vided the claim does not have the form s = t (application of g in proof eq_trans)

or ut → us (application of e in proof eq_elim). Look at the proof terms eq_sym

and eq_trans and identify the predicates the apply tactic has synthesized.

Here are proofs of further key properties of equality.

57

7 Equality

Lemma eq_lc {X Y : Type} {f g : X -> Y} (x : X) : f=g -> f x = g x.

intros X Y x f g e. apply e. apply eq_intro. Qed.

Lemma eq_rc {X Y : Type} {x y : X} (f : X -> Y) : x=y -> f x = f y.

intros X Y x y f e. apply e. apply eq_intro. Qed.

Lemma eq_iff {x y : Prop} : x=y -> (x<->y).

intros x y e. apply e. apply conj. apply I. apply I. Qed.

Lemma eq_not {X : Type} {x y: X} (p : X -> Prop) : p x -> ~p y -> x<>y.

intros X x y p a f e. apply f. apply (eq_sym e). apply a. Qed.

The lemmas eq_lc and eq_rc state that equality is left and right compatible with

application. Lemma eq_iff states that equality is stronger than equivalence.

Lemma eq_not is useful for proving disequations (i.e., negated equations). Here

is another useful lemma.

Lemma True_neq_False : True <> False.

intros H. apply (eq_sym H). apply I. Qed.

Exercise 7.1.1 Prove the contrapositions of eq_lc and eq_rc. That is, prove the

following propositions for (X Y : Type), (x y :X), and (f g :X→Y):
a) fx ≠ gx → f ≠ g

b) fx ≠ fy → x ≠ y

Exercise 7.1.2 Prove the contraposition of eq_iff . That is, prove the proposition

¬(x↔y)→ x ≠ y for x,y : Prop.

Exercise 7.1.3 Prove eq_lc using eq_rc.

Exercise 7.1.4 Prove the following variations of eq_lc using eq_lc.

Lemma eq_forall (X Y : Type) (f g : X -> Y) :

f=g -> forall x, f x = g x.

Lemma eq_forall’ (X Y : Type) (f g : X -> Y) :

(fun x => f x) = (fun x => g x) -> forall x, f x = g x.

Exercise 7.1.5 Prove the following lemma. If you don’t succeed, try the proof of

eq_sym. Explain why the proof eq_sym carries over.

Lemma eq_hidden_sym X (x y : X) :

(forall p : X -> Prop, p y -> p x) -> forall p : X -> Prop, p x -> p y.

Exercise 7.1.6 Below is another characterization of equality. Find a proof.

Lemma eq_char_refl_rel X (x y : X) :

x=y <-> forall r : X -> X -> Prop, (forall z, r z z) -> r x y.

58 2010/7/27

7.2 Cantor’s Theorem

Exercise 7.1.7 Prove that natural deduction determines equality.

Section Canonicity_Equality.

Variable eq’ : forall (X : Type), X -> X -> Prop.

Variable eq’_intro : forall (X : Type) (x : X), eq’ X x x.

Variable eq’_elim : forall (X : Type) (x y : X) (p : X -> Prop), eq’ X x y -> p y -> p x.

Lemma canonicity_equality (X : Type) (x y : X) : x=y <-> eq’ X x y.

(* your proof *)

End Canonicity_Equality.

7.2 Cantor’s Theorem

Cantor’s theorem says that the power set of a set is always larger than the set.

More precisely, Cantor’s theorem states that there is no surjective function from

a set to its power set. One consequence of Cantor’s theorem is the result that

the power set of the natural numbers is not countable. Another consequence is

the result that the real numbers are not countable. When Cantor published his

results around 1890, they came as a complete surprise. Here is a statement and

a proof of Cantor’s theorem.

Theorem cantor (X : Type) (f : X -> X -> Prop) : exists g, forall x, f x <> g.

intros X f. apply (ex_intro (fun z => ~f z z)). intros x.

apply (mt (eq_lc x)). apply (mt eq_iff). apply iff_circuit. Qed.

The power set of X is represented as the function type X → Prop. The proof

reduces the claim to iff _circuit from §4.7, a proof we used before for Russell’s

theorem (§6.2). For the existentially quantified g the reduction chooses a func-

tion that represents the diagonal set {x ∈ X | x ∉ fx } used in Cantor’s proof.

The rest of the reduction applies eq_lc and eq_iff . To account for the negation,

mt (modus tollens, §4.3) is used. Step through the proof to understand the fine

points.

Here is an alternative proof that doesn’t use modus tollens.

Theorem cantor’ (X : Type) (f : X -> X -> Prop) : exists g, forall x, f x <> g.

intros X f. apply (ex_intro (fun z => ~f z z)). intros x H.

apply (@iff_circuit (f x x)). apply eq_iff. apply (eq_lc x H). Qed.

Let’s now look at an informal proof of Cantor’s theorem as it may appear in

a mathematical textbook. The proof technique employed is known as Cantor’s

diagonal argument.

Claim. Let X be a set. Then there exists no surjective function X → ℘X.

Proof. Let f be a function X → ℘X. Let D = {x ∈ X | x ∉ fx }. Let x ∈ X. It

suffices to show fx ≠ D. Assume fx = D. Case analysis.

2010/7/27 59

7 Equality

1. x ∈ D. Then x ∉ fx. Contradiction since fx = D.

2. x ∉ D. Then x ∈ fx. Contradiction since fx = D.

The informal proof is different from the formal proofs. It seems that the informal

proof uses excluded middle to do the case analysis. This is not the case since the

claim is ⊥ and thus the case analysis is validated by xm_false from §5.1. There

is also a use of double negation in case (2) that can be avoided easily.

To give a formal proof of Cantor’s theorem that is faithful to the informal

proof, we use the tactics pose and unfold. With pose we can realize a local defini-

tion, and with unfold we can delta reduce a given name in the claim. In addition,

we use a proof push to add a provable premise to the claim. The details will

become clear as you step through the proof. Note that unfold also beta reduces

the claim.

Lemma push {X Y : Prop} : X -> (X -> Y) -> Y.

intros X Y x f. apply (f x). Qed.

Theorem cantor’’ (X : Type) (f : X -> X -> Prop) : exists g, forall x, f x <> g.

intros X f. pose (D := fun z => ~f z z). apply (ex_intro D). intros x e.

apply (xm_false (D x)).

intros B. apply (push B). unfold D. apply e. intros C. apply (C B).

intros B. apply (push B). unfold D. apply e. intros C. apply (C B). Qed.

A shorter version of the proof appears as cantor′′′ in §7.4.

Exercise 7.2.1 At the proof term level the use of pose translates into a let while

the use of unfold has no effect. The unfold tactic is only needed to enable the

apply tactic to do the right thing. For instance, proof cantor′′ uses unfold so

that apply can apply the equation e. Use the following example to see what is

happening at the proof term level.

Lemma pose_unfold_demo (X : Type) (p : X -> Prop) (x : X) : p x -> exists x : X, p x.

intros X p x H. pose (a := x). apply (ex_intro a). unfold a. apply H. Qed.

7.3 Propositional Extensionality

Here are two prominent propositions.

• Propositional Extensionality (PE) ∀X Y : Prop. (X ↔ Y)→ X = Y

• Propositional Case Analysis (PCA) ∀X : Prop. X = ⊥∨ X = ⊤
In mathematics, one commonly assumes PCA, which says that every proposition

denotes one of the two truth values. It is known that XM → PCA is not provable.

We will prove the equivalence PCA ↔ XM ∧ PE .

60 2010/7/27

7.3 Propositional Extensionality

Definition PE : Prop := forall X Y : Prop, (X <-> Y) -> X=Y.

Definition PCA : Prop := forall X : Prop, X=False \/ X=True.

We first establish two useful consequences of PE .

Lemma eq_true {X : Prop} : PE -> X -> X=True.

intros X pe x. apply pe. apply (conj (K I) (K x)). Qed.

Lemma eq_false {X : Prop}: PE -> ~X -> X=False.

intros X pe f. apply pe. apply (conj f False_elim). Qed.

Now we prove that PCA follows from XM and PE .

Lemma xm_pe_pca : XM -> PE -> PCA.

intros xm pe X. apply (xm X).

intros H. apply or_intror. apply (eq_true pe H).

intros H. apply or_introl. apply (eq_false pe H). Qed.

Before we proceed we define a useful tactic. You may have observed that the

sequence

· · · intros H. apply H. · · ·

appears quite often in our proofs. We capture this pattern by defining a tactic:

Ltac inap := (intros Inap; apply Inap; clear Inap).

The command defines a tactic inap, which introduces an assumption Inap, ap-

plies it, and discards it so that the name Inap can be reused.

We now show that PCA implies XM . The proof uses the tactic inap three times.

Lemma pca_xm : PCA -> XM.

intros pca X. apply (pca X).

inap. apply or_intror. inap.

inap. apply (or_introl I). Qed.

Two tactics t1 and t2 can be combined with a semicolon into a tactic t1; t2. Exe-

cution of t1; t2 first executes t1 and then executes t2 on each subgoal generated

by t1. This combination is of interest if t1 generates more than one subgoal. We

can shorten the above proof by using the sequencing operation expressed by

the semicolon.

Lemma pca_xm’ : PCA -> XM.

intros pca X. apply (pca X) ; inap.

apply or_intror. inap.

apply (or_introl I). Qed.

2010/7/27 61

7 Equality

Step through the script to see the effect.

Next we prove that PCA implies PE . Using PCA, the proof simply enumerates

the possible values of the two propositional variables X and Y in PE . Once this

is done, we are facing four cases each of which is easy to prove.

Lemma pca_pe : PCA -> PE.

intros pca X Y.

apply (pca X) ; inap ; apply (pca Y) ; inap ; intros H.

apply eq_intro.

apply (proj2 H I).

apply (proj1 H I).

apply eq_intro. Qed.

Step through the script to see what is happening. Replace the semicolons

through dots to see what exactly happens in the first case.

Exercise 7.3.1 Prove PCA ↔ ∀p : Prop→Prop ∀X : Prop. p⊥ → p⊤ → pX.

Exercise 7.3.2 Prove the following propositions.

a) PE → ∀X Y : Prop. X ∧ Y ↔ X=⊤∧ Y=⊤
b) PE → ∀X Y : Prop. X ∧ Y ↔ ∀p : Prop→Prop→Prop. p⊤⊤ → pXY

7.4 More about Tactics

We introduces more features of Coq’s tactic language that help us with the syn-

thesis of proof terms.

Auto and Generalize

The auto tactic solves trivial goals that don’t require lemmas. Here is an example.

Lemma ex_auto (X Y : Prop) (p : Prop -> Prop) : PE -> X -> p(X -> Y) -> p(Y).

intros X Y p pe x. apply pe. apply conj ; auto. Qed.

Print the proof term to see the proof terms synthesized by auto. Make sure you

understand how the proof works, it demonstrates an interesting pattern.

The next lemma is a variation of ex_auto. There is the difficulty that the claim

is not in the form required for the application of the proof of PE . The problem

can be solved with the proof push from §7.2 or with the tactic assert. Another

possibility is the use of the tactic generalize.

Lemma ex_generalize (X Y : Prop) (p : Prop -> Prop) : PE -> p(X -> Y) -> X -> p(Y).

intros X Y p pe H x. generalize H. apply pe. apply conj ; auto. Qed.

62 2010/7/27

7.4 More about Tactics

Print the proof term to see the part synthesized by generalize.

The proof of the next lemma illustrates the interplay of semicolon and auto. Do

the proof without auto and without semicolon to see how an explicit construction

of the proof looks like. Moreover, look at the lemma itself: It characterizes

propositional extensionality without equality.

Lemma ex_PE_Leibniz :

PE <-> forall (p : Prop -> Prop) (X Y : Prop), (X -> Y) -> (Y -> X) -> p X -> p Y.

apply conj.

intros pe p X Y A B. apply pe. apply conj; auto.

intros H X Y A. intros p. apply (H p) ; apply A; auto. Qed.

We now give a shortened version of the proof cantor′′. Since both branches of

the case analysis have the same proof, we use semicolon to avoid the repetition.

Moreover, we use auto to finish off the proof. Finally, we use the tactic generalize

in place of the lemma push.

Theorem cantor’’’ (X : Type) (f : X -> X -> Prop) : exists g, forall x, f x <> g.

intros X f. pose (D := fun z => ~f z z). apply (ex_intro D). intros x e.

apply (xm_false (D x)) ; intros B ; generalize B ; unfold D ; apply e ; auto. Qed.

Repeat

Our next example is Kaminski’s equation1, which takes the form

f(f(fx)) = fx

where f : Prop→Prop and x : Prop. This equation holds for all f and all x. This

can be shown by a simple case analysis. There are only three possibilities for f :

Either f is a constant function, or the identity, or the negation function. In

each case the equation holds. Given our current lemmas, formalizing this proof

requires work. There is, however, another, more low level proof that simply

applies PCA to the terms x, f⊥, and f⊤. This leaves us with eight cases, each of

which can be solved with the following strategy: First apply the equation for x,

then apply the equations for f⊥ and f⊤ until the case is solved. Since Coq’s

tactic language can express this proof plan, we obtain a short but informative

proof script.

Lemma Kaminski (x : Prop) (f : Prop -> Prop) : PCA -> f (f (f x)) = f x.

intros x f pca.

apply (pca x); apply (pca (f False)); apply (pca (f True));

intros c b a; apply a; repeat (apply b || apply c).

Qed.

1 The equation was proposed by Mark Kaminski in 2004 as a challenge problem for an equational

proof system. This led to the discovery of a decidable fragment of simply typed higher order

logic.

2010/7/27 63

7 Equality

Keep in mind that the real proof is the proof term constructed by the proof

script. Use the print command to see the proof term, which is quite large.

Unfold and Exact

We have already seen the unfold tactic in the proof cantor′′ in §7.2. Here is a

cooked up example that once more demonstrates the use of the unfold tactic.

Section Unfold.

Variable A B C : Prop.

Definition hidden := B=A.

Lemma unfold_test : A=C -> B=C -> hidden.

intros e e’. unfold hidden. apply e. apply e’. Qed.

End Unfold.

The unfold tactic delta reduces the name given. If we remove the command

unfold hidden in the proof above, the command apply e fails to synthesize the

predicate needed for the application of e. Step through the script to see what

happens.

The unfold tactic is only needed when we exploit the smart features of the apply

tactic. The proof

intros e e’. apply (e (fun A => B=A) e’).

goes through as is since it employs a proof term that gives e the predicate

needed. One would now expect that the proof

apply (fun e e’ => e (fun A => B=A) e’).

goes through as well. This not the case since apply tries to be smart where it

shouldn’t. If we replace apply with exact, the proof goes through.

exact (fun e e’ => e (fun A => B=A) e’).

Use the exact tactic if you think you have a proof term that solves the goal and

the apply tactic fails.

Pattern

With the pattern tactic you can factor a claim s with a given term t into (λx.u)t

where u is obtained from s by replacing all occurrences of t with the variable x.

The pattern tactic may help you to understand how the apply tactic synthesizes

the predicates needed for rewriting with an equation. Here is an example.

Lemma pattern_demo (X : Type) (x y : X) :

(forall p : X -> Prop, p x -> p y) -> forall p : X -> Prop, p y -> p y -> p x.

intros X x y H. pattern y. apply H. auto. Qed.

64 2010/7/27

7.5 Functional Extensionality

7.5 Functional Extensionality

In mathematics one commonly assumes that two functions are equal if and only

if they are equal for all arguments. This assumption is known as functional

extensionality. We formulate functional extensionality as follows:

Definition FE : Prop := forall (X Y : Type) (f g : X -> Y), (forall x, f x = g x) -> f = g.

It is known that PCA → FE is not provable. So we have to assume FE if we want

to use it. Note that FE is the converse of eq_lc. The combination of FE and eq_lc

looks as follows.

Lemma felc {X Y : Type} {f g : X -> Y} : FE -> (f=g <-> forall x, f x = g x).

intros X Y f g fe. apply conj.

inap. intros x. apply eq_intro.

apply fe. Qed.

A prominent consequence of FE is the eta law:

Lemma eta {X Y : Type} {f : X -> Y} : FE -> f = fun x => f x.

intros X Y f. inap. intros x. apply eq_intro. Qed.

Example 7.5.1 Suppose you know that p is a commutative operation. Then it’s

clear that qp → q(λxy.pyx) holds. The proof of this fact requires FE .

Lemma ex_com X (q : (X -> X -> Prop) -> Prop) (p : X -> X -> Prop) :

FE -> (forall x y, p x y = p y x) -> q p -> q (fun x y => p y x).

intros X q p fe H. apply fe. intros x. apply fe. auto. Qed.

Exercise 7.5.2 Following Henkin, Andrews studies a logic where all logical oper-

ations are expressed with equality. Here are some of his definitions:

Definition htrue : Prop := @eq Prop = @eq Prop.

Definition hfalse : Prop := (fun x : Prop => htrue) = fun x : Prop => x.

Definition hnot : Prop -> Prop := eq hfalse.

Definition hand (X Y : Prop) : Prop := (fun p => p htrue htrue) = fun p => (p X Y : Prop).

Definition hall X : (X -> Prop) -> Prop := eq (fun x => htrue).

Note the type cast (p X Y : Prop) in the definition of hand. It tells the type checker

that the result type of p is Prop. We use the cast so that we don’t have to give the

full type of p where it is introduced as an argument variable. Prove the following

lemmas. The unfold tactic may be helpful.

Lemma Htrue : htrue <-> True.

Lemma Hfalse : hfalse <-> False.

Lemma Hnot X : PE -> (hnot X <-> ~X).

Lemma Hand X Y : PE -> (hand X Y <-> X /\ Y).

Lemma Hall X p : PE -> FE -> (hall X p <-> all p).

2010/7/27 65

7 Equality

Exercise 7.5.3 Prove the following propositions:

a) ∀q : Prop ∀X : Type ∀p :X→Prop. XM → (q ↔ ∀x.px)→ (¬q ↔ ∃x.¬px).
b) ∀X Y : Type ∀f g :X→Y . XM → FE → (f ≠ g ↔ ∃x. fx ≠ gx).

66 2010/7/27

8 Examples from Set Theory

In this chapter we represent sets and relations as functions and show some prop-

erties that are familiar from set theory. We study choice functions, Skolem func-

tions, inverse functions, and transitive closure. We make frequent use of the

extensionality assumptions.

8.1 Sets

A predicate is a function that yields a proposition once it is given all arguments.

Predicates of a type s → Prop can be understood as sets whose elements are

elements of s, and predicates of a type s1 → ·· · → sn → Prop where n ≥ 2 can

be understood as relations whose elements are n-ary tuples with components

from s1, . . . , sn. We define sets, set membership, set union, and set emptyness as

follows.

Definition set (X : Type) : Type := X -> Prop.

Definition mem {X : Type} : X -> set X -> Prop := fun x A => A x.

Definition union {X : Type} : set X -> set X -> set X := fun A B x => A x \/ B x.

Definition empty {X : Type} : set X -> Prop := fun A => ~ ex A.

This give us a typed representation of sets. We can think of the elements of set X

as the sets whose elements are in X. An important assumption about sets is set

extensionality: Two sets are equal if they have the same elements.

Definition SE : Prop := forall (X : Type) (A B : set X),

(forall x, mem x A <-> mem x B) -> A=B.

From set extensionality it follows that sets don’t come with an order for their

elements. Set extensionality follows from propositional and functional exten-

sionality.

Lemma pe_fe_se : PE -> FE -> SE.

intros pe fe X A B H. apply fe. intros x. apply pe. apply H. Qed.

Conversely, propositional extensionality follows from set extensionality.

Lemma se_pe : SE -> PE.

intros se X Y H.

67

8 Examples from Set Theory

assert (A : (fun _ : Prop => X) = fun _ => Y).

apply se. intros x. apply H.

apply (eq_lc True A). Qed.

We take the opportunity and introduce the tactic refine. The refine tactic gen-

eralizes the exact tactic in that it introduces a subgoal if it cannot derive an

underspecified argument. Using refine, we can prove SE → PE as follows.

Lemma se_pe’ : SE -> PE.

intros se X Y H.

refine (eq_lc True (_ : (fun _ => X) = fun _ => Y)).

apply se. intros x. apply H. Qed.

Here is a function that yields for x the singleton set {x}:

Definition sing {X : Type} : X -> set X := eq.

Note that the singleton function is exactly the equality function. It is still useful

to have the separate name sing since it makes explicit that the predicates used

are seen as sets. We prove a little fact about singletons and set union.

Lemma set_sing_union {X : Type} (x : X) : SE -> union (sing x) (sing x) = sing x.

intros X x se. apply se. intros y. apply conj.

inap ; auto.

inap. apply or_introl. apply eq_intro. Qed.

What is remarkable about the proof is that the many delta and beta reductions

needed to unfold the definitions for sets are done automatically. Step through

the proof to appreciate this fact. That the reduction steps happen automatically

is due to the typing rules Pre and Red of the calculus of constructions (cf. §2.12).

When one work on a proof like this, it is sometimes helpful to use the unfold

tactic so that one sees what to do next.

Exercise 8.1.1 Define the following set operations.

Definition intersection {X : Type} : set X -> set X -> set X

Definition complement {X : Type} : set X -> set X

Definition difference {X : Type} : set X -> set X -> set X

Definition subset {X : Type} : set X -> set X -> Prop

Definition disjoint {X : Type} : set X -> set X -> Prop

Exercise 8.1.2 Define power set and set union and show A =
⋃

X∈℘A
X.

Definition power {X : Type} : set X -> set (set X)

Definition set_union {X : Type} : set (set X) -> set X

Lemma power_union {X : Type} (A : set X) : PE -> FE -> A = set_union (power A).

68 2010/7/27

8.2 Choice Functions and Skolem Functions

8.2 Choice Functions and Skolem Functions

The axiom of choice was formulated in 1904 by Ernst Zermelo. It has some

amazing consequences such as the well-ordering theorem. Although originally

controversial, the axiom of choice is now used without reservation by most math-

ematicians. We formulate the axiom of choice as follows.

Definition CF X := exists C: (X->Prop)->X, forall p : X -> Prop, ex p -> p(C p).

Definition AC := forall X, inhab X -> CF X.

CF X says that there is a choice function C that yields for every predicate p

on X an element Cp of X such that p holds for Cp if p holds for some x in X.

In set-theoretic language one says that C selects an element of every nonempty

subset p of X. The axiom of choice is the proposition AC. AC is not provable

but assuming AC is consistent.

There are variations of the theme. The proposition SF X Y says that for every

total relation from X to Y there exists a Skolem function from X to Y .

Definition SF X Y := forall r: X->Y->Prop,

(forall x, exists y, r x y) -> exists f, forall x, r x (f x).

The existence of a choice function for Y implies the existence of Skolem func-

tions from X to Y .

Lemma CF_SF X Y : CF Y -> SF X Y.

intros X Y cf. apply cf. intros C A r H.

apply (ex_intro (fun x => C(r x))). intros x. apply A. apply H. Qed.

Note that the proof idea is straightforward: Given a choice function C , λx.C(rx)

is a Skolem function as required.

The existence of Skolem functions from (X → Prop) to X implies the existence of

a choice function for X provided X is inhabited and excluded middle is assumed.

Lemma SF_CF X : inhab X -> XM -> SF (X->Prop) X -> CF X.

intros X inh xm sf. apply (sf (fun p x => ex p -> p x)).

intros p. apply (proj2 (ex_imp xm _ inh _ _)). apply I. Qed.

Recall that proof ex_imp is defined in Figure 6.1. The proof obtains the choice

function as the Skolem function for the total relation λpx. exp → px.

The proofs CF_SF and SF_CF demonstrate the power of Coq’s approach to

logic. Try to redo the proofs on your own. Doing this kind of abstract proofs

with Coq is easier than doing them on paper. Also it is more rewarding since

Coq makes sure that the proofs are correct. Here is one more example.

2010/7/27 69

8 Examples from Set Theory

Lemma AC_Skolem : XM -> (AC <-> forall X, inhab X -> SF (X -> Prop) X).

intros xm. apply conj.

intros ac X inh. apply CF_SF. apply (ac X inh).

intros H X inh. apply (SF_CF X inh xm). apply (H X inh). Qed.

Exercise 8.2.1 Prove the following propositions.

a) ∀X . CF X → inhab X

b) ∀X Y ∀r : X → Y → Prop. AC → inhab Y → ((∀x ∃y. rxy)↔ ∃f ∀x. rx(fx))

8.3 Inverse Functions

We define injectivity and surjectivity of functions.

Definition injective {X Y : Type} (f : X -> Y) : Prop

:= forall x x’, f x = f x’ -> x=x’.

Definition surjective {X Y : Type} (f : X -> Y) : Prop

:= forall y, exists x, f x = y.

A function g is inverse to a function f if g undoes f .

Definition inverse {X Y : Type} (f : X -> Y) (g : Y -> X) : Prop

:= forall x, g (f x) = x.

Definition invertible {X Y : Type} (f : X -> Y) : Prop

:= exists g, inverse f g.

We can now prove some lemmas that relate the existence of inverse functions to

injectivity and surjectivity. To start with, inverse functions are surjective, and

invertible functions are injective.

Lemma inv_surj (X Y : Type) (f : X -> Y) (g : Y -> X) : inverse f g -> surjective g.

intros X Y f g inv x. apply (ex_intro (f x)). apply inv. Qed.

Lemma inv_inj (X Y : Type) (f : X -> Y) : invertible f -> injective f.

intros X Y f. inap. intros g inv x x’ e.

apply (eq_sym (inv x)). apply (eq_sym (inv x’)). apply (eq_rc g e). Qed.

Next we show that surjective functions have at most one inverse function.

Lemma inv_unique (X Y : Type) (f : X -> Y) (g : Y -> X) (h : Y -> X) : FE ->

surjective f -> inverse f g -> inverse f h -> g=h.

intros X Y f g h fe surj A B. apply fe. intros y.

apply (surj y). intros x e. apply (eq_sym e).

apply A. apply B. apply eq_intro. Qed.

If Skolem functions exist, every surjective function is an inverse function.

70 2010/7/27

8.4 Transitive Closure

Lemma surj_inv (X Y : Type) (f : X -> Y) : SF Y X ->

surjective f -> exists g, inverse g f.

intros X Y f sf surj. apply (sf _ surj). Qed.

If Skolem functions exist and f is an injective and surjective function, then there

exists a function g such that g is inverse to f and f is inverse to g.

Lemma bijection (X Y : Type) (f : X -> Y) : SF Y X ->

injective f -> surjective f -> exists g, inverse f g /\ inverse g f.

intros X Y f sf inj surj.

apply (sf _ surj). intros g H. apply (ex_intro g). apply conj.

intros x. apply inj. apply H.

exact H. Qed.

Finally, we show that every injective function is invertible provided some stan-

dard assumptions are satisfied. The proof is involved since the construction of

the inverse function as a Skolem function requires a clever relation r .

Lemma inj_inv (X Y : Type) (f : X -> Y) : XM -> SF Y X -> inhab X ->

injective f -> invertible f.

intros X Y f xm sf inh inj.

pose (r y x := f x = y \/ ~exists x’, f x’ = y).

assert (A : forall y, exists x, r y x).

intros y. apply (xm (exists x’, f x’ = y)).

inap. intros x H. apply (ex_intro x). apply (or_introl H).

intros H. apply inh. intros x _. apply (ex_intro x). apply (or_intror H).

apply (sf r A). intros g B.

apply (ex_intro g). intros x. apply (B (f x)).

apply inj.

inap. apply (ex_intro x). apply eq_intro. Qed.

8.4 Transitive Closure

The transitive closure of a binary relation r on a set X is the least transitive

relation that contains r . Given a graph, the transitive closure of the edge relation

of the graph is the relation that holds for two nodes x and y if and only if there

is a path from x to y that contains at least one edge.

Let’s carefully analyse the notion of transitive closure. Let X be a type. We

can think of X as a set and of predicates X → X → Prop as binary relations

on X. We will do our proofs without classical assumptions (i.e., XM , PE , FE , AC).

This means that our proofs are also valid for predicates that don’t respect the

classical assumptions. We start with the following definitions.

Section Transitive_Closure.

Variable X : Type.

2010/7/27 71

8 Examples from Set Theory

Definition pred : Type := X -> X -> Prop.

Definition trans (p : pred) : Prop := forall x y z, p x y -> p y z -> p x z.

Definition implies (p q : pred) : Prop := forall x y, p x y -> q x y.

Definition equivalent (p q : pred) : Prop := forall x y, p x y <-> q x y.

If we assume PE and FE , equivalent predicates are equal.

Lemma equi_eq (p q : pred) : PE -> FE -> equivalent p q -> p = q.

intros p q pe fe H. apply fe. intros x. apply fe. intros y. apply pe. apply H. Qed.

We assume a predicate r and define two properties of predicates:

Variable r : pred.

Definition strong (p : pred) : Prop := forall q : pred, trans q -> implies r q -> implies p q.

Definition tc (p : pred) : Prop := trans p /\ implies r p /\ strong p.

If a predicate p satisfies tc, we see it as a transitive closure of r . This is justified

since p is transitive, is implied by r , and implies every other predicate with this

two properties. There are two questions now:

1. Existence: Does there exist a predicate that satisfies tc?

2. Uniqueness: Are two predicates equivalent if they both satisfy tc?

We will answer both questions positively. This tells us that the notion of transi-

tive closure is well-defined. Following an idea that already appears in the work of

Frege, we settle the existence question with the following definition and proof.

Definition ftc : pred := fun x y => forall p : pred, trans p -> implies r p -> p x y.

Lemma existence : tc ftc.

apply conj.

(* trans ftc *) intros x y z A B p tp ip. apply (tp x y z). apply A ; auto. apply B ; auto.

apply conj.

(* implies r ftc *) intros x y A p _. inap ; auto.

(* strong ftc *) intros p tp irp x y. inap ; auto. Qed.

Finally, we show that all predicates that satisfy tc are equivalent.

Lemma uniqueness (p q : pred) : tc p -> tc q -> equivalent p q.

intros p q.

inap. intros tp. inap. intros ip sp.

inap. intros tq. inap. intros iq sq.

intros x y. apply conj. apply sp ; auto. apply sq ; auto. Qed.

End Transitive_Closure.

72 2010/7/27

9 Inductive Definitions

Inductive definitions provide a mechanism for extending the calculus of con-

structions with new types called inductive types. For instance, one can define an

inductive type bool with two new values true and false, or an inductive type nat

that has a new value for every natural number. The elements of inductive types

are obtained with primitive values called constructors. Inductive definitions are

accompanied by new terms that provide for constructor-based case analysis and

structural recursion. Inductive definitions are a prominent feature of functional

programming languages like ML or Haskell.

We have seen in §2.10 that the pure calculus of constructions comes with

function types whose elements can serve as representations of the boolean val-

ues and the natural numbers. While these representations work computationally,

they do not work logically. For instance, one cannot prove that false is different

from true. With inductive types one gets representations that are adequate both

computationally and logically. The logical features of inductive types are all ob-

tained from their computational features.

In this chapter we restrict our interest to inductive definitions that don’t re-

quire recursion. Our first example is a two-valued type bool. Then we con-

tinue with inductive definitions that realize logical operations. This prepares the

switch to Coq’s predefined logical operations, which are realized inductively.

9.1 Bool and Match

We start with the inductive definition

Inductive bool : Type :=

| true : bool

| false : bool.

Here are the most important facts about this definition:

• The definition extends the calculus of constructions with the values bool, true,

and false.

• bool is an inductive type that is an element of U1.

• true and false are constructors.

• The elements of bool are exactly true and false.

73

9 Inductive Definitions

• The definition extends the calculus of constructions with all values that can

be obtained with bool, true, and false (e.g., bool → bool and λx : bool. x).

Inductive types are accompanied by terms called matches. Matches provide

for constructor-based case analysis. There is a reduction rule for matches. We

demonstrate the use of matches with a function that negates boolean values.

Definition negb (x : bool) : bool := match x with true => false | false => true end.

Eval cbv in negb false.

true

Note that the match has two clauses, one for true and one for false. Here is a

first proof involving an inductive type.

Example E1 : negb (negb true) = negb false.

apply eq_intro. Qed.

The keyword Example is a synonym for Definition. The proof is straightforward

since both sides of the equation reduce to true. To make this fact visible, we

insert the tactic simpl.

Example E1’ : negb (negb true) = negb false.

simpl. apply eq_intro. Qed.

The application of simpl reduces the claim to true = true. Note that this equation

is further reducible since = is defined. You may use the tactic cbv to reduce

the claim to normal form. You have seen cbv before in §2.7. The tactic simpl

reduces matches and beta redexes and also performs delta reduction steps that

introduce matches. Use the print command to see that E1 is equated to the term

eq_intro (negb false) and that E1′ is equated to the term eq_intro true.

Next we define a function that embeds bool into Prop.

Definition boolp (x : bool) : Prop := match x with true => True | false => False end.

With boolp we show that the terms true and false denote different values.

Lemma true_neq_false : true <> false.

intros e. apply True_neq_False. apply (eq_rc boolp e). Qed.

Here is a shorter proof that exploits the definition of equality:

Lemma true_neq_false’ : true <> false.

intros e. apply (eq_sym e boolp I). Qed.

If we assume PCA, boolp is surjective.

74 2010/7/27

9.2 Destruct

Lemma boolp_surjective : PCA -> forall X : Prop, exists x : bool, boolp x = X.

intros pca X. apply (pca X) ; inap.

apply (ex_intro false). apply eq_intro.

apply (ex_intro true). apply eq_intro. Qed.

In the next section, we will show that boolp is injective. Thus boolp is a bijection

from bool to Prop if PCA is assumed (cf. §8.3).

We define an exclusive or function to demonstrate two notational features of

Coq.

Definition xorb (x y : bool) : bool := match x, y with

| true, false => true

| false, true => true

| _, _ => false

end.

The definition uses a derived notation for a cascaded match on two boolean

terms. Coq translates this notation into nested matches, as you can verify with

the print command.

xorb = fun x y : bool => match x with

| true => match y with true => false | false => true end

| false => match y with true => true | false => false end

end

The vertical bar “|” in front of the first clause is optional. We only use it if we

write the clauses of a match line by line.

Exercise 9.1.1 Prove false ≠ true.

9.2 Destruct

The tactic destruct synthesizes matches.1 We use destruct to prove the so-called

induction lemma for bool.

Lemma bool_induction (p : bool -> Prop) : p true -> p false -> forall x : bool, p x.

intros p a b x. destruct x. apply a. apply b. Qed.

The lemma states that given a predicate p and proofs of p false and p true, we

can obtain a function that gives us a proof of px for every x in bool. The print

command tells us that bool_induction is defined as the term

fun (p : bool -> Prop) (a : p true) (b : p false) (x : bool) =>

match x as y return p y with true => a | false => b end

1 destruct stands for destructure.

2010/7/27 75

9 Inductive Definitions

The match in this term comes with a return type specification as y return p y

that is required for type checking. It states the following:

1. The match has type p x.

2. The body of the clause for true has type p true.

3. The body of the clause for false has type p false.

The auxiliary variable y is local and is needed for the general case where the term

the match is done on is not a variable. One speaks of a dependent match since

the types of the clause bodies depend on the value of the term the match is done

on.

Here is second example for the use of the destruct tactic.

Lemma negb_negb : forall x, negb (negb x) = x.

destruct x. apply eq_intro. apply eq_intro. Qed.

The example tells us that destruct x automatically inserts intros x if x is not yet

introduced. The proof term constructed looks as follows (check with the print

command):

fun x : bool => match x as y return negb (negb y) = y

with true => eq_intro true | false => eq_intro false end

Here are two further examples for the use of the destruct tactic.

Lemma negb_neq : forall x, negb x <> x.

destruct x ; simpl. apply (mt eq_sym). apply true_neq_false. apply true_neq_false. Qed.

Lemma boolp_injective (x y : bool) : boolp x = boolp y -> x=y.

destruct x ; destruct y ; simpl ; intros H.

apply eq_intro.

apply (True_neq_False H).

apply (True_neq_False (eq_sym H)).

apply eq_intro. Qed.

The induction lemma provides us with a proof rule that can replace the use of

the tactic match.

Lemma negb_negb’ : forall x, negb (negb x) = x.

apply bool_induction. apply eq_intro. apply eq_intro. Qed.

We define an if-then-else notation and prove a basic property.

Notation "’if’ s ’then’ t ’else’ u" := (match s with true => t | false => u end) (at level 99).

Lemma bool_if (X : Type) (x : X) (b : bool) : (if b then x else x) = x.

intros X x b. destruct b ; apply eq_intro. Qed.

76 2010/7/27

9.3 Rules for Matches on Bool

Exercise 9.2.1 Prove ∀x : bool. negb x = negb(negb(negb x)).

Exercise 9.2.2 Prove ∀x : bool. boolp x = True → x = true.

Exercise 9.2.3 Prove the following lemmas.

Lemma if_negb (x : bool) : negb x = if x then false else true.

Lemma if_xorb (x y : bool) : xorb x y = if x then negb y else y.

Exercise 9.2.4 Prove the lemma boolp_injective with bool_induction in place of

match. Without help apply bool_induction fails since it cannot synthesize the

predicate p. This can be fixed by writing intros x; pattern x in front of the apply.

Exercise 9.2.5 Define boolean or orb : bool → bool → bool and prove that it is

commutative (i.e., ∀xy. orb xy = orb y x).

Exercise 9.2.6 Prove the following lemmas.

Lemma BCA (x : bool) : x=true \/ x=false.

Lemma bool_Kaminski (f : bool -> bool) (x: bool) : f (f (f x)) = f x.

9.3 Rules for Matches on Bool

Here is the typing rule for matches on bool.

s : bool x : bool ⇒ t : Un u : txtrue v : txfalse

match s as x return t with true ⇒ u | false ⇒ v end : txs

Matches without return type specification are automatically completed with a

specification as _ return t. The full expressivity of matches on bool is captured

by the following function.

Definition bool_match (f : bool -> Type) (u : f true) (v : f false) (x : bool) : f x

:= match x as x’ return f x’ with true => u | false => v end.

The function bool_induction defined in §9.2 can be obtained as a special case.

Check fun p : bool -> Prop => bool_match p.

forall p : bool → Prop, p true → p false → forall x : bool, p x

The example type checks with the typing rule Cum and the second clause of the

definition of the subtyping relation (see §2.12).

Here are the reduction rules for matches on bool:

match true as x return t with true ⇒ u | false ⇒ v end ⇝ u

match false as x return t with true ⇒ u | false ⇒ v end ⇝ v

2010/7/27 77

9 Inductive Definitions

9.4 Propositional Conditional

We have already seen that match can express boolean conditionals (see if-then-

else notation in §9.2). A propositional conditional is like a boolean conditional

but takes its decision with respect to the truth value of a proposition. Here

is a proposition that states that there is a function that provides propositional

conditionals.

Definition IFP : Prop := exists ifp : forall X : Type, Prop -> X -> X -> X,

forall (X : Type) (x y : X), ifp X True x y = x /\ ifp X False x y = y.

We show that such a function ifp exists if and only if the embedding boolp is

invertible. We use two generally useful lemmas P1 and P2.

Lemma P1 {X Y : Type} {p q : X -> Y -> Prop} : (forall x y, p x y /\ q x y) -> forall x y, p x y.

intros X Y p q H x y. apply (H x y). auto. Qed.

Lemma P2 {X Y : Type} {p q : X -> Y -> Prop} : (forall x y, p x y /\ q x y) -> forall x y, q x y.

intros X Y p q H x y. apply (H x y). auto. Qed.

Lemma IFP_inv_boolp : IFP <-> invertible boolp.

apply conj.

inap. intros ifp A.

apply (ex_intro (fun p => ifp bool p true false)).

red. destruct x. apply (P1 (A bool)). apply (P2 (A bool)).

inap. intros propb A.

apply (ex_intro (fun _ p x y => if (propb p) then x else y)).

intros X x y. apply conj.

assert (B : propb True = true). apply (A true). apply B. apply eq_intro.

assert (B : propb False = false). apply (A false). apply B. apply eq_intro. Qed.

Next we show that boolp is invertible if we assume excluded middle and Skolem

functions from Prop to bool.

Lemma SF_inv_boolp : XM -> SF Prop bool -> invertible boolp.

intros xm sf. apply (sf (fun p x => p /\ x=true \/ ~p /\ x=false)).

intros p. apply (xm p) ; intros A.

apply (ex_intro true). apply or_introl. apply conj. apply A. apply eq_intro.

apply (ex_intro false). apply or_intror. apply conj. apply A. apply eq_intro.

intros propb A. apply (ex_intro propb). red. destruct x.

apply (A True). inap. auto. inap. inap. apply I.

apply (A False). inap. inap. inap. auto. Qed.

Note the use of the tactic red. This tactic reduces the claim until it turns into an

implication or a universal quantification. The reduction is sometimes needed so

that the tactics destruct and fix become applicable. The lemma can also be ob-

tained with the lemmas boolp_injective and inj_inv. Finally we show that Skolem

functions from Prop to bool exist if we assume PCA and the invertibility of boolp.

78 2010/7/27

9.5 Polymorphic Pairs

Lemma inv_boolp_SF : PCA -> invertible boolp-> SF Prop bool.

intros pca. inap. intros propb A r B.

assert (AT := A true). simpl in AT.

assert (AF := A false). simpl in AF.

apply (ex_intro (fun p => propb (r p true))).

intros p. apply (B p). intros x.

destruct x ; apply (pca (r p true)) ; intros D C.

apply False_elim. apply (eq_sym D). apply C.

apply D. apply AT. apply C.

apply D. apply AF. apply C.

apply D. apply AT. apply D. apply I. Qed.

9.5 Polymorphic Pairs

Here is an inductive definition that realizes polymorphic pairs:

Inductive pair (X Y : Type) : Type :=

| cons : X -> Y -> pair X Y.

The definition introduces the inductive function pair and the constructor cons:

pair : Type → Type → Type

cons : ∀X Y : Type. X → Y → pair X Y

Given two types X and Y , the inductive function yields an inductive type pair X Y .

Thus the definition introduces a family of inductive types rather than a single

inductive type. We declare the first two arguments of cons to be implicit.

Implicit Arguments cons [X Y].

The definitions of the projection functions are straightforward.

Definition fst {X Y : Type} (p : pair X Y) : X := match p with cons x y => x end.

Definition snd {X Y : Type} (p : pair X Y) : Y := match p with cons x y => y end.

Here is a lemma about pairs. It says that one can reconstruct a pair from its first

and second component.

Lemma cons_fst_snd (X Y : Type) (p : pair X Y) : cons (fst p) (snd p) = p.

intros X Y. destruct p as [x y]. apply eq_intro. Qed.

Note the “as” clause that appears with the destruct tactic. It specifies the lo-

cal variables of the clause of the match. The synthesized proof term looks as

follows.

2010/7/27 79

9 Inductive Definitions

fun (X Y : Type) (p : pair X Y) =>

match p as p’ return cons (fst p’) (snd p’) = p’

with cons x y => eq_intro (cons x y) end

Here is a proof that shows that the constructor cons is injective in both argu-

ments.

Lemma cons_injective (X Y : Type) (x x’ : X) (y y’ : Y) :

cons x y = cons x’ y’ -> x=x’ /\ y=y’.

intros X Y x x’ y y’ e. apply conj. apply (eq_rc fst e). apply (eq_rc snd e). Qed.

9.6 Inductive Predicates

Recall that we are in a setting where most logical operations are defined. It turns

out that the derived logical operations can also be realized with inductive predi-

cates (i.e., inductive functions that eventually yield an inductive proposition). To

realize a logical operation, we need the following:

• A function that realizes the operation syntactically. For conjunction this is a

predicate and : Prop → Prop → Prop.

• Functions that realize the introduction rules of the operation. For conjunction

this is a function conj : ∀X Y : Prop. X → Y → and X Y .

• A function that realizes the elimination rule for the operation. For conjunc-

tion this is a function and_elim : ∀X Y Z : Prop. and X Y → (X → Y → Z)→ Z.

It turns out that every inductive definition that introduces an inductive predicate

realizes some logical operation (not necessarily one we have seen so far):

• The inductive predicate realizes the operation syntactically.

• The constructors realize the introduction rules of the operation.

• The match accompanying the definition realizes the elimination rule of the

operation.

9.6.1 Conjunction

We start with an inductive definition that realizes conjunction. Since we will use

the names we have used so far, our previous definitions should not be active.

Inductive and (X Y : Prop) : Prop :=

| conj : X -> Y -> and X Y.

The definition introduces the inductive function

and : Prop → Prop → Prop

80 2010/7/27

9.6 Inductive Predicates

and the constructor

conj : ∀X Y : Prop. X → Y → and X Y

Clearly, and realizes conjunctions syntactically, and conj realizes the introduc-

tion rule for conjunctions. Note that and is a function that yields inductive

types in Prop. The elimination function for conjunctions can be expressed with

the match accompanying the definition.

Definition and_elim (X Y Z : Prop) : and X Y -> (X -> Y -> Z) -> Z

:= fun a f => match a with conj x y => f x y end.

The match exploits the fact that every value of a type and X Y must be obtained

with the constructor conj. It is also possible to obtain the elimination function

with a script.

Lemma and_elim’ (X Y Z : Prop) : and X Y -> (X -> Y -> Z) -> Z.

intros X Y Z a f. destruct a as [x y]. apply (f x y). Qed.

Use the print command to see that and_elim and and_elim′ are equated to the

same proof term. We prove that and is commutative:

Lemma and_com (X Y : Prop) : and X Y -> and Y X.

intros X Y a. destruct a as [x y]. apply (conj _ _ y x). Qed.

The underlines in the application of conj are necessary since the respective ar-

guments are not declared to be implicit.

The intros tactic can synthesize matches. The idea is to immediately match on

a variable once it is introduced. To this purpose one writes a pattern specifying

the local variables of the clauses in place of the variable to be matched on.

Lemma and_com’ (X Y : Prop) : and X Y -> and Y X.

intros X Y [x y]. apply (conj _ _ y x). Qed.

Use the print command to see that and_com and and_com′ are equated to the

same proof term.

9.6.2 Disjunction

Here is an inductive definition that realizes disjunction.

Inductive or (X Y : Prop) : Prop :=

| or_introl : X -> or X Y

| or_intror : Y -> or X Y.

The constructors or_introl and or_introl provide the introduction rules for dis-

junctions. The elimination rule can be obtained as follows.

2010/7/27 81

9 Inductive Definitions

Definition or_elim (X Y Z : Prop) : or X Y -> (X -> Z) -> (Y -> Z) -> Z

:= fun o f g => match o with or_introl x => f x | or_intror y => g y end.

Alternatively, we can use a script

Lemma or_elim’ (X Y Z : Prop) : or X Y -> (X -> Z) -> (Y -> Z) -> Z.

intros X Y Z o f g. destruct o as [x|y]. apply (f x). apply (g y). Qed.

This time the as clause of the destruct command specifies local variables for two

clauses since there are two constructors for disjunctions. The variables for the

two clauses are separated by a vertical bar “|”. Again it is possible to obtain the

match with the intros tactic.

Lemma or_elim’’ (X Y Z : Prop) : or X Y -> (X -> Z) -> (Y -> Z) -> Z.

intros X Y Z [x|y] f g. apply (f x). apply (g y). Qed.

Here is a proof that or is commutative.

Lemma or_com (X Y : Prop) : or X Y -> or Y X.

intros X Y [x|y]. apply (or_intror _ _ x). apply (or_introl _ _ y). Qed.

9.6.3 True and False

Here are inductive definitions that realize the logical constants ⊤ and ⊥.

Inductive True : Prop :=

| I : True.

Inductive False : Prop := .

Recall that there is no elimination rule for ⊤. The elimination rule for ⊥ can be

obtained as follows.

Definition False_elim (X : Prop) : False -> X

:= fun f => match f with end.

While this looks strange at first it is actually straightforward. Since False has no

constructors, a match on a term of type False has no clauses. Thus every return

type is possible (since every clause satisfies the return type).

We can synthesize the elimination function with a very short proof script.

Lemma False_elim’ (X : Prop) : False -> X.

intros X []. Qed.

82 2010/7/27

9.6 Inductive Predicates

9.6.4 Existential Quantification

The inductive realization of existential quantification is now routine.

Inductive ex (X : Type) (p : X -> Prop) : Prop :=

| ex_intro : forall x : X, p x -> ex X p.

Definition ex_elim (X : Type) (p : X -> Prop) (Z : Prop) : ex X p -> (forall x, p x -> Z) -> Z

:= fun e f => match e with ex_intro x a => f x a end.

Here is a proof script that synthesizes the elimination function.

Lemma ex_elim’ (X : Type) (p : X -> Prop) (Z : Prop) : ex X p -> (forall x, p x -> Z) -> Z.

intros X p Z [x a] A. apply (A x a). Qed.

9.6.5 Equality

Finally, we give an inductive definition that realizes equality.2

Inductive eq (X : Type) (x : X) : X -> Prop :=

| refl_equal : eq X x x.

The inductive predicate and the constructor introduced by this definition have

the right types.

eq : ∀X : Type. X → X → Prop

refl_equal : ∀X : Type ∀x :X. eqX xx

We realize an elimination function with a proof script.3

Lemma eq_elim (X : Type) (x y : X) (p : X -> Prop) : eq X x y -> p x -> p y.

intros X x y p e a. destruct e. apply a. Qed.

Step through the script to see what is happening. The equational constraint

imposed by the return type of refl_equal gets realized once the clause of the

match is entered. The proof term synthesized looks as follows:

fun (X : Type) (x y : X) (p : X -> Prop) (e : eq X x y) (a : p x) =>

match e in (eq _ _ z) return pz

with refl_equal => a end

The match comes with a new form of return type specification, which takes care

of the equational constraint in the return type of the constructor refl_equal. The

variable z is local. The specification has the effect that the return type appears

as px in the clause. Don’t worry about the details, it suffices if you understand

intuitively what is happening when you step through the proof script.

2 We use the name refl_equal rather than eq_intro to agree with Coq’s predefined equality.
3 Compared with the elimination lemma in §7.1 we have switched px with py . This way we

get the simpler proof term. We can obtain the elimination lemma defined in §7.1 from the

elimination lemma defined here with p := λz.pz → px.

2010/7/27 83

9 Inductive Definitions

Exercise 9.6.1 Prove the following lemma in three ways: With a script using

destruct, with a script applying eq_elim defined above, and with a proof term.

Lemma eq_elimr (X : Type) (x y : X) (p : X -> Prop) : eq X x y -> p y -> p x.

9.7 Coq’s Predefined Logical Operations

We now abandon our definitions of the derived logical operations and switch to

the definitions provided by Coq. Coq’s definitions agree with the definitions dis-

cussed in the previous section. In addition, Coq defines negation and equivalence

as follows.

Definition not (X : Prop) : Prop := X -> False.

Definition iff (X Y : Prop) : Prop := and (X -> Y) (Y -> X).

Moreover, all the notations we used for the logical operations are predefined in

Coq. For reasons of convenience and readability, Coq provides tactics for all

introduction rules except I.

split ⇝ apply conj

left ⇝ apply or_introl

right ⇝ apply or_intror

exists t ⇝ apply (ex_intro t)

reflexivity ⇝ apply refl_equal

The inductively defined operations can all be eliminated with the destruct tactic.

In addition, the following tactics are provided.

rewrite t ⇝ elimination of =, applies equation from left to right

rewrite<- t ⇝ elimination of =, applies equation from right to left

absurd t ⇝ creates subgoals for ¬t and t

The command rewrite<- t is equivalent to destruct t.

It’s time for examples. Open a new Coq shell. Check with the print command

that Coq predefines the derived logical operations as we have claimed. Then step

through the following examples.

Example E1 (X Y Z : Prop) : X /\ (Y \/ Z) -> X /\ Y \/ X /\ Z.

intros X Y Z [x [y|z]].

left. apply (conj x y).

right. apply (conj x z). Qed.

84 2010/7/27

9.7 Coq’s Predefined Logical Operations

Note the nested pattern in the intros command. It synthesizes a nested match.

The next example uses a nested pattern to eliminate two existential quantifica-

tions:

Example E2 (X Y : Type) (p : X -> Y -> Prop) :

(exists x, exists y, p x y) -> exists y, exists x, p x y.

intros X Y p [x [y A]]. exists y. exists x. apply A. Qed.

The following example eliminates an equation with a match.

Lemma E3 (X : Type) (x y : X) : x=y <-> forall r : X -> X -> Prop, (forall z, r z z) -> r x y.

intros X x y. split.

intros [] r H. apply H.

intros H. apply H. reflexivity. Qed.

The tactic tauto knows about the predefined logical constants and solves goals

whenever they can be solved with intros, reflexivity, and the introduction and

elimination rules for implication, conjunction, and disjunction. In contrast to

auto, tauto fails if it cannot solve a goal. From now on, tauto will be our pre-

ferred automation tactic. Here are two proofs of Cantor’s theorem that use tauto.

Neither of the proofs uses a lemma.

Definition Cantor : Prop := forall (X : Type) (f : X -> X -> Prop), exists g, forall x, f x <> g.

Theorem cantor : Cantor.

intros X f.

assert (A : forall x, ~ (f x x <-> ~f x x)). tauto.

pose (g x := ~ f x x). exists g. intros x e.

apply (A x). pattern (f x) at 1. rewrite e. unfold g. tauto. Qed.

Theorem cantor’ : Cantor.

intros X f.

pose (g x := ~ f x x). exists g. intros x e.

absurd (~ g x).

intros A. generalize A. unfold g. rewrite e. tauto.

intros A. generalize A. unfold g. rewrite e. tauto. Qed.

The first proof first establishes the iff _circuit lemma to convey the main idea of

the proof. Note that the pattern tactic is used such that only the first occurrence

of fx is patterned out. The second proof follows the informal presentation of

the proof in §7.2.

Here are further examples involving equality.

Definition XM : Prop := forall X : Prop, X \/ ~X.

Definition PE : Prop := forall X Y : Prop, (X <-> Y) -> X=Y.

Definition PCA : Prop := forall X : Prop, X=False \/ X=True.

2010/7/27 85

9 Inductive Definitions

Lemma pca_xm : PCA -> XM.

intros pca X. destruct (pca X) as [e|e] ; rewrite e ; tauto. Qed.

Lemma pca_pe : PCA -> PE.

intros pca X Y.

destruct (pca X) as [a|a] ; rewrite a ;

destruct (pca Y) as [b|b] ; rewrite b ;

tauto. Qed.

The tactic subst checks the assumptions for equations of the form x = t or t = x
where the variable x is not free in t and eliminates x by replacing it with t. By

using subst we can shorten the proof just given.

Lemma pca_pe’ : PCA -> PE.

intros pca X Y. destruct (pca X) ; destruct (pca Y) ; subst ; tauto. Qed.

Note that the script does not specify local variables for the clauses introduced

by destruct. This way we leave the choice of the local variables to Coq.

The type bool is predefined in Coq. For reasons of backward compatibility, Coq

places bool into a special universe Set reserved for inductive types. Set is con-

tained in U1 but does not contain Prop.

Here is a proof of Kaminski’s equation.

Lemma bca (x : bool) : x=true \/ x=false.

intros [] ; tauto. Qed.

Lemma Kaminski (x : bool) (f : bool -> bool) : f (f (f x)) = f x.

intros [] f ; destruct (bca (f true)) as [a|a] ; destruct (bca (f false)) as [b|b] ;

repeat (reflexivity || rewrite a || rewrite b). Qed.

The proof can be shortened by using the tactic congruence, which tries to solve

a goal by rewriting with equations that appear as assumptions.

Lemma Kaminski’ (x : bool) (f : bool -> bool) : f (f (f x)) = f x.

intros [] f ; destruct (bca (f true)) ; destruct (bca (f false)) ; congruence. Qed.

Exercise 9.7.1 It is enlightening to prove that Coq’s predefined logical opera-

tions are equivalent to the operations we used before. Prove the following.

Lemma L1 : False <-> forall X : Prop, X.

Lemma L2 (X Y : Prop) : X /\ Y <-> forall Z : Prop, (X ->Y -> Z) -> Z.

Lemma L3 (X Y : Prop) : X \/ Y <-> forall Z : Prop, (X -> Z) -> (Y -> Z) -> Z.

Lemma L4 (X : Type) (p : X -> Prop) : ex p <-> forall Z : Prop, (forall x, p x -> Z) -> Z.

Lemma L5 (X : Type) (x y : X) : x=y <-> forall p : X -> Prop, p y -> p x.

86 2010/7/27

9.8 Remarks

9.8 Remarks

We have shown before that different realizations of the logical operations are

equivalent if they support the intuitionistic introduction and elimination rules

(see §3.3 and §4.10). Thus the inductive logical operations predefined in Coq

are equivalent to the impredicative logical operations we have used so far. The

term impredicative refers to the fact that the definitions used so far rely on the

impredicativity of the universe Prop (see §2.12).

2010/7/27 87

9 Inductive Definitions

88 2010/7/27

10 Natural Numbers

In this chapter we realize the natural number with an inductive type that comes

with structural recursion. With structural recursion we can express arithmetic

operations and inductive proofs.

10.1 Definition

We define an inductive type whose elements represent the natural numbers.

Inductive nat : Type :=

| O : nat

| S : nat -> nat.

The elements of nat are the values we can obtain with the constructors O and S:

O, S O, S(S O), S(S(S O)), . . .

We say that the constructor S yields the successor of a natural number. We

define a function that yields the predecessor of a natural number.

Definition pred (x : nat) : nat := match x with O => O | S x’ => x’ end.

Note that the second clause involves a local variable x′ that is equated to the pre-

decessor of x in case the second clause applies. We prove that the predecessor

function is inverse to the successor function.

Lemma inverse_S_pred (x : nat) : pred (S x) = x.

reflexivity. Qed.

Next we prove that the successor function is injective.

Lemma S_injective {x y : nat} : S x = S y -> x=y.

intros x y e. apply (f_equal pred e). Qed.

Note the use of the predefined proof f _equal, which is equivalent to the proof

eq_rc defined in §7.1. Next we define a function that tests whether a number

is O and prove that O is not in the range of S.

89

10 Natural Numbers

Definition iszero (x : nat) : Prop := match x with O => True | S _ => False end.

Lemma S_neq_O (x : nat) : S x <> O.

intros x e.

assert (A : False = True). apply (f_equal iszero e).

rewrite A. apply I. Qed.

An inductive data type is an inductive type that is not an element of the

universe Prop. The constructors of inductive data types are always injective and

mutually exclusive. The tactics injection and discriminate try to synthesize the

respective proofs. Here are examples.

Goal false <> true. discriminate. Qed.

Goal S(S O) <> S O. discriminate. Qed.

Goal forall x y, S (S x) = S (S (S y)) -> x = S y. intros x y e. injection e. tauto. Qed.

The command Goal is like lemma but leaves it to Coq to generate a name for the

proof. It is enlightening to prove S(S O) ≠ O by hand.

Goal S(S O) <> S O.

intros e.

assert (A : False = True).

apply (f_equal (fun x => match x with S O => True | _ => False end) e).

rewrite A. apply I. Qed.

The next proof shows that bool is different from nat.

Lemma bool_neq_nat : bool <> nat.

intros e.

assert (A : forall x y z : bool, x=y \/ x=z \/ y=z). intros [] [] [] ; tauto.

revert A. pattern bool. rewrite e. intros A.

destruct (A O (S O) (S (S O))) as [B|[B|B]] ; discriminate B. Qed.

The proof first assumes bool = nat. It then establishes a property A of bool.

Using the assumption bool = nat property A is rewritten into a property for nat.

Since the property doesn’t hold for nat, False can be shown.

Exercise 10.1.1 Prove ∀x : nat. x = O ∨ ∃y. x = Sy .

Exercise 10.1.2 Prove surjective pred and ¬ injective pred.

Exercise 10.1.3 Prove ∀xy : nat. S(Sx) = S(S(Sy))→ x = Sy without using

the tactic injection. Then compare the proof term obtained with injective and

with the proof term obtained with your proof.

Exercise 10.1.4 Prove (O, true) ≠ (O, false) with discriminate and without dis-

criminate. Pairing is defined inductively as in §9.5.

Exercise 10.1.5 Prove ∀xy. (x,y) = (y,O)→ x = O with and without injec-

tion.

90 2010/7/27

10.2 Rules for Matches on Nat

10.2 Rules for Matches on Nat

Here is the typing rule for matches on nat.

s : nat x : nat ⇒ t : Un u : txO y : nat ⇒ v : txSy

match s as x return t with O ⇒ u | S y ⇒ v end : txs

Matches on nat can be provided with the following function.

Definition nat_match (f : nat -> Type) (u : f O) (v : forall y : nat, f (S y)) (x : nat) : f x

:= match x as x’ return f x’ with O => u | S y => v y end.

The predecessor function can be obtained with nat_match as follows:

Definition pred’ : nat -> nat := nat_match (fun _ => nat) O (fun y => y).

Here are the reduction rules for matches on nat:

match O as x return t with O ⇒ u | Sy ⇒ v end ⇝ u

match S s as x return t with O ⇒ u | Sy ⇒ v end ⇝ v
y
s

10.3 Structural Recursion

Inductive types are accompanied by a recursion operator fix that provides for

the formulation of recursive functions. Here is a term that describes a recursive

function nat → nat that doubles its argument.

fix f (x : nat) : nat := match x with O => O | S x’ => S (S (f x’)) end

You can think of a term (fix f (x : s) : t := u) as a variant of the term (fun x : s ⇒ u)

where the additional local variable f : s → t names the recursive function being

described. To name a recursive function outside its description, one can use an

ordinary definition.

Definition double : nat -> nat :=

fix f x := match x with O => O | S x’ => S (S (f x’)) end.

This definition can be written more conveniently as

Fixpoint double’ (x : nat) : nat := match x with O => O | S x’ => S (S (double x’)) end.

Use the print command to see that double and double′ are equated to the same

term (up to alpha renaming). The keyword Fixpoint pays tribute to a theory where

recursive functions appear as fixed points of non-recursive functions.

Recursive functions reduce as one would expect.

2010/7/27 91

10 Natural Numbers

Eval cbv in double (S (S O)).

S (S (S (S O)))

Eval cbv in (fix f x : nat := match x with O => O | S x’ => f x’ end) (S O).

O

Eval cbv in fun n => (fix f x : nat := match x with O => O | S x’ => f x’ end) (S (S n)).

fun n ⇒ (fix f x : nat := match x with O ⇒ O | S x’ ⇒ f x’ end) n

Coq accepts a fix term only if it can determine that the recursion described by

the fix term terminates. For instance, given an argument S(S(S O)), recursive

applications are possible for the smaller values S(S O), S O, and O. This form of

recursion is known as structural recursion. Non-terminating recursions would

destroy the consistency of the calculus of constructions (i.e., a proof of False may

appear whose reduction does not terminate).

Here are recursive definitions of addition and multiplication.

Fixpoint add (x y : nat) : nat := match x with O => y | S x’ => S (add x’ y) end.

Fixpoint mul (x y : nat) : nat := match x with O => O | S x’ => add (mul x’ y) y end.

Eval cbv in mul (S (S O)) (S (S (S O))).

S (S (S (S (S (S O)))))

Both recursions decrease the first argument. If you print add and mul, you will

see that fix can take more than one argument. Here is a subtraction function:

Fixpoint sub (x y : nat) : nat := match x, y with

| O, _ => O

| S x’, S y’ => sub x’ y’

| S x’, O => S x’

end.

Lemma sub_pred (x : nat) : pred x = sub x (S O).

destruct x ; simpl. reflexivity. destruct x ; simpl. reflexivity. reflexivity. Qed.

Here are the typing rule and the reduction rule for fix with one argument.

s : Un t : Un f : s→t, x : s ⇒ u : t

fix f(x : s) : t := u : s → t

(fixf x := s) t ⇝

(

s
f
fixf x := s

)x

t

The reduction rule only applies if t starts with a constructor. This restriction is

needed to obtain termination since the reduction rules (and hence the rule for

fix) apply below abstractions and matches. The reduction of matches and fixes

is known as iota reduction.

92 2010/7/27

10.4 Inductive Proofs

Exercise 10.3.1 Write the definition of sub in Coq’s kernel syntax. Use the print

command to check your answer.

Exercise 10.3.2 Define functions that yield powers mn and factorials n!.

Exercise 10.3.3 Give a term that is accepted by Coq whose reduction would not

terminate if the application constraint of the reduction rule for fix was dropped.

10.4 Inductive Proofs

An inductive proof is a recursive proof. Since nat has infinitely many elements,

a proof of a universally quantified claim ∀x : nat. s may require recursion. A

typical example of a proposition that requires an inductive proof is the induction

principle for nat:

∀p : nat → Prop. p O → (∀x : nat. p x → p(S x))→ ∀x : nat. p x

It states that we can obtain a proof of ∀x : nat. p x from a proof of pO (the base

case) and a proof of ∀x : nat. p x → p(S x) (the induction step). Here is a proof

of the induction principle:

Check

fun (p : nat -> Prop) (base : p O) (step : forall x, p x -> p (S x)) =>

fix IHx (x : nat) : p x :=

match x as n return p n with O => base | S x’ => step x’ (IHx x’) end.

forall p : nat → Prop, p O → (forall x : nat, p x → p (S x)) → forall x : nat, p x

Make sure that you understand the proof. The local variable IHx represents the

recursive function and takes the rôle of the inductive hypothesis. Its type is

∀x : nat. p x.

There is a special tactic fix that synthesizes fix terms. Here is a script that

synthesizes the proof of the induction principle.

Lemma nat_induction (p : nat -> Prop) :

p O -> (forall x, p x -> p (S x)) -> forall x, p x.

intros p base step. fix IHx 1. destruct x.

apply base.

apply step. apply IHx. Qed.

Step through the script to see what happens. The command fix IHx 1 starts the

synthesis of the fix term. It adds the assumption IHx : ∀x : nat. p x. It is possible

to replace the command fix IHx 1 with the command refine (fix IHx (x : nat) := _).

Check it out.

2010/7/27 93

10 Natural Numbers

When we construct a recursive proof, Coq delays the termination check until

the final Qed. If the termination check fails, Coq prints an error message and

leaves the name of the lemma undefined.

After you have applied the inductive hypothesis (i.e., synthesized a recursive

application), you may use the command Guarded to check whether the termina-

tion condition is satisfied. The command Guarded and the fact that a fix can

have more than one argument seem to be the reason that one has to specify a

number with the fix tactic. The number says which argument of the fix must be

decreased by recursive applications.

Now that we synthesize matches and fixes, it is sometimes helpful to see

the partial proof term synthesized so far. You can display this partial term by

entering the command Show Proof .

It’s time for more examples. Here is an inductive proof of a straightforward

lemma.

Lemma S_irreflexive (x : nat) : x <> S x.

fix IHx 1. destruct x.

discriminate.

injection. apply IHx. Qed.

Look at the proof term and make sure that you understand how it is synthe-

sized by the script. It is also possible to prove the lemma with the lemma

nat_induction.

Lemma S_irreflexive’ (x : nat) : x <> S x.

apply nat_induction.

discriminate.

intros x IHx. injection. apply IHx. Qed.

This proof is more high-level than the proof with fix in that we don’t have to

worry about termination. It turns out that the induction principle nat_induction

suffices for most proofs that recurse over nat. Note that the induction principle

relates to inductive proofs in the same way primitive recursion relates to recur-

sive functions. Both functions provide high-level recursion schemes that ensure

termination. The induction principle for natural numbers was formulated by

Peano around 1900 as one of his axioms for the natural numbers.

Coq provides a tactic induction that knows about inductive proofs:

Lemma S_irreflexive’’ (x : nat) : x <> S x.

induction x.

discriminate.

injection. apply IHx. Qed.

94 2010/7/27

10.4 Inductive Proofs

The tactic induction works for all inductive types and relies on induction princi-

ples automatically generated by Coq. For nat and bool Coq’s induction principles

look as follows:

Check nat_ind.

forall p : nat → Prop, p O → (forall n, p n → p (S n)) → forall n, p n

Check bool_ind.

forall p : bool → Prop, p true → p false → forall b, p b

Of course, Coq generates proofs for the induction principles it uses. Use the

print command to look behind the curtain.

Here is a further example of an inductive proof.

Lemma sub_add (x y z : nat) : sub x (add y z) = sub (sub x y) z.

induction x ; intros y z. reflexivity.

destruct y. reflexivity. simpl. apply IHx. Qed.

Exercise 10.4.1 Prove ∀x : nat. S(Sx) ≠ Sx. Give four proofs: An inductive

proof with fix, an inductive proof with nat_induction, an inductive proof with

the induction tactic, and a non-inductive proof with S_injective and S_irreflexive.

Exercise 10.4.2 (Zigzag Induction) Prove the following lemma.

Lemma zigzag_ind (p : nat -> Prop) :

p O ->

(forall x, p x -> p (S (S x))) ->

(forall x, p (S x) -> p x) ->

forall x, p x.

Exercise 10.4.3 Here is a function that tests whether a number is even.

Fixpoint even (x : nat) : bool := match x with

| O => true

| S O => false

| S (S x’) => even x’

end.

a) Prove ∀x. even x = even(S(S x)).

b) Prove ∀x. even x = negb(even(S x)). The proof is interesting since it is

easy with fix and hard with the induction principle (a lemma is required). The

reason is that fix admits recursions that take the predecessor more than once.

c) Write a function that computes the same results as even but uses prim_rec

rather that fix and match. Prove the correctness of your function.

2010/7/27 95

10 Natural Numbers

Exercise 10.4.4 The recursion operator fix is available for all inductive types.

Here is an extreme example.

Inductive crazy : Prop :=

| Crazy : crazy -> crazy.

Lemma crazy_False : crazy -> False.

fix IH 1. intros [c’]. apply (IH c’). Qed.

Explain why the lemma does not suffice to construct a proof of False without

assumptions.

10.5 Basic Laws for Addition and Multiplication

We prove that the addition function add defined in §10.3 is commutative. This

requires two lemmas.

Lemma add_S (x y : nat) : add x (S y) = S (add x y).

induction x ; intros y ; simpl.

reflexivity.

rewrite IHx. reflexivity. Qed.

Lemma add_O (x : nat) : add x O = x.

induction x ; simpl.

reflexivity.

rewrite IHx. reflexivity. Qed.

Lemma add_com (x y : nat) : add x y = add y x.

induction x ; intros y ; simpl.

rewrite add_O. reflexivity.

rewrite IHx. rewrite add_S. reflexivity. Qed.

Exercise 10.5.1 Prove the following lemmas.

Lemma add_asso (x y z: nat) : add (add x y) z = add x (add y z).

Lemma mul_O (x : nat) : mul x O = O.

Lemma mul_S (x y : nat) : mul x (S y) = add (mul x y) x.

Lemma mul_com (x y : nat) : mul x y = mul y x.

Lemma mul_dist (x y z: nat) : mul (add x y) z = add (mul x z) (mul y z).

Lemma mul_asso (x y z: nat) : mul (mul x y) z = mul x (mul y z).

Exercise 10.5.2 Prove injective (fun x ⇒ add x x).

Exercise 10.5.3 Prove injective add. Hint: Use add_O.

Exercise 10.5.4 Try to prove ∀x. add (add x x) x = add x(add x x). A proof

with add_asso is straightforward but a direct proof by induction seems impossi-

ble.

96 2010/7/27

10.6 Generalized Induction

10.6 Generalized Induction

Suppose you want to prove that a predicate p holds for all x. Then it suffices to

show px for an arbitrary x under the assumption that p holds for all values that

are smaller than x. We will formulate this generalized induction principle in Coq

and prove its correctness. We start with the definition of the canonical order of

the natural numbers.

Fixpoint less (x y : nat) : Prop := match x, y with

| O, S _ => True

| S x’, S y’ => less x’ y’

| _, _ => False

end.

Notation "s < t" := (less s t).

Next we define the relaxation provided by the general induction principle.

Definition relax (X : Type) (p : X -> Prop) (f : X -> nat)

:= (forall y, (forall x, f x < f y -> p x) -> p y).

The general induction principle can now be formulated as follows:

forall X p f, relax X p f -> forall x, p x.

We need a few facts about the order less.

Lemma lessO n : ~ n < O.

destruct n ; tauto. Qed.

Lemma lessS n : n < S n.

induction n ; simpl ; tauto. Qed.

Lemma lessStrans {k m n} : k < m -> m < S n -> k < n.

fix IH 1. intros k m n ; destruct m ; destruct n ; simpl.

intros A. destruct (lessO _ A).

intros A. destruct (lessO _ A).

intros _ A. destruct (lessO _ A).

destruct k ; simpl. tauto.

apply IH. Qed.

We reformulate the principle it so that induction on nat becomes applicable.

This leads to the following lemma.

Lemma size_induction’ (X : Type) (p : X -> Prop) (f : X -> nat) :

relax X p f -> forall n x, f x < n -> p x.

intros X p f R. induction n ; intros x A.

destruct (lessO _ A).

apply R. intros y B. apply IHn. apply (lessStrans B A). Qed.

2010/7/27 97

10 Natural Numbers

The formulation of this lemma is the key insight of the proof of the generalized

induction principle. The rest is straightforward.

Theorem size_induction (X : Type) (p : X -> Prop) (f : X -> nat) :

relax X p f -> forall x, p x.

intros X p f R x. apply (size_induction’ X p f R (S (f x)) x). apply lessS. Qed.

We obtain the principle of complete induction as a corollary.

Corollary complete_induction (p: nat->Prop) :

(forall n, (forall m, m < n -> p m) -> p n) -> forall n, p n.

intros p. apply (size_induction nat p (fun n => n)). Qed.

We use the occasion to establish an important theorem about the canonical or-

der of nat. It is remarkable that the theorem holds without assuming excluded

middle. This is the case since nat is an inductively defined type.

Theorem trichotomy (x y : nat) : x < y \/ x=y \/ y < x.

induction x ; destruct y ; simpl ; try tauto.

destruct (IHx y) as [H|[[]|H]] ; tauto. Qed.

The derived tactic try tauto leaves the goal unchanged and succeeds in case tauto

fails. This way we can solve 3 of 4 subgoals with tauto and prove the remaining

subgoal by hand. Also note that the pattern [] in the nested pattern eliminates

the equation x = y .

10.7 Primitive Recursion

The following function formulates a recursion scheme known as primitive re-

cursion.

Definition prim_rec (X : Type) (base : X) (step : nat -> X -> X) : nat -> X

:= fix f n := match n with O => base | S n’ => step n’ (f n’) end.

With prim_rec we can define many recursive functions without using recursion

operator fix. This has the advantage that we need not worry about termination.

The following equations caption the essence of primitive recursion.

prim_rec X x f O = x
prim_rec X x f (S n) = f n (prim_rec X x f n)

Here are definitions of functions that use primitive recursion to compute the

results of double and add.

Definition double’’ : nat -> nat := prim_rec nat O (fun _ x => S (S x)).

Definition add’ (x y : nat) : nat := prim_rec nat y (fun _ => S) x.

98 2010/7/27

10.8 Ackermann’s Function

Here is another function that adds two numbers with primitive recursion.

Definition add’’ : nat -> nat -> nat := prim_rec (nat -> nat) (fun y => y) (fun x’ f y => S (f y)).

A correctness proof is straightforward.

Lemma add_add’’ (x y : nat) : add x y = add’’ x y.

induction x ; intros y ; simpl ; try tauto. rewrite IHx. reflexivity. Qed.

Exercise 10.7.1 Write functions that compute differences, products, powers,

and factorials with primitive recursion. Prove the correctness of your functions.

Exercise 10.7.2 Express the predecessor function with prim_rec. Do not use

match. Prove the correctness of your function.

Exercise 10.7.3 Below is a subtraction function that uses neither match nor fix.

Prove the correctness of this function.

Definition sub’ : nat -> nat -> nat :=

prim_rec (nat -> nat) (fun _ => O)

(fun x’ f => prim_rec nat (S x’) (fun y’ _ => f y’)).

Lemma sub’_correct (x y : nat) : sub’ x y = sub x y.

10.8 Ackermann’s Function

Recursive functions appear already in Dedekind’s 1888 paper “Was sind und

was sollen Zahlen?”. The following predicate specifies a function designed by

Ackermann in 1928.

Definition ackermann (f : nat -> nat -> nat) : Prop := forall m n,

f O n = S n /\

f (S m) O = f m (S O) /\

f (S m) (S n) = f m (f (S m) n).

The specification of Ackermann’s function poses two questions:

1. Can we define with structural recursion a function that satisfies the predicate

ackermann?

2. Can we prove that there is at most one function that satisfies the predicate

ackermann?

We will answer both questions positively. In this section we address the exis-

tence question. The uniqueness question will be settle with the inductive proof

technique introduced in a later section.

Ackermann argued the existence and uniqueness of his function as follows.

Since for any two arguments exactly one of the equations applies, f exists and is

2010/7/27 99

10 Natural Numbers

unique if application of the equations terminates. The equations terminate since

either the first argument is decreased, or the first argument stays the same and

the second argument is decreased.

Existence

Ackermann’s termination argument is outside the scope of Coq’s termination

checker. Coq will insist that for every fix there is a single argument that is de-

creased by every recursive application. The problem can be resolved by formu-

lating Ackermann’s function with two nested recursions.

Definition ack : nat -> nat -> nat := fix f m := match m with

| O => S

| S m’ => fix g n := match n with

| O => f m’ (S O)

| S n’ => f m’ (g n’)

end end.

Note that ack is defined as a recursive function that returns a recursive function.

Check that each of the two recursions decreases its single argument. If you have

not seen a transformation like this before, this may look like magic to you. Here

is a proof that ack satisfies its specification. It is straightforward since each of

the three equations follows by reduction.

Lemma ack_correctness : ackermann ack.

intros m n. split. reflexivity. split ; reflexivity. Qed.

Here is a formulation of Ackermann’s function that uses primitive recursion.

Definition ack’ := prim_rec (nat -> nat) S

(fun _ f => prim_rec nat (f (S O)) (fun _ => f)).

Correctness once more follows by reduction.

Lemma ack’_correctness : ackermann ack’.

intros m n. split. reflexivity. split ; reflexivity. Qed.

Ackermann proved that his function cannot be obtained with primitive recursion

at nat (i.e., prim_rec nat). In fact, our formulation ack′ uses primitive recursion

both at nat → nat (outer recursion) and at nat (inner recursion). One says that

Ackermann’s function cannot be expressed with first-order primitive recursion.

Canonicity

We now prove that there is at most one function that satisfies our specification

of Ackermann’s function. The proof follows our definition ack of Ackermann’s

function in that there is an outer induction for the first argument and an inner

induction for the second argument. The lemmas P1 and P2 are from §9.4.1

1 Recall that we have switched to Coq’s predefined logical operations. Thus our old lemmas must

be reproven in the new setting.

100 2010/7/27

10.9 Reflection

Lemma ackermann_canonical (f g : nat -> nat -> nat) :

ackermann f -> ackermann g -> forall m n, f m n = g m n.

intros f g af ag. induction m.

intros n. rewrite (P1 af O n). rewrite (P1 ag O n). reflexivity.

induction n.

rewrite (P1 (P2 af) m O). rewrite (P1 (P2 ag) m O). apply IHm.

rewrite (P2 (P2 af) m n). rewrite (P2 (P2 ag) m n). rewrite IHn. apply IHm. Qed.

10.9 Reflection

One can define a function nat_reflect that subsumes nat_match, nat_induction,

and prim_rec. With nat_reflect one can write all matches and many recursive

functions and inductive proofs without using match and fix. Since fix is not

used, there is no need to think about termination. We define nat_reflect with a

script.

Definition nat_reflect : forall f : nat -> Type, f O -> (forall x, f x -> f (S x)) -> forall x, f x.

intros f base step. fix IHx 1. destruct x. apply base. apply step. apply IHx. Defined.

This is the first time we synthesize a term with a script whose type is not a propo-

sition. Since we want to compute with the function nat_reflect, it is essential that

we finish the definition with Defined rather than Qed. The following term is a

proof of the induction principle for nat.

Check (fun p : nat -> Prop => nat_reflect p).

forall p : nat → Prop, p O → (forall x : nat, p x → p (S x)) → forall x : nat, p x

And the next term gives us primitive recursion:

Check (fun (X : Type) => nat_reflect (fun _ => X)).

forall X : Type, X → (nat → X → X) → nat → X

Here is a proof of this statement.

Lemma nat_rec_prim_rec (X : Type) x f n :

prim_rec X x f n = nat_reflect (fun _ => X) x f n.

intros X x f. induction n ; simpl. reflexivity. rewrite IHn. reflexivity. Qed.

Exercise 10.9.1 Write a function nat_match′ with nat_reflect that has the same

type as nat_match and computes the same result. Prove the correctness of your

function.

2010/7/27 101

10 Natural Numbers

10.10 Impredicative Definitions

It turns out that recursion can be simulated to some extend with the technique

of impredicative definition. We demonstrate this technique with the recursive

function double defined in §10.3. We define a predicate doublep not using recur-

sion (i.e., fix) and prove ∀xy. doublep x y ↔ doublex = y .

Definition doublep (x y : nat) : Prop := forall r : nat -> nat -> Prop,

r O O ->

(forall x y, r x y -> r (S x) (S (S y))) ->

r x y.

Speaking mathematically, doublep is defined as the least relation that satisfies

the two equations that yield the recursive definition of the function double.

doubleO = O
double (S x) = S(S(double x)))

Here is the correctness proof.

Lemma doublep_correct (x y : nat) : doublep x y <-> double x = y.

intros x y. split.

intros A. apply (A (fun x y => double x = y)).

reflexivity.

intros [|m] n [] ; reflexivity.

revert y. induction x ; simpl ; intros y [] r A B.

apply A.

apply B. apply IHx. reflexivity. apply A. apply B.

Qed.

Exercise 10.10.1 Here is an impredicative definition of the order on nat.

Definition less_imp (x y : nat) : Prop :=

forall p : nat -> nat -> Prop,

(forall y, p O (S y)) ->

(forall x y, p x y -> p (S x) (S y)) ->

p x y.

Prove ∀x y. less_imp x y ↔ x < y.

10.11 Peano Axioms

At the end of the 19th century mathematicians were able to explain the numbers

starting from first principles know as Peano axioms. The two main players in

this development were Dedekind and Peano. We can formulate the Peano axioms

as follows.

102 2010/7/27

10.12 Finiteness

Section Peano_Axioms.

Variable nat : Type.

Variable O : nat.

Variable S : nat -> nat.

Variable S_neq_O : forall x, S x <> O.

Variable S_injective : injective S.

Variable induction : forall p : nat -> Prop, p O -> (forall x, p x -> p (S x)) -> forall x, p x.

End Peano_Axioms.

Starting from the Peano axioms one can obtain addition and multiplication using

impredicative definitions and Skolem functions. One can then prove all basic

properties of the natural numbers and continue with the construction of the

real and complex numbers. A careful mathematical construction of the numbers

starting from the Peano axioms is carried out in Edmund Landau’s famous book

“Grundlagen der Analysis” from 1930.

Our inductive definition of nat establishes a model of the Peano axioms. Thus

there is no need to assume the Peano Axioms in Coq. We can say that Coq obtains

the natural numbers from more general principles than the Peano axioms.

10.12 Finiteness

We want to define a predicate on types that holds on a type if the type has only

finitely many elements. We observe that a type is infinite if and only if it is

inhabited and there is a total and loop-free binary relation on the type. We use

the following definitions.

Definition total {X : Type} (r : X -> X -> Prop) : Prop := forall x, exists y, r x y.

Definition transitive {X : Type} (r : X -> X -> Prop) : Prop := forall x y z, r x y -> r y z -> r x z.

Definition irreflexive {X : Type} (r : X -> X -> Prop) : Prop := forall x, ~ r x x.

Definition finite (X : Type) : Prop :=

inhab X -> forall r : X -> X -> Prop, total r -> transitive r -> exists x, r x x.

Definition infinite (X : Type) : Prop :=

inhab X /\ exists r : X -> X -> Prop, total r /\ transitive r /\ irreflexive r.

We work with transitive relations so that loop freeness coincides with irreflexiv-

ity. First we prove that a type cannot be both finite and infinite.

Lemma fin_inf (X : Type) : finite X -> infinite X -> False.

ntros X fin. intros [inh [r [tot [trans irr]]]].

destruct (fin inh r tot trans) as [x H].

revert H. apply irr. Qed.

Given a surjective function from X to Y , X is infinite if Y is infinite.

2010/7/27 103

10 Natural Numbers

Lemma sur_inf (X Y : Type) (f : X -> Y) : surjective f -> infinite Y -> infinite X.

intros X Y f surj. intros [inh [r [tot [trans irr]]]]. split.

(* inhab X *) destruct inh as [y _]. destruct (surj y) as [x _]. exists x. apply I.

(* exists p *) pose (p := fun x x’ => r (f x) (f x’)). exists p. split.

(* total p *) intros x. destruct (tot (f x)) as [y A]. destruct (surj y) as [x’ B].

exists x’. red. rewrite B. apply A. split.

(* transitive p *) intros x x’ x’’. apply trans.

(* irreflexive p *) intros x. apply irr. Qed.

Next we prove that bool is finite.

Lemma bool_finite : finite bool.

intros inh r tot trans.

destruct (tot true) as [x A]. destruct x.

exists true. apply A.

destruct (tot false) as [y B]. destruct y.

exists true. revert A B. apply trans.

exists false. apply B. Qed.

To show that nat is infinite, we use the order less, which is total, transitive, and

irreflexive.

Lemma less_total : total less.

intros x. exists (S x). induction x ; simpl. apply I. apply IHx. Qed.

Note the use of the tactic revert, which generalizes a given assumption and then

clears it. One can see revert as inverse to intros. With the combination of intros

and reverse one can rearrange a claim so that one gets a sufficiently strong in-

ductive hypothesis.

Lemma less_transitive : transitive less.

intros x. induction x ; destruct y; destruct z ; simpl ; try tauto.

intros []. apply IHx. Qed.

Lemma less_irreflexive : irreflexive less.

intros x. induction x ; simpl ; tauto. Qed.

Lemma nat_infinite : infinite nat.

split. exists O. apply I. exists less. split.

apply less_total. split.

apply less_transitive.

apply less_irreflexive. Qed.

Exercise 10.12.1 Prove finite False.

Exercise 10.12.2 Prove FE → finite (False → Prop).

Exercise 10.12.3 Prove PCA → finite Prop.

Exercise 10.12.4 Prove ∀X : Type. (∀xy :X. x = y)→ finite X.

104 2010/7/27

10.13 Transitive Closure with Nat

10.13 Transitive Closure with Nat

There is an intuitively appealing definition of the transitive closure operation

that exploits the inductive structure of the natural numbers. We formalize this

definition as follows:

Fixpoint iter {X : Type} (r : X -> X -> Prop) (n : nat) (x y : X) : Prop

:= match n with O => r x y | S n’ => exists x’, r x x’ /\ iter r n’ x’ y end.

Definition ntc {X : Type} (r : X -> X -> Prop) (x x’ : X) : Prop

:= exists n, iter r n x x’.

We prove that ntc yields a transitive relation.

Lemma ntc_left_transitive {X : Type} {r : X -> X -> Prop} {x y z : X} :

r x y -> ntc r y z -> ntc r x z.

intros X r x y z A. intros [n B]. exists (S n). exists y. tauto. Qed.

Lemma ntc_transitive {X : Type} (r : X -> X -> Prop) : transitive (ntc r).

intros X r x y z. intros [n A]. revert x y z A.

induction n ; intros x y z ; simpl.

apply ntc_left_transitive.

intros [x’ [A B]] C. apply (ntc_left_transitive A). revert B C. apply IHn. Qed.

We now show that ntc satisfies the specification tc of transitive closure we intro-

duced in §8.4.

Definition implies {X : Type} (p q : X -> X -> Prop) : Prop :=

forall x y, p x y -> q x y.

Definition strong {X : Type} (r p : X -> X -> Prop) : Prop :=

forall q : X -> X -> Prop, transitive q -> implies r q -> implies p q.

Definition tc {X : Type} (r p : X -> X -> Prop) : Prop :=

transitive p /\ implies r p /\ strong r p.

Lemma tc_ntc (X : Type) (r : X -> X -> Prop): tc r (ntc r).

intros X r. split.

(* trans ntc *) apply ntc_transitive. split.

(* implies *) intros x y A. exists O. apply A.

(* strong *) intros q tra imp x y. intros [n A]. revert x y A. induction n.

apply imp.

intros x y [x’ [A B]]. fold @iter in B. apply (tra x x’).

apply imp. apply A.

apply IHn. apply B. Qed.

Note the command fold @iter in B. It undoes an unnecessary delta reduction

of iter and this way makes the proof more readable. The proof still goes through

if this command is deleted.

2010/7/27 105

10 Natural Numbers

10.14 Coq’s Predefined Natural Numbers

Coq predefines the natural numbers as an inductive data type nat with the con-

structors O and S. There are notational conveniences, for instance S(S(SO))

can be written as 3. There is also a powerful tactic omega that can solve many

arithmetic goals. The tactic must first be loaded. Here is an example that runs in

an empty Coq shell.

Require Import Omega.

Goal forall k m n : nat, k < m -> m+1 < n+2 -> k < n.

intros k m n. omega. Qed.

106 2010/7/27

11 Models and First-Order Logic

In this chapter we will study models. Models give us a way to define truth inde-

pendent of provability. We will distinguish between validity (truth in all models),

satisfiability (truth in some model) and unsatisfiability (truth in no models). For

simplicity, we will restrict our attention to a first-order language with a single

binary relation (FOL). A model of such a language is simply a (directed) graph.

For this reason, we begin by considering graphs and properties of graphs. We

can use Coq to prove properties of graphs in general and to prove properties of

particular graphs.

In spite of its weakness, FOL is rich enough that validity is already unde-

cidable. We will give a natural deduction system for FOL that corresponds to

validity. This natural deduction system demonstrates that while validity is not

decidable, it is at least recursively enumerable (RE).

11.1 Graphs

A graph G is given as a pair (V , E) where V is a nonempty set of vertices and

E is a binary relation on V (i.e., E ⊆ V × V). We give a few example graphs in

Figure 11.1 and give them the names G1, G=1 , G2, G=2 , G3 and G∞.

We consider several properties a graph (equivalently, a binary relation) may

have. We can represent these properties in Coq and prove relationships between

them. Later we will show that the properties can also be expressed in a weaker

language called first-order logic (FOL).

We first consider three simple properties.

• full: Every vertex is related to every other vertex. ∀xy.(x,y) ∈ E
• reflexive: Every vertex is related to itself. ∀x.(x,x) ∈ E
• irreflexive: No vertex is related to itself. ∀x.(x,x) ∉ E
Table 11.1 indicates which of the graphs in Figure 11.1 satisfy which of these

properties.

Clearly, any full graph must be reflexive. We prove this simple fact in Coq.

To represent a general graph in Coq, we open a section, assume a type V for

vertices, and a binary predicate E for edges. Since we only consider graphs with

a nonempty set of vertices, we assume V is inhabited. Furthermore, we assume

107

11 Models and First-Order Logic

•
G1

•
G=1

• •
G2

• •
G=2

•
•
•

G3

• • • · · ·
G∞

Figure 11.1: Six Example Graphs

G1 G=1 G2 G=2 G3 G∞
full No Yes No No No No

reflexive No Yes No Yes No No

irreflexive Yes No Yes No Yes Yes

Table 11.1: Properties of the Six Example Graphs

XM to reflect that we are in a classical setting.

Section Graph.

Variable V : Type.

Variable E : V -> V -> Prop.

Variable inh : inhab V.

Variable xm : XM.

Next we include definitions corresponding to the three properties defined

above.

Definition full : Prop := forall x y:V, E x y.

Definition reflexive : Prop := forall x:V, E x x.

Definition irreflexive : Prop := forall x:V, ~E x x.

After the section is closed, these definitions will be generalized to account for

the fact that the local variables are no longer available. Each of these definitions

only depends on the variables V and E (but not inh or xm). Consequently, after

the section is closed, the definitions will be as follows:

full : ∀V : Type.(V → V → Prop)→ Prop

:= λV : Type.λE : V → V → Prop.∀xy : V.Exy

reflexive : ∀V : Type.(V → V → Prop)→ Prop

:= λV : Type.λE : V → V → Prop.∀x : V.Exx

irreflexive : ∀V : Type.(V → V → Prop)→ Prop

:= λV : Type.λE : V → V → Prop.∀x : V.¬Exx

For now, we continue to work within the section.

We now prove that a full graph must be reflexive.

108 2010/7/27

11.1 Graphs

Theorem full_ref : full -> reflexive.

intros a x. apply a.

Qed.

Within the section, the proof is simply λa : full.λx : V.axx. After the section is

closed, the theorem and proof will be

∀V : Type.∀E : V → V → Prop.full V E → reflexiveV E

and λV : Type.∀E : V → V → Prop.λa : full V E.λx : V.axx. This reflects the fact

that our extra assumptions (inhabitation and excluded middle) were not used in

the proof.

We next prove that if a graph is reflexive, then it is not irreflexive. In this case,

we must use the fact that V is inhabited.

Theorem ref_not_irref : reflexive -> ~irreflexive.

intros a b. destruct inh as [x _]. apply (b x (a x)).

Qed.

Since inhabitation was used, but excluded middle was not, the type of the theo-

rem outside the scope of the section will be

∀V : Type.∀E : V → V → Prop.inhabV → reflexiveV E → ¬irreflexiveV E

Next we consider three more properties.

• symmetric: If there is an edge from x to y , then there is an edge from y

to x. ∀xy.(x,y) ∈ E → (y,x) ∈ E. A symmetric graph is essentially an

undirected graph.

• transitive: For all nodes x,y, z ∈ V , if there are edges from x to y and from

y to z, then there is an edge from x to z.

∀xyz.(x,y) ∈ E ∧ (y, z) ∈ E → (x, z) ∈ E

• total: For every node x ∈ V , there is a node y ∈ V with an edge from x to y .

∀x.∃y.(x,y) ∈ E

In Coq, the definitions are given as follows:

Definition symmetric : Prop := forall x y:V, E x y -> E y x.

Definition transitive : Prop := forall x y z:V, E x y -> E y z -> E x z.

Definition total : Prop := forall x:V, exists y:V, E x y.

Again we use a table (Table 11.2) to indicate which of the graphs in Figure 11.1

satisfy which of these properties.

We prove that every symmetric, transitive, total graph is reflexive.

2010/7/27 109

11 Models and First-Order Logic

G1 G=1 G2 G=2 G3 G∞
symmetric Yes Yes No No No No

transitive Yes Yes Yes Yes No No

total No Yes No Yes No Yes

Table 11.2: More Properties of the Six Example Graphs

Theorem stt_ref : symmetric -> transitive -> total -> reflexive.

intros a b c x. destruct (c x) as [y Hxy]. apply (b _ y). apply Hxy. apply a. apply Hxy.

Qed.

Note that we used neither inhabitation nor XM.

Now, let us consider the following property:

∀xy : V.(Exy → Eyx)∨ (Eyx → Exy)

This property clearly holds for any symmetric graph (e.g., G1 and G=1). The prop-

erty also holds in G2. To check this, one would need to consider four cases where

x,y range over the two vertices. For each case, either the left or right disjunct

must be true. After careful consideration, the reader should be convinced that

the property holds in all the graphs in Figure 11.1. In fact, the property holds

for all graphs, as we now prove.

Theorem gd : forall x y, (E x y -> E y x) \/ (E y x -> E x y).

intros x y. destruct (xm (E x y)) as [a|a].

right. tauto.

left. intros b. destruct (a b).

Qed.

In this case, we did use our classical assumption XM . Consequently, when the

section is closed, the theorem will have type

∀V : Type.∀E : V → V → Prop.XM → ∀xy : V.(Exy → Eyx)∨ (Eyx → Exy).

Exercise 11.1.1 Prove the following:

Theorem total_total2 : total -> forall x:V, exists y:V, exists z:V, E x y /\ E y z.

Exercise 11.1.2 Consider the diamond property defined as follows:

Definition diamond : Prop := forall x y z, E x y -> E x z -> exists w, E y w /\ E z w.

Which of the graphs in Figure 11.1 satisfy this property?

Exercise 11.1.3 Let the following definitions be given.

110 2010/7/27

11.2 Working with particular graphs in Coq

Definition EqV (x y : V) : Prop := E x y /\ E y x.

Definition maximal (x : V) : Prop := forall y, E x y -> E y x.

Prove the following.

Theorem EqVRef : reflexive -> forall x, EqV x x.

Theorem EqVSym : forall x y, EqV x y -> EqV y x.

Theorem EqVTra : transitive -> forall x y z, EqV x y -> EqV y z -> EqV x z.

Theorem unf : transitive -> reflexive -> diamond ->

forall x y z, E x y -> E x z -> maximal y -> maximal z -> EqV y z.

We now close this section by closing the corresponding section in Coq.

End Graph.

11.2 Working with particular graphs in Coq

One can also use Coq to verify properties of particular graphs. As an example, we

consider the graph G2. We would like to reuse the names V and E in Coq for the

vertices and edge relation for this particular graph. We can reuse these names

with no problem because we have closed the Graph section in which V and E

were local variables. On the other hand, if we define V and E for this particular

graph globally, then we will not be able to redefine V and E for other examples

in the same Coq file. For this reason, we will open a section for each example

graph and define V and E locally within the section. To declare a definition that

will not persist beyond a section, we use Let instead of Definition.

First, we must decide how to define the type of vertices of G2. Let us call the

vertices v1 and v2 according to the picture

v1• •v2

We can use inductive types to obtain such a type of vertices.

Inductive V2 : Type :=

| v1 : V2

| v2 : V2.

We will reuse this type V2 for any graph with two vertices.1 Now we open a

section G2 and define the type V to be V2 and the edge relation E.

1 We define V2 globally since it is not possible to make a local inductive definition in Coq.

2010/7/27 111

11 Models and First-Order Logic

Section G2.

Let V := V2.

Let E (x y : V) := match x,y with v1,v2 => True | _,_ => False end.

The reader should carefully consider the definition of E and why the definition

corresponds to the graph G2.

We can easily verify that G2 is neither full nor reflexive. The idea in both

cases is to assume the property, and then apply the property to counterexample

vertices to conclude False.

Theorem not_full_G2 : ~full V E.

intros H. apply (H v1 v1).

Qed.

Theorem not_reflexive_G2 : ~reflexive V E.

intros H. apply (H v1).

Qed.

We can also easily verify that G2 is irreflexive by case analysis.

Theorem irreflexive_G2 : irreflexive V E.

intros x H. destruct x; apply H.

Qed.

Exercise 11.2.1 Use Coq to verify that G2 is transitive but is neither symmetric

nor total.

Exercise 11.2.2 Consider the graph with two vertices V = {v1, v2} and two

edges E = {(v1, v2), (v2, v2)}.

v1• •v2

Determine which of the properties (full, reflexive, irreflexive, symmetric, transi-

tive, total) this graph has. Verify your answer with a proof in Coq.

11.3 First-Order Logic

Let V be a set of variables and let x,y range over these variables. First-order

formulas are obtained with the grammar

s, t ::= Exy | ⊥ | s → t | ∀x.s

112 2010/7/27

11.3 First-Order Logic

Let Form be the set of all formulas. We assume the same notational conventions

as before. For example, s → t → u means s → (t → u), and ∀xy.s → t means

∀x∀y.(s → t). We will also use ¬s to denote s → ⊥.

In Coq we can obtain first-order formulas with an inductive definition. We use

the natural numbers to represent variables.

Definition Var := nat.

Inductive Form : Type :=

| Edge : Var -> Var -> Form

| Fal : Form

| Imp : Form -> Form -> Form

| All : Var -> Form -> Form.

Let us introduce a right associative infix notation for implication.

Infix "-->" := Imp (at level 35, right associativity).

Sometimes it is helpful to have an equality function that maps to bool instead of

Prop. We can define such a function for equality of variables recursively (using

the fact that Var is nat).

Fixpoint EqVar (x y : Var) : bool :=

match x,y with

| O,O => true

| S x’,S y’ => EqVar x’ y’

| _,_ => false

end.

We define a function FV : Form → ℘(Var) taking each formula s to the set

FV(s) of its free variables by a simple recursion.

• FV(Eyz) = {y,z}
• FV(⊥) = 0
• FV(s → t) = FV(s)∪ FV(t)

• FV(∀y.s) = FV(s) \ {y}
In Coq, we can define FV as follows (using bool instead of Prop):

Fixpoint FV (s : Form) (x : Var) : bool :=

match s with

| (Edge y z) => if (EqVar x y) then true else (EqVar x z)

| Fal => false

| Imp s t => if (FV s x) then true else FV t x

| All y s => if (EqVar x y) then false else FV s x

end.

2010/7/27 113

11 Models and First-Order Logic

From now on we will simply call a first-order formula s a formula. A sentence is

a formula with no free variables.

We similarly define a function BV : Form → ℘(Var) taking each formula s to

the set BV(s) of its bound variables by a simple recursion.

• BV(Eyz) = 0
• BV(⊥) = 0
• BV(s → t) = BV(s)∪ BV(t)

• BV(∀y.s) = BV(s)∪ {y}
Again, we give the implementation in Coq.

Fixpoint BV (s : Form) (x : Var) : bool :=

match s with

| Imp s t => if (BV s x) then true else BV t x

| All y s => if (EqVar x y) then true else BV s x

| _ => false

end.

For x,y, z ∈ Var, we write zxy to mean y when z is x and to mean z if z is not

x. We can easily define a naive form of substitution sxy on formulas as follows:

• (Ewz)xy := E wx
y z

x
y

• ⊥xy := ⊥
• (s → t)xy := sxy → txy

• (∀x.s)xy := ∀x.s
• (∀z.s)xy := ∀z.(sxy) if z 6= x.

Note that this substitution allows capturing. For example, (∀y.Exy)xy will be

∀y.Eyy . The intention is to only use sxy when we know y ∉ BVs. Here is an

implementation in Coq.

Definition SubstVar (z x y:Var) : Var :=

if (EqVar z x) then y else z.

Fixpoint Subst (s : Form) (x y : Var) : Form :=

match s with

| Edge z w => Edge (SubstVar z x y) (SubstVar w x y)

| Fal => Fal

| Imp s t => Imp (Subst s x y) (Subst t x y)

| All z s => if (EqVar z x) then (All z s)

else (All z (Subst s x y))

(*** This assumes y is not z ***)

end.

Defining equivalence up to alpha renaming is a bit more challenging. We can

define the binary relation s ∼α t as a special case of a more general relation

114 2010/7/27

11.4 Satisfaction

s
f ,g∼ t where f ,g : Var → Var. The more general relation is recursively defined as

follows:

1. Exy
f ,g∼ Ewz if fx = w, fy = z, x = gw and y = gz.

2. ⊥ f ,g∼ ⊥.

3. s1 → s2
f ,g∼ t1 → t2 if s1

f ,g∼ t1 and s2
f ,g∼ t2.

4. ∀x.s f ,g∼ ∀y.t if s
fxy ,g

y
x∼ t

We use the notation fxy to denote the function such that fxyx = y and fxy z = fz
if z 6= x. We define s ∼α t to hold when s

ι,ι∼ t where ι : Var → Var is the identity

function. We give the following definition in Coq using an auxiliary function to

represent s
f ,g∼ t.

Fixpoint AlphaEqAux (s t : Form) (f g : Var -> Var) :=

match s,t with

| Edge x y, Edge w z =>

(match (EqVar (f x) w),(EqVar (f y) z),(EqVar x (g w)),(EqVar y (g z)) with

true,true,true,true => true

| _,_,_,_ => false end)

| Fal,Fal => true

| Imp s1 s2,Imp t1 t2 => if (AlphaEqAux s1 t1 f g) then (AlphaEqAux s2 t2 f g) else false

| All x s,All y t =>

AlphaEqAux s t

(fun z => if (EqVar z x) then y else (f z))

(fun z => if (EqVar z y) then x else (g z))

| _,_ => false

end.

Definition AlphaEq (s t : Form) := AlphaEqAux s t (fun x => x) (fun x => x).

11.4 Satisfaction

Relative to a graph G, each sentence s is either true or false. Consider the sen-

tence ∀x.Exx. This is true if the graph is reflexive. The sentence is true in G=1
and G=2 , but is false in the other graphs in Figure 11.1. Likewise, the sentence

∀xy.Exy is true exactly when the graph is full.

We have relied on the intuition of the reader above to check whether a sen-

tence is true or false in a graph. Now we give precise definitions and prove some

important results. We will define a binary relation G ⊨ s between graphs G and

sentences s. We say G is a model of s or s is true in G precisely when G ⊨ s

holds. In order to define G ⊨ s, we will generalize to the case where s is a

formula (i.e., s may have free variables). To account for free variables, we use

assignments.

2010/7/27 115

11 Models and First-Order Logic

Let G = (V , E) be a graph. An assignment into G is a mapping ϕ : V → V

from variables to vertices in G. Given an assignment ϕ into G, a variable x ∈ V
and a vertex v , we use ϕx

v to denote the assignment such that ϕx
v(x) = v and

ϕx
v(y) = ϕy for y ∈ V \ {x}. We define a 3-ary relation G ⊨ϕ s for graphs G,

assignments ϕ into G, and formulas s. When G ⊨ϕ s holds, we say G satisfies

s with ϕ or ϕ is a satisfying assignment for s in G. The relation G ⊨ϕ s is

defined by recursion on formulas:

• G ⊨ϕ Exy iff (ϕx,ϕy) ∈ E.

• G 6⊨ϕ ⊥
• G ⊨ϕ (s → t) iff G ⊨ϕ s implies G ⊨ϕ t.
• G ⊨ϕ ∀x.s iff G ⊨ϕx

v
s for every v ∈ V .

We can also define the satisfaction relation in Coq. To do so, we first need to

define assignments and a way to update an assignmentϕ to be a new assignment

ϕx
v . In order to use the if-then-else notation at type bool, we make use of the

bool-valued equality function EqVar on variables.

Definition Assignment (V:Type) : Type := Var -> V.

Definition Update {V:Type} (phi:Assignment V) (x:Var) (v:V) : Assignment V :=

fun y => if (EqVar y x) then v else (phi y).

Fixpoint satisfies {V:Type} (E:V -> V -> Prop) (phi : Assignment V) (s : Form) : Prop :=

match s with

| Edge x y => E (phi x) (phi y)

| Fal => False

| Imp s t => (satisfies E phi s) -> (satisfies E phi t)

| All x s => forall v:V, satisfies E (Update phi x v) s

end.

We say a formula is valid if it is satisfied by every G and ϕ. We say a formula

is satisfiable if it is satisfied by some G and ϕ. A formula is unsatisfiable if it

is not satisfiable. Note that for any formula s, s is valid iff ¬s is unsatisfiable.

Likewise, ¬s is valid iff s is unsatisfiable.

Exercise 11.4.1 Let G be a graph and ϕ be an assignment into G. Formulate and

prove the following properties in Coq, assuming the classical assumption XM .

a) G ⊨ϕ ¬s iff G 6⊨ϕ s.
b) G ⊨ϕ s iff G 6⊨ϕ ¬s.
c) G ⊨ϕ s → t iff either G 6⊨ϕ s or G ⊨ϕ t
d) G 6⊨ϕ s → t iff G ⊨ϕ s and G 6⊨ϕ t.
e) G 6⊨ϕ ∀x.s iff there is some v ∈ V such that G 6⊨ϕx

v
s.

116 2010/7/27

11.4 Satisfaction

s ∨ t := ¬s → t

s ∧ t := ¬(s → ¬t)
∃x.s := ¬∀x.¬s

Table 11.3: Notation for other logical operators

f) G ⊨ϕ ¬s → t iff G ⊨ϕ s or G ⊨ϕ t.
g) G ⊨ϕ ¬(s → ¬t) iff G ⊨ϕ s and G ⊨ϕ t.
h) G ⊨ϕ ¬∀x.¬s iff there is some v ∈ V such that G ⊨ϕx

v
s.

Table 11.3 introduces notation for ∨, ∧ and ∃. Exercise 11.4.1 justifies each of

these. In Coq we can define these logical operators (and negation) as follows:

Definition Neg (s : Form) : Form := (s --> Fal).

Definition Or (s t : Form) := ((Neg s) --> t).

Definition And (s t : Form) := (Neg (s --> (Neg t))).

Definition Ex (x : Var) (s : Form) : Form := (Neg (All x (Neg s))).

Exercise 11.4.2 Prove the relationship between validity and unsatisfiability.

a) s is valid iff ¬s is unsatisfiable.

b) ¬s is valid iff s is unsatisfiable.

The following result is easily proven by recursion on formulas.

Proposition 11.4.3 Let G be a graph, s be a formula and ϕ,ψ be assignments

such that ϕx = ψx for every x free in s. Then G ⊨ϕ s iff G ⊨ψ s.

In particular, Proposition 11.4.3 implies that G ⊨ϕ s does not depend on the

assignment ϕ when s is a sentence. That is, for any graph G and sentence s,

either G ⊨ϕ s for every assignment ϕ into G or for no assignment ϕ into G. We

define G ⊨ s to hold if G ⊨ϕ s for every assignment ϕ into G and in this case we

say G is a model of s or s is true in G.

Exercise 11.4.4 Find a sentence s such that a graph G is total iff G ⊨ s.

Exercise 11.4.5 Let x and y be distinct variables. For each n ≥ 1, give a formula

sn such that for every graph G and assignment ϕ, G ⊨ϕ sn iff there is no path of

length n in G from ϕx to ϕy .

Exercise 11.4.6 Which of the following formulas are valid? Which are satisfi-

able?

a) ((Exy → Eyx)→ Exy)→ Exy

2010/7/27 117

11 Models and First-Order Logic

b) ((∀x.Exx)→ (∀x.Exx → ⊥)→ ⊥

Finally, we state two more results. These show that satisfaction respects alpha

equivalence and substitution.

Proposition 11.4.7 If s ∼α t, then for every graph G and assignment ϕ, G ⊨ϕ s
iff G ⊨ϕ t.

Proposition 11.4.8 Let x and y be variables and s be a formula such that y

is not bound in s. For any graph G and assignment ϕ, we have G ⊨ϕ sxy iff

G ⊨ϕx
ϕy
s.

11.5 Computational Properties

We can now ask a number of computational questions. We will also give the

answers to these questions, but will spend some time elaborating in the rest of

this chapter and the next.

1. Is there an algorithm that, given a formula s, determines whether or not s is

valid? The answer is no. The set of valid formulas is not decidable.

2. Is there an algorithm that, given a formula s, determines whether or not s

is satisfiable? No. This follows from the relationship between validity and

satisfiability (see Exercise 11.4.2). Hence the set of satisfiable formulas is also

not decidable.

3. Is the collection of valid formulas recursively enumerable (RE)? The answer to

this question is yes. We will justify this by giving a proof system for which

provability corresponds to validity.

4. Is the collection of unsatisfiable formulas RE? Yes. This also follows from the

relationship between validity and satisfiability (see Exercise 11.4.2).

5. Is the collection of satisfiable formulas RE? No. Since the set of unsatisfiable

formulas is RE, the set of satisfiable formulas is co-RE. If the set of satisfiable

formulas were RE, then it would be decidable.

6. Is the collection of all satisfiable formulas in which no ∀ quantifiers appear

decidable? Yes. This is essentially the problem of propositional satisfiability,

which is NP-complete.

7. Is the collection of all satisfiable formulas in which ∀ quantifiers only appear

in a prefix decidable? Yes. This is the Bernays-Schönfinkel fragment which we

will prove decidable.

Recall that to show a set is RE, it is enough to give an algorithm which takes

an input and terminates if the input is in the set and does not terminate if the

118 2010/7/27

11.5 Computational Properties

input is not in the set. Thus we can show a set is RE by giving a proof system

that generates members of the set.

2010/7/27 119

11 Models and First-Order Logic

120 2010/7/27

12 First-Order Natural Deduction

We now give a natural deduction proof system for first-order logic. Provability

in this system will correspond to validity. Hence we can use this proof system to

demonstrate that validity is RE.

12.1 Sequents and Sets of Assumptions

In natural deduction one proves formulas s relatives to a set of assumptions

A. To make this technically precise, we introduce the notion of a sequent. A

sequent is a pair A⇒ s where A is a finite set of formulas and s is a formula. We

write ⇒ s for 0⇒ s.

We can extend our notions of satisfaction and satisfiability to sets of formulas

in an obvious way. Let A be a set of formulas. We say G satisfies A with assign-

ment ϕ (and write G ⊨ϕ A) if G ⊨ϕ t for every t ∈ A. We say A is satisfiable if

there is some G and ϕ such that G ⊨ϕ A, otherwise we say A is unsatisfiable.

We say a sequent A⇒ s is valid if G ⊨ϕ s for any G and ϕ for which G ⊨ϕ A.

In other words, A is valid if A ∪ {¬s} is unsatisfiable. We can also extend the

⊨ notation to sequents and write G ⊨ϕ A ⇒ s (and say G satisfies A ⇒ s with

assignment ϕ) to mean G ⊨ϕ A implies G ⊨ϕ s. In other words, G ⊨ϕ A ⇒ s

means either G 6⊨ϕ A or G ⊨ϕ s. Note that A ⇒ s is valid iff G ⊨ϕ A ⇒ s for all

G and ϕ.

We can represent sets of assumptions by an inductive type in Coq (giving lists

of formulas, not sets). Sequents can also be represented as an inductive type in

Coq (essentially pairs).

Inductive Assumptions : Type :=

| Nil : Assumptions

| Add : Assumptions -> Form -> Assumptions.

Infix ",," := Add (at level 40, left associativity).

Inductive Sequent : Type :=

| Seq : Assumptions -> Form -> Sequent.

Infix "==>" := Seq (at level 42, left associativity).

121

12 First-Order Natural Deduction

Note that we have defined infix notation allowing us to read and write sequents

in a more natural format. We also need a function to check for membership

of a formula in a list. We define a simple function Eqform to check equality of

formulas.

Fixpoint EqForm (s t : Form) : bool :=

match s,t with

| Edge x y,Edge w z => if (EqVar x w) then (EqVar y z) else false

| Fal,Fal => true

| Imp s1 s2,Imp t1 t2 => if (EqForm s1 t1) then (EqForm s2 t2) else false

| All x s,All y t => if (EqVar x y) then (EqForm s t) else false

| _,_ => false

end.

We can use this to define a function Assum to check if a formula is in a set of

assumptions.

Fixpoint Assum (A : Assumptions) (s : Form) : bool :=

match A with

| Nil => false

| A,, t => if (EqForm s t) then true else Assum A s

end.

Recall from the last chapter that we have functions

FV : Form -> Var -> bool

BV : Form -> Var -> bool

AlphaEq : Form -> Form -> bool

Subst : Form -> Var -> Var -> Form

for free variables, bound variables, alpha equivalence, and substitution. We ex-

tend FV to apply to sets of formulas in the obvious way, defining FV(A) as
⋃

t∈A FV(t). We can easily define a function to check if a variable occurs free

in some assumption.

Fixpoint FVA (A : Assumptions) (x : Var) : bool :=

match A with

| Nil => false

| A,, t => if (FV t x) then true else FVA A x

end.

12.2 Natural Deduction

Figure 12.1 gives rules defining a first-order natural deduction (ND) proof system.

We write A ⊢ s and say A⇒ s is provable when A⇒ s can be derived using these

rules. We write ⊢ s and say s is provable if 0⇒ s can be derived.

122 2010/7/27

12.2 Natural Deduction

Assu
A, s ⇒ s

α
A⇒ s s ∼α t

A⇒ t
→ I

A, s ⇒ t

A⇒ s → t

→E
A⇒ s → t A⇒ s

A⇒ t
∀I

A⇒ t

A⇒ ∀x. t x fresh

∀E
A⇒ ∀x. t
A⇒ txy

y not bound in t Contra
A, s → ⊥ ⇒ ⊥

A⇒ s

x fresh means x is not free in any formula in A

Figure 12.1: First-order natural deduction proof rules

We can represent provability in this proof system in Coq by an inductive pred-

icate Prov on sequents.

Inductive Prov : Sequent -> Prop :=

| Assu : forall A s, Assum A s = true -> Prov (A ==> s)

| Alpha : forall A s t, AlphaEq s t = true -> Prov (A ==> s) -> Prov (A ==> t)

| ImpI : forall A s t, Prov (A,, s ==> t) -> Prov (A ==> s --> t)

| ImpE : forall A s t, Prov (A ==> s --> t) -> Prov (A ==> s) -> Prov (A ==> t)

| AllI : forall A x t, FVA A x = false -> Prov (A ==> t) -> Prov (A ==> All x t)

| AllE : forall A x t y, BV t y = false -> Prov (A ==> All x t) -> Prov (A ==> Subst t x y)

| Contra : forall A s, Prov (A,, s --> Fal ==> Fal) -> Prov (A ==> s).

Notation "A |- s" := (Prov (A ==> s)) (at level 42).

The correctness of this proof system can be factored into two properties:

soundness and completeness.

• Soundness: If A ⊢ s, then A⇒ s is valid.

• Completeness: If A⇒ s is valid, then A ⊢ s.
Soundness can be proven by an easy recursion on the derivation of A ⊢ s. We

will show completeness later.

The idea of the soundness proof is that each rule preserves validity. For all

the rules except the ∀I rule, we can show a stronger property. Namely, for any

G and ϕ, if G satisfies every premise with assignment ϕ, then G satisfies the

conclusion with the same assignment ϕ.

Exercise 12.2.1 Check the soundness of three of the rules by checking the fol-

lowing facts. Let G be a graph and ϕ be an assignment into G.

2010/7/27 123

12 First-Order Natural Deduction

a) If G ⊨ϕ A, s → ⊥ ⇒ ⊥, then G ⊨ϕ A⇒ s.

b) If G ⊨ϕ A, s ⇒ t, then G ⊨ϕ A⇒ s → t.

c) If G ⊨ϕ A⇒ s → t and G ⊨ϕ A⇒ s, then G ⊨ϕ A⇒ t.

We often say we want to prove A ⊢ s to mean we want to prove that A ⇒
s is derivable. We may do this under the assumption that other sequents are

derivable. Suppose, for example, a sequent A, s ⇒ s → t is derivable (i.e., A ⊢ s →
t). By Assu, we know A, s ⊢ s. By →E we can conclude that A, s ⇒ t is derivable

(i.e., A, s ⊢ t).
Let us repeat this argument. Assume A, s ⊢ s → t. We wish to prove A, s ⊢ t.

We can use →E to reduce this to proving A, s ⊢ s → t and A, s ⊢ s. We know

A, s ⊢ s → t by assumption. We know A, s ⊢ s by the rule Assu.

A more complex example is given by an important property called Weakening.

If A and A′ are finite sets of formulas and A ⊆ A′, then it can be proven that if

A⇒ s is derivable, then A′ ⇒ s is derivable. In other words, it can be proven that

if A ⊢ s, then A′ ⊢ s. Weakening can be proven by recursion on derivations, with

some care taken to preserve freshness in the ∀I rule.

Proposition 12.2.2 [Weakening] Suppose A ⊢ s and A′ is a finite set of formulas

such that A ⊆ A′. Then A′ ⊢ s.

Instead of proving Weakening in Coq, we will simply take it as an axiom. This

allows us to freely use Weakening to demonstrate provability of sequents.

Axiom Weakening : forall (A A’ : Assumptions) (s : Form),

A |- s

-> (forall s, Assum A s = true -> Assum A’ s = true)

-> A’ |- s.

In order to demonstrate the mechanics of first-order natural deduction

proofs, we will prove

∀y.Exy ⊢ ∀x.∃z.Ezx
where x, y and z are distinct variables. Recall that ∃z.Ezx means ¬∀z.¬Ezx.

Since x is free in the set of assumptions, we cannot apply the ∀I rule. Instead

we first use the α rule to rename x to y . Hence it is enough to prove

∀y.Exy ⊢ ∀y.∃z.Ezy

Applying the ∀I rule, we reduce the goal to proving

∀y.Exy ⊢ ∃z.Ezy

Since ∃z.Ezy is (∀z.¬Ezy)→ ⊥, we can apply the → I rule to reduce the goal to

∀y.Exy,∀z.¬Ezy ⊢ ⊥

124 2010/7/27

12.3 Simulating ND in Coq

α

∀I

→ I

→E

∀E

Assu
A⇒ ∀z.¬Ezy

A⇒ ¬Exy
∀E

Assu
A⇒ ∀y.Exy
A⇒ Exy

A⇒ ⊥
∀y.Exy ⇒ ∃z.Ezy

∀y.Exy ⇒ ∀y.∃z.Ezy
∀y.Exy ⇒ ∀x.∃z.Ezx

Figure 12.2: Example natural deduction derivation

Using Assu and ∀E (with ∀z.¬Ezy and x), we know

∀y.Exy,∀z.¬Ezy ⇒ ¬Exy

Since ¬Exy is Exy → ⊥, we can applying →E to reduce the goal to proving

∀y.Exy,∀z.¬Ezy ⊢ Exy

This goal can be solved using Assu and ∀E (with ∀y.Exy and y). We show the

full derivation in Figure 12.2. In this figure, A is the set {∀y.Exy,∀z.¬Ezy}.

12.3 Simulating ND in Coq

One can use Coq to simulate ND proof rules to justify A ⊢ s. Figure 12.3 lists

how to use Coq tactics to simulate ND proof rules. In addition to the basic rules,

one can also use Weakening as follows: If the claim of the goal is A′ ⊢ s, then we

can use

apply (Weakening A)

to reduce to two subgoals: (1) showing A ⊢ s and (2) showing every formula in A

is also in A′.
As a demonstration of this, we simulate the proof in Figure 12.2. To be def-

inite about variables, we take x, y and z to be 0, 1 and 2, respectively. (Recall

that we have implemented first-order variables as natural numbers in Coq.)

Section Examples.

Let x : Var := O.

Let y : Var := (S O).

2010/7/27 125

12 First-Order Natural Deduction

Assu: If the claim of the goal is A ⊢ s and s ∈ A, then use:

apply Assu.

This will leave a subgoal of proving s ∈ A. Often such a subgoal can be

proven by computation using reflexivity.

α: If the claim of the goal is A ⊢ t and we want to use the α rule to reduce to a

subgoal A ⊢ s where s ∼α t, then use

apply (Alpha _ s).

This leaves a subgoal of proving s ∼α t (which may be provable by compu-

tation) and a subgoal A ⊢ t.
→ I: If the claim of the goal is A ⊢ s → t, then to simulate → I use

apply ImpI.

This leaves a subgoal A, s ⊢ t.
→E: If the claim of the goal is A ⊢ t, then to simulate →E use

apply (ImpE _ s).

This introduces two subgoals A ⊢ s → t and A ⊢ s. Note that we must

explicitly give the formula s.

∀I: If the claim of the goal is A ⊢ ∀x.t, then to simulate ∀I use

apply AllI.

This leaves a subgoal of proving x is not free in A and a subgoal A ⊢ t.
∀E: Suppose the claim of the goal is A ⊢ s and we want to apply ∀E. Then s

must be of the form txy for some variables x and y and a formula t such that

y ∉ BV(t). To simulate ∀E, we must explicitly give x, t and y as follows:

apply (AllE _ x t y).

This leaves the subgoals of proving y ∉ BV(t) and A ⊢ ∀x.t. Coq will check

that txy computes to s. (If this is not the case, we may need to rewrite the

current claim until it has this form.)

Contra: If the claim of the goal is A ⊢ s, then to simulate Contra use

apply Contra.

This leaves the subgoal A,¬s ⊢ ⊥.

Figure 12.3: Coq tactics for simulating natural deduction rules

126 2010/7/27

12.4 Useful Facts about Provability

Let z : Var := (S (S O)).

Example FOEx1 : Nil,, All y (Edge x y) |- All x (Ex z (Edge z x)).

apply (Alpha _ (All y (Ex z (Edge z y)))). reflexivity.

apply AllI. reflexivity.

apply ImpI.

apply (ImpE _ (Edge x y)).

apply (AllE _ z (Neg (Edge z y)) x). reflexivity.

apply Assu. reflexivity.

apply (AllE _ y (Edge x y) y). reflexivity.

apply Assu. reflexivity.

Qed.

End Examples.

Exercise 12.3.1 Prove the following:

Let x : Var := O.

Example refl_not_irrefl_FO : Nil,, All x (Edge x x),, All x (Neg (Edge x x)) |- Fal.

Example XM1_FO : Nil |- (Or (Edge x x) (Neg (Edge x x))).

Example XM2_FO : Nil |- (Or (Neg (Edge x x)) (Edge x x)).

Exercise 12.3.2 Suppose A ⊢ ⊥. Use weakening to argue that A ⊢ s for any

formula s. (This is why our natural deduction system does not contain a ⊥-

elimination rule.)

12.4 Useful Facts about Provability

We now prove a number of facts about provability. These facts will be used to

relate provability to refutability and will ultimately be used to prove complete-

ness.

Proposition 12.4.1

1. If s ∈ A and ¬t ∈ A and s ∼α t, then A ⊢ ⊥.

2. If s → t ∈ A and A,¬s ⊢ ⊥ and A, t ⊢ ⊥, then A ⊢ ⊥.

3. If ¬(s → t) ∈ A and A, s,¬t ⊢ ⊥, then A ⊢ ⊥.

4. If ∀x.s ∈ A, y ∉ BV(s) and A, sxy ⊢ ⊥, then A ⊢ ⊥.

5. If ¬∀x.s ∈ A, y is not free in A, y ∉ BV(s) and A,¬sxy ⊢ ⊥, then A ⊢ ⊥.

Proof

1. Exercise.

2. Exercise.

2010/7/27 127

12 First-Order Natural Deduction

3. Assume ¬(s → t) ∈ A and A, s,¬t ⊢ ⊥. We need to prove A ⊢ ⊥. (That is, we

must show that A ⇒ ⊥ is provable.) By →E and Assu, it is enough to prove

A ⊢ s → t. By → I it is enough to prove A, s ⊢ t. We have this by Contra and

the assumption that A, s,¬t ⊢ ⊥.

4. Exercise.

5. This part is the most technically difficult because it involves α-renaming. As-

sume ¬∀x.s ∈ A, y is not free in A, y ∉ BV(s) and A,¬sxy ⊢ ⊥. By →E

and Assu, it is enough to prove A ⊢ ∀x.s. Under our assumptions, one can

show (∀x.s) ∼α (∀y.sxy). By α, it is enough to prove A ⊢ ∀y.sxy . Since y is

fresh, we can use ∀I to reduce our task to proving A ⊢ sxy . By Contra and the

assumption that A,¬sxy ⊢ ⊥, we are done. ¤

The proof of the third part of Proposition 12.4.1 can be simulated in Coq as

follows.

Lemma ImpN_Prov : forall A s t, Assum A (Neg (s --> t)) = true -> A,, s,, (Neg t) |- Fal

-> A |- Fal.

intros A s t a b.

apply (ImpE _ (s --> t)).

apply Assu. apply a.

apply ImpI.

apply Contra.

apply b.

Qed.

The proof of the last part of Proposition 12.4.1 can also be simulated in Coq,

assuming we have enough facts about ∼α.

Exercise 12.4.2 Prove the remaining parts of Proposition 12.4.1.

12.5 Conclusion

We have seen a natural deduction system for sequents. It is easy to see that

the set of provable sequents A ⇒ s can be enumerated using the proof system.

Hence the set of provable formulas can be enumerated. By soundness and com-

pleteness, a formula is valid iff it is provable. Thus the set of valid formulas

can be enumerated. (It also follows that the set of valid sequents can also be

enumerated.)

128 2010/7/27

13 First-Order Tableaux

Recall that a formula s is valid iff ¬s is unsatisfiable. Likewise, sequent A ⇒ s

is valid iff the set A,¬s is unsatisfiable. Hence we can reduce validity to unsat-

isfiability. In the previous chapter we considered a natural deduction system for

sequents such that provability of A ⇒ s corresponds to validity of A ⇒ s. In this

chapter we consider a tableau refutation system for sets of assumptions such

that A is refutable iff A is unsatisfiable. Completeness of the tableau system will

imply completeness of the natural deduction system.

13.1 Tableau System

A branch is a finite set of first-order formulas. That is, a branch is a set of

assumptions. As with sets of assumptions, we use A, s as notation for A∪ {s}.
In general, a tableau rule (or rule) is a tuple 〈A,A1, . . . , An〉 of branches with

n ≥ 0 such that A ⊆ Ai for each i ∈ {1, . . . , n}. We can also write this tuple in

the form
A

A1 · · · An

We refer to A as the head of this tableau rule and refer to each Ai as an alterna-

tive of the rule. If n ≥ 2 we say the rule is branching.

We usually indicate a certain set of tableau rules by giving a rule schema. For

example T→ in Figure 13.1 is the set of rules 〈A,A1, A2〉 where for some s, t : o

we have s → t ∈ A, A1 = A∪ {¬s} and A2 = A∪ {t}. We say a rule applies to A

if A is the head of the rule.

From an operational point of view, the tableau rule T→ can be applied to A

whenever s → t is in A. Applying T→ in such a situation yields two branches

A,¬s and A, t.

While schemas like T→ and T¬→ are technically sets of rules, we will often

refer to them simply as rules.

Our specific tableau system is defined by the rules in Figure 13.1.

We say a branch A is closed if one of the rules T⊥ or T¬ applies to A. In other

words, A is closed if either ⊥ ∈ A or {s,¬s} ⊆ A for some s. If a branch is not

closed, we say it is open.

We define the set of refutable branches inductively as follows:

129

13 First-Order Tableaux

T⊥
⊥

T¬
¬s, s

T→
s → t

¬s | t T¬→
¬(s → t)

s,¬t T∀
∀x.s
sxy

y ∉ BVs

T¬∀
¬∀x.s
¬sxy

y fresh, y ∉ BVs Tα
s

t
s ∼α t

y fresh means y is not free in the branch.

Figure 13.1: First-order tableau rules

• If 〈A,A1, . . . , An〉 is a rule and Ai is refutable for all i ∈ {1, . . . , n}, then A

is refutable. (In the special case when n = 0, this means that every closed

branch is refutable.)

The tableau calculus is sound and complete:

• Refutation Soundness: Every refutable branch is unsatisfiable.

• Completeness: Every unsatisfiable branch is refutable.

We will prove both of these properties soon.

13.2 Relationship to Natural Deduction

In this section we relate the notion of (tableau) refutability to that of (natural

deduction) provability.

Proposition 13.2.1 If A is refutable, then A ⊢ ⊥.

Proof This is easy to prove by induction on derivations. For each rule of the form

〈A,A1, . . . , An〉, the inductive hypothesis implies we know A1 ⊢ ⊥, . . ., An ⊢ ⊥.

We must justify A ⊢ ⊥. For the rules T¬, T→, T¬→, T∀ and T¬∀ we can use

Proposition 12.4.1. For T⊥, if ⊥ ∈ A, then we know A ⊢ ⊥ by Assu. It only

remains to consider the Tα case. Assume A, s, t ⊢ ⊥. We must show A, s ⊢ ⊥. By

→ I we know A, s ⊢ t → ⊥. By Assu we know A, s ⊢ s and so A, s ⊢ t by α. By →E

we know A, s ⊢ ⊥ as desired. ¤

We can now infer refutation soundness from soundness of the natural deduc-

tion system.

Theorem 13.2.2 (Refutation Soundness) If A is refutable, then A is unsatisfi-

able.

130 2010/7/27

13.3 Examples

Proof Suppose A is refutable. By Proposition 13.2.1 A ⊢ ⊥. By soundness of the

natural deduction system, A⇒ ⊥ is valid. That is, A is unsatisfiable. ¤

Similarly, once we know completeness of the tableau system, then we will

know the natural deduction system is complete.

Proposition 13.2.3 Assume the tableau system is complete. The natural deduc-

tion is also complete. That is, if A⇒ s is valid, then A ⊢ s.

Proof Assume A ⇒ s is valid. Then A,¬s is unsatisfiable. Completeness of the

tableau system implies A,¬s is refutable. By Proposition 13.2.1 A,¬s ⊢ ⊥. By

Contra we have A ⊢ s as desired. ¤

13.3 Examples

We now consider a few example refutations. In each case we use a tableau refu-

tation to show a formula s is valid by showing its negation ¬s is unsatisfiable.

Example 13.3.1 For our first example, we will prove∀x.⊥ → Exx. We will refute

the branch {¬∀x.⊥ → Exx}. The branch can be refuted simply by applying the

rules T¬∀ (with x), T¬→ and T⊥. This refutation can be shown in the following

format:
¬∀x.⊥ → Exx

¬(⊥ → Exx)

⊥
¬Exx

The first formula is the negation of the formula we wish to prove valid. The

remaining formulas are added by applications of tableau rules. The final branch

is closed by T⊥. £

Example 13.3.2 We now use tableau to refute the negation of the Drinker’s

Lemma (see 6.3): ∃x.∀y.Exx → Eyy . Here we are using Exx in place of a

unary predicate dx. Also, note that ∃x.s as used here is notation for ¬∀x.¬s.
We negate the formula and begin the refutation

¬¬∀x.¬∀y.Exx → Eyy

How can we remove the double negation? Since ¬¬s is the same as ¬(s → ⊥) we

can apply T¬→ to obtain

¬¬∀x.¬∀y.Exx → Eyy

∀x.¬∀y.Exx → Eyy

¬⊥

2010/7/27 131

13 First-Order Tableaux

The formula ¬⊥ will not contribute to finding a refutation, so we take the liberty

to omit writing it from now on. Applying T∀ with the variable x we add

¬∀y.Exx → Eyy

to the branch. Applying T¬∀ with the variable y we add

¬(Exx → Eyy)

to the branch. Applying T¬∀ with the variable y we add to the branch. Now we

apply T¬→ to add Exx and ¬Eyy to the branch. We now reconsider the formula

∀x.¬∀y.Exx → Eyy

We wish to apply T∀ with y . Unfortunately, y occurs bound in this formula. We

resolve this difficulty by applying Tα to add the alpha equivalent formula

∀y.¬∀z.Eyy → Ezz

to the branch. We now apply T∀ to this formula with y , followed by T¬∀ with the

variable z (assumed to be different from x and y) and finally T¬→. This yields

the branch
¬¬∀x.¬∀y.Exx → Eyy

∀x.¬∀y.Exx → Eyy

¬∀y.Exx → Eyy

¬(Exx → Eyy)

Exx,¬Eyy

∀y.¬∀z.Eyy → Ezz

¬∀z.Eyy → Ezz

¬(Eyy → Ezz)

Eyy,¬Ezz

Note that this branch is closed by T¬ since it contains both Eyy and ¬Eyy . £

Our first two examples have not made use of the only branching rule: T→.

Consequently, our final tableau refutation only had one branch. In general, the

refutation will contain several branches. Branching shows up in our next exam-

ple: Russell’s Law.

Example 13.3.3 Recall that Russell’s law states ¬∃x.∀y.Exy ↔ ¬Eyy . Here

s ↔ t means (s → t) ∧ (t → s) and u ∧ v means ¬(u → ¬v)). Consequently,

s ↔ t means ¬((s → t)→ ¬(t → s)). We begin by negating the law.

¬¬∃x.∀y.Exy ↔ ¬Eyy

132 2010/7/27

13.3 Examples

We apply T¬→ to get rid of the double negation, T¬∀ with x and T¬→ again. After

applying these rules we have the following branch (omitting ¬⊥):

¬¬∃x.∀y.Exy ↔ ¬Eyy

¬∀x.¬∀y.Exy ↔ ¬Eyy

¬¬∀y.Exy ↔ ¬Eyy

∀y.Exy ↔ ¬Eyy

Next we apply T∀ with x to add

Exx ↔ ¬Exx

to the branch. Since equivalence is simply notation, we can apply T¬→ to add

Exx → ¬Exx and ¬¬(¬Exx → Exx) to the branch. We apply T¬→ to get rid of

the double negation. At this point we have the following branch:

¬¬∃x.∀y.Exy ↔ ¬Eyy

¬∀x.¬∀y.Exy ↔ ¬Eyy

¬¬∀y.Exy ↔ ¬Eyy

∀y.Exy ↔ ¬Eyy

Exx ↔ ¬Exx

Exx → ¬Exx

¬¬(¬Exx → Exx)

¬Exx → Exx

We proceed by applying T→ to ¬Exx → Exx. Thus we obtain two branches, one

extended with ¬¬Exx and the other extended with Exx. We visualize the new

state as a tree with two branches.

¬¬∃x.∀y.Exy ↔ ¬Eyy

¬∀x.¬∀y.Exy ↔ ¬Eyy

¬¬∀y.Exy ↔ ¬Eyy

∀y.Exy ↔ ¬Eyy

Exx ↔ ¬Exx

Exx → ¬Exx

¬¬(¬Exx → Exx)

¬Exx → Exx

¬¬Exx Exx

On each of these branches we can apply T→ on Exx → ¬Exx. The result is a

tree with four branches, each extended with ¬Exx. It is easy to see that all four

2010/7/27 133

13 First-Order Tableaux

branches are closed via T¬.

¬¬∃x.∀y.Exy ↔ ¬Eyy

¬∀x.¬∀y.Exy ↔ ¬Eyy

¬¬∀y.Exy ↔ ¬Eyy

∀y.Exy ↔ ¬Eyy

Exx ↔ ¬Exx

Exx → ¬Exx

¬¬(¬Exx → Exx)

¬Exx → Exx

¬¬Exx

¬Exx ¬Exx

Exx

¬Exx ¬Exx

13.4 Simulating Tableau in Coq

We now give a way to simulate this tableau refutation system in Coq. We assume

we are in a section with an assumed type V and an edge relation E. We further

assume V is inhabited and that excluded middle holds.

Section Tableau.

Variable V : Type.

Variable E : V -> V -> Prop.

Variable inh : inhab V.

Variable xm : XM.

We can embed first-order formulas into this context as follows:

• ⊥ := False

• Exy := E x y

• s → t := s−>t
• ∀x.s := forall x, s

In other words, we use Coq’s version of ∀, → and ⊥. For convenience, we define

notation for some other logical constants.

Definition existsF (p : V -> Prop) : Prop := ~forall x, ~p x.

Notation "’existsF’ x , s" := (existsF (fun x => s)) (at level 42).

Definition andF (s t : Prop) : Prop := ~(s -> ~t).

Definition orF (s t : Prop) : Prop := (~s -> t).

Definition equivF (s t : Prop) : Prop := andF (s -> t) (t -> s).

We will now define a set of tactics to simulate our tableau system.

If our goal is to prove s by a tableau refutation, we always start by assuming

¬s. This can be justifying by a double negation lemma, which is proven using

excluded middle.

134 2010/7/27

13.4 Simulating Tableau in Coq

Lemma DN (X : Prop) : (~X -> False) -> X.

intros X H. destruct (xm X) as [a|b].

apply a.

destruct (H b).

Qed.

We define a tactic tab_start to apply DN .

Ltac tab_start H := (apply DN ; intros H).

We will start all of our tableau-style proofs with

tab_start H1.

After using this tactic, claim of our goal is

False

under one assumption

H1: ~s

This tactic is only used once in the proof. After this tactic is used, the claim of

all our goals will remain False.

Next consider the closing rules T⊥ and T¬. We can apply T⊥ if we have an

assumption False. Since our claim is also False, we can complete our proof of

the goal using the exact tactic. To be specific, if H is the label of the assumption

False, exact H will complete the proof of the goal. We define a simple tactic

tab_bot to do this.

Ltac tab_bot H := (exact H).

In a similar way, if T¬ applies, then there must be an formula s such that s

and ¬s are both assumptions. Suppose H is the label of s and H’ is the label of

¬s. exact (H’ H) will complete the proof of the goal. We define a simple tactic

tab_conflict to do this.

Ltac tab_conflict H H’ := (exact (H’ H)).

All the remaining tactics have the effect of extending our set of assumptions.

We can apply T→ if s → t is an assumption, say with label H. After applying

the rule, we will have two new subgoals, each with the claim False and each

with one new assumption. In one subgoal, the new assumption will be ¬s. In

the other subgoal, the new assumption will be t. We will use the same label H’

for the new assumption in both subgoals. The rule T→ is simulated by the tactic

tab_imp applied to H and the new label H’. tab_imp is defined (using a lemma)

as follows:

2010/7/27 135

13 First-Order Tableaux

Lemma TImp {X Y:Prop} : (X -> Y) -> (~X -> False) -> (Y -> False) -> False.

intros X Y H R1 R2.

apply R1. intros x. apply R2. apply (H x).

Qed.

Ltac tab_imp H H’ := (apply (TImp H) ; intros H’).

We can apply T¬→ if ¬(s → t) is an assumption, say with label H. This will

add two new assumptions, s and ¬t. We simulate this rule by tab_imp’ applied

to the label of the assumption ¬(s → t) and two new labels for the two new

assumptions.

Lemma TImp’ {X Y:Prop} : ~(X -> Y) -> (X -> ~Y -> False) -> False.

intros X Y H R.

apply H. intros x. destruct R.

apply x.

intros y. apply H. intros _. apply y.

Qed.

Ltac tab_imp’ H H’ H’’ := (apply (TImp’ H) ; intros H’ H’’).

As we have already seen in examples, we sometimes would like to apply T¬→ but

ignore one of the new assumptions. This is particularly true if we apply the rule

to a double negation and so one of the second new assumption is ¬⊥. We define

two tactics that allow us to only label one of the new assumptions.

Ltac tab_imp1’ H H’ := (apply (TImp’ H) ; intros H’ _).

Ltac tab_imp2’ H H’ := (apply (TImp’ H) ; intros _ H’).

Since Coq considers alpha equivalent terms equivalent, we do not need to

simulate the Tα rule. For the same reason, we can drop the side condition that

y ∉ BV(s) in the T∀ and T¬∀ rules. This will mean there are slight differences

between the proof using the tableau system and its simulation in Coq. Make sure

to notice where we must use Tα in the refutation system, even though this is left

implicit in Coq.

The T∀ rule can be simulated with a tactic tab_all which must be given the

label of an assumption of the form ∀x.s, a variable y of type V and a fresh label

for the new assumption. This is defined using a lemma as follows:

Lemma TAll {p:V -> Prop} : (forall x:V, p x) -> forall y:V, (p y -> False) -> False.

intros p H y R.

apply R. apply H.

Qed.

Ltac tab_all H y H’ := (apply (TAll H y) ; intros H’).

136 2010/7/27

13.4 Simulating Tableau in Coq

There is one minor problem to work around. In the tableau system, we could use

any y in the T∀ rule (so long as y ∉ BV(s)). Coq will only allow us to use a y

where y : V is an assumption of our goal. Since V is assumed to be inhabited,

we add a tactic to introduce the assumption y : V whenever we wish to use y as

an instantiation. In particular, we will need this tactic to simulate the Drinker’s

Lemma (Example 13.3.2).

Ltac tab_inh y := (destruct inh as [y _]).

Finally, the T¬∀ can be simulated by a tactic tab_all’ defined as follows.

Lemma TAll’ {p:V -> Prop} : ~(forall x:V, p x) -> (forall y:V, ~p y -> False) -> False.

intros p H R.

apply H. intros x. destruct (xm (p x)) as [a|a].

apply a.

destruct (R x a).

Qed.

Ltac tab_all’ H y H’ := (apply (TAll’ H) ; intros y H’).

A tableau refutation in Coq of a first-order formula is simply a proof that only

uses the tactics defined above:

tab_start H. (*** Only used once, at the start. ***)

tab_bot H.

tab_conflict H H’.

tab_imp H H’.

tab_imp’ H H’ H’’.

tab_imp1’ H H’.

tab_imp2’ H H’.

tab_all H y H’.

tab_inh y.

tab_all’ H y H’.

Here is a quick summary of how each tactic is used.

• tab_start H. - This is only used once, at the beginning of the proof. H must

be a fresh name and will correspond to the negation of the formula we wish

to prove.

• tab_bot H. - This presupposes H : ⊥ is an assumption and finishes the goal.

• tab_conflict H H’. - This presupposes H : s and H′ : ¬s are assumptions

and finishes the goal.

• tab_imp H H’. - This presupposes H : s → t is an assumption and creates

two new subgoals. The first subgoal has the additional assumptiom H′ : ¬s
and the second subgoal has the additional assumption H′ : t. H′ must be a

fresh name.

2010/7/27 137

13 First-Order Tableaux

• tab_imp’ H H’ H’’. - This presupposes H : ¬(s → t) is an assumption and

adds the two new assumptions H′ : s and H′′ : ¬t. H′ and H′′ must be fresh.

• tab_imp1’ H H’. - This presupposes H : ¬(s → t) is an assumption and

adds the new assumption H′ : s. H′ must be fresh.

• tab_imp2’ H H’. - This presupposes H : ¬(s → t) is an assumption and

adds the new assumption H′ : ¬t. H′ must be fresh.

• tab_all H y H’. - This presupposes H : ∀x.s is an assumption and adds

the new assumption H′ : sxy . (Coq’s substitution will avoid capture.) H′ must

be a fresh name.

• tab_inh y. - This adds the assumption y : V , where y must be a fresh

variable.

• tab_all’ H y H’. - This presupposes H : ¬∀x.s is an assumption and adds

the new assumptionH′ : ¬sxy . (Coq’s substitution will avoid capture.) H′ must

be a fresh name. y and H′ must be fresh.

13.4.1 Simulating the Examples in Coq

We now reconsider the tableau refutations from Section 13.3 and show how to

simulate the refutations in Coq.

Example 13.4.1 (Coq Simulation of Example 13.3.1) In Example 13.3.1 we con-

structed a tableau refutation using T¬∀ (with x), T¬→ and T⊥. The Coq simula-

tion is easy:

Example FalseElim_Tab : (forall x, False -> E x x).

tab_start H1.

tab_all’ H1 x H2.

tab_imp1’ H2 H3.

tab_bot H3.

Qed.

We can now show the tableau we constructed in Example 13.3.1 with the labels

from the Coq simulation:

H1 :¬∀x.⊥ → Exx

H2 :¬(⊥ → Exx)

H3 :⊥
Note that we have used tab_imp1’ instead of tab_imp’ to suppress the unused

assumption ¬Exx. £

Example 13.4.2 (Coq Simulation of Example 13.3.2) We next simulate the tableau

refutation proving the Drinker’s Lemma. Note the use of tab_inh x to put the

variable x into the assumptions of the goal so that we can use x in the T∀ rule.

138 2010/7/27

13.4 Simulating Tableau in Coq

Example Drinker_Tab : existsF x, forall y, E x x -> E y y.

tab_start H1.

tab_imp1’ H1 H2.

tab_inh x.

tab_all H2 x H3.

tab_all’ H3 y H4.

tab_imp’ H4 H5 H6.

tab_all H2 y H7.

tab_all’ H7 z H8.

tab_imp’ H8 H9 H10.

tab_conflict H9 H6.

Qed.

We now show the tableau refutation with the corresponding Coq labels for the

assumptions. Note that the refutation requires a use of Tα. This is reflected by

giving two different, but alpha equivalent, formulas the label H2.

H1 :¬¬∀x.¬∀y.Exx → Eyy

H2 :∀x.¬∀y.Exx → Eyy

H3 :¬∀y.Exx → Eyy

H4 :¬(Exx → Eyy)

H5 : Exx

H6 :¬Eyy

H2 :∀y.¬∀z.Eyy → Ezz

H7 :¬∀z.Eyy → Ezz

H8 :¬(Eyy → Ezz)

H9 : Eyy

H10 :¬Ezz

The formulas labeled H5 and H10 are unused. We can simplify the presentation

of the refutation by using the tactics tab_imp2’ H4 H6 and tab_imp1’ H8 H9

and omitting these two assumptions.

Example Drinker_Tab : existsF x, forall y, E x x -> E y y.

tab_start H1.

tab_imp1’ H1 H2.

tab_inh x.

tab_all H2 x H3.

tab_all’ H3 y H4.

tab_imp2’ H4 H6. (*** instead of tab_imp’ H4 H5 H6. ***)

tab_all H2 y H7.

tab_all’ H7 z H8.

tab_imp1’ H8 H9. (*** instead of tab_imp’ H8 H9 H10. ***)

tab_conflict H9 H6.

Qed.

2010/7/27 139

13 First-Order Tableaux

Example 13.4.3 (Coq simulation of Example 13.3.3) The refutation proving Rus-

sell’s law can be simulated as follows:

Example Russell_Tab : ~existsF x, forall y, equivF (E x y) (~E y y).

tab_start H1.

tab_imp1’ H1 H2.

tab_all’ H2 x H3.

tab_imp1’ H3 H4.

tab_all H4 x H5.

tab_imp’ H5 H6 H7.

tab_imp1’ H7 H8.

tab_imp H8 H9.

(*** Branch 1 ***)

tab_imp H6 H10.

(*** Branch 1.1 ***)

tab_conflict H10 H9.

(*** Branch 1.2 ***)

tab_conflict H10 H9.

(*** Branch 2 ***)

tab_imp H6 H10.

(*** Branch 2.1 ***)

tab_conflict H9 H10.

(*** Branch 2.2 ***)

tab_conflict H9 H10.

Qed.

The tableau refutation with labels is given below.

H1 :¬¬∃x.∀y.Exy ↔ ¬Eyy

H2 :¬∀x.¬∀y.Exy ↔ ¬Eyy

H3 :¬¬∀y.Exy ↔ ¬Eyy

H4 :∀y.Exy ↔ ¬Eyy

H5 : Exx ↔ ¬Exx

H6 : Exx → ¬Exx

H7 :¬¬(¬Exx → Exx)

H8 :¬Exx → Exx

H9 :¬¬Exx

H10 :¬Exx H10 :¬Exx

H9 : Exx

H10 :¬Exx H10 :¬Exx

Exercise 13.4.4 Use tableau to prove the following formulas by refuting the

negation. Simulate the refutation in Coq and draw the tableau refutation with

labels corresponding to the Coq assumptions.

a) (∀xy.Exy)→ ∀y.Eyy
Lemma full_ref_Tab : (forall x y, E x y) -> forall y, E y y.

140 2010/7/27

13.4 Simulating Tableau in Coq

b) (∀x.∃y.Exy)→ ∀x.∃y.∃z.Exy ∧ Eyz

Lemma total_total2_Tab : (forall x, existsF y, E x y)

-> (forall x, existsF y, existsF z, andF (E x y) (E y z)).

c) (∀x.Exx)→ ¬(∀x.¬Exx)

Lemma refl_not_irrefl_Tab : ((forall x, (E x x)) -> ~(forall x, ~(E x x))).

d) ∀xy.((Exy → Eyx)→ Exy)→ Exy

Lemma Peirce_Tab : (forall x y, ((E x y -> E y x) -> E x y) -> E x y).

13.4.2 A Similar Simulation of ND in Coq

We can also simulate natural deduction using tactics within the same section in

Coq. We briefly describe the tactics, define the tactics and show two examples.

Like the tableau case, we omit the α rule in Coq and use the fact that alpha

equivalence is handled by Coq. For the same reason, we can ignore the side

condition that y ∉ BV(s) in the ∀E rule and liberalize the ∀I rule to allow any

fresh variable to be used instead of only using the particular variable bound

by the quantifier. We define a tactic nd_inh which is the same as tab_inh for

the same purpose, to introduce a new variable y : V into the assumptions so

that it is available for the ∀E rule. The tactic nd_Contra applies the double

negation lemma, and is defined the same way as tab_start. Unlike tab_start,

nd_Contra may be used at any point in the proof and may be used more than

once. The introduction tactics nd_ImpI and nd_AllI simply do intros with the

given name. To ensure that nd_AllI is only used when the claim of the goal is a

universal quantifier (over V) the tactic first checks if the goal has the right form.

Similarly, nd_ImpI checks that the claim of the goal is not a universal quantifier

(over V) before doing the introduction. The elimination tactics nd_AllE and

nd_ImpE apply simple lemmas NDImpE and NDAllE. With the nd_ImpE tactic we

must explicitly give the formula on the left of the implication. With the nd_AllE

tactic we must explicitly give the body of the quantifier (as λx : V .s) and the

variable used for the instantiation.

Lemma NDImpE {Y : Prop} (X : Prop) : (X -> Y) -> X -> Y.

intros Y X a x. apply a. apply x.

Qed.

Lemma NDAllE (p : V -> Prop) (y : V) : (forall x:V, p x) -> p y.

intros p y a. apply a.

Qed.

Ltac nd_Assu H := (exact H).

Ltac nd_Contra H := (apply DN; intros H).

2010/7/27 141

13 First-Order Tableaux

Ltac nd_AllI y :=

(match goal with |- (forall x:V, _) => intros y

| _ => fail 1 "Claim is not a forall" end).

Ltac nd_ImpI H :=

(match goal with |- (forall x:V, _) => fail 1 "Claim is not an implication"

| _ => intros H end).

Ltac nd_ImpE s := (apply (NDImpE s)).

Ltac nd_AllE p y := (apply (NDAllE p y)).

Ltac nd_inh y := (destruct inh as [y _]).

A simulation of a first-order ND proof in Coq is a proof that only uses the seven

tactics

nd_Assu H.

nd_Contra H.

nd_ImpI H.

nd_AllI y.

nd_ImpE s.

nd_AllE p y.

nd_inh y.

Here is a quick summary of how each tactic is used.

• nd_Assu H. - This finishes the goal where the claim is s and H : s is an

assumption.

• nd_Contra H. - If s is the claim, then a new assumption H : ¬s is added and

the new claim is ⊥.

• nd_ImpI H. - This presupposes the claim is s → t and H is fresh. A new

assumption H : s is added and the new claim is t.

• nd_AllI y. - This presupposes the claim is ∀x.s and y is fresh. A new

assumption y : V is added and the new claim is sxy . (Coq’s substitution avoids

capture.)

• nd_ImpE s. - If t is the claim, then two new subgoals are created, one with

claim s → t and the other with claim s.

• nd_AllE p y. - Here p has type V → Prop and y : V . The claim must be

(py) up to conversion. The new claim is ∀x.px for some x (of Coq’s choice)

where x is not free in p.

• nd_inh y. - This adds y : V as an assumption.

We consider two simple examples.

142 2010/7/27

13.4 Simulating Tableau in Coq

Example 13.4.5 Consider the valid formula ∀x.⊥ → Exx. We give an ordinary

Coq proof script. A simpler Coq script would use destruct on the assumption

H1, but we will make use of apply DN instead. The reason is to make the proof

closer to the first-order ND system.

Example FalseElim_1 : (forall x, False -> E x x).

intros x H1.

apply DN.

intros H2.

apply H1.

Qed.

Next we give a natural deduction derivation justifying ⊢ ∀x.⊥ → Exx. We add

labels to the assumptions corresponding to the labels in the Coq simulation.

∀I

→ I

Contra

Assu
H1:⊥,H2:¬Exx ⇒ ⊥
H1:⊥ ⇒ Exx

⇒ ⊥ → Exx

⇒ ∀x.⊥ → Exx

Finally we give a Coq simulation of the ND derivation.

Example FalseElim_ND : (forall x, False -> E x x).

nd_AllI x.

nd_ImpI H1.

nd_Contra H2.

nd_Assu H1.

Qed.

Example 13.4.6 Consider the valid formula (∀x.Exx)→ ¬(∀x.¬Exx). We first

give an ordinary Coq proof script.

Lemma refl_not_irrefl_1 : (forall x, E x x) -> ~(forall x, ~E x x).

intros H1 H2.

destruct inh as [x _].

apply (H2 x).

apply H1.

Qed.

We now give the ND derivation. We add labels to the assumptions corresponding

to the labels in Coq.

2010/7/27 143

13 First-Order Tableaux

→ I

→ I

→E

∀E

Assu
H1:∀x.Exx,H2:∀x.¬Exx ⇒ ∀x.¬Exx

H1:∀x.Exx,H2:∀x.¬Exx ⇒ ¬Exx
∀E

Assu
H1:∀x.Exx,H2:∀x.¬Exx ⇒ ∀x.Exx
H1:∀x.Exx,H2:∀x.¬Exx ⇒ Exx

H1:∀x.Exx,H2:∀x.¬Exx ⇒ ⊥
H1:∀x.Exx ⇒ ¬∀x.¬Exx

⇒ (∀x.Exx)→ ¬∀x.¬Exx

Now we give Coq simulation of the ND derivation.

Lemma refl_not_irrefl_ND : (forall x, E x x) -> ~(forall x, ~E x x).

nd_ImpI H1.

nd_ImpI H2.

nd_inh x.

nd_ImpE (E x x).

(*** Subgoal 1 ***)

nd_AllE (fun x => ~E x x) x.

nd_Assu H2.

(*** Subgoal 2 ***)

nd_AllE (fun x => E x x) x.

nd_Assu H1.

Qed.

Exercise 13.4.7 Justify ⊢ ∀x.¬¬Exx → Exx with a natural deduction deriva-

tion and with a simulation of ND in Coq.

Lemma DN_ND : (forall x, ~~E x x -> E x x).

Exercise 13.4.8 Justify ⊢ ∀x.(∀y.¬¬Exy) → Exx with a natural deduction

derivation and with a simulation of ND in Coq.

Lemma DN2_ND : forall x, (forall y, ~~E x y) -> E x x.

144 2010/7/27

14 First-Order Completeness

In this chapter we prove completeness of the first-order tableau system. Com-

pleteness of the first-order natural deduction system follows (see Proposi-

tion 13.2.3). Along the way, we will note decidability of satisfiability for a certain

fragment of first-order logic.

14.1 Evident Sets and Herbrand Models

Fix a variable x0 ∈ Var. For a set A of formulas, we define the Herbrand universe

H (A) of A as follows:

H (A) :=
{

FV(A) if FV(A) 6= 0
{x0} otherwise.

The Herbrand universe of a branch will provide us with a sufficient set of vari-

ables to use in the T∀ rule.

We now define evidence conditions that a set A of formulas may satisfy.

E⊥ ⊥ ∉ A.

E¬ If ¬s ∈ A, then s ∉ A.

E→ If s → t ∈ A, then ¬s ∈ A or t ∈ A.

E¬→ If ¬(s → t) ∈ A, then s ∈ A and ¬t ∈ A.

E∀ If (∀x.s) ∈ A, then for all y ∈ H (A), there is some t such that s ∼α t,
y ∉ BV(t) and txy ∈ A.

E¬∀ If (¬∀x.s) ∈ A, then ¬sxy ∈ A for some y ∉ BV(s).

We say A is evident if it satisfies these evidence conditions.

The major result we prove is that every evident set A is satisfiable. Let A be an

evident set. The Herbrand model of A is the graph G = (V , E) defined by taking

V to be the variables in the Herbrand universe and E to be the edges determined

by the set A. That is, define V := H (G). We define E such that (x,y) ∈ E iff

Exy ∈ A.

145

14 First-Order Completeness

Lemma 14.1.1 Let A be an evident set and G = (V , E) be the Herbrand model of

A. Let ϕ be an assignment into G such that ϕx = x for each x ∈ H (A). For

each formula u the following two properties hold:

(1u) If u ∈ A, then G ⊨ϕ u.

(2u) If ¬u ∈ A, then G 6⊨ϕ u.

Proof We prove this by induction on the size of the formula u. The size |s| of a

formula s is defined recursively as

|⊥| := 0

|Exy| := 0

|s → t| := 1+ |s| + |t|
|∀x.s| := 1+ |s|

Note that |sxy | = |s| and that |s| = |t| whenever s ∼α t.
If u is ⊥, we have (1⊥) and (2⊥) by E⊥ and G 6⊨ϕ ⊥.

Assume u is Exy and u ∈ A. Clearly x,y ∈ H (A) and (x,y) ∈ E. Hence

G ⊨ϕ u.

Assume u is Exy and ¬u ∈ A. Again, x,y ∈ H (A). By E¬, Exy ∉ A. Hence

(x,y) ∉ E and so G 6⊨ϕ u.

Assume u is s → t and u ∈ A. By E→ we know either ¬s ∈ A or t ∈ A.

First, assume ¬s ∈ A. By inductive hypothesis we know (2s) and so G 6⊨ϕ s and

G ⊨ϕ u. Next, assume t ∈ A. By inductive hypothesis we know (1t) and so

G ⊨ϕ t and G ⊨ϕ u.

Assume u is s → t and ¬s ∈ A. By E¬→ we know s ∈ A and ¬t ∈ A. By

inductive hypothesis we know (1s) and (2t). Hence G ⊨ϕ s and G 6⊨ϕ t. Thus

G 6⊨ϕ u.

Assume u is ∀x.s and u ∈ A. We must prove G ⊨ϕ ∀x.s. Let y ∈ V (i.e.,

y ∈ H (A)) be given. We will prove G ⊨ϕx
y
s. By E∀ there is some t such that

s ∼α t, y ∉ BV(t) and txy ∈ A. Since |txy | = |s| we can apply the inductive

hypothesis (1t
x
y) to obtain G ⊨ϕ txy . By Proposition 11.4.8 and the fact that

ϕy = y we have G ⊨ϕx
y
t. By Proposition 11.4.7 we know G ⊨ϕx

y
s, as desired.

Assume u is ¬∀x.s and u ∈ A. By E¬∀ we know ¬sxy ∈ A for some y ∉ BV(s).

By the inductive hypothesis (2s
x
y) we know G 6⊨ϕ sxy . By Proposition 11.4.8 we

have G 6⊨ϕx
ϕy
s. Hence G 6⊨ ∀x.s. ¤

Theorem 14.1.2 (First-Order Model Existence) Let A be an evident set of (first-

order) formulas. Then A is satisfiable. That is, there is a graph G and an assig-

ment ϕ into G such that G ⊨ϕ A.

Proof Let G be the Herbrand model of A and take ϕ such that ϕx := x for each

x ∈ H (A). For variables z ∉ H (A), we take ϕz to be some element in H (A).

By Lemma 14.1.1, we know G ⊨ϕ A. ¤

146 2010/7/27

14.2 A Decidable Fragment

Exercise 14.1.3 Let x,y, z,w be distinct variables. For each of the following

sets, determine whether or not the set is evident. If the set is evident, compute

the Herbrand model of the set. If the set is not evident, list all the conditions

that fail.

a) 0

b) {⊥}
c) {¬⊥}
d) {Exy, Eyy}
e) {∀x.Exy, Eyy}
f) {∀y.Exy, Eyy}
g) {∀x.Exx,∀xy.Exy → Eyx, Ezz}
h) {¬∀x.Exx,∀x.∃y.Exy,∃y.Ezy,∃y.Ewy,¬Ezz,¬¬Ezw,¬¬Ewz, Ezw, Ewz}

Exercise 14.1.4 Let G be the Herbrand model of the following evident set.

{Exy, Eyy, Ezz, Ezy}

Determine which of the following sentences is true in the model.

a) ∀x.Exx
b) ∀xy.Exy → Eyx

c) ∀xyz.Exy → Eyz → Exz

d) ∀x.∃y.Exy

Exercise 14.1.5

a) Give an example of an evident set A such that the Herbrand model of A has

infinitely many vertices and infinitely many edges.

b) Give an example of an evident set A such that the Herbrand model of A has

infinitely many vertices, but only finitely many edges.

14.2 A Decidable Fragment

In this section we will consider classes of formulas which have a special form.

It will turn out that if all the formulas in a branch A have one of these special

forms, then we can decide satisfiability of A. In particular, we will be able to use

the tableau system to decide satisfiability of A.

A formula is quantifier-free if it has no occurrence of ∀. We say a formula s

is a ∀∗-formula if it has the form

∀y1 · · ·∀ym.t

2010/7/27 147

14 First-Order Completeness

where t is quantifier-free and m ≥ 0. We say a formula s is a ∃∗-formula if it has

the form

∃y1 · · ·∃ym.t

where t is quantifier-free and m ≥ 0. We say a formula s is a ∃∗∀∗-formula if it

has the form

∃x1 · · ·∃xn∀y1 · · ·∀ym.t

where t is quantifier-free and n,m ≥ 0. We say a formula s is a ∀∗∃∗-formula if

it has the form

∀x1 · · ·∀xn∃y1 · · ·∃ym.t

where t is quantifier-free and n,m ≥ 0.

Note the following:

• If s is quantifier-free, then s is also a ∀∗-formula and an ∃∗-formula.

• If s is a ∀∗-formula, then s is also an ∃∗∀∗-formula and a ∀∗∃∗-formula.

• If s is a ∃∗-formula, then s is also an ∃∗∀∗-formula and a ∀∗∃∗-formula.

We say a branch A is a Bernays-Schönfinkel- (BS-) branch if every formula

in A is an ∃∗∀∗-formula. We will prove that satisfiability is decidable for BS-

branches. In particular, this means satisfiability of ∃∗∀∗-formulas is decidable.

This also means that validity if ∀∗∃∗-formulas is decidable.

We say a branch A is a ∀∗-branch if every formula in A is a ∀∗-formulas.

We say a branch A is pure if no variable occurs both free and bound in A and

x0 ∉ BV(A). We prove satisfiability of pure ∀∗-branches is decidable. The other

decidability results will follow from this.

The following lemma will be helpful.

Lemma 14.2.1 Let A be a pure ∀∗-branch. If A is neither closed nor evident,

then at least one of the following hold:

1. There is some s → t ∈ A such that ¬s ∉ A and t ∉ A.

2. There is some ¬(s → t) ∈ A such that {s,¬t} 6⊆ A.

3. There is some ∀x.s ∈ A and y ∈H (A) such that sxy ∉ A.

Proof Assume A is not closed, but none of the three options hold. We prove A

is evident.

E⊥ ⊥ ∉ A since A is not closed.

E¬ If ¬s ∈ A, then s ∉ A since A is not closed.

E→ If s → t ∈ A, then ¬s ∈ A or t ∈ A since otherwise the first option holds.

E¬→ If ¬(s → t) ∈ A, then s ∈ A and ¬t ∈ A since otherwise the second option

holds.

148 2010/7/27

14.2 A Decidable Fragment

E∀ Suppose (∀x.s) ∈ A and y ∈ H (A). Since A is pure, y ∉ BV(s). We must

have sxy ∈ A since otherwise the third option holds.

E¬∀ We never have (¬∀x.s) ∈ A since A is a ∀∗-branch. ¤

We can use a restricted version of the tableau procedure to give a nondeter-

ministic algorithm findEvident that takes a pure ∀∗-branch and either returns

refutable or returns an evident extension A′ (i.e., a branch A′ such that A ⊆ A′).
The idea of the procedure is to apply the tableau rules with the following restric-

tions:

1. Only apply a rule if every alternative is a strict superset of the head.

2. Only apply T∀ with y in the Herbrand universe of the branch.

3. Never apply Tα or T¬∀.

If findEvident(A) returns refutable, then A will be refutable and hence unsat-

isfiable. If findEvident(A) returns A′, then we know A′ is satisfiable by Theo-

rem 14.1.2 and so A is satisfiable.

We first define the closure cl(A) of a branch to be the least set such that

• If s ∈ A, then s ∈ cl(A).

• If s → t ∈ cl(A), then ¬s ∈ cl(A) and t ∈ cl(A).

• If ¬(s → t) ∈ cl(A), then s ∈ cl(A) and ¬t ∈ cl(A).

• If ∀x.s ∈ cl(A) and y ∈HA, then sxy ∈ cl(A).

It is not difficult to see that the set cl(A) is finite.

The algorithm findEvident(A) is defined as follows:

• If A is closed (i.e., ⊥ ∈ A or {s,¬s} ⊆ A), then return refutable

• If A is evident, then return A.

• Otherwise, Lemma 14.2.1 applies. Nondeterministically choose one of the

following options.

1. Choose some s → t ∈ A such that ¬s ∉ A and t ∉ A. Do either of the

following:

a) If findEvident(A,¬s) returns an evident set A′, then return A′. Other-

wise, return findEvident(A, t).

b) If findEvident(A, t) returns an evident set A′, then return A′. Otherwise,

return findEvident(A,¬s).
2. Choose some ¬(s → t) ∈ A such that {¬s, t} ⊆ A. Return

findEvident(A,¬s, t).
3. Choose some ∀x.s ∈ A and y ∈ H (A) such that sxy ∉ A. Return

findEvident(A, sxy).

Consider a possible recursive call findEvident(A′) when computing

2010/7/27 149

14 First-Order Completeness

findEvident(A). It is easy to check that H (A) = H (A′) and cl(A) = cl(A′).
Since cl(A) is finite and A ⊊ A′ ⊆ cl(A), we know the algorithm terminates

whichever nondeterministic choices are made.

Proposition 14.2.2 Satisfiability of pure ∀∗-branches is decidable.

Proof It is clear that if findEvident(A) returns refutable, then A is, in fact,

refutable. (Each nondeterministic option corresponds to applying tableau rule.)

Otherwise, findEvident(A) returns an evident extension A′. We know A′ is satis-

fiable by Theorem 14.1.2. Since A ⊆ A′ we conclude A is satisfiable. ¤

It is now easy to see that satisfiability of ∀∗-branches is decidable.

Proposition 14.2.3 Satisfiability of ∀∗-branches is decidable.

Proof Given a∀∗-branch A, we can replace each s ∈ A with a formula t ∈ A such

that s ∼α t and such that BV(t)∩ FV(A) = 0 and x0 ∉ BV(t). Let B be the branch

consisting of these formulas t. Clearly B is a pure ∀∗-branch and satisfiability

of A is equivalent to satisfiability of B by Proposition 11.4.7. Decidability follows

from Proposition 14.2.2. ¤

Finally we prove decidability of satisfiability for BS is noting that we can get

rid of the leading ∃-quantifiers. This is justified by the following proposition.

Proposition 14.2.4 Let A be a branch, s be formula and x and y be variables.

Assume y ∉ FV(A)∪ FV(s)∪ BV(s). Then A∪ {∃x.s} is satisfiable iff A∪ {sxy} is

satisfiable.

Proof Suppose G ⊨φ A∪{∃x.s} where G = (V , E). Since G ⊨φ ∃x.s there is some

a ∈ V such that G ⊨φxa s (by Exercise 11.4.1). Since y ∉ FV(s)we know G ⊨(φya)xa s
by Proposition 11.4.3. Sinceφ

y
a (y) = a we know G ⊨φya sxy by Proposition 11.4.8.

Since y ∉ FV(A) we know G ⊨φya A by Proposition 11.4.3. Hence G ⊨φya A∪ {sxy}
as desired.

The other direction is easier. Suppose G ⊨φ A ∪ {sxy}. By Proposition 11.4.8

we know G ⊨φxφy s. Hence G ⊨φ ∃x.s (by Exercise 11.4.1) and so G ⊨φ A∪{∃x.s}
as desired. ¤

Theorem 14.2.5 Satisfiability of BS-branches is decidable.

Proof We can preprocess BS-branches A to obtain ∀∗-branches as follows. If A

is not already a ∀∗-branch, choose some ∃x.s in A and choose some variable

y ∉ FV(A)∪FV(s)∪BV(s). By Proposition 14.2.4 A is satisfiable iff (A\{∃x.s})∪
{sxy} is satisfiable. Note that (A \ {∃x.s}) ∪ {sxy} has one fewer ∃-quantifiers.

This process clearly terminates with an equi-satisfiable ∀∗-branch. We finish the

proof with an appeal to Proposition 14.2.3. ¤

150 2010/7/27

14.3 Completeness

Exercise 14.2.6 Let x,y, z,w,w′ be distinct variables. Determine whether or

not the following pure ∀∗-branches are satisfiable. If the branch is satisfiable,

give an evident extension. If the branch is unsatisfiable, give a tableau refutation.

a) {∀x.Exx,∀xy.Exy → Eyx}
b) {∀x.¬Exx,∀xy.Exy → Eyx}
c) {Ewz,¬Ezz,∀xy.Exy → Exx}
d) {Ewz,¬Eww,∀xy.Exy → Exx}
e) {Ewz,∀xy.Exy → ¬Eyx}
f) {Ewz,∀xy.¬Exy → Eyx}
g) {Eww′,¬Eww,∀xy.Exy → Eyx,∀xyz.Exy → Eyz → Exz}

14.3 Completeness

We now prove completeness. That is, we prove that every unsatisfiable branch

is refutable. In fact, we will prove the contrapositive. We say a branch A is

consistent if there is a branch A′ such that A ⊆ A′ and A′ is not refutable.

We will assume A is a branch that is not refutable and prove A is satisfiable.

We prove this in two steps. We first prove that every consistent branch can be

extended to an evident set.

Lemma 14.3.1 Let A be an consistent branch. There is an evident set B such that

A ⊆ B.

Proof Let u0, u1, u2, . . . be an enumeration of all formulas. We define an infinite

chain of consistent branches

A0 ⊆ A1 ⊆ A2 ⊆ · · ·

as follows. We take A0 to be A (assumed to be consistent). Assume An is defined.

We define An+1 as follows. If An ∪ {un} is not consistent, then let An+1 be An.

Otherwise, assume An ∪ {un} is consistent. First, assume un is of the form

¬∀x.t. Choose some A′ ⊇ An∪{un} such that A′ is not refutable. Choose some

y ∉ FV(A′)∪ BV(t). Let An+1 be An ∪ {un,¬txy}. If A′,¬txy were refutable, then

A′ would be refutable by T¬∀. Hence A′,¬txy witnesses that the branch An+1 is

consistent. Next, assume un is not of the form ¬∀x.t. In this case we define

An+1 to be An ∪ {un}.
Let B be

⋃

nAn. Clearly A ⊆ B. We check B is evident.

E⊥ If ⊥ ∈ B, then ⊥ ∈ An for some n, contradicting consistency of An.

E¬ If ¬s ∈ B and s ∈ B, then {¬s, s} ⊆ An for some n, contradicting consistency

of An.

2010/7/27 151

14 First-Order Completeness

E→ Assume s → t ∈ B. Let n and m be such that un is ¬s and um is t. Let

r ≥ max (n,m) such that s → t ∈ Ar . Choose A′ ⊇ Ar such that A′ is

not refutable. If A′∪{¬s} and A′∪{t} were both refutable, then A′ would be

refutable by T→. Thus eitherA′∪{¬s} orA′∪{t} is not refutable. First assume

A′∪{¬s} is not refutable. Since n ≤ r we know An∪{¬s} ⊆ A′∪{¬s}. Hence

An ∪ {¬s} is consistent and we must have un ∈ An+1 by construction. That

is, ¬s ∈ An+1 and so ¬s ∈ B as desired. Next assume A′ ∪ {t} is consistent.

In this case, t ∈ Am+1 since Am ∪ {t} ⊆ A′ ∪ {t}.
E¬→ Assume ¬(s → t) ∈ B. Let n and m be such that un is s and um is ¬t. Let

r ≥ max (n,m) such that ¬(s → t) ∈ Ar Choose A′ ⊇ Ar such that A′ is not

refutable. We know A′ ∪ {s,¬t} is not refutable (via T¬→). Hence s ∈ An+1

and ¬t ∈ Am+1.

E∀ Assume (∀x.s) ∈ B and y ∈ H (B). Let t be a formula such that s ∼α t and

y ∉ BV(t). Let n be such that un is txy . Let r ≥ n be such that ∀x.s ∈ Ar .

Choose A′ ⊇ Ar such that A′ is not refutable. We know A′ ∪ {∀x.t, txy} is

not refutable since otherwise A′ would be refutable by Tα and T∀. Hence

txy ∈ An+1.

E¬∀ Assume (¬∀x.s) ∈ B. Let n be such that un is ¬∀x.s. By construction

there is some y ∉ BV(s) such that ¬sxy is in An+1. ¤

Theorem 14.3.2 (Completeness) If a branch A is unsatisfiable, then A is

refutable.

Proof Assume A is not refutable. Clearly, A witnesses that A is consistent. By

Lemma 14.3.1 there is an evident set B such that A ⊆ B. We know B is satisfiable

by Theorem 14.1.2 and so A is satisfiable. ¤

152 2010/7/27

Coq Summary

This appendix lists and classifies the Coq commands and tactics used in this

book. It also lists some predefined variables. Consult the Coq reference manual

for more information.

A.1 Commands

The Coq shell processes commands. Commands start with a keyword and end

with a dot.

Definitions

• Definition x : s := t Defines variable x.

• Inductive x : s := x1 : s1 | · · · | xn : sn Defines variables x and x1, . . . , xn.

• Fixpoint Abbreviates Definition x : s := fix

• Notation . . . Defines a notation

• Implicit Arguments x [x1 · · · xn] Defines implicit argument notation for de-

fined variable x.

• Ltac x x1 · · · xn := t Defines a tactic x taking arguments x1, . . . , xn.

Proof Synthesis

• Definition x : s Starts synthesis of a term of type s.

• Defined Ends synthesis and defines variable x.

• Qed Like Defined but defined variables becomes irreducible.

• Show Proof Shows current proof state.

• Goal s Like Definition x : s where x is generated by Coq.

• Theorem x : s Like Definition x : s.

• Example Synonym for Definition.

• Lemma Synonym for Theorem.

• Corollary Synonym for Theorem.

Requests

• Check t Elaborates and type checks t.

• Eval t in s Applies tactic t to s.

153

Coq Summary

• Print x Prints information about defined variable x.

• About x Says in which library x is defined.

Sections

• Section x Opens a section x.

• Variable x : t Declares a local parameter x.

• End x Ends section x.

A.2 Tactics

Tactics are commands that provide for type-directed synthesis of terms. They

can only be used in proof synthesis mode.

Basic Tactics

• refine t Refines the underlines in t such that t proves the claim. Introduces

subgoals for underlines it cannot synthesize.

• exact t Like refine but fails if an underline cannot be synthesized.

• apply t Smart version of refine. Tries to refine t. If this fails, it tries to refine

t _, then t _ _, and so on. Uses pattern to synthesize functions.

• intros x Synthesizes lambdas and creates subgoal for remaining body. Syn-

thesizes matches for patterns.

Let Tactics

Synthesize let terms.

• assert (x := t) Creates assumption x : u where t : u.

• assert (x : t) Creates subgoal for t and assumption x : t in current subgoal.

• pose (x := t) Behaves like a local definition, x is delta reducible.

Conversion Tactics

Act on the claim. Can be applied to an assumption x by adding “in x”.

• cbv Reduces to normal form.

• cbv beta Performs beta reduction.

• pattern t Patterns out subterm t by creating a beta redex st.

• pattern t at n Patterns out n-th occurrence of subterm t.

• unfold x Delta reduces x, then beta reduces.

• fold x Undoes unfold if there was no beta reduction.

• red Performs beta and delta reduction, delta only at top level.

154 2010/7/27

A.2 Tactics

• simpl Performs beta and iota reduction, plus delta reductions that exhibit

iota redexes.

Logical Tactics

• generalize t Weakens claim with premise u where t : u.

• clear x Deletes assumption x.

• revert x Equivalent to generalize x ; clear x.

• absurd t Replaces claim with subgoals for ¬t and t.

• split Splits conjunctive claim.

• left Strengthens disjunctive claim to left side.

• right Strengthens disjunctive claim to right side.

• exists t Strengthens existential claim to witness t.

Equational Tactics

• reflexivty Proves claim with introduction rule for equations.

• rewrite t Rewrites subterm u of claim to v provided t : u=v .

• rewrite<- t Rewrites subterm v of claim to u provided t : u=v .

• subst Eliminates variables for which an assumption x = t exists.

• congruence Tries to solve the goal by rewriting with equations that appear

as assumptions.

Inductive Tactics

• destruct t Proves claim with a match on t. Creates subgoals for clauses.

• fix x n Proves claim with a recursive function x where recusion decreases

n-th argument.

• discriminate t Proves claim if equation proved by t is contradictory because

of constructor disjointness.

• injection t Weakens claim by equational premises that follow by constructor

injectivity from the equation proved by t.

• induction t Applies induction principle of the inductive type of t.

Automation Tactics

• tauto Solves every goal that they can be solved with intros, reflexivity, and

the introduction and elimination rules for implication, conjunction, and dis-

junction. Fails if it cannot solve a goal.

• auto Both stronger and weaker than tauto. Never fails, leaves goal un-

changed if it cannot solve it.

2010/7/27 155

Coq Summary

• omega Can prove claims that involve nat. Must be loaded with the com-

mand Require Import Omega.

Tacticals

Compose tactics into more powerful tactics.

• s ; t Applies tactic s, then applies tactic t to every subgoal created by s.

• s || t Applies tactic s. If application of s fails, tactic t is applied.

• repeat t Applies tactic t until it either fails or leaves goal unchanged.

• try t Applies tactic t. If t fails, try t leaves goal unchanged and succeeds.

A.3 Predefined Variables

Inductive True : Prop := I : True.

Inductive False : Prop := .

Definition not (A : Prop) := A -> False.

Notation "~ x" := (not x) : type_scope.

Inductive and (A B : Prop) : Prop := conj : A -> B -> and A B.

Notation "A /\ B" := (and A B) : type_scope.

Implicit Arguments conj [A B].

Inductive or (A B : Prop) : Prop := or_introl : A -> or A B | or_intror : B -> or A B.

Notation "A \/ B" := (or A B) : type_scope.

Implicit Arguments or_introl [A].

Implicit Arguments or_intror [B].

Definition iff (A B : Prop) := (A -> B) /\ (B -> A).

Notation "A <-> B" := (iff A B) : type_scope.

Inductive ex (A:Type) (P:A -> Prop) : Prop := ex_intro : forall x:A, P x -> ex A P.

Notation "’exists’ x , p" := (ex (fun x => p))

(at level 200, x ident, right associativity) : type_scope.

Notation "’exists’ x : t , p" := (ex (fun x:t => p))

(at level 200, x ident, right associativity) : type_scope.

Implicit Arguments ex [A].

Implicit Arguments ex_intro [A].

Definition all {A:Type} (P:A -> Prop) := forall x:A, P x.

Inductive eq (A:Type) (x:A) : A -> Prop := refl_equal : eq A x x.

Notation "x = y" := (@eq _ x y) : type_scope.

Notation "x <> y" := (~ x = y) : type_scope.

Implicit Arguments eq [A].

Implicit Arguments refl_equal [A].

Lemma sym_eq {A : Type} {x y : A} : x = y -> y = x.

Lemma f_equal {A B : Type} (f : A -> B) {x y : A} : x =y -> f x = f y.

156 2010/7/27

	Introduction
	Functions and Types
	Values
	Terms
	Type Checking
	Parameters and Definitions
	Notational Conveniences and Type Inference
	Alpha Renaming
	Reduction and Normal Forms
	Closing a Section
	Computational Interpretation
	Church Numerals
	Unspecified and Implicit Arguments
	Typing Rules
	Remarks

	Natural Deduction
	Propositions and Logical Operations
	Proof Rules for Implications
	Basic Intuitionistic Proof Rules
	Quantification over Propositions
	Leibniz Equality
	Representation in the Calculus of Constructions
	Remarks

	Propositions and Proofs
	The Logic
	First Steps
	Falsity and Negation
	Proof Diagrams and Proof Scripts
	Let and Assert
	Conjunction
	Equivalence
	Theorem, Lemma, and Qed
	Disjunction
	Canonicity of Proof Rules

	Excluded Middle and Basic Laws
	Excluded Middle
	Basic Laws

	Existential Quantification
	Functional Representation of Quantification
	Existential Quantification
	Inhabitation
	Quantifier Laws

	Equality
	Definition and Basic Rules
	Cantor's Theorem
	Propositional Extensionality
	More about Tactics
	Functional Extensionality

	Examples from Set Theory
	Sets
	Choice Functions and Skolem Functions
	Inverse Functions
	Transitive Closure

	Inductive Definitions
	Bool and Match
	Destruct
	Rules for Matches on Bool
	Propositional Conditional
	Polymorphic Pairs
	Inductive Predicates
	Conjunction
	Disjunction
	True and False
	Existential Quantification
	Equality

	Coq's Predefined Logical Operations
	Remarks

	Natural Numbers
	Definition
	Rules for Matches on Nat
	Structural Recursion
	Inductive Proofs
	Basic Laws for Addition and Multiplication
	Generalized Induction
	Primitive Recursion
	Ackermann's Function
	Reflection
	Impredicative Definitions
	Peano Axioms
	Finiteness
	Transitive Closure with Nat
	Coq's Predefined Natural Numbers

	Models and First-Order Logic
	Graphs
	Working with particular graphs in Coq
	First-Order Logic
	Satisfaction
	Computational Properties

	First-Order Natural Deduction
	Sequents and Sets of Assumptions
	Natural Deduction
	Simulating ND in Coq
	Useful Facts about Provability
	Conclusion

	First-Order Tableaux
	Tableau System
	Relationship to Natural Deduction
	Examples
	Simulating Tableau in Coq
	Simulating the Examples in Coq
	A Similar Simulation of ND in Coq

	First-Order Completeness
	Evident Sets and Herbrand Models
	A Decidable Fragment
	Completeness

	Coq Summary
	Commands
	Tactics
	Predefined Variables

