
Introduction to

Computational Logic

Lecture Notes SS 2011

July 15, 2011

Gert Smolka and Chad E. Brown

Department of Computer Science

Saarland University

Copyright © 2011 by Gert Smolka and Chad E. Brown, All Rights Reserved

Contents

1 Introduction 1

2 Types, Functions, and Equations 3

2.1 Booleans . 3

2.2 Proof by Case Analysis and Simplification 5

2.3 Natural Numbers and Structural Recursion 6

2.4 Proof by Structural Induction and Rewriting 8

2.5 Pairs . 11

2.6 Iteration . 13

2.7 Factorials with Iteration . 15

2.8 Lists . 15

2.9 Linear List Reversal . 17

2.10 Options and Finite Types . 18

2.11 Simplifying Subterms . 20

2.12 Discussion and Remarks . 21

2.13 Tactics Summary . 22

3 Reduction and Typing of Terms 23

3.1 Terms . 23

3.2 Local Variables . 24

3.3 Beta Reduction . 25

3.4 Normal Forms and Convertibility . 27

3.5 Typing Rules . 28

3.6 A Type Checking Algorithm . 31

3.7 Plain Definitions and Local Definitions 32

3.8 Inductive Definitions . 33

3.9 Matches . 35

3.10 Recursive Abstractions . 36

3.11 Canonical Form Theorem . 37

3.12 The Problem with Non-Terminating Recursion 38

3.13 Universes . 39

3.14 A General Recursion Operator . 41

iii

Contents

4 Propositions and Proofs 43

4.1 Propositions as Types . 43

4.2 Falsity and Negation . 46

4.3 Lemmas and Proof Scripts . 48

4.4 Tricks of the Trade . 50

4.5 Conjunction and Disjunction . 52

4.6 Equivalence . 55

4.7 Leibniz Equality . 56

4.8 Coq’s Equality . 59

4.9 Existential Quantification . 63

4.9.1 Russell’s Paradox . 64

4.9.2 Cantor’s Theorem . 65

4.10 Abstract Presentation of The Logical Operations 66

4.11 Last But Not Least . 72

5 Dependent Matches and Induction 75

5.1 Dependent Matches . 75

5.2 Boolean Case Analysis . 77

5.2.1 Bool and False Are Not Equal . 78

5.2.2 Kaminski’s Equation . 79

5.3 Natural Induction . 80

5.4 Primitive Recursion . 82

5.5 Projections . 84

5.6 Surjections and Countability . 86

5.7 Abstract Presentation of the Naturals 88

5.8 Natural Order . 89

5.9 Size Induction . 92

5.10 Type Constructors with Proper Arguments 93

5.10.1 Inversion . 94

5.10.2 Recursion on Proof Terms . 96

5.11 Matches at eq . 97

5.12 Termination and Divergence . 99

6 Sum and Sigma Types 103

6.1 Division by 2 as Certifying Function 103

6.2 Bounded Search . 105

6.3 Least Number Search . 107

7 Programming with Dependent Types 111

7.1 Cascaded Functions . 111

7.2 Length-Indexed Lists . 115

iv 2011/7/15

Contents

7.3 Finite Types . 118

8 Boolean Logic 123

8.1 Syntax and Semantics of Boolean Logic 123

8.2 Decidability Results . 127

8.3 Denotational Completeness . 128

9 Quantified Boolean Logic 133

9.1 Syntax . 133

9.2 Semantics . 134

9.3 Tableaux for Quantified Boolean Formulas 136

9.4 Simulating Tableau in Coq . 139

9.5 Soundness and Completeness . 142

9.6 Other Interpretations . 144

10 Mathematical Assumptions 145

10.1 Classical Assumptions . 145

10.2 Extensional Assumptions . 146

10.3 Proof Irrelevance . 147

11 First-Order Logic 149

11.1 Syntax . 149

11.2 Semantics . 150

Coq Summary 153

A.1 Commands . 153

A.2 Tactics . 154

2011/7/15 v

Contents

vi 2011/7/15

1 Introduction

This course is an introduction to constructive type theory and interactive theo-

rem proving. It also covers classical first-order logic. For most of the course we

use the proof assistant Coq.

Constructive type theory provides a programming language for expresing

mathematical and computational theories. Theories consist of definitions and

theorems stating logical consequences of the definitions. Every theorem comes

with a proof justifying it. If the proof of a theorem is correct, the theorem is

correct. Constructive type theory is designed such that the correctness of proofs

can be checked automatically. Thus a computer program can check the correct-

ness of theorems and theories.

Coq is an implementation of a constructive type theory known as the calculus

of inductive definitions. Coq is designed as an interactive system that assists the

user in developing theories. The most interesting part of the interaction is the

construction of proofs. The idea is that the user points the direction while Coq

takes care of the details of the proof.

Coq is a mature system whose development started in the 1980’s. In recent

years Coq has become a popular tool for research and education in formal the-

ory development and program verification. Landmarks are a proof of the four

color theorem and the verification of a compiler for a subset of the programming

language C.

Coq is the applied side of this course. On the theoretical side we explore the

basic principles of constructive type theory, which are essential for programming

languages, logical languages, and proof systems.

We also consider classical first-order logic. First-order logic matters in prac-

tice since it comes with powerful automated theorem provers. First-order logic

can be seen as a fragment of constructive type theory that trades expressivity for

automation. First-order logic comes with a natural set-theoretic semantics that

provides a basis for arguing the soundness and completeness of proof systems.

1

1 Introduction

2 2011/7/15

2 Types, Functions, and Equations

In this chapter we take a first look at Coq and its mathematical programming lan-

guage. We define types and functions for basic data structures like booleans and

natural numbers. Based on these definitions, we formulate equational theorems

and construct their proofs in interaction with the Coq interpreter.

2.1 Booleans

We start with the boolean values false and true and the boolean operations nega-

tion and conjunction. We first define these objects in ordinary mathematical

language. To start with, we fix two different values false and true and define the

set bool := {false, true}. Next we define the operations negation and conjunction

by stating their types and defining equations.

¬ : bool → bool ∧ : bool → bool → bool

¬false = true false∧ y = false

¬true = false true∧ y = y

In general, there is more than one possibility to choose the defining equations of

an operation. We require that for every application of an operation exactly one of

the defining equations applies from left to right. For instance, given true∧ false,

the second defining equation of ∧ applies and yields true∧ false = false.

Our presentation of the booleans translates into three definitions in Coq.

Inductive bool : Type :=

| false : bool

| true : bool.

Definition negb (x : bool) : bool :=

match x with

| false => true

| true => false

end.

Definition andb (x y : bool) : bool :=

match x with

| false => false

| true => y

end.

3

2 Types, Functions, and Equations

The first definition (starting with the keyword Inductive) defines a type bool that

has two members false and true. The remaining two definitions (starting with

the keyword Definition) define two functions negb and andb representing the

operations negation and conjunction. The defining equations of the operations

are expressed with so-called matches. Altogether, the definitions introduce 5

identifiers, each equipped with a unique type:

bool : Type

false : bool

true : bool

negb : bool → bool

andb : bool → bool → bool

It is time that you start a Coq interpreter. Enter the 3 definitions one after the

other. Each time Coq checks the well-formedness of the definition. Once Coq

has accepted the definitions, you can explore the defined objects by entering

commands that check and evaluate terms (i.e., expressions).

Check negb true.

% negb true : bool

Compute negb true.

% false : bool

Compute negb (negb true).

% true : bool

Compute andb (negb false) true.

% true : bool

Note that functions are applied without writing parentheses and that multiple

arguments are not separated by commas. Functions that take more than one

argument can also be applied to a single argument.

Check andb (negb false).

% andb(negb false) : bool → bool

Compute andb (negb false).

% fun y : bool ⇒ y : bool → bool

The term fun y : bool ⇒ y decribes a function bool → bool that returns its argu-

ment. Terms that start with the keyword fun are called abstractions and can be

used freely in Coq.

Compute (fun x : bool => andb x x) true

% true : bool

4 2011/7/15

2.2 Proof by Case Analysis and Simplification

2.2 Proof by Case Analysis and Simplification

From our definitions it seems clear that the equation ¬¬x = x holds for all

booleans x. To verify this claim, we perform a case analysis on x.

1. x = false. We have to show ¬¬false = false. This follows with the defining

equations of negation: ¬¬false = ¬true = false.

2. x = true.We have to show ¬¬true = true. This follows with the defining

equations of negation: ¬¬true = ¬false = true.

To carry out the proof with Coq, we state the claim as a lemma.

Lemma negb_negb (x : bool) :

negb (negb x) = x.

The identifier negb_negb serves as the name of the lemma. Once you enter the

lemma, Coq switches to proof mode and you see the initial proof goal. Here is a

proof script that constructs the proof of the lemma.

Proof. destruct x. simpl. reflexivity. simpl. reflexivity. Qed.

At this point, it is crucial that you step through the proof script with Coq. The

script begins with the command Proof and ends with the command Qed. The

commands between Proof und Qed are called tactics. The tactic destruct x does

the case analysis and replaces the initial goal with two subgoals, one for x = false

and one for x = true. Once you have entered destruct x, you will see the first

subgoal on the screen. The tactic simpl simplifies the equation we have to prove

by applying the definition of negb. For the first subgoal, we are now left with the

trivial equality false = false, which is established with the tactic reflexivity . The

second subgoal is established analogously.

It is important that you step back and forth in the proof script with the Coq

and observe what happens. This way you can see how the proof advances. At

each point in the proof you are confronted with a proof goal, which consists of

some assumptions (possibly none) and a claim. Here is the sequence of proof

goals you will see when you step through the proof script.

x : bool

negb (negb x) = x negb (negb false) = false false = false

negb (negb true) = true true = true

In each goal, the assumptions appear above and the claim appears below the

rule. We can shorten the proof script by combining the tactics destruct x and

simpl with the semicolon operator.

Proof. destruct x ; simpl. reflexivity. reflexivity . Qed.

2011/7/15 5

2 Types, Functions, and Equations

The semicolon operator applies simpl to each of the two subgoals generated by

destruct x. Given the symmetry of the two subgoals, we can shorten the proof

script further.

Proof. destruct x ; simpl ; reflexivity. Qed.

Since the tactic reflexivity first simplifies the equation it is applied to, we can

shorten the proof script even further.

Proof. destruct x ; reflexivity. Qed.

The short proof script has the drawback that you don’t see much when you step

through it. For that reason we will often give proof scripts that are longer than

necessary.

A word on terminology. In mathematics, theorems are usually classified into

propositions, lemmas, theorems, and corollaries. This distinction is a matter of

style and does not matter logically. When we state a theorem in Coq, we will

mostly use the keyword Lemma. Coq also accepts the keywords Proposition,

Theorem, and Corollary, which are treated as synonyms.

Exercise 2.2.1 (Commutativity of conjunction) Prove x ∧y = y ∧ x in Coq.

Exercise 2.2.2 (Disjunction) A boolean disjunction x∨y yields false if and only

if both x and y are false.

a) Define disjunction as a function orb : bool → bool → bool in Coq.

b) Prove the de Morgan law ¬(x ∨y) = ¬x ∧¬y in Coq.

2.3 Natural Numbers and Structural Recursion

Dedekind and Peano discovered that the natural numbers can be obtained with

two constructors O and S. The idea is best expressed with the definition of a type

nat in Coq.

Inductive nat : Type :=

| O : nat

| S : nat −> nat.

The constructor O represents the number 0, and the constructor S yields the

successor of a natural number (i.e., Sn = n + 1). Expressed with O and S, the

natural numbers 0, 1, 2, 3, . . . look as follows:

O, S O, S(S O), S(S(S O)), . . .

We say that the elements of nat are obtained by iterating the successor function S

on the initial number O. This is a form of recursion. The recursion makes it

possible to obtain infinitely many values from finitely many constructors.

Here is a function that yields the predecessor of a positive number.

6 2011/7/15

2.3 Natural Numbers and Structural Recursion

Definition pred (x : nat) : nat :=

match x with

| O => O

| S x’ => x’

end.

Compute pred (S(S O)).

% S O : nat

Given the constructor represention of the natural numbers, we can define the

operations addition and multiplication:

+ : nat → nat → nat · : nat → nat → nat

0+y = y 0 ·y = O

Sx +y = S(x +y) Sx ·y = x ·y +y

The defining equations become clear if one thinks of Sx as x + 1. Here is a

computation that applies the defining equations for +:

S(S(SO))+y = S(S(SO)+y) = S(S(SO +y)) = S(S(Sy))

One says that the operations + and · are defined by structural recursion over the

first argument. The recursion comes from the second defining equation where

the operation to be defined also appears on the right. Since each recursion step

strips off a constructor S, the recursion must terminate. The mathematical defi-

nitions of addition and multiplication carry over to Coq:

Fixpoint plus (x y : nat) : nat :=

match x with

| O => y

| S x’ => S (plus x’ y)

end.

Fixpoint mult (x y : nat) : nat :=

match x with

| O => O

| S x’ => plus (mult x’ y) y

end.

We use the keyword Fixpoint in place of the keyword Definition to enable recur-

sion. Coq permits only structural recusion. This way Coq makes sure that the

evaluation of recursive functions always terminates. Structural recursion always

happens on an argument taken from an inductive type (a type defined with the

keyword Inductive). Each recursion step in the definition of a recursive function

must take off at least one constructor.

Here is the definition of a comparison function leb : nat → nat → bool that

tests whether its first argument is less or equal than its second argument.

2011/7/15 7

2 Types, Functions, and Equations

Fixpoint leb (x y: nat) : bool :=

match x with

| O => true

| S x’ => match y with

| O => false

| S y’ => leb x’ y’

end

end.

A shorter, more readable definition of leb looks as follows:

Fixpoint leb (x y: nat) : bool :=

match x, y with

| O, _ => true

| _, O => false

| S x’, S y’ => leb x’ y’

end.

Coq translates the short form automatically into the long form. One says that

the short form is syntactic sugar for the long form. The underline character used

in the short form serves as wildcard pattern that matches everything. The order

of the rules in sugared matches is significant. Without the order sensitivity the

second rule in the sugared match would be incorrect.

You cannot define the same identifier twice in a Coq session. Thus you can

enter either the long or the short definition of leb, but not both. If you want

to have both definitions, choose a different name for the second definition you

enter.

Exercise 2.3.1 Define functions as follows.

a) A function power : nat → nat → nat that yields xn for x and n.

b) A function fac : nat → nat that yields n! for n.

c) A function evenb : nat → bool that tests whether its argument is even.

d) A function mod3 : nat → nat that yields the remainder of x on division by 3.

e) A function minus : nat → nat → nat that yields x −y for x ≥ y .

f) A function gtb : nat → nat → bool that tests x > y .

g) A function eqb : nat → nat → bool that tests x = y . Do not use leb or gtb.

2.4 Proof by Structural Induction and Rewriting

Consider the proof goal

x : nat

px

8 2011/7/15

2.4 Proof by Structural Induction and Rewriting

where px is a claim that depends on x. By structural induction on x we can

reduce the goal to two subgoals.

pO

x : nat
IHx : px

p(Sx)

This reduction is like a case analysis on the structure of x, but has the added

feature that the second subgoal comes with an extra assumption IHx known as

inductive hypothesis. We think of IHx as a proof of px. If we can prove both

subgoals, we have established the initial claim px for all x : nat. This can be

seen as follows.

1. The first subgoal gives us a proof of pO.

2. The second subgoal gives us a proof of p(SO) from the proof of pO.

3. The second subgoal gives us a proof of p(S(SO)) from the proof of p(SO).

4. After finitely many steps we arrive at a proof of px.

This reasoning is valid since the proof of the second subgoal is a function that

given an x and a proof of px yields a proof of p(Sx). Here is our first inductive

proof in Coq.

Lemma plus_O (x : nat) : plus x O = x.

Proof. induction x ; simpl. reflexivity. rewrite IHx. reflexivity. Qed.

If you step through the proof script with Coq, you will see the following proof

goals.

x : nat

plus x O = x O = O

x : nat
IHx : plus x O = x

S(plus x O) = Sx

x : nat
IHx : plus x O = x

Sx = Sx

induction x ; simpl reflexivity rewrite IHx reflexivity

Of particular interest is the application of the inductive hypothesis with the tactic

rewrite IHx. The tactic rewrites a subterm of the claim with the equation IHx.

Doing inductive proofs with Coq is fun since Coq takes care of the bureau-

cratic aspects of such proofs. Here is our next example.

Lemma plus_S (x y : nat) : plus x (S y) = S (plus x y).

Proof. induction x ; simpl. reflexivity. rewrite IHx. reflexivity. Qed.

Note that the proof scripts for the lemmas plus_S and plus_O are identical. When

you run the script for each of the two lemmas, you see that they generate differ-

ent proofs.

2011/7/15 9

2 Types, Functions, and Equations

Note that the lemmas plus_O and plus_S provide the symmetric versions of

the defining equations of plus. Using the lemmas, we can prove that addition is

commutative.

Lemma plus_com (x y : nat) : plus x y = plus y x.

Proof. induction x ; simpl.

rewrite plus_O. reflexivity.

rewrite plus_S. rewrite IHx. reflexivity. Qed.

Note that the lemmas are applied with the rewrite tactic. Given that the definition

of plus is not symmetric, the commutativity of plus is an interesting result. Next

we prove that addition is associative.

Lemma plus_asso (x y z: nat) : plus (plus x y) z = plus x (plus y z).

Proof. induction x ; simpl. reflexivity. rewrite IHx. reflexivity. Qed.

Rewriting with plus_com can be tricky since the lemma applies to every sum.

This can be resolved by instantiating the lemma. Here is an example.

Lemma plus_AC (x y z : nat) :

plus y (plus x z) = plus (plus z y) x.

Proof. rewrite (plus_com z). rewrite (plus_com x). rewrite plus_asso. reflexivity. Qed.

Note that the instantiated lemma plus_com z can only rewrite terms of the form

plus z _. Here is a more involved example using the tactic f_equal and (partially)

instantiated lemmas.

Lemma plus_AC’ (x y z : nat) :

plus (plus (mult x y) (mult x z)) (plus y z) =

plus (plus (mult x y) y) (plus (mult x z) z).

Proof. rewrite plus_asso. rewrite plus_asso. f_equal.

rewrite (plus_com _ (plus _ _)). rewrite plus_asso. f_equal.

rewrite plus_com. reflexivity. Qed.

Run the proof script to see the effects of the tactics. The tactic f_equal reduces a

claim st = su to t = u. The first rewrite with plus_com requires that the second

argument of plus is of the form plus _ _.

Exercise 2.4.1 Prove Lemma plus_com by induction on y .

Exercise 2.4.2 Prove the following lemmas.

Lemma mult_O (x : nat) : mult x O = O.

Lemma mult_S (x y : nat) : mult x (S y) = plus (mult x y) x.

Lemma mult_com (x y : nat) : mult x y = mult y x.

Lemma mult_dist (x y z: nat) : mult (plus x y) z = plus (mult x z) (mult y z).

10 2011/7/15

2.5 Pairs

Lemma mult_asso (x y z: nat) : mult (mult x y) z = mult x (mult y z).

Exercise 2.4.3 Often a claim must be generalized before it can be proven by

induction. For instance, it seems impossible to prove plus (plus x x) x =

plus x(plus x x) without using lemmas. However, a more general claim ex-

pressing the associativity of addition with three variables has a straightforward

inductive proof (see lemma plus_asso).

2.5 Pairs

Given two values x and y , we can form the ordered pair (x,y). Given two

types X and Y , there is a product type X × Y that contains all pairs whose first

component is in X and whose second component is in Y . This leads to the

following Coq definition:

Inductive prod (X Y : Type) : Type :=

| pair : X −> Y −> prod X Y.

The function prod : Type → Type → Type yields for two types X and Y the prod-

uct type X × Y . The constructor pair is a function that takes two types X and

Y and two values x : X and y : Y and yields the pair (x,y). To obtain the pair

(O, true), we write pair nat bool O true. Here is a series of typings helping you

to understand what is going on.

prod : Type → Type → Type

pair : forall X Y : Type, X → Y → prod X Y

pair nat : forall Y : Type, nat → Y → prod nat Y

pair nat bool : nat → bool → prod nat bool

pair nat bool O : bool → prod nat bool

pair nat bool O true : prod nat bool

As is, we have to write the term pair nat bool O true for the pair (O, true). This

can be shortened by writing the underline character for the type arguments of

pair .

Check pair _ _ O true.

% pair nat bool O true : prod nat bool

The underline character leaves it to Coq to derive the type arguments of pair

from the component arguments of pair . We can go one step further and declare

the type arguments X and Y of pair as implicit. This way Coq always derives the

type arguments of pair and we don’t have to write the underlines.

2011/7/15 11

2 Types, Functions, and Equations

Implicit Arguments pair [X Y].

Check pair O true.

% pair O true : prod nat bool

Sometimes it is necessary to suppress the type inference for implicit arguments.

The implicit arguments of an identifier can be made explicit by writing @ in front

of the identifier.

Check @pair nat.

% @pair nat : forall Y : Type, nat → Y → prod nat Y

Check @pair _ bool O.

% @pair nat bool O : bool → prod nat bool

Here are functions that yield the first and the second component of a pair.

Definition fst {X Y : Type} (p : prod X Y) : X :=

match p with pair x _ => x end.

Definition snd {X Y : Type} (p : prod X Y) : Y :=

match p with pair _ y => y end.

The curly braces around the type arguments declare X and Y as implicit argu-

ments.

Compute fst (pair O true).

% O : nat

Compute snd (pair O true).

% true : bool

We prove the so-called eta law for pairs.

Lemma pair_eta (X Y : Type) (p : prod X Y) :

pair (fst p) (snd p) = p.

Proof. destruct p. reflexivity. Qed.

Here is a function that swaps the components of a pair:

Definition swap {X Y : Type} (p : prod X Y) : prod Y X := pair (snd p) (fst p).

Compute swap (pair O true).

% pair true nat : prod bool nat

Exercise 2.5.1 Prove swap(swap p) = p for all pairs p. Note that the tactic simpl

fails to simplify the goal obtained with destruct. Use the tactic cbv instead.

Exercise 2.5.2 An operation taking two arguments can be represented either as

a function taking its arguments one by one (cascaded representation) or as a

function taking both arguments bundled in one pair (cartesian representation).

12 2011/7/15

2.6 Iteration

While the cascaded representation is natural in Coq, the cartesian representation

is commonly used in mathematics. Define functions

car : forall X Y Z : Type, (X → Y → Z)→ (prod X Y → Z)

cas : forall X Y Z : Type, (prod X Y → Z)→ (X → Y → Z)

that translate between the cascaded and cartesian representation and prove the

following lemmas.

Lemma car_P (X Y Z :Type) (f : X −> Y −> Z) (x :X) (y :Y) : car f (pair x y) = f x y.

Lemma cas_P (X Y Z :Type) (f : prod X Y −> Z) (x :X) (y :Y) : cas f x y = f (pair x y).

The type arguments of car and cas are assumed to be implicit.

2.6 Iteration

We now define a function iter that takes a natural number n, a type X, a function

f : X → X, and a value x : X, and yields the value obtained by applying the

function f n-times to x. The defining equations for iter are as follows (type

argument suppressed):

iter 0 f x = x

iter (Sn) f x = f (iter n f x)

The Coq definition is now straightforward:

Fixpoint iter (n : nat) {X : Type} (f : X −> X) (x : X) : X :=

match n with

| O => x

| S n’ => f (iter n’ f x)

end.

With iter we can give non-recursive definitions of addition and multiplication.

Definition plusi (x y : nat) : nat := iter x S y.

Definition multi (x y : nat) : nat := iter x (plusi y) O.

The function plusi obtains x+y by x-times iterating S on y . The function multi

obtains x ·y by x-times iterating +y on 0.

Lemma iter_plus (x y : nat) :

plus x y = iter x S y.

Proof. induction x ; simpl. reflexivity. rewrite IHx. reflexivity. Qed.

We can see iter n as a functional representation of the number n that carries with

it the structural recursion coming with n. The following definitions implement

this idea.

2011/7/15 13

2 Types, Functions, and Equations

Definition Nat := forall X : Type, (X −> X) −> X −> X.

Definition encode : nat −> Nat := iter.

Definition decode : Nat −> nat := fun f => f nat S O.

Compute decode (encode (S (S O))).

% S(S O) : nat

Lemma iter_coding (x : nat) :

decode (encode x) = x.

Proof. unfold encode. unfold decode. induction x ; simpl.

reflexivity . rewrite IHx. reflexivity. Qed.

The proof uses the unfold tactic to simplify the applications of encode and decode

since simpl only simplifies functions that involve a match.

A higher-order function is a function that takes a function as argument. The

function iter is our first example of a higher-order function. It formulates a

recursion scheme known as iteration or primitive recursion.

Exercise 2.6.1 Prove mult x y = iter x (plus y) O for all numbers x and y .

Exercise 2.6.2 Define a function power recursively (see Exercise 2.3.1) and prove

power x n = iter n (mult x) (S O) for all x,n : nat.

Exercise 2.6.3 Prove the following lemma.

Lemma iter_move (X : Type) (f : X −> X) (x : X) (n : nat) :

iter (S n) f x = iter n f (f x).

Exercise 2.6.4 (Subtraction with Iteration) Prove the following lemmas about a

subtraction function defined with iter .

Definition minus (x y : nat) : nat := iter y pred x.

Lemma minus_O (y : nat) : minus O y = O.

Lemma minus_O’ (x : nat) : minus x O = x.

Lemma minus_SS (x y : nat) : minus (S x) (S y) = minus x y.

Lemma minus_SP (x y : nat) : minus x (S y) = pred (minus x y).

Lemma minus_SP’ (x y : nat) : minus x (S y) = minus (pred x) y.

Lemma minus_PS (x y : nat) : minus x y = pred (minus (S x) y).

Hint: Do unfold minus as first step in your proofs.

14 2011/7/15

2.7 Factorials with Iteration

2.7 Factorials with Iteration

We define the factorial n! of a natural number n by a recursive function:

Fixpoint fac (n : nat) : nat :=

match n with

| O => S O

| S n’ => mult n (fac n’)

end.

We can compute factorials with iter if we iterate on pairs:

(0,0!)→ (1,1!)→ (2,2!)→ ·· · → (n,n!)

We realize the idea with two definitions.

Definition step (p : prod nat nat) : prod nat nat :=

match p with pair n f => pair (S n) (mult (S n) f) end.

Definition ifac (n : nat) : nat := snd (iter n step (pair O (S O))).

To verify the correctness of the iterative computation of factorials, we would like

to prove ifac n = fac n for n : nat. An attempt to prove the claim directly fails

miserably. The problem is that we need to account for both components of the

pairs computed by iter . To do so, we prove the following lemma.

Lemma iter_fac (n : nat) :

pair n (fac n) = iter n step (pair O (S O)).

Proof.

induction n. reflexivity.

simpl iter. rewrite <− IHn. unfold step. reflexivity.

Qed.

To avoid large and unreadable terms, the proof simplifies only the application

of iter . The tactic unfold step can be omitted; it is included to help your under-

standing when you step through the proof.

It is now straightforward to prove that ifac and fac agree on all arguments.

Exercise 2.7.1 Prove the following lemmas.

Lemma ifac_fac (n : nat) : ifac n = fac n.

Lemma ifac_step (n : nat) : step (pair n (fac n)) = pair (S n) (fac (S n)).

2.8 Lists

Lists represent finite sequences [x1, . . . , xn] with two constructors nil and cons.

2011/7/15 15

2 Types, Functions, and Equations

Inductive list (X : Type) : Type :=

| nil : list X

| cons : X −> list X −> list X.

All elements of a list must be taken from the same type.

Implicit Arguments nil [X].

Implicit Arguments cons [X].

The constructor nil represents the empty sequence, and the constructor cons

represents nonempty sequences.

[] ֏ nil

[x] ֏ cons x nil

[x,y] ֏ cons x (cons y nil)

[x,y, z] ֏ cons x (cons y (cons z nil))

Here are functions defining the length, the concatenation, and the reversal of

lists.

Fixpoint length {X : Type} (xs : list X) : nat :=

match xs with

| nil => O

| cons _ xr => S (length xr)

end.

Fixpoint app {X : Type} (xs ys : list X) : list X :=

match xs with

| nil => ys

| cons x xr => cons x (app xr ys)

end.

Fixpoint rev {X : Type} (xs : list X) : list X :=

match xs with

| nil => nil

| cons x xr => app (rev xr) (cons x nil)

end.

Using informal notation for lists, we have the following.

length [x1, . . . , xn] = n

app [x1, . . . , xm] [y1, . . . , yn] = [x1, . . . , xm, y1, . . . , yn]

rev [x1, . . . , xn] = [xn, . . . , x1]

Properties of the list operations can be shown by structural induction on lists,

which has much in common with structural induction on numbers.

Lemma app_nil (X : Type) (xs : list X) : app xs nil = xs.

16 2011/7/15

2.9 Linear List Reversal

Proof. induction xs ; simpl. reflexivity. rewrite IHxs. reflexivity. Qed.

Exercise 2.8.1 Prove the following lemmas.

Lemma app_asso (X : Type) (xs ys zs : list X) :

app (app xs ys) zs = app xs (app ys zs).

Lemma length_app (X : Type) (xs ys : list X) :

length (app xs ys) = plus (length xs) (length ys).

Lemma rev_app (X : Type) (xs ys : list X) :

rev (app xs ys) = app (rev ys) (rev xs).

Lemma rev_rev (X : Type) (xs : list X) :

rev (rev xs) = xs.

2.9 Linear List Reversal

We will now see inductive proofs where the inductive hypothesis carries a univer-

sal quantification. Such proofs are needed for the verification of the correctness

of tail-recursive procedures for list reversal and list length. The proofs will em-

ploy the tactics revert and intros.

If you are familiar with functional programming, you will know that the func-

tion rev takes quadratic time to reverse a list since each recursion step involves

an application of the function app. One can write a tail-recursive function that

reverses lists in linear time. The trick is to accumultate the elements of the main

list in an extra argument.

Fixpoint revi {X : Type} (xs ys : list X) : list X :=

match xs with

| nil => ys

| cons x xr => revi xr (cons x ys)

end.

The following lemma gives us a non-recursive characterization of revi.

Lemma revi_rev {X : Type} (xs ys : list X) :

revi xs ys = app (rev xs) ys.

We prove this lemma by induction on xs. For the induction to go through, the

inductive hypothesis must hold for all ys. To get this property, we move the

universal quantification for ys from the assumptions to the claim before we issue

the induction. We do this with the tactic revert ys.

Proof. revert ys. induction xs ; simpl.

intros ys. reflexivity .

intros ys. rewrite IHxs. rewrite app_asso. reflexivity. Qed.

2011/7/15 17

2 Types, Functions, and Equations

Step through the proof script to see how it works. The tactic intros ys moves the

universal quantification for ys from the claim back to the assumptions.

Exercise 2.9.1 Prove the following lemma.

Lemma rev_revi {X : Type} (xs : list X) :

rev xs = revi xs nil.

The lemma tells us how we can reverse lists with revi.

Exercise 2.9.2 Here is a tail-recursive function that obtains the length of a list

with an accumulator argument.

Fixpoint lengthi {X : Type} (xs : list X) (a : nat) :=

match xs with

| nil => a

| cons _ xr => lengthi xr (S a)

end.

Proof the following lemmas.

Lemma lengthi_length {X : Type} (xs : list X) (a : nat) :

lengthi xs a = plus (length xs) a.

Lemma length_lengthi {X : Type} (xs : list X) :

length xs = lengthi xs O.

Exercise 2.9.3 Define a tail-recursive function faci that computes factorials.

Prove fac n = faci n O for n : nat. Hint: First you need a lemma that charac-

terizes faci non-recursively using fac.

2.10 Options and Finite Types

An empty type not having members can be defined as an inductive type with no

constructors.

Inductive void : Type := .

Computationally, void seems useless. Logically, however, void is dynamite. If

we assume that void has a member, we can prove that every equation holds. In

other words, if we assume that void is inhabited, logical reasoning crashes.

Lemma void_vacuous (v : void) (X : Type) (x y : X) : x=y.

Proof. destruct v. Qed.

The proof is by case analysis on the assumed member v of void. To prove a claim

by case analysis on a member of an inductive type, we need to prove the claim for

every constructor of the type. Since void has no constructor, the claim follows

18 2011/7/15

2.10 Options and Finite Types

vacuously.1 Every logical system comes with some form of vacuous reasoning.

Typically, there is some proposition False such that from a proof of False one

can obtain a proof of everything.

Next we consider a type constructor option that adds a new element to a type.

Inductive option (X : Type) : Type :=

| None : option X

| Some : X −> option X.

The constructor None yields the new element (none of the old elements) while

the constructor Some yields the old elements. The elements of an option type

are called options.

Implicit Arguments None [X].

Implicit Arguments Some [X].

Option types can be used to represent partial functions. Here is such a represen-

tation of the subtraction function.

Fixpoint subopt (x y : nat) : option nat :=

match x, y with

| _, O => Some x

| O, _ => None

| S x’, S y’ => subopt x’ y’

end.

If one iterates the type constructor option on void n-times, one obtains a type

with n elements.

Definition fin (n : nat) : Type := iter n option void.

Here are definitions naming the elements of the types fin(S O), fin(S(S O)), and

fin(S(S(S O))).

Definition a11 : fin (S O) := @None (fin O).

Definition a21 : fin (S (S O)) := @None (fin (S O)).

Definition a22 : fin (S (S O)) := Some a11.

Definition a31 : fin (S (S (S O))) := @None (fin (S (S O))).

Definition a32 : fin (S (S (S O))) := Some a21.

Definition a33 : fin (S (S (S O))) := Some a22.

Exercise 2.10.1 Define a predecessor function nat → option nat.

Exercise 2.10.2 Prove the following lemma.

1 From Wikipedia: A vacuous truth is a truth that is devoid of content because it asserts some-

thing about all members of a class that is empty or because it says “If A then B” when in fact A

is inherently false. For example, the statement “all cell phones in the room are turned off” may

be true simply because there are no cell phones in the room. In this case, the statement “all

cell phones in the room are turned on” would also be considered true, and vacuously so.

2011/7/15 19

2 Types, Functions, and Equations

Lemma fin_SO (x : fin (S O)) : x = @None void.

Exercise 2.10.3 One can define a bijection between bool and fin(S(S O)). Show

this fact by completing the definitions and proving the lemmas shown below.

Definition tofin (x : bool) : fin (S(S O)) :=

Definition fromfin (x : fin (S(S O))) : bool :=

Lemma bool_fin (x : bool) : fromfin (tofin x) = x.

Lemma fin_bool (x : fin (S(S O))) : tofin (fromfin x) = x.

Exercise 2.10.4 One can define a bijection between nat and option nat. Show

this fact by completing the definitions and proving the lemmas shown below.

Definition tonat (x : option nat) : nat :=

Definition fromnat (x : nat) : option nat :=

Lemma opnat_nat (x : option nat) : fromnat (tonat x) = x.

Lemma nat_opnat (x : nat) : tonat (fromnat x) = x.

2.11 Simplifying Subterms

Simplification can be tricky since full simplification of the claim may produce

large terms that do not have the structure needed for rewriting. In such a case

simplifying only a particular subterm may do the job. Moreover, it is usually a

good idea to avoid nested matches since they do not go well with simplification.

As example, we consider two functions that test whether a number is even.

Fixpoint evenb (x : nat) : bool :=

match x with

| O => true

| S x’ => negb (evenb x’)

end.

Simplification will work well for evenb since there are no nested matches. This

is not the case for the following function containing a nested match (hidden by

syntactic sugar).

Fixpoint evenb’ (x : nat) : bool :=

match x with

| O => true

| S O => false

| S (S x’) => evenb’ x’

end.

Lemma evenb’_negb (n : nat) :

evenb’ (S n) = negb (evenb’ n).

20 2011/7/15

2.12 Discussion and Remarks

Proof. induction n. reflexivity.

simpl (evenb’ (S(S n))). rewrite IHn. rewrite negb_negb. reflexivity. Qed.

What makes the proof go through is that we only simplify the subterm

evenb′(S(Sn)). Try to simplify the entire claim and you will see where the diffi-

culty is.

Exercise 2.11.1 Prove the following lemmas.

Lemma evenb_evenb’ (n : nat) : evenb n = evenb’ n.

Lemma evenb_SS (n : nat) : evenb (S (S n)) = evenb n.

Lemma evenb_negb (n : nat) : evenb n = negb (evenb (S n)).

Exercise 2.11.2 Identify the nested match in evenb′.

2.12 Discussion and Remarks

A basic feature of Coq’s language are inductive types. We have introduced in-

ductive types for booleans, natural numbers, pairs, and lists. The elements of

inductive types are obtained with so-called constructors. Inductive types gen-

eralize the constructor representation of the natural numbers employed in the

Peano axioms. Inductive types are also a basic feature of functional program-

ming languagues (e.g., ML, Haskell).

Inductive types are accompanied by structural case analysis, structural recur-

sion, and structural induction. Typical examples of recursive functions are addi-

tion and multiplication of numbers and concatenation and reversal of lists. We

have also seen a higher-order function iter that formulates a recursion scheme

known as iteration.

Coq is designed such that evaluation always terminates. For this reason Coq

restricts recursion to structural recursion on inductive types. Every recursion

step must strip off at least one constructor of a given argument.

Coq’s language is very regular. Both functions and types are first-class values,

and functions can take types and functions as arguments.

Coq provides for the formulation and proof of theorems. So far we have seen

equational theorems. As it comes to proof techniques, we have used simplifi-

cation, case analysis, induction, and rewriting. Proofs are constructed by proof

scripts, which are obtained with commands called tactics. A tactic either re-

solves a trivial proof goal or reduces a proof goal to one or several subgoals.

Proof scripts are constructed in interaction with Coq, where Coq applies the

proof rules and maintains the open subgoals.

2011/7/15 21

2 Types, Functions, and Equations

Proof scripts are programs that construct proofs. To understand a proof,

one steps with the Coq interpreter through the script constructing the proof and

looks at the proof goals obtained with the tactics. Eventually, we will learn that

Coq represents proofs as terms. You may type the command Print L to see the

term serving as the proof of a lemma L.

For now we concentrate on the basic features of Coq and do not use notational

devices such as infix operators. We also ignore Coq’s extensive library that comes

with theories for many structures (including booleans, natural numbers, pairs,

lists, and options).

2.13 Tactics Summary

destruct x Do case analysis on x

induction x Do induction on x

rewrite [<-] s Rewrite claim with an equation obtained from s

f_equal Reduce claim st = su to t = u

simpl [x | t] Simplify [applications of x in | subterm t in] claim

unfold x Unfold definition of x in claim

cbv Reduce claim to normal form

intros x Move universal quantification from claim to assumptions

revert x Move universal quantification for x from assumptions to claim

reflexivity Establish the goal by computation and reflexivity of =

22 2011/7/15

3 Reduction and Typing of Terms

In this chapter we take a look at the core language of constructive type the-

ory, the logic implemented by Coq. This language consists of expressions called

terms and comes with the notions of reduction and typing, which are fundamen-

tal for computational logic and the theory programming languages. This chapter

will not be an easy read since it presents theoretical material involving many

technical definitions. However, everything is implemented in Coq and you can

freely experiment with examples.

3.1 Terms

We start with the definition of a class of terms. First we assume an infinite set of

symbols called variables. Then we obtain the set of terms with the grammar

s, t ::= x | T | ∀x : s.t | λx : s.t | s t

where the letter x ranges over variables. The grammar employs mathematical

notation for terms, which translates to Coq’s notation as follows:

T ⇝ Type

∀x : s.t ⇝ forall x : s, t

λx : s.t ⇝ fun x : s ⇒ t

A term ∀x : s.t represents a type whose members are functions that take an

argument x of type s and yield a result of type t. The result type t may depend on

the actual argument. A term λx : s.t descibes a function that takes an argument x

of type s and yields the result t. The result t usually depends on the actual

argument. A term s t represents the application of the function described by s

to the argument described by t. We adopt the following conventions.

• Terms of the form ∀x : s.t are called function types.

• Terms of the form λx : s.t are called lambda abstractions.

• Terms of the form s t are called applications.

23

3 Reduction and Typing of Terms

We adopt the following notational conventions.

s t u ⇝ (s t)u

s → t ⇝ ∀x : s.t where x does not occur in t

s → t → u ⇝ s → (t → u)

λxy : s.t ⇝ λx : s.λy : s.t analogous for 3 and more variables

∀xy : s.t ⇝ ∀x : s.∀y : s.t analogous for 3 and more variables

Note that the familiar arrow types s → t are function types where the result type

does not depend on the actual argument. Coq realizes this convention.

Check forall X : Type, Type.

% Type → Type : Type

Check forall X Y : Type, Type.

% Type → Type → Type : Type

Check forall X Y : Type, Y.

% Type → forall Y : Type : Y

A function type ∀x : s.t is called dependent if t depends on x. A dependent

type of the form ∀x : T.t is called polymorphic. Two straightforward examples

of polymorphic function types are ∀x : T.x and ∀x : T.x → x. For more practi-

cal examples consider the types of the pair constructor pair and the projection

functions fst and snd in Section 2.5.

3.2 Local Variables

Terms of the form ∀x : s.t or λx : s.t introduce a local variable x that is visible

in the subterm t. We say that ∀x and λx bind x in t and refer to the symbols ∀

and λ as binders. A variable is free in a term if it has an occurrence in the term

that is not in the scope of a binder. Here are examples:

• x is not free in λx :y.x.

• x is free in (λx :y.x)x.

• x is free in λx :x.x.

• x is not free in λx : T.λx :x.x.

• x is free in x → x.

• x is not free in ∀x :y.x → x.

A term is closed if no variable is free in it. Examples of closed terms are T, T → T,

∀x : T.x → x, and λX : T.λx :X.x. Terms are called open if they are not closed.

It is a matter of notation which variables one chooses for the local variables

of a term. Thus renaming of local variables does not change the term. Here are

examples:

24 2011/7/15

3.3 Beta Reduction

• λx :X.x and λy :X.y are identical.

• λx :X.λy :X.fxy and λx :X.λz :X.fxz are identical.

• λx :X.λy :X.fxy and λy :X.λx :X.fyx are identical.

• λx :X.λy :X.fxy and λy :X.λx :X.fxy are not identical.

• λX : T.λx :X.x and λx : T.λx :x.x are identical.

Renaming of local variables is known as alpha renaming. That alpha renaming

does not change a term can be checked with Coq.

Goal (fun (X : Type) (x : X) => x) = (fun (Y : Type) (y : Y) => y).

Proof. reflexivity. Qed.

Coq’s command Goal declares a throw-away lemma that is not given a name.

When Coq prints a term, it may take the freedom to rename local variables.

Check fun (x : Type) (x : x) => x.

% fun (x : Type) (x0 : x)⇒ x0 : forall x : Type, x → x

Exercise 3.2.1 Check the examples we have given for alpha renaming with Coq.

Try to come up with examples of your own.

Exercise 3.2.2 Decide for each pair whether the two terms are identical.

a) ∀x : T.x → x and ∀y : T.y → y

b) λxy : T.x → y → x and λyx : T.y → x → y

c) λxyz : T.x → (∀u :x.z → y) and λyxz : T.y → (∀u :x.z → x)

d) λx : T.x and ∀x : T.x

e) (λxy : T.y)T and (λx : T.λz : T.z)T

3.3 Beta Reduction

A term of the form (λx : s.t)u is called a beta redex. It represents the applica-

tion of a function given as a lambda abstraction to an argument. A beta redex

(λx : s.t)u can be simplified to the term txu obtained from t by replacing every

free occurrence of the variable x with the term u. We speak of a beta reduction.

We write the reduction rule behind beta reductions as follows:

(λx : s.t)u ⇝ txu

Here are examples of beta reductions:

• (λx :A.fxa)b ⇝ fba

• (λxy :A.x)a ⇝ λy :A.a

• (λx :A.x) (fab) ⇝ fab

2011/7/15 25

3 Reduction and Typing of Terms

• (λX : T.λx :X.x)A ⇝ λx :A.x

• (λX : T.λg :X → X.λx :X.g(gx))A ⇝ λg :A→ A.λx :A.g(gx)

• (λg :A→ A.ga)(λx :A.fxb) ⇝ (λx :A.fxb)a ⇝ fab

Beta reduction is a fundamental computation principle first investigated by

Alonzo Church in the 1930’s.

In Coq, we may use the command Compute to perform beta reductions. To

mimic the above examples, we use Coq’s section device to declare the free vari-

ables used in the examples.

Section Beta_Reduction.

Variable A : Type.

Variable a b : A.

Variable f : A −> A −> A.

Compute (fun x : A => f x a) b.

Compute (fun x y : A => x) a.

Compute (fun x : A => x) (f a b).

Compute (fun (X : Type) (x : X) => x) A.

Compute (fun (X : Type) (g : X −> X) (x : X) => g (g x)) A.

Compute (fun g : A −> A => g a) (fun x : A => f x x).

Compute fun x => (fun g => g x) (fun x => f x b).

End Beta_Reduction.

Step carefully through the commands with Coq to see what happens. For nested

abstractions we have used Coq’s sugared syntax. You may use the unsugared

syntax if you like.

The substitution txu performed by a beta reduction (λx : s.t)u ⇝ txu replaces

every free occurrence of the variable x in the term t with the term u. When

doing a substitution by hand, one must avoid capturing of free variables in u by

a binder in t. So (λy.x)xz = λy.z is fine, but (λy.x)xy = λy.y is not since y is

captured by λy . Capturing can always be avoided by renaming local variables.

For instance, we have (λy.x)xy = λz.y for every variable z ≠ y .

We use the opportunity to demonstrate Coq’s type inference capabilities. If

you omit the type of a variable in a binding construct, Coq will try to infer the

type automatically. Run through the following section to see what happens.

Section Type_Inference.

Variable A : Type.

Variable a b : A.

Variable f : A −> A −> A.

Check (fun x => f x a) b.

Check (fun x => x) (f a b).

Check (fun X (x : X) => x) A.

Check (fun X g (x : X) => g (g x)) A.

Check (fun g => g a) (fun x => f x x).

26 2011/7/15

3.4 Normal Forms and Convertibility

Check (fun g => g a) (fun x => f x b).

End Type_Inference.

In type theory, a beta redex (λx : s.t)u and the term txu obtained by beta reduc-

tion always denote the same value.

Example beta_equal (X Y : Type) (f : X −> Y) (x : X) :

(fun y => f y) x = f x.

Proof. reflexivity. Qed.

Example beta_equal’ (A : Type) (a : A) (f : A −> A −> A) :

(fun g => g a) (fun x => f x) = (fun y h => h y) a f.

Proof. simpl. reflexivity. Qed.

The keyword Example is a synonym for Lemma.

Exercise 3.3.1 Beta reduce the term

Compute fun (X : Type) (f : X −> X −> X) (y : X) => (fun x y : X => f x y) y.

by hand and check your result with Coq.

Exercise 3.3.2 Give a beta redex where a local variable must be renamed to avoid

capturing when the beta redex is reduced.

3.4 Normal Forms and Convertibility

Constructive type theory comes with beta reduction and further reduction rules

taking care of definitions and inductive types. The reduction rules are the com-

putation rules of type theory. We now discuss general properties of the reduction

rules.

A term s reduces to a term t if t can be obtained from s by a finite (possibly

empty) series of reduction steps. A term is reducible if a reduction step applies

to it, and normal otherwise. A term t is a normal form of a term s if s reduces

to t and t is normal.

Type theory is designed such that every well-typed term has a unique normal

form. Coq’s command Compute computes the normal form of a term. We say

that a term evaluates to its normal form.

The existence of unique normal forms follows from two prominent properties

defined as follows:

• Strong normalization The process of applying reduction steps to a well-

typed term always terminates with a normal form.

• Confluence If a term s reduces to two terms t1 and t2, then there is always

a term u such that both t1 and t2 reduce to u.

2011/7/15 27

3 Reduction and Typing of Terms

Strong normalization guarantees that one can compute a normal form for every

term by just applying reduction steps as long as this is possible. Confluence

ensures that a term has at most one normal form. Taken together, the two

properties ensure that every term has a unique normal form.

Two terms are convertible if they have the same normal form. Convertible

terms always describe the same value in type theory. Coq’s tactic reflexivity will

prove a goal s = t if and only if s and t are convertible. We write s ≈ t to say that

the terms s and t are convertible.

Strong normalization only holds for well-typed terms. We will spell out the

rules for well-typedness in the next section. Note that Coq accepts only well-

typed terms.

A precursor of type theory is the untyped lambda calculus studied by Church

in the 1930s. The terms of the untyped lambda calculus are obtained with the

grammar s ::= x | λx.s | ss. Consider the term ω := λx.xx and note that

the term ωω reduces with one beta reduction to itself. This tells us that beta

reduction does not terminate on some untyped or ill-typed terms.

Exercise 3.4.1 Compute the normal forms of the following terms.

a) (λx : T.λg : T→ T→ T. (λf : T → T.∀x ∈ T.fx)(gx))T

b) λx : T.(λf :x → x → x.λyz :x.f (fyz)(fzy))(λyz :x.z)

Exercise 3.4.2 Explain why convertibility of well-typed terms is an equivalence

relation.

3.5 Typing Rules

Only well-typed terms are meaningful in type theory. We will now present a

system of typing rules that assigns types to terms and thereby defines the notion

of well-typedness.

Types are represented as terms. The typing rules derive typings s : t where s

and t are terms. A term s is called a type if the typing s : T can be derived.

Moreover, if a typing s : t can be derived, we say that s has type t and that s is a

member of t. A term s is well-typed if it has a type (i.e., there is a term t such

that the typing s : t can be derived).

To derive a typing s : t, we need assumptions providing the types of the free

variables in s and t. Even if we start with closed terms, assumptions will be

needed for the local variables of the terms. Things are arranged such that at any

point in the derivation of a typing there is at most one assumption per variable.

There is one typing rule for every syntactic form identified by the grammar

for terms: s, t ::= x | T | ∀x : s.t | λx : s.t | s t. The typing rule for variables

28 2011/7/15

3.5 Typing Rules

is straightforward: We can derive x : t if we have the assumption x : t. We may

write the typing rule for variables in symbolic notation:

Var
x : t ⇒ x : t

The typing rule for T says that we can derive the typing T : T.

Uni
T : T

The typing rule for function types looks as follows:

Fun
s : T x : s ⇒ t : T

∀x : s.t : T

The rule allows us to derive a typing ∀x : s.t : T from the typings s : T and t : T,

where we get the additional assumption x : s for the derivation of t : T. The rule

can only be applied if there is no assumption for x so far. This is no problem

since local variables can be renamed.

Here is the typing rule for lambda abstractions:

Lam
s : T x : s ⇒ t :u

λx : s.t : ∀x : s.u

The rule has much in common with the rule for function types. In particular,

Lam can only be applied if there is no assumption for x so far.

Finally, we have the typing rule for applications.

App
s : ∀x :u.v t :u

s t : vxt

The rule says that an application s t is well-typed if we can derive a function

type ∀x :u.v for s such that the argument type u can be derived for t. The type

of the application is obtained with the substitution operation already used with

the beta reduction rule. Note that vxt ≈ (λx :u.v)t. If the variable x does not

occur in the term v , we have vxt = v and the rule specializes to the ordinary

application rule:

s :u→ v t :u

s t :v

2011/7/15 29

3 Reduction and Typing of Terms

There is an additional rule that provides for conversion on the right hand side of

a typing.

Con
s : t u : T

s :u
t and u are convertible

The conversion rule Con allows us to derive a typing s :u from a typing s : t

provided t and u are convertible and the typing u : T can be derived. Here is a

contrived example where type checking involves a type conversion with the beta

rule.

Check fun (X : Type) (f : X −> X) (x : (fun Y : Type => Y) X) => f x.

Beta reduction of the type of x is needed so that it agrees with the argument

type of f .

Nontrivial type conversions are an essential feature of type theory. The typ-

ings involving the function fin in Section 2.10 provide interesting examples. In

Chapter 4 we will see that nontrivial type conversions are crucial for proof check-

ing.

Because of the conversion rule, every well-typed term has infinitely many

types. However, all these types are convertible. In fact, our type theory is de-

signed such that every well-typed term has a unique normal type.

Coq has terms of the form s : t called type ascriptions. Type ascriptions

give us the possibility to ascribe types to subterms. We can understand a type

ascription as syntactic sugar for a beta redex.

s : t ⇝ (λx : t.x) s

Thus a type ascription s : t has type t and reduces to s. As it comes to type

checking, a type ascription s : t impose the obligation to chek that the typing s : t

is derivable. Here is an example.

Check @nil nat : list ((fun X : Type => X) nat).

Note that the conversion rule is needed to derive a type for this term. This

way one can proceed from the type list nat of the term @nil nat to the type

list ((λX : T. X)nat) required by the ascription.

Here are the most important properties of well-typed terms.

• Propagation If the typing s : t is derivable, then the typing t : T is derivable.

• Preservation If the typing s : t is derivable and s reduces to u, then the typ-

ing u : t is derivable. Preservation is also known as subject reduction.

• Unique type If two typings s : t and s :u are derivable, then the types t and u

are convertible. Thus the type of a term is unique up to conversion.

30 2011/7/15

3.6 A Type Checking Algorithm

• Strong normalization The process of applying reduction steps to a well-

typed term always terminates with a normal form.

Exercise 3.5.1 Suppose the typing s : t is derivable and t reduces to u. Explain

why the typing s :u is derivable.

Exercise 3.5.2 You can experiment with the typing rules in Coq. Do the follow-

ing examples by hand and check your results with Coq.

Check fun (s : Type) (t : s −> Type) => forall x : s, t x.

Check fun (s u : Type) (t : s −> u) => fun x : s, t x.

Check fun (u : Type) (v : u −> Type) (s : forall x : u, v x) (t : u) => s t.

Check fun X : Type => X −> forall X : Type, X.

Exercise 3.5.3 Derive the typing

λx : T.λx :x.x : ∀x : T.∀y :x.x

Note that a renaming of a local variable is needed so that the rule for lambda

abstractions can be applied.

Exercise 3.5.4 Derive the following typings using the assumption X : T.

a) (λY : T.Y)X : T

b) (λX : T.X)X : T

Exercise 3.5.5 Give an ill-typed term that reduces to a well-typed term.

3.6 A Type Checking Algorithm

There is an algorithm that decides whether a typing s : t is derivable. First note

that convertibility of well-typed terms is decidable because of strong normal-

ization. Since we also have the unique type property, it suffices to have a type

checking algorithm that for a term s returns a type t whenever s has a type. Such

a type checking algorithm is implemented by Coq’s Check command. We present

the type checking algorithm as a system of operational typing rules shown in Fig-

ure 3.1. The operational typing rules refine the typing rules such that conversion

is only checked for well-typed terms (follows by Propagation).

Exercise 3.6.1 Determine normal types of the following terms and check your

results with Coq.

a) ∀x : T.x

b) λx : T.∀y : T.x → y

2011/7/15 31

3 Reduction and Typing of Terms

Var
x : t ⇒ x : t

Uni
T : T

Funop
s :w1 x : s ⇒ t :w2

∀x : s.t : T
w1 ≈ T and w2 ≈ T

Lamop
s :w x : s ⇒ t :u

λx : s.t : ∀x : s.u
w ≈ T

Appop
s :w1 t :w2

s t : vxt
w1 →

∗ ∀x :u.v and w2 ≈ u

s ≈ t :⇔ s and t are convertible

s →∗ t :⇔ s reduces to t

Figure 3.1: Operational typing rules

c) λf : T → T.∀x : T.f x

d) λxyz : T.λ f :x → y.λg :y → z.λw :x.g (f w)

Exercise 3.6.2 Convince yourself that the following terms are ill-typed.

a) ∀x : T.∀y :x.y

b) λf : T → T.∀x :f T.x

c) λxyz : T.λ f :x → y.λg :y → z.

∀p : (x → z)→ T. p(λw :x.g (f w))→ p(λw :x.w)

3.7 Plain Definitions and Local Definitions

A plain definition declares a variable x, gives it a type t, and equates it with a

term s.

Definition x : t := s.

When you enter a plain definition, Coq checks that the typing s : t can be derived.

Once the definition is in effect, the assumption x : t is used for type checking.

There is a reduction rule called delta that will replace a defined variable by the

term it is equated to. Definitions are not recursive.

Coq comes with syntactic sugar for plain definitions. For instance,

Definition id (X : Type) (x : X) : X := x.

32 2011/7/15

3.8 Inductive Definitions

is syntactic sugar for

Definition id : forall X : Type, X −> X := fun (X : Type) => fun (x : X) => x.

Coq has so-called let terms providing for local definitions. A let term takes

the fom let x := s in t where x is a variable and s and t are terms. Here are the

reduction rule and the typing rule for let terms.

let x := s in t ⇝ txs
s :u txs :v

let x := s in t : v

It is tempting to understand a let term as syntactic sugar for a beta redex.

let x := s in t ⇝ (λx :u.t) s where u is the type of s

This understanding is correct as it comes to reduction. However, it is incorrect

as it comes to type checking. While the term

Check let Id := fun X : Type => X in forall X : Id Type, X.

type checks as one would expect, its translation into a beta redex is ill-typed.

Check (fun Id : Type −> Type => forall X : Id Type, X) (fun X : Type => X).

% Type error: "X" has type "Id Type" which should be "Type"

The problem is in the left hand side of the beta redex where the body X of the

function type is required by the typing rule Funop to be of a type that is convert-

ible with T. However, the argument variable X has the type Id Type and there is

no definition providing for the reduction of Id Type to Type. This problem does

not occur with the let term since the typing rule for let terms expands the local

definition in the body ∀X : Id T.X of the let term. This way the expanded body

∀X : (λX : T.X)T.X is type checked, which succeeds since (λX : T.X)T and T are

convertible.

Exercise 3.7.1 Give plain definitions of negb and andb in Coq notation without

using syntactic sugar.

3.8 Inductive Definitions

We now come to inductive definitions. An inductive definition declares a type

constructor together with finitely many member constructors. For instance, the

inductive definition

Inductive list (X : Type) : Type :=

| nil : list X

| cons : X −> list X −> list X.

2011/7/15 33

3 Reduction and Typing of Terms

declares the type constructor

list : T → T

and the member constructors

nil : ∀X : T. list X

cons : ∀X : T. X → list X → list X

The type constructor of an inductive definition yields types called inductive

types. The member constructors of an inductive definition yield members of the

inductive types obtained with the type constructor of the definition. For instance,

the term cons nat O (nil nat) is a member of the inductive type list nat. We speak

of the member constructors of a type constructor and the type constructor of

an inductive type. For instance, nil and cons are the member constructors of

the type constructor list, and list is the type constructor of the inductive type

list nat.

A construction is a term cs1 . . . sn where c is a constructor and n ≥ 0. Since

constructors are not reducible, a construction cs1 . . . sn can only be reduced by

reducing one of the subterms s1, . . . , sn.

Syntactically, constructors are variables. We call a term ground if each of its

free variables is a constructor. The term list nat, for instance, is ground but not

closed. Reduction of a ground term always yields a ground term.

There are no special typing rules for constructors. Everything is handled by

the types an inductive definition assigns to its constructors. For every derivable

typing cs1 . . . sm : dt1 . . . tn where c and d are constructors, d must be a type

constructor and c must be a member constructor of d.

The member constructors of a type constructor are disjoint and injective.

Disjointness means that different member constructors always yield different

values. Injectivity means that cs1 . . . sn = ct1 . . . tn entails si = ti for all i ∈

{1, . . . , n} if c is a member constructor.

We generalize the above definition of inductive types as follows: An inductive

type is a type t that reduces to a type c s1 . . . sn where c is a type constructor. In

this case c is the uniquely determined type constructor of t.

We distinguish between the parametric arguments and the proper argu-

ments of a constructor. The parametric arguments of a constructor appear as

parameters in the head of the inductive definition declaring the constructor. In

our example, list takes a parametric argument, nil takes a parametric argument,

and cons takes one parametric and two proper arguments.

Exercise 3.8.1 Recall the inductive definition of pairs in Section 2.5. For each ar-

gument of the constructors prod and pair say whether it is parametric or proper.

34 2011/7/15

3.9 Matches

3.9 Matches

Matches are terms providing for the case analysis that comes with the fact that

every value of an inductive type is obtained by a member constructor of the type.

As an example, consider a function that duplicates the first element of a list.

Definition duplicate : forall X : Type, list X −> list X :=

fun (X : Type) (xs : list X) =>

match xs with

| nil => xs

| cons x xr => cons x xs

end.

In general, a match takes the form

s, t,u ::= · · · | match s return t with R1 · · ·Rm end

R ::= c x1 · · ·xn ⇒ u

where s is the discriminating term of the match, t is the return type of the

match, and R1, . . . , Rm are the rules of the match. Every rule consists of a mem-

ber constructor c, a possibly empty sequence of pairwise distinct local variables

x1, . . . , xn, and a body u. The clause return t specifying the return type of the

match may be omitted in Coq. This leaves it to Coq to infer the return type of

the match.

The typing rule for matches is complex and we will describe it informally.

The discriminating term s of a match must have an inductive type, and for every

member constructor of the inductive type the match must have exactly one rule.

For the return type t of the match a typing t : T must be derivable. Finally,

for every rule c x1 . . . xn ⇒ u of the match, the typing u : t must be derivable,

where the types of the proper arguments of c are assumed for the local variables

x1, . . . , xn.

We now come to the reduction rule for matches. A match reduces if the

discriminating term s has the form c s1 . . . sn where c is a member constructor.

In this case the corresponding rule c xm · · ·xn ⇒ u of the match is selected and

the match reduces to the term u
xm···xn
sm··· sn where sm, . . . , sn are the terms for the

proper arguments of c.

Given a concrete type constructor, we can formally state the typing and re-

duction rules for matches for this type constructor. Here are the rules for nat.

s : nat u : t x :nat ⇒ v : t

match s return t with O ⇒ u | S x ⇒ v end : t

match O return t with O ⇒ u | S x ⇒ v end ⇝ u

match S s return t with O ⇒ u | S x ⇒ v end ⇝ vxs

2011/7/15 35

3 Reduction and Typing of Terms

Exercise 3.9.1 Assume the inductive definition of nat and compute the normal

forms of the following terms. Check your results with Coq.

a) match O with O ⇒ S O | S x ⇒ x end

b) match S O with O ⇒ S O | S x ⇒ x end

c) match S x with O ⇒ S | S y ⇒ λx : nat.add y x end

Exercise 3.9.2 Give the typing and reduction rules for matches for the type con-

structors bool, void, option, prod, and list.

3.10 Recursive Abstractions

Recursive abstractions are terms that describe structurally recursive functions

taking an argument from an inductive type. As an example, consider a function

computing the length of a list.

Definition length : forall X : Type, list X −> nat :=

fun (X : Type) =>

fix f (xs : list X) : nat :=

match xs with

| nil => O

| cons x xr => S (f xr)

end.

In general, a recursive abstraction takes the form

s, t,u ::= · · · | fix f (x : s) : t := u

where f and x are local variables. The variable f refers to the function being

described and the variable x refers to the argument of the function being de-

scribed. The typing rule for recursive abstractions is

Fix
s : T x : s ⇒ t : T f :∀x : s.t, x : s ⇒ u : t

fix f (x : s) : t := u : ∀x : s.t
s inductive type

There is an additional termination constraint for the uses of f in u. The vari-

able f may only be used in applications f v where the term v is obtained from x

by stripping off at least one constructor with a match. The reduction rule for

recursive abstractions takes the form

(fix f (x : s) : t := u)(cv1 . . . vn) ⇝ u
f
fix f (x : s) : t :=u

x
cv1... vn

where c must be a member constructor. The local variables f and x in the

body u of the recursive abstraction are replaced with the recursive abstraction

and the argument term.

36 2011/7/15

3.11 Canonical Form Theorem

Coq’s recursive definitions are syntactic sugar for plain definitions and re-

cursive abstractions. A recursive definition with a single argument1

Fixpoint f (x : s) : t := u.

translates to a plain definition with a recursive abstraction:

Definition f : forall x : s, t := fix f (x : s) : t := u.

Coq supports recursive abstractions with more than one argument. In this case,

the structural recursion must concern one of the arguments. Coq also supports

mutual recursion. Most recursive abstractions with multiple arguments can be

reduced to recursive abstractions with a single argument. However, there are ad-

vanced uses of recursive abstractions where more than one argument is essential

(see Section 5.10.2).

Exercise 3.10.1 Complete the following definition so that it declares an addition

function. Use a recursive abstraction with a single argument.

Definition addf : nat −> nat −> nat :=

Prove that addf agrees with the addition function add defined in Section 2.3.

Exercise 3.10.2 Assume that the following ground term t is given.

t = fix f (x : nat) : nat := match x with O ⇒ x | S y ⇒ S(S(f y)) end

Compute the normal forms of the following terms. Write out each reduction step

and say whether it is a beta, match, or fix reduction. Check your results with Coq.

a) t O

b) t(S O)

c) λz :nat. t z

d) λz :nat. t(S z)

3.11 Canonical Form Theorem

A canonical term is a term that is ground, well-typed, and normal. A canonical

typing is a derivable typing s : t where s and t are canonical terms.

Since reduction preserves typings and groundness, we know that the canoni-

cal terms are the normal forms of the well-typed ground terms. Thus the canon-

ical terms are the values our type theory computes with. The following theorem

formulates the type structure of the values of our type theory.

1 The keyword Fixpoint pays tribute to a general theory of recursive functions where recursive

functions appear as fixed points of non-recursive functions.

2011/7/15 37

3 Reduction and Typing of Terms

Canonical Form Theorem

Every canonical typing has exactly one of the following forms:

1. T : T.

2. ∀x : s.t : T.

3. λx : s.t : ∀x : s.u.

4. cs1 . . . sn : T where c is a type constructor.

5. cs1 . . . sn : ∀x :u.v where c is a constructor.

6. cs1 . . . sm : dt1 . . . tn where c is a member constructor of the type constructor d.

7. fix f(x : s) : t := u : ∀x : s.v .

Graphically, we can summarize the canonical form theorem as follows.

T

∀

λ fix C

C

C

Here are some consequences of the theorem.

• Every canonical term is either T, a function type, an abstraction (either a

lambda abstraction or a recursive abstraction), or a construction.

• Every canonical type is either T, a function type, or an inductive type that is a

construction.

• Every canonical member of a function type is either an abstraction or a con-

struction.

• Every canonical member of an inductive type is a construction headed by a

member constructor of the constructor of the inductive type.

3.12 The Problem with Non-Terminating Recursion

Coq admits only structural recursion so that the application of recursive func-

tions always terminates. This grave restriction on recursion is imposed since

non-terminating recursion ruins the logical consistency of the type theory. The

argument goes as follows. In a programming language with general recursion we

can define a recursive function push as follows:

push : bool → bool

push x = negb (push x)

Such a function cannot be defined in Coq. However, we can use Coq’s section

device to assume that we have such a function.

38 2011/7/15

3.13 Universes

Section Push.

Variable push : bool −> bool.

Variable pusheq : forall x, push x = negb (push x).

The variable pusheq is an assumed lemma providing the defining equation of the

function push. Given the assumptions push and pusheq, we can now obtain a

term bogus : bool satisfying negb bogus = bogus. This is a logical inconsistency

since there is no boolean that is identical with its negation.

Definition bogus : bool := push true.

Lemma contradiction : negb bogus = bogus.

Proof. unfold bogus at 2. rewrite pusheq. unfold bogus. reflexivity. Qed.

End Push.

The problem is that push yields “meaningless” terms while the logic of type the-

ory assumes that every term is “meaningful” (i.e., every term denotes a value of

its type). Seen computationally, the term bogus is a non-terminating application

of the recursive function push. Thus computation will go on forever and not

deliver a value in bool.

Exercise 3.12.1 For the construction of a meaningless term bogus, we can also

assume a function push : nat → nat satisfying push x = S (push x) for all x. Write

a section that assumes push and proves S bogus = bogus.

3.13 Universes

We have to say more about the type T. First of all, there is no single type T.

Rather, there are infinitely many types T0, T1, T2, . . . called universes and the

typing rules involving T are refined as follows.

Uni
Tn : Tn+1

Fun
s : Tn x : s ⇒ t : Tn

∀x : s.t : Tn

Con
s : t u : Tn

s :u
t and u are convertible

Rule Uni arranges the universes into a hierarchy T0 : T1 : T2 : · · · and thus makes

every universe a well-typed term. This way the cycle T : T is avoided. Rule Fun

populates the universes with function types. Note that every universe is closed

under taking function types.

Coq hides the universe levels by printing all universes Tn as Type, except for

the lowest universe T0, which is printed as Set. As it comes to input, one either

writes Set for the lowest universe or Type for a higher universe. When Type

2011/7/15 39

3 Reduction and Typing of Terms

appears in the input, Coq takes care that a universe level can be assigned. Here

is an example of a term that does not type check since a universe level cannot be

assigned consistently.

Definition T : Type := Type.

Check (fun X : T => X) T.

% Error : Universe Inconsistency

In principle, a single universe T with T : T would be preferable over a hierarchy

T0 : T1 : T2 : · · · of universes since it makes more terms well-typed. However,

in 1972 Jean-Yves Girard showed that a type theory with T : T is not strongly

normalizing.2

To come closer to the idea of ⊤ ∈ ⊤, there are cumulativity rules that orga-

nize the universes into a cumulative hierarchy T0 ⊆ T1 ⊆ T2 ⊆ · · · .

CumT
Tm ≤ Tn

m ≤ n CumF
u ≤ v

∀x : s.u ≤ ∀x : s.v
Cum

s : u

s : v
u ≤ v

With universe cumulativity the unique type property is adapted as follows: For

every well-typed term s there exists a unique type t such that every derivable

typing s : u can be obtained from s : t by conversion and cumulativity (i.e., an

application of the typing rule Con followed by an application of the typing rule

Cum).

It is not difficult to adapt the type checking algorithm in Figure 3.1 to the

cumulative hierarchy of universes. The most significant change is in the Appop

rule where w2 ≈ u must be relaxed to NFw2 ≤ NFu, where NF s stands for the

normal form of s.

The following successful checks show that Coq does not work with a single

type constructor list : Tm → Tn.

Check (fun X : Set => list X) : Set −> Set.

Check (fun X : Type => list X) : Type −> Type.

For the first check a type constructor list0 : T0 → T0 is needed. The second check

will be succesful with every a type constructor listn : Tn → Tn where n > 0. As

it turns out, Coq automatically introduces type constructors listn : Tn → Tn with

associated member constructors niln and consn for every n ≥ 0 where such

constructors are needed. This feature is known as universe polymorphism.

Let us summarize. Girard’s paradox tells us that the typing rule T : T results

in a system that is not strongly normalizing. Thus one needs a less permissive

system where all terms terminate. The solution is to replace T with an infinite

2 Girard gave an involved construction of a term of type ∀X : T.X not having a normal form.

Girard’s result is known as Girard’s paradox.

40 2011/7/15

3.14 A General Recursion Operator

hierarchy of universes T0 : T1 : T2 : · · · . The resulting system is strongly normal-

izing but quite restrictive. Thus one adds universe cumulativity and universe

polymorphism to obtain a more permissive but still strongly normalizing sys-

tem. The resulting system is quite complex. Coq hides this complexity by not

showing universe levels and assigning universe levels automatically.

Exercise 3.13.1 For every universe Tn+1 give a closed term s such that s : Tn+1 is

derivable but s : Tn is not derivable.

Exercise 3.13.2 Which of the following typings are derivable?

a) λx : T1.x : ∀x : T1.T2

b) λx : T1.x : ∀x : T2.T3

c) λx : T1.x : ∀x : (λy : T4.y)T1.T2

Exercise 3.13.3 For each of the partially given terms below, fill in the blanks

so that the term is well-typed and closed, if this is possible. Give types for the

well-typed terms you obtain.

a) λf : (∀X : T1.X → X).λY : T0.f T0 Y

b) λX : T0.λc : (∀Y : T1.(Y → X)→ X).c .X. (λz : X.z)

Exercise 3.13.4 Explain the following type error.

Definition Id : Type := forall X : Type, X −> X.

Check fun f : Id => f Id.

% Error : Universe Inconsistency

Hint: The universe inconsistency becomes apparent if you put universe levels in

the definition of Id (impossible in Coq).

Definition Id : Tn+1 := forall X : Tn, X −> X.

To see what is happening in Coq, activate the display option “display universe

levels” and use the command Print Id.

Exercise 3.13.5 Is the following typing derivable?

(fun X : list Set => X) : list Set −> list Type

Use the typing rules to find the answer and check it with Coq.

3.14 A General Recursion Operator

In a functional programming language with general recursion we can define a

recursive function Fix as follows:

Fix : ∀X Y : T. ((X → Y)→ X → Y)→ X → Y

Fix F x = F (Fix F)x

2011/7/15 41

3 Reduction and Typing of Terms

Fix is a recursion operator that generalize Coq’s recursion operator in that it

doesn’t require structural recursion. To say more about Fix, we assume Fix in

Coq.

Section Fix.

Variable Fix : forall X Y :Type, ((X −> Y) −> X −> Y) −> X −> Y.

Implicit Arguments Fix [X Y].

Variable Fixeq : forall (X Y : Type) (F : (X −> Y) −> X −> Y) (x : X), Fix F x = F (Fix F) x.

The assumed function Fix can be used to define all recursive functions. The

trick is to represent a recursive function we want to define as a non-recursive

function that may take the recursive function as an argument. We show this at

the example of an addition function.

Definition Add : (nat −> nat −> nat) −> nat −> nat −> nat :=

fun f x y => match x with

| O => y

| S x’ => S (f x’ y)

end.

Lemma Add_fix (x y : nat) :

Fix Add x y = (fix f x := Add f x) x y.

Proof. induction x ; rewrite Fixeq ; simpl. reflexivity. rewrite IHx. reflexivity. Qed.

End Fix.

Lemma Add_fix states that the assumed recursion operator Fix and Coq’s recur-

sion operator fix yield equivalent functions for the non-recursive function Add.

We cannot prove this result for a general function F since Coq must see the

function F to verify that the recursion obtained with fix is structural.

We can now say more about the relationship between recursion and fixpoints,

in case you are curious. Consider the defining equation (Fix F) x = F(Fix F)x

of Fix. It says that the functions Fix F and F(Fix F) agree on all arguments. In

other words, the application of F to Fix F does not yield a new function. One

says that Fix F is a fixpoint of F and that Fix is a fixpoint operator (since it yields

a fixpoint of F when applied to F). Thus the recursion operator Fix can be seen

as a fixpoint operator.

Exercise 3.14.1 Assume Fix and Fixeq. Find a term bogus : nat for which you can

prove S bogus = bogus.

42 2011/7/15

4 Propositions and Proofs

Propositions and proofs are familiar notions from mathematics. A proposition

is a statement that may be true or false, and a proof is a rigorous argumentation

that a statement is true. The development and study of formal systems of propo-

sitions and proofs is a central concern of logic. In this chapter we introduce the

formal proof system that comes with Coq’s constructive type theory.

4.1 Propositions as Types

In constructive type theory, propositions and proofs are represented as terms.

More specifically, propositions are represented as types, and proofs are repre-

sented as members of propositions. The representation is such that a term s is

a proof of a proposition t if and only if the typing s : t is derivable. Thus type

checking provides for proof checking.

To accomodate propositions, Coq’s type theory comes with a special universe

Prop. A term is considered a proposition if and only if it has type Prop. There

are three typing rules for Prop.

PropU
Prop : T1

PropS
Prop ≤ T0

PropQ
s : Tn x : s ⇒ t : Prop

∀x : s.t : Prop

The first rule makes Prop a member of the universe T1. Without this rule the

term Prop would not be well-typed. The second rule makes Prop a subuniverse

of T0. Hence every proposition is a type. The first and the second rule do not give

members to Prop. This is done by the third rule, which makes a function type a

member of Prop if the result type of the function type is a member of Prop.

Logically, we see a function type ∀x : s.t in Prop as a universal quantification

and more specialized as an implication s → t if s is a proposition and x is not

free in t. Seen from this perspective, the typing rule PropQ closes the universe

of propositions under taking universal quantifications and implications.

A proof is a term s such that there is a proposition t such that s has type t.

In this case we say that s proves t or that s is a proof of t. A proposition is

provable if it has a proof.

So far, every canonical proposition is a universal quantification, and every

43

4 Propositions and Proofs

canonical proof is a lambda abstraction. Here are examples of canonical propo-

sitions and canonical proofs.

Definition p1 : forall X : Prop, X −> X

:= fun (X : Prop) (x : X) => x.

Definition p2 : forall X Y : Prop, X −> Y −> X

:= fun (X Y : Prop) (x : X) (y : Y) => x.

Definition p3 : forall X Y Z: Prop, (X −> Y −> Z) −> Y −> X −> Z

:= fun (X Y Z: Prop) (f : X −> Y −> Z) (y : Y) (x : X) => f x y.

Here is a non-canonical proposition with a canonical proof.

Definition p4 : forall p : bool −> Prop, p true −> p (negb false)

:= fun (p : bool −> Prop) (x : p true) => x.

Why can we trust type theoretic proofs? To answer this question we must

look at the typing rules (see Section 3.5) that associate proofs with propositions.

These are the rules Lam, App, and Con. If we look closely at these rules, we

notice that they express generally accepted logical laws. We start with the rule

Lam, which we depict in a simplified form omitting proof terms.

s : Tn x : s ⇒ t

∀x : s.t

Read logically, Lam says that a quantification ∀x : s.t is provable if t is provable

under the assumption that x is a member of s. There is the side condition that s

is a type. For the special case of an implication, we may write Lam as follows:

s : Prop x : s ⇒ t

s → t

This version of Lam says that an implication s → t is provable if t is provable

under the assumption that there is a proof x of s.

Next we look at the logical reading of the typing rule App. Omitting proof

terms, we depict App as follows.

∀x : s.t u : s

txu

Read logically, App says the following: If a quantification ∀x : s.t is provable

and u is a member of s, then the proposition txu is provable. For the special case

of an implication, we may write App as follows:

s → t s

t

44 2011/7/15

4.1 Propositions as Types

This version of App reads as follows: If both an implication s → t and its

premise s are provable, then the conclusion t of the implication is provable.

This logical law is known as modus ponens and was already identified by the

ancient Greeks.

Finally, we look at the logical reading of the typing rule Con. Omitting proof

terms, we obtain

s t : Prop

t
s ≈ t

Read logically, Con says that if a proposition s is provable, then every convertible

proposition t is provable. Con is logically sound since reduction preserves the

logical meaning of well-typed terms.

There is an important difference between the rule

Fun
s : Tn x : s ⇒ t : Tn

∀x : s.t : Tn

populating the ordinary universes Tn and the rule

PropQ
s : Tn x : s ⇒ t : Prop

∀x : s.t : Prop

populating the universe Prop. With Fun, quantification over a universe yields a

term in a higher universe (e.g., ∀x : Tn. x : Tn+1). With PropQ , quantification of

a proposition over some universe still yields a proposition (e.g., ∀x : Prop. x :

Prop). This feature is known as impredicativity. Adding the impredicative uni-

verse Prop to the system of Section 3.13 preserves strong normalization as well

as all other properties discussed in Chapter 2.

Exercise 4.1.1 Find proofs for the following propositions. Check your answers

with Coq.

a) ∀X Y : Prop. X → (X → Y)→ Y

b) ∀X Y : Prop. (X → X → Y)→ X → Y

c) ∀X Y Z : Prop. (X → Y → Z)→ (X → Y)→ X → Z

d) ∀X Y : Prop. X → Y → ∀Z : Prop. (X → Y → Z)→ Z

e) ∀X Y : Prop. (∀Z : Prop. (X → Y → Z)→ Z)→ X

f) ∀X Y : Prop. X → ∀Z : Prop. (X → Z)→ (Y → Z)→ Z

2011/7/15 45

4 Propositions and Proofs

4.2 Falsity and Negation

Prop is a universe of types that can be extended with inductive types. Induc-

tive types that are members of Prop are called inductive propositions. We first

introduce an inductive proposition False that has no ground proof.

Inductive False : Prop := .

Technically, False is an inductive type in the universe Prop that has no member

constructor.1 We prove that from a proof of False we can obtain a proof of every

proposition.2

Definition False_vacuous : False −> forall X : Prop, X

:= fun f => match f with end.

The vacuous reasoning underlying this proof was discussed in Section 2.10.

With False and implication we can define logical negation.

Definition not (X : Prop) : Prop := X −> False.

We prove the characteristic property of negation: If both not X and X are prov-

able, then False is provable. Since False is not provable, this means that a proof

of not X tells us that there is no proof of X.

Definition not_elim (X : Prop) : not X −> X −> False

:= fun f => f.

Type checking the definition of not_elim is interesting. Type inference as-

signs the type not X to the argument variable f . This yields the type

not X → not X for the abstraction. Using the conversion rule we switch to the

type not X → X → False. The conversion unfolds the definition of not with a delta

and a beta reduction.

Here is a proof showing that the proposition ∀X : Prop.X has no proof.

Definition pure_False : not (forall X : Prop, X)

:= fun f => f False.

The proof tells us that we do not need an inductive definition to obtain a propo-

sition that has no proof.

Why can we be sure that False does not have a ground proof? The canon-

ical form theorem tells us that False does not have a canonical proof. Thus

strong normalization and preservation exclude the existence of a ground proof.

The existence of non-ground proofs of False is no problem since they rely on

assumptions. It is not surprising that with contradicting assumptions one can

obtain a proof of False (see the function not_elim above).

1 We have already seen an inductive type void not having member constructors in Section 2.10.
2 We rely on Coq’s type inference and omit the argument types of the proof. Use the command

Print False_vacuous to see the types Coq derives for the argument variables of the proof.

46 2011/7/15

4.2 Falsity and Negation

Girard’s paradox (mentioned in a footnote in Section 3.13) tells us that a type

theory with T : T has a closed term s of type ∀X : T. X that has no normal form.

Now suppose t is a proposition. Then the typing s t : t is derivable. Hence s is a

spoiler function that yields a proof for every proposition. Thus Girard’s paradox

tells us that a type theory with T : T is logically useless.

We call a proposition functional if it is a function type. Since the result type of

a functional proposition is a proposition (due to the typing rule PropQ), proofs

of functional propositions are proof-constructing functions. This operational

understanding of proofs can be conveyed by depicting functional propositions

as proof rules

Premise1 . . . Premisen

Conclusion

where the premises are the propositional argument types of the proposition and

the conclusion is the result type of the proposition. For instance, the proposi-

tions

∀X : Prop. False → X

∀X : Prop. not X → X → False

can be depicted as the proof rules

⊥

s

¬s s

⊥

where ⊥ and ¬ are the mathematical notations for False and not. Note that the

two proof rules depict the types of the proofs False_vacuous and not_elim de-

fined above. Given a proof rule and a proof of the proposition the rule depicts,

the proof is a function that maps proofs of the premises to a proof of the con-

clusion. Thus a proof represents a proof rule together with its justification.

False and not are predefined in Coq’s standard library. In the following we

use the definitions from Coq’s library, so make sure that the preliminary defini-

tions of this section are not active. For Coq’s negation function not the prefix

operator ~ is defined, so we can write ~~~False for not(not(not False)).

Check ~~~False.

% ~ ~ ~ False : Prop

Deactivate the display of notations in the Coq interpreter to see not in place of

the prefix operator ~. Sometimes the predefined proof

False_ind : ∀X : Prop. False → X

2011/7/15 47

4 Propositions and Proofs

corresponding to our proof False_vacuous is useful.

We call a function a predicate if it yields a proposition if supplied with enough

arguments. Negation is our first example of a predicate. We will see many more

predicates.

Exercise 4.2.1 Depict each of the following propositions as a proof rule. Also

find proofs for the propositions and check your answers with Coq.

a) ¬¬¬⊥

b) ∀X : Prop. X → ¬¬X

c) ∀X : Prop. ¬¬¬X → ¬X

d) ∀X : Prop. ¬X → (¬X → X)→ ⊥

Exercise 4.2.2 Prove that the proposition ¬¬⊥ is not provable.

Exercise 4.2.3 Give the typing and reduction rules for matches for the type con-

structor False.

4.3 Lemmas and Proof Scripts

In Chapter 2 we have stated lemmas with Coq’s lemma device and obtained their

proofs with proof scripts. We will now see that a lemma and its proof amount to

a plain definition that equates the name of the lemma to the proof.

Suppose we want to establish a lemma that provides a proof of the proposi-

tion ∀X Y : Prop. (X → Y) → ¬Y → ¬X. We choose a name for the lemma and

enter the following command.

Lemma modus_tollens (X Y : Prop) :

(X −> Y) −> ~Y −> ~X.

In response, Coq checks that the term given is a type (not necessarily a propo-

sition) and switches to proof mode. We can now enter a proof script that estab-

lishes the lemma.

Proof. intros f g x. exact (g (f x)). Qed.

Step through the proof script to understand. The intros tactic introduces as-

sumptions. The exact tactic gives the proof term for the remaining claim. The

definition of the negation function not is used tacitly. We use the Print command

to look at Coq’s representation of the lemma.

Print modus_tollens.

% modus_tollens =

% fun (X Y : Prop) (f : X → Y) (g : ~Y) (x : X)⇒ g(fx)

% : forall X Y : Prop, (X → Y)→ ~Y → ~X

48 2011/7/15

4.3 Lemmas and Proof Scripts

We now see that the lemma is in fact represented as a plain definition where the

name of the lemma is the defined name, the proposition of the lemma is the type

of the defined name, and the proof is the term the defined name is equated to.

Here is our second example of a lemma.

Lemma triple_negation (X : Prop) :

~~~X −> ~X.

Proof. intros f x. apply f. intros g. exact (g x). Qed.

Print triple_negation.

% triple_negation =

% fun (X : Prop) (f : ~~~X ) (x : X )⇒ f (fun g : ~X ⇒ g x)

% : forall X : Prop, ~~~X → ~X

Step through the proof script and look at the proof term to understand what is

happening. The tactic apply takes a function (i.e., a term whose type is a function

type up to conversion) and reduces the goal to subgoals for the argument types

of the function. The above proof script applies a function f of type ~~X → False

to a goal with the claim False and thus obtains a subgoal with the claim ~~X .

Recall the proof False_vacuous from the previous section. With Coq’s lemma

device, we can obtain this proof interactively.

Lemma False_vacuous’ :

False −> forall X : Prop, X.

Proof. intros f. destruct f. Qed.

Destructuring a proof of False always proves the current goal. For readability

one should use the tactic contradiction in place of destruct.

Lemma False_vacuous’’ :

False −> forall X : Prop, X.

Proof. intros f. contradiction f. Qed.

Like exact, the tactic contradiction fails if it cannot prove the goal it is applied to.

Type checking (see Section 3.6) and proof construction with a proof script

have in common that they derive a typing by applying the typing rules back-

wards. In both cases one of the two sides of the typing is synthesized:

• When we type check a term s, a typing s : t is derived.

• When we construct a proof for a proposition t, a typing s : t is derived.

A proof script can end with either Qed or Defined. In both cases the lemma

and its proof amount to a plain definition, but in case the proof script ends with

Qed, there is the extra provision that the name of the lemma does not delta

reduce. Try the lemma modus_tollens:

Compute modus_tollens.

% modus_tollens : forall X Y : Prop, (X → Y )→ ~Y → ~X

2011/7/15 49



4 Propositions and Proofs

We speak of opaque (Qed) and transparent (Defined) lemmas. Usually we work

with opaque lemmas since having a name for the proof suffices for the applica-

tion of the lemma.

When the commands Qed and Defined are executed, Coq calls its type checker

to ensure that the proof term constructed by the proof script interpreter is in fact

a proof of the proposition specified by the lemma. This security check relieves

the correctness burden on the proof script interpreter. There are rare cases

where Coq’s proof script interpreter fails to synthesize a proper proof term.

From a theoretical point of view, lemmas and proof scripts are just a con-

vience. Once a lemma is established with Qed or Defined, Coq represents it as

a plain definition. Thus every proposition that can be proven with Coq can be

proven with just plain definitions.

From a practical point of view, lemmas and proof scripts are essential. Writing

large proof terms by hand is tedious and unrewarding. In contrast, constructing

proof terms interactively with the proof script interpreter is fun. The interpreter

maintains and displays the open subgoals and automatically takes care of many

details. Every open subgoal specifies the claim and the assumptions for a still

to be synthesized subterm of the proof term. Moreover, the way the tactics

(i.e., the commands of a proof script) reduce a goal to subgoals is in natural

correspondence with ordinary mathematical reasoning.

Exercise 4.3.1 State the propositions of Exercises 4.1.1 and 4.2.1 as lemmas and

prove the lemmas in interaction with Coq.

Exercise 4.3.2 Prove the following lemma.

Lemma ex432 (X Y : Prop) : ~X −> ((X −> Y) −> X) −> False.

Hint. Use contradiction.

Exercise 4.3.3 Prove the following lemmas.

Lemma ex433a (X : Type) (a : X) (r : X −> X −> Prop) :

( forall x y : X, r x y) −> r a a.

Lemma ex433b (X : Type) (a b : X) (p : X −> Prop) :

p a −> (forall q : X −> Prop, q a −> q b) −> p b.

4.4 Tricks of the Trade

Since proofs are functions, writing proofs is like writing functions in a functional

programming language. In a programming language, one uses local definitions

and auxiliary functions to structure a program and to avoid code duplication.

The same ideas apply to proving. Consider the following proof.

50 2011/7/15



4.4 Tricks of the Trade

Lemma circuit (X : Prop) :

(X −> ~X) −> (~X −> X) −> False.

Proof. intros f g. apply f.

apply g. intros x. exact (f x x).

apply g. intros x. exact (f x x). Qed.

The proof is ugly since it proves the claim X twice. This can be avoided by

synthesizing a proof term with a let term that binds the proof of X to a local

variable x. We use the tactic assert to synthesize the let term.

Lemma circuit1 (X : Prop) :

(X −> ~X) −> (~X −> X) −> False.

Proof. intros f g. assert (x : X). apply g. intros x. exact (f x x).

exact (f x x). Qed.

Print circuit1.

% circuit1 =

% fun (X : Prop) (f : X → not X ) (g : not X → X )⇒ let x := g (fun x : X ⇒ f x x) in f x x

% : forall X : Prop, (X → not X )→ (not X → X )→ False

When you step through the proof script, you will see that assert creates two

subgoals, one for the proposition X, and one for the previous claim where the

assumption x :X is added.

Here is another proof for the proposition of circuit using an auxiliary lemma.

Lemma R {X Y : Prop} :

(X −> X −> Y) −> X −> Y.

Proof. intros f x. exact (f x x). Qed.

Lemma circuit2 (X : Prop) : (X −> ~X) −> (~X −> X) −> False.

Proof. intros f g. exact (R f (g (R f ))). Qed.

Note that the proof of circuit2 applies the auxiliary lemma R twice. Since the

arguments X and Y of Lemma R are declared with curly braces, Coq treats them

as implicit arguments (see Section 2.5). Below is another proof script that con-

structs the same proof term with smaller steps.

Lemma circuit3 (X : Prop) : (X −> ~X) −> (~X −> X) −> False.

Proof. intros f g. apply (R f). apply g. exact (R f). Qed.

Step through the script to see how the apply tactic transforms the proof goal.

Finding a proof for a proposition may be difficult. Consider the following

example.

Lemma looks_difficult (X Y : Prop) :

X −> (forall p : Prop −> Prop, p Y −> p X) −> Y.

We start the proof with the command intros x f . This leaves us with the goal

x : X
f : ∀p : Prop → Prop. pY → pX

Y

2011/7/15 51



4 Propositions and Proofs

Our only hope for proving Y is to find a function p such that fp yields a proof

of Y . We choose p = λZ : Prop. Z → Y which yields fp : (Y → Y) → X → Y . We

now have a proof of Y since a proof of Y → Y is straightforward and we have

x :X as an assumption.

Proof. intros x f. apply (f (fun Z => Z −> Y)). intros y. exact y. exact x. Qed.

Print looks_difficult.

% looks_difficult =

% fun (X Y : Prop) (x : X ) (f : forall p : Prop → Prop, p Y → p X )⇒

% f (fun Z : Prop ⇒ Z → Y ) (fun y : Y ⇒ y) x

% : forall X Y : Prop, X → (forall p : Prop → Prop, p Y → p X )→ Y

Exercise 4.4.1 Suppose the proofs of the lemmas R and circuit2 would end with

Defined. What term would you get with Compute circuit2? Check your answer

with Coq.

Exercise 4.4.2 Establish the lemmas circuit, R, and circuit2 with transparent

proofs (i.e., Defined in place of Qed) and prove the following lemma.

Lemma test : circuit = circuit2.

Exercise 4.4.3 Prove the following lemma.

Lemma ex443 (X : Type) (a b : X) (p : X −> Prop) :

p a −> (forall q : X −> Prop, q b −> q a) −> p b.

Exercise 4.4.4 Here are some challenging lemmas.

Lemma ex4441 (X : Prop) : ~~(~~X −> X).

Lemma ex4442 (X Y : Prop) : ~~((~Y −> ~X) −> X −> Y).

Lemma ex4443 (X Y : Prop) : ~~(((X −> Y) −> X) −> X).

Hint. Try to introduce as many assumptions as possible. When you get stuck,

assert the assumption F : False or apply the predefined lemma False_ind. The

type of False_ind is ∀X : Prop. False → X .

4.5 Conjunction and Disjunction

Given two propositions s and t, we can form their conjunction s∧t (read s and t)

and their disjunction s ∨ t (read s or t). The meaning of conjunctions and dis-

junctions can be specified as follows:

• s ∧ t is provable if and only if both s and t are provable.

• s ∨ t is provable if and only if either s or t is provable.

52 2011/7/15



4.5 Conjunction and Disjunction

Our informal account of conjunctions and disjunctions can be formalized with

two inductive definitions.

Inductive and (X Y : Prop) : Prop :=

| conj : X −> Y −> and X Y.

Inductive or (X Y : Prop) : Prop :=

| or_introl : X −> or X Y

| or_intror : Y −> or X Y.

The type constructors and and or represent the logical operations that come

with conjunctions and disjunctions.3 The member constructors formalize the

provability semantics of conjunctions and disjunctions. An inductive predicate

is a type constructor that is a predicate. The type constructors and and or are

our first examples of inductive predicates.

We prove that conjunction is commutative.

Lemma and_commutative (X Y : Prop) :

and X Y −> and Y X.

Proof. intros C. destruct C as [x y]. apply conj. exact y. exact x. Qed.

Print and_commutative.

% and_commutative =

% fun (X Y : Prop) (C : and X Y )⇒

% match C with

% |conj x y ⇒ conj Y X y x

% end

% : forall X Y : Prop, and X Y → and Y X

Note that the destruct tactic is used with a destructuring pattern [x y] speci-

fying the proper argument variables for the constructor conj. Step through the

script and look at the proof term to understand. The proof script can be simpli-

fied.

Lemma and_commutative’ (X Y : Prop) :

and X Y −> and Y X.

Proof. intros [x y]. split . exact y. exact x. Qed.

This script synthesizes the same proof term the script for the lemma

and_commutative synthesizes (check with the Print command). The match of

the proof term is now synthesized by the intros tactic since the destructuring

pattern [x y] appears here. The tactic split applies to all inductive claims with a

single member constructor c and has the same effect as apply c.

Next we prove that disjunction is commutative.

3 Negation, implication, quantification (universal and existential), and equality also count as log-

ical operations.

2011/7/15 53



4 Propositions and Proofs

Lemma or_commutative (X Y : Prop) :

or X Y −> or Y X.

Proof. intros D. destruct D as [x|y].

apply or_intror. exact x. apply or_introl. exact y. Qed.

Note that the destruct tactic is used with the destructuring pattern [x|y] speci-

fying the proper argument variables for the constructors or_introl and or_intror .

Once more the proof script can be simplified.

Lemma or_commutative’ (X Y : Prop) :

or X Y −> or Y X.

Proof. intros [x|y]. right. exact x. left . exact y. Qed.

The tactics left and right apply the first and the second member constructor of

an inductive claim with two member constructors.

Next we prove that conjunction is associative.

Lemma and_associative (X Y Z : Prop) :

and (and X Y) Z −> and X (and Y Z).

Proof. intros [[x y] z]. split . exact x. split. exact y. exact z. Qed.

Note that the proof script uses a nested destructuring pattern.

We observe a surprising coincidence between conjunctions and pairs as de-

fined in Section 2.5:

1. The proposition constructor and corresponds to the type constructor prod.

2. The proof constructor conj corresponds to the pair constructor pair .

3. The proof and_commutative corresponds to the function swap.

Conjunction and disjunction are predefined in Coq’s standard library. We will

use the predefined versions from now on, so make sure the above trial versions

are not active. The predefined versions come with the infix operators ∧ and ∨

for and and or . Coq adopts the notational convention that ∨ takes its arguments

before → and after ∧. Thus s ∨ t ∧u→ s is read as (s ∨ (t ∧u))→ s.

Exercise 4.5.1 Prove the following propositions in interaction with Coq.

a) ∀X : Prop. X ∨X → X

b) ∀X : Prop. ¬(X ∧¬X)

c) ∀X Y : Prop. ¬X ∨¬Y → ¬(X ∧ Y)

d) ∀X Y : Prop. ¬X ∧¬Y → ¬(X ∨ Y)

e) ∀X Y Z : Prop. X ∧ (Y ∨ Z)→ X ∧ Y ∨X ∧ Z

f) ∀X Y Z : Prop. X ∨ (Y ∧ Z)→ (X ∨ Y)∧ (X ∨ Z)

g) ∀X Y Z : Prop. (X ∨ Y)∧ (Y → Z)→ X ∨ (Y ∧ Z)

h) ∀X Y Z : Prop. (X ∨ Y)→ (X → Z)→ (Y → Z)→ Z

54 2011/7/15



4.6 Equivalence

Exercise 4.5.2 Give the typing and reduction rules for the matches for the in-

ductive predicates and and or .

Exercise 4.5.3 Here are two challenging lemmas.

Lemma ex4531 (X Y : Prop) : ~~(X \/ ~X).

Lemma ex4532 (X Y : Prop) : ~~(~(X /\ Y) −> ~X \/ ~Y).

4.6 Equivalence

With conjunction and implication we can define a logical operation known as

equivalence.

Definition iff (X Y : Prop) : Prop := (X −> Y) /\ (Y −> X).

We write s ↔ t for a proposition iff s t. By definition an equivalence s ↔ t is

provable if and only if s is provable if and only if t is provable (parentheses

around the right if and only if). We call two propositions s and t provably

equivalent if the equivalence s ↔ t is provable.

The equivalence function iff is predefined in Coq’s standard library. Coq

provides the infix operator ↔ for iff , where ↔ takes its arguments after the infix

operators →, ∨, and ∧. Since equivalence is introduced with a plain definition,

the definition of equivalence is handled tacitly by the conversion rule in proofs

(analogous to negation). Here is an example.

Definition iff_circuit (X : Prop) :

~(X <−> ~X).

Proof. intros [f g]. assert (x : X). apply g. intros x. exact (f x x). exact (f x x). Qed.

We introduce the predefined proposition True to give a further example for a

proof of an equivalence.

Inductive True : Prop :=

| I : True.

Lemma True_False : True <−> ~False.

Proof. split. intros _ f. exact f. intros _. exact I. Qed.

Exercise 4.6.1 Give the typing and reduction rules for the matches for the type

constructor True.

Exercise 4.6.2 Prove the following equivalences in interaction with Coq.

a) ∀X Y : Prop. ¬(X ∨ Y)↔ ¬X ∧¬Y

b) ∀X Y Z : Prop. X ∧ (Y ∨ Z)↔ X ∧ Y ∨X ∧ Z

c) ∀X Y Z : Prop. (X ∨ Y → Z)↔ (X → Z)∧ (Y → Z)

2011/7/15 55



4 Propositions and Proofs

Exercise 4.6.3 Prove the following lemmas. The lemmas show that falsity, con-

junction, and disjunction can be expressed without constructors.

Lemma iff_False :

False <−> forall Z : Prop, Z.

Lemma iff_and (X Y : Prop) :

X /\ Y <−> forall Z : Prop, (X −> Y −> Z) −> Z.

Lemma iff_or (X Y : Prop) :

X \/ Y <−> forall Z : Prop, (X −> Z) −> (Y −> Z) −> Z.

Exercise 4.6.4 Find a closed term dis for which you can prove the proposition

∀X Y : Prop. X ∨ Y ↔ dis X Y . Note that the term dis cannot contain construc-

tors since it is required to be closed.

4.7 Leibniz Equality

An equation is a proposition of the form s = t where s and t are members of

the same type. The two tactics we have used for equations in Chapter 2 can be

described as follows:

• reflexivity proves an equation s = t if s and t are convertible.

• rewrite e where e is a proof of an equation s = t rewrites a claim us to ut.

We have seen more complex application of the rewrite tactic in Chapter 2 but

they all reduce to the basic form specified above. Suppose we have a proof e

of an equation x = y , the claim pxxx, and would like to replace the second

occurrence of x with y . Then we can proceed as follows:

pxxx ≈ (λz. pxzx)x⇝ (λz. pxzx)y ≈ pxyx

So the trick is to use the conversion rule before and after the basic rewrite step.

We can use the pattern tactic to see this course of action in Coq.

Lemma demo_basic_rewrite (X : Type) (p : X −> X −> X −> Prop) (x y : X) :

x= y −> p x y x −> p x x x.

intros e A. pattern x at 2. rewrite e. exact A. Qed.

We now define equality as follows:

Definition eql {X : Type} (x y : X) : Prop :=

forall p : X −> Prop, p y −> p x.

With this definition we can write equations s = t as propositions eql s t and

simulate the tactics reflexivity and rewrite. To rewrite a claim with an equation,

we simply apply a proof of the equation. Here are examples.

56 2011/7/15



4.7 Leibniz Equality

Lemma eql_ref {X : Type} {x : X} :

eql x x.

Proof. intros p A. exact A. Qed.

Lemma eql_sym {X : Type} {x y : X} :

eql x y −> eql y x.

Proof. intros e. pattern x. apply e. exact eql_ref. Qed.

Lemma eql_trans {X : Type} {x y z : X} :

eql x y −> eql y z −> eql x z.

Proof. intros e f. pattern x. apply e. exact f. Qed.

Lemma eql_feq {X Y : Type} (f : X −> Y) {x y : X} :

eql x y −> eql (f x) (f y).

Proof. intros e. pattern x. apply e. exact eql_ref. Qed.

Step carefully through the proofs and look at the proof terms. The proof script

of eql_feq passes through the claims

eql (f x) (f y)

pattern x

⇝

e : x=y

(fun z ⇒ eql (f z) (f y))x

apply e

⇝ (fun z ⇒ eql (f z) (f y))y ≈ eql (f y) (f y)

exact eql_ref

and obtains the following proof term:

fun (X Y : Type) (f : X → Y ) (x y : X ) (e : @eql X x y)⇒

e (fun z : X ⇒ @eql Y (f z) (f y)) (@eql_ref Y (f y))

Note that the pattern tactic synthesizes the predicate needed for the application

of the proof of the equation. As it turns out, the apply tactic can often synthesize

the predicates for the application of equations by itself. In fact, the pattern

commands in the above proof scripts can all be dropped. Incidentally, under

a predicate we understand a function that yields a proposition if applied to

sufficiently many arguments.

The defined equality eql is known as Leibniz equality. This acknowledges

the contribution of Gottfried Wilhelm Leibniz who observed that two objects are

equal if and only if they have the same properties.

We now know that our type theory can represent equations and rewriting.

The key idea is to represent the proof of an equation s = t as a function e of

type ∀p. pt → ps. Given e and a claim us, we can rewrite the claim to ut by

applying the function eu. Beta reduction and the conversion rule generalize this

basic form of rewriting to rewriting of inner subterms.

2011/7/15 57



4 Propositions and Proofs

We can prove many interesting facts about equality. We first show that False

and True are not equal.

Lemma neql_False_True :

~ eql False True.

Proof. intros e. apply e. exact I. Qed.

Next we prove that the boolean values false and true are not equal. We use an

auxiliary function boolp 4 and the conversion tactic change.

Definition boolp (x : bool) : Prop := if x then True else False.

Lemma neql_false_true :

~ eql false true.

Proof. intros e. change (boolp false). apply e. exact I. Qed.

A command change s converts a claim t to s provided s is a type and s and t are

convertible. In the proof above change converts the claim False to boolp false.

This claim can be rewritten to boolp true with the equation false = true. Since

boolp true evaluates to True, the proof can be finished with exact I .

Next we prove that the constructor S is injective. The trick is to use the

predecessor function pred to undo S.

Lemma eql_S_injective (x y : nat) :

eql (S x) (S y) −> eql x y.

Proof. intros e. change (eql (pred(S x)) y). apply e. exact eql_ref. Qed.

Here is another proof using the lemma eql_feq.

Lemma eql_S_injective’ (x y : nat) :

eql (S x) (S y) −> eql x y.

Proof. intros e. exact (eql_feq pred e). Qed.

Finally we prove that Sn and O are different for all numbers n. To do so,

we employ an auxiliary function iszero that yields True if its argument is O and

False otherwise. We use the pose tactic to define iszero locally as part of the

proof. This local definition appears as a let term in the proof term.

Lemma neql_S_O (n : nat) :

~ eql (S n) O.

Proof. intros e. pose (iszero x := match x with O => True | S _ => False end).

change (iszero (S n)). apply e. exact I. Qed.

Note that the local definition of iszero must be expanded for the type checking

of the proof term.

Exercise 4.7.1 Suppose the terms s and t are convertible. Give a proof term for

the equation @eql u s t.

4 The if-then-else notation appearing in the definition of boolp is syntactic sugar for a match

discriminating on a boolean value.

58 2011/7/15



4.8 Coq’s Equality

Exercise 4.7.2 Find a proof term for the following lemma.

Lemma ex472 (X Y : Type) (f g : X −> Y) (x : X) :

eql f g −> eql (f x) (g x).

Check your result with Coq.

Exercise 4.7.3 Prove the following lemmas.

Lemma ex4731 (X Y : Prop) :

eql X Y −> (X <−> Y).

Lemma ex4732 (X : Type) (x y : X) :

eql x y <−> forall r : X −> X −> Prop, (forall z, r z z) −> r x y.

Exercise 4.7.4 Prove the following lemmas.

Lemma ex4741 (X : Type) (p : X −> Prop) (x y : X) :

p x −> ~ p y −> ~ eql x y.

Lemma ex4742 (X Y : Type) (f g : X −> Y) (x : X) :

~ eql (f x) (g x) −> ~ eql f g.

Exercise 4.7.5 Prove the following lemmas.

Lemma ex4751 (X : Type) (x : X) :

~ eql (Some x) None.

Lemma ex4752 (X : Type) (x y : X) :

eql (Some x) (Some y) −> eql x y.

4.8 Coq’s Equality

Coq’s predefined equality is obtained as follows.

Inductive eq (X : Type) (x : X) : X −> Prop :=

| eq_refl : eq X x x.

This gives us two constructors:

eq : ∀X : Type. X → X → Prop

eq_refl : ∀X : Type. X → eq X x x

The constructor eq provides us with propositions eq u s t that represent equa-

tions s = t where s and t are members of u. The constructor eq_refl provides

proofs for all equations eq u s s where s is a member of u. By the conversion

rule we thus obtain proofs for all equations eq u s t where s and t are convert-

ible members of u.

2011/7/15 59



4 Propositions and Proofs

The argument X of the constructors eq and eq_refl is declared implicit so that

we can write eq s t and eq_refl s for equations and proofs. In addition, the infix

operator = is provided for the constructor eq so that we can write s = t for eq s t.

The tactic reflexivity used in Chaper 2 establishes a claim by applying the

constructor eq_refl. We test this information with a lemma.

Lemma eq_reflexivity (X : Type) (x : X) : x = x.

Proof. reflexivity. Qed.

Print eq_reflexivity.

% eq_reflexivity =

% fun (X : Type) (x : X )⇒ @eq_refl X x

% : forall (X : Type) (x : X ), @eq X x x

Next we prove a lemma that justifies the rewrite tactic.

Lemma eq_rewrite {X : Type} {p : X −> Prop} {x y : X} :

x = y −> p y −> p x.

Proof. intros e. destruct e. intros A. exact A. Qed.

The proof matches on the proof of the equation. Since there is only a single

proof constructor

eq_refl : ∀X : Type. X → eq X x x

for equations, x and y must be convertible under the given assumptions. We

obtain the following transformation of the proof goal:

x : X
y : X
e : @eq X x y

py → px
⇝

x :X

px → px

destruct e

Now it is straightforward to finish the proof. When we look at the proof term,

Print eq_rewrite.

% eq_rewrite =

% fun (X : Type) (p : X → Prop) (x y : X ) (e : @eq X x y)⇒

% match e in (@eq _ _ z) return (p z → p x) with

% | eq_refl ⇒ fun A : p x ⇒ A

% end

% : forall (X : Type) (p : X → Prop) (x y : X ), @eq X x y → p y → p x

we see that that the match for eq takes a form we have have not seen before. We

postpone the discussion of the match for eq to Section 5.11.

We can now prove that Leibniz equality agrees with Coq’s equality.

60 2011/7/15



4.8 Coq’s Equality

Lemma eql_eq (X : Type) (x y : X) :

eql x y <−> x = y.

Proof. split.

intros e. pattern x. apply e. reflexivity.

intros e. rewrite e. exact eql_ref. Qed.

When we look at the proof term, we see that Coq uses a lemma eq_ind_r to

realize the rewrite step. This lemma is a variant of our lemma eq_rewrite.

In simple equational proofs there is not need for the rewrite tactic. Instead

one can use the basic tactic destruct e, which eliminates the right hand side of

the equation established by e. Here are examples.

Lemma eq_sym {X : Type} {x y : X} :

x = y −> y = x.

Proof. intros e. destruct e. reflexivity. Qed.

Lemma eq_trans {X : Type} {x y z : X} :

x = y −> y = z −> x = z.

Proof. intros e f. destruct f. exact e. Qed.

Lemma f_equal {X Y : Type} (f : X −> Y) {x y : X} :

x = y −> f x = f y.

Proof. intros e. destruct e. reflexivity. Qed.

The lemmas eq_sym, eq_trans, and f _equal are predefined in Coq. There are also

corresponding tactics symmetry, transitivity, and f _equal.

Coq comes with the notation s <>t for negated equations ~(s= t). Here are

three lemmas involving disequations.

Lemma neq_False_True :

False <> True.

Proof. intros e. rewrite e. exact I. Qed.

Lemma bool_dis :

false <> true.

Proof. pose (foo (x : bool) := if x then True else False).

intros e. change (foo false). rewrite e. exact I. Qed.

Lemma S_injective (x y : nat) :

S x = S y −> x = y.

Proof. intros e. exact (f_equal pred e). Qed.

Exercise 4.8.1 Prove the following lemmas.

Lemma ex4811 (X Y : Type) (f g : X −> Y) (x : X) :

f = g −> f x = g x.

Lemma ex4812 (X Y : Prop) :

X = Y −> (X <−> Y).

2011/7/15 61



4 Propositions and Proofs

Exercise 4.8.2 Prove the following lemmas showing that equality can be ex-

pressed without constructors.

Lemma 4821 (X : Type) (x y : X) :

x = y <−> forall p : X −> Prop, p x −> p y.

Lemma 4822 (X : Type) (x y : X) :

x = y <−> forall r : X −> X −> Prop, (forall z, r z z) −> r x y.

Exercise 4.8.3 Prove the following lemmas.

Lemma ex4831 (X Y : Type) (f g : X −> Y) (x : X) :

f x <> g x −> f <> g.

Lemma ex4832 (X Y : Type) (f : X −> Y) (x y : X) :

f x <> f y −> x <> y.

Lemma ex4833 (X : Type) (p : X −> Prop) (x y : X) :

p x −> ~p y −> x <> y.

Lemma ex4834 (X Y : Prop) :

~(X <−> Y) −> X <> Y.

Exercise 4.8.4 Find a proof term for ∀x : nat. pred(S x) = x.

Exercise 4.8.5 Different member constructors of an inductive type yield differ-

ent values provided the inductive type is not a proposition. Lemma bool_dis

proves this fact for bool. Prove analogous results for the member constructors

of nat, option, and list.

Lemma nat_dis (x : nat) : S x <> O.

Lemma option_dis (X : Type) (x : X) : Some x <> None.

Lemma list_dis (X : Type) (x : X) (xs : list X) : cons x xs <> nil.

First do the proofs analogous to the proof of bool_dis using auxiliary functions

and the change tactic. Then do the proofs again using Coq’s tactic discriminate e,

which establishes the current claim if this is justified by disjointness of member

constructors and the equation asserted by e.

Exercise 4.8.6 The member constructors of an inductive type are always injec-

tive provided the inductive type is not a proposition. Lemma S_injective proves

this fact for nat. Prove analogous results for the member constructors of option,

pair , and list.

Lemma Some_injective (X : Type) (x y : X) :

Some x = Some y −> x = y.

Lemma pair_injective (X Y : Type) (x x’ : X) (y y’ : Y) :

pair x y = pair x’ y’ −> x = x’ /\ y = y’.

62 2011/7/15



4.9 Existential Quantification

Lemma cons_injective (X : Type) (x x’ : X) (xs xs’ : list X) :

cons x xs = cons x’ xs’ −> x = x’ /\ xs = xs’.

Lemma SS_injective (x y : nat) :

S (S x) = S (S y) −> x = y.

First do the the proofs analogous to the proof of S_injective using undo functions

and the lemma f _equal. Then do the proofs again using Coq’s tactic injection e,

which obtains the equations that follow by injectivity of member constructors

from the equation asserted by the proof term e.

4.9 Existential Quantification

Given a proposition t that type checks under the assumption x : s, we can form

the existential quantification ∃x : s. t. The meaning of an existential quantifica-

tion ∃x : s. t can be specified as follows:

• ∃x : s. t is provable if and only if there exists a member u of s such that txu is

provable.

We will represent an existential quantification ∃x : s. t as a term ex s (λx : s. t)

where ex is an inductive predicate of type ∀X : T. (X → Prop)→ Prop. This leads

to the following inductive definition, which is predefined in Coq.

Inductive ex {X : Type} (p : X −> Prop) : Prop :=

| ex_intro : forall x : X, p x −> ex p.

Note that the parameter X is specified in curly braces. This has the effect that the

parametric argument X is declared implicit for the constructors ex and ex_intro.

Coq provides a convenient notation for existential quantification:

exists x : s, t ⇝ ex (fun x : s ⇒ t)

exists x, t ⇝ ex (fun x ⇒ t)

We now prove the De Morgan Law for existential quantification.

Lemma ex_DeMorgan (X : Type) (p : X −> Prop) :

~ (exists x, p x) <−> forall x, ~ p x.

Proof. split. intros f x A. apply f. apply (ex_intro _ x). exact A.

intros f E. destruct E as [x A]. exact (f x A). Qed.

The proof script can be simplified by using the exists tactic for the application of

the constructor ex_intro, and by moving the destructuring pattern for the proof

of the existential quantification to the intros tactic.

Lemma ex_DeMorgan’ (X : Type) (p : X −> Prop) :

~ (exists x, p x) <−> forall x, ~ p x.

Proof. split. intros f x A. apply f. exists x. exact A.

intros f [x A]. exact (f x A). Qed.

2011/7/15 63



4 Propositions and Proofs

The next lemma shows that it does not matter in which order two variables are

existentially quantified.

Lemma ex_exchange (X Y : Type) (p : X −> Y −> Prop) :

(exists x, exists y, p x y) −> exists y, exists x, p x y.

Proof. intros [x [y C]]. exists y. exists x. exact C. Qed.

Exercise 4.9.1 Prove the following lemma. It shows that existential quantifica-

tion generalizes conjunction.

Lemma ex_and (X Y : Prop) :

X /\ Y <−> exists x : X, Y.

Exercise 4.9.2 Prove that the proposition ∃X : Prop. X ∧¬X is not provable.

Exercise 4.9.3 Prove the following lemma. It shows that existential quantifica-

tion can be expressed without constructors.

Lemma iff_ex (X : Type) (p : X −> Prop) :

ex p <−> forall Z : Prop, (forall x, p x −> Z) −> Z.

Exercise 4.9.4 Assume a section with X Y : Type, p : X→Prop, and r : X→Y→Prop.

Prove the following propositions.

a) (∀x.px)→ ¬∃x.¬px

b) (∀x ∃y.¬rxy)→ ¬∃x∀y. rxy

c) ∀x y. px ∨ py → ∃x.px

Exercise 4.9.5 Explain why the following term does not type check.

forall (X : Type) (p: X −> Prop) (x : X) (A : p x),

ex_intro p x A : ex (fun x => p x).

4.9.1 Russell’s Paradox

The next lemma is known as Russell’s paradox.

Lemma Russell (X : Type) (p : X −> X −> Prop) :

~ exists x : X, forall y : X, p x y <−> ~p y y.

Proof. intros [x A]. exact ( iff_circuit _ (A x)). Qed.

Russell’s paradox has many interesting applications.

1. Halting problem. There is no Turing machine that halts on the coding of a

Turing machine if and only if this machine does not halt on its own coding.

Take for X the set of Turing machines and for pxy the relation “x halts on

the coding of y”.

64 2011/7/15



4.9 Existential Quantification

2. Russell’s paradox. Given a set X whose elements are sets, there is no x ∈ X

such that y ∈ x iff y ∉ y for all y ∈ X. Take for pxy the relation y ∈ x.

3. Barber paradox. Suppose there is a town with just one male barber; and

that every man in the town keeps himself clean-shaven: some by shaving

themselves, some by attending the barber. It seems reasonable to imagine

that the barber obeys the following rule: He shaves all and only those men

in town who do not shave themselves. From Russell’s paradox it follows that

such a barber cannot exist. Take for X the set of men and for pxy the relation

“x shaves y”.

Exercise 4.9.6 Prove ∀X : Type ∀p : X→X→Prop ∀x : X ∃y : X . ¬(pxy ↔ ¬pyy).

Exercise 4.9.7 Prove the following lemma, which says that a barber who shaves

exactly those males who don’t shave themseves cannot be male.

Lemma Barber (X : Type) (m : X −> Prop) (s : X −> X −> Prop) (b : X) :

( forall x, m x −> (s b x <−> ~ s x x)) −> ~ m b.

4.9.2 Cantor’s Theorem

Cantor’s theorem says that the power set of a set is always larger than the set.

More precisely, Cantor’s theorem states that there is no surjective function from

a set to its power set. One consequence of Cantor’s theorem is the result that

the power set of the natural numbers is not countable. Another consequence is

the result that the real numbers are not countable. When Cantor published his

results around 1890, they came as a complete surprise. Here is a statement and

a proof of Cantor’s theorem where subsets of X are represented as predicates

X → Prop.

Lemma Cantor (X : Type) (f : X −> X −> Prop) :

exists g : X −> Prop, forall x : X, f x <> g.

Proof. exists (fun x => ~ f x x). intros x e. apply ( iff_circuit (f x x)).

pattern (f x) at 1. rewrite e. split ; intros A ; exact A. Qed.

Note that the witness the proof gives for the predicate g represents the diagonal

set {x ∈ X | x ∉ fx } used in informal proofs of Cantor’s Theorem.

Exercise 4.9.8 Prove the following lemma.

Definition has_neg (X : Type) : Prop :=

exists g : X −> X, forall x : X, g x <> x.

Definition surjective {X Y : Type} (f : X −> Y) : Prop :=

forall y : Y, exists x : X, f x = y.

Lemma Generalized_Cantor (X Y : Type) :

has_neg Y −> ~ exists f : X −> X −> Y, surjective f.

2011/7/15 65



4 Propositions and Proofs

4.10 Abstract Presentation of The Logical Operations

In this chapter we are concerned with propositions and proofs. We have seen the

following logical operations.

• Truth ⊤

• Falsity ⊥

• Negation ¬s

• Conjunction s ∧ t

• Disjunction s ∨ t

• Implication s → t

• Equivalence s ↔ t

• Equality s = t

• Universal quantification ∀x : s. t

• Existential quantification ∃x : s. t

We started from a type theory where propositions, proofs, implication, and uni-

versal quantification are native. We learned that the remaining logical operations

can be defined. For the definitions we can in each case either use a plain defi-

nition or an inductive definition. The two definitions yield provably equivalent

results.

There is a presentation of the logical operations that abstracts away from

the particular form of definition. This abstract presentation characterizes every

logical operation with a set of rules. Here are the rules for conjunction.

s : Prop t : Prop

s ∧ t : Prop

s t

s ∧ t

s ∧ t s, t ⇒ u

u

The first rule is a formation rule that desribes conjunctions syntactically. The

second and third rule are proof rules that derive provability of the conclusion

from provability of the premises. The rule in the middle is an introduction

rule saying how conjunctions can be proved. It says that the provability of a

conjunction s ∧ t follows from the provability of its constituents s and t. The

rule at the right is an elimination rule saying how the provability of a conjunction

can be used for establishing the provability of further propositions. It says that

given the provability of a conjunction s∧t, the provability of a proposition u can

be established under the assumptions that s is provable and that t is provable.

We observe that Coq realizes the introduction rule with the tactic split and the

elimination rule with the tactic destruct.

The abstract presentation with formation, introduction, and elimination rules

works for all logical operations. Figure 4.1 shows the complete set of intro-

duction and elimination rules together with a conversion rule for propositions.

66 2011/7/15



4.10 Abstract Presentation of The Logical Operations

The conversion rule is essential so that the elimination rules for equations and

universal quantifications and the introduction rule for existential quantifications

can work as expected. Note that most logical operations have exactly one in-

troduction rule and exactly one elimination rule. The exceptions are truth (no

elimination rule), falsity (no introduction rule), and disjunction (two introduc-

tion rules).

The abstract presentation of the logical operations with formation, introduc-

tion, and elimination rules can be represented in type theory as shown Figure 4.2.

For every rule an abstract logical operation is assumed whose type expresses the

rule. Following the classification of the rules, there are formation, introduction,

and elimination operations. Every abstract operation is identified with a name

(i.e., a variable). Note that the types of the formation operations are closed, and

that the types of the introduction and elimination operations have the name of

the formation operation of the respective logical operation as their single free

variable. This means that every logical operation is specified independently of

the others. Incidentally, the rules in Figure 4.1 violate this modularity in that

the introduction rule for negation employ falsity and the elimination rule for

equivalence employs implication.

We can prove that the abstract logic operations are equivalent to Coq’s pre-

defined logical operations. Here is the proof for existential quantification.

Section Existential_Quantification.

Variable ex : forall X : Type, (X −> Prop) −> Prop.

Variable ex_I : forall (X : Type) (p : X −> Prop) (x : X), p x −> ex X p.

Variable ex_E : forall (X : Type) (p : X −> Prop) (Z : Prop),

ex X p −> (forall x : X, p x −> Z) −> Z.

Lemma ex_agrees (X : Type) (p : X −> Prop) :

ex X p <−> exists x, p x.

Proof. split.

intros A. apply (ex_E _ _ _ A). intros x B. exists x. exact B.

intros [x A]. exact (ex_I X p x A). Qed.

End Existential_Quantification.

We can see the typings in Figure 4.2 as a complete specification of the log-

ical operations. The specification gives us the syntax and the proof rules for

the logical operations. So we could accommodate propositions and proofs in

type theory by assuming the abstract logical operations in Figure 4.2. Of course,

working with assumed logical operations comes with the risk that the assump-

tions are inconsistent in that they provide for a proof of falsity. This risk can be

eliminated by showing that the abstract logical operations can be defined in the

underlying type theory.

In Coq’s type theory, each logical operation can be defined either with an

inductive definition or a plain definition.

2011/7/15 67



4 Propositions and Proofs

⊤

⊥

u

s ⇒ ⊥

¬s

¬s s

u

s t

s ∧ t

s ∧ t s, t ⇒ u

u

s

s ∨ t

t

s ∨ t

s ∨ t s ⇒ u t ⇒ u

u

s ⇒ t

s → t

s → t s

t

s ⇒ t t ⇒ s

s ↔ t

s ↔ t s → t , t → s ⇒ u

u

s = s

s = t u t

us

x : s ⇒ t

∀x : s. t

∀x : s. t

(λx : s.t)u

(λx : s.t)u

∃x : s. t

∃x : s. t x : s , t ⇒ u

u

s

t
s ≈ t

Figure 4.1: Introduction and elimination rules

68 2011/7/15



4.10 Abstract Presentation of The Logical Operations

true : Prop

true_I : true

false : Prop

false_E : ∀Z : Prop. false → Z

not : Prop → Prop

not_I : ∀X : Prop. (∀Z : Prop. X → Z)→ not X

not_E : ∀XZ : Prop. not X → X → Z

and : Prop → Prop → Prop

and_I : ∀XY : Prop. X → Y → and X Y

and_E : ∀XYZ : Prop. and X Y → (X → Y → Z)→ Z

or : Prop → Prop → Prop

or_IL : ∀XY : Prop. X → or X Y

or_IR : ∀XY : Prop. Y → or X Y

or_E : ∀XYZ : Prop. or X Y → (X → Z)→ (Y → Z)→ Z

imp : Prop → Prop → Prop

imp_I : ∀XY : Prop. (X → Y)→ imp X Y

imp_E : ∀XY : Prop. imp X Y → X → Y

iff : Prop → Prop → Prop

iff _I : ∀XY : Prop. (X → Y)→ (Y → X)→ iff X Y

iff _E : ∀XYZ : Prop. iff X Y → ((X → Y)→ (Y → X)→ Z)→ Z

eq : ∀X : Type. X → X → Prop

eq_I : ∀(X : Type)(x :X). eq X x x

eq_E : ∀(X : Type)(p :X → Prop)(xy :X). eq X x y → py → px

all : ∀X : Type. (X → Prop)→ Prop

all_I : ∀(X : Type)(p :X → Prop). (∀x :X. px)→ all X p

all_E : ∀(X : Type)(p :X → Prop)(x :X). all X p → px

ex : ∀X : Type. (X → Prop)→ Prop

ex_I : ∀(X : Type)(p :X → Prop)(x :X). px → ex X p

ex_E : ∀(X : Type)(p :X → Prop)(Z : Prop). ex X p → (∀x :X. px → Z)→ Z

Figure 4.2: Abstract logical operations

2011/7/15 69



4 Propositions and Proofs

When we define a logical operation inductively, the formation operation ap-

pears as an inductive predicate and the introduction operations appear as mem-

ber constructors. The elimination operation is then established as a lemma,

which is proved using the match coming with the inductive definition. This

means that the formation and the introduction operations of a logical operation

carry all necessary information about the operation. Here is an example.

Inductive and (X Y : Prop) : Prop :=

| and_I : X −> Y−> and X Y.

Lemma and_E (X Y Z : Prop) :

and X Y −> (X −> Y −> Z) −> Z.

Proof. intros [x y] f . exact (f x y). Qed.

When we define a logical operation with a plain definition, we look at the

formation and the elimination rule for the operation. The trick is to define a

logical operation as a function proving the proposition stated by its elimination

operation. We conclude that the formation and the elimination operation of a

logical operation carry all necessary information about the operation. Here is an

example.

Definition and (X Y : Prop) : Prop :=

forall Z : Prop, (X −> Y −> Z) −> Z.

Lemma and_I (X Y : Prop) :

X −> Y−> and X Y.

Proof. intros x y Z f. exact (f x y). Qed.

Lemma and_E (X Y Z : Prop) :

and X Y −> (X −> Y −> Z) −> Z.

Proof. intros A. exact (A Z). Qed.

Historically, logicians first analysed proof systems where the underlying type

theory was implicit. There was just the requirement that propositions be well-

formed. The design and investigation of formal proof systems started in 1879

with Gottlob Frege’s Begriffsschrift. The notion of type was invented around

1905 by Bertrand Russell as a means of avoiding the inconsistencies in Frege’s

Begriffsschrift and Cantor’s set theory. Lambda abstractions and beta reduction

where studied by Alonzo Church in the 1930’s.

For a long time, research concentrated on first-order proof systems disallowing

quantification over propositions and functions. First-order proof systems come

without lambda abstractions and conversion. In a first-order system, the elima-

tion rules for equality and universal quantification and the introduction rule for

existential quantification may be formulated as follows.

s = t uxt

uxs

∀x : s.t u : s

txu

txu u : s

∃x : s. t

70 2011/7/15



4.10 Abstract Presentation of The Logical Operations

Proof systems accommodating the logical operations with introduction and

elimination rules as shown in Figure 4.1 are known as natural deduction sys-

tems. The first natural deduction system was devised by Gerhard Gentzen in

1935. Gentzen’s system is a first-order system. In the 1960’s, Dag Prawitz re-

alized that a natural deduction system with implication and universal quantifi-

cation can express the remaining logical operations provided propositions can

quantify over propositions and predicates:

⊤ := ∀X : Prop. X → X

⊥ := ∀X : Prop. X

¬s := s → ⊥

s ∧ t := ∀X : Prop. (s → t → X)→ X

s ∨ t := ∀X : Prop. (s → X)→ (t → X)→ X

s ↔ t := (s → t)∧ (t → s)

∃x : s. t := ∀X : Prop. (∀x : s. t → X)→ X

s= t := ∀p :u→ Prop. pt → ps where s, t :u

That propositions can quantify over propositions and predicates requires that

the universe of propositions is impredicative. Definitions that exploits the im-

predicativity of Prop are called impredicative. The Prawitz definitions shown

above are all impredicative.

The first modern proof system based on the propositions as types principle

and an impredicative universe of propositions appeared in Jean-Yves Girard’s

dissertation in 1972.

Exercise 4.10.1 Prove that the abstract characterization of disjunction agrees

with Coq’s predefined notion of disjunction. Find similiar proofs for negation,

equality, and universal quantification.

Exercise 4.10.2 Realize the abstract operations for negation with an inductive

definition and a lemma for the elimination operation. Do not use False. Do

similar proofs for equivalence and universal quantification.

Exercise 4.10.3 Realize the abstract operations for negation with a plain defi-

nition and lemmas for the introduction and elimination operation. Do not use

False. Do similar proofs for equivalence and universal quantification.

Exercise 4.10.4 Assuming abstract logical operations comes with the risk of in-

consistency. Prove the inconsistency of the following assumptions for a logical

operation bad.

2011/7/15 71



4 Propositions and Proofs

Section Bad.

Variable bad : Prop −> Prop −> Prop.

Variable badI : forall X Y : Prop, X −> bad X Y.

Variable badE : forall X Y Z : Prop, bad X Y −> (X −> Y −> Z) −> Z.

Lemma inconsistent : False.

Proof. Your proof goes here. Qed.

End Bad.

Check inconsistent.

4.11 Last But Not Least

In Mathematics, one assumes that every proposition is either false or true. Con-

sequently, if X is proposition, the propositions X ∨ ¬X and ¬¬X → X must be

true. This leads to the question whether the proposition

Definition XM : Prop := forall X : Prop, X \/ ~X.

known as excluded middle is provable. The answer is no. In fact, neither XM

nor its negation ¬XM are provable.

Type theory is designed such that every provable proposition is true. From

the unprovability of excluded middle we learn that there are true propositions

that are unprovable. Here is another true but unprovable proposition known as

double negation.

Definition DN : Prop := forall X : Prop, ~~X −> X.

We can show that XM and DN are provably equivalent. Thus XM is unprovable if

and only if DN is unprovable.

Lemma XP_DN : XM <−> DN.

Proof. split ; intros A X.

intros f. destruct (A X) as [B|C]. exact B. contradiction (f C).

apply A. intros f. apply f. right. intros x. apply f. left . exact x. Qed.

Coq’s type theory is designed such that assuming basic mathematical facts

such as XM does not lead to inconsistency (i.e., a proof of False). This comes at

the price that matches discriminating on proofs can only return proofs (so-called

elim restriction). For instance, we cannot write the following function since the

match returns booleans but discriminates on proofs.

Check fun X : True \/ True =>

match X with

| or_introl _ => true

| or_intror _ => false

end.

% Error : Incorrect elimination of "X " in the inductive type "or"

72 2011/7/15



4.11 Last But Not Least

Coq comes with several automation tactics that can find proofs automatically.

For now we mention the automation tactic tauto, which will find every proof that

involves only the following rules:

1. Introduction and elimination rules for ⊤, ⊥, ¬, ∧, ∨, →, ↔.

2. Introduction rule for =.

3. Conversion rule.

Here is an example for the use of tauto.

Lemma XP_DN’ : XM <−> DN.

Proof. split ; intros A X. generalize (A X). tauto. apply A. tauto. Qed.

Note the use of the tactic generalize, which given a proof t :u reduces a claim s

to the claim u→ s. The tactic generalize is useful for introducing a consequence

of the assumptions.

Exercise 4.11.1 Here are some challenging lemmas. Try to prove the lemmas

with tauto and generalize. Once you have found a proof with tauto, you may fill

in by hand the parts found by tauto.

Lemma 41111 : DN <−> forall X Y: Prop, (~Y −> ~X) −> X −> Y.

Lemma 41112 : XM <−> forall X Y: Prop, (X −> Y) −> (~X −> Y) −> Y.

Lemma 41113 : DN <−> forall X Y: Prop, ~(~X /\ ~Y) −> X \/ Y.

Lemma 41114 : XM <−> forall X Y: Prop, (X −> Y) −> ~X \/ Y.

Lemma 41115 : XM <−> forall X Y: Prop, X \/ Y −> X \/ ~X /\ Y.

Lemma 41116 : DN <−> forall X Y: Prop, ((X −> Y) −>X) −> X.

2011/7/15 73



4 Propositions and Proofs

74 2011/7/15



5 Dependent Matches and Induction

In Chapter 2 we did many proofs by case analysis and induction. When you look

at the synthesized proof terms, you will see that they employ matches taking a

different form from the matches we have explained so far. In fact, the matches

we have seen so far are special cases of a more general form of matches provid-

ing for dependent type checking. We will now see that dependent matches are

essential for proving and computing with inductive types.

5.1 Dependent Matches

The matches we have explained so far (Section 3.9) are a special case of a more

general form of matches. The special case requires that all rules of a match

match s return t with R1 · · ·Rn end

return a value of a fixed return type t. A dependent match

match s as z return t with R1 · · ·Rn end

for an inductive type v is more general in that it works with a return type func-

tion λz :v.t. The typing of a dependent match is arranged as follows.

1. The dependent match has the type (λz :v.t)s.

2. For every rule p ⇒ u of the match the typing u : (λz :v.t)p must be derivable.

The matches explained so far are the special case where the argument variable z

does not occur in t. In this case we have (λz :v.t)s ≈ t and (λz :v.t)p ≈ t. For

dependent matches at bool and nat we obtain the following typing rules.

s : bool z : bool ⇒ t : Tn u : tztrue v : tzfalse

match s as z return t with true ⇒ u | false ⇒ v end : tzs

s : nat z : nat ⇒ t : Tn u : tzO x : nat ⇒ v : tzSx

match s as z return t with O ⇒ u | S x ⇒ v end : tzs

Dependent matches where z occurs in t are needed to obtain the proof terms

justifying the case analyses at bool and nat we did with destruct in Chapter 2.

75



5 Dependent Matches and Induction

Lemma negb_negb (x : bool) :

negb (negb x) = x.

Proof. destruct x ; reflexivity. Qed.

Print negb_negb.

% fun x : bool ⇒

% match x as z return negb(negb z) = z with

% | true ⇒ eq_refl true

% | false ⇒ eq_refl false

% end

Lemma nat_match_id (x : nat) :

match x with O => O | S x’ => S x’ end = x.

Proof. destruct x ; reflexivity. Qed.

Print nat_match_id.

% fun x : nat ⇒

% match x as z return match z with O ⇒ O | S x′ ⇒ S x′ end = z with

% | O ⇒ eq_refl O

% | S x′ ⇒ eq_refl (S x′)

% end

The typing rule for dependent matches at pair types looks as follows.

s : pair s1 s2 z : pair s1 s2 ⇒ t : Tn x : s1, y : s2 ⇒ u : tzpair s1 s2

match s as z return t with pair xy ⇒ u end : tzs

The proof of the eta law for pairs requires a dependent match at a pair type.

Lemma pair_eta (X Y : Type) (p : prod X Y) :

pair ( fst p) (snd p) = p.

Proof. destruct p. simpl. reflexivity. Qed.

Print pair_eta.

% fun (X Y : Type) (p : prod X Y )⇒

% match p as z return pair (fst z) (snd z) = z with

% pair x y ⇒ eq_refl (pair x y)

% end

The typing rules for dependent matches can be represented as types, and

the representing types can be derived by Coq’s type inference. The following

commands yield the types representing the typing rules for dependent matches

discriminating on booleans, natural numbers, and pairs.

Check fun f u v (s : bool) =>

match s as z return f z with true => u | false => v end.

% ∀f : bool → Type, f true → f false → ∀s : bool, f s

Check fun f u v (s : nat) =>

match s as z return f z with O => u | S x => v x end.

% ∀f : nat → Type, f 0 → (∀x : nat, f (Sx))→ ∀s : nat, f s

76 2011/7/15



5.2 Boolean Case Analysis

Check fun X Y f u (s : prod X Y) =>

match s as z return f z with pair x y => u x y end.

% ∀ (X Y : Type) (f : prod X Y → Type),

% (∀ (x : X ) (y : Y ), f (pair x y))→ ∀ s : prod X Y , f s

Exercise 5.1.1 Give the typing rules for dependent matches discriminating on

options and list. Use the Check command to find out whether your rules are

correct.

5.2 Boolean Case Analysis

We represent dependent matches at bool with a single function.

Definition bool_E :=

fun f u v s =>

match s as x return f x with

| true => u

| false => v

end.

Check bool_E.

% forall f : bool → Type, f true → f false → forall x : bool, f x

Compute bool_E (fun _ => nat) 1 0.

% = fun x : bool ⇒ if x then 1 else 0

% : bool → nat

To justify boolean case analysis in proofs, the following lemma suffices.

Lemma bool_Ep (p : bool −> Prop) :

p true −> p false −> forall x, p x.

Proof. exact (bool_E p). Qed.

Note that the term bool_E p type checks since p : bool → Type can be obtained

from p : bool → Prop by cumulativity (i.e., an application of the typing rule Cum).

Lemma negb_negb’ (x : bool) :

negb (negb x) = x.

Proof. pattern x. apply bool_Ep ; reflexivity. Qed.

Print negb_negb’.

% negb_negb′ = fun x : bool ⇒

% bool_Ep (fun b : bool ⇒ negb (negb b) = b) (eq_refl true) (eq_refl false) x

Form the definition of bool_Ep it is clear that bool_Ep is a type restricted version

of bool_E . An application bool_Ep s can always be replaced with the application

bool_E s.

2011/7/15 77



5 Dependent Matches and Induction

Exercise 5.2.1 Prove the following lemmas.

Lemma ex5231 (x : bool) : negb x <> x.

Lemma ex5232 (x : bool) : x=true \/ x=false.

Lemma ex5233 (x y : bool) : (if x then negb y else y) = (if y then negb x else x).

Exercise 5.2.2 Prove the following lemmas.

Definition boolp (x : bool) : Prop := if x then True else False.

Lemma boolp_injective (x y : bool) : boolp x = boolp y −> x = y.

Lemma ex5241 (x : bool) : boolp x = True −> x = true.

Exercise 5.2.3 Find ground terms that have the following types.

a) ∀f : bool → Type. f true → f false → ∀x : bool. f x

b) ∀p : bool → Prop. p true → p false → ∀x : bool. p x

c) ∀p : bool → Prop ∀x : bool. (x = true → p true)→ (x = false → p false)→ px

Exercise 5.2.4 Prove the following lemma. Do not use other lemmas.

Lemma Boolean_Cantor (X : Type) :

~ exists f : X −> X −> bool, forall g : X −> bool, exists x : X, f x = g.

5.2.1 Bool and False Are Not Equal

We call a type t inhabited if there is a term s such that the typing s : t is derivable.

We can define inhabitation within Coq.

Definition inhabited (X : Type) : Prop := exists x : X, True.

We now prove that the types bool and False are not equal. The trick is to find

a discriminating predicate p : Type → Prop such that one can prove both p bool

and ¬p False. Clearly, inhabited is such a predicate.

Lemma bool_neq_False :

bool <> False.

Proof. intros e. cut (inhabited bool).

rewrite e. intros [f _]. exact f. exists true. exact I. Qed.

Note the use of the tactic cut. Given a claim u, the command cut s reduces the

claim to s → u and also introduces a new goal with the claim s to justify the

reduction.

Exercise 5.2.5 Prove ¬ inhabited False.

Exercise 5.2.6 Prove bool ≠ nat. Hint: Use as discriminating predicate a pred-

icate saying that given three members of a type at least two of them must be

equal.

78 2011/7/15



5.2 Boolean Case Analysis

Exercise 5.2.7 Find a short proof of bool ≠ False that uses neither inhabited

nor cut. First observe that bool → False is a proposition and that bool → False

is provably equivalent to ¬ inhabited bool. Then replace the use of cut with the

command generalize true.

5.2.2 Kaminski’s Equation

Kaminski’s equation takes the form f(f(f x)) = f x and holds for every func-

tion f : bool → bool and every x : bool. The proof proceeds by repeated boolean

case analysis: First on x and then on either f true or f false. If we do the proof

with Coq and destruct, we face the problem that destruct (f true) does not pro-

vide the equations f true = true and f true = false coming with the case analysis.

Fortunately, there is variant of destruct called case_eq providing the equations.

Lemma Kaminski (f : bool −> bool) (x : bool) :

f (f (f x)) = f x.

Proof. destruct x ; case_eq (f true) ; case_eq (f false) ; intros a b;

repeat (exact a || exact b || rewrite a || rewrite b). Qed.

The proof script uses the tactical repeat to solve the eight subgoals introduced

by the cascaded boolean case analysis. Replace the semicolon before repeat with

a period and solve the eight subgoals by hand to understand.

Tacticals compose tactics into more powerful tactics. Here are the specifica-

tions of four helpful tacticals.

• s ; t Applies tactic s, then applies tactic t to every subgoal created by s.

• s || t Applies tactic s. If application of s fails, tactic t is applied.

• repeat t Applies tactic t until it either fails or leaves the goal unchanged.

• try t Applies tactic t. If t fails, try t leaves the goal unchanged and succeeds.

The use of repeat in the proof script for Kaminski may be replaced by the tac-

tic congruence, which tries to solve a goal by applying unquantified equations

appearing as assumptions. This makes the proof of Kaminski a one-liner.

Lemma Kaminski’ (f : bool −> bool) (x : bool) : f (f (f x)) = f x.

Proof. destruct x ; case_eq (f true) ; case_eq (f false) ; congruence. Qed.

Exercise 5.2.8 Prove the following lemma justifying the tactic case_eq for

boolean case analyses. Then prove Kaminski’s equation with destruct and the

lemma case_eq_bool.

Lemma case_eq_bool (p : bool −> Prop) (x : bool) :

(x = true −> p true) −> (x = false −> p false) −> p x.

Exercise 5.2.9 Give two proofs of the following variant of Kaminski’s equation.

2011/7/15 79



5 Dependent Matches and Induction

Lemma Kaminski2 (f g : bool −> bool) (x : bool) :

f (f (f (g x))) = f (g (g (g x ))).

a) Do the proof with boolean case analysis. You get 32 cases.

b) Do the proof without case analysis by applying Kaminski.

5.3 Natural Induction

The elimination function for natural numbers combines a recursion at nat with

a dependent match at nat:

Definition nat_E :=

fun p u v => fix f x :=

match x as y return p y with

| O => u

| S x’ => v x’ (f x’)

end.

Check nat_E.

% forall f : nat → Type, f O → (forall x : nat, p x → p(S x))→ forall x : nat, f x

The elimination function nat_E can replace many recursive abstractions at nat.

If we look at the type of nat_E , we discover that nat_E justifies induction on

natural numbers. In fact, the following specialization of nat_E suffices.

Definition nat_Ep (p : nat −> Prop) :

p O −> (forall x, p x −> p (S x)) −> forall x, p x

:= nat_E p.

Here is an example.

Lemma plus_O (x : nat) :

x + O = x.

Proof. revert x. apply nat_Ep. reflexivity.

intros x IHx. simpl. f_equal. exact IHx. Qed.

All uses of the tactic induction at nat can be justified by the proof function

nat_Ep. In fact, an application of the tactic induction at nat inserts a proof

term that applies a predefined function nat_ind that has the same type as our

function nat_Ep. The predefined nat_ind is defined with a predefined function

nat_rect that is equivalent to our elimination function nat_E .

There are a few cases where the induction scheme nat_Ep underlying the

tactic induction is not general enough. There is a tactic fix providing for the

construction of recursive abstractions. Here is an example.

Fixpoint evenb (n : nat) : bool := match n with

| 0 => true

80 2011/7/15



5.3 Natural Induction

| 1 => false

| S (S n) => evenb n

end.

Lemma evenb_negb (n : nat) :

evenb n = negb (evenb (S n)).

Proof. revert n. fix f 1.

destruct n as [|n’]. reflexivity .

destruct n’ as [|n ’’]. reflexivity .

exact (f n ’’). Qed.

A command fix f n introduces a recursive abstraction with the local name f

and n arguments. The recursion must structurally decrease the nth argument.

Exercise 5.3.1 Give three inductive proofs of ∀x : nat. Sx ≠ x:

a) With the tactic induction.

b) With the function nat_Ep.

c) With the tactic fix.

Exercise 5.3.2 Prove the following lemma.

Lemma plus_injective x y z :

x + y = x + z −> y = z.

Exercise 5.3.3 Prove the following lemma.

Lemma zigzag_induction (p : nat −> Prop) :

p O −>

( forall x, p x −> p (S (S x))) −>

( forall x, p (S x) −> p x) −>

forall x, p x.

Exercise 5.3.4 Prove ∀n. evenb n = negb (evenb (S n)) with the tactic induction.

You will need a lemma. The proof is difficult since the recursion of evenb takes

off two applications of the constructor S while induction takes off only one ap-

plication of S.

Exercise 5.3.5 Prove the following lemma.

Inductive crazy : Type := Crazy : crazy −> crazy.

Lemma crazy_False : crazy −> False.

Recall that crazy → False is Coq’s abbreviation for ∀x ∈ crazy. False.

2011/7/15 81



5 Dependent Matches and Induction

5.4 Primitive Recursion

We define a recursion scheme known as primitive recursion.

Definition nat_pr {X : Type} : X −> (nat −> X −> X) −> nat −> X :=

fun u v =>

fix f x := match x with

| O => u

| S x’ => v x’ (f x’)

end.

With primitive recursion we define an addition function.

Definition add := nat_pr (fun y => y) (fun _ r y => S (r y)).

Compute add 3 4.

% 7

The function add may be hard to understand at first. Our confidence in add

increases once we look at its normal form.1

Compute add.

% fix f (x : nat) : nat -> nat :=

% match x with

% | 0 => fun y : nat => y

% | S x’ => fun y : nat => S (f x’ y)

% end

Primitive recursion obtains a recursive function from two terms u and v . We

can specify the function obtained by primitive recursion declaratively.

Definition spec {X : Type} (u : X) (v : nat −> X −> X) (f : nat −> X) : Prop :=

forall n,

f O = u /\

f (S n) = v n (f n).

Lemma pr_correct (X : Type) (u : X) (v : nat −> X −> X) :

spec u v (nat_pr u v).

Proof. split ; reflexivity . Qed.

The specification of primitive recursion is canonical in that all functions satisfy-

ing the specification are equivalent.

Lemma spec_canonical (X : Type) (u : X) (v : nat −> X −> X) :

forall f g, spec u v f −> spec u v g −> forall n, f n = g n.

Proof. intros f g F G n. induction n.

destruct (G 0) as [A _]. rewrite A. apply (F 0).

destruct (G n) as [_ A]. rewrite A. rewrite <− IHn. apply (F n). Qed.

1 The output you see can actually be obtained with the command Eval cbv in add. Computing

the normal form with Eval is less efficient but preserves the names of the local variables.

82 2011/7/15



5.4 Primitive Recursion

To prove that the function add defined above is equivalent with the predefined

addition function plus, it now suffices to show that plus satisfies the specification

of add.

Lemma add_agrees :

forall n, add n = plus n.

Proof. apply (spec_canonical (fun y => y) (fun _ r y => S (r y))).

apply pr_correct. split ; reflexivity . Qed.

The following predicate specifies a function designed by Ackermann in 1928.

Definition ackermann (f : nat −> nat −> nat) : Prop :=

forall m n,

f O n = S n /\

f (S m) O = f m 1 /\

f (S m) (S n) = f m (f (S m) n).

The specification of Ackermann’s function poses two questions:

1. Can we define with primitive recursion a function that satisfies the predicate

ackermann?

2. Can we prove that there is at most one function that satisfies the predicate

ackermann?

We will answer both questions positively.

Ackermann argued the existence and uniqueness of his function as follows.

Since for any two arguments exactly one of the equations applies, f exists and is

unique if application of the equations terminates. The equations terminate since

either the first argument is decreased, or the first argument stays the same and

the second argument is decreased.

Ackermann’s termination argument is outside the scope of Coq’s termination

checker. Coq will insist that for every fix there is a single argument that is struc-

turally decreased by every recursive application. The problem can be resolved

by formulating Ackermann’s function with two nested recursions.

Definition ack : nat −> nat −> nat :=

fix f m := match m with

| O => S

| S m’ => fix g n := match n with

| O => f m’ 1

| S n’ => f m’ (g n’)

end

end.

Note that ack is defined as a recursive function that returns a recursive function.

Each of the two recursions is structural on its single argument. The correctness

proof for ack is straightforward.

2011/7/15 83



5 Dependent Matches and Induction

Lemma ack_correct : ackermann ack.

Proof. repeat split ; reflexivity . Qed.

Here is a definition of Ackermann’s function using primitive recursion.

Definition ack’ := nat_pr S (fun _ g => nat_pr (g 1) (fun _ => g)).

The correctness proof is again straightforward.

Lemma ack’_correct : ackermann ack’.

Proof. repeat split ; reflexivity . Qed.

We can also show that ack and ack′ are equivalent.

Lemma ack_ack’ (m n : nat) : ack m n = ack’ m n.

Proof. revert n. induction m. reflexivity.

destruct n. reflexivity. apply IHm. Qed.

Exercise 5.4.1 Show that the specification of Ackermann’s function is canonical.

Lemma ackermann_canonical (f g : nat −> nat −> nat) :

ackermann f −> ackermann g −> forall m n, f m n = g m n.

Hint: Follow the proof spec_canonical and use a nested induction for n.

Exercise 5.4.2 Prove ∀X : Type. @nat_pr X = nat_E (λ_.X ).

Exercise 5.4.3 Prove the following correctness lemma for a subtraction function

defined with primitive recursion.

Definition sub : nat −> nat −> nat :=

nat_pr (fun _ => O) (fun x f => nat_pr (S x) (fun y _ => f y)).

Lemma sub_correct (x y : nat) :

sub x y = x − y.

Exercise 5.4.4 Write functions that compute products, powers, and factorials

with primitive recursion. Prove the correctness of your functions.

Exercise 5.4.5 Express the predecessor function with prim_rec. Do not use

match. Prove the correctness of your function.

5.5 Projections

Consider the following equations:

K c O = c

K c (S n) x = K c n

P O k = k

P (S n) O x = K x n

P (S n) (S k) x = P n k

84 2011/7/15



5.5 Projections

We are looking for functions K and P that satisfy the equations for all natural

numbers c, n, k and x. The puzzle has a unique solution in set theory. There is

also a solution in constructive type theory with dependent matches.

We call a function arithmetic if it has a type nat → ·· · → nat with n ≥ 1

arrows. An arithmetic function is constant if it always returns the same value.

Finally, we call an arithmetic function a projection if it always returns one of

its arguments. We now realize that Kcn is a constant function that takes n

arguments and returns c, and that Pnk is a projection that takes n arguments

and returns its k-th argument provided 0 ≤ k < n and the argument numbering

starts with 0.

To define K and P in type theory, we first define a recursive function that

given a number n yields the type nat → ·· · → nat with n arrows.

Fixpoint AF (n : nat) : Type :=

match n with

| O => nat

| S n’ => nat −> AF n’

end.

Compute AF 4

% nat → nat → nat → nat

We are now able to give types for K and P such that the above equations are

well-typed.

K : nat → ∀n : nat. AF n

P : ∀n : nat. nat → AF n

Note that type checking terms like K c O crucially relies on the conversion rule

for unwinding the definition of AF . We are now ready for the definition of K.

Fixpoint K (c n : nat) : AF n :=

match n as z return AF z with

| O => c

| S n’ => fun _ => K c n’

end.

Compute K 9 3.

% fun _ _ _ : nat ⇒ 9

Note that the definition of K really requires a dependent match. Moreover, the

return type of K and the dependent match can only be expressed with the recur-

sive function AF .

Exercise 5.5.1 Prove the K satisfies the defining equations given above.

2011/7/15 85



5 Dependent Matches and Induction

Exercise 5.5.2 (Projections) Define a function P : ∀n : nat. nat → AF n satisfy-

ing the defining equations given above. Prove that your function satisfies the

defining equations. Also check that the term P 4 2 reduces to fun _ _ x _ : nat ⇒ x.

Exercise 5.5.3 Write a function K′ that obtains constant functions with nat_E

and show that K′ agrees with K.

Definition K’ (c : nat) := nat_E . . .

Lemma K_agrees c n : K c n = K’ c n.

Explain why K′ cannot be obtained with primitive recursion.

5.6 Surjections and Countability

A surjection is a surjective function. We say that a type X is countable if there

exists a surjectiion from nat to X .2

Definition surjective {X Y : Type} (f : X −> Y) : Prop :=

forall y, exists x, f x = y.

Definition sur (X Y : Type) : Prop :=

exists f : X −> Y, surjective f.

Definition countable (X : Type) : Prop :=

sur nat X.

We show that bool is countable and that nat → bool is uncountable.

Lemma countable_bool :

countable bool.

Proof. exists (fun n => match n with O => false | _ => true end).

intros [|]. exists 1. reflexivity . exists 0. reflexivity . Qed.

Lemma uncountable_nat_bool :

~ countable (nat −> bool).

Proof. intros [f A]. pose (g n := negb (f n n)).

destruct (A g) as [n B]. absurd (f n n = g n).

unfold g. destruct (f n n) ; discriminate.

rewrite B. reflexivity . Qed.

Note the use of the tactic absurd in the uncountability proof. A command

absurd s applies to any goal and replaces it with goals for ¬s and s.

The notion of countability was first investigated by Cantor. Cantor’s Theo-

rem (Section 4.9.2) says that, given a type X, there is no surjection from X to

X → Prop. Hence it follows from Cantor’s Theorem that nat → Prop is not count-

able.

2 Note that according to our definition uninhabited types are not countable. We deviate from the

standard notion of countability for simplicity.

86 2011/7/15



5.6 Surjections and Countability

One can prove a variant of Cantor’s Theorem saying that there is no surjection

from X to X → bool (Exercise 5.2.4). The proofs of both results exploit there is

a negation function (on either Prop or bool). Here is generalization of Cantor’s

Theorem giving us both results.

Definition strong (X : Type) : Prop :=

exists f : X −> X, forall x, f x <> x.

Lemma Cantor_generalized (X Y : Type) :

strong Y −> ~sur X (X −> Y).

Proof. intros [neg N] [f A]. pose (g x := neg (f x x)).

destruct (A g) as [x B]. absurd (g x = f x x).

unfold g. exact (N _). rewrite B. reflexivity . Qed.

Exercise 5.6.1 Prove that uninhabited types are not countable.

Lemma uncountable_uninhabited (X : Type) : ~ inhabited X −> ~ countable X.

Exercise 5.6.2 Prove the following lemma justifying the tactic absurd.

Lemma absurd (X Y : Prop) : ~ X −> X −> Y.

Exercise 5.6.3 Prove that nat → nat is uncountable. First do a direct proof in the

style of uncountable_nat_bool. Then prove the claim with Cantor_generalized.

Exercise 5.6.4 Prove that bool ∗ nat is countable. Doing the proof in Coq takes

some effort since there is little support for arithmetic. Use the following defini-

tions and lemma.

Fixpoint div2 (x : nat) : bool * nat :=

match x with 0 => (true, 0) | 1 => (false, 0)

| S (S x’) => let (b, d) := div2 x’ in (b, S d) end.

Fixpoint double (x : nat) : nat :=

match x with O => O | S x’ => S (S (double x’)) end.

Lemma if_eta (b : bool) (X Y : Type) (f : X −> Y) (x y : X) :

( if b then f x else f y) = f ( if b then x else y).

Exercise 5.6.5 Cantor also proved that there is no injective function from the

power set of a set back to the set. To come up with the right spoiler function for

this proof is much harder than for the proof of the surjective Cantor Theorem.

Complete the following proof.

Definition injective {X Y:Type} (f:X−>Y) : Prop :=

forall x x’ : X, f x = f x’ −> x = x’.

Lemma Cantor_injective (X : Type) (f : (X −> Prop) −> X) : ~ injective f.

Proof. intros A. pose (g x := exists h, f h = x /\ ~ h x). absurd (~ g (f g)).

. . . Qed.

2011/7/15 87



5 Dependent Matches and Induction

nat : Type

O : nat

S : nat −> nat

natE : forall f : nat −> Type, f O −> (forall x, f x −> f (S x)) −> forall x, f x

natEO : forall f u v, natE f u v O = u

natES : forall f u v x, natE f u v (S x) = v x (natE f u v x)

Figure 5.1: Abstract presentation of the natural numbers

nat : Type

O : nat

S : nat −> nat

Pdis : forall x, S x <> O

Pinj : forall x y, S x = S y −> x = y

Pind : forall p : nat −> Prop, p O −> (forall x, p x −> p (S x)) −> forall x, p x

Figure 5.2: Peano axioms

5.7 Abstract Presentation of the Naturals

Figure 5.1 shows an abstract representation of the naturals numbers in Coq’s

type theory. The abstract presentation assumes the existence of the construc-

tors nat, O, and S and the eliminator natE . For the eliminator two quantified

equations are assumed. Given the abstract representation, one can for instance

define addition and show that it is commutative.

In contrast to the inductive definition of the naturals, the abstract representa-

tion of the naturals comes without computation. This makes proofs cumbersome

since the lack of computation must be compensated by explicit rewrite steps with

natEO and natES.

At the end of the 19th century the Peano axioms for the natural numbers

emerged. Figure 5.2 shows the Peano axioms formulated in Coq’s type theory.

The Peano axioms assume the existence of the constructors nat, O, and S and the

provability of three propositions. The propositions say that the constructors O

and S are disjoint, that the constructor S is injective, and that natural induction

is an admissible proof technique.

In Coq’s type theory, the Peano axioms are weaker than the abstract presenta-

tion of the naturals. Starting from the abstract presentation, it is straightforward

to give the proofs assumed by the Peano axioms. Given the Peano axioms, there

seems no way to obtain the elimination function natE .

88 2011/7/15



5.8 Natural Order

Given the Peano axioms, one can define total and functional relations mim-

icking the functions for addition and multiplication. Since in set theory total and

functional relations are functions, the Peano axioms are strong enough to define

addition and multiplication in set theory.

Exercise 5.7.1 Give an abstract presentation of the booleans.

Exercise 5.7.2 Introduce the abstract representation of the naturals in a section

and do the following.

a) Prove ∀x : nat. Sx ≠ O.

b) Prove that S is injective.

c) Prove the induction axiom as postulated by the Peano axioms.

d) Define an addition function plus.

e) Prove ∀y : nat. plus (S O) y = y.

f) Show that plus is commutative. Follow the proof in Section 2.4.

5.8 Natural Order

We represent the ordering of the natural numbers as a boolean function.

Fixpoint leb (x y: nat) : bool :=

match x, y with

| O, _ => true

| S _, O => false

| S x’, S y’ => leb x’ y’

end.

We use Coq’s Notation command to define the usual notations for comparisons.

Notation "s >= t" := (leb t s).

Notation "s <= t" := (leb s t).

Notation "s > t" := (leb (S t) s).

Notation "s < t" := (leb (S s) t ).

Note that 7 > 5 is a boolean term that evaluates to true.

Compute 7 > 5.

% true

We define the canonical embedding bool → Prop and tell Coq with the Coercion

command to insert an application of the embedding function whenever we write

a term of type bool in a context that expects a proposition.

Coercion bool2Prop (x : bool) := if x then True else False.

2011/7/15 89



5 Dependent Matches and Induction

Compute ~ 7 > 5.

% True → False

Functions that are automatically inserted due to a Coercion command are called

coercions. In regular mode the applications of coercions are not displayed, but

you can tell the Coq interpreter to display them.

We define a new tactic with Coq’s Ltac command.

Ltac stauto := (simpl ; tauto).

The command defines a tactic stauto that first applies the tactic simpl followed

by the tactic tauto. This provides for short proofs.

Lemma le_refl x :

x <= x.

Proof. induction x ; stauto. Qed.

The next two proofs are tricky. Try to do them yourself to understand.

Lemma le_trans {x} y {z} :

x<=y −> y<=z −> x<=z.

Proof. revert y z. induction x. stauto.

destruct y. stauto. destruct z. stauto.

intros A B. apply (IHx y z) ; stauto. Qed.

Lemma lt_trans’ {x} y {z} :

x < y −> y < z −> S x < z.

Proof. intros A B. apply (le_trans (S y)) ; assumption. Qed.

The tactic assumption used above tries to prove the current goal by applying an

assumption and fails if this is not possible.

The following lemmas show that “<” is a strict linear order.

Lemma le_strict x :

~ x < x.

Proof. induction x ; stauto. Qed.

Lemma le_or {x y} :

x<=y −> x<y \/ x=y.

Proof. revert y. induction x ; destruct y ; try stauto.

intros A. destruct (IHx y A) as [B|B]. stauto.

rewrite B. stauto. Qed.

Lemma le_lin x y :

x<y \/ y<=x.

Proof. revert y. induction x ; destruct y ; try stauto. exact (IHx y). Qed.

Lemma le_neg x y :

negb (x <= y) = (x > y).

Proof. revert y. induction x ; destruct y ; try stauto. exact (IHx y). Qed.

90 2011/7/15



5.8 Natural Order

Note the use of the tactical try. A command try s applies the script s and suc-

ceeds even if s fails.

Exercise 5.8.1 Prove the following lemmas.

Lemma bool2Prop_not (b : bool) : ~b <−> negb b.

Lemma bool2Prop_and (a b : bool) : a /\ b <−> andb a b.

Lemma bool2Prop_or (a b : bool) : a \/ b <−> orb a b.

Lemma bool2Prop_eq_true (b : bool) : b <−> b = true.

Lemma bool2Prop_eq_false (b : bool) : ~b <−> b = false.

Exercise 5.8.2 Prove the following lemmas.

Lemma le_O {x} : x <= O −> x = O.

Lemma le_S x : x <= S x.

Lemma le_wk {x y} : x < y −> x <= y.

Lemma le_rwk {x y} : x <= y −> x <= S y.

Lemma le_neg’ x y : negb (x < y) = (x >= y).

Lemma le_anti x y : x<=y −> y<=x −> x=y.

Lemma le_equal x y : x=y <−> x<=y /\ y<=x.

Exercise 5.8.3 Prove the following variants of le_trans.

Lemma le_lt_trans {x} y {z} : x <= y −> y < z −> x < z.

Lemma lt_le_trans {x} y {z} : x < y −> y <= z −> x < z.

Lemma lt_trans {x} y {z} : x < y −> y < z −> x < z.

Exercise 5.8.4 Prove the following variants of linearity and irreflexivity.

Lemma le_lin’ x y : x <= y \/ y < x.

Lemma le_lin_tri x y : x < y \/ x = y \/ y < x.

Lemma le_strict’ (x y : nat) : x < y −> x <> y.

Lemma le_strict’’ (x y : nat) : x < y −> y < x −> False.

Exercise 5.8.5 Prove the following lemmas about comparisons and sums.

Lemma plus_le x y z : (x + y <= x + z) = (y <= z).

Lemma plus_le’ x y z : (x + z <= y + z) = (x <= y).

Lemma plus_lt x y z : (x + y < x + z) = (y < z).

Lemma plus_lt’ x y z : (x + z < y + z) = (x < y).

Lemma plus_le_refl x y : x <= x + y.

Lemma plus_le_refl’ x y : x < x + S y.

Lemma le_ex_plus x y : x <= y −> exists z, x + z <= y.

Lemma le_plus_wk x y z : x + y <= z −> x <= z.

Hint: Use Lemma plus_com from Section 2.4 for the proofs plus_le′ and plus_lt′.

2011/7/15 91



5 Dependent Matches and Induction

Exercise 5.8.6 Prove the following lemma. It says that a proposition x ≤ y can

be expressed without recursion by quantifying over predicates.

Definition lep (x y : nat) : Prop :=

forall p : nat −> nat −> Prop,

( forall x, p 0 x) −>

( forall x y, p x y −> p (S x) (S y)) −>

p x y.

Lemma le_lep (x y : nat) :

x <= y <−> lep x y.

Note that the definition of lep is impredicative. Mathematically, one says that the

ordering on the natural numbers can be defined as the least relation satisfying

two characteristic properties.

5.9 Size Induction

Given a type X and a function f : X → nat, we can prove a claim ∀x :X.px by

induction on the “size” fx of x. Size induction makes it possible to prove

∀x :X.px under the assumption that py holds for all y smaller than x.

Lemma size_induction (X : Type) (f : X −> nat) (p: X −>Prop) :

( forall x, ( forall y, f y < f x −> p y) −> p x) −> forall x, p x.

Proof. intros A x. apply A. induction (f x). stauto.

intros y B. apply A. intros z C. apply IHn.

generalize (lt_trans’ _ C B). stauto. Qed.

The proof is remarkable in that it first reduces the claim to a form that can

be shown by induction on nat. Note that the induction tactic is applied to the

term f x, which is not a variable. This means that a lemma is created that is

applied to f x after it has been shown by induction. Here is a proof script that

states the auxiliary lemma with the tactic assert.

Lemma size_induction’ (X : Type) (f : X −> nat) (p: X −>Prop) :

( forall x, ( forall y, f y < f x −> p y) −> p x) −> forall x, p x.

Proof. intros A x. apply A.

assert (L : forall n y, f y < n −> p y).

induction n. stauto.

intros y B. apply A. intros z C. apply IHn. generalize (lt_trans’ _ C B). stauto.

exact (L (f x)). Qed.

Exercise 5.9.1 Give two proofs of the following lemma: one that applies the

lemma size_induction, and one that does not use size_induction.

Lemma complete_induction (p: nat−>Prop) :

( forall n, ( forall m, m < n −> p m) −> p n) −> forall n, p n.

92 2011/7/15



5.10 Type Constructors with Proper Arguments

5.10 Type Constructors with Proper Arguments

There are many possibilities for specifying the even numbers. For instance, one

may define a boolean predicate evenb : nat → bool as we did in Section 2.11.

Another possibility characterizes the even numbers inductively:

1. 0 is an even number.

2. If n is an even number, then S(S n) is an even number.

3. There are no other even numbers.

The inductive characterization can be expressed as an inductive definition in

Coq.

Inductive even : nat −> Prop :=

| evenO : even 0

| evenS : forall n, even n −> even (S (S n)).

The member constructors of even provide for proofs of the inductive proposi-

tions obtained with even. Here is an example.

Lemma even4 :

even 4.

Proof. constructor. constructor. constructor. Qed.

The tactic constructor is a convenience that for an inductive claim tries to apply

one of the associated member constructors.

Print even4.

% evenS (S (S O)) (evenS O evenO)

Note that the inductive predicate even takes a proper argument. The only

type constructor we have seen so far that takes a proper argument is eq. Type

constructors with proper arguments come with special matches whose return

type depends on the proper arguments. Here is a match for even.

Check

fun (p : nat −> Prop) u v n (s : even n) =>

match s in even z return p z with

| evenO => u

| evenS x y => v x y

end.

% forall p : nat -> Prop,

% p O ->

% (forall x : nat, even x -> p (S (S x))) ->

% forall n : nat, even n -> p n

2011/7/15 93



5 Dependent Matches and Induction

Note that z is a local variable connecting the proper argument of even with the

return type. Here is the typing rule for matches at even.

s : even s1 z : nat ⇒ t : Prop u : tz0 x : nat, y : even x ⇒ v : tzS(Sx)

match s in even z return t with evenO ⇒ u | evenS x y ⇒ v end : tzs1

The most important constraint on the design of the typing rules for matches is

the requirement that the reduction rules for matches must be type preserving.

For the above rule the argument goes as follows.

1. Suppose s = evenO. Then s : even 0. Since we also have s : even s1, we have

0 ≈ s1. Thus tz0 ≈ t
z
s1 .

2. Suppose s = evenS w1 w2. Then s : even (S (S w1)). Since we also have

s : even s1, we have S (S w1) ≈ s1. Thus tzS (S w1)
≈ tzs1 .

With a dependent match for even we can prove the following lemma.

Lemma even_pred n :

even n −> even (pred (pred n)).

Proof. intros [|n’ A]. constructor. exact A. Qed.

Print even_pred.

% fun (n : nat) (H : even n) =>

% match H in (even z) return (even (pred (pred z))) with

% | evenO => evenO

% | evenS _ A => A

% end

Exercise 5.10.1 Prove the following lemmas.

Lemma ex5911 n : even n −> even (4+n).

Lemma ex5912 n : even (S (S n)) −> even n.

5.10.1 Inversion

From the definition of even it is clear that 1 is not even. However, at first it

seems impossible to prove ¬even 1. The trick is to use a return type function

that employs a match.

Lemma even_inversion_1 :

~ even 1.

Proof. exact (fun A : even 1 =>

match A in even z

return match z return Prop with 1 => False | _ => True end

with evenO => I | evenS _ _ => I end). Qed.

94 2011/7/15



5.10 Type Constructors with Proper Arguments

Another, less elegant technique reformulates the claim such that the proper ar-

gument is a variable and the return type function yields contradictory equations.

Lemma even_inversion_1 n :

even n −> n = 1 −> False.

Proof. intros [|n’ A]. discriminate. discriminate. Qed.

Note that the match for even uses the return type function λz. z=1 → ⊥.

Here is another intuitively clear claim that at first seems difficult to prove.

forall n : nat, even (S (S n)) −> even n

The techniqes used for ¬even 1 work here as well.

Lemma even_inversion_SS n :

even (S (S n)) −> even n.

Proof. exact (fun (A : even (S (S n))) =>

match A in even z

return match z return Prop with S (S z’) => even z’ | _ => True end

with evenO => I | evenS _ A’ => A’ end). Qed.

Lemma even_inversion_SS’ n k :

even k −> k = S (S n) −> even n.

Proof. intros [|n’ A]. discriminate.

intros B. injection B as e. rewrite <− e. exact A. Qed.

There is also an elegant proof using Lemma even_pred.

Lemma even_inversion_SS’’ n :

even (S (S n)) −> even n.

Proof. exact (even_pred _). Qed.

One says that the above claims follow by inversion from the inductive defi-

nition of even. There is a tactic inversion that derives the equations needed for

these claims automatically and attempts to process them with discriminate and

injection.

Lemma even_inversion_1’’ :

~ even 1.

Proof. intros A. inversion A. Qed.

Lemma even_inversion_SS’’ n :

even (S (S n)) −> even n.

Proof. intros A. inversion A as [|n’ A’]. exact A’. Qed.

Exercise 5.10.2 Prove the following lemmas.

Lemma ex59221 : ~ even 3.

Lemma ex5922 n : even (4+n) −> even n.

2011/7/15 95



5 Dependent Matches and Induction

5.10.2 Recursion on Proof Terms

Given that even comes with the “recursive” member constructor

evenS : forall n : nat, even n −> even (S (S n))

we can define functions by structural recursion on the proof terms for even. Here

is an example.

Lemma even_S n :

even n −> even (S n) −> False.

Proof. revert n. fix f 2. intros n [|n’ A] B.

inversion B.

inversion B as [|k C]. exact (f n’ A C). Qed.

Note that the type of the recursive function f is

forall n : nat, even n −> even (S n) −> False

and that the function recurses on its second argument. This is the first time we

use a recursive abstraction with more than one argument that cannot be reduced

to a recursive abstraction with a single argument (since the type of the second

argument depends on the first argument). This becomes clear if we look at the

standard induction scheme for even :

Check

fun (p : nat −> Prop) u v =>

fix f n (s : even n) :=

match s in even z return p z with

| evenO => u

| evenS x y => v x y (f x y)

end.

forall p : nat −> Prop,

p 0 −>

( forall x : nat, even n −> p x −> p (S (S x))) −>

forall n : nat, even n −> p n

Coq defines this induction scheme automatically under the name even_ind and

uses it to support the tactic induction.

Lemma even_S’ n :

even n −> even (S n) −> False.

Proof. induction 1 as [|n _ IH] ; intros A.

inversion A.

apply IH. inversion A as [|n’ A’]. exact A’. Qed.

The numeric argument 1 of the tactic induction says that the induction should

be on the first argument type of the claim (even n in the example). The numeric

argument 1 will always suffice for proof term inductions.

96 2011/7/15



5.11 Matches at eq

Exercise 5.10.3 Prove the following lemmas by induction on proof terms.

Lemma even_sum m n : even m −> even n −> even (m+n).

Lemma even_sum’ m n : even (m+n) −> even m −> even n.

Exercise 5.10.4 Prove that the inductive definition of evenness agrees with the

boolean definition.

Lemma evenib n : even n <−> evenb n.

Exercise 5.10.5 Here is an impredicative definition of evenness.

Definition evenp (n : nat) : Prop :=

forall p : nat −> Prop,

p 0 −> (forall n, p n −> p (S (S n))) −> p n.

Prove that the impredicative definition of evenness agrees with the inductive

definition.

Lemma evenpi n : evenp n <−> even n.

5.11 Matches at eq

Recall the inductive definition of equality in Section 4.8.

Inductive eq (X : Type) (x : X) : X−> Prop :=

| eq_refl : eq X x x.

Note that the inductive predicate eq has one proper argument. Following the

rule for even, we obtain the following typing rule for matches at eq.

s : eq s1 s2 s3 z : s1 ⇒ t : Prop u : tzs2

match s in eq _ _ z return t with eq_refl ⇒ u end : tzs3

The definition of the elimination operator for equality is now straightforward.

Definition eq_E {X : Type} {x y : X} {p : X −> Prop} :

eq X x y −> p y −> p x

:= fun e =>

match e in eq _ _ z return p z −> p x with

| eq_refl => fun A : p x => A

end.

The elimination operator can be obtained with a very short proof script.

Lemma eq_E’ {X : Type} {x y : X} {p : X −> Prop} :

eq X x y −> p y −> p x.

2011/7/15 97



5 Dependent Matches and Induction

Proof. intros [] A. exact A. Qed.

Check that the proof script constructs exactly the proof term we give above for

eq_E . Also make sure that you understand why eq_E justifies the rewrite tactic.

Exercise 5.11.1 Prove each of the following lemmas not using other lemmas.

Give scripts and proof terms.

Lemma ex5101ref (X : Type) (x : X) : eq X x x.

Lemma ex5101sym (X : Type) (x y : X) : eq X x y −> eq X y x.

Lemma ex5101trans (X : Type) (x y z : X) : eq X x y −> eq X y z −> eq X x z.

Lemma ex5101f_equal (X Y : Type) (f : X −> Y) (x y : X) : eq X x y −> eq Y (f x) (f y).

Lemma ex5101rewrite_R (X : Type) (x y : X) (p : X −> Prop) : eq X x y −> p x −> p y.

Exercise 5.11.2 Consider the following inductive definition of equality where the

inductive predicate eq2 takes two proper arguments.

Inductive eq2 (X : Type) : X −> X−> Prop :=

| eq2_I : forall x : X, eq2 X x x.

a) Given the typing rule for matches at eq2.

b) Prove the following elimination lemma for eq2. Give a script and a proof term.

Lemma eq2_E (X : Type) (x y : X) (p : X −> Prop) : eq2 X x y −> p y −> p x.

Exercise 5.11.3 Consider the following inductive definition of equality where the

inductive predicate eq3 takes three proper arguments.

Inductive eq3 : forall X : Type, X −> X−> Prop :=

| eq3_I : forall (X : Type) (x : X), eq3 X x x.

a) Given the typing rule for matches at eq3.

b) Prove the following elimination lemma for eq3. Give a script and a proof term.

Lemma eq3_E (X : Type) (x y : X) : eq3 X x y −> forall p : X −> Prop, p y −> p x.

Exercise 5.11.4 Consider the following inductive definition of an order predicate

for the natural numbers.

Inductive lei : nat −> nat −> Prop :=

| leiO : forall x : nat, lei O x

| leiS : forall x y, lei x y −> lei (S x) (S y).

a) Given the typing rule for matches at lei.

b) Prove the following lemmas.

Lemma lei_refl x : lei x x.

Lemma lei_trans x y z : lei x y −> lei y z −> lei x z.

Lemma leib x y : leb x y <−> lei x y.

98 2011/7/15



5.12 Termination and Divergence

5.12 Termination and Divergence

We assume a type X and a binary relation r on X.

Section Assume_X_r.

Variable X : Type.

Variable r : X −> X −> Prop.

We see the relation r as a directed graph whose nodes are the members of X and

whose edges are the pairs (x,y) such that rxy is provable. We define the set

of terminating nodes inductively: A node is terminating if all its successors are

terminating.

Inductive ter (x : X) : Prop :=

| terc : ( forall y : X, r x y −> ter y) −> ter x.

Note that every node not having a successor is terminating. Properties of termi-

nating nodes can be shown by well-founded induction: To show that a termi-

nating node satisfies a property, one can assume that its successors satisfy the

property.

Lemma wf_induction (p : X −> Prop) :

( forall x, ( forall y, r x y −> p y) −> p x) −>

forall x, ter x −> p x.

Proof. intros R. fix f 2. intros x A. apply R.

intros y B. destruct A as [A’]. apply f, A’, B. Qed.

If we look at the proof term, we see a new form of structural recursion.

Print wf_induction.

fun (p : X −> Prop) (R : forall x : X, ( forall y : X, r x y −> p y) −> p x) =>

fix f (x : X) (A : ter x) {struct A} : p x :=

R x (fun (y : X) (B : r x y) =>

match A with terc A’ => f y (A’ y B) end)

The recursive function f recurses on its second argument A, which is of type px.

The recursion follows the type of the single constructor terc.

terc : forall x : X, ( forall y : X, r x y −> p y) −> p x

Structural decomposition of A yields a function A′. The recursive application

of f then takes the application A′y B as second argument. The rule to learn

here is as follows: If A is a member of an inductive type X and the function A′

is obtained by structural decomposition of A, then every application of A′ that

yields a result in X yields a result that is structurally smaller then A. In the

example above, A′y B is thus structurally smaller than A and hence the recursive

application of f to A′y B is admissible. We speak of recursion through a higher-

order constructor.

The induction lemma Coq synthesizes for ter looks as follows.

2011/7/15 99



5 Dependent Matches and Induction

Check ter_ind.

forall p : X −> Prop,

( forall x : X, ( forall y : X, r x y −> ter y) −>

( forall y : X, r x y −> p y) −>

p x) −>

forall x : X, ter x −> p x

Compute ter_ind.

fun (p : X −> Prop) R =>

fix f x (A : ter x) : p x :=

match A with terc A’ => R x A’ (fun y B => f y (A’ y B)) end.

First look at the normal form of ter_ind to see the synthesized recursion scheme.

Types that can be derived automatically are omitted. The type of ter_ind is more

general than the type of wf _induction in that the inductive relaxation comes with

the additional assumption that all successors are terminating.

We call a node of a graph diverging if there is an infinite path issuing from it.

Definition ipath (f : nat −> X) : Prop :=

forall n, r (f n) (f (S n)).

Definition div (x : X) : Prop :=

exists f, ipath f /\ f 0 = x.

Every node on an infinite path diverges.

Lemma div_ipath (f : nat −> X) :

ipath f −> forall n, div (f n).

Proof. intros A n. exists (fun k => f (k+n)). split.

intros k. exact (A _). reflexivity . Qed.

We prove that a node of a graph cannot be both terminating and diverging.

Lemma ter_div :

forall x, ter x −> div x −> False.

Proof. induction 1 as [x _ IH]. intros [f [B e ]]. destruct e.

apply (IH (f 1)). exact (B _). exact (div_ipath _ B _). Qed.

We close the section Assume_X_p

End Assume_X_r.

Implicit Arguments ter [X].

Implicit Arguments div [X].

and show that the relation “>” terminates on every natural number.

Lemma gt_terminates :

forall n, ter (fun x y => x > y) n.

Proof. apply (size_induction (fun x => x)). intros x IH.

constructor. exact IH. Qed.

100 2011/7/15



5.12 Termination and Divergence

Note that the proof uses the lemma size_induction from Section 5.9. Next we

show that the relation “<” diverges on every natural number.

Lemma lt_diverges :

forall x : nat, div (fun x y => x < y) x.

Proof. intros x. exists (fun n => n+x).

split . intros n. apply le_refl. reflexivity . Qed.

Given a graph homomorphism, every node mapped to a terminating node of the

target graph terminates.

Lemma ter_hom {X Y : Type} (r : X −> X −> Prop) (r’ : Y −> Y −> Prop)

(f : X −> Y)

(H : forall x y, r x y −> r’ (f x) (f y)) :

forall x : X, ter r’ (f x) −> ter r x.

Proof. fix F 2. intros x [A]. constructor. intros y B. apply F, A, H, B. Qed.

The proof is by recursion on the proof of ter r′ (f x). We formulate the recursion

directly since the induction lemma ter_ind does not apply to the claim.3

The lexical product of two relations is defined as follows.

Definition lex {X Y : Type} (r : X −> X −> Prop) (s : Y −> Y −> Prop)

(p q : X * Y) : Prop :=

let (x,y) := p in let (x’,y’) := q in r x x’ \/ x=x’ /\ s y y’.

A relation is terminating if all its nodes are terminating.

Definition terminates {X : Type} (r : X −> X −> Prop) : Prop :=

forall x, ter r x.

We show that the lexical product of two terminating relations is terminating.

Lemma ter_lex {X Y : Type} (r : X −> X −> Prop) (s : Y −> Y −> Prop) :

terminates r −> terminates s −> terminates (lex r s).

Proof. intros R S [x y]. generalize (S y). revert y. generalize (R x).

induction 1 as [x _ IHR]. induction 1 as [y _ IHS].

constructor. intros [x’ y’] [A|[e B ]].

apply IHR. exact A. apply (S y’).

destruct e. apply IHS. exact B. Qed.

Exercise 5.12.1 Prove the following lemmas.

Lemma ex51111 {X : Type} (r : X −> X −> Prop) (x : X) :

ter r x −> forall y, r x y −> ter r y.

Lemma ex51112:

~ exists f : nat −> nat, forall n, f n > f (S n).

3 The induction lemma ter_ind applies and the tactic induction can be used if the claim is refor-

mulated as follows: ∀y. ter r ′ y → ∀x. f x = y → ter r x.

2011/7/15 101



5 Dependent Matches and Induction

Lemma ex51113 {X : Type} (r : X −> X −> Prop) (f : X −> nat) :

( forall x y, r x y −> f x > f y) −> forall x, ter r x.

Hint: Use the lemmas ter_div, gt_terminates, and ter_hom.

Exercise 5.12.2

a) Prove that the composition of two terminating relations is terminating.

b) Define the transitive closure of a relation with an inductive predicate

transc : forall X : Type, (X −> X −> Prop) −> X −> X −> Prop

c) Prove that the transitive closure of a terminating relation is terminating.

102 2011/7/15



6 Sum and Sigma Types

6.1 Division by 2 as Certifying Function

In programming languages, the type of a function carries little infomation. For in-

stance, the type nat → nat → nat admits addition, multiplication and many other

functions. We will now see that in constructive type theory one can write function

types that fully specify the computational behavior of their member functions.

As example we consider a type whose members are functions that divide their

argument by 2. We start with a proposition:

Definition Div2p : Prop :=

forall n : nat, (exists k, n = 2 * k) \/ (exists k, n = S (2 * k)).

A proof of this proposition is a function that for every number n yields a con-

struction from which one can obtain a number k such that k = ⌊n2 ⌋. Thus one

would hope that from a proof of Div2p one can obtain a function that divides

its argument by 2. However, this hope does not work out since Coq imposes the

elim restriction, which makes it impossible to return a number that is part of a

proof construction (see Section 4.11).

Types are partitioned in three classes: propositions, informative types, and

universes. Propositions are also known as logical types. Note that the elim

restriction applies to inductive logical types. To compensate for the elim restric-

tion, Coq has predefined type constructors sum and sig that are like disjunc-

tion and existential quantification but yield informative types rather than logical

types.

Inductive sum (X Y : Type) : Type :=

| inl : X −> sum X Y

| inr : Y −> sum X Y.

Notation "s + t" := (sum s t) : type_scope.

Implicit Arguments inl [X].

Implicit Arguments inr [Y].

Inductive sig {X : Type} (p : X −> Prop) : Type :=

| exist : forall x : X, p x −> sig p.

Notation "{ x | s }" := (sig (fun x => s)) : type_scope.

103



6 Sum and Sigma Types

Types obtained with the constructor sum are called sum types, and types ob-

tained with the constructor sig are called sigma types. We can now write an

informative type mimicking the logical type Div2p.

Definition Div2 : Type :=

forall n : nat, {k | n = 2*k} + {k | n = S (2*k)}.

Next we construct a function of type Div2 using Coq’s scripting facility.

Definition div2c : Div2.

unfold Div2. induction n.

left . exists 0. reflexivity .

destruct IHn as [[k A]|[k A]].

right. exists k. f_equal. exact A.

left . exists (S k). rewrite A. simpl. rewrite plus_S. reflexivity. Defined.

The script is identical with a proof script for the proposition Div2p. Step through

the script to see what happens. The lemma plus_S was proven in Section 2.4.

Note that we close the script with the command Defined so that we can compute

with the function div2c.

Compute div2c 11.

% inr {k : nat | 11 = 2*k}

% (exist (fun k => 11 = S (2*k))

% 5

% · · · )

We have omitted the third argument of the constructor exist since it is a long

proof.1 We call div2c a certifying function since it yields results containing

proofs. Based on the certifying function div2c, we can now write ordinary func-

tions.

Definition even (n : nat) : bool :=

if div2c n then true else false.

Compute even 9.

% false

Note that the if-then-else notation translates to a match with two rules. It can be

used for every inductive informative type that has two member constructors.

Definition div2 (n : nat) : nat.

destruct (div2c n) as [[k _ ]|[ k _ ]]. exact k. exact k. Defined.

Compute div2 9.

% 4

1 You can obtain the canonical proof eq_refl 11 if you close the proof script for plus_S with the

command Defined.

104 2011/7/15



6.2 Bounded Search

Definition mod2 (n : nat) : nat :=

if div2c n then 0 else 1.

Compute mod2 9.

% 1

Definition divmod2 (n : nat) : nat + nat.

destruct (div2c n) as [[k _ ]|[ k _ ]]. exact (inl nat k). exact (inr nat k). Defined.

Compute divmod2 9.

% inr nat 4

It is now clear that the certifying function div2c is useful computationally. As

one would expect, it is also useful for proofs.

Lemma div2mod2 (n : nat) :

n = 2 * div2 n + mod2 n /\ mod2 n < 2.

Proof. unfold div2, mod2.

destruct (div2c n) as [[k A]|[k A]] ; split ; try stauto.

rewrite plus_O. exact A. rewrite plus_S, plus_O. exact A. Qed.

The lemmas plus_O and plus_S are shown in Section 2.4.

The following function converting booleans to members of proof-carrying

sums will be useful in the following.

Definition bool2sum (b : bool) : b + ~b :=

if b as z return z + ~z then inl _ I else inr _ (fun f => f).

Exercise 6.1.1 Complete the following definitions.

Definition ex6111 (X : Prop) : X \/ X −> X + X.

Definition ex6112 (X : Prop) : X \/ False −> X + False.

Exercise 6.1.2 Complete the following definition and prove the lemma.

Definition forget {X Y} {p : X −> Prop} {q : Y −> Prop} : sig p + sig q −> X + Y.

Lemma forget_div2c (n : nat) : forget (div2c n) = divmod2 n.

6.2 Bounded Search

Given a boolean predicate nat → bool and a number n, we can search for a num-

ber k ≤ n satisfying the predicate. Here is a type whose members are certifying

functions that search for such a k.

Definition Search : Type :=

forall (p : nat −> bool) (n : nat),

{x | x <= n /\ p x} + (forall x, x <= n −> ~ p x).

2011/7/15 105



6 Sum and Sigma Types

We assume the boolean definition of the order “≤” from Section 5.8. We now

write a recursive function searchc : Search that starts from the upper bound and

searches downwards until it either finds a k satisfying p or knows that such

a k does not exist. We use the lemmas le_refl, le_O, le_rwk, and le_or from

Section 5.8 to construct the necessary proofs.

Definition searchc : Search.

intros p. fix f 1. intros n.

destruct (bool2sum (p n)) as [A|A].

left . exists n. split . exact (le_refl n). exact A.

destruct n. right. intros x B. rewrite (le_O B). exact A.

destruct (f n) as [[x [C D]]|B].

left . exists x. split . exact (le_rwk C). exact D.

right. intros x C. destruct (le_or C) as [D|D].

apply B. exact D. rewrite D. exact A. Defined.

We can now write an ordinary search function that does not bother about proofs.

Definition search (p : nat −> bool) (n : nat) : option nat.

destruct (searchc p n) as [[x _]|_]. exact (Some x). exact None. Defined.

Compute search (fun x => 5 * x >= x * x) 10.

% Some 5

Here is a correctness proof for search.

Lemma search_correct (p : nat −> bool) (n : nat) :

match search p n with

| None => forall k, k <= n −> ~ p k

| Some k => k <= n /\ p k

end.

Proof. unfold search. destruct (searchc p n) as [[k A]|A] ; exact A. Qed.

Exercise 6.2.1 The specification Search is loose in that it does not say which

k ≤ n satisfying p is returned.

a) Write a specification Search_max that requires that the maximal k ≤ n satis-

fying p is returned. Use the following definition.

Definition max (p : nat −> bool) (n x : nat) : Prop :=

p x /\ forall k, k<=n −> p k −> k<=x.

b) Construct a function of type Search_max. Prove and use the following lemma.

Lemma max_S (p : nat −> bool) (n x : nat) :

max p n x −> ~ p (S n) −> max p (S n) x.

106 2011/7/15



6.3 Least Number Search

6.3 Least Number Search

Here is the specification for a certifying function that given a boolean predicate

on nat and a proof that the predicate is satisfiable computes the least number

satisfying the predicate.

Definition low (p : nat −> bool) (n : nat) : Prop :=

forall k, k<=n −> p k −> k = n.

Definition min (p : nat −> bool) (n : nat) : Prop :=

p n /\ low p n.

Definition First : Type :=

forall p : nat −> bool, ex p −> sig (min p).

Writing such a function requires a couple of new ideas. In a programming lan-

guage, we would ignore the proofs and write a recursive function that starting

from 0 searches for the first number satisfying p. In Coq, we face the problem

that increasing a number is not structurally recursive. For that reason we will

write a recursive function taking two arguments. The first argument is a counter

that is incremented by 1 by each recursion step. The second argument is a per-

mission that is decreased by each recursion step. So the recursion is on the

permission. We represent permissions as proof terms for an inductive predicate

safe.

Section Assume_p.

Variable p : nat −> bool.

Inductive safe (n : nat) : Prop :=

| safeI : p n −> safe n

| safeS : safe (S n) −> safe n.

If we have a permision A : safe n, we know that there is a k ≥ n satisfying p

and that the size of the permission is an upper bound on the number of steps it

takes an upward search starting at n to find a number satisfying p. We will write

a function first′ that given a number n and a permission of type safe n returns

the least k ≥ n satisfying p.

Definition first’ : forall n : nat, safe n −> nat :=

fix f n A :=

match bool2sum (p n) return nat with

| inl _ => n

| inr B => f (S n) match A return safe (S n) with

| safeI C => match B C with end (∗ B : ¬p n, C : p n ∗)

| safeS C => C

end

end.

2011/7/15 107



6 Sum and Sigma Types

The function is given a counter n and a permission A. It first tests whether

the counter satisfies p. If this is the case, it returns the counter. Otherwise,

the function recurses with the incremented counter and a permission that is

obtained with a match on the given permission A. For the recursion to be struc-

tural, the permission obtained with the match must be structurally smaller than

the permission A. This is the case if each rule of the match yields a permission

that is smaller than A. The body of the first rule is a match with no rules and

hence yields a permission smaller than A (since each of its rules does). The body

of the second rule returns a permission that is obtained from A by stripping off

the constructor safeS.

An ordinary recursive function first does a match on the argument it recurses

on and then recurses in the bodies of some of the rules. The function first′

modifies this pattern in that it delegates the match to an argument term of the

recursive application. We speak of an eager proof recursion. With eager proof

recursion it is possible to recurse and match on proofs but nevertheless return

values that are not proofs. This is impossible with the ordinary recursion pattern

since it would violate the elim restriction.

It is now routine to write a function first : ex p → nat that given a proof of

ex p yields the least number satisfying p.

Lemma safe_O : forall n : nat, safe n −> safe O.

Proof. induction n. tauto. intros A. apply IHn, safeS, A. Defined.

Lemma ex_safe : ex p −> safe O.

Proof. intros [n A]. apply (safe_O n), safeI, A. Defined.

Definition first : ex p −> nat := fun E => first’ 0 (ex_safe E).

End Assume_p.

Check first.

% forall p : nat -> bool, ex (fun x : nat => bool2Prop (p x)) -> nat

Compute

let p x := 3 + 2 * x > 15

in first p (ex_intro p 100 I).

% 7

The design of first scales nicely to a certifying function firstc : First. A defini-

tion of such a function is shown in Figure 6.1. The main idea is to give firstc′ an

extra argument carrying a proof of the invariant low p n. The definition of safe

and the lemmas safe_O and ex_safe are unchanged. The definitions of low and

min are repeated to make the presentation self-contained. Note the use of the

conversion tactic hnf (head normal form) in the script for firstc′. The tactic hnf

reduces the top level of a claim until a variable or a functional abstraction or a

function type shows up.

108 2011/7/15



6.3 Least Number Search

Definition low (p : nat −> bool) (n : nat) : Prop :=

forall k, k<=n −> p k −> k = n.

Definition min (p : nat −> bool) (n : nat) : Prop :=

p n /\ low p n.

Lemma lowO p : low p O.

Proof. intros [|k] ; stauto. Qed.

Lemma lowS p n : low p n −> ~ p n −> low p (S n).

Proof. unfold low. intros A B k C D. destruct (le_or C) as [E|E].

generalize D. rewrite (A k E D). tauto. exact E. Qed.

Section Assume_p.

Variable p : nat −> bool.

Inductive safe (n : nat) : Prop :=

| safeI : p n −> safe n

| safeS : safe (S n) −> safe n.

Lemma firstc’ : forall n, safe n −> low p n −> sig (min p).

Proof. fix f 2. intros n A L.

destruct (bool2sum (p n)) as [B|B].

exists n. hnf. tauto.

apply (f (S n)).

destruct A as [C|C]. destruct (B C). exact C.

apply lowS ; assumption. Defined.

Lemma safe_O : forall n, safe n −> safe O.

Proof. induction n. tauto. intros A. apply IHn, safeS, A. Defined.

Lemma ex_safe : ex p −> safe O.

Proof. intros [n A]. apply (safe_O n), safeI, A. Defined.

Definition firstc : ex p −> sig (min p) :=

fun E => firstc’ 0 (ex_safe E) (lowO p).

End Assume_p.

Check firstc.

% forall p : nat -> bool, (exists x : nat, p x) -> sig (min p)

Figure 6.1: Certifying least number search

2011/7/15 109



6 Sum and Sigma Types

110 2011/7/15



7 Programming with Dependent Types

In this chapter we consider informative types which depend on members of in-

formative types. For example, we will be interested in informative types that

depend on members of nat. We will study three such types. In Chapter 5 we

considered arithmetic functions. The type of arithmetic functions was given by

AF : nat → T. We will generalize AF to so that for any types A and B we obtain the

dependent type An → B for each n : nat. We will then consider length-indexed

lists. The type of length-indexed lists depends on a natural number n corre-

sponding to the length of the list. Finally, we will consider a type Finn which is

a type with exactly n elements.

7.1 Cascaded Functions

Recall that earlier we considered arithmetic functions, i.e., functions of type

nat → ·· · → nat. Types of this form were realized in Coq using the following

definition of AF .

Fixpoint AF (n : nat) : Type :=

match n with

| O => nat

| S n’ => nat −> AF n’

end.

A natural generalization of this is to allow arbitrary types as domain and

codomain. That is, we will be interested in functions of type

A→ ·· · → A→ B

We will abbreviate such types as An → B. Given a type A and B, we say f is a

cascaded function from A to B if f has type An → B for some n. In Coq we can

realize the types of cascaded functions by a definition Cascade.

Fixpoint Cascade (A B : Type) (n : nat) : Type :=

match n with

| O => B

| S n => A −> Cascade A B n

end.

Notation "A ^ n −−> B" := (Cascade A B n) (at level 20).

111



7 Programming with Dependent Types

We have already seen many examples of cascaded functions. The functions andb,

orb and negb are all cascaded functions from bool to bool.

Check (andb : bool ^ 2 −−> bool).

Check (orb : bool ^ 2 −−> bool).

Check (negb : bool ^ 1 −−> bool).

Just as with arithmetic functions, we can recursively define a function K which

constructs constant cascaded functions from A to B.

Fixpoint K (A : Type) {B : Type} (b : B) (n : nat) : A ^ n −−> B :=

match n with

| O => b

| S n => fun _ => K A b n

end.

The type B can be left implicit since the return value b is of type B. As mathemat-

ical notation, we can write K
A,n
b for K Abn. The behavior of K can be described

either with the single equation

K
A,n
b x0 · · · xn−1 = b

or with the two equations

K
A,0
b = b

K
A,(S n)
b x = K

A,n
b .

For two concrete examples, consider the ground term

K nat false 2

of type nat2 → bool. An easy sequence of reductions converts this term to the

canonical term

λx0 x1 : nat.false

as one would expect. Likewise,

K bool false 2

has type bool2 → bool and normal form

λx0 x1 : bool.false.

Exercise 7.1.1 Prove the correctness of K .

Lemma K_correct (A B : Type) (b : B) :

K A b O = b /\ forall n x, K A b (S n) x = K A b n.

112 2011/7/15



7.1 Cascaded Functions

Let A,B,C be types. Given any two functions f : B → C and g : A → B, it is

easy to define the composition f ◦ g of type A → C . We can generalize this to

compose f : B → C with a cascaded function g from A to B. Suppose f : B → C

and g : An → B. The type of f ◦ g should be An → C . That is, f ◦ g will be a

cascaded function from A to C . The behavior of f ◦ g can be easily understood:

(f ◦ g)x0 · · ·xn−1 = f(g x0 · · · xn−1)

This operation can be defined as follows.

Fixpoint comp {A B C : Type} (f : B −> C) (n : nat) : (A ^ n −−> B) −> A ^ n −−> C :=

match n with

| O => f

| S n => fun g => fun x:A => comp f n (g x)

end.

The behavior of comp is expressed by the following reductions:

comp f O b reduces to f b

comp f (S n)g x reduces to comp f n(g x)

Recall that negb is the negation function on bool. Let g1 be the ground term

comp negb 1 negb. The type of g1 is bool1 → bool (i.e., bool → bool). One can

easily compute that the normal form of g1 false is false and the normal form of

g1 true is true. Hence one can prove ∀x : bool.g1x = x.

Recall that andb is the conjunction on bool and has type bool2 → bool. We use

comp to compose the negation function with conjunction. Let g2 be the ground

term comp negb 2 andb. This term has type bool2 → bool and behaves as the

nand function.

Next suppose we are given a binary function f : B → B → C and two cascaded

functiongs g,h : An → B. We can compose f with g and h in a straightforward

way:

(f ◦2 (g,h))x0 · · · xn−1 = f(g x0 · · · xn−1)(hx0 · · · xn−1).

We implement this operation in Coq as comp2 as follows.

Fixpoint comp2 {A B C : Type} (f : B −> B −> C) (n : nat) :

(A ^ n −−> B) −> (A ^ n −−> B) −> A ^ n −−> C :=

match n with

| O => f

| S n => fun g h => fun x:A => comp2 f n (g x) (h x)

end.

In Figure 7.1 we summarize the mathematical notation and the corresponding

Coq terms.

2011/7/15 113



7 Programming with Dependent Types

Mathematical notation Coq representation

An → B A ^ n −−> B or Cascaded A B n

K
A,n
b K A b n

f ◦ g comp f n g

f ◦2 (g,h) comp2 f n g h

Figure 7.1: Notation for cascaded functions

Let g3 be the ground term comp2 andb 1 negb negb of type bool1 → bool. One

can easily check that g3true normalizes to true and that g3 false normalizes to

false.

We can easily define a function allb : (bool → bool) → bool such that allb s is

true if and only if ∀x : bool.s x. It suffices to only check the two booleans and

conjoin the result. Here is a direct definition in Coq:

Definition allb (p : bool −> bool) : bool := andb (p false) (p true).

Exercise 7.1.2 Prove allb is correct:

Lemma allb_correct (p : bool −> bool) : allb p <−> forall a, p a.

Suppose g is of type bool3 → bool. Consider the term comp allb 2g. Is this

well-typed? If one fills in the implicit arguments properly, it is easy to see that

the subterm comp allb 2 must have type (bool2 → (bool → bool))→ bool2 → bool.

Since bool3 → bool and bool2 → (bool → bool) both have normal form bool →

bool → bool → bool, comp allb 2g is well-typed and has type bool2 → bool.

Exercise 7.1.3 Prove the following:

Lemma allb3 : forall g:bool ^ 3 −−> bool, forall x y,

comp allb 2 g x y <−> forall z, g x y z.

Arguing as above, we see that the ground term

λg : boolS t → bool.comp allb t g

is well-typed for any canonical term t of type nat. On the other hand, the ab-

stracted term

λn : nat, g : boolS n → bool.comp allbng

is not well-typed. The problem is that the types boolS n → bool is not convertible

with booln → (bool → bool) if n is a variable. We can overcome this problem with

the following helper function:

114 2011/7/15



7.2 Length-Indexed Lists

Fixpoint unfoldR {A B : Type} (n : nat) : (A ^ (S n) −−> B) −> A ^ n −−> (A −> B) :=

match n with

| O => fun g => g

| S n => fun g x => unfoldR n (g x)

end.

The term

λn : nat, g : boolS n → bool.comp allbn(unfoldRng)

is well typed and has type

∀n : nat.(boolS n → bool)→ (booln → bool).

The function unfoldR maps cascaded functions from A to B (with at least

one argument) to a cascaded function from A to A → B without changing the

behavior of the underlying cascaded function. Likewise, a cascaded function

from A to Am → B can be mapped to a cascaded function from A to B. We define

a function foldM to do this.

Fixpoint foldM {A B : Type} (n : nat) :

forall m, (A ^ n −−> (A ^ m −−> B)) −> A ^ (n + m) −−> B :=

match n as z return forall m, (A ^ z −−> (A ^ m −−> B)) −> A ^ (z + m) −−> B

with

| O => fun m g => g

| S n => fun m g x => foldM n m (g x)

end.

7.2 Length-Indexed Lists

We next consider length-indexed lists (or, ilists). Ilists carry the length of the list

in their types as a proper argument of the type constructor ilist.

Inductive ilist (A : Type) : nat −> Type :=

| nl : ilist A 0

| cns : forall n, A −> ilist A n −> ilist A (S n).

Implicit Arguments nl [A].

Implicit Arguments cns [A n].

Notation "s :: t" := (cns s t) (at level 60, right associativity).

In mathematical notation, we will often use names such as ~a and ~b for elements

of type ilist A n. In Coq, we will use names such as al and bl.

Since the type constructor has a proper argument, the typing rule for the

corresponding match makes use of an in clause. Using the index and the in clause,

2011/7/15 115



7 Programming with Dependent Types

we can define head and tail functions where we need not concern ourselves with

the case in which the given list is empty. Note that any ilist of type ilist A(S n)

is necessarily nonempty. When we match against an ilist of such a type, we

will know that the bound variable of the in clause will never be O. We make a

somewhat surprising use of this fact in the following definitions.

Definition hd {A : Type} {n : nat} (al : ilist A (S n)) : A :=

match al in ( ilist _ n’) return match n’ with O => True | S n’’ => A end with

| nl => I

| cns n’ a ar => a

end.

Definition tl {A : Type} {n : nat} (al : ilist A (S n)) : ilist A n :=

match al in ( ilist _ n’) return match n’ with O => True | S n’’ => ilist A n’’ end with

| nl => I

| cns n’ a ar => ar

end.

We can also define an append function. The reader should fill in the in and return

clauses and carefully check why this is well-typed.

Fixpoint append {A : Type} {n m:nat} (a:ilist A n) (b:ilist A m) : ilist A (n + m) :=

match a with

| nl => b

| cns n s a => s::(append a b)

end.

Notation "s ++ t" := (append s t) (at level 60, right associativity).

We can easily define a function Ap that applies a cascaded function to an ilist.

Fixpoint Ap {A B : Type} {n : nat} : forall (f : A ^ n −−> B) (al : ilist A n), B :=

match n with

| O => fun b _ => b

| S n => fun f al => Ap (f (hd al)) ( tl al)

end.

In mathematical notation we will often omit Ap. That is, f : An → B and ~a :

ilist An, then we write f ~a for Ap f ~a.

Induction on the index n allows us to prove many easy results we could not

state before we had ilists. For example, the constant constructor K clearly satis-

fies

K Abna0 · · · an−1 = b

We can now state and prove this equation in the following form.

Lemma Ap_K {A B : Type} (b : B) (n : nat) : forall (al : ilist A n), Ap (K A b n) al = b.

induction n.

116 2011/7/15



7.2 Length-Indexed Lists

intros al. reflexivity .

intros al. simpl. apply IHn.

Qed.

We can also do induction on ilists. The induction principle on ilists is given

by the following proposition:

∀A : T.∀P : (∀n : nat.ilist An→ Prop).

P 0 nl → (∀n : nat.∀x : A.∀l : ilist An.P n l→ P (S n) (cnsx l)

→ ∀n : nat.∀l : ilist An.P n l

(We have left the argument A implicit in nl and the arguments A and n implicit

in cns.) The underlying match which justifies this induction principle contains

a return type that depends on both an in and an as dependency. One can type

check the proof of the induction principle in Coq:

Check

(fun (A : Type) (P : forall n : nat, ilist A n −> Prop)

(base : P 0 nl)

(step : forall (n : nat) (a : A) ( l : ilist A n), P n l −> P (S n) (cns a l )) =>

fix F (n : nat) ( l : ilist A n) : P n l :=

match l as l’ in ( ilist _ n’) return (P n’ l ’) with

| nl => base

| cns n’ x l’ => step n’ x l’ (F n’ l ’)

end).

We use this induction principle (via Coq’s induction tactic) to prove the fol-

lowing relationship between Ap and append.

Lemma Ap_append {A B : Type} {n m:nat} (f:A ^ n −−> (A ^ m −−> B)) (al1:ilist A n) (al2:ilist A m) :

Ap (Ap f al1) al2 = Ap (foldM n m f) (al1 ++ al2).

Proof. revert f. induction al1.

intros f. simpl. reflexivity.

intros f. simpl. exact (IHal1 (f a )).

Qed.

Exercise 7.2.1 Study the proof of Ap_append. Make sure you can state all the

subgoals after each tactic.

Exercise 7.2.2 Formulate each of the equations below as a lemma in Coq and

then prove the lemma.

a) g a ~a = g (a :: ~a) where g : AS n → B, a : A and ~a : ilist An.

b) (f ◦ g) ~a = f(g ~a) where f : B → C , g : An → B and ~a : ilist An.

c) (f ◦2 (g,h)) ~a = f(g ~a)(h ~a) where f : B → C , g,h : An → B and ~a : ilist An.

We can also make use of ilists to define equivalence of cascaded functions.

2011/7/15 117



7 Programming with Dependent Types

Definition Feq {A B:Type} {n : nat} (f g : A ^ n −−> B) : Prop :=

forall al: ilist A n, Ap f al = Ap g al.

Notation "f == g" := (Feq f g) (at level 11).

In mathematical notation we write f ≡ g for f == g.

Exercise 7.2.3 Formulate the following equivalences as lemmas in Coq and

prove them using the lemmas from Exercise 7.2.2.

a) f ◦K
A,n
b ≡ K

A,n
fb where f : B → C and b : B.

b) f ◦2 (K
A,n
b , h) ≡ (fb) ◦ h where f : B → C , b : B and h : An → B.

Exercise 7.2.4 Consider the following boolean definition of implication (prede-

fined in Coq).

Definition implb (b1 b2:bool) : bool := if b1 then b2 else true.

a) Prove the following lemma.

Lemma implb_negb_orb (a b : bool) : implb a b = orb (negb a) b.

b) Use the lemma from part (a) to prove the following equivalence of functions

bool2 → bool.

Lemma Feq_implb_negb_orb (n : nat) (g h : bool ^ n −−> bool):

comp2 implb n g h == comp2 orb n (comp negb n g) h.

7.3 Finite Types

Suppose we wish to define projection functions Pk : An → A such that

Pk x0 · · · xn−1 = xk.

Clearly this only makes sense when k < n. This motivates the definition of a

type function Fin : nat → T such that Finn corresponds to the set {0, . . . , n− 1}.

If we have such a Fin, then the type of P will be

∀A : T. ∀n : nat. Finn→ An → A.

In fact, we defined such a function (called fin) in Chapter 2 using void, option and

iter . Here we consider an inductive definition of Fin.

Inductive Fin : nat −> Type :=

| FinO : forall {n}, Fin (S n)

| FinS : forall {n}, Fin n −> Fin (S n).

118 2011/7/15



7.3 Finite Types

For each n : nat, FinO is the copy of 0 in the type Fin (S n). Assume the elements

of Finn are (copies of) 0, . . . , n − 1. For each k : Finn, k is a copy of some

k′ ∈ {0, . . . , n− 1} and FinS k is a copy of k′ + 1 in {1, . . . , n}. Given any specific

natural numbers k and n, we can easily define the copy Fnk of k as a member of

Finn. Here are a few concrete examples listing all the elements of Fin 1, Fin 2 and

Fin 3.

Definition F01 : Fin 1 := FinO.

Definition F02 : Fin 2 := FinO.

Definition F12 : Fin 2 := FinS FinO.

Definition F03 : Fin 3 := FinO.

Definition F13 : Fin 3 := FinS FinO.

Definition F23 : Fin 3 := FinS (FinS FinO).

We can also extract the underlying natural number from a member of Finn by a

simple recursive function.

Fixpoint FinVal {n : nat} (m : Fin n) : nat :=

match m with

| FinO n’ => 0

| FinS n’ m’ => S (FinVal m’)

end.

For any k and n with k < n, FinVal Fnk has normal form k.

Exercise 7.3.1 Give the normal forms of the following terms: FinVal F01,

FinVal F02, FinVal F12, FinVal F03, FinVal F13 and FinVal F23.

No member constructor of Fin gives an element of type Fin 0, and so this type

is empty. In fact, we can easily use a (hypothetical) element of Fin 0 to obtain an

element of any type.

Definition Fin0E (k : Fin 0) (A:Type) : A :=

match k in Fin n return match n with O => A | S _ => True end with

| FinO _ => I

| FinS _ _ => I

end.

Now that we have Fin, we can define a function P giving projection functions

for each type A, natural number n and natural number k < n. The fundamental

equation P should satisfy is

P AnFnk x0 · · · xn−1 = xk.

We never need consider F0
k since there is no k < 0, and so it is enough to consider

the equation when n is of the form n′ + 1 and k ≤ n:

P AnFnk x0 · · · xn′ = xk.

2011/7/15 119



7 Programming with Dependent Types

There are two cases for k: If k is 0, then we require

P AnFn0 x0 · · · xn′ = x0

which is the same as requiring

P AnFn0 x0 = K Ax0n
′.

If k is of the form k′ + 1, then we require

P AnFnk′+1 x0 · · · xn′ = xk′+1

which yields the recursive equation

P AnFnk′+1 x0 · · · xn′ = P An′ Fn
′

k′ x1 · · ·xn′

or more simply

P AnFnk′+1 x0 = P An′ Fn
′

k′ .

We can realize this definition in Coq as follows:

Fixpoint P {A : Type} {n : nat} (k : Fin n) : A ^ n −−> A :=

match k in Fin n’ return A ^ n’ −−> A with

| FinO n’ => fun a => K A a n’

| FinS n’ k’ => fun _ => P k’

end.

end.

Exercise 7.3.2 Give the normal forms of the following terms: @P bool 3 F03,

@P bool 3 F13, P F03 0 1 2 and P F23 0 1 2.

Exercise 7.3.3 Prove the following lemmas.

Lemma Pex1 : comp negb 1 (P F01) == negb.

Lemma Pex2 :

comp2 implb 2 (P F02) (P F12) == (fun x y => implb x y)

\/

comp2 implb 2 (P F02) (P F12) == (fun x y => implb y x).

Lemma Pex3 :

comp2 implb 2 (P F12) (P F02) == (fun x y => implb x y)

\/

comp2 implb 2 (P F12) (P F02) == (fun x y => implb y x).

120 2011/7/15



7.3 Finite Types

Exercise 7.3.4 Define a function get of type

∀A : T. ∀n : nat. Finn → ilist An → A

such that get Ank l returns the kth element of the length-indexed list l.

We end the chapter with by considering inversion principles for Fin.

Suppose we wish to write a certifying predecessor function with the type

forall n:nat, Fin (S n) −> {k’| k = FinS k’} + {k = FinO}.1 A direct attempt to de-

fine this function will fail. Instead we define a more general inversion function.

Definition Fin_Inv {n:nat} (k:Fin n) :

match n as z return Fin z −> Type with

| O => fun k => False

| S n’ => fun k =>

{k’| k = FinS k’} + {k = FinO}

end k.

Proof. destruct k.

tauto.

left . exists k. reflexivity .

Defined.

We can use Fin_Inv to define a certifying predecessor function.

Definition Fin_Pred {n:nat} (k:Fin (S n)) :

{k’| k = FinS k’} + {k = FinO} :=

(Fin_Inv k).

Exercise 7.3.5 Use Fin_Pred to define the predecessor function with the follow-

ing type and prove it correct.

Definition Fin_pred {n:nat} (k:Fin (S n)) : option (Fin n).

Lemma Fin_pred_correct {n:nat} :

Fin_pred (@FinO n) = None /\ forall (k:Fin (S n)), Fin_pred (FinS k) = Some k.

Exercise 7.3.6 Use Fin_Inv and scripts to define a predecessor function with the

following type and prove the function correct.

Definition predFin {n : nat} (x : Fin n) : option (Fin (pred n)).

Lemma predFin_correct {n:nat} :

predFin (@FinO n) = None /\ forall (k:Fin (S n)), predFin (FinS k) = Some k.

Exercise 7.3.7 Use Fin_inv to prove the following.

1 We use {} here because of an issue with Coq’s syntax.

2011/7/15 121



7 Programming with Dependent Types

Lemma Fin1 (k:Fin 1) : k = FinO 0.

Exercise 7.3.8 Prove for every n, Finn and finn are isomorphic.

Acknowledgement: Adam Chlipala’s in-progress textbook Certified Program-

ming with Dependent Types (http://adam.chlipala.net/cpdt/) as well as his

responses on the Coq club mailing list were used in important ways in this chap-

ter. The reader will find many more examples in Chlipala’s textbook.

122 2011/7/15



8 Boolean Logic

In this chapter we consider boolean functions booln → bool. The main result

will be that every function in booln → bool can be represented as a combination

of the constant function Kfalse and the projections Pk via composition with the

implication function implb. Note that composition with implb takes any two

functions g,h : booln → bool and creates a new function (implb ◦2 (g,h)) :

booln → bool. For simplicity, we define Impl gh to be implb ◦2 (g,h).

In order to formulate and prove the main result, we will define a syntax of

boolean formulas. The semantics of boolean formulas will be given as a deno-

tation function mapping a boolean formula into the set of boolean functions

generated by Kfalse and the projections Pk via Impl. Every boolean function will

be the denotation of a boolean formula. We refer to this result as denotational

completeness.

8.1 Syntax and Semantics of Boolean Logic

Let n be a natural number and x0, x1, . . . , xn−1 be distinct objects we will call

variables. The set B of boolean formulas is defined by the following grammar

s, t ::= xk|♯|s ⇒ t

where k ranges over {0, ..., n − 1}. When necessary, we write Bn to make the

dependence on n clear. The formula ♯ corresponds to false and s ⇒ t corre-

sponds to implication. In Coq we can use Finn to represent the type of variables

and realize the definition of B and corresponding notation (within a section) as

follows:

Section BEn.

Variable n : nat.

Inductive B : Type :=

| B_Var : Fin n −> B

| B_Fal : B

| B_Imp : B −> B −> B.

Local Notation "#" := B_Fal.

123



8 Boolean Logic

Local Notation "s ==> t" := (B_Imp s t) (at level 90, right associativity).

We can easily define other syntactic operations from the basic ones.

Definition B_Tru : B := (# ==> #).

Definition B_Not (s : B) : B := (s ==> #).

Definition B_And (s t:B) : B := (B_Not (s ==> B_Not t)).

Exercise 8.1.1 Prove the following lemma.

Lemma B_NotTru_Fal_ex : (B_Not B_Tru) = B_Fal \/ (B_Not B_Tru) <> B_Fal.

Boolean formulas give the syntax of boolean logic. We now describe the se-

mantics. For each formula s, we recursively define a boolean function

JsK : booln → bool

as follows:

JxkK := Pk

J♯K := Kfalse

Js ⇒ tK := Impl JsK JtK

In Coq we can realize this as follows:

Definition Impl (g h:bool ^ n −−> bool) : bool ^ n −−> bool := comp2 implb n g h.

Fixpoint B_Den (s : B) : bool ^ n −−> bool :=

match s with

| B_Var k => P k

| B_Fal => K bool false n

| B_Imp s1 s2 => Impl (B_Den s1) (B_Den s2)

end.

Local Notation "[[ s ]]" := (B_Den s).

Exercise 8.1.2 Prove the following lemma.

Lemma B_NotTru_Fal_ex2 : [[B_Not B_Tru]] == [[B_Fal]] \/ ~ [[B_Not B_Tru]] == [[B_Fal]].

We can now prove our definitions of B_Not and B_And are interpreted using

negb and andb as expected. We prove these using mathematical notation. In

particular, we omit mentions of Ap.

Lemma 8.1.3 For every boolean formula s, we have

JB_Not sK ≡ negb ◦ JsK

124 2011/7/15



8.1 Syntax and Semantics of Boolean Logic

Proof Let ~a be given.

JB_Not sK ~a = (Impl JsK J♯K)~a

= (implb ◦2 (JsK, Kfalse))~a

= implb (JsK ~a) (Kfalse ~a)

= implb (JsK ~a) false

= if (JsK ~a) then false else true

= negb (JsK ~a)

= (negb ◦ JsK) ~a

In the proof of Lemma 8.1.3 we have made use of the equation Kb ~a = b which

was proven as the following Coq lemma in Chapter 7.

Lemma Ap_K {A B : Type} (b : B) (n : nat) :

forall (al : ilist A n), Ap (K A b n) al = b.

We have also made use of the equations

(f ◦ g) ~a = f(g ~a)

and

(f ◦2 (g,h)) ~a = f(g ~a)(h ~a)

from Exercise 7.2.2. In Coq, these equations can be represented (and proven) as

the following lemmas.

Lemma Ap_comp {A B C : Type} (f : B −> C) (n : nat) : forall (g : A ^ n −−> B),

forall al: ilist A n, Ap (comp f n g) al = f (Ap g al).

Lemma Ap_comp2 {A B C : Type} (f : B −> B −> C) (n : nat) : forall (g h : A ^ n −−> B),

forall al: ilist A n, Ap (comp2 f n g h) al = f (Ap g al) (Ap h al).

Given these lemmas, we can represent and prove Lemma 8.1.3 in Coq.

Lemma B_Neg_negb (s : B) : [[B_Not s]] == (comp negb n [[s]]).

intros a. simpl. unfold Impl. rewrite Ap_comp2. rewrite Ap_K. rewrite Ap_comp. reflexivity.

Qed.

Lemma 8.1.4 For all boolean formulas s and t, we have

JB_And s tK ≡ andb ◦2 (JsK, JtK)

Proof Let ~a be given.

JB_And s tK ~a = (Impl (Impl JsK (Impl JtK J♯K)) J♯K)~a

= implb (implb (JsK ~a) (implb (JtK ~a) false)) false

2011/7/15 125



8 Boolean Logic

By considering the four cases for the boolean values JsK ~a and JtK ~a we can prove

implb (implb (JsK ~a) (implb (JtK ~a) false)) false

is equal to

andb (JsK ~a) (JtK ~a)

as desired. ¤

Exercise 8.1.5 Represent and prove Lemma 8.1.4 in Coq.

Exercise 8.1.6 Define B_Or and prove it is interpreted using orb.

Definition B_Or (s t : B) : B :=

...

Lemma B_Or_orb (s t : B) : [[B_Or s t]] == (comp2 orb n [[s]] [[t]]).

...

Finally, we close the Coq section and declare the dependence on n to be im-

plicit in many cases. We also declare a coercion so that we can treat members of

Finn as variables in Bn without explicitly mentioning the B_Var constructor.

End BEn.

Implicit Arguments B_Var [n].

Local Coercion B_Var : Fin >−> B.

Implicit Arguments B_Fal [n].

Implicit Arguments B_Imp [n].

Implicit Arguments B_Not [n].

Implicit Arguments B_And [n].

Exercise 8.1.7 Give the type and normal form of the following terms.

a) [[ F01 ==> #]] true

b) [[ F01 ==> #]] false

c) [[( F02 ==> #) ==> F12]] false false

d) [[( F02 ==> #) ==> F12]] false true

e) [[( F02 ==> #) ==> F12]] false

126 2011/7/15



8.2 Decidability Results

8.2 Decidability Results

We say two formulas s, t ∈ Bn are equivalent if JsK ≡ JtK. In this section we

will prove equivalence of formulas is decidable. We prove this result by first

constructing a certifying function bfeqc of type

forall (n:nat) (g h : bool ^ n −−> bool),

{a: ilist bool n|Ap g a <> Ap h a} + {forall a:ilist bool n, Ap g a = Ap h a}

that decides whether or not g ≡ h for cascaded boolean functions g,h : booln →

bool. The function is defined by recursion on n. If n = 0, then we simply

compare the booleans g and h. For the recursive case, suppose g,h : boolSn →

bool. Calling bfeqc with n, g false and h false, we obtain either some ~a such that

g false ~a 6= h false ~a or g false ~a ≡ h false ~a. In the first case (false :: ~a) witnesses

g 6≡ h. Assume g false ~a ≡ h false ~a. Calling bfeqc with n, g true and h true, we

obtain either some ~a such that g true ~a 6= h true ~a or g true ~a ≡ h true ~a. In the

first case (true :: ~a) witnesses g 6≡ h. Otherwise, we know g false ≡ h false and

g true ≡ h true, and so g ≡ h.

Definition bfeqc (n:nat) (g h : bool ^ n −−> bool) :

{a: ilist bool n|Ap g a <> Ap h a} + {forall a:ilist bool n, Ap g a = Ap h a}.

induction n as [|n IHn].

destruct g; destruct h ; try tauto.

left . exists nl. discriminate.

left . exists nl. discriminate.

destruct (IHn (g false) (h false)) as [ [a H]|H].

left . exists (false::a). exact H.

destruct (IHn (g true) (h true)) as [ [a H’]|H’].

left . exists (true::a). exact H’.

right. intros a. simpl. destruct (hd a).

apply H’.

apply H.

Defined.

Using this result, we can easily construct a certifying function deciding equiv-

alence of formulas.

Definition Beqc {n:nat} (s t : B n) :

{a: ilist bool n|Ap [[s]] a <> Ap [[t]] a} + { forall a: ilist bool n, Ap [[s]] a = Ap [[t ]] a}.

exact (bfeqc n [[s]] [[ t ]]).

Defined.

A formula s ∈ Bn is valid if JsKa0 · · ·an−1 = true for all a0, . . . , an−1. It is not

difficult to see that s is valid iff JsK ≡ Kntrue. We use this fact to prove validity is

decidable. We first use bfeqc to obtain a certifying function checking if g ≡ Kntrue

for a cascaded function g : booln → bool.

2011/7/15 127



8 Boolean Logic

Definition bfvalc (n:nat) (g : bool ^ n −−> bool) :

{a: ilist bool n|~ Ap g a} + {forall a: ilist bool n, Ap g a}.

destruct (bfeqc n g (K bool true n)) as [ [a H] | H].

left . exists a. intros H’. apply H. rewrite Ap_K. destruct (Ap g a).

reflexivity .

contradiction H’.

right. intros a. rewrite H, Ap_K. exact I.

Defined.

We now easily have a certifying function deciding validity of formulas.

Definition Bvalc {n:nat} (s : B n) :

{a: ilist bool n|~ Ap [[s]] a} + { forall a: ilist bool n, Ap [[s]] a}.

exact (bfvalc n [[s ]]).

Defined.

It is also possible to prove these decidability results in the other order. We

could define bfvalc by recursion on n and then use bfvalc to define bfeqc.

Exercise 8.2.1 Which of the following formulas in B2 are equivalent?

a) x0

b) ♯

c) ♯⇒ ♯

d) x0 ⇒ x0

e) x0 ⇒ ♯

f) ♯⇒ x1

g) (♯⇒ x1)⇒ x0

h) (x0 ⇒ x1)⇒ x0

i) ((x0 ⇒ x1)⇒ x0)⇒ x0

Exercise 8.2.2 Which of the following formulas in B2 are valid?

a) x0

b) ♯⇒ x1

c) (x0 ⇒ x1)⇒ x0

d) ((x0 ⇒ x1)⇒ x0)⇒ x0

e) ((x0 ⇒ ♯)⇒ ♯)⇒ x0

8.3 Denotational Completeness

In this section we will prove denotational completeness: for every boolean func-

tion g : booln → bool there is an s ∈ Bn such that JsK ≡ g.

128 2011/7/15



8.3 Denotational Completeness

First we define a shifting function BS : Bn → Bn+1 as follows:

BS(xk) := xk+1

BS(♯) := ♯

BS(s ⇒ t) := BS(s)⇒ BS(t)

In Coq this function is defined as follows.

Fixpoint B_S {n : nat} (s : B n) : B (S n) :=

match s with

| B_Var k => FinS k

| B_Fal => #

| B_Imp s1 s2 => B_S s1 ==> B_S s2

end.

Note that the variable x0 never occurs in a formula BSs. The function BS shifts

the variables away from x0. We now prove the boolean function JBSsK ignores its

first argument.

Lemma 8.3.1 For every s ∈ Bn and boolean b, JBSsKb ≡ JsK.

Proof We prove this by induction on s. We consider three cases.

• Suppose s is xk for k < n. We easily compute for any ~a,

JBSxkK b ~a = Jxk+1K b ~a

= Pk+1 b ~a

= Pk ~a

= JxkK ~a

• Suppose s is ♯. For any ~a we have

JBS♯K b ~a = false

= J♯K ~a

• Suppose s is s1 ⇒ s2. By induction hypothesis we know JBSs1Kb ≡ Js1K and

JBSs2Kb ≡ Js2K. For any ~a we have

JBS(s1 ⇒ s2)K b ~a = J(BSs1)⇒ (BSs2)K b ~a

= Impl (JBSs1K b ~a) (JBSs2K b ~a)

= Impl (Js1K ~a) (Js2K ~a)

= Js1 ⇒ s2K ~a

In Coq Lemma 8.3.1 can be written and proven as follows.

2011/7/15 129



8 Boolean Logic

Lemma B_Den_S {n : nat} (b : bool) : forall (s : B n), ([[B_S s]] b) == [[s ]].

induction s as [k| |s1 IH1 s2 IH2].

intros a. reflexivity .

intros a. reflexivity .

intros a. simpl. unfold Impl. simpl. repeat rewrite Ap_comp2.

rewrite IH1. rewrite IH2. reflexivity.

Qed.

Theorem 8.3.2 (Denotational Completeness) For every n and every g : booln →

bool there is some s ∈ Bn such that JsK ≡ g.

Proof We prove this by induction on n. If n = 0, then g is true or false and

we can take s to be ♯ → ♯ or ♯, respectively. Assume we know the result for n.

We will prove the result for n + 1. Let g : booln+1 → bool be given. Note that

g false and g true are both in booln → bool. By the inductive hypothesis there

are formulas s0 ∈ Bn and s1 ∈ Bn such that Js0K ≡ g false and Js1K ≡ g true. Note

that (BSs0) and (BSs1) are in Bn+1. Let t0 be the formula (x0 ⇒ ♯) ⇒ (BSs0) in

Bn+1 and t1 be the formula x0 ⇒ (BSs1) in Bn+1. Let s be the formula in Bn+1

given by (B_And t0 t1). We prove JsK ≡ g.

Let a0, . . . , an be booleans and write ~a for the corresponding indexed list. We

must prove JsK~a equals g~a. We compute

Jt0K ~a = Impl (Impl P0 Kfalse) JBS s0K ~a

= implb (implb a0 false) (JBS s0K a0 a1 · · ·an)

= implb (implb a0 false) (Js0K a1 · · ·an) (by Lemma 8.3.1)

= implb (implb a0 false) (g false a1 · · ·an) (by the choice of s0)

and
Jt1K ~a = Impl P0 JBS s1K ~a

= implb a0 (Js1K a1 · · ·an) (by Lemma 8.3.1)

= implb a0 (g true a1 · · ·an) (by the choice of s1)

Assume a0 is false. We know

Jt0K ~a = g false a1 · · ·an = g a0 a1 · · ·an = g~a

and Jt1K ~a equals true. Using Lemma 8.1.4 we have

JsK ~a = andb (Jt0K ~a) (Jt1K ~a) = g~a

as desired.

Next assume a0 is true. We know

Jt1K ~a = g true a1 · · ·an = g a0 a1 · · ·an = g~a

130 2011/7/15



8.3 Denotational Completeness

and Jt0K ~a equals true. Using Lemma 8.1.4 we have

JsK ~a = andb (Jt0K ~a) (Jt1K ~a) = g~a

as desired. ¤

We can represent the theorem and its proof in Coq as follows.

Lemma B_DenCompl (n : nat) : forall (g : bool ^ n −−> bool), exists s:B n,

[[s]] == g.

induction n.

intros [|].

exists (# ==> #). intros a. reflexivity .

exists #. intros a. reflexivity .

intros g.

destruct (IHn (g false)) as [s0 A0].

destruct (IHn (g true)) as [s1 A1].

exists (B_And (B_Not FinO ==> (B_S s0)) (FinO ==> (B_S s1))).

intros a.

rewrite B_And_andb. rewrite Ap_comp2.

simpl. unfold Impl. simpl. repeat rewrite Ap_comp2.

repeat rewrite Ap_K. repeat rewrite B_Den_S.

destruct (hd a) ; simpl.

apply A1.

rewrite A0. destruct (Ap (g false) (tl a)) ; reflexivity .

Qed.

Exercise 8.3.3 Use a script to write a certifying function which, given a cascaded

boolean function g, computes a boolean formula s such that JsK ≡ g.

Definition B_DenCompl_F (n : nat) : forall (g : bool ^ n −−> bool),

{s:B n| [[s]] == g}.

(Hint: Start with the script proving denotational completeness and make any

necessary modifications.)

Exercise 8.3.4 Let g : bool3 → bool be the boolean function such that g ab c is

false iff a and b are true and c is false. Find a formula s ∈ B3 such that JsK ≡ g.

Prove your solution is correct by filling in the missing boolean formula in the

following Coq proof.

Lemma exg :

let g := fun a b c => match a,b,c with true,true,false => false | _,_,_ => true end

in

{s:B 3|[[s]] == g}.

exists ...

intros a.

2011/7/15 131



8 Boolean Logic

simpl.

destruct (hd a) ; destruct (hd (tl a)) ; destruct (hd (tl ( tl a ))) ; reflexivity .

Qed.

132 2011/7/15



9 Quantified Boolean Logic

We now extend boolean logic to include a universal quantifier. An example of

such a formula is

∀x.(∀y.x ⇒ y)⇒ x

We will consider formulas to be the same if they are the same up to the names

of bound variables. For example, the formula above is the same as

∀y.(∀x.y ⇒ x)⇒ y.

One way to realize this convention is to standardize variable names. If we in-

sist on binding the variables in the order x0, x1, . . ., then the formula above is

represented as

∀x0.(∀x1.x0 ⇒ x1)⇒ x0.

As in boolean logic, we will consider the formulas that depend on the first n vari-

ables: x0, . . . , xn−1. We generalize our standardization of variables to account for

this: If s is a formula depending on the first n + 1 variables (x0, . . . , xn−1, xn),

then ∀xn.s is a formula depending on the first n variables (x0, . . . , xn−1).

The semantics of quantified boolean formulas can be defined by recursion

on formulas as with boolean logic. Formulas depending on no variables will be

interpreted as booleans. Given such a formula s, the problem of determining its

value is PSPACE-complete. This was proven by Stockmeyer and Meyer (1973).

We give a tableau method for determining the value of a formula. The tableau

method is an alternative to brute force calculation and works well in many cases.

We will also show how one can simulate the tableau method in Coq.

9.1 Syntax

We can define quantified boolean formulas Qn with n variables to be the least

set satisfying the following conditions:

• If k < n, then xk ∈ Qn.

• ♯ ∈ Qn.

• If s, t ∈ Qn, then (s ⇒ t) ∈ Qn.

• If s ∈ Qn+1, then (∀xn.s) ∈ Qn.

133



9 Quantified Boolean Logic

In Coq, we represent Qn using the following inductive type.

Inductive Q (n : nat) : Type :=

| Q_Var : Fin n −> Q n

| Q_Fal : Q n

| Q_Imp : Q n −> Q n −> Q n

| Q_All : Q (S n) −> Q n.

Again, we introduce notation.

Implicit Arguments Q_Var [n].

Local Coercion Q_Var : Fin >−> Q.

Implicit Arguments Q_Fal [n].

Implicit Arguments Q_Imp [n].

Local Notation "#" := Q_Fal.

Local Notation "s ==> t" := (Q_Imp s t) (at level 90, right associativity).

We additionally introduce notation for Q_All. We leave the reference to the natu-

ral number n.

Local Notation "’ALL’ x , s " := (Q_All x s) (at level 100).

9.2 Semantics

We define the function mapping formulas s to cascaded boolean functions JsK

as in boolean logic. The new case is for the definition is the quantifier (Q_All).

Recall the definition of allb.

Definition allb (p : bool −> bool) : bool := andb (p false) (p true).

We can lift this to cascaded functions using composition.

Definition All (n:nat) (g:bool ^ (S n) −−> bool) : bool ^ n −−> bool :=

comp allb n (unfoldR n g).

For each boolean quantified formula s, we recursively define a boolean function

JsK : booln → bool

as follows:

JxkK := Pk

J♯K := Kfalse

Js ⇒ tK := Impl JsK JtK

134 2011/7/15



9.2 Semantics

J∀xn.sK := All JsK.

Study the ∀ case carefully. Note that JsK : booln+1 → bool and J∀xn.sK : booln →

bool.

Here is the definition in Coq.

Fixpoint Q_Den {n : nat} (s : Q n) : bool ^ n −−> bool :=

match s with

| Q_Var k => P k

| Q_Fal => K bool false n

| Q_Imp s1 s2 => Impl n (Q_Den s1) (Q_Den s2)

| Q_All s1 => All n (Q_Den s1)

end.

Implicit Arguments Q_Den [n].

Local Notation "[[ s ]]" := (Q_Den s).

As an example, we calculate the value of

J∀x0.(∀x1.x0 ⇒ x1)⇒ (x0 ⇒ ♯)K.

Consider the subformula ∀x1.x0 ⇒ x1 in Q1. In Coq, we can write this formula

as ALL 1, F02 ==> F12. Note that

J∀x1.x0 ⇒ x1K : B → B

We can calculate

J∀x1.x0 ⇒ x1K true = false

as follows:

J∀x1.x0 ⇒ x1K true = allb (λb : bool.Jx0 ⇒ x1K trueb)

= andb (Jx0 ⇒ x1K true false) (Jx0 ⇒ x1K true true)

= andb false true

= false

Similarly, we can calculate

J∀x1.x0 ⇒ x1K false = true.

Once we know this, it is clear that

J(∀x1.x0 ⇒ x1)⇒ (x0 ⇒ ♯)K false = true

and

J(∀x1.x0 ⇒ x1)⇒ (x0 ⇒ ♯)K true = true.

Using this, we can calculate

J∀x0.(∀x1.x0 ⇒ x1)⇒ (x0 ⇒ ♯)K = true.

2011/7/15 135



9 Quantified Boolean Logic

Exercise 9.2.1 Calculate the values of JsK for each of the following formulas s

in Q0. You can use Coq to do this, but you should also be able to determine the

value without Coq.

a) ∀x0.x0

b) ∀x0.x0 ⇒ ♯

c) ∀x0.(x0 ⇒ ♯)⇒ x0.

d) ∀x0.((x0 ⇒ ♯)⇒ ♯)⇒ x0.

e) ∀x0.(∀x1.x0 ⇒ x1)⇒ x0.

f) ∀x0.((∀x1.x0 ⇒ x1)⇒ x0)⇒ x0.

9.3 Tableaux for Quantified Boolean Formulas

We now consider a tableau method for determining if JsK is true or false for a

given s ∈ Q0. The idea is that we assume JsK is the other boolean, and consider

all consequences until we determine that the assumption is impossible.

Consider the formula

∀x0.∀x1.((x0 ⇒ x1)⇒ x0)⇒ x0.

This is (the quantified form of) Peirce’s Law. We can use the definition of JK to

calculate

J∀x0.∀x1.((x0 ⇒ x1)⇒ x0)⇒ x0K = true.

Alternatively, we can argue that the value is true as follows.

1. Assume J∀x0.∀x1.((x0 ⇒ x1)⇒ x0)⇒ x0K = false.

2. There is some boolean a such that J∀x1.((x0 ⇒ x1)⇒ x0)⇒ x0Ka = false.

3. There is some boolean b such that J((x0 ⇒ x1)⇒ x0)⇒ x0Kab = false.

4. For this implication to evaluate to false we must have two facts:

5. J(x0 ⇒ x1)⇒ x0Kab = true and

6. Jx0Kab = false. Equivalently, a = false.

7. By (5) we know either Jx0 ⇒ x1Kab = false or Jx0Kab = true. If Jx0Kab =

true, then a = true which conflicts with (6). Hence we need only consider the

first possibility.

8. Assume Jx0 ⇒ x1Kab = false.

9. Hence Jx0Kab = true which conflicts with (6).

We conclude that it is impossible for J∀x0.∀x1.((x0 ⇒ x1) ⇒ x0) ⇒ x0K to be

false. Consequently, it is true.

Such arguments can be organized as tableau refutations. At each step of a

tableau refutation, we have (possibly several) sets of assumptions of the form

136 2011/7/15



9.3 Tableaux for Quantified Boolean Formulas

JsK ~a = false or JsK ~a = true. Here ~a will range over lists of boolean parameters

and values. The only boolean values are true and false. We assume an infinite set

of boolean parameters b0, b1, b2, . . ..

A branch is a finite set of assumptions of the form JsK ~a = false or JsK ~a =

true. We write JsK ~a+ as shorthand for JsK ~a = true and write JsK ~a− as shorthand

for JsK ~a = false. We sometimes also write JsK ~a∗ where ∗ ranges over + and −.

We say a boolean parameter is b occurs in a branch A if there is an assumption

JsK ~a∗ where b in the list ~a. Otherwise, we say b is fresh for the branch A.

Our goal is to prove a contradiction from each such set of assumptions. We

make progress towards this goal by applying certain directed rules. A branch A

is closed if any of the following hold:

1. J♯K ~a+ is in A.

2. JxkK ~a+ is in A and ak is false.

3. JxkK ~a− is in A and ak is true.

4. There is some xk such that both JxkK ~a+ and JxkK ~b− are in A where ak and

bk are the same boolean parameter.

The tableau system inductively defines the set of refutable branches as follows.

Closed: Every closed branch is refutable.

T +
⇒ : If Js ⇒ tK~a+ is in A, A ∪ {JsK~a−} is refutable and A ∪ {JtK~a+} is refutable,

then A is refutable.

T −
⇒ : If Js ⇒ tK~a− is in A and A∪{JsK~a+, JtK~a−} is refutable, then A is refutable.

T +
∀ : If J∀x.sK~a+ is in A, b is a boolean value or boolean parameter which occurs

in A and A∪ {JsK~ab+} is refutable, then A is refutable.

T −
∀ : If J∀x.sK~a− is in A, b is a boolean parameter fresh for A and A∪ {JsK~ab−}

is refutable, then A is refutable.

The rules are summarized in Figure 9.1. We briefly describe the four rules

and how to use them to refute a branch A.

The positive implication rule is

T +
⇒

Js ⇒ tK ~a+

JsK ~a− | JtK ~a+

Suppose Js ⇒ tK ~a+ is in A. Refute two branches: One with the extra assumption

JsK ~a− and one with the extra assumption JtK ~a+.

The negative implication rule is

T −
⇒

Js ⇒ tK ~a−

JsK ~a+, JtK ~a−

Suppose Js ⇒ tK ~a− is in A. Refute the branch with two extra assumptions: JsK ~a+

and JtK ~a−.

2011/7/15 137



9 Quantified Boolean Logic

T +
⇒

Js ⇒ tK ~a+

JsK ~a− | JtK ~a+
T −
⇒

Js ⇒ tK ~a−

JsK ~a+, JtK ~a−
T +
∀

J∀x.sK ~a+

JsK ~ab+
b : bool

T −
∀

J∀x.sK ~a−

JsK ~ab−
b : bool fresh

Figure 9.1: Tableau rules for quantified boolean formulas

The positive forall rule is

T +
∀

J∀x.sK ~a+

JsK ~ab+
b : bool

Suppose J∀x.sK ~a+ is in A. Choose b to be an appropriate boolean value (either

true or false) or one of the boolean parameters which occurs in A. Refute the

branch with the additional assumption JsK ~ab+. Note that some creativity may

be required to choose a helpful b. Also, this rule may be applied more than once

to the same formula with different choices of b.

The negative forall rule is

T −
∀

J∀x.sK ~a−

JsK ~ab−
b : bool fresh

Suppose J∀x.sK ~a− is in A. Let b be a boolean parameter fresh for A. Refute the

branch with the additional assumption JsK ~ab−.

A tableau refutation can be presented as a tree in which every branch is

closed. For example, the refutation of Peirce’s Law described earlier can be given

as the tableau refutation shown in Figure 9.3. At the root of the tree is the as-

sumption we wish to prove is impossible. Each of the other assumptions in the

tree have been added by applying rules. Note that a and b are used to refer to

(distinct) boolean parameters. There are two branches, both of which are closed

because they contain Jx0Kab+ and Jx0Kab−.

Exercise 9.3.1 Determine the value of JsK for each of the following formulas

s ∈ Q0. Use a tableau refutation (presented as a tree) to justify your answer.

a) ∀x0.x0

b) ∀x0.x0 ⇒ ♯

c) ∀x0.(∀x1.x0 ⇒ x1)⇒ x0.

d) ∀x0.((∀x1.x0 ⇒ x1)⇒ x0)⇒ x0.

138 2011/7/15



9.4 Simulating Tableau in Coq

J∀x0.∀x1.((x0 ⇒ x1)⇒ x0)⇒ x0K−

J∀x1.((x0 ⇒ x1)⇒ x0)⇒ x0Ka−

J((x0 ⇒ x1)⇒ x0)⇒ x0Kab−

J(x0 ⇒ x1)⇒ x0Kab+

Jx0Kab−

Jx0 ⇒ x1Kab−

Jx0Kab+

Jx1Kab−
Jx0Kab+

9.4 Simulating Tableau in Coq

We can simulate tableau refutations using proof scripts in Coq. We first give

two simple lemmas which will allow us to prove the goal we want by refuting a

branch with a single assumption.

Lemma QT_Start (s:Q 0) :

(Ap [[s]] nl = false −> False) −> [[s]] = true.

simpl. destruct [[s]]; stauto.

Qed.

Lemma QF_Start (s:Q 0) :

(Ap [[s]] nl = true −> False) −> [[s]] = false.

simpl. destruct [[s]]; stauto.

Qed.

After applying one of these lemmas, the assumptions of the Coq goal will cor-

respond to the branch. Also, variables of type bool will play the role of boolean

parameters.

The following lemmas can be used to prove a branch is closed. (That is, a set

of assumptions is inconsistent.)

Lemma Q_Conflict {b:bool} :

b = true −> b = false −> False.

destruct b; discriminate.

Qed.

Lemma QT_Fal {n:nat} {a:ilist bool n} :

Ap [[#]] a = true −> False.

simpl. rewrite Ap_K. discriminate.

Qed.

We next give lemmas corresponding to the positive and negative implication

rules.

2011/7/15 139



9 Quantified Boolean Logic

Lemma QT_Imp {n:nat} {s1 s2:Q n} {a:ilist bool n} :

Ap [[s1 ==> s2]] a = true

−> (Ap [[s1]] a = false −> False)

−> (Ap [[s2]] a = true −> False)

−> False.

simpl. unfold Impl. rewrite Ap_comp2.

destruct (Ap [[s1]] a); stauto.

Qed.

Lemma QF_Imp {n:nat} {s1 s2:Q n} {a:ilist bool n} :

Ap [[s1 ==> s2]] a = false

−> (Ap [[s1]] a = true −> Ap [[s2]] a = false −> False)

−> False.

simpl. unfold Impl. rewrite Ap_comp2.

destruct (Ap [[s1]] a). stauto. discriminate.

Qed.

Before we state and prove the positive and negative forall rules, we will need

some more infrastructure. We need to be able to append a single element onto

an ilist of length n and obtain an ilist of length Sn. We do this with a function

extend.

Fixpoint extend {n:nat} {A:Type} (al:ilist A n) (b:A) : ilist A (S n) :=

match al with

| nl => (b::nl)

| (a::ar) => (a::(extend ar b))

end.

Using extend we can state and prove a lemma about the auxiliary function

unfoldR.

Lemma Ap_unfoldR (A B:Type) (n:nat) (g:A ^ (S n) −−> B) (a:ilist A n) (a’:A) :

Ap (unfoldR n g) a a’ = Ap g (extend a a’).

induction a as [ |n a0 ar IH].

simpl. reflexivity.

simpl. exact (IH (g a0)).

Qed.

We now state and prove the lemmas corresponding to the positive and nega-

tive forall rules.

Lemma QT_All {n:nat} {s:Q (S n)} {a:ilist bool n} (b:bool) :

Ap [[ALL n, s]] a = true

−> (Ap [[s]] (extend a b) = true −> False)

−> False.

simpl. unfold All. rewrite Ap_comp. unfold allb. repeat rewrite Ap_unfoldR.

simpl.

destruct b;

140 2011/7/15



9.4 Simulating Tableau in Coq

destruct (Ap ([[s]] (hd (extend a true))) (tl (extend a true)));

destruct (Ap ([[s]] (hd (extend a false))) ( tl (extend a false)));

try stauto.

Qed.

Lemma QF_All {n:nat} {s:Q (S n)} {a:ilist bool n} :

Ap [[ALL n, s]] a = false

−> (forall b:bool, Ap [[s]] (extend a b) = false −> False)

−> False.

simpl. unfold All. rewrite Ap_comp. unfold allb. repeat rewrite Ap_unfoldR.

simpl. intros H1 H2. generalize (H2 false). generalize (H2 true).

destruct (Ap ([[s]] (hd (extend a true))) (tl (extend a true)));

destruct (Ap ([[s]] (hd (extend a false))) ( tl (extend a false)));

try stauto.

Qed.

We can now prove goals of the form JsK = true or JsK = false where s ∈ Q0 by

simulating tableau refutations in Coq. We begin the proof script with either

apply QT_Start; intros H1.

or

apply QF_Start; intros H1.

The choice depends on whether one is proving JsK or ¬JsK. After this, each line

of the proof script will correspond to an application of a tableau rule or a tactic

indicating the current branch is closed. If the current branch is closed because

there is an assumption H of the form xk ~a
+ and ak is false or xk ~a

− and ak is true,

then the assumption is convertible to either false = true or true = false and we

can indicate the branch is closed using discriminate:

discriminate H.

(Coq does not need the name H of the hypothesis, but let us always include it in

tableau refutations for clarity.) If the current branch is closed because there is

an assumption H : J♯K ~a+, we can either use discriminate H or

exact (QT_Fal H).

If the current branch is closed because there is an assumption H : JxkK ~a = true

and an assumptionH′ : JxkK ~b = false where ak is the same as bk, we can indicate

the branch is closed as follows:

exact (QT_Conflict H H’).

The four rules are be applied as follows:

T +
⇒ : If Hi is an assumption Js ⇒ tK~a+, then

apply (QT_Imp Hi); intros Hj.

2011/7/15 141



9 Quantified Boolean Logic

creates two new subgoals with one new assumption Hj in both cases.

T −
⇒ : If Hi is an assumption Js ⇒ tK~a−, then

apply (QF_Imp Hi); intros Hj Hk.

creates a subgoal with two new assumptions Hj and Hk.

T +
∀ : If Hi is an assumption J∀x.sK~a+ and b is either false, true or a boolean in

the current assumption context, then

apply (QT_All b Hi); intros Hj.

adds an assumption Hj.

T −
∀ : If Hi is an assumption J∀x.sK~a−, then

apply (QF_All Hi); intros b Hj.

adds an assumed boolean b:bool and an assumption Hj.

Here is the proof of Peirce’s Law using a tableau refutation in Coq.

Lemma PeirceTabl: [[ALL 0, ALL 1, ((F02 ==> F12) ==> F02) ==> F02]] = true.

apply QT_Start; intros H1.

apply (QF_All H1); intros a H2.

apply (QF_All H2); intros b H3.

apply (QF_Imp H3); intros H4 H5.

apply (QT_Imp H4); intros H6.

apply (QF_Imp H6); intros H7 H8.

exact (Q_Conflict H7 H5).

exact (Q_Conflict H6 H5).

Qed.

9.5 Soundness and Completeness

We briefly consider two properties the notion of refutation should have: sound-

ness and completeness. In the context of quantified boolean logic and tableau

refutations we can state the soundness and completeness properties as follows.

For simplicity we let σ range over {+,−} and let −σ be + if σ is − and let −σ

be − if σ is +.

Soundness: For all s ∈ Q0 and σ ∈ {+,−} if {JsK−σ} is refutable, then JsKσ .

Completeness: For all s ∈ Q0 and σ ∈ {+,−} if JsKσ , then {JsK−σ} is refutable.

Soundness follows from the lemmas in the previous section and the fact that we

can simulate tableau refutations in Coq.

Completeness can be argued as follows. Suppose JsKσ , but JsK−σ is not

refutable. By applying the tableau rules starting with the initial branch {JsK−σ}

we can obtain a branch H such that H is not closed, JsK−σ ∈ H and the following

conditions hold:

142 2011/7/15



9.5 Soundness and Completeness

• If Jt1 ⇒ t2K~a+ is in H, then either Jt1K~a− or Jt2K~a+ is in H.

• If Jt1 ⇒ t2K~a− is in H, then Jt1K~a+ and Jt2K~a− are in H.

• If J∀x.tK~a+ is in H, then J∀x.tK~afalse+ and J∀x.tK~atrue+ are in H.

• If J∀x.tK~a− is in H, then there is some boolean parameter b such that

J∀x.tK~ab− is in H.

Furthermore, by restricting the T +
∀ rule to use false and true but note boolean

parameters we can guarantee that for every boolean parameter b there is some

k such that for all JsK~aσ in H, if ai is b, then i = k. That is, for every parameter

b there is some k so that the parameter b occurs only in position k.

An assignment is a function φ mapping each boolean parameter into

{false, true}. Given an assignment φ and a vector ~a, let φ(~a) be the vector

such that φ(~a)k := φ(ak) if ak is a parameter, φ(~a)k := false if ak is false

and φ(~a)k := true if ak is true.

Lemma 9.5.1 There is an assignment φ such that if JxkK~aσ is in H, then

JxkKφ(~a)σ .

Proof For each boolean parameter b, let k be such that b occurs only in position

k. Let φb := true if there is some JxkK~a+ in H such that ak is b. Otherwise, let

φb := false. Suppose JxkK~a+ is in H. We know ak is not false since H is not

closed. If ak is true, then we are done. If ak is a boolean parameter b, then we

have chosen φ such that φak is true. Next suppose JxkK~a− is in H. We know ak

is not true since H is not closed. If ak is false, then we are done. Otherwise, ak

is a boolean parameter. We will be done if we know φak is false. Assume φak is

true. There must be some JxkK~b+ in H such that bk is ak. This contradicts the

fact that H is not closed. ¤

Lemma 9.5.2 Let φ be an assignment such that if JxkK~aσ is in H, then

JxkKφ(~a)σ . For each JsK~aσ in H we know JsKφ(~a)σ .

Proof We prove this by induction on s. The variable case is true by our assump-

tion about φ. We know J♯Kφ(~a)− holds. Since H is not closed, J♯Kφ(~a)+ is not

in H.

Assume Jt1 ⇒ t2K~a+ is in H. Then either Jt1K~a− or Jt2K~a+ is in H. By the

inductive hypothesis, either Jt1Kφ(~a)− or Jt2Kφ(~a)+. In either case we have Jt1 ⇒

t2Kφ(~a)+.

Assume Jt1 ⇒ t2K~a− is inH. Then Jt1K~a+ and Jt2K~a− are inH. By the inductive

hypothesis, Jt1Kφ(~a)+ and Jt2Kφ(~a)− and so Jt1 ⇒ t2Kφ(~a)−.

Assume J∀xn.tK~a+ is in H. Then JtK~atrue+ and JtK~afalse+ are in H. By the

inductive hypothesis, JtKφ(~atrue)+ and JtKφ(~afalse)+ and so J∀xn.tKφ(~a)+.

Assume J∀xn.tK~a− is in H. Then JtK~ab− is in H for some boolean parameter

b. By the inductive hypothesis, JtKφ(~ab)− and so J∀xn.tKφ(~a)−. ¤

2011/7/15 143



9 Quantified Boolean Logic

Theorem 9.5.3 (Completeness) For all s ∈ Q0 and σ ∈ {+,−} if JsKσ , then

{JsK−σ} is refutable.

Proof We argue as above with a branch H such that JsK−σ ∈ H. Let φ be an

assignment given by Lemma 9.5.1. By Lemma 9.5.2 we know JsK−σ holds. This

contradicts JsKσ . ¤

9.6 Other Interpretations

We interpreted formulas of both boolean logic and quantified boolean logic as

cascaded boolean functions. There are other interpretations. For example, we

could interpret formulas as cascaded functions on the universe Prop. For B we

define J−KB
P as follows:

JxkK
B
P := Pk

J♯KB
P := KFalse

Js ⇒ tKB
P := implP ◦2 (JsKB

P , JtK
B
P)

where

Definition implP (p q:Prop) : Prop := p −> q.

For Q we define J−KQ
P as above with the extra clause

J∀xn.sK
Q
P := allP ◦ JsKQ

P

where

Definition allP (p:Prop −> Prop) : Prop := forall q:Prop, p q.

We can then say a formula s ∈ Bn is constructively valid if the proposition

∀~a : Prop.JsKB
P ~a is provable in Coq. Likewise we can say a formula s ∈ Qn is

constructively valid if the proposition ∀~a : Prop.JsKQ
P ~a is provable in Coq.

A simple example of a formula in B2 which is valid, but not constructively

valid is Peirce’s law:

((x0 ⇒ x1)⇒ x0)⇒ x0

Also, the following double negation law in B1 is valid but not constructively valid

((x0 ⇒ ♯)⇒ ♯)⇒ ♯

The problem of determining whether s ∈ Bn is constructively valid is PSPACE-

complete (Statman, 1979). The problem of determining whether s ∈ Qn is con-

structively valid is undecidable (Löb, 1976).

144 2011/7/15



10 Mathematical Assumptions

In Chapter 4 we briefly discussed excluded middle and the double negation law

as propositions that are not provable in Coq. Nevertheless, these are natural

assumptions one makes when working in a mathematical context. In this chapter

we consider different propositions which are not provable in Coq but are natural

mathematical assumptions.

10.1 Classical Assumptions

Recall the propositions XM (excluded middle) and DN (the double negation law).

Definition XM : Prop := forall X : Prop, X \/ ~X.

Definition DN : Prop := forall X : Prop, ~~X −> X.

Neither of these are provable in Coq, but both are natural mathematical assump-

tions. In fact, they are provably equivalent in Coq (see Chapter 4), so that by

assuming either one, we obtain a proof of the other.

Another equivalent proposition is Peirce’s law.

Definition PEIRCE : Prop := forall X Y : Prop, ((X −> Y) −> X) −> X.

Exercise 10.1.1 Prove PEIRCE and DN are equivalent.

After considering XM , DN and PEIRCE , one may get the impression that all

classical assumptions are equivalent. This is not the case. An example is the

Gödel-Dummett (GD) proposition:

Definition GD :=

forall X Y:Prop, (X −> Y) \/ (Y −> X).

The proposition GD is not provable in Coq. We can prove GD from XM , but XM

is not provable from GD in Coq.

Exercise 10.1.2 Prove GD follows from XM .

Goal XM −> GD.

145



10 Mathematical Assumptions

10.2 Extensional Assumptions

Extensional assumptions allow us to prove certain objects are equal by proving

they have a common property. None of these propositions are provable in Coq.

• Functional Extensionality (FE): Two functions are equal if they have the same

value on all arguments.

Definition FE : Prop :=

forall X Y : Type, forall f g:X −> Y, (forall x:X, f x = g x) −> f = g.

• Propositional Extensionality (PE): Two propositions are equal if they are

equivalent.

Definition PE : Prop :=

forall X Y : Prop, (X <−> Y) −> X = Y.

Recall that we often compared cascaded functions g and h using∀~a.g~a = h~a

instead of simply g = h. Using functional extensionality we can prove g = h

follows from ∀~a.g~a = h~a.

Lemma FE_Ap {n:nat} (X Y:Type) (g h:X ^ n −−> Y) :

FE

−> (forall a: ilist X n, Ap g a = Ap h a)

−> g = h.

intros fe.

induction n.

intros H. exact (H nl).

intros H. apply (fe X (X ^ n −−> Y) g h).

intros x. apply IHn.

intros a. exact (H (x::a )).

Qed.

Exercise 10.2.1 Consider the following Set Extensionality property SE :

Definition SE : Prop :=

forall X : Type, forall Y Z : X −> Prop, (forall x:X, Y x <−> Z x) −> Y = Z.

Prove SE follows from FE and PE .

Lemma FE_PE_SE : FE −> PE −> SE.

The following proposition is a combination of a classical principle and an

extensional principle.

• Propositional Case Analysis (PCA): Every proposition is either True or False.

Definition PCA : Prop := forall X : Prop, X = True \/ X = False.

146 2011/7/15



10.3 Proof Irrelevance

Exercise 10.2.2 Prove PCA is equivalent to the combination of XM and PE .

Goal (PCA −> XM).

Goal (PCA −> PE).

Goal (XM −> PE −> PCA).

10.3 Proof Irrelevance

Another proposition which is not provable in Coq, but is a natural assumption is

proof irrelevance (PI ). Proof irrelevance says that there is at most one proof of

any proposition.

Definition PI : Prop := forall X:Prop, forall y z:X, y = z.

In Coq, one can prove XM implies PI . Also, one can prove PE implies PI .

These proofs are beyond the scope of this course. Note, however, that without

the elim restriction, we could distinguish proofs. This would allow us to prove

the negation of PI and hence the negation of both XM and PE . One important

reason for the elim restriction is so that Coq remains consistent with classical

logic.

2011/7/15 147



10 Mathematical Assumptions

148 2011/7/15



11 First-Order Logic

In this chapter we consider the syntax and semantics of first-order logic. We

will restrict ourselves to first-order logic with a single binary relation E. The

semantics will be given using directed graphs.

For this chapter we assume excluded middle.

Variable xm:XM.

11.1 Syntax

We define the set Fn of first-order formulas with n variables to be the least set

satisfying the following conditions:

• If j, k < n, then E(xj , xk) ∈ Fn.

• ♯ ∈ Fn.

• If s, t ∈ Fn, then (s ⇒ t) ∈ Fn.

• If s ∈ Fn+1, then (∀xn.s) ∈ Fn.

Here is the definition in Coq, along with some notational conventions:

Inductive F (n : nat) : Type :=

| F_E : forall x y:Fin n, F n

| F_Fal : F n

| F_Imp : F n −> F n −> F n

| F_All : F (S n) −> F n.

Implicit Arguments F_E [n].

Implicit Arguments F_Fal [n].

Implicit Arguments F_Imp [n].

Local Notation "#" := F_Fal.

Local Notation "s ==> t" := (F_Imp s t) (at level 90, right associativity).

Local Notation "’ALL’ x , s " := (F_All x s) (at level 100).

149



11 First-Order Logic

11.2 Semantics

The semantics of our first order language is given via models. A model M is a

nonempty directed graph (V , E) where V 6= 0 and E ⊆ V × V . In Coq, we can

define a type Mod of all models as an inductive type.

Definition inhabited (V : Type) : Prop := exists x : V, True.

Inductive Mod : Type :=

| Mc : forall V:Type, inhabited V −> forall E:V −> V −> Prop, Mod.

We can also define functions extracting the type of vertices, the fact that there is

a vertex and the edge relation from a given model.

Coercion V_ (M:Mod) : Type := match M with Mc V _ _ => V end.

Definition VI_ (M:Mod) : inhabited M := match M with Mc V’ VI’ _ => VI’ end.

Definition E_ (M:Mod) : M −> M −> Prop := match M with Mc V’ _ E’ => E’ end.

The fact that V _ is defined as a coercion means we can treat any model M : Mod

as a type. In mathematical notation, given a model M = (V , E) we will write VM

for V and EM for E.

For each first-order formula s ∈ Fn,

JsKM : (VM)
n → Prop

is defined as follows:

JE(xj , xk)KM := EM ◦
2 (Pj , Pk)

J♯KM := KFalse

Js ⇒ tKM := (λpq : Prop.p → q) ◦2 (JsKM , JtKM)

J∀xn.sKM := (λp : VM → Prop.∀v : VM .pv) ◦ JsKM .

Applying the cascaded functions to ~a, we have

JE(xj , xk)KM ~a = EM(aj , ak)

J♯K~a := False

Js ⇒ tKM ~a := JsKM ~a→ JtKM ~a

J∀xn.sKM ~a := ∀v : VM .JsKM ~av.

In Coq notation, we define this as

150 2011/7/15



11.2 Semantics

Section Interp1.

Variable M : Mod.

Fixpoint F_Den {n : nat} (s : F n) : M ^ n −−> Prop :=

match s with

| F_E j k => comp2 (E_ M) n (P j) (P k)

| F_Fal => K M False n

| F_Imp s1 s2 => comp2 (fun p q:Prop => p −> q) n (F_Den s1) (F_Den s2)

| F_All s1 => comp (fun p : M −> Prop => forall v:M, p v) n (unfoldR n (F_Den s1))

end.

End Interp1.

Local Notation "[[ s ]] M" := (F_Den M s) (at level 40).

A formula s ∈ F0 is valid if JsKM is true for every model M . A formula s ∈ F0

is satisfiable if JsKM is true for some model M . We say s ∈ F0 is unsatisfiable if

it is not satisfiable. In Coq we can define validity and satisfiability as follows.

Definition F_Valid (s : F 0) : Prop :=

forall M:Mod, F_Den M s.

Definition F_Sat (s : F 0) : Prop :=

exists M:Mod, F_Den M s.

It is easy to prove (using excluded middle) that a formula s is valid iff s ⇒ ♯

is unsatisfiable. Likewise, a formula s is unsatisfiable iff s ⇒ ♯ is valid. Here is a

proof of one of these facts in Coq.

Lemma F_Val_Unsat (s:F 0) : F_Sat s <−> ~ F_Valid (s ==> #).

split .

intros [M H1] H2. exact (H2 M H1).

intros H1. destruct (xm (F_Sat s)) as [H2|H2].

exact H2.

destruct H1. intros M. simpl. intros H3. apply H2. exists M. exact H3.

Qed.

Exercise 11.2.1 Prove s is valid iff s ⇒ ♯ is unsatisfiable. (Hint: Use excluded

middle.)

Lemma F_Val_Unsat’ (s:F 0) : F_Valid s <−> ~ F_Sat (s ==> #).

Proving validity of formulas in Coq is quite easy once one understands the

definitions. Suppose we wish to prove the formula

(∀x0.(∀x1.E(x0, x1))⇒ E(x0, x0)

2011/7/15 151



11 First-Order Logic

is valid. The can be written as the following goal in Coq.

Goal (F_Valid (ALL 0, (ALL 1, F_E F02 F12) ==> F_E F01 F01)).

We begin the proof by assuming we have a model M . We then simplify.

intros M. simpl.

Simplification reduces J∀x0.(∀x1.E(x0, x1)) ⇒ E(x0, x0)KM to the Coq proposi-

tion ∀v : VM .(∀w : M.EM v w)→ EM v v . This is, of course, easy to prove.

intros x H. exact (H x).

Qed.

Exercise 11.2.2 Prove the formula

(∀x0.∀x1.(∀x2.E(x0, x2))⇒ (∀x2.E(x2, x1)⇒ ♯)⇒ ♯

is valid by proving the following proposition in Coq.

Goal (F_Valid (ALL 0, ALL 1, (ALL 2, F_E F03 F23) ==> (ALL 2, F_E F23 F13 ==> #) ==> #)).

Validity of first-order formulas is not decidable. It is semi-decidable. That is,

one can write an algorithm to enumerate valid formulas. One cannot write an

algorithm to enumerate satisfiable formulas.

152 2011/7/15



Coq Summary

This appendix lists the Coq commands used in these notes. Consult the Coq

reference manual for more information.

A.1 Commands

The Coq interpreter processes commands. Commands start with a keyword and

end with a dot. The interpreter has two modes, the top mode and the proof mode.

The interpreter starts in top mode. There are commands that switch from top

mode to proof mode and back. We will use the word command for both the

operation performed by the command and the application of the operation to

arguments.

In this section we summarize the commands for the top mode. Commands

for the top mode also work in proof mode. Most commands for the proof mode

are so-called tactics. Tactics will be summarized in the next section.

Definitions

• Definition x : s := t Defines variable x.

• Inductive x : s := x1 : s1 | · · · | xn : sn Defines variables x and x1, . . . , xn.

• Fixpoint . . . Variant of Definition, inserts a recursive abstraction.

Commands Switching to Proof Mode

• Definition x : s Switches to proof mode with the initial goal s.

• Lemma x : s Same as Definition x : s. One may also write Theorem, Corollary,

or Proposition for Lemma.

• Goal s Like Definition x : s where variable x is generated by Coq.

Commands Switching Back to Top Mode

• Defined Checks whether the term synthesized has the type specified by the

initial definition command. If this is the case, the definition is completed and

the interpreter switches back to top mode.

• Qed Like Defined but defined variables is marked as opaque. Defined vari-

ables marked opaque do not delta reduce.

153



Coq Summary

Sections

• Section x Opens a section x.

• Variable x : t Declares a local variable x.

• End x Ends section x.

Requests

• Check t Elaborates and type checks t.

• Compute t Computes normal for of t.

• Eval cbv in t Variant of Compute preserving names of local variables.

• Print x Prints the definition of the defined variable x.

• About x Says in which library x is defined.

• Show Proof Shows state of proof synthesis. Works only in proof mode.

Notational Commands

• Notation . . . Defines a notation.

• Implicit Arguments x . . . Defines implicit arguments for defined function x.

Implicit arguments are not shown in regular display mode and are inserted

automatically during elaboration.

• Coercion x . . . Defines a coercion function x. Applications of coercions

functions are not shown in regular display mode and are inserted automati-

cally during elaboration to make terms well-typed.

Definition of Tactics

• Ltac x x1 · · · xn := t Defines a tactic x taking arguments x1, . . . , xn.

A.2 Tactics

Tactics are commands providing for type-directed synthesis of terms. Tactics

can only be used in proof mode. In proof mode, there is a list of goals. A goal

specifies a term still to be synthesized. A goal consists of type assumptions for

variables the term may use and of the type of the term. We refer to the type a

goal specifies fo the term to be synthesized as claim. A tactic always works on

the first goal in the list of goals. We refer to the first goal as the current goal.

Basic Tactics

• intros x1 . . . xn Introduces arguments for functional claims.

• exact t Solves goal with term t.

• refine t Like exact but introduces subgoals for underlines in t that cannot

be filled in.

154 2011/7/15



A.2 Tactics

• apply t Solves goal with refine t || refine t _ || refine t _ _ || · · · .

• generalize t Rewrites claim s to u→ s where t : u.

• clear x Deletes assumption x.

• revert x Equivalent to generalize x ; clear x.

Conversion Tactics

Apply the conversion rule to the claim. Can be applied to an assumption x by

adding “in x”.

• hnf Reduces to head normal form.

• cbv Reduces to normal form.

• change t Canges claim to t if claim and t are convertible.

• simpl [x | t] Simplifies [applications of x | subterm t].

• unfold x Delta reduces x, then beta reduces.

• pattern t Patterns out subterm t by creating a beta redex st.

• pattern t at n Patterns out n-th occurrence of subterm t.

Let Tactics

Synthesize let terms.

• assert (x := t) Adds assumption x : u where t : u.

• assert (x : t) Adds assumption x : t to current subgoal and adds subgoal for t.

• cut t Rewrites claim s to t → s and adds a subgoal for t.

• pose (x := t) Adds let with delta reducible x.

Inductive Tactics

• destruct t Obtains claim with a match on t; adds a subgoal for each rule of

the match.

• case_eq t Like destruct t but for each rule introduces an assumption t = u.

• fix x n Obtains claim with a recursive function x decreasing its n-th argu-

ment.

• induction t Applies elimination lemma of the inductive type of t.

• induction 1 Expects functional claim with an inductive argument type. Ap-

plies elimination lemma for the inductive argument type.

• constructor Expects inductive claim and applies a member constructor.

Equational Tactics

• reflexivty Solves goal if claim has form s = s up to conversion.

• rewrite t Rewrites subterm u of claim to v provided t : u=v .

2011/7/15 155



Coq Summary

• rewrite<- t Rewrites subterm v of claim to u provided t : u=v .

• f _equal Strengthens claims su = sv to u = v .

• discriminate t Proves claim if t is a proof of an equation contradicting con-

structor disjointness.

• injection t Weakens claim by equational premises that follow by constructor

injectivity from the equation proved by t.

• inversion t Solves goal by contradiction or derives equational assumptions.

The type of t must be inductive. Exploits disjointness, injectivity, and exhaus-

tiveness of constructors.

Logical Tactics

• contradiction t Solves goal if t is a proof of False.

• absurd t Replaces claim with subgoals for ¬t and t.

• split Splits conjunctive claim.

• left Strengthens disjunctive claim to left side.

• right Strengthens disjunctive claim to right side.

• exists t Strengthens existential claim to witness t.

Automation Tactics

Try to solve goal. Fail if they cannot.

• assumption Solves every goal whose claim appears as an assumption.

• tauto Solves every goal that can be solved with intros, reflexivity, the defini-

tions of negation and equivalence, and the introduction and elimination rules

for falsity, truth, implication, conjunction, and disjunction.

• congruence Solves every goal that can be solved by intros, reflexivity, and

rewriting with unquantified equations.

Tacticals

Compose tactics into more powerful tactics.

• s ; t Applies tactic s, then applies tactic t to every subgoal added by s.

• s || t Applies tactic s. If application of s fails, tactic t is applied.

• repeat t Applies tactic t until it either fails or leaves goal unchanged.

• try t Applies tactic t. If t fails, try t leaves goal unchanged and succeeds.

156 2011/7/15


	Introduction
	Types, Functions, and Equations
	Booleans
	Proof by Case Analysis and Simplification
	Natural Numbers and Structural Recursion
	Proof by Structural Induction and Rewriting
	Pairs
	Iteration
	Factorials with Iteration
	Lists
	Linear List Reversal
	Options and Finite Types
	Simplifying Subterms
	Discussion and Remarks
	Tactics Summary

	Reduction and Typing of Terms
	Terms
	Local Variables
	Beta Reduction
	Normal Forms and Convertibility
	Typing Rules
	A Type Checking Algorithm
	Plain Definitions and Local Definitions
	Inductive Definitions
	Matches
	Recursive Abstractions
	Canonical Form Theorem
	The Problem with Non-Terminating Recursion
	Universes
	A General Recursion Operator

	Propositions and Proofs
	Propositions as Types
	Falsity and Negation
	Lemmas and Proof Scripts
	Tricks of the Trade
	Conjunction and Disjunction
	Equivalence
	Leibniz Equality
	Coq's Equality
	Existential Quantification
	Russell's Paradox
	Cantor's Theorem

	Abstract Presentation of The Logical Operations
	Last But Not Least

	Dependent Matches and Induction
	Dependent Matches
	Boolean Case Analysis
	Bool and False Are Not Equal
	Kaminski's Equation

	Natural Induction
	Primitive Recursion
	Projections
	Surjections and Countability
	Abstract Presentation of the Naturals
	Natural Order
	Size Induction
	Type Constructors with Proper Arguments
	Inversion
	Recursion on Proof Terms

	Matches at eq
	Termination and Divergence

	Sum and Sigma Types
	Division by 2 as Certifying Function
	Bounded Search
	Least Number Search

	Programming with Dependent Types
	Cascaded Functions
	Length-Indexed Lists
	Finite Types

	Boolean Logic
	Syntax and Semantics of Boolean Logic
	Decidability Results
	Denotational Completeness

	Quantified Boolean Logic
	Syntax
	Semantics
	Tableaux for Quantified Boolean Formulas
	Simulating Tableau in Coq
	Soundness and Completeness
	Other Interpretations

	Mathematical Assumptions
	Classical Assumptions
	Extensional Assumptions
	Proof Irrelevance

	First-Order Logic
	Syntax
	Semantics

	Coq Summary
	Commands
	Tactics


