
U
N

IV
E R S IT A

S

S
A

R
A V I E N

S
I S

Assignment 3

Introduction to Computational Logic, SS 2012

Prof. Dr. Gert Smolka, Dr. Chad Brown

www.ps.uni-saarland.de/courses/cl-ss12/

Read in the lecture notes: Chapter 3

Note: It is very important to do all the examples in the lecture notes and the

exercises below in the system Coq.

Exercise 3.1 In the lecture notes we describe the elimination rule for disjuncti-

on in detail and relate it to a Coq tactic. Make sure that you can discuss each

introduction and elimination rule in this fashion.

Exercise 3.2 Fill in the underlines in the following proof script.

Goal forall (X : Type) (p q : X −> Prop),

(exists x, p x /\ q x) −> exists x, p x.

Proof. intros X p q A.

apply (ExE _ A). intros x B.

apply (AndE B). intros C _.

apply (ExI _ x). exact C. Qed.

Exercise 3.3 Formulate the introduction and elimination rules for disjunctions

as lemmas and use the lemmas to prove the commutativity of disjunction.

Exercise 3.4 The tactics reflexivity and rewrite implement the following proof

rules for equations.

s = s

s = t uxt

uxs

a) Formulate a lemma EqI expressing the introduction rule for equations.

b) Formulate a lemma EqE expressing the elimination rule for equations.

c) Prove symmetry and transitivity of equality using the lemmas EqI and EqE .

Do not use the tactics reflexivity and transitivity.

Exercise 3.5 Prove that the following propositions are equivalent. There are

short proofs if you use tauto.

Definition XM : Prop := forall X : Prop, X \/ ~X. (∗ excluded middle ∗)

Definition DN : Prop := forall X : Prop, ~~X −> X. (∗ double negation ∗)

Definition CP : Prop := forall X Y : Prop, (~Y −> ~X) −> X −> Y. (∗ contraposition ∗)

Definition Peirce : Prop := forall X Y : Prop, ((X −> Y) −> X) −> X. (∗ Peirce’s Law ∗)

2012–05–04 17:02



Exercise 3.6 Prove the following goals. They state consequences of the De Mor-

gan laws for conjunction and universal quantification whose proofs require the

use of excluded middle.

Goal forall X Y : Prop,

XM −> ~(X /\ Y) −> ~X \/ ~Y.

Goal forall (X : Type) (p : X −> Prop),

XM −> ~(forall x, p x) −> exists x, ~p x.

Exercise 3.7 Prove the Drinker Paradox:

Lemma Drinker (X : Type) (d : X −> Prop) :

(exists x:X, x = x) −> XM −> exists x:X, d x −> forall y:X, d y.

Exercise 3.8 Two propositions are given below. In each case either the proposi-

tion is provable or the negation of the proposition is provable. Determine which

and then do the proof in Coq. (You may use tauto.)

a) forall P:Prop, exists G:Prop −> Prop, forall X Y:Prop, (X /\ P −> Y) <−> (X −> G Y)

b) forall P:Prop, exists F:Prop −> Prop, forall X Y:Prop, (X −> Y /\ P) <−> (F X −> Y)

Exercise 3.9 Give an inductive definition of negation corresponding to the follo-

wing introduction rule. Afterwards, prove a lemma corresponding to the followi-

ng elimination rule.

∀X : Prop, s → X

¬s

¬s s

u

Exercise 3.10 Consider a logical operation Q of type

forall X:Type, (X −> Prop) −> (X −> Prop) −> Prop

We will write Qx : s.(p, q) as notation for

Q s (fun x:s => p) (fun x:s => q)

Consider the following introduction and elimination rules for Q.

v : s txv uxv

Qx : s.(t,u)

Qx : s.(t,u) x : s , t , u ⇒ v

v

a) Give a plain definition of Q using the logical connectives we have studied

so far. Prove lemmas corresponding to the introduction and elimination rule

above.

b) Give an inductive definition of Q with constructor corresponding to the intro-

duction rule. Prove a lemma corresponding to the elimination rule.

2012–05–04 17:02


