

Assignment 2 Introduction to Computational Logic, SS 2011

Prof. Dr. Gert Smolka, Dr. Chad Brown www.ps.uni-saarland.de/courses/cl-ss11/

Read in the lecture notes: Chapter 2

Note: It is very important to do all the examples in the lecture notes and the exercises below in the system Coq.

Exercise 2.1 An operation taking two arguments can be represented either as a function taking its arguments one by one (cascaded representation) or as a function taking both arguments bundled in one pair (cartesian representation). While the cascaded representation is natural in Coq, the cartesian representation is commonly used in mathematics. Define functions

car: *forall* X Y Z: Type, $(X \to Y \to Z) \to (pair X Y \to Z)$ *cas*: *forall* X Y Z: Type, $(pair X Y \to Z) \to (X \to Y \to Z)$

that translate between the cascaded and cartesian representation and prove the following lemmas.

Lemma car_P (X Y Z :Type) (f : $X \to Y \to Z$) (x :X) (y :Y) : car f (P x y) = f x y. **Lemma** cas_P (X Y Z :Type) (f : pair X Y $\to Z$) (x :X) (y :Y) : cas f x y = f (P x y).

The type arguments of *car* and *cas* are assumed to be implicit.

Exercise 2.2 Prove mul x y = iter x (add y) O for all numbers x and y.

Exercise 2.3 Prove the following lemma.

Lemma iter_move (X : Type) $(f : X \rightarrow X)$ (x : X) (n : nat) :iter (S n) f x = iter n f (f x).

Exercise 2.4 Prove the following lemmas.

Lemma app_asso (X : Type) (xs ys zs : list X) : app (app xs ys) zs = app xs (app ys zs).

Lemma length_app (X : Type) (xs ys : list X) : length (app xs ys) = add (length xs) (length ys).

Lemma rev_app (X : Type) (xs ys : list X) : rev (app xs ys) = app (rev ys) (rev xs).

Lemma rev_rev (X : Type) (xs : list X) : rev (rev xs) = xs.

2011-04-20 15:32

Exercise 2.5 Here is a tail-recursive function that obtains the length of a list with an accumulator argument.

Fixpoint lengthi {X : Type} (xs : list X) (a : nat) :=
match xs with
| nil => a
| cons _ xr => lengthi xr (S a)
end.

Proof the following lemmas.

Lemma lengthi_length {X : Type} (xs : list X) (a : nat) : lengthi xs a = add (length xs) a.

Lemma length_lengthi {X : Type} (xs : list X) : length xs = lengthi xs O.