

Assignment 11 Introduction to Computational Logic, SS 2012

Prof. Dr. Gert Smolka, Dr. Chad Brown
www.ps.uni-saarland.de/courses/cl-ss12/

```
Read in the lecture notes: Chapters 10-11
```

Exercise 11.1 Prove that weakening is admissible for the tableau system. Rewrite with the list equivalence *rotate*.

Lemma tabW C s : tab C -> tab (s :: C).

Exercise 11.2 Give signed tableau rules for conjunction and disjunction.

Exercise 11.3 Give complete signed tableaux for the following clauses. A tableau is complete if every branch is either closed or solved.

a) $\{\neg \neg x \rightarrow \neg y \rightarrow \neg (x \rightarrow y)^{-}\}$ b) $\{\neg x \rightarrow \neg y \rightarrow \neg (y \rightarrow x)^{-}\}$

Exercise 11.4 Make sure you understand every detail of the decision procedure *dec*. You should be able to write the code of *dec* given your understanding of the signed tableau rules. Don't worry about the first line and the proof obligations.

Exercise 11.5 Prove the lemmas *sat_dec*, *tab_dec*, *nd_dec*, *tab_unsat*, *valid_dec*, and *valid_refut*.

Exercise 11.6 Let (W, \leq, α) be a Kripke model. Argue the following facts where (w, w' and w'' are in W).

- a) $w \models \neg s$ if and only if $w' \neq s$ for all $w' \geq w$.
- b) $w \neq \neg s$ if and only if $w' \models s$ for some $w' \ge w$.
- c) $w \models \neg \neg s$ if and only if for every $w' \ge w$ there is some $w'' \ge w'$ such that $w'' \models s$.

Exercise 11.7 There is no such soundness result for classical provability. Which rule of the classical ND calculus causes a problem?

Exercise 11.8 Let (W, \leq, α) be a Kripke model. Argue the following facts (where $w \in W$ and *s*, *t*, *u* are formulas).

- a) $w \models s \rightarrow \neg \neg s$
- b) $w \models s \rightarrow t \rightarrow s$
- c) $w \models (s \rightarrow t \rightarrow u) \rightarrow (s \rightarrow t) \rightarrow s \rightarrow u$

Exercise 11.9 Suppose \emptyset and *s* are such that $\emptyset \vdash_{\mathcal{NC}} s$. Argue that $\emptyset \not\vdash_{\mathcal{N}} \neg s$.

Exercise 11.10 Which of the following formulas are independent? Justify your answer either by giving appropriate proofs in the intuitionistic ND system or by giving appropriate Kripke models.

- a) $\neg(\neg\neg x \rightarrow x)$
- b) $(x \rightarrow y) \rightarrow (\neg x \rightarrow y) \rightarrow y$
- c) $((x \rightarrow y) \rightarrow x) \rightarrow x$

Exercise 11.11 Prove the following in Coq.

Lemma unprovable_PWM : ~nd nil (Imp (Imp (Not x) y) (Imp (Imp (Not (Not x)) y) y)).

Lemma unprovable_nPWM : ~nd nil (Not (Imp (Imp (Not x) y) (Imp (Imp (Not (Not x)) y) y))).

Lemma indep_PWM : indep (Imp (Imp (Not x) y) (Imp (Imp (Not (Not x)) y) y)).