
U
N

IV
E R S IT A

S

S
A

R
A V I E N

S
I S

Assignment 9

Introduction to Computational Logic, SS 2011

Prof. Dr. Gert Smolka, Dr. Chad Brown

www.ps.uni-saarland.de/courses/cl-ss11/

Read in the lecture notes: Chapters 4-5

Note: It is very important to do all the examples in the lecture notes and the

exercises below in the system Coq.

Exercise 9.1 Prove the following lemma.

Lemma nat_dis (x : nat) : S x <> O.

First do the proof analogous to the proof of bool_dis using auxiliary functions

and the change tactic. Then do the proofs again using Coq’s tactic discriminate e.

Exercise 9.2 The member constructors of an inductive type are always injective

provided the inductive type is not a proposition. Lemma S_injective proves this

fact for nat. Prove an analogous result for the member constructor of pair .

Lemma pair_injective (X Y : Type) (x x’ : X) (y y’ : Y) :

pair x y = pair x’ y’ −> x = x’ /\ y = y’.

First do the the proof analogous to the proof of S_injective using the lemma

f _equal. Then do the proofs again using Coq’s tactic injection e.

Exercise 9.3 Prove bool ≠ nat. Hint: Use as discriminating predicate a predicate

saying that given three members of a type at least two of them must be equal.

Exercise 9.4 Prove the following variant of Kaminski’s equation.

Lemma Kaminski2 (f g : bool −> bool) (x : bool) :

f (f (f (g x))) = f (g (g (g x ))).

Exercise 9.5 Give three inductive proofs of ∀x : nat. Sx ≠ x:

a) With the tactic induction.

b) With the function nat_Ep.

c) With the tactic fix.

Exercise 9.6 Prove ∀n. even n = negb (even (S n)) with the tactic induction. You

will need a lemma. The proof is difficult since the recursion of even takes off two

applications of the constructor S while induction takes off only one application

of S.

2011–06–10 17:20



Exercise 9.7 Write a function that computes factorials with primitive recursion.

Prove the correctness of your functions.

Exercise 9.8 Recall the definitions AF : nat → Prop and K : nat → ∀n : nat,AFn

from the lecture notes. Give an alternative definition K′ : nat → ∀n : nat,AFn

using nat_E such that the following lemmas are provable using reflexivity.

Lemma K_K’_5 (c : nat) : K c 5 = K’ c 5.

reflexivity . Qed.

Lemma K_K’_7 (c : nat) : K c 7 = K’ c 7.

reflexivity . Qed.

Exercise 9.9 (Projections) Define a function P : ∀n : nat. nat → AF n satisfying

the following defining equations.

P O k = k

P (S n) O x = K x n

P (S n) (S k) x = P n k

Prove that your function satisfies the defining equations. Also check that the

term P 4 2 reduces to fun _ _ x _ : nat ⇒ x.

Exercise 9.10 Prove that nat → nat is uncountable. First do a direct proof in the

style of uncountable_nat_bool. Then prove the claim with Cantor_generalized.

Exercise 9.11 Prove that option nat is countable.

Exercise 9.12 Prove the following lemmas.

Lemma le_O {x} : x <= O −> x = O.

Lemma le_S x : x <= S x.

Lemma le_irr x : ~ x < x.

Exercise 9.13 Prove the following variants of le_trans.

Lemma le_lt_trans {x} y {z} : x <= y −> y < z −> x < z.

Lemma lt_le_trans {x} y {z} : x < y −> y <= z −> x < z.

2011–06–10 17:20


