Assignment 10
Introduction to Computational Logic, SS 2011

Prof. Dr. Gert Smolka, Dr. Chad Brown

www.ps.uni-saarland.de/courses/cl-ssl1l/

Read in the lecture notes: Chapters 5-6

Note: It is very important to do all the examples in the lecture notes and the
exercises below in the system Coq.

Exercise 10.1 Prove the following lemmas.

Lemma ex5811 n: even n —> even (4+n).
Lemma ex5812 n: even (S (S n)) —> even n.

Exercise 10.2 Prove the following lemmas.

Lemma ex58221 : ~ even 3.
Lemma ex5822 n : even (4+n) —> even n.

Exercise 10.3 Prove the following lemmas. Do not use induction on nat; only
use induction on proofs of propositions of the form evens.

Lemma even_sum m n : even m —> even n —> even (m+n).
Lemma even_sum’ m n : even (m+n) —> even m —> even n.

Exercise 10.4 Prove that the inductive and the boolean definitions of evenness
are equivalent.

Lemma evenib n : even n <—> evenb n.

Exercise 10.5 Here is an impredicative definition of evenness.

Definition evenp (n : nat) : Prop :=
forall p : nat —> Prop,
p O —> (foralln,pn—>p(S(Sn))) —>pn.

Prove that the inductive and the impredicative definitions of evenness are equi-
valent.

Lemma evenip n : even n <—> evenp n.

2011-06-17 16:44



Exercise 10.6 Consider the following inductive definition of equality where the
type constructor eq2 takes two proper arguments.

Inductive eq2 (X : Type) : X —> X—> Prop :=

| eq2_l: forall x : X, eq2 X x x.

a) Give the typing rule for matches at eqZ2.
b) Prove the following property of eg2.

Lemma eq2_E (X : Type) (x y : X) :
eq2 X xy —> forall p: X —> Prop, py —> p X.

Exercise 10.7 Consider the following inductive definition of an order predicate
for the natural numbers.

Inductive lei : nat —> nat —> Prop :=

| 1eiO : forall x : nat, lei O x

| leiS : forall xy, lei xy —>lei (S x) (Svy).

a) Given the typing rule for matches at lei.
b) Prove the following lemmas.

Lemma lei_refl x : lei x x.
Lemma lei_trans xy z: leixy —> leiy z —> lei x z.
Lemma leib x y : leb x y <—> lei x y.

Exercise 10.8 Use proof scripts to give inhabitants of the following two types.
a) Vp:ProppVvp - p+p
b) Vp:Prop.p v False — p + False

Exercise 10.9 Complete the following definition and prove the lemma.

Definition forget {X Y}{p : X —> Prop}{q : Y —> Prop}: sigp +sigqg —> X +Y.
Lemma forget_div2c (n : nat) : forget (div2c n) = divmod?2 n.

Exercise 10.10 Recall the definition of the type Search from the lecture.

Definition Search : Type :=
forall (p : nat —> bool) (n : nat),
{x| x<=n/\px}+ (forall x, x <=n —> ~ p x).

Define a similar type SearchMax such that any function of type SearchMax will
return the maximum x < n such that p x if such an x exists, or a proof that no
such x exists. Construct a certifying function of this type.

2011-06-17 16:44



